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Since their inception in 1979 the Linz Seminars on Fuzzy Set Theory have emphasized the develop-
ment of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and estab-
lished mathematicians whose work outside the fuzzy setting can provide direction for further research.
The seminar is deliberately kept small and intimate so that informal critical discussion remains cen-
tral. There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2004 will be already the 28 seminar carrying on this tradition. It is therefore a good
opportunity to review the most important mathematical aspects of fuzzy systems. As usual, the aim
of the seminar is an intermediate and interactive exchange of surveys and recent results. We expect
that the presented talks will provide a comprehensive mathematical framework for the theory and
application of fuzzy systems.
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Fuzzy random variables: development and state of the art

MARIA ANGELESGIL

Departamento de Estadistica e 1.O.y D.M.
Universidad de Oviedo
33071 Oviedo, Spain

E-mail: angeles@pinon.ccu.uniovi.es

1 Introduction

The concept of random variable is clearly fundamental to the fields of Probability and Statistics.

A random experiment is a process in which the result or outcome is not known with certainty
before the experiment is performed. A (classical) random variable is a measurable function defined
on the sample space of the random experiment which converts each particular experimental outcome
into a real or vectorial value. Measurability is supposed to guarantee that many useful probabilities
can be computed.

In addition to randomness, a certain imprecision can arise either in perceiving or reporting existing
real/vectorial values, or in identifying existing values which are essentially imprecise. Fuzzy random
variables have been introduced to model imprecisely-valued measurable functions where imprecision
is formalized in terms of fuzzy sets.

2 Fuzzyrandom variables as a model for fuzzy perceptions/observations
of existing real-valued random mechanisms

Kwakernaak (1978, 1979), and later Kruse and Meyer (1987) in a more elaborated way, introduced
fuzzy random variables as a model for the situations in which fuzzy imprecision arises either in the
perception or in the report of values of a real-valued random variable (referred to as the ‘original’).

Let 7c(R) denote the class of the normal convex fuzzy subsets of the Euclidean®aneng
compacta-levels fora € [0,1], that is, the class of mappings: R — [0,1] such thatUy = {x €
RIU(x) > a}if a € (0,1], = cl(suppJ) if a = 0, are nonempty compact intervals. Then,

Definition 1. (Kruse and Meyer, 1987)Let (Q,4,P) be a probability space. Auzzy random
variable is a mappingX : Q — 7¢(R) such that for any € [0, 1] the real-valued mappings i :
Q — R, supXy : Q — R (with inf Xg (w) = inf (X (w)) ,, SUpXa (@) = sup(X (w)) . for all w € Q)
are real-valued random variables (i.e., Borel-measurable real-valued functions).

In this approach when one refers parametersassociated with a fuzzy random variable, one

is considering either real/vectorial-valued parameters of the probability distribution of the original
random variable or fuzzy-valued parameters defined on the basis of Zadeh'’s extension principle (see
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Kruse and Meyer, 1987). Thus, &(X) is a parameter of a real-valued random variakleand
E(Q,4,P) is the class of possible originals &f, the associateflizzy parametepf variableX cor-
responds t®(X) : R — [0, 1] such that

B(X)(t) = sup inf {X(w)(X(w))} forall teR.
XEE(Q,4,P),0(X)=t WEQ
In particular, wherB(X) = E(X|P) is the population expected value ¥f then thepopulation
fuzzy expected valléX) is the fuzzy set infc(R) such that(8(X)) , = [E(inf X4|P), E(supXs|P)]
foralla € [0,1].

3 Fuzzy random variables as a model for existing fuzzy-valued random
mechanisms

A second approach to fuzzy random variables conceives them as a model for the situations in which
fuzzy imprecision arises in the definition of the values of the random mechanism or variable. More
precisely, a fuzzy random variable is intended to be a measurable function defined on the sample space
of the random experiment and converting each particular experimental outcome into a fuzzy subset of
a separable Banach space (often a Euclidean one).

Let (B, |-|) be a separable Banach space, andrlg8) = {U : B— [0,1]|Uy € X(B) for alla €
[0,1]}, with Uy = {x € B|U(x) > a} for a € (0,1], = cl(suppJ) if a =0, andX(B) = {nonempty
bounded and closed subset$Bgf In other wordsF (B) is the class of the normal upper semicontin-
uous|0, 1}-valued functions defined dBwith bounded closure of the support.

Puri and Ralescu (1986) formalized fuzzy random variables (also aalfetbm fuzzy setas an
extension of random sets as follows:

Definition 2. (Puri and Ralescu, 1986)Let (Q,4,P) be a probability space. Auzzy random
variable is a mappingX : Q — 7 (B) such that for ang € [0, 1] the set-valued mappintj : Q —

K (B) (with Xy (w) = (X(oo))a for all w € Q) is a compact random set, that is, it is Borel-measurable
with the Borelo-field generated by the topology associated with the well-known Hausdorff metric on

K(B)l
du (K,K') = max{sup inf [k—K|, supinf |k— k’\}.
kek KeK’ K ek’ keK

Recently (see Colukgt al, 2001, 2002), Definition 3.1 has been proven to be equivalent to the
one formalizing fuzzy random variables #$B)-valued random elements (that is, Borel-measurable
F (B)-valued functions) wherf (B) is equipped with the Skorohod metric

ds(U,U") = ).\2}‘\ max{ sgp|7\(0() —al, S(lijdH (UG,U;\(G))} ,

whereA = {A : [0,1] — [0, 1] | strict increasing function with(0) = 0,A(1) = 1} forU,U’ € ¥ (B).

Furthermore (see also Coludtial,, 2001, 2002), the measurability condition in Definition 3.1 has

been proven to be equivalent to that (cf. Diamond and Kloeden, 1994) based dyrtiedrics on

1
¥ (B) by Klementet al. (1986), for allg € [1,), wheredy(U,U’) = (f[o,l] [dn (Ua,Ué)}qda> /q.

On the other hand, Klemest al. (1986) have introduced fuzzy random variable¥48)-valued
random elements whefi (B) is equipped with the sup-metric, that is,
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Definition 3. (Klement, Puri and Ralescu, 1986)Let (Q,4,P) be a probability space. Auzzy
random variable is a mappingX : Q — ¥ (B) which is Borel-measurable with the Boreifield
generated by the topology associated with the metric

de(U,U") = sup dy(Ug,Ug)
ae€f0,1]
forall U,U" € F(B).

The connections between notions in Definitions 3.1 and 3.2 are the following ones (seeetolubi
al., 2001, 2002):

Proposition 4. If X : Q — 7 (B) is Borel-measurable with the Borelfield generated by the topol-
ogy associated with.g then it is Borel-measurable with the Borelfield generated by the topology
associated with theql

However, the converse implication fails, since the requirements for fuzzy random variables in
Definition 3.2 are too rectrictive. An illustrative counterexample for this assertion can be found in
Colubiet al. (2002).

Moreover, wherB =R and ImX C %¢(R), then Definitions 2.1 and 3.1 coincide (see, for instance,
Zhong and Zhou, 1987), although they represent models for different situations in practice.

In this second approach thparametersassociated with a fuzzy random variabteare usually
defined on the basis of those for the corresponding parameters for compact random sets. As an exam-
ple, if E(dH (xo,{O}){P) < oo, then Puri and Ralescu (1986) have definedfttzzy expected value
of X as the unique fuzzy s&(X|P) € #(B) such that(E(X|P))a = Aumann’s integral of the com-
pact random seXy for all o € [0,1] (i.e., (E(X|P)), = {E(X|P)|X:Q — B, X € LYQ,4,P),
X € Xg as.[P]}).

It is convenient to remark that ranges of fuzzy random variables have been extended in some
studies to include unbounded values (see, for instance, Li and Ogura, 1999).

4 Some probabilistic and statistical studies concerning fuzzy random
variables

Since from a mathematical viewpoint Definition 3.1 includes 2.1 and 3.2 as special cases, from now
on we will assume fuzzy random variables we deal with are random elements in the Skorohod sense.

Metric propertiesof the spacd 7 (B),ds) indicate (Colubiet al, 2002) that it is complete and
separable. In this respect, it should be pointed out faiB),d.) is complete but non-separable
(Puri and Ralescu, 1986, Klemegttal., 1986), whence handling this space would be definitely more
complex than working with 7 (B), ds).

Fuzzy random variables can bkaracterizedn generaks certain limits of sequences of elemen-
tary typegmore precisely, either simple or having simpldevels) of these variables (see Lopez-Diaz
and Gil, 1997, 1998a).

In the set-valued case, when we work in a statistical setting the choice of the Aumann expectation
(1965) of a compact random set among possible integrals (see, for instance, Molchanov, 1998), can
be justified by means of the Laws of Large Numbers for random sets (see Artstein and Vitale, 1975).
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In an analogous way,aws of Large Number@ike those by Klemengt al,, 1986, Colubiet al.,, 1999,
Molchanov, 1999, Tayloet al, 2001, Kratschmer, 2002, Proske and Puri, 2003, and so on) justify the
choice of the fuzzy expected value in Puri and Ralescu’s sense.

Some other probabilistic results concernttifjerentiability (see, for instance, Puri and Ralescu,
1983, Roman-Flores and Rojas Medar, 1998, Rodriguez-Meifit, 2003),integrability (see, for
instance, Gong and Wu, 2002, Rodriguez-Mufiiz and Lopez-Diaz, 2003, Kratschmer, [2GD4),
theoremdcf. Tayloret al, 2001, Liet al,, 2003),reversing the order of integratiofsee Lopez-Diaz
and Gil, 1998b)fuzzy martingaleg¢see, Stojakow, 1994, Li and Ogura, 2001, Teran, 2003), and so
on, can be found in the recent literature.

In which concern statistical developments involving fuzzy random variables, we can mention
on one handlecision problems including fuzzy-valued utilitmsrewards(see Gil and Lépez-Diaz,
1996, Kurancet al, 2002),regression analysigsee Nather and Kdrner, 2002, Wiinsche and Nather,
2002) and, on the other hand, recent studiegé@rential techniques on either real- or fuzzy-valued
parameters of a fuzzy random variables an example for the last one, we can mention inferences on
the fuzzy expected value of a fuzzy random variable (see Kérner, 2000, Monteriedr@003).
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Fuzzy filter functors revisited: a 2-categorical overview

JOSEPHM. BARONE

321 East 43rd Street
New York, NY 10017, USA

E-mail: secretary@nafips.org

It was noted in [1] that limits in 2-categories are not as easy to describe as limits in ordinary categories.
In particular, there is a class of (2-categorical) limits called weighted or indexed limits [2-4] which can
be defined as follows: take a 2-functor @3— H, and define also a weight @to be a 2-functor F:

D — CAT (the category of categories). If, following the notation of [4], we denotelhyJAT ] the
2-category whose objects are 2-functors frbnio CAT, whose 1-cells are natural transformations,

and whose 2-cells are modifications, then the F-weighted limit @ G:— H is a representing object

for [D, CAT] (F,H(-, G)). A great advantage of a 2-categorical point-of-view and of the more general
versions of limits it allows is that paths are opened to simple algebraic constructions over categories
which may not be available if the scope is restricted to ordinary categories.

Eklund and Gahler [5] defined a fuzzy filter to be an element M'dfd.t.

(1) M(a~) = a (a is the constant mapping of X into L with valwe

(2)f, gin LX and f< g imply M(f) < M(g)

(3)¥f, gin LX, M(f A g) > M(f) A M(g)

where X is a set and M is a meet semilattice. They then define the covariant set functatéd
to L, which they call the fuzzy filter functor, to be the functor which assigns each set X to the set of all
(L-) fuzzy filters on X. When L is {0, 1}, they call Fthe proper filter functor. As noted in [1], they
show that the proper filter functor becomes a monad in certain cases, as does the fuzzy filter functor,

and they point out that Eilenberg-Moore objects can be defined for the proper filter functor as monad,
but they do not carry this further tq Fas monad.

But, again as discussed in [1], a great deal more can be done. In fact, it is proved in [1] that the
fuzzy filter functor is (isomorphic to) a 2-functoF Dsimp — idl, whereDsjmp is the category
with one object (*) whose morphisms (from * to *) comprise the simplicial category of finite ordinals
and order-preserving maps (see [2] or [4]) addis the 2-category whose 1-cells (morphisms) are
order-ideals (relations compatible with the orders on the domain and on the codomain) and whose
2-cells are inclusions. Given this, Eilenberg-Moore objects for the fuzzy filter functor emerge natu-
rally as they do for any other 2-functor froBgimp to any 2-category. Furthermore, it is known that
Eilenberg-Moore objects are constructible from products, inserters, and equifiers (see [4], p. 44).
Since Eilenberg-Moore objects are constructible from the fuzzy filter functor, it must be the case that
a relation exists between the fuzzy filter functor and the more elementary constructs products, insert-
ers, and equifiers. This means that the fuzzy filter functor can be broken down into a set of simpler
functors (details and references may be found in [1]).

This paper carries these results and ideas a bit further. We describe, first of all, exactly what
these constructs (products, inserters, and equifiers) which underlie the fuzzy functor would look like.
Second, we show that certain already known properties of the fuzzy filter functor have very simple
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2-categorical analogues. Thus, for instance, the fact the fuzzy filter monad is a submonad of the
crisp filter monad ([5], Prop. 7.14, p.135) has an interesting simple expression when expressed in
2-categorical terms. We also explore the implications of this 2-categorical view for fuzzy topology.

Perhaps most importantly, this paper takes a number of finite limit types, including products,
inserters, equifiers, inverters, and lax limits, and describes how requirements for their existence “con-
strain” the set (lattice, semilattice, ...) over which the fuzzy filters are taken and how they constrain
the nature of the fuzzy filters themselves. Consider, for instance, the inserter. If | is the inserter object
and A is any object, then for any pair of 1-cells a, b : AL there must exist a 2-cell (the “inserted”
2-cel)B:iea=>ieb(see, e.qg.,[4],p. 38). Now consider the enriched monad D of finitely gener-
ated up sets ovdrosas described in [6] (see esp. p. 262). The internal hom-functor over its (strict)
algebras is given by the equalizer

Hom((B, <), (A, <)) = all order-preserving maps infordered pointwise

which equalizes B— > A(®B) and AB— > DA(PB) — > APB)_|f we now “generalize” this equal-
izer to be an inserter, we must restrict further the set of maps in Hom((B(A, <)) to ensure that
the inserted 2-cells actually exist. Such restrictions and conditions have interesting implications for
the nature of Eilenberg-Moore objects over fuzzy filters and for fuzzy topologies.

SOME USEFUL BACKGROUND
MONADS

Given a category C, a monad consists of an endofunctor T along with two natural transformations
n:idc — Tandp: T2 — Ts.t yA) e TN(A) = idta = H(A) e n(TA) and u(A) e Tu(A) =
U(A) e u(TA). In a 2-categonyC, a monad may be defined as an object X along with an endo-1-cell S
and two 2-cells, a unit 2-cefj: 1 — S and a multiplication 2-cefl: SS— S [7].

LIMITS

Generally speaking, one takes limits over functors whose domains are small catelgarjes)(
and whose codomains are locally small categoi®s The so-called abstract definition of a limit is
the definition in terms of representations. For a functof G~ C, an object L inC is a limit for G
iff there is a representation C(X, L& [I, C](AX, G), i.e., for every natural transformation from the
diagonal functor to G there is a representing morphism from X to the limit obje&zfam every object
Xin C. This description converts readily to the “concrete” description in terms of cones. Note that for
ordinary categories the natural isomorphism from C(X, L) (the covariant hom-functor) to AXC](
G), two functors from C téset is straightforward.

Now consider the definition of a limit in a 2-category. We shall define such a limit, for reasons
that will soon be apparent, as follows: a (2-categorical) limit L for a 2-functdr G+ C is given by
the representation C(X, L5 [I°P, Cat](!, @X, G)) (here! is the terminal 2-category - see [8]). There
are two important aspects of this definition for our purposes. First, both sides of the isomorphism
are categories (by assumption), so we must take account of 2-cells as well as morphisms (1-cells).
Second, we expand the right side to include !; this doesn’t accomplish anything in particular here but
will prove useful when we turn to weighted limits below. As far as 2-cells are concerned, the universal
property requires that there be an invertible 2-cell which takes ea¢GG — Gj) o T; (X — Gj)
toT; (X — Gj).

For full generality, we need somewhat more from our notion of a limit. Suppose we replace the
terminal 2-category!{ in our definition above by a (any) 2-functor fromto Cat (known as an
“index” or “weight”). Now, since X, G) is also a functor fronh to Cat (by composition of G and
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the hom-functor), a weighted cone over G with vertex X is given by a 2-natural transformation from
F to (AX, G). Where an ordinary limit, then, requires only a single morphism to connect X with each
vertex of G (each G(-) in the diagram below), a weighted limit requires a set of morphisms (in fact,
since these are 2-categories, a category of morphisms) from X to gach G

— X —
lf{ 1 u:j—k
G(j) o G(k)

FUZZY FILTERS AS MONADS

There are two fundamental objectives served by the construction of monads in a (2-) category
C. One is the derivation of Eilenberg-Moore objects or algebras from the monads, and the other is
the construction of a (2-) category of the monads themselves through which functo@s nmay be
factored. Suppose we begin withl, the 2-category whose objects are sets, whose 1-cells (morphisms)
are binary relations, and whose 2-cells (morphisms of morphisms) are inclusions. We ask what sorts
of objects inrel (i.e., which sets), if any, are monadic, that is, which objects X may be equipped with
an associative multiplicatiop (more specifically, an endo-1-cell x and a 2-gelsuch thaty takes
xx to x and is associative), and with a unit 2-cgllfrom X (i.e., the 1-cell id) to x (note that we
follow here, for the most part, the presentation in [9]). MonadslInthen, are just pre-ordered sets
<X, <>, the pre-ordering providing the obvious multiplication and unit. These pre-ordered sets can
be seen to be the objects of a 2-category with morphisms (called M-modules by Koslowski in [9])
<X, <> — <Y,< — > those relations r for which{r) C r C (r<-). In other words, if there is
an arrow x— X' in X and r: X’ — y then also r: x— y and the same mutatis mutandis forr, y,
and y’. Such relations are called order-ideals, and, along with inclusions as 2-cells, they comprise the
category of monads irel calledidl in [9].

We know also ([5], p. 135) that the fuzzy filter functor generates monads in (the ordinary category)
set i.e., that the set of all fuzzy filters on a set X is a monaddh However, in a 2-categorical sense,
the set of all fuzzy filters on a set X may also be thought of as a moniad, isince such monads are
simply closure operators (see [9], p. 198). It is this role which leads to the construction of Eilenberg-
Moore objects for the fuzzy filter functor and hence to pie limits as described above.
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1 Introduction

In this communication we propose two logically sound fuzzification and defuzzification techniques for
implementing a credibility calculus on a set of propositional expressions. Both rely on a credibility
evaluation domain using the rational interjall,1] where the sign carries a split truth/falseness
denotation. The first technique implements the classic min and max operators where as the second
technique implements Bochvar-like operators. Main interest in the communication is given to the
concept ofnatural fuzzificatiorof a propositional calculus. A formal definition is proposed and the
demonstration that both fuzzification techniques indeed verify this definition is provided.

2 Logical fuzzification and polarization: an adjoint pair

2.1 Introducing logical fuzziness

Let P be a set of constants or ground propositions.-tet andA denote respectively the contradic-
tion, disjunction and conjunction operators.

The sek of all well formulated finite expressiomsll be generated inductively from the following
grammar:

VpeP : peE, Q)
x,yeE : —x|(X)|xVy|xAy €E. 2

The unarycontradictionoperator— has a higher precedence in the interpretation of a formula, but

we generally use brackets to control the application range of a given operator and thus to make all
formulas have unambiguous semantics. We suppose in the sequel that all other operators such as
implication, equivalence, xor etc are derived with the help of these three basic operators: contradiction,
conjunction and disjunction.

With these well formulated propositional expressions we associate a rational credibility evaluation
r:E — [-1,1] wherevx,y € E, ry = 1 means is certainly true ry = —1 means thax is certainly
falseandry > ry (resp. ry < ry) means that propositional expressiois more (resp. less) credible
than propositional expressign Such a credibility domain is called, and we denot&* = {(x,ry) |
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x € E,ry € [-1,1]} a given set of such more or less credible propositional expressions, also called for
short L-expressions.

We implement thecontradictionoperator onL-expressions by simplghanging the sigrof the
associated credibility evaluation, i.e.

V(X,Ix) € EL:=(r,ry) = (=X, —ry). (3)

The sign exchange thus implements an antitone bijection on the rational intetvd] where the
zerovalue appears as contradiction fix-point.

In classical bi-valued logic, it is usual to work syntactically only on théh point of view of
the logic, theuntruthor falsenesgoint of view being redundant through the coercion to the excluded
middle. For instance, writing(a,b) € R’ implicitly means assuming that this proposition is actually
true and its contradiction false, otherwise we would write b) ¢ R’

We will also rely syntactically on such an implicit truthfulness point of view and always denote
the truthfulness possibly induced from the underlying credibility calculus through a truth projection
operatot |, acting as aositivedomain and range restriction on the credibility operator

falscfrﬂlness truthfulness
—TA ATz

1 1

Tz

Figure 1: Split Truth/Falseness Semantics

Let (x,rx) € E* be anL-expression:

X, ry) if ry >y,
M(X,rx) = DT 02 o (4)
(—X,r-x) otherwise

Truthfulness of a given expressianis thus only defined in case the expression’s credibiljity
exceeds the credibility_y of its contradiction—-x, otherwise the logical point of view is switched to
=X, i.e the contradicted version of the expression (see Figure 1).

Asry > r_x < ry > 0 it follows from Equation 4 that the siga-(or —) of r, immediately carries
the truth functional semantics af-expressions, in the sense that arexpression(x, ry) such that
ry > 0 may be callednore or less trud L-true for short) and an expressiox ry) such thaty <0
may be callednore or less fals€L-false for short).

1in fuzzy set theory, the operator generally denotes a fuzzy membership function. We here choose the sgmteol
on purpose as our maifi-valued formulas mostly concerfrvalued characteristic functions.
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Only 0-valued expressions appear to be bhotlrue and£-false, therefore they are called—
undetermined.

To be able to compute the credibility evaluation associated with/aeypression, we still need
to implementL-valued versions of the conjunction and disjunction operators.

The classic min and max operators may be used:
V(x,rx), (Y,ry) € E-:

(Xv rX) \ (ya ry) = (X\/ Y, maX(rX7 ry)) (5)
(Xv rX) A (ya ry) = (X/\ya min(rX’ ry)) (6)

The operator triplec —, min,max> implements on the rational interviat 1, 1] an ordinal credibil-
ity calculus, denoted for shor,, that gives a first example of what we shall caflatural fuzzification
of propositional calculus.

To appreciate usefulness of our split truth/falseness semantics, let us look at what happens in the
Lo-valued framework with the truthfulness of certain classical tautologies or antilogies.

For instance, truthfulness of the tautologyv —x) is always given, as méxy, —ry) ) > 0 in any
case. Tautological,-valued propositions thus appear as beigtrue in any case. Therefore we
call them Ly-tautologies On the other hand, truthfulness of the antilagy\ —x) is only defined
when mir(ry,r-x) = 0. More or less “untruthfulness” of such an expression is however always given.
Therefore, we call such propositiorg-antilogies

Finally, let us investigate an implicativé,-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication, i.e. falseness of the
conjunction ofr (x) and—r(y), we obtain

min(ry,max(—ry,ry)) > 0 = ry >0,

i.e. the following Lo-tautology: “(x,ryx) and(x,rx) = (y,ry) being conjointlyL,-true always implies
(y,ry) being Lo-true *“.

As a main result of our construction, we recover in this sense all classical tautologies and antilogies
as particular limit case if we reduce ofg-valued credibility calculus to a bi-valugd-1,1} one.

2.2 On natural logical polarization

To explore the formal consequences of our split truth/falseness semantics, we need to formalize the
logical defuzzificatioror polarizationwe implicitly operate when applying to-expressions arn-true
or L-false denotation.

Unfortunately, the standard defuzzification technique, denoted in the fuzzy literatrelds
(see Fodor & Roubens [4]), whelec [—1,1] represents the level of credibility from which on a
given L-expression is considered to be true, is not generally consistent with our split truth/falseness
semantics (see Bisdorff [2]).

2« .1 have long felt that it is a serious defect in existing logic that it takes no heed diftfiebetween two realms. |
do not say that the Principle of Excluded Middle is downrifgise but | do say that in every field of thought whatsoever
there is an intermediate ground betweagwsitive assertiomnd negative assertiowhich is just as Real as they. . (C. S.
Peirce, Letter from February 29, 1909 to William James)
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What we need is an extended three-valued cut operator (see Bisdorff & Roubens [B): het
a set ofL-expressions and let® denote the restriction of to the three credibility value§—1,0,1}.
M EL — EL represents a logical polarization operator defined as follows:

V(x,ry) € EX:
(x,1) < >0
(X, ry) =< (X,—1) < rx<0

(x,0) < rx=0

Thatmtoperator indeed implements our split truth/falseness semantics may be summarized by stating
the following categorical equation.
HoTl = Tlo L (7)

and a credibility calculug verifying Equation 7 is calledatural.

For instance, we may show that implements a such natural credibility calculus. For this we
must proof that thet operation gives a natural transformation@fvalued expressions. Following
the general inductive construction Bf it is sufficient to show naturality of, for each of the basic
logical operators.

Lo-valued contradiction: for anfk,ry) € EXo, if ry >0, i(Ti(X, x)) = 1(X, 1) = (X, 1) = Ti(u(X, Ix));
if ry <0, W(TI(X,rx)) = KX, —1) = (=X,1) = T0(—=X, —rx) = T(U(X,Ix)); and ifry =0, p(Ti(X, rx)) =
H(Xa 0) = (Xv 1) == T[(X’ rx) = T[(H(X, rx))-

Lo-valued disjubction: for anyx,ry), (y,ry) € E%e, if ry> 0 orry > 0, p(T(xVy,maxry,ry))) =
H(XVY, 1) = (XVY,1) = (X Vy,maxTry,ry)) = T(U(XVY,maxry,ry))); if ry <0 andry <0, p(ri(xVv
y,max(ry,fy))) = u(xVy,—1) = (=(xVy),1) = I(=(xVy), min(—ry, —ry)) = TU(XV Y, maxrx,y))).

Finally, Lo-valued conjunction: for angx,ry), (y,ry) € E*e, if ry > 0 andry > 0, i(T(XAY, min(ry, ry))) =
H(XAY, 1) = (XAY, 1) = TI(XAY,mMin(ry,ry)) = T(U(XA Y, min(ry,ry))); if ry <0 orry <0, p(Ti(x A
Ymin(ry, 1y))) = HXAY, —1) = (~(XAY), 1) = T(=(XAY), max(—Tx, —Ty)) = T(U(XA Y, Min(r, Ty))).

This completes the demonstration.

The L, credibility calculus is however not the only possible natural credibility calculus we may
define onkE.

3 A Bochvar-like fuzzification of propositional expressions

A second example is given by a multiplicative fuzzification of the classic three-valued Bochvar logic.
We shall denotey, such a credibility calculus where the operator triple is deneted, v, A >.

We keep the traditional sign exchangesvalued contradiction.
Themultiplicative conjunctioroperatori on a seE* of L-expressions is defined as follows:

[rxxry| if (rx>0) A ry>0),

VX Eirpy=rxAry= i
Y€ xny = Ix ATy {—\rxxryl otherwise

In Figure 2, we may notice that the-operator, when restricted to{a-1,1}-valued domain, is
isomorphic to the classic Boolean conjunction operator.

Similarly, we define thenultiplicative disjunctioroperatory as follows:
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Figure 3: Graphical representation of the multiplicative disjunctive operator

— | rxxry| if (rk<0) A (ry <0),

VXY EP Iy =1IxYTly= i
Y xvy = Ix Ty |rxxry| otherwise

Again, we may notice in Figure 3 that we recover in the limit, when restricted to-ehl{-valued
expressions, the classic Boolean disjunction operator.

First, we may verify that the De Morgan duality properties are verifiedgnindeed, we easily

see that:

V(X7 rx), (y, ry) S Ef: Fxny = (= (—xv—y))-
Indeed, ifry,ry > 0, ry A ry =ry xry. At the same timef—y Y r-y = (r-x X r-y) = —(rx x ry). On the
contrary, ifry,ry < 0,rx A ry = —(ry x ry), thenr—y Yr—y) = (r-x X r-y) = (=rx x —r(y) =rxxry. If
eitherry > 0 andry < 0 or vice versa, the duality relation is equally verified.

It is most interesting to notice that in the case where lgtexpressions aréy,-true, respectively
Lp-false, both operators and Y give the samey-credibility. The operators diverge in their result
only when contradictoryy-truth assessments are to be combined. The conjunctive operator aligns
the Lp-false part where as the disjunctive operator sustainggkteue part of the pair of propositions.
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We may furthermore notice that the negational fix-point, the zero value, figures as |dgaxak
hol€’ as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through
any of both binary operators.

V(X,ry) EE® 1y A0=rxY0=0.

Ly
Let us denote,®, .

restriction of thesy, credibility calculus tdE/[fl:1 gives a classic Boolean algebra.

the equivalence classes of all certainly true or falgeexpressions. The

It is remarkable however, that such a priori obvious properties as impotency of conjunction and
disjunction, are only satisfied in this limit Boolean case. Indeed in general, the natural logical conse-
guence of combining more and more fuzzy propositions will sooner or later necessarily end up with
a completely undetermined proposition. The same is true when combining conjunctively or disjunc-
tively a number of times the same fuzzy proposition. Inde¢g,r), (y,ry) € E* such thaty # 0 we
have:

x| > [reAry],
x| > [rxYry].

We recover here a similar situation as in classic error propagation. The more we operate with impre-
cise numbers, we more we increase the imprecision of the out-coming result, and this imprecision is
essentially related to the imprecision of the initial inputs.

Finally, to validate now the naturality property of tig calculus, we must show that the curly
operatorsy and A verify Equation 7. In order to do so, it is again sufficient to show that for any
(x,1x), (Y;ry) € E* and both the curly operators we have:

HTTXV Y, Ix Y Ty)) = TUH(XV Y, I Y Ty)),
H(TIXAY, Iy A Ty)) = T(XAY, Ix ATy)).

Indeed, for any(x,rx), (y,ry) € EZe, if ry > 0 orry > 0, W(T(X VY, Ix Y ry))) = P(XVY,1) = (XV
Y, 1) = TUXVY,Ix Y ry) = TUXVY, I Y 1y); if ry < Oandry <0, WT(X VY, ry Y ry)) = j(xvy,—1) =
(=(xVy),1) =T(=(XVY),rx ATy) = TU(XVY, Ik Y Ty)).

And for any(x,ry), (y,ry) € E%e, if ry>0andry > 0, W(T(XAY, Ix ATy)) = H(XAY, 1) = (XAY, 1) =
TUXAY, Ix ATy) = TU(XAY, Ix A Ty); if ry <0 orry <0, WT(XAY, Ix ATy)) = H(XAY, —1) = (—(XA
Y),1) = T(=(XAY),Ix Y Iy) = T{U(XAY, Tx A Ty)).

This concludes the demonstration thiatdoes indeed implements a natural credibility calculus.

4 Moving on

In order to situate now the whole family of natural credibility calculus one may define on propositional
expressions, let us explore two directions for further investigations.

Following the general properties of thig calculus, we may want to consider the t-norm concept
as potential generalization. Unfortunately, the split truth/falseness semantics is not quite compatible
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with the formal properties of a t-norm. Indeed, let us recall that a t-nbrdefined on the interval
[—1; 1] should verify the following four axioms:

T(Lrx) = rxVrxe[-1;1] (8)

T(rx,fy) = T(ry,rx),Vrgry € [—1;1] 9

T(ry,ry) <T(rg,ry) if —1<re<ry<1,-1<ry<ry<1 (10)
T(ry, T(ry,rz)) = T(T(rgry),rz),Vry,ry,rz € [-1;1]. (11)

It is easily verified that the multiplicative conjunctive operatowerifies three of these axioms, i.e.
all except the third one. This is not astonishing, as this axiom is not so “naturally” a logical axiom but
rather a geometrical axiom underlying the “triangularity” heritage of the t-norm concept.

What axiom could advantageously replace the “triangular” t-norm condition in order to make fit
conceptually the t-norm to a natural credibility calculus on the rational intépmgll] ?

A possibility might be the following:
| T(ry,ry) | T(ru,rv) | iFO <[ [<[ry [ L0 ry [S] v €1

In some sense we would recover the triangular axiom in some absolute terms. But this idea has still
to be further explored.

Finally, more following the semiotical intuitions of C.S. Peirce, we may interpret the classic or-
dinal £, credibility calculus and the above introduced Bochvar-lilgecredibility calculus as some
limit constructions of a same semiotical foundation of logical fuzziness. Indeed,tt@&culus to be
applicable in a practical setting supposes a same closed universal semiotical reference for all ground
propositionsp € P as is usual in a mathematical logic context for instance, where as the multiplicative
model apparently supposes shared semiotical references for all determined parts and disjoint semiot-
ical references for the logically undetermined parts of each propogitoR as is usual for instance
in repetitive physical measures with error propagation.

These general considerations leave open the case where each ground exjresBidgs com-
pletely supported by a different semiotical reference. In this last case we would get as third limit case
some kind of aggregational logic (see Bisdorff [3]) as implemented by the concordance principle in
the multicriteria approach to preference aggregation for instance.
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Weak orders, i.e. reflexive, transitive, and complete binary relations, are among the most fundamental
concepts in preference modeling. It is well-known that weak orders are nothing else but linear orders
of equivalence classes, where the corresponding equivalence relation is the symmetric kernel of the
weak order. If the underlying set of alternativéss finite, a weak order can be represented by a single
score function [2].

In analogy to the crisp case, fuzzy weak orders are fundamental concepts in fuzzy preference

modeling [3, 4, 5]. Given a non-empty set of alternatides fuzzy relatiorR: X2 — [0, 1] is afuzzy
weak orderif it fulfills the following three axioms for allx,y,z € X (whereT is a left-continuous
t-norm):

R(x,x) =1 (reflexivity)

T(R(xY),R(Y,2)) <R(x,2) (T-transitivity)

R(x,y) =1orR(y,x) =1 (strong completeness)
In this contribution, we give an overview of construction and representation results for fuzzy weak
orders. This includes both known results and new insights:

(i) Every fuzzy weak order can be represented as a union of a crisp linear order and a fuzzy equiv-
alence relation—which is a full analogue to the crisp case [1]. Based on this discovery, we
are able to construct fuzzy weak orders from pseudo-metrics if the t-floisncontinuous
Archimedean [1].

(i) Forthe case th& is finite, we give a necessary and sufficient condition that a fuzzy weak order
is determined only by the degrees to which two consecutive equivalence classes are related to
each other.

(iif) Every fuzzy weak order can be represented by score functions [6], but not necessarily by a single
one, not even iX is finite [3]. A necessary and sufficient condition for the representability by
a single score function is given.
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(iv) Fuzzy weak orders can be represented by an embedding to the fuzzy powéiXgetquipped
with the fuzzy inclusion induced by the t-nofm[1].

All these reviews and new results are demonstrated by means of detailed examples.

Acknowledgements

Ulrich Bodenhofer gratefully acknowledges support by the Austrian Government, the State of Upper
Austria, and the Johannes Kepler University Linz in the framework of thieskCompetence Center
Program. Bernard De Baets and Janos Fodor gratefully acknowledge partial support by the Bilateral
Scientific and Technological Cooperation Flanders-Hungary BIL00/51 (B-08/2000).

References

[1] U. Bodenhofer. Representations and constructions of similarity-based fuzzy ordeFingsy Sets and
Systemgsl137(1):113-136, 2003.

[2] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlétath. Ann, 46:481-512, 1895.

[3] B. De Baets, J. Fodor, and E. E. Kerre. Gddel representable fuzzy weak ohdterhat. J. Uncertain.
Fuzziness Knowledge-Based Systef(®):135-154, 1999.

[4] J. Fodor and M. Roubens.uzzy Preference Modelling and Multicriteria Decision Suppdétuwer Aca-
demic Publishers, Dordrecht, 1994.

[5] S. Ovchinnikov. An introduction to fuzzy relations. In D. Dubois and H. Prade, ediansgamentals
of Fuzzy Setsvolume 7 ofThe Handbooks of Fuzzy Sepgges 233-259. Kluwer Academic Publishers,
Boston, 2000.

[6] L. Valverde. On the structure &f-indistinguishability operatordruzzy Sets and Systerig(3):313—-328,
1985.

28



A bridge between fuzzy set theory and coherent conditional
probabilities (I1)

GIULIANELLA COLETTI

Dip. Matematica e Informatica
University of Perugia
06123 Perugia, Italy

E-mail: coletti@dipmat.unipg.it

In this talk (strictly linked with that by Romano Scozzafava with the same title) we start from our
approach to fuzzy set theory in terms of conditional eventsaigrentconditional probabilities,
showing also how the concept pbssibility functiomaturally arises in this context. Coherent con-
ditional probability is looked on as a general non-additive “uncertainty” meag(pe= P(E|-) of

the conditioning events. In particular, we show tijatan be interpreted aspossibility measure,

giving a relevant characterizationy is apossibilityif and only if it is acapacity Moreover, we give

also a characterization of the measuras an (antimonotonahpformation measure Any coherent
extension of a membership function is between these two extreme cases, but the converse is not true.
So we discuss also a characterizatiocafierencef such extensions in terms of a suitable weighted
mean of conditional probabilities.

We recall from the previous talk (with the same title) the following basic notions.

Let ¢ be anypropertyrelated to a random quanti¥: notice that goroperty; even if expressed by
a statement, does not single—outearent since the latter needs to be expressed hprmambiguous
proposition that can be eith&ue or false

Consider now theventEy = “You claim ¢” and a coherent conditional probabiliB(Eg|Ax),
looked on as a real functiqe, (X) = P(Ey|Ax) defined orCx, the range oK. Then afuzzy subset
of Cx is the pair

Es = {E¢, Mg,y

with pg, (X) = P(Ey|Ax) for everyx € Cx.

So a coherent conditional probabiliB(Ey|Ax) is a measure of how much You, given the event
A = {X =x}, are willing toclaim the propertyp, and it plays the role of the membership function
of the fuzzy subsei;. We recall that we have been able not only to define fuzzy subsets, but also to

introduce in a very natural way the basic continuous T-norms and the relevant dual T-conorms, bound
to the former bycoherence

On the other hand, if we consider the weakestorm

min(x,y) ifmax(x,y) =1,
0 otherwise

TO<X7 y) = {
we can prove that the choice pf= P(Ey A Ey|AxAAy) agreeing withl, is notcoherent.
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The three coherent choices discussed in the previous talk correspond to the particular ¥alljes
A =1, = oo, respectively, of the fundamental (archimedean) Frank t-ndgnasd t-conorms, (see
[6]), with A € [0, ], that is (forA different from the above three values)

X o 1-x 1-y
T 0cy) = togy (14 KDY g xy) < 1-1og (14 B DO,

In our framework (where, giventanorm singling-out the valu®(Ey A Ey|Ac A Ay) of the con-
junction, then the corresponding choice of timnorm, which determines the value of the disjunction
P(Ey V Ey|Ax A Ay), is uniquelydriven by the coherence of the relevant conditional probability) we
are able to capture also Frank t-norms and t-conorms (fohanj0, «|), archimedean or not.

In our setting it is completely natural to consider fuzzy measures, taking as starting point a mem-
bership function, regarded as a pointwise distribution. This requires in fact only to extend a coherent
conditional probability assessment on the fanfify |A«} to the larger family of event§Ey|A}, with
A element of the algebrd spanned by evenig}.

Intuitively, P(Eg|A) is the probability that “You claimp” in the hypothesis that the value of the
variableX belongs toA.

The results that follow are mainly taken from [3] and [4]. Let us introduce the following (“natu-
ral”) definitions:

(D1) Let E be an arbitrary event arfd any coherent conditional probability on the famiy=
{E} x {Ax}xecy, admittingP(E|Q) = 1 as (coherent) extension. distribution of possibilityonCx is
the real functiormtdefined byr(x) = P(E|Ay).

Actually, along the same lines we can as well introduce any general distribptitmbe called
justuncertainty measure

(D2) Under the same conditions @D1), adistribution of uncertainty measuin Cx is the real
functiony defined by (x) = P(E|Ax).

WhenCx is finite, since every extension BfE| - ) must satisfy the axioms of a conditional prob-
ability, conditionP(E|Q) = 1 gives

PEIQ) = T P(AJQ)P(EA)  and P(AQ) = 1.

Xe! Xe!
Then 1=P(E|Q) < mgx><P(E|AX) ; thereforeP(E|Ax) = 1 for at least one evert,.
Xe

On the other hand, we notice that in our framework (whmerk probabilities for possible condi-
tioning events are allowgdt does not necessarily follow thB{E|Ay) = 1 for everyx; in fact we may
well have P(E|Ay) = 0 (or else equal to any other number between 0 and 1) for saptex . Obvi-
ously, the constrair(E|A;) = 1 for somex is not necessary when the cardinalityGy is infinite.

From now on, given an arbitrary evelt let C be a family of conditional event&E|H; }ici, where
card(l) is arbitrary and eventsl;’s are apartition of Q, P(E|-) an arbitrary (coherent) conditional
probability onC, # the algebra spanned by thk’s, and#° = H \ {0}.

Here we list some of the main results:
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(A) Any coherent extension &fto ¢’ = {E|H : H € #°} is such that, for everif,K € #, with
HAK =0,

(1) min{P(E|H),P(E|K)} < P(E|H VK) <maxP(E|H),P(E|K)}.
It follows that any coherent extension Bfto ¢’ = {E|H : H € #°} is such that, for every

H,K € #, with H AK = 0,
P(E|H VK) < P(E|H) + P(E|K).

On the other hand
(B) Any real functionf defined on# such that, iH AK = 0,
min{f(H), f(K)} < f(HVK) <max{f(H), f(K)},
is acapacityif and only if, for everyH,K € %,
f(HVK)=max{{f(H), f(K)}.
So the functiorf (H) = P(E|H), with P a coherent conditional probability, in geneisahot a capacity

The question now is: are there coherent conditional probabift{&s-) monotone with respect
to C? We reached a positive answer by means of the following result (given in [5]), which repre-
sents the main tool to introdugmssibility measurem our context referring to coherent conditional
probabilities.

(C) Letf:(C — [0,1] beanyfunction such that
(2) f(EH)=0if EAHi=0andf(E/H;))=1if H;CE
holds. Then any extendingf on X = {E} x #° and such that
(3) P(EH VK) =max{P(E/H),P(E|K)}, foreveryH,K € H°
is a coherent conditional probability.

(D3) Let H be an algebra of subsets@f andE an arbitrary event. IP is any coherent condi-
tional probability onK = {E} x #H°, with P(E|Q) = 1 and such that

P(E|H VK) =max{P(E|H),P(E|K)}, foreveryH,K € #H°,

then apossibility measuren # is the real functiorfl defined byl1(H) = P(E|H) for H € #° and
n()=o0.

In our context,(C) assures that any possibilitpeasurecan be obtained as coherent extension
(unique, in the finite case) of a possibilidljstribution Vice versa, given any possibility measuie
on an algebraH, there exists an eveft and a coherent conditional probabilyon X = {E} x H°
agreeing with'1, i.e. whose extension toE } x H (puttingP(E|0) = 0) coincides witH1.

So an immediate consequenceBf and(C) is thatany coherentP extending f on X = {E} x
H? is a capacity if and only if it is a possibility.
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Going back to our interpretation of a membership functiox) through a suitable coherent con-
ditional probability (a measure of how much You, given the evgnare willing toclaim the relevant
propertyd ), and putting

Ho = {X€ Cx : W(X) =0} , Hy = {Xx € & 1 u(X) = 1},

the conditional probability?(E|H®), with H = H, V H1, is a measure of how much You are willing
to claim property$ if the only fact you know is thak € H®. On the other handevery membership
function can be regarded as a possibility distributidhZ is an algebra of subsets &%, the ensuing
possibility measurecan be interpreted in the following way: it is a sort of “global” membership
(relative to each finitéd € 4) which takes, among all the possible choices for its valué\pne.
among all possible extensions satisfying (2), tieximunof the membership iA.

Moreover, we can regard every possibility meaddras a decreasing function of the elements
of the zero-layer sef{0,1,2,...,k} associated to thelass{Py} of unconditional probabilities that
are used to represent a coherent conditional probability in our main characterization theorem (see [2],
p.81).

In conclusionthe coherent extensions of a conditional probabilifER) that satisfy (3) give
rise to different zero-layerfor theatoms A corresponding to differeR(E|Ay), so that such a coher-
ent conditional probability?(E| - ) can be suitably associated to a measure of your “disbelief” in the
eventsA € 4.

Then some of the usual arguments may appear counterintuitive: in fact, the “global” membership
should possibly decrease when the information is not concentrated on agbugns “spread” over a
larger set (for example, considering the statement “Mary is young”, you may be willing, if you know
that Mary’s age i = 39, to putu(x) = .2, while if you know that her age is= 26, you may be willing
to putp(y) = .9; on the other hand, knowing that her age is between 26 and 39, the corresponding
possibility is still.9).

So our results may suggest to take as such global measure a function wihittaisapacity, yet
satisfying the weaker conditions undéy).

With the aim of studyingnformation measures in the framework of coherent conditional prob-
abilities, we gave also the following definition, which parallels, in a sense, txeand(D2) for
uncertainty (includingpossibility) measures.

(D4) LetF be an arbitrary event arfélany coherent conditional probability on the famijy=
{F} x {Ax}xecy, admittingP(F|Q) = 0 as (coherent) extension. We defip@intwise information
measureon Cx the real functionp defined by (x) = P(F|Ax).

WhenCx is finite, since every extension B{F|-) must satisfy the axioms of a conditional prob-
ability, considering the conditioR(F |Q) = 0, we necessarily have

P(F|Q) = Z P(A|Q)P(F|Ax) and %P(AX]Q) =1.
xelx Xe
Then 0=P(F|Q) > micnP(F|AX), soP(F|Ay) = O for at least one ever;.
Xely

On the other hand, we notice that in our framework it does not necessarily folloR(Rghy) =0
for everyx; in fact we may well havé®(F |Ay) = 1 (or to any other number between 0 and 1) for some
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y € Cx . Obviously, the constrai®(F |Ay) = 0 for somex is not necessary when the cardinalityQyf
is infinite.

Under the same conditions mentioned bef@g we get an immediate consequencéAf itself:

(B1) Any real functionf defined on# such that, ifH AK =0,
min{f(H), f(K)} < f(HVK) <max{f(H), f(K)},
is antimonotonevith respect taC if and only if, for everyH,K € %,

f(HVK) =min{f(H), f(K)}.

The following result proves the existence of coherent conditional probabHties ) antimono-
tone with respect taC. It represents also the main tool to introdunéormation measures our
context referring to coherent conditional probabilities.

(C1) Letf:C — [0,1] beanyfunction such that
f(F|H)=0if FAH =0andf(F|H)=1if H CF
holds . Then any extendingf on X = {F } x #° and such that
P(FIH VK) =min{P(F|H),P(F|K)}, foreveryH,K € #°,

is a coherent conditional probability.

In the case that the assessme(ft |H;) admitsP(F|Q) = 0 as coherent extension, we obtain as
well a coherent extension by requiring b@tF|Q) = 0 and choosing “min” as combination rule to
make the extension ¢f.

Are the two extreme cases

—P(E|Ax) extended to the disjunction of conditioning events by takingntla&imum(possibility
measuremonotoné

—P(E|Ax) extended to the disjunction of conditioning events takingtii@mum(antimonotone
measure)

the most natural ways to extend membership functions?
We recall that coherence implies
min{P(E|H),P(E|K)} <P(E|H VK) <max{P(E|H),P(E|K)}
but the converse is NOT true. So, in general, a value between the two extremes is not necessarily

a coherent choice for the conditional probabilRyE|H v K) (which can be looked on as a sort of
“global” membership ...).

Coherent choices have been characterized in [1]: theweighted mean®f P(E|H) andP(E|K)
(weights equal to zero or one are allowed). More generally, this result can be stated with reference to
the disjunction of any finite number ebnditioningevents.
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The purpose of this lecture is twofold. Firstly, we revise the classaifle copula$7], i.e. the class of
copulas that coincide with thesurvival copulg11]. Secondly, we describe two comparison models,
adeterministicone and atochastione, in which stable commutative copulas play a simplifying role.

We propose a method for constructing copulas which largely generalizes the ordinal sum construc-
tion method. The method is based on a grid structure and the use of what we havéoratjexlind
andbackgroundcopulas [2]. It can be applied in particular to constreminmutative copulaasndsta-
ble commutative copulafkequiring associativity as well leads to the usual ordinal sum construction
of t-norms, which for the purpose of constructing stable copulas reduces to the well-known ‘symmet-
ric’ ordinal sums of Frank t-norms [7].

In the deterministic model, objects are represented by feature vectors that indicate presence or
absence of certain properties. A typical way of comparing objects is by meaasddhality-based
similarity measuresperating on the corresponding feature vectors [4]. The generalization to fuzzy
feature vectors requires the choice of an appropriate model of fuzzy intersection alorfigazitica-
tion rulesfor other set-theoretic operations [1]. For more than two decades now, t-norms have become
the standard model for that purpose, and their use is hardly questioned. However, here we show the
power of stable commutative copulas. Inde&dtransitivity andTp-transitivity of the cardinality-
based similarity measures are preserved in the fuzzification process when using a stable commutative
copula as model for fuzzy set intersection [9]. Links wBkll-type inequalitiedor copulas and t-
norms will be discussed as well [8, 10].

The second comparison model deals with random variables. For a random\©ack;. .., X,),
its components are compared pairwisely by consideringwiteing probabilities’ of one over the
other. More specifically, a probabilistic relati@his defined:Q(X,Xj) = P(X > X;) +1/2P(X =
Xj). This relation indeed satisfi&¥X;, X;) + Q(Xj,X;) = 1. Moreover, its computation requires only
the knowledge of the bivariate marginal distributions, which are in turn uniquely determined from the
univariate marginal distributions and the copula that binds them. We consider the case where all pairs
of variables are coupled by a same commutative capufane of the key issues in comparison models
is the transitivity exhibited by the model. For probabilistic relations, we have previously developed
the rich framework otycle-transitivity[6]. Remarkably, the transitivity of the probabilistic relation
expressing the winning probabilities can be classified within this framework, and the corresponding
upper bound function only depends on the commutative capaiansidered [5]. In casg is stable,
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this upper bound function is given by (a,B,y) = B+C(1—B,y) = y+C(B,1—vy). In particular,
whenC = TAF is a Frank t-norm, theJ (a,B,y) = ﬁ/x([},y). In the specific case of independent
random variables, i.eC = Tp, we recover the previously studietice model[6] characterized by
U(a,B,y) =B+Yy— By, i.e. dice-transitivity.

References

[1] B.De Baets and H. De MeyeFransitivity-preserving fuzzification schemes for cardinality-based
similarity measuresEuropean J. Oper. Res., to appeatr.

[2] B. De Baets and H. De MeyeGopulas and the pairwise probabilistic comparison of ordered
lists, Proc. Tenth Internat. Conference on Information Processing and Management of Uncer-
tainty in Knowledge-based Systems (Perugia, Italy), 2004, submitted.

[3] B. De Baets, H. De Meyer, B. De Schuymer and S. Je@gglic evaluation of transitivity of
reciprocal relations Social Choice and Welfare, to appear.

[4] B. De Baets, H. De Meyer and H. NaesseAsglass of rational cardinality-based similarity
measures]). Comput. Appl. Math132(2001), 51-69.

[5] H. De Meyer, B. De Baets and B. De Schuymé@ransitive comparison of independent and
dependent random variablgs: Principles of Fuzzy Preference Modelling and Decision Making
(B. De Baets and J. Fodor, eds.), Academia Press, 2003, pp. 249-265.

[6] B. De Schuymer, H. De Meyer, B. De Baets and S. Jebaithe cycle-transitivity of the dice
mode] Theory and Decisiob4 (2003), 264—-285.

[7]1 E.P. Klement, R. Mesiar and E. Pdpyariant copulasKybernetika38 (2002), 275-285.

[8] S. Janssens, B. De Baets and H. De Melata-theorems on fuzzy set cardinalities Prin-
ciples of Fuzzy Preference Modelling and Decision Making (B. De Baets and J. Fodor, eds.),
Academia Press, 2003, pp. 27-42.

[9] S.Janssens, B. De Baets and H. De Me$eme meta-theorems on fuzzy cardinalities and their
application Proc. Third EUSFLAT Conference (Zittau, Germany), 2003, pp. 318-321.

[10] S.Janssens, B. De Baets and H. De MeBeli-type inequalities for commutative quasi-copulas
Fuzzy Sets and Systems, submitted.

[11] R. NelsenAn Introduction to CopulasLecture Notes in Statistick39, Springer-Verlag, New
York, 1998.

36



Vague ordered fields: towards an axiomatic theory of vague real line

MUSTAFA DEMIRCI

Department of Mathematics
Faculty of Sciences and Arts
Akdeniz University
07058 Antalya, Turkey

E-mail: demirci@akdeniz.edu.tr

The notion of fuzzy function based on many-valued equivalence relations (many-valued similarity
relations (equalities) [17, 18, 19], fuzzy equivalence relations [4, 6, 7, 21, 22, 26], similarity relations
[1, 2, 3, 15, 28], indistinguishability operators [27], etc.) has been introduced by several authors, and
applied to category theory [5], approximate reasoning and fuzzy control theory [8, 10, 15, 22]. The
author of this talk [8, 9, 10] later proposed other versions of this kind of fuzzy function, known as
strong fuzzy function and perfect fuzzy function, which have more desirable and powerful represen-
tation properties than the others. Many-valued equivalence relation-based fuzzy orderings have been
studied by Hohle-Blanchard [16] and Bodenhofer [1, 2, 3] w.r.t. different special integral, commuta-
tive cgme-lattices. Later on, these fuzzy orderings are generalized on the basis of a fixed and a general
integral, commutative cqm-lattidd = (L, <,*) under the nam&1-vague orderings [13, 14]. For a

given nonempty seX and anM-equivalence relatiok on it, anM-vague ordering oiX is a special

L-fuzzy relation onX satisfying some further properties by mean&of

Strong (perfect) fuzzy functions [8, 9, 10] form the elementary tools of vague algebra [9, 11, 12]
and vague lattices [13, 14]. In contrast to fuzzy algebra [23] and fuzzy lattices [25], vague algebra
and vague lattices basically involve vaguely defined binary operatdrgafue binary operations
[9, 11, 12]) and vaguely defined ordering relatiohsyague orderings), where the integral, commu-
tative cgm-latticeM = (L, <,x*) [10, 20] denotes the many-valued logical basis of these studies. A
vague binary operation6n X can be roughly described as a spetidilizzy relation (more precisely,

a special strong fuzzy function) frodix X to X with some reasonable properties formulated in terms

of E [9, 11, 12]. Strong (perfect) fuzzy functions propose a new approach to the fuzzy setting of nu-
merous different branches of mathematics. Vague algebra and vague lattices are only two important
cases of such an approach. The development of a sound theory of real line equippktvaiue
orderings,M-vague addition operations amd-vague multiplication operations [9, 12], which will

be called vague real line, lies at the heart of future studies in the theory of many-valued equivalence
relation-based fuzzy functions. It is well-known that basic axioms of the real line in the classical sense
have been derived starting from an abstract ordered field in the classical sense. For this reason, in an
analogue manner to the real line in the classical case, it is natural to start from a vague ordered field
for the establishment of an axiomatic theory of vague real line. Vague ordered fields and the transition
from vague ordered fields to the vague real line will be the main subjects of this presentation. The
outline of this talk can be expressed as follows. After a brief introduction of strong (perfect) fuzzy
functions and vague algebraic notions, we will define many-valued equivalence relation-based strict
fuzzy orderings, which will be an essential tool of the vague ordered fields, and establish the connec-
tion between these kinds of strict fuzzy orderings adlague orderings. Then we will introduce
vague ordered fields, and touch on the problem of the derivation of the basic axioms of vague real line
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starting from vague ordered fields. All necessary fundamental axioms of vague real line, which have
not yet been revealed in their entirity, are crucial problems in developing a sound theory for vague real
line. The aim of this talk can be summarized as the introduction of vague real line and the invitation
of the researchers to this new and bachelor field.
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Semirings are algebraic structures with two associative binary operations, where one distributes over
the other, introduced by Vandiver [10] in 1934. In more recent times semirings have been deeply

studied, especially in relation with applications ([5]). For example semirings have been used to model

formal languages and automata theory (see [4]), to deal with scheduling problems ([3]) and semirings
over real numberg(hax, +)-semirings) are the basis for the idempotent analysis [7].

In this work, we establish a relationship between semirings and many-valued logics.

Many-valued logic has been proposed to model phenomena in which uncertainty and vagueness
are involved. One of the more general classes of many-valued logics is the Basic logic defined in
[6] as the logic of continuous t-norms. Special cases of Basic logics are tukasiewicz, Godel and
Product logic. In particular Lukasiewicz logic has been deeply investigated, together with its algebraic
counterpart, MV-algebras, introduced by Chang in [1] to prove completeness theorem of Lukasiewicz
logic.

MV-algebras have nice algebraic properties and can be considered as intervals of lattice-ordered
groups (see [2]). Lukasiewicz disjunction and conjunction are interpreted by the opertimtk®
of the MV-algebrg0, 1] given by

x@y=min{L,x+y}, xOy=max0,x+y—1}.

In spite of satisfying theoretical results regarding tukasiewicz logic, all the attempts to use it as
an instrument to deal with uncertainty phenomena, for example in the fuzzy context, had to deal with
one of its main characteristic: conjunction and disjunction do not distribute one with respect to the
other.

In this paper we stress that operatiaghgnd @ in any MV-algebraA both come from the same
operation in the lattice ordered group associated #itln order to model the notion of conjunction
and disjunction one have instead to consider a lattice operatifor dually, V) together with the
MV-algebraic operatiors (or dually ®).

An example of how this representation can be useful to model fuzzy phenomena will be given
in the field of automata. Indeed in [4], semirings have been proposed to give a generalization of
automata, the so calldd-z- automata. More recently, automata with values in semirings over the
natural numbers or the real numbers sets have been deeply investigated both to finding results on
nondeterminism or infinite behavior of finite automata, and in the context of formal power series (see
[8], [9]). We shall give a description of automata having values in BL-algebras and MV-algebras.
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I ntroduction

Operations for combining [0,1]-valued fuzzy set membership functions pointwisely,
such as triangular norms or co-norms, uni-norms, null-norms, etc, have been extensively
studied. Such operations indeed provide two services by returning a real number as a result of
the combination of the membership degrees: i) a numerical degree of conjoint membership is
assessed ; ii) one can take advantage of the linear order of the real numbers for comparing the
degrees.

However, in many practical problems (such as multiple criteria analysis, flexible
constraints satisfaction problems), the scale [0,1] is too rich for being used, and more
qualitative scales having a finite number of levels have to be preferred. But, the internal
operations that can be defined on the latter scales (e.g., Godo and Sierra, 1988; Mas €t al.,
1999; Fodor, 2000) have a limited discriminating power since they take values on a finite
range.

In order to escape the dilemma of using either too expressive a scale which would
enable an accurate discrimination between the degrees, or a more appropriate scale leading to
too many ties, we investigate another route in this preliminary note. We are no longer looking
for global evaluations which then can be compared, but we are rather handling the
comparison of vectors of the membership degrees directly (following ideas already outlined in
(Dubois and Prade, 2001)) by introducing refinements of Pareto ordering.

Let L ={0o=0<o0;<...<0a, = 1} be a finite scale. Vectors of a given size N (a?, ...,
a¥, ..., o) made of values in L, can be partially ordered by Pareto ordering, denoted by <p.
Let us, for instance, consider the case N = 2. We have (0o, 0¢) <p (0, 011) <p (01, A1) <p ... <p
(ap-1, ap) <p (ap, a). For notational simplicity we shall write (i, j) < (i’, j’), in place of (qi,
a;) <p (0, 0j). We assume symmetry, thus pairs (i, j) and (j, i) are equivalent, and by
convention when we write (i, j) it is assumed that i <j. More generaly, we have (i, j) < (k, I)
assoonasi<kandj<lI,ori<kandj<I. Theonly undetermined cases are such that i < k
andj > I.

Motivating example

Once Pareto ordering is applied, what remains to specify is the ordering between pairs (i, j)
and (k, 1) such that i >k and j <| (Moura-Pires and Prade, 2000). The situation for the case N
=2,withL ={ap=0<a;<a<az=1},ispicturedin Fig. 1.
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I Questions for defining <,

(1,3) wr.t. (2,2)?
0,3) wr.t. (2,2)?
(0,3) wr.t. (1,2)?
0,3) wr.t. (1, 1)?
0,2y wrt (1, 1)?

0,0

Fig. 1. Refinements of Pareto ordering

The pending decisions are indicated in dotted lines. Such a refinement of <p will be
denoted by <, (refined ordering). For instance, as pictured in Fig. 1, (1, 3) <p (2, 3) and (2, 2)
<p (2, 3), while (2, 2) is <p-incomparable to (1, 3) and to (0, 3). Moreover, when specifying a
refinement <, one should obey the transitivity requirement. For instance, it is impossible to
enforce (1, 3) </ (2, 2) and (2, 2) < (0, 3) in the same time. One may also choose to complete
the Pareto ordering by enforcing equalities, e.g. (1, 1) = (0, 2).

It can be checked that there are 12 different “linearizations” of <p without ties for N =
2 and L = 3. Here are four examples (the added decisions are indicated in bold):

(01 O) <I’ (0’ 1) <I’ (01 2) <|’ (0’ 3) <r (11 1) <I’ (1a 2) <r (1a 3) <I’ (21 2) <I’ (21 3) <I’ (3) 3)

(01 O) <r (0’ 1) <Y (1’ 1) <r (01 2) <Y (1’ 2) <f (21 2) <f (O’ 3) <f (11 3) <f (21 3) <f (31 3)

(0’ O) <I’ (0! 1) <I’ (01 2) <I’ (1! 1) <I’ (01 3) <I’ (11 2) <I’ (1’ 3) <f (21 2) <I’ (21 3) <I’ (3! 3)

0,00<,(0,1)< (1,1)<(0,2)<(1,2) < (0,3) < (1,3) < (2,2) < (2, 3) < (3, 3).
The two first orderings are just the lexi-min and the lexi-max ordering respectively. In case L
is an interval scale, the third ordering above would correspond to the one that would be given
by an arithmetic mean refined by minimum, while the last ordering seems to be less simple to

interpret. Note that the number of levels that are thus obtained amounts to 10 elements (from
(0, 0) to (3, 3)), while L has 4 levels only.

Conversely, one may also consider the possibility of a coarsening (<) of the Pareto
ordering, if some pairs, ordered by <p, are found as equally good, e. g., 0i,j (0, i) =¢ (0, j), or
Oi,j (i, K) =¢ (j, k) for some k. We can thus express a form of absorption-like property for
some levels. Thus, other combination schemes can be recovered, by both completing and
coarsening the Pareto ordering, including the minimum:

(0,0)=¢(0,1)=c(0,2)=¢(0,3) < (1,1)=c(1,2) =c(1,3) < (2,2) =c(2, 3) <p(3, 3).

General framework

The above example has shown that it is possible to specify a variety of ranking modes
that are sufficiently discriminating, but still remaining in a qualitative setting. Generally
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speaking, the problem is how to efficiently describe any Pareto-compatible ranking using a
small number of conditions on the relative positioning of a few tuples and to study the
characteristic properties of such rankings.

Lexi-f and other refinements

A natura idea is to start with an operation f from Lx... XL to L, defined by an
aggregation structure (f*, £, 2, ..., £, ... ) where f'is the identity and f is defined on L* has k
arguments, and to use a refinement principle. One may for instance apply the lexi-f, a
generalization of the lexi-min or the lexi-max, defined for any globally increasing f (f strictlty
increases when all its arguments strictly increase), defined in the following way (Dubois,
Prade, 2001). Let us consider two N-vectors of evaluations | = (i, ... , in)and J = (g, ... , Jn)-
Then | >t J = f(M(I) = M(J)) > f(M(J) — M(I)) where M(I) is the multi-set of evaluations
a;, associated with I, and thus identical evaluations are discarded before applying f. This
means that in the above example with a 4-level scale, f(L xL) = {f%(0, 0), f(, 1), f(2, 2), f4(3,
3)}. Thus, we cannot represent in this way an ordering such that (1, 1) < (0, 3) < (2, 2) for
instance (as it is the case for the two last examples of linear orderings of the previous section),
since f4(0, 3)0 f(L L) and the lexi-f cannot provide any refinement for the considered pairs. It
shows that any complete pre-order cannot be generated has a lexi-f ordering for some
qualitative aggregation structure f. An open question is how to characterize the descriptive
power of the lexi-f? Are there other meaningful refinement principles based on a N-ary
operation closed on L? We might think of using a transposition of Lorenz dominance defined
for real-valued vectors by U <_grenz V = L(U) <p L(v) where L(u) = (Uz, U3 + Uz, ..., Up + ... +
Un), assuming u; > up> ... > uy. Taking L(u) = (uy, f(ug, uz), ..., f(ug, ..., uN)) enables the
non-trivial refinement of Pareto ordering for suitable choices of f.

Possible requirements

Indeed the above example indicates that there exists a large set of worth investigating
refinements which can be specified without using an aggregation structure f. Obviously, it
raises the question of how requirements on the ordering between the vectors can be expressed
in the general case, i.e., for N larger than 2, or when L has more than 4 levels. What would be
natural in order to moderate the combinatorics for defining a complete relation <; in the
general case is to introduce various requirements on the ordering. We already mentioned the
symmetry condition (the comparison of two vectors should not depend on the way the
components of the vectors are displayed). Other possible natural requirements that may be
thought of are the following ones:

- A weak form of preferential independence holds, namely:
(o, @) < (o, 0p) O (0, &y, o, a5, aX) < (@', o, @, @, ) (P
where, J, K are subsets of exponents and a' stands for the vector of a*’swhere k [ I. Note
that this requirement is still in the spirit of the lexi-f. Thisleads using Pareto ordering to
p)(i, a) < (ap, ap), o' <pa', ol <pa’,a < a0 @, a;, a’, 0, ) < @', ap, a’, a,
a
Thus, wewill have (1,1) <, (0,2) O (1,1,1) < (0, 1, 2) <p(0, 2, 2).

- However, the use of this principle can be seriously questioned as suggested by the following
example. Assume (0, 3) < (1, 2). Then (0, 3, 4, 5) < (1, 2, 4, 5) applying PI. But it may be the
case that (3, 4) > (2, 5) and (0, 5) > (1, 4), which would rather lead to state (0O, 3, 4, 5) >/ (1,
2,4,5), a least if we assume the other natural cumulative principle and we use symmetry:

a <a,al< a0 (@ a))< @,a’) (O

But this new principle itself cannot lead to a safe extension of <, as shown by the following
exarnple Assume (o! 3) <I’ (1’ 2)1 (3! 6) <I’ (4’ 5)1 (21 4) <r (31 3)1 (1! 5) <f (0’ 6) (C) applled to
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the two first relations entail (0, 3, 3, 6) < (1, 2, 4, 5), while the last two lead to (0, 3, 3, 6) >;
(1, 2,4,5)!

- Other examples of generic principles are “translation” rules. Namely,

(o:(',, ai, a’, o, o) < @, a0, ap, a) O @) disx, 0, A, @F) <0 (@ Qi A7, A,
at)

for x> 0, and i+x, j+X, 1 ¥x, j+x less than L. A similar condition can be used changing + x
into — x.

- Lastly, one may also use a “transference” principle of the form (i, i) < (i—1,i+ 1) forany i
> 1, or more generally that (i,j) < (@i — 1, j + 1) (we may also think of the converse principle).
This latter condition applied to the case of a 5-level scale, for instance, considerably reduces
the number of remaining questions to answer in order to define a complete ordering. Namely
we have, applying Pareto ordering together with the latter condition, (0, 0) < (0, 1) < (1, 1) <
0,2)<(1,2)<(0,3)?7(2,2)<(1,3)<(0,4)?(2,3)<(1,4)?(3,3)<(2,4) < (3,4 < (4,9,
where the question marks stand for undetermined relations. We would even have only one
indetermination, (0, 3)? (2, 2), if we add the previous translation constraints (i, j) < (i) O
(L,j+)<(@7)+)and (i+1,j)<(i™1,j)withi+l<jandi®™1<]j.

Note that the transference principle is in the spirit of Pigou-Dalton transferring in social
choice, which enables Pareto ordering on vectors of real numbers u = (uy, ..., uy) to be
extended by stating (..., U, ..., Uj, ... ) < (.., Ui —€, ..., Uj+ €&, ...) Where 0 <e<u—u. Itis
known that this refinement is equivalent to Lorenz dominance. See (Spanjaard, 2003) for
details and references. Note that in our framework, the counterpart of this idea is written

(ai, 0j) < (ai-1, aj+1) Where Uk, axO L, since neither a; + € nor a; + oy, make sense.
Using conditions on the rank of the elements of the scale

As it can be seen, the refinements of Pareto ordering raise problems, and anyway do
not lead to a complete ordering generally. A more efficient way for getting complete
orderings is to define them through conditions and operations on the indices numbering the
elements of the scale. Namely

f(i, j) <f(",J) O (o, oy) < (o, o)

If f is associative, it is simple to extend the definition to N-vectors. This is compatible with
Pareto ordering if f isnon-decreasing, i.e.
(o, o) <p (o, ) O f(1, ) <f(17, ")

Incasef(i, j) =f(i’,’) it might be further refined by another condition. For example,

0,0<01)<(0,2<(11)<(03<(1,2<(13)< (2,2 <(23 <373
is generated by f(i, j) =i +j refined by min(i, j) <min(i’, j’) if i +] =1’ + . Note that this
ordering violates the transference property.
However, generaly speaking, it is not clear that any complete pre-ordering refining Pareto
ordering can be specified in such away using integer-valued arithmetic operations.

Conclusion

This informal discussion is not intended to bring any new substantial result. Still itisa
preliminary attempt at understanding how to characterize complete pre-order structures
capable of modeling different behaviors for comparing qualitative evaluation profiles.
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Quantitative possibility theory (QPT) was proposed as an approach to the representation of
guantified uncertainty (Zadeh, 1978; Dubois and Prade 1988, 2000). In order to sustain this
claim, operational semantics could be instrumental. In the subjectivist context, quantitative
possibility theory somehow competes with probability theory in its personalistic or Bayesian
views and with the Transferable Belief Model (TBM) (Smets and Kennes 1994; Smets 1998),
both of which also intend to represent degrees of belief. We use the term ‘subjectivist’ to
mean that we consider the concepts of beliefs (how much we believe) and betting behaviors
(how much would we pay to enter into a game) without regard to the possible random nature
and repeatability of the events. An operationa definition, and the assessment methods that
can be derived from it, provides a meaning to the value .7 encountered in statementslike ‘my
degree of belief is.7. Bayesians claim that any state of incomplete knowledge of an agent can
be modeled by a single probability distribution on the appropriate referential, and that degrees
of belief coincide with probabilities that can be revealed by a betting experiment in which the
agent provides betting odds under an exchangeable bet assumption. A similar setting exists
for imprecise probabilities (Walley, 1991), relaxing the assumption of exchangeable bets, and
more recently for the TBM as well (Smets, 1997), introducing several betting frames
corresponding to various partitions of the referential. In that sense, numerical vaues
encountered in these three theories are well defined.

QPT seems to be a theory worth exploring as well, and rejecting it because of the current lack
of convincing semantics would be unfortunate. The recent revival, by De Cooman and
colleagues (1999), of aform of subjectivist QPT due to Giles (1982), and the development of
possibilistic networks based on incomplete statistical data (Borgelt and Kruse, 2003) suggests
on the contrary that it is fruitful to investigate various operational semantics for possibility
theory. Thisis due to several reasons: first possibility theory is a special case of most existing
non-additive uncertainty theories, be they numerical or not. Hence progress in one of these
theories usually has impact in possibility theory. Another maor reason is that possibility
theory is very ssimple, certainly the ssmplest competitor for probability theory, for instance
when using fuzzy numbers in fuzzy optimization problems. The aim of this paper is to
propose subjectivist semantics for numerical possibility theory.
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Such subjectivist semantics differs from the upper and lower probabilistic setting proposed by
Giles and followers, without questioning its merit. Instead of making the bets non-
exchangeable, we assume that the exchangeable betting rates only imperfectly reflect an
agent’s beliefs.

For long, it had been realized that possibility functions are mathematically identical to
consonant plausibility functions (Shafer, 1976) so using the semantics of the TBM for
producing a semantics for quantitative epistemic possibility theory is an obvious approach,
even if not explored in depth so far.

Consider what beliefs held by an agent on what is the actual value of a variable ranging on a
set Q, called the frame of discernment. It is assumed that such beliefs can be represented by a
belief function. A belief function can be mathematically defined from a finite random set that
has a very specific interpretation. The so-called basic belief mass assigned to each set is
understood as the weight given to the fact that all the agent may know is that the value of the
variable of interest lies somewhere in that set. A plausibility function evaluates to what extent
events are consistent with the available evidence. When the sets with positive mass are nested,
the plausibility function is called a possibility measure, and can be characterized, just like
probability, by an assignment of weights to singletons, called a possibility distribution.

The agent’s beliefs cannot be directly assessed. All that can be known is the value of the
“pignistic "probabilities the agent would use to bet on the frame Q (Smets, 1991). The
pignistic probability induced by a mass function is built by defining a uniform probability on
each set of positive mass, and performing the convex mixture of these probabilities according
to the mass function. In terms of game theory it corresponds to the Shapley value of a game;
in terms of upper and lower probabilities it is the centre of gravity of the set of probabilities
dominating the belief function. The pignistic probability is what is obtained by means of the
random simulation of a fuzzy number, picking a cut at random followed by a random choice
of an element in the cut, as studied by Chanas and Nowakowski (1988), among others.

The knowledge of the values of the probability p allocated to the elements of Q is not
sufficient to construct a unique underlying belief function whose pignistic transform is p.
Many belief functions induce the same probability distribution. For instance, uniform betting
rates on Q either correspond to complete ignorance on the values of the variable, or to the
knowledge that the variable is random and uniformly distributed. So all that is known about
the mass function that represents the agent§ beliefs is that it belongs to the ones that induce
the supplied probability. Under this scheme, we do not question the exchangeability of bets,
as done by Walley, Giles and others. What we question is the assumption of a one-to-one
correspondence between betting rates produced by the agent, and the actual beliefs
entertained by the agent. Betting rates do not tell if the uncertainty of the agent results from
the perceived randomness of the phenomenon under study or from a simple lack of
information about it.

The belief functions whose pignistic transform is p are called isopignistic belief functions and
form the set | P(p). Since several mass functions lead to the same betting rates, one has to
select one that most plausibly reflects the actual state of belief of the agent. A cautious
approach is to obey a Tleast commitment principle that states that one should never
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presuppose more beliefs than justified. Then, one should select the ‘least committed’ element
in the family of mass functions compatible with the pignistic probability function prescribed
by the obtained betting rates. The first main result of this paper is that the least committed
belief function, among the ones which share the same pignistic transform, is consonant, that
IS, the corresponding plausibility function is a possibility function. This possibility function is
the unique one in the set of plausibility functions having this prescribed pignistic probability,
because the pignistic transformation is a bijection between possibilities and probabilities. So
this possibility function corresponds to the least committed mass function whose transform is
egual to the probability supplied by the agent.

This result is formalized on the basis of a measure of non-commitment of a belief function,
namely the average of the cardinalities of its focal elements weighted by the mass function.
Let m be a mass function from 2% to [0, 1], and let I(m) = Yauo M(A)card(A) be its
imprecison measure estimating the extent to which it is non-committal. Let p be the
probability distribution obtained by eliciting an agent’s betting rates on the frame Q. It is
assumed that the actual belief of the agent is modeled by a mass function on Q such that p =
Pig(m) is the pignistic transform of m, that is :

p(w) = Xa:woa M(A)/ card(A) 1)

This is an extension of Laplace indifference principle, according to which equally possible
outcomes have equal probability. It is a weighted form thereof. It is suggested that the least
debatable representation of an agent’s belief is the mass function m* which maximizes I(m)
under the constraint (1) induced by betting rates.

Theorem 1: The mass function m* which maximizes 1(m) under the constraint Pig(m) = p is
consonant. It defines a unique possibility distribution Ttdefined by

(W) =2, 0 Min(p(w), p(u)), w L Q. )

It is the converse of the pignistic transform of a possibility distribution, the converse of the
transformation used by Chanas and Nowakovski. This probability/possibility transform was
already proposed without formal justification by Dubois and Prade (1983).

This result was already announced by the authors in (Dubois et al. 2001), but its proof is still
unpublished. It contrasts with a similar result by Smets (2000) that uses a notion of
information index based on the commonality function.

Moreover, Smets (2000) suggested that the least specific isopignistic belief function
according to the commonality ordering (based on Q(A) = > A M(E) ) is also Pig ™ (Pig(m)).
This ordering is less intuitive than the specialization ordering and the inclusion of Bel-Pl
intervals. However, there is indeed a unique minimally Q-informative belief function in
| P(p), and it is precisely the one found by maximizing I(m). But the commonality ordering
turns to be more natural than one could think at first glance, since, in order to show the above
result expressed by Theorem 2 below, we first prove that, for ensuring comparability in the
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sense of the Q-informativeness ordering between a consonant belief function and a belief
function, it is enough to rely on singletons:

Lemma: Consider a belief function with mass function m and a possibility distribution
7rwith respective commonality functions Q and Q... Then Q,{A) = Q(A), /A [7 Q if and only
if mMw)=>Pl({}), Dw [T Q.

Theorem 2: The unique consonant mass function in | P(p) (induced by the possibility
distribution defined by (2)), is minimally Q-informative.

These results provide a first reply to objections raised by Bayesian subjectivists against the
use of fuzzy numbers and numerical possibility theory in decision-making and uncertainty
modeling tasks. Interestingly, this approach does not refute the Bayesian operational setting; it
only questions the interpretation of betting rates as full-fledged degrees of belief.
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Composing various powerset functors with the term monad gives rise to the concept of generalised
terms. The goal is to extend traditional term unification with unification involving powersets of terms.
This enables a study of substitutions and unifiers within Kleisli categories related to particular monads.

As constructions of monads involve complicated calculations with natural transformations, proofs
are supported by a graphical approach that provides a useful tool for handling various conditions, such
as those for distributive laws.

Monads equipped with order structures extends suitably to so called partially ordered monads.
We will show how these partially ordered monads, together with their subconstructions, contribute
to providing a generalised notion of powerset Kleene algebras. This generalisation builds upon more
general powerset functor setting far beyond just strings (Kleene, 1956) and relations (Tarski, 1941)
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It is quite well known since [4] in the contest of fuzzy mathematics that in many disciplines and
especially in fuzzy topology it is very useful to set up the classes of objects and of morphisms to deal
with (e.g. the working category, dubbed “ground category”) as well as to associate to each morphism
between two objects suitable operators, in both directions,(namely powerset operators) between the
lattices of “canonical subobjects”(namely powersets) of the considered objects.

Among papers mainly devoted to this topic we quote [2, 3, 5, 6] : the ground categories constructed
in [5, 6], either in the fixed-basis or in the variable-basis context, contain only objects associated to
(crisp) sets; the objects of the ground categories considered in [2, 3] are arbisaty [ a suitable,
fixed complete lattice).

Though not explicitly listed among the elements of the ground categories, powersets associated to
objects and powerset operators associated to morphisms (i.e. powerset functors, as they are defined
in [2]) are fundamental in most applications of this sort of set theory based on ground categories; for
instance, in fuzzy topology, which in any case lies between classical topology and pointless topology,
topologies areNl)-subsets of some ground object and (special) morphisms are maps satisfying prop-
erties expressed in terms of the powerset operators. In [5, 6] one can find a detailed and motivated
justification for extending powersets and powerset operators from the traditional case of classical set
theory to a more general context, including, as a first step, the Zadeh powerset operators. These op-
erators are also the fundamental tool for the construction of powerset operators in [2, 3] and so they
will be in this new approach.

Here an original idea of [1] is extended and developed so as to allow the construction of powerset
operators to be applied in more general situation, including those considered in [2, 3] and a special
case of variable-basis fuzzy set theory extended to arbitrasts.

The fundamental aspect of the construction presented here is a sort of localization of the process
leading to the definition of forward and backward powerset operators both of which can be obtained
in the same way, by using the corresponding Zadeh operators.

This process could be further extended by considering fuzzy sets as lattice-bundles so as to extend
and include the general case of Rodabaugh’s variable-basis fuzzy set theories.

References

[1] C. De Mitri and C. GuidoG-fuzzy topological spaces and subspadesnd. Circolo Matem.
Palermo Suppl29(1992) 363-383

53



[2] C. De Mitri and C. GuidoSome remarks on fuzzy powerset operatbtezzy Sets and System
126(2002) 241-251.

[3] C. Guido,The subspace problem in the traditional point-set context of fuzzy topdlugpes-
tiones Mathematica®0 (3) (1997) 351-372.

[4] U. Hoéhle and S. E. Rodabaugh,eddathematics of Fuzzy Sets: Logic, Topology, and Mea-
sure Theory The Handbooks of Fuzzy Sets Series, Vol 3 (1999), Kluwer Academic Publish-
ers(Dordrecht).

[5] S. E. RodabauglRowerset operator foundations for poslat fuzzy set theories and topologies
[4], 91-116.

[6] S. E. RodabaugPowerset operator based foundation for point-set lattice- theoretic (poslat)
fuzzy-set theories and topologi€duaestiones Mathematicaé(3) (1997), 463-530.

54



Fuzzy relation equations and fuzzy control —
some old and some new ideas

SIEGFRIED GOTTWALD

Institute for Logic and Philosophy of Science
Leipzig University
04107 Leipzig,Germany

E-mail: gottwald@uni-leipzig.de

In fuzzy control, it is a well known approach to transfer, with reference to the compositional rule of
inference, a list of linguistic control rules of the form

IFaisA, THENBisB;, i=1...,n
into a system of fuzzy relation equations
AiOR:Bi, 1§|§n7

for a fuzzy relatiorR which has to be determined as a solution of this system of relation equations.

The presentation shall have its focus on methodological considerations, will remind some ap-
proaches toward solvability considerations for such systems as well as toward approximate solutions
like [4, 3], and extend them slightly with reference to some recent results explained e.g. in the papers
[1, 2, 5].

But we will also give an embedding of this methodology to treat fuzzy control problems into a
wider perspective of handling an interpolation problem in an approximative way.

And we shall go on to look at some open problems from a rather general point of view.
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1 Introduction

Capacities [3] have been introduced by Choquet, and rediscovered by Sugeno [13] under the name of
fuzzy measure©n a mathematical point of view, these are monotonic set fungtio®§N) — [0, 1]

over some sel (assumed to be finite in this paper), or otherwise said, isotone mappings from the
Boolean latticg 2N, C) to the linear latticg[0, 1], <), preserving top and bottom. Usual tools used in
capacity theory are the Moébius transform [11], the Choquet integral, and interaction index [5].

Recently, Grabisch and Labreuche have proposed the conceptapacities7, 6], which gen-
eralizes capacities for bipolar scales in a context of decision making. Mathematically speaking, these
are functionss: Q(N) — [~1,1], whereQ(N) := {(A,B) € 2 x 2V | AN B = 0}, being increas-
ing in first coordinate and decreasing in second one. More abstractly, a bi-capacity is an isotone
mapping from the latticé3N, C) to the linear latticg[—1,1],<) preserving top and bottom, where
(A,B) C (C,D) iff AC CandB D D. Usual tools of capacity theory mentionned above have all been
generalized to bi-capacities.

Taking this as a starting point, one may define capacities as isotone mappings from somie lattice
to ([—1,1],<), preserving top and bottom. This can be interpreted in decision making and even larger
domains such as knowledge discovery [10]. The aim of the paper is to show how to generalize usual
tools of capacity theory to this general setting, using the less possible restrictions on thé. ldtice
the Choquet integral, we refer the reader to [9].

We will make a particular mention of belief functions (see a pioneering work by Barthélemy
defining belief functions on lattices [1]), and refer the reader to [8] for the case of possibility measures.

2 Capacities on lattices

(for a reference on lattices, see [2]) L&t <) be a finite lower locally distributive lattice, we denote
asusual/, A, T, L supremum, infimum, top and bottom. Any such lattice can be represented uniquely
by its v-irreducible elements in an irredundant decomposition [4]. An eleinehtis aV-irreducible
elementif i £ | and it has only one predecessor. Let us ¢éll) the set of allv-irreducible elements

of L. For anyx € L, we denote byn*(x) its unique irredundant decomposition in join-irreducible
elements.

For x,y € L, we say thaix covers y(or y is a predecessoof x), denotedx > vy, if there is no
zel,z#xysuchthak<z<y.
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Letv:L — R be a real-valued function dn v is acapacityif v is isotone Bottom and top have
to be preserved if one replacBsby any closed interval.

3 Mobbius transform

The first fundamental concept in capacity theory is the Mobius transform. Following the general
definition of Rota [11] (see also [2, p. 102]), we have already a definition for the general case. For any
function f on (L, <), theMdbius transfornmof f is the functiorm: L — R solution of the equation:

The expression ahis obtained through the M6bius functiprby:

m(x) =% uy;x) f(y)

y<x

wherepis defined inductively by

HXY) =4 — Sxcryb(X 1), ifx<y
0, otherwise

4 Derivative of functions on lattices

Let (L, <) be a finite lower locally distributive lattice, arfd: L — R a real-valued function on it.

Definition 1. Leti € 7(L). Thederivativeof f w.r.t. i at pointx € L is given by:

A f(X) = f(xVi)— f(x).

Note thatd; f (x) = 0 if i <x. We say that the derivativg f (x) is Booleanif [x,xVi] is the Boolean
lattice 2, otherwise saick Vi > .

Using the irredundant decomposition, the derivative w.r.t any elegnesmt be defined.

Definition 2. Letx,y € L, andy = V}{_,ix be the irredundant decompositionyoihto join-irreducible
elements. Then the derivative dbfw.r.t y at pointx is given by:

By () = B, (B (- 15, F(0)---)-

The derivative iBBooleanif [x,x VY] is the Boolean lattice™2 The derivative is O if for somg,
ik <X

We express the derivative in terms of the Mobius transforrh. of

Theorem 3. Let xy € L, such that\ f (x) is Boolean. Then



5 Shapley value and interaction index

We need some additional structure borat this point. We consider finite lower locally distributive
latticesL,...,Ln, with top and bottom of; denotedT;, Li,i =1,...,n, andL is the product lattice
L:=Lj x--- x Ly with the product order. Aiertexof L is an elemenx = (Xy,...,X,) of L wherex; is
eitherT; or L, fori =1,...,n. We denotd (L) the set of vertices df. Note that ifL is a Boolean
lattice, therL =T (L).

We begin by defining the importance index as the interaction index w.r.t. a single join-irreducible
element.

Definition 4. Leti = (L4,...,Lj—1,i0,Lj+1,...,-Ln) be ajoin-irreducible element &f Theinterac-
tion w.r.t. i of vis any function of the form

I (I) = _ Z aﬁ(x)AiV(X)v (1)
XeT (Mg b o} <M (M1 L)
whereig is the (unique) predecessorigfin Lj, h(x) is the number of components »iequal toT),
| =1,...,n, anda} € R for any integek.
Observe that the constamﬁ(x) do not depend on Also, the derivative is Boolean.

Let us generalize Definition 4 to a class of elementk denoted_ and defined as followd: :=
UJQN LJ, W|th

Ly :={xeL|vke J,3ix € Lk such thawi € n*(x),i = ik,
andxc = Lgif ke N\ J}
In words, it is the set of elements whose coordinates are either bottom or such that the irredundant

decomposition covers a unique element. Observe that for the case khisra linear lattice or a
Boolean one (i.e. practical cases fo interest} L.

Definition 5. LetK C N, andx € Lk, and denote as above for &lE K, ix the element covered by all
i € n*(X). Theinteraction w.r.t. xof v is any function of the form
J
I(x):= > CXL(‘y)AXV(y) (2)
ylyk:Tk or Ly if kQK,yk:k else

wherel is the set of join-irreducible elements in the decompositiox of

The derivative is Boolean if in addition thg’'s are modular (and hence distributive).
We have the following general result.

Theorem 6. Let KC N, and assume distributivity holds for every, k € K. The expression of the
interaction index for »xc Lk in terms of the Mdbius transform is given by:

=3 By M2,

ZEXX

with X := (Tk) for k € K, andX = X« else, J is the set of join-irreducible elements in the decomposi-
tion of x, and Kz) is the number of coordinates of z not equalltg | = 1,...,n. Moreover, the real

constantzﬁ'J‘ 1Kl are related to thmp‘ s by:

n—k(z)
Bk 5 ( > B e 3)
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6 Belief functions on lattices

Let L be a lattice. Following the classical definition, we say that a capacity— [0,1] onL is a
belief functioniff its M6bius transform is non negative, andreserves top and bottom. Barthélemy
has shown in [1] that this is equivalent to say thidas k-monotone for alk > 2, the definition of
k-monotonicity being adapted in the obvious way for our general setting.

In fact, most of properties of belief functions are still true when defined on a lattice. We show in
the sequel the decomposition of belief functions into simple support functions, which generalizes the
classical result of Shafer [12].

For any belief functiorb on L, we define the correspondimpmmonality function &y q(x) :=
¥y=xM(y), wheremis the Mdbius transform d.

Let by, by be two belief functions ok, my, m, their Mobius transform, and, g, their common-
ality functions. TheDempster rule of combinatioof by, by, denoted; & by is defined in terms of its
Mobius transform by

mem() =% m(y)ma(yz)

Y1AY2=X

It is easy to show that the commonality functign® q, associated tb; ® b, is

01 © G2(X) = u(X)G2(X).

Definition 7. We call simple support function focussed ondgnotedy®, the function of which the
Mobius transform satisfies

l-w, ifx=y
m(x) = ¢ W, if x=T
0, otherwise

The decomposition of some belief functibmn terms of simple support functions is thus to write

b under the form:
b(x) = Dy (X).
yeL

It can be shown that the coefficients of this decomposition write

Wy = I—l ql(x) HxY)

X2y

wherep(x,y) is the Mdbius function. Note that as in the classical case, these coefficients may be
strictly greater than 1, hence corresponding simple support functions have negative Mobius transform.
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Abstract

Given a complete latticéL, <) with an order—reversing involution, we find conditions to exist a
residuated binary operationsuch that the order—reversing involution is determined by the resid-
uation associated to the binary operatianParticularly, if (L, <,) is a completely distributive
lattice with an order—reversing involutionwe prove that there exists an operatiersuch that
(L, <, %) is an integral, commutative Frobenius lattice in whith— | = o’ for eacha € L if

and only ifa < ' whenevera A .

Keywords Order—reversing involutionpo-semigroup, residuation, Heyting algebra.
AMS Classification18A40, 54A40.

1 Preliminaries

Let (L,<) be a complete lattice with universal boundsand T. In particular\y @ = L and \ @ =
T. A unary operation’ is anorder—reversing involutior{or a quasi-complementatignif it is an
involution (i.e.a” = a for all a € L) that inverts the ordering (i.ea < 3 implies ' < ).

A po—groupoid(short for partially ordered groupoid) is a posét <) with a binary operation:
on L which satisfies thésotonicitycondition: o < Bimpliesaxy <
Bxyand yxa < yxfforall a,B,ye L. Whenx is commutative or associativél., <,x) is called a
commutative pegroupoid orpo—semigrouprespectively.

In a po—groupoid(L, <, x) an elementx is calledidealelementifa«pB < aAp forall a,p € L.
An po-groupoid (L, <,x) is calledintegral if and only if the universal upper bound acts as unit
element w.r.t.x. In an integralpo—-groupoid(L, <,x) all elements are ideal.

Let (L, <, ) be apo-groupoid andx, € L. Theright-residuala —, B of B by a isthe largest
y € L (if it exists) such thaoi xy < B; theleft—residuala — B of B by a is the largesty ¢ L (if
it exists) such thayxa < B. A residuated latticds an m-lattice (L, <,*) in which a ——, B and
a —— B always exists for ang, 8 € L. Obviously, in cas€L, <,*) is commutative, botu ——, 3
and a — B coincide. We shall denote them loy—— B and call it theimplication associated to
x. The existence of residuals implies that the operatiopreserves all existing supremss in each
argument.

A po-groupoid(L, <,x) in which (0( - L) —5, 1L = a for every right-ideal elemert and
(B —>r L) —— L = B for every left-ideal elemenB is a Frobenius po-groupoidcf. [1, page
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341]). In particular, if(L, <,x*) is an integral commutative residuated lattice, then it is Frobenius if
and only if (a — 1) — 1 = a foreverya € L.

A lattice (L,<) is said to be &Heyting algebraif (L,<,A) is a residuated lattice. Obviously,
(L,<,A) is an integral commutative residuated lattice.

An elementp in a latticeL is calledprimeif and only if the relationp > a A B always implies
p > a or p > B. The set of all prime elements is denoted PRIMBDually, an elemeng in a lattice
L is calledcoprimeif and only if the relationg < a Vv 3 always impliesq < a or q < B. The set of
all coprime elements is denoted COPRIME

2 Order-reversing involutions and residuated lattices
We shall try to answer the following question:

Given a lattice with an order-reversing involution (L,<,’), does there exist a binary
operation x such that the order-reversing involution ' is determined by the implication
-~ associated to *, 1.e. O 5,1 =a foreachaelL?

In view of the structures considered in the preliminaries, we can reformulate the previous question
in a more precise way:

Given a lattice with an order-reversing involution (L,<,’), does there exist an integral
commutative Frobenius lattice (L,<,*) such that the order-reversing involution ’ is de-
termined by the implication — associated to %, i.e. & — 1 = o foreach a € L?

This question has been studied by Esteva and Godo in [2] in the case of bounded chains.

The answer to the previous question is obviously NOT in general. In fact, we have the following
example:

ExampleLet L= {Ll,0,B, T} wherea AR =1, aVvB =T, a =a andf = B. Letassume that
there exists an integral, commutative m-lattite <, *) such that the order—reversing involutiéns
determined by the implication~. Thena B < aAB = L andsop < a — 1 = o’ = a.

Consequently we see that in order to have a positive answer the lattice must satisfy some additional
condition. Particularly, the existence of such a binary operation requires that the order-reversing
involution satisfies the following condition:

Va,pel  aAB=1L = a<p (%)
Now we can reformulate the previous question:

Given a lattice with an order-reversing involution (L,<,’) satisfying condition %, does
there exist an integral, commutative, Frobenius lattice (L,<,x) such that the order—

/

reversing involution ' is given by the implication —, that is, a’ = o« — L for all

ael?
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In order to have an answer to this question we shall use the residuation associated to the infimum
and consequently from now on we shall assume that) is a Heyting algebra. We have then the
following lemmata:

Lemma 1. Let (L,<,’) be a Heyting algebra with an order—reversing involutibnThen condition
% is equivalent to the following condition:

VaelL a1 <d (e k)

Lemma 2. Let (L,<,’) be a Heyting algebra with an order—reversing involutionThen for each
a,B € L such thatB is coprime we have

N T, ifa <P
“_”3_{[3', ifa £ .
Consequently
A an' )L, ifa <p; / A
a/\(a—>[3)_{om& tazp, =V = B<a'Vv(a—y)

Corollary 3. Let (L,<,’) be a Heyting algebra with an order—reversing involutioriThen for each
a,B € L such thata and 3 are coprime we have

(aSpYARa) =BARd) = (a25B) Aa.

Theorem 4. Let (L, <,’) be a complete lattice with an order—reversing involutiosuch that:
() (L,<) is a Heyting algebra and

(ii) any element of L is the supremum of all coprime elements below it.

Then the following binary operation defined for eachu,3 € L by

axB = V{g1A02:01,02 coprime, g <o, <Bandq £ oy}

determines a commutative, residuated lattice structiire<, *). The corresponding residuation—
is defined for eacl,y € L by

B—y = A{dVp:qcoprime, p prime, & B,y < p}.

Moreover, if (L, <,’) satisfies conditionk, then (L, <,x) is an integral, commutative Frobenius
lattice satisfyinga’ = a — 1 forall a eL.

As a consequence on the previous theorem we have the following corollaries which are the an-
nounced answers to the stated question:

Corollary 5. Let (L,<,’) be a Heyting algebra with an order—reversing involutiosuch that any
element is the supremum of all coprime elements below it. Then there exists an operaticimthat
(L,<,x) is an integral, commutative Frobenius lattice in whigh-— 1 = o’ for eacha € L if and
only if conditiony is satisfied.

If the lattice is continuous, then condition (i) in the theorem is equivalent to distributivity of the

lattice (see [4]). Moreover, a lattice is completely distributive if and only if it is continuous and
satisfies condition (ii) in the theorem. Consequently, we have the following:
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Corollary 6. Let (L,<,’) be a completely distributive lattice with an order—reversing involution
Then there exists an operationsuch that(L, <,x) is an integral, commutative Frobenius lattice in
whicha — | = o’ for eacha < L if and only if conditions is satisfied.

Particularly in the case of a bounded chain, condit#eris always satisfied and we have the
following:

Corollary 7. (Proposition A.4in2]) Let (L,<,’) be a bounded chain with an order—reversing invo-
lution ’. Then there exists an operatiansuch that(L, <,x) is an integral, commutative Frobenius
lattice in whicha — 1 = a’ for eacha € L.
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Mathematical fuzzy logic (or fuzzy logic in the narrow sense) is understood as a kind of many-valued
logic with comparative notion of truth and with the real unit inter\all] as the standard set of truth
values. We further postulate truth-functionality (existence of truth-functions of connectives) and base
the theory of truth functions on the notion of a t-norm as a truth function of conjunction. The basic
fuzzy logic BL works with continuous t-norms as truth functions of conjunction and their residua as
corresponding truth functions of implication; more generally, the monoidal t-norm based logic MTL
works with left-continuous t-norms and their residua. Other generalizations will be mentioned.

Part 1 of the talk will be devoted to a very quick survey of propositional logics BL, MTL and
stronger logics related to particular t-norms (Lukasiewicz, Gddel, product logic and some others).
(For a detailed survey see [8].)

Part 2will describe in some details the predicate logics/Bind MTLY and other predicate logics
built over the propositional logics of Part 1 ([9, 6, 7, 10]). Here again we shall distinguish standard
semantics (of [0,1]-fuzzy relational structures) and general semantics (fuzzy relational structures over
linearly ordered BL-algebras, MTL-algebras and similar algebras). Tarski style truth definition will
be given and completeness of very natural axiom systems with respect to the general semantics will be
presented. But several important predicate fuzzy logic are not recursively axiomatizable with respect
to their standard semantics; some others are. This will be surveyed and degree of undecidability of
most of these logics will be explicitly stated ([12, 13, 1, 2, 3, 4, 19, 17, 18]). Main examples: the
set of standard tautologies of the fuzzy predicate logit/ Bf.not arithmetical, whereas the set of
standard tautologies of the logic MYLcoincides with the set of general tautologies of this logic
and therefore is recursively enumerable. When defining the general semantic¥ efeBtannot
restrict ourselves to interpretations over BL-chains that are completely ordered; this would lead again
to a non-arithmetical set of tautologies [20]. On the other hand, we can give up linear order of the
algebras; one gets a complete axiomatization of this semantics just by deleting one axiom from the
corresponding axiomatization based on linearly ordered algebras. Then we refer on corresponding
falsity-free (positive) logics and their semantics based on algebras called hoops [7]. Completeness
and conservativity results will be presented.

Part 3 will deal with mathematics based on fuzzy predicate logic. We go into some details con-
cerning set theory. We describe a Zermelo-Fraenkel-like fuzzy set theory over Basic predicate logic
and Cantor-like set theory with full comprehension over Lukasiewicz predicate logic. The latter theory
can be shown to contain full Peano arithmetic with its classical logic ([23, 24, 25, 15, 16, 14]).
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It is a remarkable fact that the historic development of fuzzy set theory (cf. [2]) proceeds completely
isolated from sheaf theoty Also the long lasting debate on categorical foundations of fuzzy set
theory (cf. [6]) does not open the horizon for sheaf-theoretic arguments in the formulation of such
fundamental notions amembership functignmmeasurement of membershgpmilarity, fuzzy ordering

fuzzy relational equatiqretc.

The aim of this paper is to explain that large parts of fuzzy set theory are actually subfields of sheaf
theory. We show that fuzzy sets aebsheavesf simple sheaves — so-called sheaves of level cuts,
similarity relations aresheaves of ordinary equivalence relatipfiszzy subgroups arsubsheaves
of subgroup®f simple sheaves of groups, and stratifieeialued topological spaces aapological
space objectin the category of sheaves. Further, intersections, unions, images and inverse images
of fuzzy sets, the max min-composition of fuzzy relations are special categorical constructions in
the category of sheaves. Fuzzy power sets are nothing but power sheaves of simple sheaves. Fuzzy
relational equations are equations in the Kleisli category associated with the power object monad in the
category of sheaves. Moreover, fuzzy theorists are not able to give a proper solution of the quotient
problem w.r.t. similarity relations and a proper construction of fuzzy factor groups w.r.t. invariant
fuzzy subgroups.

In order to overcome these shortcomings some fundamental knowledge from sheaf theory is in-
evitable. Therefore we begin with some basic facts from sheaf theory including the role of the so-
calledespace étaléthe concept of2-valued set@and thetilde-construction We recall the construc-
tion of the subobiject classifier and the identification of subobjects with characteristic morphisms in the
category of sheaves, resp. compl@t&alued sets. The importance of these constructions will appear
immediately for every fuzzy set theoretist, when their relationships to standard techniques in fuzzy
set theory are explained — e.g. level cut techniques or the interpretation of fuzzy sets by their proto-
types. Further, we discuss the set-theoretical operations on fuzzy sets in the light of sheaf theory and
gquote the importantategorical axiomgor fuzzy preorderings, similarity relations and fuzzy partial
orderings. We solve the quotient problem w.r.t. similarity relations in terms ekant diagranand
show by using only categorical arguments thatdpmmetrizatiorof (fuzzy) preorders leads always
to a (fuzzy) partial ordering on the respective quotient.

Further, we describe group objects in the category of sheaves, resp. cofeplateed sets and
characterize fuzzy subgroups as subgroup objects of simple sheaves of groups. Since we have already
solved the quotient problem w.r.t. similarity relations, we are in the position to give a proper construc-
tion of fuzzy factor groups which are again of course a part of an exact diagram. Finally, we study
higher order constructions and give a detailed description dioitmeation of uniorof fuzzy systems

3A historic account on sheaf theory can be found in [3].
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of fuzzy sets. After having understood the power object monad in the category of sheaves, resp.
completeQ-valued sets, we recall the axioms of topological space objects, and show that topologi-
cal space objects on simple sheaves stnattified Q-valued topological spaceare the same things.

We close this talk with two important examples of topological space objects: One is generated by
fibrewise topological spaces, while the other one is construced from separated presheaves of ordinary
topological spaces. In this context it is interesting to see that there exists an adjoint situation between
topological space objects on compl&eralued sets and separated presheaves of ordinary topological
spaces o).
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In recent years many papers have been written generalizing some theorems, known from the Kol-
mogorovian probability theory, to MV-algebras. To achieve such results, so-called product MV-
algebras were introduced and, using the product, the joint probability distribution was defined. In
this paper we present an approach how to define the joint distributions on MV-algebras which are not
necessarily closed under product. First we construct conditional measures on a given MV-algebra.
And, using these conditional measures, we define the joint probability distributions.

We will work with a semi-simple MV-algebra)/, which is represented by a system of integrable
functions defined on a probability spa@®, .S, ) with their range in0; 1] and such thad € M and
the systemM is closed under the operatiorgnd® defined pointwise by

) =1-1(x), (fog)(x)=min{1 f(x)+9(x)}

The conditional probability distributiony, on the MV-algebra\ is an additive normed measure
on M, defined as follows
v(f) =v(g)v(flg) +v(g)v(flg")

with the following conditions holding foy
/fgdu:0 = Y(flg)=0
/fg*duzo = y(flgr)=0

wherev(f) = [ fdp
Now, we will show that such conditional distibutions 8# are not given uniquely.
Denote7 the system of all transformations M — [0; ]2 such that for eacti € M

1. 1(f) is S-measurable

2. [fdp= [1(f)dp

3. foranyx € Q there holdsf (x) =0 = (1(f))(x) =0.
Theorem 1. Lett € 7 be such that for any g M

1(g") = 1-1(9) 1)
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Define for any fge M

fj (é?)d“ if 0<v(g)<1
y(flg)=q v(f if v(g)=1 2

0 if v(g)=0.

Then for any g M such thatv(g) > 0, y(.|g) is a conditional measure.

We will say that event is independenbf g with respect to a conditional measwéf v(f) =
y(f|g). ywill always denote the conditional measure defined by Formula 2 from Theorem 1.

Remark 2. As we will see in the next example, the independence of efarftg does not imply

the independence of the evemiof f. This nonsymmetric relation of independence allows us to
distinguish between a cause and its effects. Similar results concerning the ortho-modular lattices have
been achieved also by O. Nanasiova in [4].

Example 3. Let Q = [0; 1] andu be Lebesgue measure. lebe the transformation given by

) Jar Fdu iff £(x) €051 andA(f) = {x € Q; f(x) €]0.5; 1}
(T(f)(x) = HB% Jar) fdp iff £(x) €]0;0.5[ andB(f) = {x € Q; f(x) €]0;0.5[}
f(x otherwise

provided u(A(f)) # 0, w(B(f)) # 0. If e.g. u(A(f)) =0, we can put any value tor(g))(x) for
xe A(f).
Take f (x) = x andg(x) = 3x.Then we get

0.25 iff x€]0;0.5] . .
(T(f)(x) = { 0.75 iff x€]0.5;1] (1(9))(x) = { 2'25 cl)f':hxef\Jv(i)éi[
X otherwise

Now, compute the conditional measure

fo f-1(g)du 0.25f01xdu

= =05=v(f
y(flg) = Tgdu 0.25 (f)
Vglg) = Jog-t(g g)dp _ 0.25_[010.5xdp:0.25:\)(g)
Jogdu 0.25
Jog-t(f)dy  0.25/2°0.5xdu+0.75f,50.5xdu 5
= : =—#v(g)=0.25
v(glf) = Tty 05 1670
1
v(flf):fo fir(f)du:0.25f xdu+075f05xdu 57&v( ) =
Jo fdu 0.5

Hence we get thag is dependent ori and f is also dependent ofi. On the other handf, is inde-
pendent oy and alsog is independent of itself. In the Kolmogorovian probability theory we are not
used to the fact that an event is independent of itself. But even this can happen when dealing with
MV-algebtras instead of Boolean algebras.

Remark 4. Once having defined for any pafr, g of elements of the MV-algebra/ the measure
y(f|g), the conditional measure ¥(g) > 0, we can define also the two-dimensional distribution on
M x M — the measure (probability) of occurence of this daig. This, in fact represents the inter-
action of f andg. And the interaction can be different if we change the order.
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Themeasure of interactionf a pairf, g € M will be denoted byp( f,g) and defined as

p(f,9) = y(flg)y(gll) 3)

Theorem 5 (Basic properties of p).Let p be a measure of interaction on the MV-algebraand
f,g be any elements @¥f. Then

1. p(f,1)=p(1,f)=v(f)

2. p(f,9)=p(g,f)=0,if [ fgdu=0

3. p(f,g) <min{v(f);v(9)}, particularly p(f, f) <v(f)

4. the variables of p do not commute, i.e. in generél ,jg) # p(g, )

Example 6. Assume thaQ = [0;1] andp is the Lebesgue measure. The transformatiovill be
defined by the following

ey Jacn f0duX)  otherwise, whered(f) = {x,0 < f(x) < 1}
Let f(x) = x andg(x) = min{0,x— 0.5}. Then

0, ifx=0
(T(f))(x){l, ifx=1

0.5 otherwise

0, if x<0.5
(t(9))(x) :{ 0.25 ifx>05

Then

1 1
p(g, f) :/ gO.5du:0.5/ (0.5—x)dp= 1
0 0.5 16

1 13 3
p(f.g) = /0.5X0.25dp_ 3.2

1 1
0 4
! 1
PG.9) = | (x—05)025du=
J0.5

We add some references where you can find papers with related topics.
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The success of fuzzy systems in real world applications is based on their capability to model human

expert knowledge in an easily understandable way using simple rules incorporating vague concepts
represented by fuzzy sets. However, the use of rules in conjunction with vague concepts alone does
not guarantee the interpretability of a fuzzy system.

There is a number of other aspects that have to be considered.

e The shape of the fuzzy sets should be chosen in such a way that they really correspond to real
world vague concepts.

e The number of rules should be strictly limited, especially the number of rules firing at the same
time.

e The number of attributes or variables occurring in a single rule should be kept very small.

¢ Finally, the way in which the fuzzy sets are aggregated to determine the firing degree of a rule,
implies a certain independence assumption of the underlying vague concepts.

Here we will mainly concentrate on the last of these aspects.

Understanding fuzzy sets as induced concepts in the context of similarity or equality relations
[9, 6,8, 2,5, 7, 1] leads to a rigorous and consistent interpretation the vague concepts. Fuzzy sets can
no longer be chosen arbitrarily, but have to be in accordance with the underlying similarity relations.
A very simple way to define suitable equality relations is based on the concept of scaling [4].

The similarity relations specify how exact values have to be distinguished in a certain range of a
domain in order to solve the task for which the fuzzy system is designed. Taking a look at standard
fuzzy systems, the underlying similarity relations for the single domains are assumed to be indepen-
dent, i.e. the similarity of two tuples of values depends only on the similarities of the single values.
However, this assumption is only partly satisfied in most real world applications.

Here we take a closer look at the notion of independence in the context of similarity relations. It
turns out [3] that independence in the context of similarity relations is a non-symmetric concept in
contrast to the well known probabilistic independence notion, where for insR#¢B) = P(A) =
P(B|A) = P(B) holds.
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1 Introduction

Clearly, each triangular norm [15, 26] is a special semigroup operation on the unit ifféedjalTo

be precise([0,1], T, <) is a fully ordered abelian semigroup with neutral element 1. Several results
and constructions from the theory of general semigroups [3, 6, 9] have been carried over to t-norms.
Well-known examples are [24, 25] and the full characterization of continuous t-norms based on
semigroups [5, 19, 20]. In this contribution we give a survey on recent advances in this context (for
an extensive survey see [17]).

2 Archimedean components

To simplify terminology, we shall identify, il is a triangular norm, the fully ordered semigroup
([0,1], T, <) with the t-normT since the underlying set and the order are clear in this context. In
particular, we shall also speak about subsemigroups of t-norms (which are necessarily fully ordered)
without mentioning the ordex explicitly.

In semigroupg X, *) with X C R, in particular for([0,1], T) whereT is a t-norm, we shall write
xﬁ”) andx(T”), respectively, or simplx(" if the semigroup operation is clear, in order to distinguish it
from the usual powex" (with respect to the multiplication of real numbers).
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Let T be a t-norm and lefX, x) be a subsemigroup df. Then it is evident thatX, ) is a fully
ordered commutative semigroup where the operatienbounded from above by the minimum, i.e.,
xx*xy < min(x,y) for all x,y € X. If 0 and 1 are contained iK then they are annihilator and neutral
element of( X, x), respectively.

In general, it is not clear whether for each semigr@¥p«, <), whereX C [0, 1], where the oper-
ation x is bounded from above by the minimum and where 1, whenever it is contain€daicts as
neutral element, the operatiercan be extended to a triangular norm.

However, in the special case wh¥nis a convex subset d0, 1], i.e., a subinterval o0, 1], we
shall see that such an extension is always possible. In order to show this, we use the following notions
going back to [16] and [10]. Note that the name tosab is an acronynotialty ordered semigroup,
abelian, bounded by the minimum

Definition 1. Let!| be a non-empty subinterval of the closed unit intef0al].

(i) A fully ordered commutative semigroup, ) wherex is bounded from above by the minimum
will be called atosab

(i) If ([0,1],*) is a tosab then the operatiers called a-subnorm

When investigating the structure of t-norms, their Archimedean subsemigroups play an important
role (compare [6, 14]).

Definition 2. LetT be at-norm. Two elemenisy € [0, 1] are calledArchimedean equivaleiftthere
is ann € N such thak™ <y < xoryl™ < x<y. For eachx € [0,1] the equivalence claggcontaining
x is called aT -Archimedean classf T or Archimedean clasg T is either irrelevant or clear from
context.

Clearly, as noted in [7], each Archimedean class is a convex subf&etlof Obviously, by com-
plete analogy we may define the Archimedean classes of tosabs and, in particular, of t-subnorms. The
following result can be found in [14, Proposition 3.2].

Proposition 3. Let T be a t-norm.

(i) Forall (x,y) € [0,1]? we have+xy) = Imin(xy)-
(i) Foreach xe [0,1] the pair(lx, T|2) is a subsemigroup @f0,1],T) (and, hence, a tosab), and it
is called anArchimedean componenf T.

As a consequence, for two t-norriis and T, with the same Archimedean components we have

x =X for eachx € [0,1] andn € N,

A necessary and sufficient condition for a singlefah to be a (trivial) Archimedean class for a t-
normT is thatT (y,z) = x holds if and only if mirfy, z) = x. As a consequencél} is an Archimedean
class of each t-norr.

It is easy to see that a triangular norm is Archimedean if and only if its only non-trivial Archime-
dean class is eithé®, 1] or ]0,1[. Similarly, a non-trivial tosab is Archimedean if and only if it has
only one non-trivial Archimedean class.

From [15, Proposition 1.6 and Theorem 2.12] the following characterization of Archimedean
components follows immediately.
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Lemma 4. A fully ordered commutative semigrogh ) is an Archimedean component of some t-
norm T if and only if either = {1} or | is a convex subset ¢0, 1] such that for all xc | we have
lim X" =infl.

n—so

The following result, whose proof is straightforward, will be helpful for determining the unique-
ness of t-norms with given Archimedean components.

Lemma 5. Let T be a t-norm andly | x € [0,1]} the set of Archimedean components. Then the
following are equivalent:

(i) Foreacht-normi withT # T there is an element|0, 1] such that the Archimedean component
(ix; Tli)2) of T and the Archimedean componéht T|,2) of T are different.

(ii) Forall (x,y) € [0,1]2 with x<y there is a unique fully ordered commutative semigrdyp,,, *),
where the operation is bounded from above by the minimum, such that BT |2) and
(Iy,T||yz) are subsemigroups ofy yy, *).

Lemma 6. Assume thatlequals|a, b] or |a,b[ and let(ly, x,) be an Archimedean component of some
t-norm T such that for each« |a, b| there is a ye ]a, b[ with xx,y > a and such that the conditional
cancellation law holds. Then, putting I, U I, the semigrougl, T|,2) is the ordinal sum ofly, %)
and (Ib,T\lbz).

Theorem 7. Let T be a t-norm and suppose that each of its non-trivial Archimedean components
satisfies the hypotheses of Lem@ndhen there is no other t-norifi having the same Archimedean
componentsas T.

Corollary 8. Let T be a t-norm, suppose that each of its non-trivial Archimedean components is
continuous and satisfies the hypotheses of Learal, additionallylim, -, T(y,z) =y if x € [0,1],

y € Iyand i =suply. Then T is a continuous t-norm, and it is uniquely determined by its Archimedean
components.

Example 9. Assume thaT is a t-norm whose Archimedean components(d@ 3 [ , 1) with X1y =
x-Y, ([3,1],%2) with xx,y = 3, and the trivial componer{{1}, x). Then we get

xy if(xy)e[03[’,
T(xy) =13 if (xy) e [%,1[%,
min(x,y) otherwise,

i.e., T necessarily is the ordinal sum of its Archimedean components (see Proposition 13).

Note also that Archimedean components play a key role in the characterization of several spe-
cific semigroups. For example, in thiersion semigroupsntroduced in [22] for eaclx the set
{xl,xz,...,x”,...%» is finite. Therefore, for aorsion t-norm Tand for eachx € [0,1] there is an
n e N such thaixT”) is an idempotent element @f. However, this is equivalent to the fact that each
Archimedean componefit,*) of T is a torsion semigroup which, in addition, satisfied iafl. Ob-
serve that, for a continuous t-nofMm ([0, 1], T) is a torsion semigroup if and only if each Archimedean
summand ofT is nilpotent. A special subclass of torsion t-norms are the so-caleshtractive t-
normsstudied in [1], in which case(T”) is an idempotent element for eaxk [0, 1] (son-contractive
t-norms can be viewed as uniform torsion semigroups). A characterizatiocaftractive t-norms
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by means of their Archimedean components, together with a construction methoeddatractive
t-norms, can be found in [18].

Another interesting algebraic property closely linked to Archimedean components is the weak
cancellativity investigated in [23]. A semigroyH, ) is said to baveakly cancellativéf xxx=Xxy=
yx*Yy impliesx =y, which, in the case of a t-norif, is equivalent with saying that(x,x) = T(y,y)
implies x =y, because of the monotonicity df. Observe that a continuous t-norfmis weakly
cancellative if and only if each Archimedean summandl dd strict. In general, a t-norfh is weakly
cancellative if and only each Archimedean componerit i weakly cancellative. Note that a weakly
cancellative Archimedean t-norm never has zero divisors, but it is not necessarily cancellative (an
example for that is the Krause t-norm [15, Appendix B]).

3 Ordinal sums

Ordinal sums of abstract semigroups were introduced by A. H. Clifford in [2] (see also [8, 21]),
foreshadowed in [4, 12], yielding a semigroup structure on the union of pairwise disjoint semigroups.
We recall this fundamental result for convenience.

Theorem 10. Let(A, <) be alinearly ordered set with & 0 and ((Xq, *q ) )aca @ family of semigroups
such that % N Xz = 0 wheneven # 3. Put X= [Jqca Xa @nd define the operatios: X? — X by

xxqy if (xy) € X,
X*kY =< X if (X,y) € Xa X Xg anda < 3, Q)
y if (x,y) € Xa x Xg andB < a.

Then(X,x*) is a semigroup, and it will be called the ordinal sum of the semigrduis, *«))aca-

This result can be directly applied (see [25, 26] and Theorem 7.1 in Chapter 1) to construct new
triangular norms from a given family of t-norms. The t-norm obtained via this construction will be
referred to as aordinal sum of t-norms

Theorem 11. Let (Ty)qea be a family of t-norms anflag, by ) aca be a family of non-empty, pairwise
disjoint open subintervals @, 1]. Then the following function T[0,1]> — [0,1] is a t-norm:

T(xy) = (2)

ag + (by —aq) 'Ta(t;;ia;aa g;_,aga) if (x,y) € [aonba[za
min(x,y) otherwise.

Proposition 12. Let (A, <) be a linearly ordered set with 4 0 and ((Xq, *q))aca @ family of semi-
groups such thatXy)qea is a partition of the closed unit intervad, 1]. If the operation : [0, 1]2 —
[0,1] given by(1) is a triangular norm, then we have:

(i) Each X is a subinterval of0, 1].
(i) Each semigrougXy,*q) is a fully ordered commutative semigroup where the operatipis
bounded from above by the minimum, i.e., we haxgyx< min(x,y) for all X,y € Xy.
(iii) The order= on A is compatible with the usual orderon [0, 1], i.e., fora,3 € A we havex < 3
if and only if x< 'y for all x € X4 and ye Xg.
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(iv) Forall (x,y) € [0,1]? we have
- 2
X*y: {X*Gy If(xvy)exua

min(x,y) otherwise.

3)

Proposition 13. Let ([0, 1],*) be the ordinal sum of a famil{( Xy, *«))aca Of Semigroups. Then the
operationx is a t-norm if and only if eacliXy, xq) is a tosab, if the order on A is compatible with
the usual ordex on[0,1], and if there is artig € A such thatl is the neutral element 6, .

Theorem 14. Let | be a non-empty subinterval (@, 1]. A semigroup(l,x*) is a continuous tosab

if and only if it is an ordinal sum of idempotent tosabs and continuous Archimedean tosabs with
neutral element with possibly one exception if for some sumrfigne,) we havesuply, = supl €

lay U ([0,2]\ 1), in which cas€lq,, *q,) N€ed not have a neutral element.

Definition 15. A tosab is calledrdinally irreducibleif it cannot be expressed as an ordinal sum of
two or more non-singleton tosabs.

Proposition 16. Let T be a t-norm. Then the following are equivalent:

(i) T is ordinally irreducible.
(if) For each xe ]0,1] there existyze [0,1] withy < x < z and T(y,z) <.

The following modification of Theorem 11, where the resulting t-ndrmuill be referred to as an
ordinal sum of t-subnormsvas proved in [11].

Theorem 17. Let (Vq)aea be a family of t-subnorms an@aq,bq[)aca be a family of non-empty,
pairwise disjoint open subintervals fif, 1]. Further, if by, = 1 for someng € A then assume thaty
is a t-norm, and if , = ag, for somea, Bp € A then assume either thagis a t-norm or that i,
has no zero divisors. Then the following function[0,1]> — [0, 1] is a t-norm:

X= - i 2
T(ij):{aa+(ba—aa).va(ba_aga,t{x_agﬂ) if (x,Y) € |3, bal?, “

min(x,y) otherwise.

The construction in Theorem 17 is not identical to the one in Theorem 10 (for inslﬂﬁ}jg%b]z is

not necessarily a semigroup operationan by|). However, in Theorem 18 below we shall show that
each t-nornT where([0,1],T) is an ordinal sum of semigroups as in Theorem 10 can be rewritten as
an ordinal sum of t-subnorms as in Theorem 17.

In [16, Theorem 3.1] it was shown that the construction in Theorem 17 is the most general way to
obtain a t-norm as an ordinal sum of semigroups.

Theorem 18. Let T be a t-norm. Then the following are equivalent:

() ([0,1],T) is an ordinal sum of semigroups.
(i) T is an ordinal sum of t-subnorms.
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1 Introduction

In this contribution the main attention will be paid to two—dimensional quasi—copulas, which are a
special type of binary 1-Lipschitz aggregation operators. Quasi—copulas will be characterized as
solutions to a certain functional equation. We also show that quasi—copulas and dual quasi—copulas are
important for describing the structure of 1-Lipschitz aggregation operators with any neutral element
or annihilator in the unit interval. Finally, we will study under which conditions the composition

of any two quasi—copulas is again a quasi—copula. The study of these problems was motivated by
several papers on fuzzy preference modeling [5, 6], and by papers concerning some problems in fuzzy
probability calculus, e.g., [10] and others. Therefore we expect applications of obtained results in
these areas.

Recall first the definitions and properties of basic notions which are used throughout the paper.

Definition 1. Let n € N, n > 2. An n-ary aggregation operator & a non—decreasing function
A:[0,1]" — [0, 1] satisfying the boundary conditio#g0,...,0) = 0 andA(1,...,1) = 1.

In this paper we will deal with binary aggregation operators only. Therefore if no confusion can
arise, we will use for them the name aggregation operators only.

Aggregation operators satisfying the standard Lipschitz condition with constant 1, i.e., satisfying the

property
|AX1, Y1) —AX2, Y2)| < X1 —Xo| + Y1 — Yo,

for all xq, X2, y1, Y2 € [0, 1], will be called1-Lipschitz aggregation operatars

From well-known types of binary aggregation operators, for example, the arithmetidvindlaa
product operatofl, Min and Max operators, as well as weighted means, OWA operators, copulas,
guasi—copulas, Choquet integral-based aggregation operators, Sugeno intergal-based aggregation op-

erators are 1-Lipschitz aggregation operators. More details on these classes of aggregation operators
can be found, e.g., in [2].

Distinguished classes of 1-Lipschitz aggregation operators are the classes of copulas and quasi—
copulas.
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Definition 2. A (two—dimensionalgopula Cis a functionC : [0,1]> — [0, 1] with the properties:

e C(0,x) =C(x,0) =0 andC(x,1) = C(1,x) = xfor all x € [0,1];

o C(x1,y1) +C(x2,¥2) > C(x2,y1) +C(x1,y2) for all x¢, x2, y1, y2 € [0,1] such thatx; < x, and
y1 <Yo.

Definition 3. [9] A (two—dimensional)quasi—copula Qs a functionQ : [0,1]2 — [0, 1] with the
properties:

e Q(0,x) = Q(x,0) =0 andQ(x,1) = Q(1,x) = xfor all x € [0,1];
e Qis non—decreasing in each of its arguments;

e Q satisfies Lipschitz's condition with constant 1.

Copulas are also non—decreasing functions in each variable and 1-Lipschitz. Each copula is evi-
dently a quasi—copula. Due to the 1-Lipschitz property, copulas as well as quasi—copulas are contin-
uous functions on the unit square.

Note that the conditions in the first two items of the definition of a quasi—copula mean that quasi—
copulas are aggregation operators with zero annihilator and neutral element equal to 1. One of the
last two properties is superfluous because for 1-Lipschitz aggregation operators they are equivalent.
Therefore quasi—copulas can be equivalently characterized as

e 1-lipschitz aggregation operators with neutral element 1,
or as

e 1-Lipschitz aggregation operators with zero annihilator.

The set of all quasi—copulas will be denoted®y
The following claim is only a slight modification of a given definition of a quasi—copula.
Lemma 4. A function Q: [0,1]> — [0,1] is a quasi—copula if and only if it satisfies the following
conditions:
(i) Qisnon—decreasing;

(i) Qis 1-Lipschitz;

(i) Q(0,1) = Q(1,0) =0 andQ(1,1) = 1.
Since an aggregation operatdis always monotone and satisfies the propéty, 1) = 1, we obtain
the following result.
Corollary 5. An aggregation operatdtis a quasi—copula if and only if it is 1-Lipschitz aAd0, 1) =
A(1,0) =0.
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For anyQ € Q, the functionQ*, so—called dual of a quasi—cop@ais defined by
Q* . [071]2—> [071]7 Q*(va):X+y_Q(X7y)

The dual of any quasi—copula is also a non—decreasing and 1-Lipschitz function, but with zero neutral
element and annihilator equal to 1.

Denote byD the set of all functiond : [0,1]> — [0, 1] which are non—decreasing, 1-Lipschitz and
with zero neutral element (and 1 as neutral element). TheDseill be called the set of all dual
quasi—copulas.

2 Characterization of quasi—copulas

In [12], cf. [16], 1-Lipschitz aggregation operators have been characterized as solutions to a simple
functional equation, similar to the Frank functional equation [8], in the following way.

Theorem 6. A binary aggregation operatévis 1-Lipschitz if and only if there is a binary aggregation
operatorB, such that for alk, y € [0, 1] it holds

A(x,y) +B(x,y) = X+Y. (1)

Commutative quasi—copulas can also be characterized as solutions to the following type of a func-
tional equation.

Theorem 7. A commutative aggregation operataris a commutative quasi—copula if and only if
there exists an aggregation operdmsuch that for alk, y € [0, 1] we have

A(x,y) +B(1—x,y) =Y. (2)

Remark 8. The previous claim without the commutativity condition must be reformulated in the
following way: An aggregation operatd is a quasi—copula if and only if there exist aggregation
operatord andC such that for eack, y € [0, 1] we have

AXY)+B(1-xy)=y and A(xYy)+C(x1-y)=x

3 The structure of binary 1-Lipschitz aggregation operators with anni-
hilator or neutral element

Quasi—copulas also play an important role in the characterization of 1-Lipschitz aggregation opera-
tors with annihilator or neutral element from the unit interval. We first show that each 1-Lipschitz
aggregation operator with annihilate]0, 1] can be built up from a quasi—copula, dual quasi—copula
and the valua. Then we also clarify the structure of 1-Lipschitz aggregation operators with neutral
elemente €]0,1[.

For a given aggregation operatodenoteA’(x,y) = x-+y—A(X,y), (x,y) € [0,1]2. Then(A*)* = A
and due to Theorem 6 it holds that the operatas 1-Lipschitz if and only ifA* is a 1-Lipschitz
aggregation operator.
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If a 1-Lipschitz aggregation operatér has neutral elemerds, then forvx € [0,1], A*(X,ea) =
A*(ea,X) = ea, Which means that the elemesy is the annihilator of the operatéy, i.e.,ea = aa-.
Analogously, for the annihilator o if it exists, we haveas = ea-.

The structure of 1-Lipschitz aggregation operators with annihilator

Let Abe a 1-Lipschitz aggregation operator with annihilaioe [0, 1]. According to the previous
discussions:

e if ap = 0thenAis a quasi—copula;

e if ay = 1 thenAis a dual quasi—copula.

e In the case thads = a €]0,1], define, similarly as in the case of nullnorms [3], the mappings

ba, Ya by
X X—a

0al) =2, Wa() =1 o 3)
Then the functiorQa : [0,1]2 — [0, 1],
Qulxy) = Y (A (U310, 05 ™(y))) = HBT @At (Lmay) —a @)
is a quasi—copula, and the functibn : [0,1]2 — [0, 1]
Da(Xy) = ¢a (A(0a"(),0a"(¥)) = A(a);ay) (5)

is a dual quasi—copula.
Therefore the operatok can be expressed on the squa@s]? and[a, 1], as a transformation of
some dual quasi—copula and some quasi—copula, respectively, i.e.,

_ [ a1 (Da(9a(¥),9a(y))) if (xy) € (0,8
A(X’y)_{ Wt (Qa(Wa(x),Wa(y))) if (xy) € [a,1)2.

If (x,y) € [0,a[x]a,1], then
a=Axa) <AKXYy) <A(ay) =a,

which means thaA(x,y) = a, and the same is true for the rest of the unit sqlar8 x [0, a[.

The structure of 1-Lipschitz aggregation operators with neutral element

A similar situation to the previous one is for 1-Lipschitz aggregation operators with neutral ele-
ment.

Let A be a 1-Lipschitz aggregation operator with neutral eleragrt [0, 1]. Trivially,

e if ea = 1thenAis a quasi—copula;

¢ if en =0 thenAis a dual quasi—copula.
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o If en = €€]0, 1], then the functiorQa : [0,1)>2 — [0, 1],

QA(X7y> - ¢e (A (¢gl(x)7¢gl<y))) (6)
is a quasi—copula, and the functibn : [0,1]2 — [0, 1],
Da(x.Y) = We (A (e 1(x). We (¥)) )

is a dual quasi—copula. Therefore

_ [ 9t (Qalde(¥).0e(y))) if (xy) € [0,€
A(X’y)_{ We ! (Da(We(x), We(y))) if (x,y) € [6, )%

In the case of uninorms [7] which is similar to this one, the values on the rest parts of the unit square
are not determined uniquely, they are between the valueBrodindMax operators, in general. In the
case of 1-Lipschitz aggregation operators the values at the griglsc [0,e[x]e 1] U |e, 1] x [0, €]

are determined uniquely. Indeed, if the operads 1-Lipschitz aggregation operator, the same is
true for A*, and moreoveraa- = €. Using the results of the previous part, the valuegoht these
points areA*(x,y) = g, that is,A(x,y) = x+y— e at all points(x,y) € [0,¢e[x]e,1] U |e, 1] x [0, €.

4 On composition of quasi—copulas

For arbitrary binary aggregation operaté;sB andF, the functionF (A, B) : [0,1]> — [0, 1] defined
by

F(AB)(xy) = F(AxY),B(xY)),
is also a binary aggregation operator and is callemposed aggregation operatolt is easy to
verify thatF (A, B) really possesses the properties of an aggregation operator.

In this section we give a necessary and sufficient condition under which composition of any two
quasi—copulas is again a quasi—copula.

Preserving the 1-Lipschitz property. It is known, that although all three aggregation operators
A B, F are 1-Lipschitz, the composed aggregation opefatér B) need not be of this property. For
example, despite the Lukasiewicz t—condgmis a 1-Lipschitz aggregation operator, the composed
operatorS (S, ) does not possess this property [12]. However, if the outer opefFai®ia kernel
aggregation operator, ad B are 1-Lipschitz, thef (A, B) is always 1-Lipschitz aggregation oper-
ator [4, 12].

Recall that a binary aggregation operdtonas thekernel propertyif

for all ug, up, v1, v2 € [0,1]? we have

|F(u1,vi) — F(u2,v2)| < max(Jup —uy|, [v1—Val).

Itis clear that each kernel aggregation operator is also 1-Lipschitz. More details on kernel aggregation
operators can be found in [13, 14, 15]. It can be shown that the kernel property of an outer operator is
also a necessary condition for the 1-Lipschitz property of a composed aggregation operator [16].

Theorem 9. Let F be a binary aggregation operator. Then for any binary 1-Lipschitz aggregation
operatorsA and B the composed aggregation operafdiA, B) is 1-Lipschitz if and only ifF is a
kernel aggregation operator.
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As a consequence of this theorem we obtain the sufficient condition for quasi—copulas.

Corollary 10. If the outer operatoF is kernel, then compaosition of any two quasi—copulas is a quasi—
copula.

The 1-Lipschitz property of the composed oper&t0Q:,Q.) is preserved by Theorem 9. Observe
that due to the property (0,0) = O the operatoF (Q1,Q2) possesses zero as annihilator.

However, for quasi—copulas, as a special type of 1-Lipschitz aggregation operators, the kernel
property ofF on [0,1]? can be relaxed, because the points with coordiné@asx,y), Q2(x,y)) for
any two quasi—copulad;, Q; and all pointgx,y) € [0,1]?, never fill in the whole unite square.

Lemma 11. DenoteK = {(Q1(x,y),Q2(x,y)); (X,¥) € [0,1]2,Q1, Q2 € Q}. Then

K= {(u,v); uel(0,1,ve max(2u—1,0),wzrl”.

Because of this property of quasi—copulas we obtain the following claim.

Theorem 12. Let F be an aggregation operator. For any quasi—cop@ia&),, a composed aggrega-
tion operatoi- (Q1,Q>) is a quasi—copula if and only if the operatohas the kernel property on the
setK defined in Lemma 11.

Note that for composition of copulas the claim analogous to that one in Corollary 2, is not true.
Despite the outer operator is kernel, the composition of two copulas need not be a copula, as we can
see in the following example.

Example 13. LetF = med,, k € [0,1], i.e.,F(X,y) = medXx,y,k). SetC; = T, andC, = Tp, whereTp

is the product t-norm. Then the composed operatég is med(T., Tp).

The operator€; andC, are copulas and each operafose= med; is a kernel aggregation operator on
[0,1]2. According to Theorem 9, the composed oper#jpis always 1-Lipschitz. For example, for
k = 0.5 we obtain the operator

TL(xy) if TL(xy) >0.5

Aos(X,y) =1 Tp(xy) if Tp(x,y) <0.5
05  ifT,L<05<Tr(xY).

The operatoys is not a copula because it is not 2—-monotone. To show this, consider the points

2 _3,_2 _3
x=%,X =3,y= 5 andy = 3. Then we have

33 22 23 32 4 1
Ao.s(zaz)%-Ao.s(évg)—Ao.s(éaz)—AO.s(ng)—0~5+§—0-5—0-5——E<07

which contradicts the 2—-monotonicity 8§ 5.

Note that by the previous theorem, all operat®sk € [0, 1], are quasi—copulas. The claim follows
from the facts thafl,. andTp are quasi—copulas (each copula is also a quasi—copula) and the outer
operator metk, y, k) is kernel on[0, 1]? and thus also on the skt
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Modifying L-sets: two views based on level-sets
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In this paper we present two views of modifiers defined by means of level-sets. The author has studied
these modifiers earlier and the current paper serves mainly as a survey of this work.

The author has studiezbmpositional modifier operatorfsee e.g. [4, 5, 6, 11]), and especially
modifiers which are also interior operators in Alexandroff topologies. In an Alexandroff topology the
intersection of every family of open sets is open (see e.g. [1$ets on U([2]) are generalizations of
fuzzy setg[13]), defined as mapping$: U — L, and they are modified by operating its level-sets by
means of interior operators in Alexandroff topologies. These generalized operators ardevalled
set generated modifieend denoted by, ([10]). In this case Representation Theorems presented
by C. V. Negoita and D. A. Ralescu (see [12] and also [3]) are applicable when repredestits
by means of level-sets. In this paper we demandlthat(L,<,A,V,®) is acl-quasi-monoid][3]),
and axioms folL-interior operatorsandL-topologiesare given in [3]. Under certain conditions the
level-set generated modifiers are alsmterior operators ([10]).

The author has also studiemsbarsening operatorén [7, 8, 9]. Certain coarsening operators,
namelynatural coarsening operatomenoted by} , can be defined by means of open sets of Alexan-
droff topologies, and.-sets are modified by omitting those level-sets which are not open. In this case
also Representation Theorems are applicable when represerditg by means of level-sets.

Because under certain conditions the level-set generated modifieksimaterior operators, the
image of this operator is bB-topology, sayJ1. In this case we will show that the image of a natural
coarsening operator is alsd_atopology, sayJT,, while the natural coarsening operators do not gen-
erally need to be -interior operators (see [9]). We will show thd#l € LY, ¢ (A) C F.(A) and
T1 =T, Still, the category of produced-topological spaces is isomorphic to the category of crisp
Alexandroff spaces.
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Integrals of random fuzzy sets
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1 Introduction

Concepts of random fuzzy sets, often also called fuzzy random variables, have been introduced to
extend the classical notion of random variables to random experiments with outcomes in form of
fuzzy subsets oRK. The idea behind is to represent outcomes of random experiments in a more
adequate way by integrating those inherent aspects of vagueness which are of non-random nature.

From a technical point of view it had been turned out that the notion of random fuzzy sets by Puri
and Ralescu (cf. [15]) is the most general suggestion which admits also a probobability theory with
extensions of the classical limit theorems (cf. [10], [13]). The talk deals with the notion of integrals
of random fuzzy sets in the sense of Puri and Ralescu. The aim of the talk is to develop different ways
to define integrals and then to investigate their mutual relationships.

The seminal paper by Puri and Ralescu has offered the mostly accepted approach. As they defined
random fuzzy sets as extended random compact sets they could transfer Aumann’s concept to define
integrals for random compact sets, the so called Aumann-integral. A new direction has been initialized
by Diamond and Kloeden who introduced the class gf metrics on sample spaces consisting of
fuzzy subsets dR¥ ([4], for extensions see [12]). These metrics yield other concepts of random fuzzy
sets as random elements in Banach spaces which makes possible to embed the probability theory with
fuzzy observations into the general probability theory in Banach spaces ([9], [14], [11], [13]). The
Lp,—metrics work on subspaces of the sample spaces considered by Puri and Ralescu. Moreover, it
has been shown that in most cases the different notions of random fuzzy sets coincide ([10], [13]).
Therefore, reasonable alternatives to define integrals might be obtained by adaption of Bochner- and
Pettis-integration.

Then two problems will be tackled within the talk. If the range of a random fuzzy set is restricted
to a sample space where one of the-metrics works, when does the Aumann-integral belong to this
sample space? Secondly what are the mutual relationships between Aumann- and the adaptions of
Bochner- as well as Pettis-integration? Both problems are not investigated systematically in literature.
A first attempt concerning the first problem had been offered by the talk "Probability theory in sample
spaces of fuzzy subsets” held at the 23rd Linz-Seminar of Fuzzy Sets 2003 (cf.[13]). Answers to the
second problem w.r.t. tHe,—metric are given in [9] and [14], a comprehensive account was presented
at the 23rd Linz-Seminar (cf. [13]). However these results suffer from quite unsatisfactory conditions
of integrability that the random fuzzy sets should fulfil. Moreover, only sufficient conditions are
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available which ensure that the Aumann-integral of a random fuzzy set belongs to the sample space
under consideration. The conditions of integrability will be improved and the sufficient conditions
will be completed by necessary ones.

As applications of the investigations dominated convergence theorems and strong laws of large
numbers as well as central limit theorems will be derived. The obtained versions generalize and
improve already known results from literature, especially those that were presented at the 23rd Linz-
Seminar.

2 Random fuzzy sets

Let %5 (RK) gather all nonvoid convex compact subset®bfWe will restrict ourselves to the sample
spaceF19(RX) which consists of all fuzzy subsetskf with a—cuts belonging tak; (R*). Applying
Zadeh's extension principle we can definef(R¥) a semilinear structuré®e, AGr | A € R}. It
turns out that it is inherited from the Minkowski operations &g (R¥) on thea —cuts, that is

[A@e B* = [A°@ [B]*, Aor Al* =A@ [A]°

forall A, B € FIQ(RX), A € R, a €]0,1] (c.f. e.g. [4]). The fuzzy subset & with 15, as membership
function will be denoted bﬁ. It is the neutral element w.r.&k.

Due to a widely used suggestion by Puri and Ralescu ([15]) we can extend the notion of random
compact sets t6°(R¥) in the following way:

Each mapping : Q — FM%(R¥) is associated with ita —cut-mappings
Y] Q — K5 (RY), 0 [Y(w)) (a €]0,1))

Puri and Ralescu called a mappivig Q — F2(R¥) a fuzzy random variable over some probability
space(Q, 7,P) if all the a—cut-mappings are convex-valued random compact sets(€vef , P).
However from the point of view of general probability theory this definition is not convenient since
there is not any natural notion of distribution emerging from it. Therefore it is more reasonable to
conceptualize random fuzzy sets Iét%%(Rk)—valued measurable mappings. For this purpose we
need a suitable—algebra orF1%(R¥). The suggestion below was introduced the first time in [10].

Since every fuzzy subset & is uniquely determined by it positive rational-cuts we may
deduce a topolog¥rm on Fi2(RK) from the product topology s, on %gh(R¥)0UNQ wrt. the

coc

Hausdorff metrid., which is separably metrizable.

Now a mappingY : Q — FI2(R) is defined to be aandom fuzzy setif it is Borel-measurable
W.I.t. Teno. The image measure undéis called thedistribution of Y. Sincetrpo is metrizable, every
random fuzzy set is a random elemenEff(R¥) w.r.t. to every metric which inducese. Therefore
it is natural to speak of aimple random fuzzy setin the case that a random fuzzy set has only a
finite range. In fact the introduced notion of random fuzzy sets is equivalent with the concept of fuzzy
random variables by Puri and Ralescu (cf. [10]).

Other concepts to define random fuzzy sets are based on the identification of each fuzzy subset
A from FJ2(RX) with its support functiors; : [0,1] x §~1 — R, whereS* denotes the euclidean
unit sphere ifRX. Every support function is measurable w.r.t the produealgebra consisting of the
Borel subsets of0, 1] x S~ ([12]). This property is the basis to build the subspaces of fuzzy subsets
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with integrable support functions. Integrability will be defined wxt® AS™ the product measure
of the Lebesgue-Borel measuréon [0, 1] andAS™", the unit Lebesgue-Borel measure 8.

Let for p € [1, o[ define the spadéggocp(R") to consist of fuzzy subsets froR(R¥) with support
functions being\* ®A§7l—integrable of ordep. Additionally, letF2%,, (R¥) be the space of all fuzzy
subsets fronF9(RX) with support functions being essentially bounded wAL® A", Indeed
this space gathers all the fuzzy subsets filgffi(R¥) with bounded supports. The restriction of the
semilinear structur¢®r,AOr | A € R} to FCQ,OCp(R") is well defined for evenp € [1,] (cf. [13]).

By the mappingjege (w) : Fltep(RS) — Lp([0,1] x S (p € [1,e]), which identifies fuzzy
subsets with the respective equivalence classes of their support functions everﬁ%p@&) can
be embedded into thg,—space.p([0,1] x S 1) w.r.t. Al 225" as a positive cone (cf. [13]).

Using theLp—norm onLp([0,1] x S1) one can define a metrig, on FC%OCP(R"), called the
Lp—metric. Another custom concept is the so callegl,—metric, which is a completion of the
metric onFR, (RK) introduced by Klement, Puri and Ralescu in [8] (cf. [12]). Each fmgird,
induces the same topology (cf. [12]), and in the case ef o both metrics are even identical (cf.
[13]).

TheLp— andLp.—metrics give the opportunity to consider random elements in the subspaces
FC”OOCp(Rk) w.r.t. the respective,— or L .—metric. Those random elements can be identified, via the

embeddingstcno%p(Rk), with random elements in thie,—spaced.p([0,1] x S<1). It turns out that in
fact all these random elements are random fuzzy sets ([10], [13]).

Proposition 1. Let(Q, ,P) be a probability space and I&t: Q — F°(RK). Then we can state:

11V is I%”O%p(Rk)—valued for pe [1, ][, then the following statements are equivalent:

(i) Y is arandom fuzzy set ove®, ,P).
(i) Y is arandom element irggp(Rk) W.r.t. pp over(Q, F,P).
(i) Y is a random element irggch(Rk) w.r.t. dy over(Q, F,P).
2 IfY is 9, (R¥)—valued, then the following statements are equivalent:

() Y is a random fuzzy set oVER, 7 ,P).

(i) Every mappingY]®: Q — %@(Rk)LwH [Y(w)]* (a € [0,1]) is a convex-valued random
compact set ove(Q, 7 ,P), where[Y (w)]° denotes the topological closure of the support
of Y(w).

3 If Y is a random element inB,,(R¥) W.r.t. po = dw Over (Q, #,P), then it is a random fuzzy
set over(Q, F,P). The converse is not necessarily true.

3 Integrably bounded random fuzzy sets

Since every random fuzzy set can be regarded as an extended convex-valued random compact set,
it suggests itself to define integrals for random fuzzy sets by carrying over Aumann’s well accepted
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concept (cf. [1]). Related to a random fuzzy ¥ethe task is to find a fuzzy subsefY e FI2(RK)
which satisfiegEAY]* = EA[Y] for all a €]0,1]. Since the set&A[Y]* (a €]0,1]) should belong to
%5 (RX), thea—cut mappinggY]® (a €]0,1]) have to be integrably bounded convex-valued random
compact sets.

Arandom fuzzy set with integrably bounded-cut mappings is known as amegrably bounded
random fuzzy set(cf. [15]). Indeed the concept of integrably bounded random fuzzy sets is sufficient
to find the desired extendédimann-integral (cf. [15], Theorem 3.1).

The Aumann-integral for a simple random fuzzy ¥etith distributionQg and different outcomes
Aq, ..., Am € FI9(RK) may be easily calculated as

EAY = (Y (A1) OF A1) @ ... & (QgY (Am) OF Am)

Sincetgno is separably metrizable, every integrably bounded random fuzzy set can be approximated
pointwise by a sequence of simple random fuzzy sets. So we can raise the question whether the
Aumann-integral of integrably bounded random fuzzy sets can be described as a kind of Bochner-
integral? Is it possible to attain the Aumann-integral of integrably bounded random fuzzy sets as limit
points of sequences of Aumann-integrals of simple random fuzzy sets? The answer is affirmative as
the following theorem shows.

Theorem 2. Let d be a metric on E(R¥) that inducestgr, let &, be the Hausdorff metric on
K5 (RY), and letY : Q — F19(RK) be a random fuzzy set over some probability sg&zef , P). Then
the following statements are equivalent:

1Y is integrably bounded.

.2 There exists some A 7,PA = 1, and a sequencéY,), of simple random fuzzy sets over
(Q, F,P) such that

(i) n@wd(Vn(w),V(w)) —=Oforall we A

(i) supd.([Yn]%,{0}) is P—integrable for everyr €]0,1] N Q.

If one of the statements .1, .2 is safisfied, tHin d(EAY,, EAY) = 0 holds for any sequendd,), of
simple random fuzzy sets as in statement .2. ¢

Remark:

Theorem 2 is an extension of a classical result from the theory of random compact sets: Debreu
suggested a kind of Bochner-integral for convex-valued random compact sets. He has shown that it
coincides with the Aumann-integral in the case of integrably bounded convex-valued random compact
sets (cf. [3]; see also [7]). The characterization of the integral by statement .2 of Theorem 2 may be
regarded as an generalization of Debreu’s concept. Moreover, the extensions of the Aumann- as well
as Debreu-integrals coincide. ¢

Considering random fuzzy sets with outcomes in the spég)%g(]Rk) w.r.t. the respective ,—
or Lp»—metrics it is interesting to find necessary and sufficient conditions which characterize them
as integrably bounded with Aumann-integrals belonging to the respective subspace. The following
theorem gives a complete answer to this problem.
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Theorem 3. Let pe [1,»] and letY : Q — Fcno%p(Rk) denote a random fuzzy set over some probability
space(Q, F,P).

.1 For p=1 the random fuzzy sét is integrably bounded witkAY € F%, (R) if and only if
eitherps(Y,0) or di (Y, 0) is P—integrable. In this Caserjo (rk) oY isP—Pettis-integrable and

JFno (Rk>(E AY) coincides with the Pettis integral Of b (rkK) oY.

.2 For p €]1, [ the random fuzzy sat is integrably bounded witRAY Fcno%p(Rk) if and only
if jgq () oY isP—Pettis-integrable as well as either (Y,0) or di(Y,0) is P—integrable. In
this case gno w1 (EAY) coincides with the Pettis integral ofgh =« Y.

.3 For p = o the random fuzzy sét is integrably bounded witBAY € F1S,(R¥) if and only if
P (Y,0) = dw(Y,0) is P—integrable.

Remark:
In [13] it has been shown that sorﬁg)%p(Rk)—valued random fuzzy sét over a probability space

(Q, F,P) is integrably bounded witEAY € F1% (RY) if pp(Y,0) is
P—integrable of ordep : p € [1, [
P—integrable C p=o

This result is now improved by Theorem 3. Moreover, the converse direction has been found.

4 Pettis-integrable random fuzzy sets

If Fcrgocp(Rk)—valued random fuzzy sets are considered as random elements w.ILt,-theetric pp

or the Ly »—metric dp, they can be identified, via the standard embedding, with random elements

in a real Banach space. So the concepts of Pettis- or Bochner-integrals may be used as alternative
ways to define integrals for random fuzzy sets. This section deals with the approach inspired by the
Pettis-integration.

Definition 4. Letpe [1,c] and lety : Q — Fcr}f’cp(Rk) denote a random fuzzy set over some probability

space(Q, F,P). ThenY will be defined as P-Pettis-integrable w.r.t. Pp if it satisfies the following
properties

(i) Y is arandom element |F\b0cp(Rk) W.r.t. pp over(Q, F,P).
(1) Jrpg ek oY is P—Pettis-integrable.

(iii) There exists sSomEPY € Fi2,(R) with jene e (EPY) being identical with the Pettis-integral
of J|:no

cocp(Rk) ?
If Y is P—Pettis-integrable w.r.ip,, thenEPY will be called thePettis-integral of Y. ¢
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Remark:
Since the embeddingky, (px) is injective, the fuzzy subs&PY is unique if it exists. ¢

One can derive the following relationship between Aumann- and Pettis-integratﬁjﬁcgﬂRk)-
valued random fuzzy sets fare [1,o|.

Theorem 5. Let pe [1,0] and letY : Q — Fcno%p(Rk) denote a random fuzzy set over some probability
space(Q, F,P).

1 If pe [1,[, and ifY is integrably bounded with"Y € F2 (R¥), thenY isP—Pettis-integrable
andEAY = EPY.

2 1f do(Y,0) = pw(Y,0) is P—integrable, ther¥ isP—Pettis-integrable witlEAY = EPY.

Remark:
As remarked above after Theorem 3, Theorem 5 improves a former resEﬂ,‘ig(ﬂRk)—valued ran-
dom fuzzy set¥ with pp(\?,ﬁ) being integrable of ordgy for p € [1,[. In particular, it also improves
a result by Nather who has shown the result of Theorem & 485(R¥)—valued random fuzzy se¥s
with pz(\7,6) being integrable of order 2 (cf. [14]). ¢

5 Bochner-integrable random fuzzy sets

Analogously to Pettis-integrability one can develop Bochner-integration of random fuzzy sets.

Definition 6. Let pe [1,0] and lety : Q — FCQ)OCp(R") denote a random fuzzy set over some probability

spacdQ, 7,P). ThenY will be defined as P-Bochner-integrable w.r.. pp if it satisfies the following
properties

(i) Y is a separably-valued random eIemenIFJ},?:p(Rk) wW.r.t. pp over(Q, F,P).
(1) Jrpg ek oY is P—Bochner-integrable.
(iiiy There exists soméf\? € Fio(R¥) with jeg () (EBY) being identical with the Bochner-

integral of jggo (R OY.

If Y is P—Bochner-integrable w.r.pp, thenEBY will be called theBochner-integral of Y. ¢

Remarks: o
1) Since each embeddir]'g&%p(Rk) is injective, the fuzzy subs&®BY is unique if it exists.

2) Observe that for every € [1,0[ the Fcr},"cp(Rk)—valued random fuzzy sets are exactly the
separably-valued random element§g§(’:p(Rk) W.I.t. pp Sincepp is separable.

3) For everyp € [1, ] each simple random eIementF@)%p(Rk) W.r.t. pp is integrably bounded
as well as Bochner-integrable, aB8Y = EBY holds.
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It turns out that forp € [1,0[ Aumann- and Bochner-integration Eg‘o"cp(Rk)—valued random
fuzzy sets are closely related.

Theorem 7. Let pe [1,[, and letY : Q — Fcno%p(Rk) denote a random fuzzy set over some probability

space(Q, F,P). Then the following statements are equivalent:

.1 Y isP—Bochner-integrable.

2 Y is integrably bounded with"Y € Fi2(R¥), and jepo (wk) oY isP—Bochner-integrable with
Jfno p(Rk)(EA\?) being identical with the Bochner-integral f (s« oY.

.3 Eitherpp(Y,0) or dp(Y,0) is P—integrable.

.4 There exists some sequeri¥g), of simple Fcf‘o%p(Rk)—valued random fuzzy sets o€, 7, P)
which satisfy

(i) nlimmpp(Vn(w),\?(w)) —Oforall we Q
(i) _lim Epp(Yn,Y) =0
If any of the statements .1 - .4 is fulfilled, théris integrably bounded witBAY € F1i% (R¥), and
EAY = EBY as well as lim pp(EAn, EAY) =0
wheneve(Y,), is a sequence of simpltg‘c%p(Rk)—valued random fuzzy sets as in statement .44

Remark:

Theorem 7 improves a former result in [13] where it has been shown tﬁ@t@Rk)— valued

random fuzzy seY satisfies statement .2 of Theorem Z)y(\?,ﬁ) is integrable of ordep. In partic-
ular also a result by Kérner is improved who has proved that statement .2 of Theorem 7 holds for a
FC”OOCQ(]R")—vaIued random fuzzy st with py(Y,0) being integrable of order 2 (cf. [9]). ¢

In the case oF 2, (R¥)—valued random fuzzy sets the concept of Bochner-integrals are much
more restrictive than Aumann-integration.

Theorem 8. LetY : Q — F2_(RX) denote a random fuzzy set over some probability space , P).
Then the following statements are equivalent:

.1 Y isP—Bochner-integrable.

2 Y is integrably bounded with*Y € F2,, (R), and jeno gk oY isP—Bochner-integrable with
Jrae (k) (EAY) being identical with the Bochner-integral gfy w0 Y.

.3 'Y is a separably-valued random element #5(R¥) W.r.t. P, = dw
over(Q, F,P), andpw(Y,0) = dw (Y, 0) is P—integrable.

.4 There exists some sequerfg), of simple B2 (R¥)—valued random fuzzy sets ov€r, ¥, P)

which satisfy
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(i) lim_ Peo(Yn(w),Y(w)) = Oforall we Q
(ii) n@prw(Vn,V) =0

If any of the statements .1 - .4 is fulfilled, thérs integrably bounded witB"Y e F2,,(R¥), and

EAY = EBY as well as lim pw(EAY,, EAY) =0
N——o00
wheneverY,), is a sequence of simpl’, (R¥)—valued random fuzzy sets as in statement .44

Every Bochner-integrable random fuzzy set is Pettis-integrable, and the Bochner- coincides with
the Pettis-integral. This is a result in accordance with the integration of random elements in Banach
spaces.

Theorem 9. Let pe [1,] and letY : Q — Fc'})"cp(Rk) be a random fuzzy set over some probability
space(Q, F,P).
__If Y isP—Bochner-integrable w.r.tpy, then it is alsoP—Pettis-integrable w.r.tp, with EBY =
EPY.

¢

6 Dominated convergence theorems for random fuzzy sets
As a quite easy application of the discussion on integrability of random fuzzy sets we can derive
several dominated convergence theorems, dependent on the sample space.

Theorem 10. Let {\7,\7” |ne N} bea set of integrably bounded random fuzzy sets over some proba-
bility space(Q, ¥, P) such thatsupd. ([Yy]?, {0} ) is P—integrable for everyx €]0,1] N Q.
n

If lim d(Yn,Y) = 0a.s. holds for any metric d which inducgs, then lim d(EAY,,EAY) = 0.
¢

Dealing with Fcr},"cp(Rk)—valued random fuzzy set® € [1,]), one obtains the following domi-
nated convergence theorem.

Theorem 11. Let pe [1,«] be fixed and le{Y,Y, | n € N} be a set of 32 (R¥)—valued random
fuzzy sets over some probability sp&€e 7, P) which satisfy

(i) pp(Y,0) is P—integrable.

(i) suppp(Ya,0) is P—integrable.
n

1 If pe [0, andif lim pp(Yn,Y) =0a.s., then
= lim dp(EA\?n,EA\?):nnm dp(ﬁp\?n,ép\?):nnm dp(EBYn, EBY)

Nn—-—o00

=0
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211t lim pw(Yn, Y)=0a.s., thenlim d. (EAYL, EAY) = im poo(E Y., EAY) =0

Remark:

Statement .2 of Theorem 11 is known from [13], whereas statement .2 generalizes and improves
already known dominated convergence theorems:

e All the previous results are formulated w.r.t. the Aumann-integrals only.

e The respective theorems in [8] and [11] are restrlcteﬂgggc(]R{k) valued random fuzzy sets
assuming that the mapplng§(Yn, )andd (Y O) are integrable.

e In [13] the results from [8] and [11] have been extended to arbillFﬁ{%(Rk)—valued random

fuzzy set/, Y, under the quite unsatisfactory condition that the mapping¥, 0) andpp (Y, 0)
are integrable of ordgp for p € [1, .

7 Strong law of large numbers and central limit theorems for random
fuzzy sets

Since Fc'})%p(Rk)—valued integrably bounded random fuzzy sets are closely related with Bochner-
integrable random elements iy ([0,1] x S1) for p € [1,0[, we can make use of limit theorems

for random elements in real Banach spaces to obtain strong laws of large numbers and central limit
theorems for random fuzzy sets.

Considering pairwise independent, identically distributed random fuzzy sets, Etemadi’s strong law
of large numbers ([5]) may be applied sing([0,1] x S<1), |- ||p) is a real separable Banach space
for pe [1,].
Theorem 12. Let pe [1,[, and let(Y,), denote a sequence of pairwise independent, identically
distributed FC“OOCp(Rk)—valued random fuzzy sets over some probability spgcer , P).

If pp(¥1,0) is P—integrable, thenlim pp( OF Y1 @®F ... 3 Yn),EAY;) =0 ass.

Conversely, if there exists someg € FII% (R¥) such that lim_pp(3 OF (Y1 ®F ... ®F o), Ag) =

0 a.s. holds, therpp(\N(l, 0) is P—integrable, in partlcularYl is mtegrably boundend as well as
P—Bochner- and®—Pettis-integrable witfEAY; = EBY; = EPY; = Ag € Fcr},%p(Rk) ¢

Remark:

Theorem 12 completes a result 812, (R¥)—valued random fuzzy sets by Colubi, Lopez-Diaz
and Gil (cf. [2]). ¢

Hoffmann-Jorgensen and Pisier introduced a classification of Banach spaces, where classical
strong laws of large numbers and central limit theorems can be extended immediately. Their in-
vestigations led to the concept of types of Banach spaces. The type of a Banach space is directly
linked with the validity of certain limit theorems (cf. [6]). Sin¢ey([0,1] x S<1), |- ||p) is a real
separable Banach space of typin the case op € [1,2] and of type 2 ifp € [2,[, one can draw on
the limit theorems for random elements in these classes of real Banach spaces.

101



Theorem 13. Let pe [1,%] and (Y,), be a sequence of independegﬁjclg(Rk)—valued random fuzzy
sets over some probability spa(®, 7, P) such that

(i) pp(Yn,0) is P—integrable for all n

w Y. EAY.)d
(i) zEp'O(\(:]’c:Em<ooforq:pifpe[1,2]andq:2ifpe[2,oo[.
n=1

Then 1 1
nli_f')floopp(ﬁ ®F (?1 DE ... BF ?n), ﬁ OF (EA?]_ DF ... BF EA?n)> =0a.s.

¢

Theorem 14. Let pe [2, ][, and Iet(\?n)n denote a sequence of independent and identically distributed
FC”O"Cp(Rk)—vaIued random fuzzy sets over some probability sp@ce, P) such thatpp(Y1,0) is P—
integrable of order2.

Then there exists a Gaussian element Z i@, 1] x S1) with vanishing Bochner-integral and

~ n ~ . o~
covariance operator as:po (gk) oY1 such that the sequen(e\% izl JFno (i) OYi — ﬁj,:cno%p(Rk) (EAYl))
converges weakly to.Z ¢

n

Remark:
Theorems 13, 14 improve corresponding previous results in [11] (Theorems 5.1, 5.2) and [13] (Theo-
rems 5, 6) where sequences of indepentﬂ?@%(]l%k)—valued random fuzzy sets are considered with
pp(\N(n,ﬁ) being integrable of ordgp for all n. ¢
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1 Introduction

The aim of this contribution is a partial characterizationTeproduct possibility measures, where

T is a t-norm satisfying the Lipschitz property with the constant 1. Any possibility measure can
be assigned a set of distribution functions which are dominated by this possibility measure. It will
be demonstrated that the set of all joint distribution functions dominatedToypmduct possibility
measure contains each joint distribution function obtained by an application of a c@pula to

some marginal distribution functions dominated by marginal possibility measures.

2 Basic Notions

2.1 Possibility Theory and t-norms

See [1] for a thorough theoretical exposition. Xebe a non-empty set arvd be acomplete Boolean
algebraof its subsets:4 containsX and it is closed under complementation and arbitrary unions.
Consequentlya is closed under arbitrary intersectionspéssibility measurél on X is a set function

M: A4 — [0,1] such that for any familyA;)ic| of elements of7 the condition

M(Uiel A)) = supg N(A) is satisfied andll(X) = 1. The last condition means that ontprmal
possibility measures are consideredpdssibility distributionmtis a mappingt: X — [0, 1] such that
M(A) = supaTi(x) for anyA € 2 andmri({ac [0,1] :a< d}) € 4 for anyd € [0,1]. A purely
technical requirement is that always contains an elemexsuch that(x) = 0. Assume thaflx ..y
is a possibility measure on a Cartesian prodct Y. Then itsmarginal possibility measurBlx is
uniquely determined by the formuldyx (A) :=Mx.y(AxY), A€ 4.

Thet-norm T is a commutative, associative and monotone binary operatiof®,dh with the
neutral element 1. Significant examples of (continuous) t-norms are these: the triphmum
Tum(a,b) = min(a,b), the product t-norm $(a,b) = ab and thetukasiewicz’ t-norm [I(a,b) =
max(0,a+b—1). If Mx, My are possibility measures of, Y, respectively, and” is a continuous
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t-norm, then we say thty ., : Ax ® Ay — [0, 1] is aT -product possibility measun X x Y, where
Ax @ Ay C 2X%Y is aproduct algebraof 4y and 4y, if

My (AxB)=T(Mx(A),MNy(B)), Ac 4x,Bc 4y. (1)

A notion of theT -product possibility measure was introduced in [1] and it is evidently a more general
analog of the product probability measure used in classical probability theory.

2.2 Copulas

A copula Cis a binary operation of, 1] such that

1. for everya,b € [0,1],
C(a,0) =C(0,b) =0,

and
C(a,1)=a and C(1,b)=b;

2. for everyay, ap, b1, by € [0,1] such thaty < ap andb; < by,
C(ag,bz) —C(ag,by) —C(ay,by) +C(ayg,b1) > 0.
The t-normsTy, Tp, T, are all copulas. Moreover, for every cop@and(a,b) € [0,1]?,
Ti(a,b) <C(ab) <Tw(a,b). )

Any t-normT is a copula if and only ifl satisfies Lipschitz property with the constant 1 [3].

3 Characterization of T-product Possibilities

Each possibility measuii@yx on X can be assigned a 84, of finitely-additive probability measures
P« on X dominated bylx:

P, = {PX:PX(A)SHX(A),AeﬂX}. 3)
It was proven in [2] thaflx is even arupper envelopef #n,, i.e.

Mx(A) = sup Px(A), Aec Ax. 4
PPy

Instead of probability measures, distribution functions can be considered= bbet the total
ordering onX agreeing with the one given by values of the possibility distributignthat isx; < X
iff Tix(X1) < Tix(X2). Let thenx andx denote the greatest and the lowest elemedt iof this ordering,
respectively. Consequently, the mappfg: X — [0, 1] defined by

Fx(X) :=Pc({X e X:X <x}), xeX, (5)
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is adistribution functionsinceFx is non-decreasing arfé (X) = 1, Fx(x) = 0. We can define
T, = {FX:F(X)gl'Ix({X’GX:x’jx}),XGX}. (6)

If Fx andFy are distribution functions oK andY, respectively, an@ is a copula, then the mapping

Ry (X Y) :=C(Fx(X),Fv(Y)), (xy) € XxY, ©)

is thejoint distribution functionof Fx andR on X x Y.

Let us consider & -product possibility measur@} .., where the t-nornT satisfies Lipschitz
property with the constant 1. Under this assumption, we can partially characterize the set of joint
distribution functions dominated by, .

Proposition 1. Let My, My be possibility measures on X, Y, respectivély, , be a T-product
possibility measure, where T is a t-norm satisfying Lipschitz property with the corist@unsider
the set of copulas

r= {C C< T}.

Then any kyy € Tﬂlxy has marginal distribution functionsi< #n,, Fy € 7n, and

’r]:n; 2 U {F)?Xy:F)((:Xy:C(Fx,Fy),CECT}. (8)
(

Fx,Fv)€Fny x Iny
Proof. For the sake of further brevity, let us stipulate that
X =2x}p={XeX: X =<x}.

Let Fxxy € TH;XY. Then

Fx (X) = Py (%) < My (X =X x Y) = Nx({X 2 x}),

and analogously foFy. ConsequentlyFx € 7n, andF € Jn,. Notice that the setr is always
non-empty sincd is also a copula and, according to (2), there is always at least one copula which
is lower or equal tor. To prove the second part of the proposition, let us consider an arbitrary pair
of marginal distribution functionéFx, ) € 7n, x #n, and any copul& € Cr. Then for any pair

(X,y) € XxY,

Ry (X Y) = C(Fx (%), Fe(y)) < T(Fx (%), Re(y)) < T(Mx({X < x}),Mv({y <y})),

C
and thusse y € Iy - O

The previous proposition provides merely a partial characterizatidrpybduct possibility measures:

it can be demonstrated that in general case the set of joint distribution functions on the right-hand side

of (8) is a proper subset an; N Nevertheless, a complete characterization is obtained in some
special cases as the following example demonstrates.
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Example 2. If T = Ty, then Gy, consists of all copulas sinceyTis the greatest copula. Due to
Proposition 1, any kxy € 7 W has marginal distribution functionsyf Fy belonging to#n, and

Fn,, respectively. Sklar’s theorem [4] now implies that there is a copula C such fhat+ C(Fx,F)
and 7, thus consists of the joint distribution functions obtained by an application of all copulas to

X><Y

all pairs (Fx,Fy) € Fn, x Iny.
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Recall that wherX is a topological space, the lower and upper limit functidngand f* of a given
f : X — R (or toR) are defined as follows:

f.(x) = \/{/\ f(U) :U is an open nbhd of}

and
f*(x) = A{\V/ f(U) : U is an open nbhd of}.

In this report we study lower and upper limitslofeal valued functions by extending the operators
(1)« and(-)* to the framework of_-topological spaces. The approach we are taking involves scales of
L-sets.

More specifically, letL,”) be a complete lattice with an order-reversing involution anléie
a set. Each order-preserving famify = {a, : r € QNR} c LX is called anextended scalef L,
and it is called ascalewheneven/ 4 = 1x and A 4 = 1p. It is well known that for everi € X and
t € R, the functionay : R — L, defined byoy(t) = A, &/(x), is order-reversing and, whef is a
scale, thery/ ay(R) = 1 and/ ax(R) = 0. The functionf : X — R(L) (respectivelyR(L)), defined by
f(x) = [ay], is said to be genrated by the scale (respectively, extended stat@y X anL-topological
space and an (extended) scalewe let

4, ={Clxa :reQnNR} and A" ={Intx a :r € QNR}.

Then the functionsf, and f* generated by, respectivelyg, and 4*, are calledlower and limit
functionsof f. When thelL-real line R(L) is endowed with the right-topology R = {R: :t €
R} U{1p, g} or with the leftL-topology £, = {L; :t € R} U{1p, 1}, then members of

LSOX,R(L)) = {f e R(L)* :uof isopeninX forallue R }

and
USQX,R(L)) ={f e R(L)* :uof isopeninX forallue £}

are calledower anduper semicontinuousinction onX.
A detailed study of the operatofs). and(-)* will be presented. In particular, one HaSC(X) =

{f:f=f}andUSQX) = {f : f = f*}. Also, the concept of an epigraph of &nreal valued
function will be defined and the classical relationship between the closedness of the epigraph and
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lower semicontinuity will be shown to hold for the case of stratitiepological space. Specifically,
when(L,") is a frame, therf € LSO X,R(L)) if and only if

Gr =\ (Rof)xL

teR
is open in the produdt-topological spacX x R(L).

ForI(L)-valued function, the assignmelifL)* > f +— G¢ € LX*[0D(L) will be used to construct
the hypergraph functor form the categof@P(I(L)) of I(L)-topological spaces into the category
TOP(L) of L-topological spaces, which withthe two-pont chain reduces to the classical hypergraph
functor. WithL a meet-continuous lattice, the link between that hypergraph functor and the functors
Q : TOP(L) — TOP(I(L)) and L : TOP(I(L)) — TOP(L) continues to hold.

Semicontinuoug-real valued functions are well-known to play an important role in characterizing
some important classes bftopological spaces, includirignormal and completell-regular spaces.
Some of those results will be restated (and sometimes reproved) in trems of lower and upper limit
functions.
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1 Preliminaries

For MV-algebras, we refer to [1], [2] and for bounded commutaB@&K-algebras to [3]. In [3]
refered to [7], it is showed that aMV- algebra defines a bounded commutaB@K-algebra and
conversely. In fact, letand + be the binary operations andhe unary operation of aMV-algebra.
If % is the operation of a bounded commutatB€K-algebra, thexxy = x-y. On the other hand,
we havex = 1xX, X-y = XxY, X+Y = (Xxxy)~. The partial ordering< in a bounded commutative
BCK-algebra is defined as follows:< yiff xxy=0. By [3], | is an ideal of aitMV -algebra iffl is an
ideal of aBCK-algebra. FoBCK-algebras and ideals of BCK-algebra and aMV-algebra see [5],
[1] and [2]. For the Riemann surfaces we refer to [6].

2 Topological locally finite MV-algebra

2.1 Linear Topology induced by Ideals

In [4], it is constructed a topology for adV -algebraA considered as a bounded commutaBeEK-
algebra.

Let A be a directed set i.e. a partially ordered set such that foe A there isv € A for which
A<vandu<v.

LetT = {I) | A € A} be a family of ideals oA such that ifA < pthenl, C I). Define a relation-
in the following way [5]:

X~ ymodly iff Xxy € Iy and  yxXel,, QD

and let

U(A) = {yeA|x~ymodi,} )

The neighborhoodd (x,A) defines a topology i called the linear topology induced I3y Fur-
ther, (x,y) — xxy andx — x are continuous. ThereforA,is a topologicaMV -algebra.
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2.2 Locally finite MV-algebras as TopologicaMV-algebras

The following proposition is proved by C.S.Hoo:

Proposition 1. [4] The topology on a locally finite MV -algebra is one of the following types:

1. Hausdorff and connected,
2. Hausdorff and totally disconnected,

3. the trivial topology.

It is known that a locally finitedVV-algebraA is isomorphic to a subset of the unit interval [0,1],
[1], with a Lukasiewicz structure. Without loss of generality we suppose that the smallest and the
greatest elements of this subset are 0 and 1. We Kgegt as this subset and obtain

xxy = X-y = max0,x+1—-y—1) = max0,x—y). (3)
yxx = y-X = max0,y+1—x—1) = max0,y—Xx). 4)
Therefore, if
X>Y,  Xxy=X-y=[X-Y (5)
yxx =0 (6)
y=Xx  yxX=y-X=|y—X ()
xxy =0 (8)

Let| be an ideal ofA. By relation~ modulol

X~y modl iff xxy €l and yxxel iff Ix—ylel. 9)

and so
UXX) = {yeA|x~ymodl} = {ye A||x—y| €l}. (10)

Since the only ideals oA are {0} and the wholeA [1], we analyse the results of Proposition 1
with the neighborhoodd (x):

1. Letl = {0}. Thenx =y andU (x) = {x} for everyx € A. In this case every singletofx} is
open and the topology is discrete and so totally disconnected. Convergeiy tdtally disconnected,
then for everyx € A, the component ok is {x}. Especially, the component of 0 {§}. Since the
component is an ideal [4],= {0}. It is proved that = {0} iff Ais totally disconnected.

2. Letl = A. The topology is trivial iffU (x) = A for everyx € A.

3. Letl = Asuch that) (x) # A for somex € A. NeitherAis totally disconnected nor the topology
on A is trivial, by Proposition 1A is Hausdorff and connected. In this case we choose the relative
usual topology o\
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3 Topological locally finite MV -algebra as the Riemann Surface

The theory of the Riemann surface which is used is found from [6]. ALbé a topological locally
finite MV-algebra. Consider the case whéris Hausdorff and connected.

Proposition 2. Let A be a topological locally finite MV -algebra. If A is Hausdorff and connected,
then Ax A is a compact Riemann surface which is topologically a torus.

Proof. The theory of the Riemann surface which is used is found from [6]Sbeta Riemann surface
which has the complex plane as its universal covering suifac&ssume the covering group has

two generatorg — z+ 1 andz — z+i (translations). A fundamental domain is now the interior of the
square with vertices at @,1+1,i, which is (isomorphic to) the interior @0, 1] x [0,1]. In this case

the Riemann surfacé= D/G (modulo conformal equivalence) is compact. Since the opposite sides
of the square 4,1 +1,i are equivalent undes, topologicallyS= A x Ais a torus.

O]
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1. Introduction. The traditional mathematics over numerical fields can be dequantized as the
Planck constanh tends to zero taking pure imaginary values. This dequantization leads to the
so-called Idempotent Mathematics based on replacing the usual arithmetic operations by a new set
of basic operations (e.g., such as maximum or minimum), that is on the concepts of idempotent
semifield and semiring. Typical examples are given by the so-céiteak +) algebraRmax and
(min, +) algebraRmin. Let R be the field of real numbers. Th&tmax = RU{—} with operations
X@y=max{x,y} andx®y = x+y. Similarly Ry, = RU{+} with the operationss = min, ® = +.

The new additiord is idempotent, i.ex® x = x for all elementx. Some problems that are nonlinear

in the traditional sense turn out to be linear over a suitable idempotent semiring (idempotent superpo-
sition principle [1]). For example, the Hamilton-Jacobi equation (which is an idempotent version of
the Schrodinger equation) is linear oWk, andRmax.

The basic paradigm is expressed in terms ofidempotent correspondence princig®.This
principle is similar to the well-known correspondence principle of N. Bohr in quantum theory (and
closely related to it). Actually, there exists a heuristic correspondence between important, interesting
and useful constructions and results of the traditional mathematics over fields and analogous con-
structions and results over idempotent semirings and semifields (i.e., semirings and semifields with
idempotent addition). For example, the well-known Legendre transform can be treatedRagxan
version of the traditional Fourier transform (this observation is due to V. P. Maslov).

A systematic and consistent application of the idempotent correspondence principle leads to a
variety of results, often quite unexpected. As a result, in parallel with the traditional mathematics
over rings, its “shadow”, the ldempotent Mathematics, appears. This “shadow” stands approximately
in the same relation to the traditional mathematics as classical physics to quantum theory. In many
respects Idempotent Mathematics is simpler than the traditional one. However, the transition from
traditional concepts and results to their idempotent analogs is often nontrivial.

In this talk a brief survey of basic ideas of Idempotent Mathematics is presented. Relations be-
tween this theory and the theory of fuzzy sets as well as the possibility theory and some applications
(including computer applications) are discussed. Hystorical surveys and the corresponding references
can be found in [2]-[5].

2. Semirings, semifields, and idempotent dequantizatiorConsider a se$ equipped with two
algebraic operationsddition © andmultiplication ®. It is asemiringif the following conditions are
satisfied:

o the addition® and the multiplicatior® are associative;

o the addition® is commutative;
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¢ the multiplication® is distributive with respect to the additiaht X® (Y& 2) = (XOY) & (X© 2)
and(xdy)©z= (x0z)® (yoz) forallx,y,ze S

The semiring icommutativef the multiplication® is commutative. Aunity of a semiringSis
an element € Ssuch that©x=x® 1 =xfor all x € S. A zeroof a semiringSis an elemen® € S
suchthaD# 1and0Odx =% 00x=x®0=0for all xe S A semiringSis called andempotent
semiringif xx = x for all x € S. A semiringSwith neutral element® and1 is called asemifieldf
every nonzero element &is invertible.

The following examples are important. LRtbe the segmerid, 1] equipped with the operations
x@y=maxxy} andx®y = min{x,y}; thenP is a commutative idempotent semiring (but not a
semifield). The subs& = {0, 1} in M equipped with the same operations is the well-known Boolean
algebra which is an idempotent semifield. In this casand ® are the usual Boolean operations
(disjunction and conjunction). In the general case the semiring addition and multiplication could be
treated as generalized logical (Boolean) operations.

Let R be the field of real numbers ail, the semiring of all nonnegative real numbers (with
respect to the usual addition and multiplication). The change of variablesu = hinx, h > 0,
defines a ma@y: R, — S=RU{—»}. Let the addition and multiplication operations be mapped
from R to Sby @y, i.e., letudn v = hin(exp(u/h) +exp(v/h)), uGV=u+V, 0 = —c0 = ®y(0),
1=0= dy(1). It can easily be checked thatp v — max{u,v} ash — 0 andSforms a semiring
with respect to addition® v = max{u, v} and multiplicatioru® v = u+ v with zeroO = —c and unit
1= 0. Denote this semiring bRRmax; it is idempotent. The semirinBmax iS actually a commutative
semifield. This construction is due to V.P. Maslov [1]; now it is knowiVislov's dequantizatian

The analogy with quantization is obvious; the paramhbtplays the réle of the Planck constant,
soR, (orR) can be viewed as a “quantum object” aRglax as the result of its “dequantization”. A
similar procedure gives the semirifg,in = RU {+} with the operations> = min, © = +; in this
casel = +o, 1 = 0. The semiringRmax and Rnmin are isomorphic. Connections with physics and
imaginary values of the Planck constant are discussed in [4]. The commutative idempotent semiring
RU {—o} U {4} with the operationss = max, ® = min can be obtained as a result of a “second
dequantization” oR (orR. ). Dozens of interesting examples of nonisomorphic idempotent semirings
may be cited as well as a number of standard methods of deriving new semirings from these (see, e.g.,
[21-[5]).

Idempotent dequantizatias a generalization of Maslov’s dequantization. This is a passage from
fields to idempotent semifields and semirings in mathematical constructions and results. The idempo-

tent correspondence principle (see Introduction and [2, 4]) often works for this idempotent dequanti-
zation.

3. Idempotent Analysis. Let S be an arbitrary semiring with idempotent additi@n(which is
always assumed to be commutative), multiplicationzero0, and unitl. The setSis supplied with
thestandard partial order<: by definition,a < b if and only ifa®b = b. Thus all elements dbare
positive:0 < afor all a € S Due to the existence of this order, Idempotent Analysis is closely related
to the lattice theory, the theory of vector lattices, and the theory of ordered spaces. Moreover, this
partial order allows to simulate a number of basic notions and results of Idempotent Analysis at the
purely algebraic level.

Calculus deals mainly with functions whose values are numbers. The idempotent analog of a
numerical function is a majg — S, whereX is an arbitrary set an8is an idempotent semiring.
Functions with values i can be added, multiplied by each other, and multiplied by elemer8s of
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The idempotent analog of a linear functional space is a s&waflued functions that is closed
under addition of functions and multiplication of functions by element§, ajr anS-semimodule.
Consider, e.g., th&semimoduleB(X,S) of functionsX — Sthat are bounded in the sense of the
standard order o8

If S= Rmax then the idempotent analog of integration is defined by the formula

18)= [ 60 dx= supp ) @

xeX

where¢ € B(X,S). Indeed, a Riemann sum of the forgnb(x;) - o; corresponds to the expression
|
@D ¢ (x) ©oi = max{d(x) + oi }, which tends to the right-hand side of (1) @s— 0. Of course,
i |

|
this is a purely heuristic argument. Formula (1) defines the idempotent integral not only for functions
taking values irRhax but also in the general case when any of bounded (from above) subSdtaof
the least upper bound.
An idempotent measure ofis defined bymy(Y) = sup(x), wherey € B(X,S). The integral

xeY
with respect to this measure is defined by

@ ®
(@)= [ 000dmy = [ 600 () dx=SUp() & () @

xeX

Obviously, if S= Rnin, then the standard ordet is opposite to the conventional ord€r so in
this case equation (2) assumes the form

[ edmy = [ 600 @ w00 dx= inf (6(x) 0 wix)), ®
X X xeX

where inf is understood in the sense of the conventional agder

The functionald (¢) andly(¢) are linear ovelS their values correspond to limits of Lebesgue
(or Riemann) sums. The formula fog(¢) defines the idempotent scalar product of the functipns
andd¢. Various idempotent functional spaces and an idempotent version of the theory of distributions
can be constructed on the basis of the idempotent integration, see, e.g., [1], [3]-[5]. The analogy
of idempotent and probability measures leads to spectacular parallels between optimization theory
and probability theory. For example, the Chapman—Kolmogorov equation corresponds to the Bellman
equation (see, e.g., [6, 5]). Many other idempotent analogs may be cited (in particular, for basic
constructions and theorems of functional analysis [4]).

4. The superposition principle and linear problems. Basic equations of quantum theory are
linear (the superposition principle). The Hamilton—-Jacobi equation, the basic equation of classical
mechanics, is nonlinear in the conventional sense. However it is linear over the serRigngsd
Rmax Also, different versions of the Bellman equation, the basic equation of optimization theory,
are linear over suitable idempotent semirings (V. P. Maslov’s idempotent superposition principle), see
[1, 3]. For instance, the finite-dimensional stationary Bellman equation can be written in thX ferm
HoXaF, whereX, H, F are matrices with coefficients in an idempotent semiSiagd the unknown
matrix X is determined byd andF [7]. In particular, standard problems of dynamic programming and
the well-known shortest path problem correspond to the &seRmax andS= Rnmin, respectively. In
[7], it was shown that main optimization algorithms for finite graphs correspond to standard methods
for solving systems of linear equations of this type (i.e., over semirings). Specifically, Bellman’s
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shortest path algorithm corresponds to a version of Jacobi’s algorithm, Ford’s algorithm corresponds
to the Gauss—Seidel iterative scheme, etc.

Linearity of the Hamilton—Jacobi equation oW (andRmay) is closely related to the (conven-
tional) linearity of the Schrddinger equation, see [4] for detalils.

5. Correspondence principle for algorithms and their computer implementations.The idem-

potent correspondence principle is valid for algorithms as well as for their software and hardware
implementations [2]. In particular, according to the superposition principle, analogs of linear algebra
algorithms are especially important. It is well-known that algorithms of linear algebra are convenient
for parallel computations; so their idempotent analogs accept a parallelization. This is a regular way to
use parallel computations for many problems including basic optimization problems. It is convenient
to use universal algorithms which do not depend on a concrete semiring and its concrete computer
model. Software implementations for universal semiring algorithms are based on object-oriented and
generic programming; program modules can deal with abstract (and variable) operations and data
types, see [2, 8] for details.

The most important and standard algorithms have many hardware realizations in the form of tech-
nical devices or special processors. These devices often can be used as prototypes for new hardware
units generated by substitution of the usual arithmetic operations for its semiring analogs, see [2] for
details. Good and efficient technical ideas and decisions can be transposed from prototypes into new
hardware units. Thus the correspondence principle generates a regular heuristic method for hardware
design. Note that to get a patent it is necessary to present the so-called “invention formula”, that is to
indicate a prototype for the suggested device and the difference between these devices.

6. ldempotent interval analysis. An idempotent version of the traditional interval analysis is
presented in [9]. LeS be an idempotent semiring equipped with the standard partial order (see the
beginning of Section 3). Alosed intervaln Sis a subset of the form = [x,X] = {x € §x g X< X},
where the elements < X are calledower andupper bound®f the intervalx. A weak interval ex-
tension [S) of the semiringSis the set of all closed intervals Bendowed with operations and®
defined ax@y = x®Yy,XDY], XOY = [XOY,XOVY]; the set (S) is a new idempotent semiring with
respect to these operations. It is proved that basic problems of idempotent linear algebra are polyno-
mial, whereas in the traditional interval analysis problems of this kind are generally NP-hard. Exact
interval solutions for the discrete stationary Bellman equation (this is the matrix equation discussed
in Section 4) and for the corresponding optimization problems are constructed and examined.

7. Generalized fuzzy setsLet Q be the so-called universe consisting of “elementary events” and
San idempotent semiring. Denote By(S) the set of functions defined dd and taking their values
in S, then 7 (S) is an idempotent semiring with respect to the pointwise addition and multiplication
of functions. We shall say that elements®fS) aregeneralized fuzzy seté/e have the well known
classical definition of fuzzy sets (L.A. Zadeh [10])Sf= P, whereP is the segmen[0, 1] with the
semiring operationsy = max and® = min, see Section 2. Of course, functions frghtP) taking
their values in the Boolean algeta= {0, 1} C P correspond to traditional sets frofhand semiring
operations correspond to standard operations for sets. In the general $ase ifieutral elements
and1 (and0 # 1), then functions fromf (S) taking their values iB = {0,1} C S can be treated as
traditional subsets if. If Sis a lattice (i.ex®y = inf{x,y} andx®y = sup{x,y}), then generalized
fuzzy sets coincide with-fuzzy sets in the sense of J.A. Goguen [11]. Thd 8t of intervals is an
idempotent semiring (see Section 6), so element$ @{S)) can be treated as interval (generalized)
fuzzy sets.
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It is well known that the classical theory of fuzzy sets is a basis for the theory of possibility
[12]. Of course, it is possible to develop a similar generalized theory of possibility starting from
generalized fuzzy sets. In general the generalized theories are noncommutative; they seem to be more
qualitative and less quantitative with respect to the classical theories presented in [10, 12]. We see
that Idempotent Analysis and the theory of (generalized) fuzzy sets and possibility have the same
objects, i.e. functions taking their values in semirings. However, basic problems and methods could
be different for these theories (like for the measure theory and the probability theory).
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Abstract

The purpose of normal forms is to provide a standard representation or approximation of var-
ious kinds of functions. Boolean functions, for instance, have both a disjunctive and conjunctive
normal form representation. Interpreting these normal forms in a suitable t-norm-based logic
leads to some interval-valued fuzzification of the original Boolean function. We will deal with
two mathematical questions: first, in which t-norm-based logic do we actually obtain intervals
and second, if so, to what extent does the length of the intervals depend on the original Boolean
function.

1 Introduction

A Boolean expression is an expression involving variables each of which can take either the value true
or false. These variables are combined using Boolean operations such as conjutj¢tiisjunction

(V) and negation’). It is common knowledge that each Boolean function can be represented by a
well-formed formula in Boolean propositional logic. Moreover, there are two special forms, the dis-
junctive and conjunctive normal form, which are of great interest, for each of these forms defines the
Boolean function in a unique way.

In many cases, crisp models are too ‘poor’ to represent the ‘human way of thinking’. Fuzzy sets
provide a widely accepted solution to that end. Typical to fuzzy set theory is the large set of options
(logical operations, shapes of membership functions, parameters) that are available to the user. A
unique and definite definition of the intersection of two fuzzy sets, for instance, cannot be expected.
However, fuzzifying the disjunctive and conjunctive normal form representation of a Boolean expres-
sion results in two standard fuzzifications of the original Boolean function. All attention so far has
focused on the comparability of these fuzzified normal forms, in particular for binary Boolean func-
tions[1, 3, 11, 12, 13, 14]. We contribute to the existing knowledge on this comparability. Because of
their theoretical importance, special attention will be drawn to left-continuous t-norms.

Before we start we fix some notations. lgbe an|0, 1]-automorphism ané\ the standard negator,
then the De Morgan triplets((Tw)g,(Sv)p:No)s  ((TR)g: (SP)g: No)s  ((TL) s (SL) > Nep)

((Tb) ¢, (S0) > Nop) @NA((T™ ), (S™ ), Agy) Will be called respectivelyM, @)-, (P,¢)-, (L, ®)-, (D, @)-
and(nM, @)-triplets. In cas@is the identity mapping, we talk about the M-, P-, L-, D- and nM-triplet.
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2 Fuzzified normal forms of n-ary Boolean functions

Consider the Boolean algeb(&0,1},V,A,’,0,1). The disjunctive and conjunctive normal forms of
ann-ary Boolean functiorf are given by

Dp(f)(X1,-...xn) = \/  XPA.LAXT (1)
f(er,....en)=1
and o
Co(F) 0, X) = A V., )
f(er,....en)=0

wherex® = xif e= 1 andx® = X if e= 0. One can fuzzify expressions (1) and (2) by repla¢ing/,’)

by a triplet(T,S N), with N an involutive negation. The corresponding disjunctive and conjunctive
fuzzified normal forms are denoted By andCg. For eacm-ary Boolean functiorf we obtain two
[0,1]" — [0, 1] mapping<Dr (f) andCg(f):

Dr(f)(x) = S{f(e) T(X®) | ec {0,1}"},

T{[(l— f(e)) s(x<6°>)N}N | ee {O,l}”} :

wherex € [0,1]", 0= (0,...,0) andx® = (X{,...,x&).

Cr(H)(x)

While Dr < C* does not hold for all continuous De Morgan triplets [14, 10], we wonder whether
Dr < Ck is true for the basic continuous De Morgan tripléts, @), (P, @), and(L, ). Remark that,
in case we work with the M-triplet, the inequaliBt < Cr also follows from [3].

Theorem 1. [10] For any (M, @)-, (P,@)- and (L, @)-triplet it holds that O (f) < Cg(f), for all n-ary
Boolean functions f.

Because a full characterization of non-continuous t-norms, in particular left-continuous ones, is
still lacking, we restrict ourselves in the non-continuous case to the basic ti(iplggs and (nM, @).
We obtain a similar result as for the three prototypical continuous triplets.

Theorem 2. [10] For any (D, @)-, (nM, @)-triplet it holds that Q- (f) < Cg(f), for all n-ary Boolean
functions f.

3 Independence of then-ary Boolean function:
a system of functional equations

Knowing thatDg < Cg holds for a triplet(T,S N), it remains an intriguing problem, from a math-
ematical point of view, to understand to what ext€pt f) — D (f) depends on tha-ary Boolean
function f. More specifically, we wonder for which triple@ (f)(x) — Dg(f)(x) is only a function
of the variablex € [0,1]" (i.e. independent of the Boolean functiéh In [10], we have already en-
countered three solutions: the L-triplet, the nM-triplet and Bllp)-triplets.

4D < Cr is a shorthand to express thz (f)(x) < Cr(f)(x), for everyx € [0,1]"
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As shown in the following lemma, although there aré different n-ary Boolean functiond, im-
posing thaCr (f)(x) — De(f)(X) must be independent of the Boolean functioris equivalent to a
system of 3 functional equations.

Theorem 3. Consider a triplet(T,S N), with N an involutive negation with fixpointya Then
Ce(f)(x) — De(f)(x) is independent of the Boolean function f if and only if for>ak [0,an]",
X1 < X2 < ... < X, the following expressions are equal to each other

S(X1, vy X1, XN) = T (X Ny (3)
S(Xt, -y Xn-1,%0) = T (X0, X1, %n) 4)
T(S(X1s - X015 ), S(X1, -+, Xn-1, %) ) » (5)
L= STO, X1 %), TOG - X, X)) (6)

When considering a De Morgan tripléE, S (), this system of functional equations reduces to a
single functional equation in two dimensions:

Theorem 4. Consider a De Morgan tripletT,S A(). Then G (f)(x) — Dg(f)(x) is independent of
the Boolean function f if and only if

STOY), T YY) = )Ty,

for any(x,y) € [0,1/2]%, x<y.

We have shown that the L-triplet is the only continuous De Morgan triplet for which the difference
between both normal forms is independent ofrikery Boolean functiorf.

Theorem 5. Consider a triplet(T,S N), with T a left-continuous t-norm, S a right-continuous t-
conorm and N an involutive negation with fixpoint. &Suppose that (X, ay) and §x,ay) are contin-
uous and tha{T,S N) is a De Morgan triplet or N= A. Then G (f)(x) — Dg(f)(x) is independent
of the Boolean function f if and only (T, S,N) is theL-triplet.

Further, we characterize the De Morgan tripléfsS N), with T a left-continuous t-norm that
fulfills some additional continuity conditions, for whi (f)(x) — De(f)(x) is only a function of
the variablex € [0,1]". We obtain a unique De Morgan triplet that is based on a t-ngynwith
A €10,1/2[, defined by

0 Jifx+y<1,
min(x,y) , if x+y>1 A min(x,y) €]A\,1—A],
T(Xy) =< x+y—1 ,ifx+y>1

A (X+y>2—A VvV min(xy) € [0,A]),
1-A LifX+y<2—A A min(xy) €]1—A,1].

Every t-norm in this family can be obtained by applying the rotation construction of Jenei [4, 5, 6, 7]
on a suitable ordinal sum [8]. The nilpotent minimdi" [2] corresponds ta = 0.
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Theorem 6. Consider a De Morgan tripletT,S N) based on a left-continuous t-norm T and an
involutive negation N with fixpoint\a Suppose that,Tx) := T(x,y) is continuous onyN, 1] for any
y € [0,an] and is continuous ofy, 1] for any ye< |an, 1]. Suppose also that

lim T(x,ay) > 0.

xa
Then G (f)(x) — De(f)(x) is independent of the Boolean function f if and only EEN\_ and T=T,,
for someh € [0,1/2].

4 Further research

In future work, it would be worthwhile to try once again to get rid of the extra conditibhs: (A,

(T,SN) is a De Morgan triplet, ...) in the characterization theorems. Moreover, the new insights in
the treated system of functional equations force us to review the ineqDglity Cc more closely. It

would be preferable to establish a necessary conditiqiT o8 N) for Dg < Cg to hold, when working

with n-ary Boolean functions, and which covers all the known suitable trigletS N). Finally, we

are challenged to lay bare all connections between interval-valued preference structures, based on
fuzzified normal forms [1], and those based on a pair of generators [9].
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Abstract

We define an aggregation function to be (at mdsitolerant if it is bounded from above
by its kth lowest input value. Applying this definition to the discrete Choquet integral and its
underlying capacity, we introduce the concepkehtolerant capacities which, when varyikg
from 1 ton, cover all the possible capacities arobjects. Just as the conceptsksfdditive
capacities ang-symmetric capacities have been previously introduced essentially to overcome
the problem of computational complexity of capacitiesntolerant capacities are proposed here
for the same purpose but also for dealing with intolerant or tolerant behaviors of aggregation.

Keywords: multi-criteria analysis, interacting criteria; capacities; Choquet integral.

1 Introduction

In a previous work [7] the author investigated the intolerant behavior of the discrete Choquet integral
when used to aggregate interacting criteria. Roughly speaking, the Choquet irdggnalequiv-

alently its associated capacity has an intolerant behavior if its output (aggregated) value is often
close to the lowest of its input values. More precisely, consider the doj@di of ¢, as a proba-

bility space, with uniform distribution, and the mathematical expectatiofi, oWvhich expresses the
typical position ofG, within the unit interval. A low expectation then means that the Choquet integral

is rather intolerant and behaves nearly like the minimum on average. Similarly, a high expectation
means that the Choquet integral is rather tolerant and behaves nearly like the maximum on average.
Note that such an analysis is meaningless when criteria are independent since, in that case, the Cho-
quet integral boils down to a weighted arithmetic mean whose expectation is always one half (neither
tolerant nor intolerant.)

In this paper we pursue this idea by definikintolerant Choquet integrals The casek = 1
corresponds to the unique most intolerant Choquet integral, namely the minimum. THe-cd&se
corresponds to the subclassmfariable Choquet integrals that are bounded from above by their
second lowest input values. Those Choquet integrals are more or less intolerant but not as much as
the minimum. As an example, the following 3-variable Choquet integral

1 . 1 .
Gi(X1,%2,X3) = > min(xg, X2) + 5 min(x,X3)

SEquivalently, we defin&-intolerant capacities since there is a one-to-one correspondence betwaeable Choquet
integrals and capacities defined mnbjects.
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is clearly 2-intolerant, while being different from the minimum.

More generally, denoting byy), ..., X the order statistics resulting from reorderig. .. , X, in
the nondecreasing order, we say thaharariable Choquet integral,, or equivalently its underlying
capacityv, is at mosk-intolerant if

G(X) <x  (xe[0,1]") (1)
and it is exactlyk-intolerant if, in addition, there ig* € [0,1]" such thaiG,(x*) > Xk-1)" with conven-
tion thatxq) := 0.

Interestingly, condition (1) clearly implies that the output valuepfs zero whenever at leakt
input values are zeros. We will see in Section 3 that the converse holds true as well.

At first glance, definingk-intolerant aggregation functions may appear as a pure mathematical
exercise without any real application behind. In fact, in many real-life decision problems, experts or
decision-makers are or must be intolerant. This is often the case when, in a given selection problem,
we search for most qualified candidates among a wide population of potential alternatives. It is then
sensible to reject every candidate which fails at |&asiteria.

Example 1. Consider a (simplified) problem of selecting candidates applying for a university perma-
nent position and suppose that the evaluation procedure is handled by appointed expert-consultants on
the basis of the following academic selection criteria:

1. Scientific value of curriculum vitae,
. Teaching effectiveness,
. Ability to supervise staff and work in a team environment,

2
3
4. Ability to communicate easily in English,
5. Work experience in the industry,

6

. Recommendations by faculty and other individuals.

Assume also that one of the rules of the evaluation procedure states that the complete failure of any
two of these criteria results in automatic rejection of the applicant. This quite reasonable rule forces
the Choquet integral, when used for the aggregation procedure, to be 2-intolerant, thus restricting the
class of possible Choquet integrals for such a selection problem.

On the other hand, there are real-life situations where it is recommended to be tolerant, especially
if the criteria are hard to meet simultaneously and if the potential alternatives are not numerous. To
deal with such situations, we introdukdolerant aggregation functions and we will say thatran
variable Choquet integral,, or equivalently its underlying capacity is at mosk-tolerant if

) = Xn ke  (xe (0,1,
In that case, the output value 6f is one whenever at lealsinput values are ones.

Example 2. Consider a family who consults a Real Estate agent to buy a house. The parents propose
the following house buying criteria:
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1. Close to a school,
. With parks for their children to play in,

. With safe neighborhood for children to grow up in,

2

3

4. At least 100 meters from the closest major road,
5. At a fair distance from the nearest shopping mall,
6

. Within reasonable distance of the airport.

Feeling that it is likely unrealistic to satisfy all six criteria simultaneously, the parents are ready to
accept a house that would fully succeed any five over the six criteria. If a 6-variable Choquet integral
is used in this selection problem, it must be 5-tolerant.

Consideringk-intolerant andk-tolerant capacities can also be viewed as a way to make real appli-
cations easier to model from a computational viewpoint. Those “simplified” capacities indeed require
less parameters than classical capacities (act@gii ) parameters instead 6f2"); see Section 3).
Moreover, when varyingg from 1 ton, we clearly recover all the possible capacitiesarbjects.

Notice however that this idea of partitioning capacities into subclasses is not new. Grabisch [3]
proposed thé&-additive capacities, which gradually cover all the possible capacities starting from
additive capacitiesk(= 1). Later, Miranda et al. [8] introduced thgsymmetric capacities, also
covering the possible capacities but starting from symmetric capagitiesly. Note also that other
approaches to overcome the exponential complexity of capacities have also been previously proposed
in the literature: Sugena-measures [10],.-decomposable measures (see e.g. [5]), hierarchically
decomposable measures [11], distorted probabilities (see e.g. [9]) to hame a few.

2 Basic definitions

LetF : [0,1]" — [0, 1] be an aggregation function. By considering the c{(b&]" as a probability
space with uniform distribution, we can compute the mathematical expectatiortiudt is,

E(F) = /Mn F(x)dx @)

This value gives the average positionfofvithin the interval[0, 1].

WhenF isinternal(i.e., min< F < max) then it is convenient to rescat¢F ) within the interval
[E(min), E(max)]. This leads to the following normalized and mutually complementary values [1, 7]:

_ E(max) —E(F)
andnes@F) = E (max) — E(min) 3)
E(F)—E(min)

E(max) — E(min)

(4)

ornesgF) =

Thus defined, the degreeafidnesgresp.orness$ of F represents the degree or intensity (between
0 and 1) to which the average valueFofs close to that of “min” (resp. “max”). In some sense, it also
reflects the extent to whidh behaves like the minimum (resp. the maximum) on average.
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Define thekth order statistic function QS [0,1]" — [0, 1] as
OS(x) =xx  (xe[0,1]"),
wherexy, is thekth lowest coordinate of. It can be proved [7] that

k

E(0S) = =

(ke {1,...,n})

and hence the s€iE(O%) | k=1,...,n} partitions the unit interval0,1] into n+ 1 equal-length
subintervals.

Now, as mentioned in the introduction, when a function|0, 1]" — [0, 1] is used to aggregate
decision criteria, it is clear that the moEgF) is low, the moreF has an intolerant behavior. This
suggests the following definition:

Definition 3. Letk € {1,...,n}. An aggregation functiof : [0,1]" — [0, 1] is at most k-intolerant
if F < 0S.. Itis k-intolerantif, in addition, F jé 0OS(_1, where Og := 0 by convention.

It follows immediately from this definition that, for arkyintolerant functior, we haveE(F) <
E(O%) and, ifF is internal, we have andnd§s > andnesf@0S;) and ornes§) < ornes$0S).

Example 4. The producf (x) = [1; X, defined o0, 1]", is 1-intolerant and we havg(F) = 1/2".

By duality, we can also introdudetolerant functions as follows:

Definition 5. Letk € {1,...,n}. An aggregation functiof : [0,1]" — [0, 1] is at most k-tolerantf
F > 0OS,_k.1. Itis k-tolerantif, in addition, F z OS k12, Where O%. 1 := 1 by convention.

It is immediate to see that when a functién: [0,1]" — [0,1] is k-intolerant, itsdual F* :
[0,1]" — [0, 1], defined by

F*(X,...,%) '=1-F(1—X1,...,1=x,)  (xe€[0,1") (5)

is k-tolerant and vice versa.

In the next section we investigate the particular case Whése¢he Choquet integral and we define
the concepts df-intolerant andk-tolerant capacities.

3 Case of Choquet integrals and capacities

The use of the Choquet integral has been proposed by many authors as an adequate substitute to the
weighted arithmetic mean to aggregate interacting criteria; see e.qg. [2, 6]. In the weighted arithmetic
mean model, each criterion is given a weight representing the importance of this criterion in the
decision. In the Choquet integral model, where criteria can be dependent, a capacity is used to define
a weight on each combination of criteria, thus making it possible to model the interaction existing
among criteria.

Let us first recall the formal definitions of these concepts. Throughout, we will use the notation
N :={1,...,n} for the set of criteria.
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Definition 6. A capacityonN is a set functiorv: 2N — [0, 1], that is nondecreasing with respect to
set inclusion and such theto) = 0 andv(N) = 1.

Definition 7. Let v be a capacity omN. The Choquet integrabf x : N — R with respect tov is
defined by

G(X) = Zx(i) V(AG)) — (A1)l (6)

where(-) indicates a permutation dd such thatx;) < ... < X. Furthermoreéd) = {(i),...,(n)}
andA(nH) =a.

In this section we apply the ideas lointolerance and-tolerance (cf. Definitions 3 and 5) to the
Chogquet integral. Since this integral is internal, it can be seen as a functionCrajhto [0, 1].

Let us denote byFy the set of all capacities oN. The following proposition, inspired from [7,
S4], gives equivalent conditions for a Choquet integral to be at kogblerant.

Proposition 8. Let ke {1,...,n} and ve %y. Then the following assertions are equivalent:

I) CV(X) < X(k) VX e [0, 1]n,
) Vv(T)=0VT C N suchthatT| <n-—k,
i) G(x)=0Vxe[0,1]" such that ¥ =0,
) G/(x) is independent ofk, 1), - -, X(n),
) 3N €[0,1) such thatvx € [0,1]" we have ¥) <A = G,(X) <A,

As we can see, some assertions of Proposition 8 are natural and can be interpreted easily. Some
others are more surprising and show that the Choquet integral may have an unexpected behavior.

First, assertiorii ) enables us to defifeintolerant capacities as follows:

Definition 9. Letk € {1,...,n}. A capacityv € 7y is k-intolerantif v(T) = 0 for all T C N such that
|T| <n—kand there igd* C N, with |T*| =n—k+1, such that(T*) £ 0.

Assertion(iii ) says that the output value of the Choquet integral is zero whenever ak leasit
values are zeros. This is actually a straightforward consequeremtufilerance.

Assertion(iv) is more surprising. It says that the output value of the Choquet integral does not
take into account the values Rf, 1,...,Xn). Back to Example 1, only the two lowest scores are
taken into account to provide a global evaluation, regardless of the other scores.

Assertion(v) is also of interest. By imposing thay(x) < A whenever, < A for a given thresh-
old A € [0,1), we necessarily force, to be at mosk-intolerant. For instance, consider the problem
of evaluating students with respect to different courses and suppose that it is decided that if the lowest
k marks obtained by a student are less than 18/20 then his/her global mark must be less than 18/20. In
this case, the Choquet integral utilized is at mosttolerant.

Proposition 8 can be easily rewritten fioitolerance by considering the dugj of the Choquet
integral G, as defined in Eq. (5). On this issue, Grabisch et al. [4, S4] showed that thedoBl, is
the Choquet integraf- defined from thedual capacity ¥, which is constructed from by

V(T)=1—v(N\T) (T CN).
We then have

G > OS1—|(+1 = G < OS(
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Proposition 10. Let ke {1,...,n} and ve . Then the following assertions are equivalent:

I) CV(X) > X(n—k+1) VX e [0, 1]n,

v(T) =1VT C N such thatT| > k,

G(X) = 1V¥x € [0,1]" such that ¥, _x1) = 1,

Gi(x) is independent of x, . . ., X(n—k),

3A € (0,1] such thatvx € [0,1]" we have ¥_y 1) > A = G/(X) > A,

Here again, some assertions are of interest. First, ass¢iitjoenables us to definketolerant
capacities as follows:

Definition 11. Letk € {1,...,n}. A capacityv € 7y is k-tolerantif v(T) = 1 for all T C N such that
|T| > kand there ig* C N, with |T*| =k—1, such that/(T*) # 1.

Assertion(iii ) says that the output value of the Choquet integral is one whenever ak ieqst
values are ones.

Assertion(iv) says that the output value of the Choquet integral does not take into account the
values ofxy), ..., Xn_k)- As an application, consider students who are evaluated accordirtgptoe-
work assignments and assume that the evaluation procedure states that the two lowest homework
scores of each student are dropped, which implies that each student can miss two homework assign-
ments without affecting his/her final grade. Ihavariable Choquet integral is used to aggregate the
homework scores, it should not takg) andx,) into consideration and hence it is at most- 2)-
tolerant.

4 Conclusion

In this paper, which can be considered as the sequel of [7], we have proposed the cong&epts of
intolerant andk-tolerant Choquet integrals and capacities. Besides the obvious computational advan-
tage of these concepts (comparable to thak-aeflditive andp-symmetric capacities), they can be
easily interpreted in practical decision problems where the decision makers must be intolerant or tol-
erant. In an extended version of this paper, we also introduce axiomatically intolerance and tolerance
indices which measure the degree to which the Choquet intedrahtslerant anc-tolerant. These
indices, when varyindk from 1 ton— 1, make it possible to identify and measure the intolerant or
tolerant character of the decision maker.
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The Analytic Hierarchy Process (AHP), developed by Thomas L. Saaty [6] [7] [8] [9], is a well-known
multicriteria aggregation model. It is based on pairwise comparison matrices at two fundamental
levels: the lower level encodes pairwise comparison matrices between alternatives (one such matrix
for each criterion) and the higher level encodes a single pairwise comparison matrix between criteria.
In its most general form, the higher level of the AHP can be structured hierarchically, with several
layers of criteria, but in this paper we focus on the single layer case, with a single matrix of pairwise
comparisons between criteria.

Pairwise comparison matrices are typically inconsistent. However, the AHP extracts from each pair-
wise comparison matrix a vector of importance weights (also called priorities) given by the principal
eigenvector or, alternatively, by the geometric mean vector. In both cases the priority vectors have
positive components normalized to unit sum. In this paper we consider only the geometric mean
method, because its structural properties are more suited for our study. Once the priority vectors are
obtained, the AHP uses the priority vector at the higher level to aggregate (by means of a weighted
average) the lower level priority vectors.

In this paper we propose an extension of Saaty’s AHP based on Choquet measures. In our model,
inconsistency is explicitly used in the aggregation process in order to attenuate the importance values
of those criteria that (on average) are more inconsistent with the others. Accordingly, our model
emphasizes the importance values of those criteria that (on average) are more consistent with the
remaining ones.

Consider a finite set of interacting critefib= {1,2,...,n}.
A Choquet measuriR] on the seN is a set functiomu: P(N) — [0, 1] satisfying

() u(@) =0, u(N) =1
([ SCTCN = WS <u(T).

Given a Choquet measupeve can define th€hoquet integral2] [3] [4] of a vectorx = (Xq,...,Xn) €
[0, 1]" with respect tqu as

n

Gu(X) = Z[U(A(i)) — M(AG 1) X (1)

where(-) indicates a permutation disuch thak ) < X2 < ... <Xq). Also A = {(i),...,(n)} and
A(n+1) == 0.
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Notice that the Choquet integral with respect to an additive meageduces to a weighted arithmetic
mean, whose weights; are given by thei(i) values,

H(AG) = K((0) + 1+ 1) + ...+ ()

Gu(x) = Z\[H(/%)) — M(AG+1))] %) = _;H((i))x(i) = ;wixi : (2)

Theimportance indexr Shapley valugs] [10] of criterioni € N with respect tquis defined as

(n—1—t)lt!
n!

Qu(i) =

TEN\i

W(T Ui — (T, 5 @) -1 &)

It amounts to a weighted average of the marginal contribution of eleimetiit respect to all coalitions
T C N\iand it can be interpreted as an effective importance weight.
Consider now a positive reciproaak n matrix A = [a;j],

ajj >0 aji = 1/a;j i,j=1,...,n 4)

All pairwise comparison matrices in Saaty’s AHP are of this form. However, our model regards
only the single pairwise comparison matrix between criteria at the higher level of the AHP. This is
because that matrix is the one that controls the aggregation process: in Saaty's AHP, the aggregation is
performed through a weighted average whose weights are the components of the higher level priority
vector.

In general, the positive reciprocal matAxabove is inconsistent, where consistency megns ajxay
foralli, j,k=1,...,n. However, we can associate to the maia consistent matrid = [&j] inthe
following way,

&j =W /w; Wi:ui/er‘zluj i,j=1,...,n (5)

whereu; is the geometric mean of the elements of the rpw

ui:,“/ﬂ?:laij i,j=1,...,n (6)

and the weightsy; > 0 are normalized'j‘:lwi =1
The positive reciprocal matri& is in fact consistent, since

éij:Wi/Wj:(Wi/Wk)(Wk/Wj):éikﬁkj i,j,k=1,...,n. @)
Moreover,ui = ,n/rl?:léjj =W/ n I'I'J?le,— and thusn; = l]i/Z?:ll]j = w;, which means that the con-

sistent matrix associated is againA itself.

Given an elemera;; of the matrixA we define theneighbourhood Wa;j) as the set of the elements
of the rowi and the columrj of A,

U(aj) = {ai.aj |k =1,...,n}. ®)
We say thagy; is locally consistentf, on average, it is consistent with the elements in its neighbour-

hood,
aj = &; = {/T_ aua Li=1....n. ©)

We now define thecaling function f: (0,0) — (0,1) asf(x) = 2/(x+x 1), for x > 0, whose graph
is shown below.
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S}
= c

Notice that the scaling functiofi has a single critical point at= 1, where it reaches the maximum
value f(1) = 1. Moreover, the scaling functioh has the important properti(x) = f(x1), for all

x> 0.
By means of the scaling functiofy we can associate a positive symmetrie n matrix V = [v;;] to

the matrixA = [a;j] in the following way,
vij = f(aj/aj) Lj=1...n (10)

We have

vij € (0,1] Vij = Viji i,j=1,...,n. (11)
The fact that ther x n matrix V = [vj] is symmetric is due to the reciprocity of the positive ma#kix
plus the fact thaf (x) = f(x1), for x > 0, since

vii = f(aji /&) = f(&j/aj) = f(aij/&j) = vij Lj=1...,n. 12)

Notice thatv;j = 1 if and only if &; = &, otherwise 0< v;; < 1: the morea;j/&; differs from 1

the morev;; gets closer to 0. Therefore we can consider the matrix [vi;] as a measure of local
consistency. Moreover, we note that our mawix= [vi;] can be regarded as[@, 1]-scaled version

of the so-called totally inconsistent matrix associated with the original pairwise comparison matrix
A = [a;], see [1].

Given a general (typically inconsistent) positive reciprataln matrix A = [&;], one can define a 2-
additive Choquet measupe 2N — [0, 1] in the following way: making use of the Mo6bius transform

m of the measurg, we definem(i) = w; /A for each singlefi} andm(ij) = —w; (1 — vij )w; /A for

each doubleti, j }, with null higher order terms. Then, we define the value of the 2-additive measure
pon a coalitionSas the sum of the singlets and doublets contained in the codfitias given by the
Mobius transformm,

WS = > wi/N+ % (=W (1 —vij)wj) /A (13)

{ifcs {i,ijcs
where the normalization fact@y is the sum of all singlets and doublets in the Net

{itCN {IjCN Ij 1

1
(1+ z WiVijWj) = 1+ le.v. 1+v) (14)
2 i,]=1

wherev;, = zT:J_Vijo andv =y ;wv; denote weighted averages of local consistency values, with
wi<vi<lfori=1,...,n andz{‘zlwi2 < v < 1. In particular, we have
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() = (Wi +wj —wi(1—vij)wj) /AC. (15)

The graph interpretation of this definition, in which singlets correspond to nodes and doublets corre-
spond to edges between nodes, is that the value of the 2-additive mpasuaecoalitionSis the sum
of the nodes and edges contained in the subgraph associated with the c&alition

The measurg satisfies the boundary conditiop8)) = 0 andu(N) = 1, and is monotonic and sub-
additive. The (strict) monotonicity of the measure is guaranteed by the fact that the positive value
w; associated to each node of the graph dominates (in absolute value) the sum of the negative values
—w;(1—vij)w; associated to the— 1 edges connecting that node with the other nodes in the graph,
n
Wi—ZWi(l—Vij)Wj:Wi—Wi(l—Vi):WiVi>Wi2>0 i=1...,n. (16)
=1

Notice that this model is an extension of Saaty’s AHP: if the mairis consistent then the Choquet
measurel is additive and the Choquet integral coincides with a weighted arithmetic mean whose
weights arew; as in Saaty’s AHP.

The Shapley valueg, i = 1,...,n associated with the measyrelefined above are given by

i
ZT:1¢1

where the unnormalized valugs> 0,i = 1,...,n are given by

@ = i=1,...,n a7)

12 1 .
¢i:Wi_§ ZWi(l—Vij)WjZEWi(l-f-Vi) i=1,...,n (18)
=1

which means thaf_;¢; = 3(1+V) = N[,

In our multicriteria aggregation model the Shapley values encode the effective importance weights
of the various criteria. When the matri is consistent, we have; = 1 for all i, j =1,...,n and

equation (18) implies that the Shapley values@re w;. In general, the fact tha is inconsistent
changes the original distribution of weights, attenuating the importance values of those criteria that on
average are more inconsistent with the others and emphasizing those criteria that on average are more
consistent with the others.

In fact, if we compute the second order Taylor expansion of the Shapley ites (1+V;)/(1+V),
i =1,...,n, around the consistency condition we get

(gzwi(1+%(vi—v)(l+%(l—v))) i=1...,n (29)
Notice that the second order approximation of the Shapley values is still normalized to unit sum,
sincey [ wi(vi —v) = 0. Moreover, the Taylor expansion above shows clearly that, in the small
inconsistency approximation, the Shapley vajuancreases if; > v and decreasesvf < v. In other
words, the Shapley value increases (decreases) if the single consistency maagreater (smaller)
than the overall consistency measuyén a compensatory mechanism typical of weighted averaging
schemes.

Finally, we note that the definition of the scaling function can easily be extended in order to accom-
modate a free parametBr> 0. We define the parametrizedaling function f: (0,.0) — (0,1) as

fa(x) = 2/(xB +xP), for x > 0. Clearly, fs_o = 1. The graphs of the scaling functidp for § = 2,4

andB = 3,1 are shown below.
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As before, the scaling functiofy has a single critical point at= 1, where it reaches the maximum
value fg(1) = 1. Moreover, the scaling functiofg has the important properti(x) = fg(x1), for all
x> 0.

The scaling functionfg has two different asymptotic behaviours close to the origin in relation with
the parameter ranges<0B < 1 (vertical asymptote at the origin) afid> 1 (horizontal asymptote at
the origin), as can be easily derived from the expressions below,

2xB oo 2B (1—x2P)

fa(x) = 152 p(X) = RGO x>0. (20)

Moreover, it is straightforward to show that the consistency measure provided by the scaling function
becomes stricter for increasing valuesBofln other words, a$ increases, all the local consistency
measures;j () decrease, with the exception of those associated with exact consisfeacy. Ac-
cordingly, the inconsistency effects in the context of our model can be attenuated or emphasized,
relatively to the original cas@ = 1, by means of appropriate choices of the param@tenigher

values of the parameter lead to stronger inconsistency effects.
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1 Introduction

We consider an idea, how to generate modifiersipjaced functions defined df,1]". The subject

matter of modifiers are fuzzy sets, i.e. membership functions defined on irtery@l 1]. We give the
definition of modifiers and the case, howplaced generator functions fit together with this definition.

We consider some few properties of modifiers. Some examples of generator functions and modifiers
generated by them are given. The examples illustrate how graded modifier systems can be created.
The place numben of a generator function can take effect to the strength of a modifier. It is also
possible to keep the place numlreconstant and use numbers 1 or 0 in some places of the variables

of the function.

The concept of 'modifier’ appears in many ways in the scope of fuzzy logic. For example, Prof.
L. A. Zadeh used this term already in the early theory of fuzzy logic. The author has studied modifiers
and their logics from modal logical point of view and created some logical systems for modifiers
basing on relational Kripke structures of graded modalities (see e.g. Mattila [9]). Kortelainen’s [3]
conceptmodified setss one example about the use of this term. In the linguistic view, a modifier can
be an adjective, or an adverb, or a phase or clause acting as an adjective or adverb. In every case, the
basic principle is the same: the modifier adds information to another element in the sentence (Frances
Peck, Terms of use University of Ottawa). Also some fuzzy logic blocs altering the behavior of PID
controllers are called modifiers, too.

The author has considered modifiers and modifier logics in several situations (see e.g. J. K. Mattila
[6, 7, 8]). Some considerations about modifiers generated by t-norms and t-conorms are done in [8].
After this work Dr. Jézsef Dombi suggested the author to study modifiers generated by n-placed
functions in the way to use some t-norms and t-conorms generalized for several variables. Some
results from these studies are [10] and [11].

We refer to Kortelainen’s concepiodified setsHis operators are set functions modifying at first
hand ordinary sets. We concentrate here upon modifiers generated by n-placed functions,n=2, 3, ....
EntitiesM considered here are so-calledmpositional modifierbecause the result of modifying a
fuzzy setu by a modifierM is the composition oM andp, Mo . The aim is to consider modifiers as
operators for modifying fuzzy sets. One important example is to use especially t-norms and t-conorms
and their generalizations for more than two-placed cases as basic tools. (This case is considered in
[10].)
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2 Basic Concepts

We choose the range of fuzzy sets (i.e. membership functions) to be the unit interyal 1], as
usually. Thus the set of all fuzzy sets of a non-emptysistthe set* (including the usual power-set

2% (i.e. the set of all characteristic functions of the usual subseX§ a6 a special case). It is also a
well-known fact that andI* are partially ordered sets. In fact, they are also completely distributed
complete lattices and Brouwerian lattices (see e.g. Lowen [5]).

These modifiers we consider here aoenpositionalbecause when we apply a modifier to a fuzzy
set we form a composition of two functions.

Definition 1. (Modifier). We say that a mappini : I* — X is (i) a substantiating modifieif for
any fuzzy sefi € 1%,
vx € X,M(U(x)) < u(x), 1)

(i) a weakening modifieif for any p e 1%,

Vx € X, u(X) < M(U(x)), )
(iii) an identity modifier if for anyu € 1%,

vx e X,M(U(x)) = K(X). 3)

Identity modifiers are identity mappings ¢fi. They are sometimes needed as links between
substantiating and weakening modifiers in some logical structures of modifiers.

A given modifier we can associate with the dual modifier according to the following

Definition 2. (Dual Modifier). Let M andM* be modifiers. We say tha#l* is the dual modifier
associated witiM, if for any fuzzy sep € 1%,

vx e X,M*(H(x)) = n(M(n(K(x)))), (4)
wheren is a strong negation.

Proposition 3. If M is a substantiating modifier then its dualNks a weakening modifieand vice
versa.

Proof. (See also [10]) Supposec 1%, andM is a substantiating modifier. Thirg € X, M(p(x)) <
H(x). We have to show thatx € X,u(x) = M*(u(x)). Letn be a strong negation function. Thus
Vx e X,M*((x)) =n(M(n(u(x)))). Clearly

M(n(K(x))) < n(K(x))

by Def.1. From this it follows by the properties of membership functions that

vxe X, n(M(n(u(x)))) = n(n(u(x))) = ux),

M*(u(X)) = H(X). (5)
Conversely, the result follows in the similar way.ll
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The condition
vx € X,M*(H(x)) = n(M(n(K(x)))) (6)

in the previous proof says that the operatksM*, andn satisfy DeMorgahs law. Thus dual pairs
of modifiers with strong negation form classes called DeMorgan triples of operators ([1]). Originally,
DeMorgan triples used to consist of a t-norm, corresponding t-conorm, and negation.

We denotan-level set of a fuzzy sat, as usually,
={xeX|ux)>a,acl}
Thus thea-level set ofM (p) is
(Moo ={xeX|M(uXx) =a, acl}. (7

It is easy to see that modifiers have following properties. Suppbisea substantiating modifier.
Then we have

M(0x) = Ox, 8)

M*(1x) = 1x, )

(M) (U(X) = M), (10)
)

whereOx and1ly are the constant functionlx (x) = 0 and1x (x) = 1 for all x € X.

3 The idea of generating modifiers using n-ary functions

The simplest idea using-ary functions for generating modifiers for fuzzy sets is to replace every
variable with the membership function of a fuzzy set to be modified. To illustrate the idea, we proceed
in the following way. We put the same argumenin every place in tha-tuple of arguments in

the functionf. Thus we have the generating formulas for substantiating, weakening and identity
modifiers. A substantiating modifier is generated by any functicsuch that

vxel, fxX...,X) <X (11)

A weakening modifier is generated by any functigrsuch that

vxel, f(xX...,x)>X (12)
An identity operator is generated by any functibrsuch that

vxel, f(xX...,x)=X (13)

According to the formulas (11), (12), and (13), we prove some results concerning modifiers gen-
erated by those-ary functions. For this task, suppose that a modifleis generated by a function
f(X1,X2,..., %), Xi €1 (i=1,...,n), such that

wherepis any fuzzy set. The functiofis (at least piecewise) continuous on the intetval
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Proposition 4. Let f: 1" — | be an n-ary function, then f generatesabstantiating modifier
F(U(x)) = (Fom)(x) = f(1(X), u(X). .., u(x)) (15)
if forall t1,to,...,ty € [0,1] the condition
f(ty,to,...,th) < min(ty,to, ... . t) (16)

holds.

Proof. Suppose the formula (16) holds and denwiie(ty,tz,...,th) = tmin. Especially, ifti = a
for all t; € | thentyi, = a, and thusf(a,...,a) < afor anyaec | by (16). Letpy be any fuzzy set and
Xo € X arbitrarily chosen. Thus

f(H(X0), H(X0), - .-, M(X0)) < M(X0)-
Becauseg is arbitrarily chosen fronX, the same holds for otheis, too. Thus we have
F (R, U(X), -, (X)) = F (M(X)) < H(X)
for anyx € X. Thus the formula (15) holds, and f generates a substantiating mdeifigmeans of

Def.1. N

Proposition 5. Let f: 1" — | be an n-ary function, then f generatesv@akening modifier
H((X)) = (H o) (x) = f(u(X), (), 1(X)) 17
if for all t1,to,...,ty € [0,1] the condition
f(t,to,...,tn) > maxty,ta, ... tn) (18)
holds.

Proof. Suppose the formula (18) holds. From this it follows that foealll, H(a)= f(a,...,a) >
aby (14). Letu be any fuzzy set, angh € X is arbitrarily chosen. Thus

H(W(%0)) = f(K(X0), -, K(X0)) > K(X0)-
Becauseg is an arbitray element of, the formula
VxeX, HuX),....ux) = HXx)

holds. Thus the formula (17) holds, afidjenerates a weakening modifier

Proposition 6. Let f: I" — | be an n-ary function, then f generates identity modifier
Fo(M(X)) = (FooH) = f(U(X), U(X), ..., k(X)) (19)
if for all t1,to,...,ty € [0,1] the condition
min(ty,to, ... .th) < f(ty,to, ... th) < maxy,ty, ... tn) (20)

holds.
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Proof. Suppose the formula (20) holds. From this it follows that foraadt I, min(a,...,a) <

a. Letpbe any fuzzy set anxh € X is arbitrarily chosen. Thus we halg(u(x0)) = f(U(Xo), - - ., 1(X0)) =
H(Xo). Because is arbitrarily chosen fronx, this means that the formula

VxeX, Fo(u(X)F(UX),...,K(X)) = ().
Thus the formula (19) holds, arfdgenerates an identity modifier.

We see that the Definition1 and the Propositions 4, 5 and 6 correspond to each others.

According to the Propositions 4, 5, and 6, we can use the formulas (16), (18), and (20) as the
conditions fom-ary functions generating modifiers.

We can have the inverse results of the Propositions 4, 5, and 6. For this we need the following
lemma.

Lemma?7. Let f : I" — | be a (at least piecewise) continuous n-ary function.

(a) If f generates a substantiating modifier then this implies the formula (16).
(b) If f generates a weakening modifier then this implies the formula (18).

(c) If f generates an identity modifier then this implies the formula (20).

Proof. (a) Let us give the counter-hypothesigty,...,t,) > min(t,...,ty). From this it follows
that f generates either an identity modifier by Proposition 6 or a weakening modifier by Proposition
5. This contradicts the supposition thtgenerates a substantiating modifier. Thus the counter-
hypothesis is not correct.

The cases (b) and (c) can be proved in similar wayfl.
After collecting the results from Propositions 4, 5, 6, and Lemma 7 we have proved the following

Theorem 8. Let f : I" — | be (at least piecewise) continuous n-ary function. f generates a modifier
F op which is

(a) substantiating iff fty,...,t,) <min(ty,...,t,),

(b) weakening iff ft1,...,tq) > maxty,...,ty),

(c) an identity modifier ifmin(ty, ... tn) < f(tg,...,tn) < maxty,...,tn),
where the compositions are calculated by means of (14.

Using Theorem 8 we can prove the following

Theorem 9. Let f : I" — | be a function generating a substantiating modifier F. Then the function
foo i I"— 1 ¢ foo(Xa,. ., %) =1—f(1—xy,...,1—X,) generates a weakening modifier being the
dual of F.

140



Proof. It follows from the supposition, thdtgenerates a substantiating modifier, th@ds,, . .., xn) <
min(xy,...,%n), andv x e X, F(u(x) = f(u(x),...,1(x)) < u(x) by Theorem 8. This is equivalent to
1-F(u(X)) > 1—u(x). Replacgu(x) by 1— p(x), then we have

1-F(1-H(X) > 1— (1 - p(x)).
On the other hand, 2 F(1—p(x)) =1— f(1—pu(x),...,1—u(x)). Thus
1-f(1-uX),...,1— (X)) = 1= (1—u(x)).
Thus the conclusion is that the functidgy(x1,...,X,) = 1— f(1—xg,...,1—X,) generates a weak-

ening modifier by Theorem 8. Clearly this modifier is the duaFof W

Example 10. The formula

n

f(X1>X27'-'>Xn):|_|Xia Vi,XiG[O,l], (21)
=

generates a substantiating modifier

Fn—l(U(X)) = (U(X))n7 vxe X, (22)

because it clearly satisfies the condition (16), f.ex1,X2, ..., X,) < min(xy, Xz, ..., Xy). The biggenis
the more substantiating modifier we have. Thus we can have a graded system of modifiers. Especially,
if n=1, we have the identity modifiéty = |, that have no substantiating effect.

Example 11. The formula

=}

f(Xe, %2, %) =1—[1(1—x%), vi,x € [0,1], (23)

generates a weakening modifier
Hoo1(u(x)) =1—-(1-u(x))",  VxeX (24)

because it clearly satisfies the condition (18). To see this, let a delivery of values from the ii@tejval
be such thaty, 1 < k <n, has the greatest value. In this situation we can vmie(X;, X2, . . ., Xn) = Xk
Thus we have x> 1—X,1 <i < n, and this implies

1-x"= []L-x)

which implies
n
1-1(1—x>1—(1—x)"
[
From this it clearly follows that + (1 —x)" > 1 — (1 — X¢) = X = maxXq, X2, ...,X%,) by the sup-

poaition of the delivery of values. The special case 1 gives the idetity modifieHo(p(X)) =
H(X)Vx € X, as it should be.
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Example 12. In addition to the special cases of previous examples, consider some generators for
identity modifier. The formula

1
f(X17X2,---7Xn)ZH(X1+X2+--~+Xn)7 (25)

generates identity modifier, because (18) holds clearly.
Another way for generating identity modifier is to use the function

n
f(X1,%2,. ., %) =) AiXi, (26)
n i; 1M

wherey ' ;A = 1. Itis easy to show that this function satisfies the condition (18).

Also max(x1, Xz, ..., X)) andmin(xg, Xz, ..., Xn) generate identity modifiers, because the operators
max and min do not have any modifying effect.

According to Def.2, thelual of a modifierF is defined by the condition
F*(X) = n(F(n(x))) (27)

wherenis a strong negation function. This also means thiatig substantiating thel* is weakening,
and ifH is weakening thei* is substantiating, by Proposition 3.

Example 13. The modifiers given in Examples 10 and 11 are duals of each others When
X,n(u(x)) = 1—p(x). The modifiers (22) and (24) are basing on extensions of the t-a@gebraic
productand the t-conornalgebraic sumrespectively.

4 Some Concluding Remarks

One purpose for studying modifiers is to create some concrete tools for manipulating fuzzy numbers
so that we can have arithmetic operations to be easily used. However, these operations should be in
accordance with the original definition where extension principle is used. Also the study of logical
systems of modifiers is very interesting. From this study we can draw connections to topological
properties of fuzzy systems (see e.g. Kortelainen’s paper [3] and his other papers, too).

According to the substance itseffary functions being extensions of some Archimedean t-norms
and t-conorms are very interesting for generators of modifiers, as we already had a short view in the
form of Examples 10 — 13 above. It is well known that Archimedean t-norms and corresponding
t-conorms have modifying effects (see e.g. Mattila [8]).
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1 Introduction

This paper presents an ordered sorting procedure based on the Choquet integral as a discriminant
function. It uses information provided by the Decision Makem] in terms of a set of prototypes
(alternatives well-known to them). The capacities of the Choquet integral are assessed through the
solving of a linear program or a quadratic program. An interpretation of the results is provided by
means of importance and interaction indexes of the points of view.

We analyze a sorting procedure for ordinal data in a very general case, where the points of view
can have interactions. Its namepWAsoO stands forTool for Ordinal MultiAttribute Sorting and
Ordering. The first version of this method has been described in [7] and [9]. Later, in [6] the authors
present further evolutions to the first ideas, and describe a software which is directly inspired from the
sorting procedure.

Three important features differentiate this procedure from other multiple criteria sorting methods.
First of all, the possibility to treat purely ordinal data. Secondly, the use of a Choquet integral [1] as
a discriminant function. And finally, the way the capacities ("weights") of the aggregator are learnt
from a reference set of alternatives called prototypes. These three key features allow to treat a quite
large set of problems. In particular, the learning feature of the method is interesting as it allows to
ask the Decision Maker (DM) a minimal set of technical details. In order to allow a more effective
and objective analysis of the problem, we think that it is useful to have a permanent interaction with
the DM. But this questioning should mainly be restricted to his expertise domain and not to technical
parameters of the method. The use of the prototypes fits to this philosophy.

The method works in two steps. First of all, the ordinal data is transformed into partial net scores,
where each alternative is compared to all the other ones for each point of view. Then, the Choquet
integral is used to aggregate these partial net scores. As already mentioned earlier, the capacities
of the aggregator are learnt from the reference set of prototypes. Here, two options appear: either
the prototypes don't violate the axioms ([11]) for the use of a Choquet integral as a discriminant
function, or the structure of the prototypes does not allow its use as an aggregator. In the first case,
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the capacities are learnt by solving a linear constraints satisfaction problem. This procedure is briefly
recalled in section 3.1. In the second case, the capacities are learnt by trying to be as close as possible
to the original sorting imposed by the prototypes. This part is described in section 3.2.

This paper is organized as follows. First of all, general concepts are introduced in section 2. Then,
in section 3.1 we recall the first ideas 0bWiAsO already published in [6]. In section 3.2 we present
how to work in case the classical way fails. Finally, in 4 we draw some conclusions, and discuss
further improvements.

2 Preliminary considerations

Let A be a set ofg potential alternatives which are to be assigned to disjoint ordered classes. Let
F ={01,...,0n} be a set of points of view. For each index of point of vipw 7 = {1,...,n}, the
alternatives are evaluated according tg-goint ordinal performance scale represented by a totally
ordered set

Xji={g} <j...<j ol }.
Therefore, an alternativec A can be identified with its corresponding profile

n
(X1,...,%) € I_LXJ- =: X,
=

where for anyj € 7, x; is the partial evaluation of on point of viewj.

Let us consider a partition of ;= I-IT:lXj into mnonempty increasingly ordered clas$€s; }[" ;.
This means that for anyse {1,...,m}, withr > s, the elements ofl, are considered as better than
the elements ofls. The sorting problem we are dealing with consists in partitioning assigning the
alternatives ofA to the classe$Cl; }" ;.

In Roubens [9] it is justified how an-place Choquet integral as a discriminant function and
normalised scores as criteria function can be used to solve this problem. Hereafter we present the
sorting procedure derived from this particular case.

3 TheTomAsoO method

The TomAso method T echnique forOrdinal M ultiattribute Sorting andOrdering) is mainly based

on two techniques (which can lead to the same results under certain conditions). The original method
has first been described in [9]. In the following Subsection, we present its basics. In Subsection 3.2
we show how it is possible to deal with a larger set of problems.

3.1 The classical way

The different stages of the originabMAsoO are listed below:

1. Modification of the criteria evaluations into normalised scores;

2. Use of a Choquet integral as a discriminant function;
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3. Assessment of fuzzy measures by questionningottie and by solving a linear constraint
satisfaction problem;

4. Calculation of the borders of the classes and assignment of the alternatives to the classes;

5. Analysis of the results (interaction, importance, leave one out, visualisation).

In this Section we roughly present these different elements.

First of all, concerning the scales on the points of view, two natural approaches can be considered:
either the score of each alternative is built on the basis of all the alternati¥esrithis score is con-
structed in a context-free manner, that is, independently of the other alternatives. The decision maker
must be aware that the final results may significantly differ according to the considered approach.
Therefore, a prior analysis of the problem is recommended to choose the scores appropriately.

In the first approach, one possible way to build the scores is to consider comparisons of the al-
ternatives on each of the points of view. We consi@gk), the jth partial net score of alternative
x € A along point of viewj € 7, as the number of times thais preferred to any other alternative of
A minus the number of times that any other alternativé o preferred toc for point of view j. We
furthermore normalize these scores so that they range in the unit interval, i.e.,

g\l(x) — SJ (X) + (q_ 1)

- coU (e,

whereq = |A|. Clearly, this normalized score is not a utility, and should not be considered as such.
Indeed, observing an extreme value (close to 0 or 1) mean ibatather “atypical” compared to

the other alternatives along point of vigw Thus, the resulting evaluations strongly depend on the
alternatives which have been chosen to bgild

Consider now the second approach, that is, where the score of each alternative does not depend
on the other alternatives i In this case, we suggest the decision maker provides the score functions
as utility functions. Alternatively, we can approximate these utility functions by the following linear
formula: di(x) 1

ord; (x) — ,
S :=—"—¢€l01 (je),
Sj -1
where ord: A— {1,...,s;} is a mapping defined by oy(k) = r if and only if x; = gﬂ. In this latter
case,Sﬂ-\‘ does not necessarily represent a real utility and probably does not correspond to the utility
the decision maker has in mind. We therefore continue to call it a score.

We now come to the crucial part of the aggregation of the normalised partial net scores of a given
alternativex by means of a Choquet integral [1]. The advantage of this aggregator is mainly that it
allows to deal with interacting (depending) points of view. According to the general definition of the
Choquet integral, we have:

GAS¥00) = 3 ) (0IV(A) ~(A 1)
2

wherev is a fuzzy measure of; that is a monotone set function 27 — [0, 1] fulfilling v(0) = 0 and
v(J) = 1. The parentheses used for indexes stand for a permutatiérsoch that

(0 < ... <y (),
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and for anyj € 7, A(;) represents the subsétj),...,(n)}. The characterisation of the Choquet
integral by Marichal ( [4], [5]) clearly justifies the way the partial scores are aggregated.

The next step of this method is to assess the fuzzy measures in order to classify the alternatives
of A. One can easily understand that it is impossible to askotheto give values for the 2— 2
free parameters of the fuzzy measurdPractically, the assessment of the fuzzy measures is done by
asking theoM to provide a set of prototypd3C A and their assignments to the given classes; that is
a partition ofP into prototypic classe$R }{" ; whereR := PNCl; fort € {1,...,m}. The values of
the fuzzy measure are then derived from this information as described hereafter.

We would like the Choquet integral to strictly separate the claSesTherefore, the following
necessary condition is imposed

G(S(x) — G (S (X)) > ¢ 1)

for each ordered paiix,X) € R x R_1 and eacht € {2,...,m}, whereeg is a given strictly positive
thershold.

Due to the increasing monotonicity of the Choquet integral, the number of separation constraints 1
can be reduced significantly. Thus, it is enough to condideder elementsf the classes. To for-
malise this concept, we first define a dominance reldli¢partial order) orX by

xDy iff xj>=jy;, forallje .

As upper borderof the prototypic clas® we use the set of non-dominated alternativeB, afefined
by
ND; :={xe R s.t. AX e R\ {x}:XDx}.

Similarly, thelower borderof the prototypic class is given by the set of non-dominating alternatives
of B, which is defined by

Nd :={xe R s.t. AX € B\ {x}:xDX}.

The separation conditions restricted to the prototypes of the sudBetsNd, t € {1,...,m} put
together with the monotonicity constraints on the fuzzy measure, form a linear program [7] whose
unknowns are the capacitigsS), SC J and wheree is a non-negative variable to be maximised in
order to deliver well separated classes.

We use the principle of parsimony for the resolution of this problem. If there existsdaitive
fuzzy measurer* ([3]), k being kept as low as possible, then we determine the boundaries of the
classes as follows:

e lower boundary o€l: z(t) := minkeng G (SV(X));

e upper boundary ofl: Z(t) := maxenp, G (SV(X)).
At this point, any alternativ& € A can be classified in the following way:

e xis assigned to clas3k if z < G+ (SV(X)) < Z;

e xis assigned to clagsl UCk_1 if Z_1 < G+ (SV (X)) < .
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A final step of the classicaldvAso method concerns the evaluation of the results and the inter-
pretation of the behavior of the Choquet integral. The meaning of the va{li¢ss not clear to the
DM. They don't immediatly indicate the global importance of the points of view, nor their degree of
interaction. It is possible to derive some indexes from the fuzzy measure which are helpful to inter-
pret its behavior. Among them, thedMAsSO method proposes to have a closer look at the importance
indexes [10] and the interaction indexes [8].

3.2 An alternate way

It may happen that the linear program described in Subsection 3.1 has no solution. This occurs when
the prototypic elements violate the axioms that are imposed to produce a discriminant function of
Choquet type ([5] [11]), in particular the triple cancellation axiom.

In such a case, and in order to present a solution t@thewve suggest to find a fuzzy measure by
solving the following quadratic program

min

[G(S () —y(¥)%,

where the unkowns are

¢ the capacities(S) which determine the fuzzy measure;

e some global evaluationgx) for eachx € Uicy1, . my {NDt UNd }.

eey

The capacities/(S) are constrained by the monotonicity conditions (as previously shown in Sec-
tion 3.1). The global evaluationgx) must verify the classification imposed by tbe. In other
words, for every ordered paix,X) € Ndt x ND;_1, t € {2,...,m} the conditiony(x) — y(X') > €/,

€ > 0 must be satisfied.

Intuitively, for a given alternativet € A, its Choquet integraty,(S¥(x)) should be as close as pos-
sible to the global evaluatioy(x), without being constrained by monotonicity conditions which might
violate the triple cancellation axiom for example. On the other hand, the evalyétijos constrained
by the conditions derived from the original classification given bytikie on the prototypes.

Unlike the method described in Section 3.1, in this casplays the role of a parameter, which
needs to be fixed by them. As previously, we use the principle of parsimony when searching for a
solution (keegk as low as possible; at worktequals the number of points of view). A correct choice
of ¢ remains one of the main challenges of our future research. It is clea’ thas to be chosen in
10,1/n.

As in the classical method, the next step is to determine the structure of the classes. We determine
an assignment for every alternative)oin terms of intervals of contiguous classes on the basis of the
information provided by the Choquet integrals related to the prototypBs-oA.

First of all, let us suppose th&(x~) := (0,...,0) is classified to the worst clas§); and that
SN(xF) :=(1,...,1) is classified to the best clasdly.

To each assignmengx) correspond a lower class ladéx) and an upper class labék), I,1 € 7.
We say that the alternativec X is precisely assignetb Cly if for the assignment(x) we have
1(x) =1(x) =: 1(x). Else, the alternative is said to beambiguously assigne the interval of labels
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I(x) = [1(x),I(x)]. Thedegree of the assignmeobrresponds to the number of contiguous classes
contained irl (x), d(x) = I(x) —1(x) + 1.

The assignments are done according to the procedure described hereafter. Starting from the proto-
typesx € P, their Choquet integralg,(S¥(x)) and their original classification lab€l(x) (according
to thebm’s choice), we define for evenye [0,1],

m(u) = max  Cl(x),and
xeP:G((x))<u

M(u) = min Cl(x).
XeP:G(N(x))>u

m (resp. M) is a right (resp. left) continuous stepwise function of argumentth values belonging
to the discrete finite set.

We now define for each € [0,1] an interval of contiguous classe@l) = [I(u),l(u)] where
1(u) = min{m(u),M(u)}

I(u) = max{m(u),M(u)}.

Obviouslyl (u) < T(u) and due to monotonicity ah andM we have:l (u) < 1(v),I(u) <I(v),Yu,v €
[0,1] withu<w.

The interval|0,1] is partitioned into (closed, semi-open or open) intentgls=1,...,S and
each of those intervals ¢®,1] receives an assignment of the tyjpes), [(s)] (or semi-open or open)
in such a way that: ifi,v € [0,1],u < v and if u is assigned td, := [I(r),I(r)] andv is assigned to
L= [L(r"),T(r")] thenl (r) < 1(r’) andl(r) <I(r").

Moreover ifu = G,(SV(x)),x € P thenl(u) < CI(x) < I(u). This means that each prototype is
correctly classifiedpossibly with ambiguity id(x) > 1.

The assignment of a prototyjgeo the intervals of classes leads now to two scenarios:

e ais assigned to a single clasi &) = 1) which corresponds to the original class decided by the
DM

e ais assigned to an interval of classes and the original class decided bmtHeelongs to this
interval.

The quality of a model (classifier) depends on different ratios. A good model has the following
natural properties:

¢ a simple model according to parsimony (l&yy
¢ a high number of precise assignments of the elemer®s of

e alow number of ambiguous assignments of the elemerigs(ahd the lower the degree of the
assignment, the better the model)

For a givere/, thebm has to select a modet)which seems the best compromise to him in terms
of the previously described assignments. The simplest additive mogdel) can in certain situations
be this ideal compromise between simplicity and quality. But in more complex probkdmas,to be
increased in order to obtain a satisfying number of precisely assigned prototypes.
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3.3 Behavioral analysis of aggregation

Now that we have a sorting model for assigning alternatives to classes (based on the linear program
or the quadratic program), an important question arises: How can we interpret the behavior of the
Choquet integral or that of its associated fuzzy measure? Of course the meaning of the/(&Jues

is not always clear for them. These values do not give immediately the global importance of the
points of view, nor the degree of interaction among them.

In fact, from a given fuzzy measure, it is possible to derive some indexes or parameters that will
enable us to interpret the behavior of the fuzzy measure. These indexes constitute adkicatbf
the fuzzy measure. TheoMASO method presently allows to analyse both the importance of points
of view (Shapley indexes [10]), and their interactions ([8]).

3.4 Interpretation of the behaviour of the fuzzy measure

In this Section we briefly show the main advantage to use a Choquet integral rather than the weighted
sum as a discriminant function. We therefore take the simple case of two points of view, which can
be represented in a plane. Figure 4 presents 5 possible ranges of values for the waightbe
corresponding structures of the limits of the classes. One can see that the main difference between the
classical weighted sum and the Choquet integral is the greater flexibility of the borders of the classes.
The Choquet integral creates piecewise linear borders, which allows to build more precise classes.
The different possibilities are summarised by the following list:

o 1:v(1)+V(2) < Vv(12): synergy

II: v(1) +v(2) > v(12): redundancy

M v(1) +v(2) = v(12) = 1: additivity

e IV: v(1) = v(2) = 0: limit case; maximal synergy

V: v(1) = v(2) = 1: limit case; maximal redundancy

2 i 2 a 2 a

C12 C12

Cll

C12

Figure 4: Interpretation of the discriminant functions
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In [2] the authors give an interpretation to the first two cases. In case of synergy, although the
importance of a single criterion for the decision is rather low, the importance of the pair is large. The
criteria are said to beomplementaryin case of redundance, or negative synergy, the union of criteria
does not bring much, and the importance of the pair might be roughly the same as the importance of
a single criterion.

The limit case (IV) occurs for maximal synergy. In that case, the Choquet integral corresponds
to the aggregation by the min function. Maximal redundancy occurs for case (V), where the Choquet
integral is the max function.

In case the number of points of view is larger than two, it becomes quite hard to represent the
problem. Nevertheless, the previous short example helps to understand how the borders of the classes
are built in such more general examples.

3.5 The softwareTOMASO

In this short part of the paper we briefly present the key-characteristics of the softwareso .

It can be downloaded on http://patrickmeyer.tripod.com. It is an implementation of the algorithms
which were presented previously. Its name stands for “Tool for Ordinal MultiAttribute Sorting and
Ordering”. It is written in Visual Basic and uses two external solvers: a free linear program solver
(Ip_solve 3.0, ftp://ftp.ics.ele.tue.nl/pub/lp_solve/, released under the LGPL license), and a non free
quadratic program solver (bpmpd, free trial version at http://www.sztaki.hu/ meszaros/bpmpd/).

It is still under development and many improvements are added on a regular basis. The general
steps of the software are outlined hereafter:

e Loading of the ordinal data;

Choice of a scoring method according to the problem’s specificities and calculation of the nor-
malised partial net scores;

Definition of the prototypes by them;

Search for a fuzzy measure (either by the linear program, or the quadratic program)

Analysis of the results (classes, Shapley indexes, interaction indexes, accutacies,

A detailed description of the software can be obtained from the author.

4 Concluding remarks

We have presented a procedure for ordinal sorting in the presence of interacting points of view. It
has already been applied to real life cases (in particular to a noise annoyance problem) quite suc-
cessfully. Future work will concern the simplification of the software in order to make it even more
user-friendly. Furthermore, the automatic determinatio# @fill also be one of our main concerns.

The implementation of other indexes (veto, favour) is also planned.
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Abstract

The classical measure and probability theory is based on the notmalgiebra of subsets of
a set. Butnariu and Klement [3] generalized it to fuzzy sets by considering collections of fuzzy
sets calledT -tribes (whereT denotes a fixed triangular norm). Their concepfTemeasure is
fundamental in the fuzzification of classical measure theory. However, it has been successfully
applied elsewhere, too (e.g., in finding solutions of games with fuzzy coalitions, see [4]). Here
we summarize results about characterization of measures on tribes. Unlike preceding papers, we
put emphasis oregular measures which were introduced in [21]. We argue that this notion could
be considered as a promising alternative to the original notion of Butnariu and Klement.

1 Introduction

The notion of “fuzzy measure theory” is used in different meanings (see [10] and the overview in [23]).
Here we try to defineeal-valuedmeasures on collections faifzzy setsThus, we want to fuzzify the
domainbut not therange of a measure. When the generalized notions are restricted to systems of
crisp sets, we expect them to coincide with the classical ones. A certain work in this direction was
initiated by Butnariu and Klement [3, 4, 11]. They introdudedrribes of fuzzy sets witil -measures

as a natural generalization of a measure space. They made the first steps towards a characterization of
monotone real-valuefi-measures for a Frank triangular noimThis project has been completed by
Mesiar and Navara in [16]. Detailed summaries of this approach, together with a thorough analysis of
Jordan decomposition, Lyapunov theorem, etc., may be found in [5, 6].

Later on, Barbieri and H. Weber and independently Navara found two generalizations, one for
vector-valuedT -measures with respect to Frank t-norms (in particular for non-monotone ones) [2],
the other for monotone real-valug@dmeasures with respect to general strict t-norms [20]. A common
generalization of these two results was proved by Barbieri, Navara, and H. Weber in[1]—

a characterization of non-monotone (even vector-vallieaeasures with respect to an arbitrary strict
t-norm.
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All these results assumed a special structure of the tribes. Recently in [7] it was found that these
assumptions are satisfied for many, but not all strict t-norms. The measure-theoretical consequences of
this fact, as well as a new approach to proofs of all preceding results, form the subject of the paper [21];
here we summarize its main conclusions. Unless specified otherwise, we use the terminology and
notation of [12].

2 Tribes

The notion of tribe was suggested by Butnariu and Klement [3, 4] as a fuzzificatioo-algebra.

In order to define measures on fuzzy subsets of some set, we need the underlying collections of
measurable fuzzy sets (tribes) to be closed under fuzzy operations corresponding to those used in a
o-algebra. In particular, we need a fuzzy complement and a fuzzy union or a fuzzy intersection.

Assumption 1. Throughout this paper we assume thétizzy complement’, of a fuzzy seff is ob-

tained by the pointwise application ofstrong) fuzzy negatigme., an involutive decreasing bijection
’:10,1) — [0,1]. A fuzzy intersectigrresp. &uzzy unionis obtained by a pointwise application of

a t-normT, resp. the t-conorn$ dual toT with respect td’. (We use the same symbols for fuzzy
operations on truth values froff), 1] and operations on fuzzy sets induced by them.) The symbol

< denotes the usual ordering of fuzzy sets as real-valued functions (fuzzy inclusionf, ahd

(resp. fn N\, f) stands for the pointwise convergence of an increasing (resp. decreasing) sequence of
functions( fn)nen-.

Definition 2. Let X be a non-empty set. &ibe on X is a pentupld 7, T,’,0, <), where7 C [0,1]%,
T is at-norm,’ is a fuzzy negation, 0 is the constant zero functiorKor is the fuzzy inclusion, and
the following conditions are satisfied:

(T1) OeT,

(T2) feT = feT,

(T3) f,ge T = T(f,9) €7,

(T4  (f)nen €IV, fo /f = feT.

We refer toX as thedomainof the tribe(Z,T,’,0,<). By T-tribe operationsve mean the following
operations: nulary 0, unafybinaryT, and the limit of increasing sequences.

Assumption 3. From now on, we shall consider only tribes with gtandard negation’a=1—a.

Remark 4. The latter assumption is not much restrictive, because every tribe is isomorphic to a
tribe in which’ is the standard negation. (All preceding papers—including [3, 4]|—admitted only the
standard negation in the definition of a tribe. In this aspect, our definition is more general.)

Using a multiplicative generator, also any strict t-norm may be considered equivalent to the prod-
uct t-norm. However, this does not mean that any tribe is isomorphic to a tribe with the product t-norm
and the standard negation. The problem is that the multiplicative generator does not have to preserve
the standard negation. Thus only one of the operations—the t-norm or the fuzzy negation—can be
standardized using an isomorphism of tribes.
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We have already fixed the standard fuzzy negatioNlso 0 and< have their stable meaning. On
the other hand, the choice of the t-nofims crucial and we shall always need to specify it. When
there is no risk of confusion, we shall speak briefly of a tiiieT) (as in [1]), resp. of & -tribe 7.
(The latter is the original terminology of [3, 4]. The full notati¢®, T,’,0, <) was used in [23].) We
also speak of d -tribe when we need to refer to the t-nofimbut not to the tribe itself.

Condition (T2) allows us to use duality, hence evVErribe contains the constant function 1 and it
is closed under the t-conor8dual toT and under limits of decreasing sequences. Thus év4ripe
is closed also under the application of t-nofnto infinite sequences:

(T3+) (fn)ngN 6 TN — T fn E T,

neN

becausq ¢y fn is the limit of the decreasing sequer(d'eﬁ:1 fn)ken. In the original definition of & -

tribe by Butnariu and Klement [3, 4], conditions (T3), (T4) were replaced by (T3+). In this aspect, our
definition is slightly less general. However, this difference is not essential. In fact, in many important
cases the two definitions coincide. In particular, all results found in the literature were obtained for
tribes which satisfy also our definition. We shall see that the definition presented here is quite natural
and advantageous for introducing measures on tribes.

Let T be a t-norm and‘Z,T) be a tribe onX. The elements of” N {0,1}* are calledBoolean
elements

Let 4 be ac-algebra of subsets of a sét Let.S be the corresponding collection of characteristic
functions,

S={xalAc 4},

and
T ={f €[0,1*| f is 4-measurablp.

For any t-normT, (S5, T) is a tribe called thd®oolean tribeinduced by4. For any measurable t-norm
T,(7,T), is atribe called théull tribe induced byA4. (Full tribes were first studied in [3], where they
were calledjenerated tribesHere we use the terminology from [22].)

3 Measures on tribes

In [3, 4], Butnariu and Klement introducéid-measuresas a hatural generalization ofadditive mea-
sures ono-algebras. Here we call them onmgeasuresecause the t-norm is specified with the
tribe. ByR ; we denote the set of all non-negative reals.

Definition 5. Let (7, T,’,0,<) be a tribe. A functiongli: 7 — R, is called aneasuref it satisfies
the following axioms:

(M1) w0 =0,

M2)  f,0eT = WT(f,0))+WS(f,09))=wf)+wog),
(M3) (fnen € TN, fo /1 f — Heng!U(fn):U(f)-

155



Remark 6. Condition (T4) ensures thdte 7 in (M3). In the original definition of & -measure [3],
(T4) was not required and (M3) was replaced by a weaker condition which applies only to sequences
whose limits are inZ:

(M3-) feT, (fonene T, fh / f = ”g&“( fn) = H(f).

Although using a more general condition (M3-), all previous papers on this topic dealt with special
cases of tribes satisfying (T4) and measures satisfying (M3).

Condition (M3) is the left continuity of the measure. In fact, in a Boolean tribe it implies also the

right continuity. However, this is not generally true for tribes. Therefore the following more specific
notion has been introduced in [21]:

Definition 7. A measurgion a tribe(‘7,T) is calledregular if it satisfies (M1), (M2), and

(M3+) (fn)neNE‘TNv (fa S forfa\( f) = Lig'\]l-l(fn):mf)-
Proposition 8. Let T be a t-norm and‘Z7,T,’,0,<) be a tribe satisfying the law of contradiction,
i.e,, T(f,f’)=0forall f € 7. Then every measure ¢, T,’,0,<) is regular. In particular, every
measure on a Boolean tribe or on a-Tribe (where T is the Lukasiewicz t-norm) is regular.
For a tribe(7, T) on X, we define
T={ACX|Xa€T}.

It is ao-algebra of subsets &f. A measurgion (7, T) induces a measugeoh T (introduced in [3])

H(A) = 1(Xa) -

4 Frank and nearly Frank t-norms
Frank t—normsTAF, A € [0,], were defined in [9] by

logy (1+ X551 if A € Jo e[\ {1},

TF(xy) = min(x,y) if A=0,
x (%Y) X-y ifA=1,
maxx+y—1,0) if A=oc0.

(The t-normsTy = T4, Te = TF, T = T are the minimum, the product, and the tukasiewicz t-norm,
respectively.) Frank t-norm‘r‘;\F are strict iffA € ]0,[. They play a special role in the characterization
of measures due to the following property [9]:

Theorem 9. Let T be a Frank t-norm and S its dual t-conorm. Then
Va,be [0,1]: T(a,b)+Sa,b) =a+b. (1)

Conversely, if a continuous Archimedean t-norm T and its dual S sétigfthen they are Frank.
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Let us recall the definition of nearly Frank t-norms [20]. We say that an increasing bijection
h: [0,1] — [0,1] commutes with the standard negatibn

Vae [0,1]:h(a)=h(a).
(Thenh s called anegation preserving automorphig20].)

Definition 10. A t-norm T is callednearly Frankif there is an increasing bijectidm [0,1] — [0, 1]
which commutes with the standard negation and a Frank t-Adreatisfying

T*(a,b) = h(T(h"*(a),h *(b))) )
foralla,b € [0,1].

Proposition 11 (see [20]. If T is a nearly Frank t-norm different fromyl, then the bijection h and
the Frank t-norm T satisfying(2) are unique.

The question of how to recognize whether or not a given t-norm is nearly Frank has been solved
in [15].

5 Characterization of regular measures
Measures orT -tribes, whereT is a nearly Frank t-norm, were characterized in [16]. For regular
measures, we obtain the following consequence:
Theorem 12. Let T be a strict nearly Frank t-norm with h satisfyi{@) and (7, T) be a tribe. Then
regular measures o7, T) are exactly all functionals of the form

p(f):/hofdv, feT, 3)

wherev = [1is a measure of .

For Frank t-normsh = id and we obtain the following:

Corollary 13. Let T, A €]0, 0], be a strict Frank t-norm andZ’, T,") be a tribe. Then als¢7,T,)
is a tribe and regular measures oéﬁ‘,TAF) are exactly (regular) measures 0, T ). They are of the
form

u(f):/fdv, feT, 4)

wherev = [1is a measure off .

Following [20], a regular measugeof the form (3) is called égeneralized) integral measuré&he
particular form (4) obtained for Frank t-norms is calletireear integral measurelt coincides with
measures og-complete MV-algebras studied in [8, 22].

If the t-normT is not nearly Frank, the characterization of measures is different. For the special
case of a full tribe, it follows from [1]:
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Theorem 14. Let T be a strict t-norm which is not nearly Frank. Then there is ho non-zero regular
measure on any full T -tribe.

To analyze tribes which are not full, we introduce several notions(LeT ) be a tribe orX and
Y be a non-empty subset X Let

~={f|Y|feT}C[0,1]".

Then(Zy,T) is a tribe onY called therestrictionof (7,T) toY. Suppose, moreover, thétc T and
His a measure offZ,T). Thenpy : &% — R defined by

Wy (FIY) = u(f-Xxv) (5)
is a measure offfy, T) called therestrictionof uto'Y.

Remark 15. In fact, the restrictiomy of a measur@ may be understood as a meastwaditionedby

a (crisp) evenY. A probabilistic interpretation is straightforward. Nevertheless, attempts to introduce
conditional probability which is conditioned Huzzyevents lead to difficulties even in the special
case ofT|_ -tribes (see [22]).

Let (7,T) be atribe. Forf € 7, we denote the following subsets:
uf = 11,
Ff = 17(0,1D,
suppf = UfUFf=1f"1(]0,1])  (thesupportof f).
They all belong tof .
Proposition 16. Let (7, T) be a tribe and let u be a measure A, T). Then

M(F) = uXut) +H(F-Xre) = U T) +pee (FIFT). (6)

If Ff =0, thenf is Boolean andu(f) = (U f). It only remains to determine the summand
ues(f IF ) for Ff # 0. We have its characterization if the restrictiofg ¢, T) is a full tribe. As we
shall see, this is often the case (not only for strict nearly Frank t-norms). EV@gyifT ) is not a full
tribe, we can characterize regular measures [21]. For this, we define

Ar={Ff|feT}.
Itis ac-ideal in theo—algebra‘f.

Theorem 17. Let T be a strict t-norm which is not nearly Frank at@, T) be a tribe. Then regular
measures o7, T) are exactly all functionals of the forii@), wherev = [1 is a measure o’ such
thatv [A; = 0.

Remark 18. In Theorem 17y (F f) = i(F f) = 0. Then (4) may be written in many equivalent forms:
u(f) = / fdv =v(suppf) =v(Uf)
and also as (3), whete [0,1] — [0,1] is any increasing bijection.

According to the above results, any regular measure on a tribe is fully determined by a measure
on ac-algebra. This characterization allows us to use many results derived in the classical measure
theory. On the other hand, the context of full tribes is more general and extension to fuzzy subsets
brings new phenomena.
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6 Characterization of general measures
Now we shall generalize the results from the preceding section to measures which need not be regular
(we assume only left continuity in (M3)). A new type of measure occurs:
Proposition 19. Let T be a t-norm andZ,T) be a tribe. The functional p of defined by
H(f) = f(suppf)

is a measure o7, T) called asupport measure

The characterization from [20] may be reformulated as follows:

Theorem 20. Let T be a strict nearly Frank t-norm and |17, T) be a tribe on X. Every measure p
on(‘7,T) is alinear combination of an integral measure and a support measure.

As in Remark 18, a measure on a Boolean element may be considered an integral measure as well
as a support measure. Therefore the decomposition to an integral measure and a support measure in
Theorem 20 is not unique. The coefficients of the linear combination need not be non-negative:

Example 21. LetT,", A € ]0, [ be a strict Frank t-norm. Then each meaguoa ([0,1], T) (the full
TAF-tribe with a singleton domain) is of the form
p+qa ifa>0,
a) =
He) {o ifa=0,

wherep > 0 andp+q > 0. The measurgis

e regulariffp=0,

e monotone iffq > 0.

E.g., ifwe takep=1,qg= —1, we obtain

(a) = l-a ifa>0,
H¥Y=0  ifa=o.

This is a measure which is not monotone.

As in the case of regular measures, we use Proposition 16. It is helpful if the rest(igtig)
is full. In fact, the proof of Theorem 20 is based on Proposition 19, the characterization of regular
measures from Theorem 12, and the following:

Lemma 22. Let T be a strict nearly Frank t-norm and |17, T) be a tribe on X. If thereis an & T
such that F f= X, then the restrictiodZ, T) is a full tribe.

Recently in [7] Lemma 22 was generalized to many other strict t-norms which are saffexent
because they give rise to sufficient fanctionally completesets of fuzzy logical connectives (see [7]
for details about this notion). In particular, sufficient t-norms include all t-norms from the Aczél-
Alsina and Mizumoto eighth and tenth families (see [12, 13] for the definitions and [7] for further
examples).
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Theorem 23. Let T be a strict sufficient t-norm which is not nearly Frank and({€tT) be a tribe.
Every measure p ofiZ, T) is a support measure.

The question whether Lemma 22 remains valid for all strict t-norms has been open for many years.
It is related to problems published, e.g., in [14, 16, 17, 18]. Counterexamples were found recently
in [7]; the Hamacher product is one of them. For t-norms which are not sufficient, a characterization
of measures on tribes is known only in special cases when it leads again to support measures.

Problem 24. Is there a strict t-nornT which is not nearly Frank, a tribgZ’, T) and a measurg on
(7, T) which is not a support measure?

Forregular measures, the characterization is knowndibstrict t-norms.
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The logic and algebra of fuzzy IF-THEN rules
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This paper is an (incomplete) overview of the existing approaches to interpretation of fuzzy IF-THEN
rules and derivation of a conclusion on the basis of them.

We will focus especially on two principal interpretations of linguistic description. The first one
is calledrelational. The main idea is to find a good approximation of some function known only
roughly. Therefore, it is divided into imprecise “parts” using fuzzy relations constructed from fuzzy
sets with continuous membership functions of more or less arbitrary shape. Each such membership
function is assigned some name to be able to get better orientation in the rules, but without real
linguistic meaning. Formally, these are sets of fuzzy IF-THEN rules assigned one of two kinds of
normal forms: the disjunctive or conjunctive normal form (see [10]). The resulting fuzzy relation then
depends on the choice of the underlying algebra of truth values.

Most interpretations of fuzzy IF-THEN rules found in the literature stick on this interpretation.
Then derivation of a conclusion on the basis of them is done on the level of semantics rather than on
the level of syntax. However, there are alsgical interpretationse.g. those presented in [6, 9] and
elsewhere. An important case which, at the same time, belongs to logical interpretation is presented
in [9, 7]. Its main goal is to use genuine linguistic expressions interpreted in a way which mimics
human understanding to them. The fuzzy IF-THEN rules, which are then interpreted as linguistically
characterised logical implications, form special axioms of some formal theory.

There are several other kinds of interpretations which in various degrees can be ranked to the
relational one (cf. [5]). In the paper, we will discuss and compare these interpretations from several
points of view.
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Abstract: The paper summarized the last author’s results concerning the problem of solvability and
approximate solvability of a system of fuzzy relation equations. A number of new criteria of the so
called Mamdani relation to be a solution to the system is suggested. At the same time those criteria
are sufficient conditions of a solvability of the system in general. A new, easy to check criterion of a
solvability of the system with special fuzzy parameters is found.

With the notion of a fuzzy function as a mapping between universes of fuzzy sets we threw a
new light on the problem of solvability and approximate solvability. In this setting, precise and ap-
proximate solutions to a system of fuzzy relation equations are considered as the interpolating and
approximating fuzzy functions with respect to the given data. Different approximating spaces and dif-
ferent criteria of approximation have been introduced. We have proved that the widely known fuzzy
relations introduced by E. Sanchez and E. H. Mamdani are the best approximations in the respective
spaces and under the respective criteria.

Keywords: system of fuzzy relation equations, solvability of a fuzzy relation equation system, fuzzy
equivalence, fuzzy point, fuzzy function

1 Introduction

Systems of fuzzy relation equations are connected with applications like fuzzy control, identifica-
tion of fuzzy systems, prediction of fuzzy systems, decision-making, etc. Such systems arise in the
process of formalization of fuzzy IF-THEN rules, which well recommend themselves as an approxi-
mating instrument for continuous dependencies. In this correspondence, the problem of solvability of
a system of fuzzy relation equations relates to a problem of verification of correctness of the chosen
formalization of fuzzy IF-THEN rules.

In the proposed overview, we will consider the problem of solvability of a system of fuzzy relation
equations in the following aspects:

e criteria of general solvability, i.e. necessary and sufficient and only necessary or only sufficient
[4, 10, 16, 18, 19];

e simple criteria of solvability in special cases where original data are fuzzy sets which constitute
fuzzy partitions of respective universes [10, 15];

¢ solvability and interpolation of fuzzy functions [17, 16];
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e criteria of solvability in the case of finite universes;

e approximate solvability in different approximating spaces and with respect to different criteria
[17, 16];

e approximate solvability and approximation of fuzzy functions [13, 16, 17, 20];

e approximate solvability in special metric spaces induced by t-norm.

For this publication we have chosen only new results recently established by the author.

1.1 Basic algebra of logic operations

We choose a BL-algebra (BL stands for basic fuzzy logic) as a basic algebra of operations. In a
certain sense, the BL-algebra generalizes boolean one and occurs when the conjunction is split in two
different operations: a pure lattice operation and the other monoidal one (called multiplication) which
a pseudo-inverse. The following definition summarizes definitions originally introduced in [9].

Definition 1. A BL-algebrais an algebra
L:<L7\/7/\7*7_>7071> (1)
with four binary operations and two constants such that

(i) (L,Vv,A,0,1)is alattice withO and1 as the least and greatest elements w.r.t. the lattice ordering,

(i) (L,=,1) is a commutative semigroup with urit such that the multiplication is associative,
commutative and 4x = xfor all x € L,

(iii) * and— form an adjoint pair, i.e.
z< (x—vy)iff xxz<yforall x,y,ze L,

(iv) and moreover, for akk,y € L
Xx(X—Yy) =XAY,
(X—=y)V(y—x) =1
The well known examples of BL-algebra are Ggdel, Lukasiewicz and product algebras.

Another binary operatior- of £ can be defined by:

XY= (X—=Y)A(y—X).

The following properties will be used in the sequel:

x<y iff (x—y)=1,
Xx—y=1 iff x=y.

Note that, in particular, it = [0, 1] thenx is at-norm.
From now and until the end of this paper, we fix some complete BL-algelwéh a supportL.
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1.2 Fuzzy sets and fuzzy relations

We accept here a mathematical definition of a fuzzy setXLbé a non-empty set. Then a fuzzy set
or better, a fuzzy subset &f is identified with a functiorA : X — L. This function is known as a
membership function of fuzzy sét The set of all fuzzy subsets &fis denoted byF (X), so that we
can write

FX)={A: X — L} =L%

For two fuzzy set#\,B € F (X) we let
A=B iff (VX)A(X)=B(x)
and
A<B iff (¥X)A(X) < B(x).

A fuzzy setA € F(X) is callednormal if A(xp) = 1 holds for somexy, € X. The algebra of
operations over fuzzy subsetsXfis introduced as the induced BL-algebralch This means that
each operation front is the operation oh* taken pointwise. For example, theoperation between
fuzzy setsA andB is defined by
(AxB)(X) = A(X) * B(X).
The operations over fuzzy subsets fulfill the same properties as the corresponding operations in the
respective BL-algebra.

Let X andY be two universes, not necessary different. A (binary) fuzzy relatioX enY is a
fuzzy subset of this set, i.e. a functié: X x Y — L. The set of all fuzzy relations ok x Y is
denoted by (X x Y). An n-ary fuzzy relation can be introduced analogously.

If Re F(XxY)andSe F(Y x Z) then the fuzzy relatiolf onX x Z
T(x2) = \/ Rxy) *S(y,2)
yey
is called a composition (or sup«-composition) olR andSand denoted by
T=RoS

In particular, if A is a unary fuzzy relation oX or a fuzzy subset oK then sup-*-composition
betweermA andR e F (X x Y) is defined by

B(y) = \/ AX) *R(xy),

xeX
so thatB=AoRandB e F(Y).

1.3 Fuzzy equivalence and fuzzy points

Fuzzy equivalence is a special fuzzy relation on a univ&rsghich, analogously as the classical
equivalence fulfills the properties of reflexivity, symmetry and transitivity, but with the generalized
meaning. Namely, we say that: X x X — L is a fuzzy equivalence oX if

E(x,x) =1,

E(xy) = E(¥,X),

E(xy)«E(y,2) <E(x,2)
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holds true for allk,y,z € X.

Suppose that some fuzzy equivaleficen X is given. Then we may fix one argument xg and
consider the functiod\(x) = E(xp,X) which determines a normal fuzzy subse®ofWe say that the
fuzzy subset of this type is a fuzzy pointX¥fwith respect to and fuzzy equivalenck.

It is not difficult to show that each normal fuzzy subgebf X, such thatA(xg) = 1, can be
considered as a fuzzy point with respeck$@and special fuzzy equivalené&egiven by
E(xy) = AlX) < A(y).
The situation is more difficult if we have a collection of normal fuzzy subsets.oT he following
theorem has been proved in [11].
Theorem 2. Let A, i € |, be a family of normal fuzzy subsetsXafsuch that there exist x X which
make true the following: &%) = 1. Then the following two statements are equivalent

e there exists a fuzzy equivalence EXorsuch that all fuzzy setg Are fuzzy points with respect

tox and E, i.e.
A(X) = E(x,X) 2)
o foralli,jel
V (A #A (X)) < A\ (A(Y) < Aj(Y)) 3)
xeX yeX
holds.

Remark 3. From the proof of this theorem it follows that

o if (3) is true then each fuzzy séf from the above given family is a fuzzy point with respect to
xi and fuzzy equivalenck given by

E(xy) = AAX) < A(y)). (4)

ie
o if each fuzzy se#y from the above given family is a fuzzy point with respectxt@nd some
fuzzy equivalenc& then it is a fuzzy point with respect t¢ and fuzzy equivalenck.
The following lemma can be proved as a corollary of Theorem 2.

Lemma 4. Let A, i €1, be a family of normal fuzzy subsetsXafsuch that there exist x X which
make true the following: A%) = 1. Moreover, let inequality (3) hold true. Then inequality (3) turns
to the equality

V (Ax) = A () = A (A(Y) = Aj(Y))

xeX yeX
=E(x,X)) (5)
where i j € | and E(x,y) is given by (4).
Corollary 5. Let the conditions of Lemma 4 be fulfilled. Then inequality (3) turns to the equality

V (A=A (X)) = A\ (A(Y) < Aj(y) =

xeX yeX
=E(x,%)) (6)

where i j € | and E(x,y) is any fuzzy equivalence which makes all fuzzy subsétsb& fuzzy points
with respect to it and;x
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1.4 System of fuzzy relation equations

Let X andY be two universes, not necessary different. A system of fuzzy relation equations
AoR=B;, 1<i<n, @)
whereA € F(X),Bi € F(Y)andRe (X xY) and ' is the sup-*-composition, is considered with

respect to unknown fuzzy relatid

Since in general, solution of (7) may not exist, the investigation of necessary and sufficient, or
also of only sufficient conditions for solvability becomes necessary. This problem has been widely
studied in the literature, and some nice theoretical results have been obtained. Let us point out some
of them: [19], [18], [4] with necessary and sufficient conditions, [5], [10] with sufficient conditions.

All of these results have practical importance only in the case when universes of dis€ande
Y are finite. If these universes are infinite, then the complexity of verification of these conditions is
comparable with the direct checking of solvability. Therefore, the problem of discovering easy to
check solvability conditions or criteria is still actual. This paper is a contribution to this topic.

We recall basic facts concerning solvability of system (7) of fuzzy relation equations
AicR=B;j, 1<i<n,
whereA € 7(X),Bi € F(Y) andRe F(X xY).

o If system (7) with respect to unknown fuzzy relatiBris solvable then relation

>

Rxy) = A(A(X) — Bi(y)) (8)

i=1

is the greatest solution to (7) (see [19]).

o Letfuzzy set\ € 7(X) andB; € F(Y), 1<i <n, be normal. Then fuzzy relation

R(X,y) = \/ (A(x) *Bi(y (9)
i=1
is a solutionto (7) ifand onlyifforall, j =1,...,n
V (A(X) =A; () < A (Bi(y) < Bj(Y)) (10)
xeX yeY

holds (see [10]).

It is worth notice that fuzzy relatioR is known in literature as Mamdani relation.

2 Sufficient conditions of solvability

As mentioned above, a system of fuzzy relation equations arises on the way of formalization of a set of
fuzzy IF-THEN rules. In fact, a fuzzy relatidRwhich solves the system of fuzzy relation equations
in the form (7) describes a certain dependence between variablZsandy € Y. If the variablex is
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furthermore specified by some value expressed by a fuzzk sef (X) then the respective (fuzzy)
value of variabley can be computed by taking the sup-*-compaosition

B=AoR (11)

This procedure is used as an interpretation of so the called Generalized Modus Ponens inference rule
in the fuzzy logic in broader sense.

Keeping in mind the computation of sup-*-composition (11), in wiidis replaced by a solution
to system (7), we may argue that fuzzy relat®mequires less computations that fuzzy relatin
Therefore, the conditions which guarantee tRas a solution to (7) are more important than condi-
tions of general solvability. On the other hand, these conditions are sufficient with respect to general
solvability of (7).

Therefore, we focus in this section on conditions ensuringRhgi& solution to (7). Of course, the
inequality (10) is the first representative of such conditions. The next theorem proved in [1], presents
the equivalence between (10) and another inequality, which can be used as the second condition of
this type.

Theorem 6. The inequality (10) is equivalent with

R<R (12)

The following corollary immediately follows from Theorem 6 and Klawonn'’s condition of solv-
ability.

Corollary 7. Let fuzzy setsiA&c F(X)and B € F(Y), 1 <i<n, be normal. Then the fuzzy relation
R in (9) is a solution to (7) if and only if R<R.

Remark 8. If the fuzzy relationR is a solution to (7) then the system (7) is solvable. Therefore, the
condition (12) is a sufficient condition for the solvability of the system (7), provided that fuzzy sets
A € F(X) andB; € F(Y) are normal.

Let us investigate a special situation when fuzzy gets 7 (X) andB; € 7 (Y) are fuzzy points
with respect to fuzzy equivalencé&s on X arld F onY. The following nice (and easy to check)
criterion of solvability of (7) by fuzzy relatioR summarizes almost all the facts discussed above.

Theorem 9. Let fuzzy setsiA& F(X) and B € F(Y), 1 <i <n, be normal, so that there exigtx X
and y € Y which make true the following:i&) = 1, Bi(yi) = 1. Further, let fuzzy equivalence E on
X and fuzzy equivalence F of exist so that all the fuzzy sets #&e fuzzy points with respect tp x
and E, and all the fuzzy sets &e fuzzy points with respect tpand F, i.e.

(VXA (X) = E(X,X) (13)
and
(VY)Bi(y) = F(¥i,y)- (14)
Then the fuzzy relatioR in (9) is a solution to (7) if and only if
(V)(VI)A (X)) <Bi(y;)- (15)

We can again remark that condition (15) and the assumptions of Theorem 9 give easy to check
sufficient condition of solvability of system (7).
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3 One useful necessary condition of solvability

Necessary conditions are very useful in verifying the solvability in general. When they are not ful-
filled, the system cannot be solvable. We will suggest hear one condition which has easy to understand
interpretation.

Theorem 10. If the system (7) is solvable then for arbitraryj i€ {1,...,n}

N (A(x) = Aj(x) < A (Bi(y) < Bj(y)). (16)

XeX yey

The interpretation of the condition (16) is such that the et cannot be closer than their
respective counterparB andB;.

4 A new criterion of solvability

In this section we prove even more: the condition (15) is the necessary and sufficient condition for the
solvability of system (7) provided that (13) is fulfilled.

Theorem 11. Let the conditions of Theorem 9 be fulfilled. Then (15) is the necessary and sufficient
condition of the general solvability of system (7).

5 Fuzzy function. Interpolation of a fuzzy function

We will introduce the problem of solvability of fuzzy relation equations in a new framework as the
problem of interpolation and approximation of a fuzzy function.

Our idea is to introduce a fuzzy function as a mapping between two univéreésand 7 (Y) of
fuzzy sets, so that it maps uniquely a fuzzy “point” from one universe to the respective fuzzy “point”
from the other universe. Trying to be as much as possible close to the classical case we give the
following definition (see also Perfilieva & Gottwald [17]).

Definition 12. Let F (X), F (Y) be the classes of all fuzzy subsets on the universes of disc§wasd
Y. A mappingf from F (X) into ¥ (Y) is called &uzzy functiorf for any fuzzy subseté, A’ € 7 (X)
and for fuzzy subset8, B’ € #(Y) which aref-related withA A’, respectively,

A=A =B=BH. a7
holds true.

Example 13. Any fuzzy relationR € ¥ (X x Y) determines via sup-*-composition a fuzzy function,
defined as the mappinig from 7 (X) to #(Y) which is described by

fr(A)(Y) = (AoR)(y) = \/ (A(X) «R(xY)).

xeX

In this example, the fuzzy sdék(A) = AoRis the value of fuzzy functiorig determined byRin
the “fuzzy point” determined b.

170



Remark 14. As mentioned in Introduction, there is another approach to the notion of a fuzzy function
shared by the authors [9, 10]. According to their approach, a fuzzy function is a special kind of a
fuzzy relation — which “respects” two given similarities on the universes of discourse. The “fuzzy”
constituent in their definitions refers to the uniqueness property, so that they define what may be called
a “blurred” mapping. Moreover, they clearly distinguish between partial and total fuzzy function.

Contrary to the definitions cited above, we stress that a fuzzy function is a (ordinary) mapping
between two universes of fuzzy sets, so that it maps uniquely a fuzzy “point” from one universe to
the respective fuzzy “point” from the other universe. In our opinion, it is not necessary to indicate in
the general definition of a function whether it is partially defined or not. It is reasonable to stress this
characteristics when we speak, for example about the problem of interpolation. (Below, we formulate
this problem and discuss methods of its solution.) However, in general we suppose that a fuzzy
function is defined on the whole univerggX).

The definition of a (fuzzy) function, in general, does not provide us with a constructive way of its
representation (except for finite(X)). Therefore, the problem of representation of a function is of a
primary importance. By this we mean, that having a function as a mapping, we want to find a formula
which represents this mapping. However, in practice we know a mapping (between infinite or large
universes) only partially, as a finite set of couples and therefore, the problem of representation may
be solved also partially. There are two possible approaches to obtain a formulation of, say, partial
representation problem: one leads to the interpolation and the other one — to the approximation of a
function. We give formulations of both problems in fuzzy setting and then discuss the specificity of
these problems in the case when fuzzy function is determined by a fuzzy relation.

Definition 15. Let a list of original data consisting of ordered pairs of fuzzy $8{sB;) whereA
F(X),Bie F(Y),i=1,...,n, be given. A fuzzy functiorf defined on7 (X) interpolateshese data
if

f(A) =B, i=1...,n (18)
We will also callf an interpolating fuzzy function.

Very often, the above defined interpolation problem appears in the literature as a problem of
finding a fuzzy relation partially described by a list of fuzzy IF-THEN rules

IF xis Ay THENyis B;, i=1,...,n,

whereA € F(X),Bi € #(Y). The natural requirement for such a fuzzy relation is that it should
“agree” with the original data. This means in our terminology that the required fuzzy relation deter-
mines the fuzzy function which interpolates the given data (the details are below in Lemma 16).

As an important remark, we point out that interpolation of a fuzzy function may not exist; if it
exists, it need not be unique. In the latter case, this is the reason why the interpolation problem in
classical mathematics is solved in a predetermined class of (interpolating) functions, for example in
the class of polynomials.

We consider a solution to the fuzzy interpolation problem in the class of fuzzy functions repre-
sented by fuzzy relations. It is easy to see that there is a close relation between the existence of an
interpolation function and the solvability of the respective system of fuzzy relation equations.

Lemma 16. Let ordered pairs of fuzzy s€t4;, Bi) be given where A 7 (X),Bi€ F(Y),i=1,...,n.
A fuzzy relation R determines an interpolating fuzzy function with respect to the give(Adda,
i=1...,n,ifand only if R is a solution of the corresponding system (7) of relation equations.
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Proof. Obvious. O

As a consequence of this statement, we can assert that not every fuzzy function can be determined
by the respective fuzzy relation. This is due to the fact that not every system of fuzzy relation equations
is solvable.

6 Approximation of a fuzzy function. Approximate solutions to a sys-
tem of fuzzy relation equations and their approximation quality

The problem of approximation of a partially given fuzzy function arises when we want to complete
partially given mapping, but we do not insist on a precise agreement with the given data. The other
reason to consider approximation is that the interpolation problem may not be solvable in the chosen
class of interpolating functions. For example, if interpolating fuzzy functions are those which are
determined by fuzzy relations then the interpolation problem is equivalent to the existence of a solution
to system (7). Because the latter may not be solvable, this implies that there exist fuzg dita

i =1,...,n, which cannot be “joined” by any fuzzy relation. In this situation we may weaken the
interpolation problem and consider the problem of approximation. We start with a rough formulation
of this problem and then, after explanation of details, give a precise formulation.

Given fuzzy datdA;, Bi) whereA € 7(X),Bi € F(Y),i=1,...,n, find a fuzzy function, deter-
mined by a fuzzy relation which gives an approximate solution to system (7).

By this formulation, we reduce the problem of finding of an approximating fuzzy function to
the problem of finding an approximate solution to system (7). The latter will be the core of our
investigation in the rest of this paper. However, it requires further specification. Two things have to
be specified: an approximating space and a quality of approximation. Below we will introduce three
different approximating spaces and different qualities of approximation in them.

1. The widest approximating space consists of all fuzzy relations arY
R={R|Re F(XxY)}. (29)

However, we will not deal with this space in this paper, because it is too wide to find an optimal
approximation in it.

We will consider two other, more restrictive approximation spaces which are subspages of
(Perfilieva & Gottwald [17]). UnlikeR , they are determined by parametérsB; of system (7).

2. The space of lower approximations
R={Re F(XxY)|AoR<B;, 1<i<n} (20)
consists of those relations which make compositions lower than the intended right hand sides.
3. The space of upper approximations
Ru={Re F(XxY)|AoR>B;, 1<i<n}. (21)

consists of those relations which make compositions greater than the intended right hand sides.
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An evaluation of a quality of approximation iR stems from a comparison of the intended values
B; and those ones determined by the composiR@n®_ andA;, i.e. from a value (Gottwald [6])

8(R) =\ A\ (Bi(y) < (AioR)(y)). (22)

i=1yeY

Being equipped with the evaluatiad{R) of a quality of approximation we may compare two
different approximate solutions, saying thRite R is better tharR’ € ®_if and only if its solution
degree is higher; formally

R <sR' iff 3(R’) <d(R). (23)

The same inde®(R) may serve as a quality of approximation in two other spagemdR,,.

It is easy to see that with help & R) we have introduced a preordets (i.e. reflexive and
transitive binary relation) on each of the approximation sp&e®, and®,,.

Though a quality of approximation i® and &, may be estimated b®(R), we will also use
another, non-numeric estimation according to the following preordemn R,

R<R iff RRRRe® and AoR'<AoR, 1<i<n, (24)
and<,on®R,

R<yR' iff R, RRe®, and AoR <AOR', 1<i<n. (25)

Let us remark that in the literature on fuzzy relation equations, the pregides been implicitly
used in Wu [20] and later on in Klir & Yuan [13] for estimation of approximation qualityRin

7 Optimal approximations

In a certain sense, any element from an approximating space can be taken as an approximate solution
so that the respective quality of approximation can be computed. However, we would prefer to have an
approximate solution with the best possible quality of approximation. This leads us to the following
definitions (cf. Perfilieva & Gottwald [17]).

Definition 17. A fuzzy relationRopt is a best approximate solution to system (7) in the approximation
spaceR (R, or Ry) with respect to the quality(R) if

5(Rom) = SUp3(RY (26)
(0(Ropt) = supd(R) or d(Ropt) = supd(R)). 27)
ReR ReRy

In the approximation space® and®,, we may also define best approximation with respect to
preorders<; and<,,.

Definition 18. . R'Opt € R is a best approximate solution to system (7) w.kd. if there is no
fuzzy relationR € R, such thaR < R'Opt andAiocR# Ao R'opt for at leastoné € {1,...,n}.
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e Rt € Ru is a best approximate solution to system (7) w.gl, if there is no fuzzy relation
R € R, such thaR <, Ry, andAioR# Ao Ry for at least oneé € {1,...,n}.

As we will see later, a best approximate solution to system (7) in the approximatingRpace.
< maximizes formsAjoRi = 1,...,n (see Theorem 21), and a best approximate solution to sys-
tem (7) in the approximating spaég w.r.t. <, minimizes formsA;oRi =1,...,n(see Theorem 27).

As a consequence of this, a best approximate solution to system f)an®, with respect to
above introduced approximation qualities if it exists, may not be unique. In Subsection 10 we will see
where it may happen. Therefore, in those particular cases we will take into consideration additional
characteristics of approximate solutions.

Our next goal is to show that pseudo-solutidd&nd R are the best approximate solutions to
system (7) in the space®, R, with respect to the introduced preorders.

For the pseudo-solutioR, an optimality in the approximation spade and a preorder similar to
(24), has been proved in [20, 13]. Below, we will prove a more rigid result.

8 Optimality of pseudo-solutionR

We will show thatR is a best approximate solution to system (7) in the approximation sRawéh
respect to both preorder§ and<gr). MoreoverRis the greatest element in this space with respect
to the ordinary orderingc between fuzzy sets.

Lemma 19. If the system (7) is unsolvable then the fuzzy relakois the greatest element in the
approximation spac& w.r.t. the ordinary ordering<.

8.1 Optimality of Rwith respect to the preorder <

In the theorem given below, we prove the first of the best approximation results R, with
respect to<.

Theorem 20. Let the system (7) be unsolvable. Then the fuzzy relation

n

Rxy) = A\ (AI(X) — Bi(y))

i=1
is a best approximate solution to system (7) in the sp@aeder the preordek (cf. (24)).

The following simple theorem shows even more. If the original system (7) is unsolvable then the
first solvable system (when decreasing the right hand sides of (7)) is the systeB, vafllaced by
AioR.

Theorem 21. Let system (7) be unsolvable and fuzzy sets €(Y) fulfill the inequalities
G<Bj, i=1,...,n
Then if the system

is solvable then
whereB; = A oR.
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8.2 Optimality of Rwith respect to the preorder <j

The theorem below contains the second of the best approximation resultsRainoft with respect
to <;.

Theorem 22. Let system (7) be unsolvable. Then the fuzzy relation

n

ROxYy) = A (A(X) = Bi(y))

i=1

is a best approximate solution to system (7®jrwith respect to the approximation qual®/R) (cf.

(22)).

9 Optimality of pseudo-solutionR

The relationR given by (9) is not an optimal approximate solution to system (7) in the sRaegher
with respect to the preordet, or with respect to the qualitg(R). This result has been proved in
[17]. However, we will obtain the optimality dR in both cases for special systems of fuzzy relation
equations, such that they are solvable if and only if when thejRamaivable.

9.1 Solvability and R-solvability

We put restrictions on fuzzy sefs, ..., A, € F (X) assuming that they are normal and form a semi-
partition of X. For this, we recall the definition of a semi-partition (see [3]).

Definition 23. Normal fuzzy setg\,...,A, € 7 (X) form a semi-partition oK if

(Vi)(¥i) (\/ (AX)+A () < A\ (A(X) = A (X))>~ (28)

XeX XeX

Throughout this section we will suppose that fuzzy s&fs .., A, € F(X) in system (7) are
normal and form a semi-partition of.

Definition 24. We say that syster{V) of fuzzy relation equations R-solvabldf its pseudo-solution
R given by (9) is a solution to this system. We also denote

Bi(y) = (AocR)(y), 1<i<n. (29)

Although solvability andR-solvability of system (7) are not in general equivalent, this is true under
the accepted assumption about semi-partitioning.of he theorem given below proves this fact.

Theorem 25. Let fuzzy setsA. A€ F (X) be normal and form a semi-partition ¥f. Then system
(7) is solvable if and only if it i&R-solvable.
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9.2 Optimality of Rwith respect to the preorder <,

For systems of fuzzy relation equations whose paramétets< i < n, form a semi-partition ok,
we will prove the optimality oR in &, with respect to the preordet,, and with respect tg 5 in the
next subsection.

Theorem 26. Let system (7) be unsolvable and fuzzy setd A i < n, be normal and form a semi-
partition of X. Then the fuzzy relation

R(xy) = \/ (A(X) Bi(y))

i=1

is a best approximate solution to system (7) in the spoeith respect to the preordet,, (cf. (25)).

The following theorem shows that if the original system (7) is unsolvable then the first solvable
system (when increasing the right hand sides of (7)) is the systenBwigplaced byB;.

Theorem 27. Let the conditions of Theorem 26 be fulfilled and fuzzy sets#(Y ) be such that
C>Bj, i=1,...,n

Then if the system
is solvable then
whereBj = A oR.

9.3 Optimality of R with respect to the preorder <y

As the last result of this section, we will prove th&(ix,y) is an optimal solution to system (7) with
respect to<g too.

Theorem 28. Let the conditions of Theorem 26 be satisfied. Then fuzzy relRfrry) is a best
approximate solution to system (7) 4 with respect to the approximation qualiyR).

10 Optimality of other pseudo-solutions

Though we introduced various approximation spaces, only two representativBsaneR have been
considered as their members. We have introduced in [8] another candidate for optimal approximation
— the iterated relation

ROGY) =V (A ()= Bi () = \/ (A0 % \/ (A0 = A\ (A (%) — By(¥)))).

i=1 i=1 xeX =
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The idea lying in the construction &tis to replaceB;s in the relatiorR by A o R (which are smaller)
and by this, create a new relation which is smaller tRaActually,

<R

¢

and, as shown in [8], .
AioligAioligAion{

Therefore, the optimality d?X? is expected, and this is proved in the theorem below.

Theorem 29. Let system (7) be not solvable and suppose that the system
AioR=B; (30)

is R-solvable. Then the iterated relatidhis a best approximate solution to (7) % with respect to
the preorder<; as well as with respect to the qual®yR).

Remark 30. o |t follows from Theorem 29 that there are at least two best approximate solutions
to (7) in R, both with respect to the preorder as well as to the quality(R).

The non-uniqueness of a best approximation is a consequence of the fact that the solvability of
(7) is not equivalent to the existence of exactly one solution. Let us explain this claim in more
details.

Our optimality criteria have been chosen in such a way that they measure a deviation from the
original right-hand side of system (7). Therefore, if some approximate~solaimoptimal then

any other fuzzy relation which solves (7) with the same right-hand sitkdags, is optimal as

well.

o If we want to distinguish various best approximations more subtly, we should specify fuzzy rela-
tions (solutions) according to their additional properties. For example, the approximate solution
Ris the greatest element iR (with respect to the ordinary ordering), and this distinguishes it
among other (best) approximate solutions.

e We conlucde from Theorems 22, 28, 29 th@R) can be taken as a universal measure of ap-
proximation quality in the approximation spacgsand®,,.

11 Optimality under the stronger criterion

Let us summarize the above used methodology for construction of approximate solutions to system
(7). We replaced the right-hand sides of equations in (7) by those which guarantee the solvability
and took the guaranteed solution as the approximate one. Then we have noticed that the guaranteed
solutions composed with the fixed left-hand sides of equations in (7) produced either lower or upper
approximations of the given right-hand sides. This observation led us to the introduction of two
approximating spaces consisting of those fuzzy relations which, when composed with the fixed left-
hand sides, produce various lower or upper approximations of the given right-hand sides. In each
approximating space the respective guaranteed solution was among the best approximate solutions to
system (7).

In this section, we will extend the approximating space by fuzzy relations which, when composed
with fuzzy sets greater than the given left-hand sides of equations in (7), produce smaller right-hand
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sides than the given ones. We will show that in such extended space the known fuzzy Rlation
again among the best approximate solutions with respect to the below introduced praprder

Suppose as before that system (7) is not solvable and introduce the approximating space

R ={Re F(XxY)|DjoR=C;, 1<i<n,
forsome Dj,...,Dh€ F(X),C,...,Che F(Y) such that
A <D;,G <B} (31)

and the following quality of approximation

YR =N\ (/\ (Bi(y) < (Al oR)(y))A

yeY

AN (AX) < A (RXY) — B; (y)))> . (32)

XeX yey

The second term in (32) arises from the expressior?# hich gives the maximal solution to (7)
with respect to unknows.

We can compare different relations saying tRat R is better tharR’ € R, if and only if its
y-quality y(R') is higher. Formally:
R</R' iff y(R')<y(R). (33)
Moreover, we can define an optimal approximation as follows.

Definition 31. A fuzzy relationRypt is a best approximate solution to system (7) in the approximation
spaceR, with respect to the quality(R) if

Y(Ropt) = SUpPY(R). (34)
ReR,

The following theorem shows that the relatiBris again a best one with respect to the quality
Y(R).

Theorem 32. Let system (7) be not solvable. Then the®eis non-empty and fuzzy relatidis a
best approximate solution in the s&t with respect to the quality(R).

Corollary 33. The fuzzy relatiorR is the largest approximate solution iR, with respect to the
ordinal ordering<.

12 Concluding remarks

Most of the known results about solvability of systems of fuzzy relation equations have practical
importance only in the case when universes of discorsmdY are finite. In case when these
universes are infinite, the complexity of verifying theoretical conditions is comparable with a direct
checking of a solvability. Therefore, the problem of discovering easy to check conditions or criteria
is still actual. This paper is (among others) a contribution to this topic.
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A number of new criteria of the so called Mamdani relation to be a solution to the system is
suggested. At the same time, these criteria are sufficient conditions for solvability of the system in
general. A new, easy to check criterion of a solvability of the system with special fuzzy parameters is
found.

With the notion of a fuzzy function as a mapping between universes of fuzzy sets we threw a new
light on the problem of solvability and approximate solvability. In this setting, precise and approxi-
mate solutions to a system of fuzzy relation equations are considered as the interpolating and approx-
imating fuzzy functions with respect to the given data. We concentrated on a problem of approximate
solvability of a system of fuzzy relation equations. Different approximating spaces and different cri-
teria of approximation have been introduced. We have proved that the widely known fuzzy relations
introduced by E. Sanchez and E. H. Mamdani are the best approximations in the respective spaces and
under the respective criteria.
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Point-set lattice-theoretic (or poslat) topology refers to that sort of topology for which a space, roughly
speaking, is determined from a (carrier) Xeta latticeL of some sort, and an associated topology—
either a family ofL-valued mappings oX or an operator on the powerset of bivalued mappings,

and for which there are appropriate continuous morphisms. Such topology is also called lattice-valued,
many-valued, fuzzy, etc.

For the last 35 years, poslat topology has been intensely developed, aided in significant measure
by thelnternational Seminar on Fuzzy Set Theaiso known as thkinz Seminarlt is our purpose
to outline certain aspects of this poslat topology from a (partly) categorical point of view with the
general goal of identifying some categories which serve as relevant frameworks for poslat topology,
relevantin the sense that these categories are topological and contain important examples.

This goal is pursued by doing the following: sampling well-known lattice-theoretic and ground
categories and overlying fixed-basis and variable-basis categories for poslat topology; discussing their
relationships to point-free categories for topology, Wang’s category for lattice-valued topology, and
Vicker’s category for topological systems arising from domains in computer science; indicating in
what sense these categories are topological; sketching functorial relationships between these cate-
gories; and inventoring some important examples of objects and morphisms for poslat topology.

1 Preliminaries

1.1 Lattice-theoretic conditions

The most general lattice structure we will consider is that @bmplete quasi-monoidal lattice

(cgml) as defined in [61]: a complete lattice equipped with a binary operation, caiéedar prod-

uct, which is isotone in both arguments and has the top element as an idempotent. See [23] for
stronger versions of this definition. Many examples of cqml’s are catalogued in [23, 64].

1.2 Lattice-theoretic categories
The categonCgml [23, 61] comprises the class of all cqml’s, together with the class of all mappings

between cgml’s which preserve tensor products, arbitrary joins, and top elements. The dual category
Cqagml°Pis denoted_ogml and is called theategory of localic quasi-monoidal latticesMost of the
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lattice-theoretic categories of interest in poslat topology are isomorphic to subcategdZigslobr
Logml, including [61]SFrm (semiframes), its du&@Loc (semilocales)Frm (frames)Loc (locales),
Dmrg (complete deMorgan algebras), its dahrg®P, Hut (Hutton algebras), and its duglzLat,
as well as various categories in which the tensor is not the binary meet.

1.3 Ground categories and powerset operators
1.3.1 Fixed-basis grounds and powerset operators

For the case when the cginls fixed, the ground category &et, with the associated Zadeh powerset
operatorsf~, f~ betweenLX andLY for a ground morphisnf : X — Y [10, 46, 59, 60]. Many
properties and characterizations are known for these Zadeh operators, includifjg thd{ .

1.3.2 Variable-basis grounds and powerset operators

For the case when the cqiimay vary, a subcategofy of Logml—within which L varies—is fixed
and the ground category Betx C, with ground morphisms of the forrf, @) : (X,L) — (Y,M)
with f : X — Y in Setand¢®?: L +— M in C°P c Cgml, and with the associated powerset operators
(f,0) ", (f, @)~ are betweehX andMY [10, 54, 55, 56, 59, 60]

Theorem. (f,@)~ - (f,)" if and only if ¢°P preserves arbitrary meets. The consequent holdsdf:
Dmrg°P(L,M); ¢°Pis a backward Zadeh operator; i®N € [CQML |, 3g € Set(W,Z), ¢°P =gy ; @
is any of the examples constructed in 7.1.7.2 of [61] or 9.9(2(b), 3) of [62p;i®&an isomorphism in
Logml.

1.4 Adjoint Functor Theorem

Letf:L— M, g:L+« M beisotone maps between preordered sets. ThegprovidedVac L,a< g(f(a))]
and[vb e M, f (g(b)) <b], or equivalently][vac L,be M,a<g(b) < f(a) <b]. If f H4g, thenwe
writeg= f~ andf =g

Theorem (Adjoint Functor Theorem [26]). Let f : L — M [g: L < M] be a function such thdt
[M] has arbitrary\/ [A] and f [g] preserves arbitrary/ [M, respectively]. Therf [g] is isotone,
J1f :L—M[g':L— M], and f" [g7] preserves alf\ [\/] existing inM [L].

2 Categories For Poslat Topological Structures

2.1 Some Fixed-Basis Categories

Fixed-basis categories are fixed with respect to the underlying kgmit varying with respect to the
underlying ground object (or set).

Fixing L in Cgml, the well-known categori-Top [2, 11, 23, 61] has ground categd®et, with
the topology being a crisp subset of thgpowerset closed under (binary) tensor products and arbitrary
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\/ and containing the top-subset; and the well-known categdryFTop [15, 31, 71, 22, 40, 23] has

ground categoret, with the topology being ah-subset of the_-powerset which assigns as degree

of openness to tensor products the least degree of the tensorands, to arbitrary joins the least degree of
the disjuncts, and to the tdpsubset the top element bf See the analysis of important subcategories

in [23], often using underlyindg. with richer structure or with additional conditions on the topology

(such asin [42]).

2.2 Some Point-Free Categories

The category.oc may be considered to have grouBef’”. Each locale may be regarded as the (sober)
topology of somd_-topological space; and if turns out to b& in that statement, the locale is called
spatial [55, 56, 57, 58]. More generally, we may repldasc with Logml or C — Logml; restated,
each subcategory dfogml can be viewed as a point-free category of topological structures.

Fixing C a subcategory dfogml, the categoryC-HTop [25, 55, 61] has ground catego®y with
the topology being a crisp subset of somé C that is closed under the tensor and arbitrary joins
and containing the top element; the famous definition originally given in [25] GsedruzLat as the
ground category. Further, the categ@3yHFTop has ground categoi@, with the topology being an
L-subset of some in C which has properties analogous to those of the topologikesHiop.

It is our contention that every point-free approach is essentially a variable-basis approach (see
below). We have listed these separately from the variable-basis approaches since, with the exception
of C-HFTop, their origins were independent of, and prior to, variable-basis topology.

2.3 Some Variable-Basis Categories

The underlying set is free to change in fixed-basis topology while the lattice-theoretic base is fixed; and
the underlying set is fixed in point-free topology (as a singleton—see below) while the lattice-theoretic
base is free to change. In variable-basis topology, both the underlying set and the lattice-theoretic base
are free to change.

Fixing C a subcategory dfogml, the categoryC-Top [5, 6, 7, 10, 52, 53, 55, 56, 61] has ground
categorySetx C, objects being of the fornX, L, 1), with (X, 1) € |L-Top|, and morphisms being of
the form(f, @) : (X,L,1) — (Y,M,0), witht > ((f,@) ") (0). Further, the categori@-FTop [61] has
ground categorgetx C, objects being of the forrtX, L, 7)), with (X, T) € |L-FTop|, and morphisms
being of the form(f,@) : (X,L,T) — (Y,M,S), with T o (f,@)” > ¢°Po S onM".

2.4 Category Of Topological Systems

Topological systems [75] stem from placing domain theory of computer science into a topological
setting [68, 69, 70]. The central idea in topological systems is that s#tiafactionor modeling
relation.

We initially view topological systems as categorically hav8etx Loc as ground. The category
TopSys[75] has objects of the forr(X, A, =), with (X,A) € |Setx Loc| and= C X x A satisfying:

1. Xe X,VSCA xE=VS& JacA xkE=a
2. Vxe X, Vfinte SCA xEAS& VaceA xEa
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And morphisms are of the fortff, @) : (X,A, =) — (Y,M, =), whereVx € X,Vbe B, f (X)) b <
X = ¢°P(b). (The same symbol is used for both the domain and codomain satisfaction relations.)

Clearly, TopSysis a variable-basis approach. But we have separately listed this approach for
two reasons: the notion of topological system arose independently of, and subsequent to, variable-
basis topology; and the categorical behavior of topological systems is strikingly different than that of
variable-basis topology (see below).

2.5 Category Of Wang Topological Spaces

From [76, 77, 78] comes a schemum of categories not having an obvious ground category. Let
C — Dmrg°P (the original definition require€ = FuzLat).

GivenL,M € |C|, a set mappin@: L — M is anorder homomorphism if @ preserves arbitrary
Vandvbe M, (¢ (1)) = (¢ (b))/ (i.e. @ € Dmrg). The categorfC-WTop has objects of the form
(L*,1), whereX € [Set, L € |C|, and(X,T) € |L-Top|, and morphisms of the form: (L*,1) —
(MY,0), whereg: LX — MY is an order homomorphism and (¢7) (o).

As will be seen below, the Wang approach is essentially a point-free approach and is isomorphic
to a subcategory of singleton space£iTop.

3 Topological Categories For Poslat Topological Structures

3.1 Definition Of Topological Categories

The definition of ‘A is topological w.r.t. category X and functorV” comes from [1]; see commen-
tary on this definition in [61]. These variations are also useful:

1. A is small topological w.r.t. category X and functorV if the indexing class fo¥-structured
sources is always a set.

2. A is quasi-topological w.r.t. category X and functorV if the unique existence of the lifted
morphism in the definition of initiality is replaced by existence.

3. Alisc.e.m. topological w.r.t. category X and functoWV if theV-structured source is collection-
wise extremally monomorphic in the language of [49] or a mono-extremal source in the lan-
guage of [1].

4. A is essentially topological [small toplogical, quasi-topological, c.e.m. topological] w.r.t.
category X and functor V if “unique initial V-lift” is replaced by the condition that initial
V-lifts of the sameé/-structured source are isomorphic in the appropriate definitions above.

3.2 Examples Of Topological Categories

In the following statements, the functdris the forgetful functor, such a functor being obvious once
the ground category is specified (using the word “over”).
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Theorem [23, 61]. If L € |Cqml|, thenL-Top andL-FTop are topological oveBet if C — Logml,
then C-Top and C-FTop are topological oveSetx C; and if C — Logml, thenC, C-HTop, C-
HFTop are topological oveSetx C w.r.t. the forgetful functor of the previous theorem as modified
by the embeddings given below of these categories@aimp, C-Top, andC-FTop, respectively (so
thatLoc is topological in this way oveBetx Loc).

3.3 Special Case Of Topological Systems

In view of the motivation of topological systems and their relationship to variable-basis spaces given
later, the behavior ofopSysis rather surprising.

Theorem. TopSysis not topological ovefSetx Loc in any sense or with any modifier as defined
above—V-structured sources comprising only one morphism need not even haveTofiSys is
essentially small topological ov&et—each smalV/-structured source has a initial lift that is unique
up to isomorphism; an8obTopSysds essentially c.e.m. topological and essentially quasi-topological
overLoc.

Conjecture. TopSysis neither topological ove8etnor overLoc.

3.4 Special Case Of Wang Topological Spaces

Let C — Dmrg®P. The problem witlC-WTop is the lack so far of a well-defined ground category. It
is therefore not known in what sense (if alGAWTop is topological.

4 Relationships Between Categories For Poslat Topological Structures

4.1 Adjoint Pairs Between Top AndL-Top

The relationships betwediop andL-Top may be classified as concrete or nonconcrete.

4.1.1 Concrete Adjunctions Between Top And.-Top

Many of the concrete adjoint relationships betwdep andL-Top can be unified by the concept
of indexed families of mappings between the traditional Brthsed fibres [48]. FiX € |Set and

L € |SFrm|, and letTx, be the fibre of all traditional topologies of andtx, be the fibre of all
L-topologies onX. A pair of isotone map$x : Tx — Txr, GxL : Tx < TxL is said to be anl-
)fibre pair (of maps) and this fibre-pair igovariant [contravariant] if Gy 4 Fx. [FxL 1 Gx]. An
indexed family{FXL,GXL}XE‘Sel1 of such maps is said to be aovariant [contravariant] indexed
family of (L-)fibre pairs, and the following conditions can be considered:

1. Such a familyjoint-covariantly [joint-contravariantly] generated if VX € |Set, 3 agener-
ator
OxL: HX) X [fxL: HX) LX]
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such thatV'¥ € Ty, VT € TxL,

FL(T) = (kL (L(%)))), GxL(T) = <<U QXL(U)>>

R () = (G (@), Gxum = (({Ut:te fam}))]

2. A jointly-covariantly [jointly-contravariantly] generated family
{FX|_,GX|_}X€|S@11 is joint-covariantly [joint-contravariantly] natural if ¥X,Y € |Set, the
diagram commutes:

oxLo fi = (f7) ogvL

[fxLo(f7) 7 = f ofyl]

3. An indexed family{Fx., GxL}x < sy Of fibre-pairs isseparately generatedf VX € |Sef, 3
generators
fyL 10 (X) — L%, gy 10 (X) < LX

such thatV'¥ € Ty, VT € TxL,
AL (T) = {(fx(T))),  GxL(T) = ({gx (1))

4. A separately generated fami[)FxL,GXL}xg\Seq of fibre-pairs isseparately natural if these
diagrams commute:
fxLof™ =f"ofy, oxLofl =f"ogvL

Examples The characteristic and Marti®,, My fibre maps [47, 61] comprise a joint-contravariantly
natural family of fibre-pairs as well as a separately natural, contravariant family of fibore-maps; the
Kubiak-Lowenuwy , 1 fibre maps [42, 34] comprise a joint-covariantly natural family of fibre-pairs;
and the level fibre map&,, & [43, 51, 55, 61] comprise a joint-covariantly natural family of fibre-
pairs @ prime).

Theorem. LetL € |SFrm|, let {FXLvGXL}XQSeq be an indexed family oE-fibre pairs, and let the
bi-level mappings$- : Top — L-Top, G : Top < L-Top be defined as follows:
FIX,T) = (X,A(®)), F(f)
G(er) (XvGXL(T))7 G(f)

f
f

1. If {F><|_,GX|_}X€|Se11 is joint-covariantly natural, theR is a concrete functoiG is a concrete
functor, andF 4 G.

2. If {FxL,GxL}xe ISet is joint-contravariantly natural, théhis a concrete functo is a concrete
functor, andG - F.

3. If {FxL, GxL}x e ISet is separately natural covariant [contravariant], tReis a concrete functor,
G is a concrete functor, arfel 4 G [G - F].

Corollary . The examples and the theorem imply Mg Gy, w_ -1, Fx 4 & (a prime) adjunctions
betweerTop andL-Top.
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4.1.2 Non-Concrete Adjunctions Between Top And.-Top

Examples of non-concrete adjunctions include the hypergraph functor [67, 43, 51, 9] and the adjunc-
tion based on it (assuminga spatial frame) in [17, 18], as well as the adjunction based oh-the
and2-L soberification functors [62]. The role of the hypergraph functor in fuzzy addition and fuzzy
multiplication can be seen in the references of [63], and the role of the soberification adjunction in
building alternative fuzzy real lines and unit intervals can be seen in Sections 2 and 8 of [62]..

4.2 Embedding Of Fixed-Basis And Crisp Variable-Basis Into Fuzzy Variable-Basis

Given L € |C|, L-Top embeds intoC-Top and L-FTop embeds intaC-FTop by simply choosing

¢ =id_. The adjunction betwee@-Top and C-FTop (Section 6 of [61]) induces from an “indexed
family of fibre pairs” which are an extension of the characteristic-Martin fibre pairs referenced above.
In this more general setting, giveX, L, 1) and(X,L,T), Gy (T) = Ag >y, T andMy (7)) = coker(T ).

4.3 Singleton Embeddings Of Point-Free And Wang Into Variable-Basis

The embeddings dfoc, C — Logml, C-HTop into C-Top and the embedding &@-HTop into C-
FTop are given in [54, 55, 61] and are aingleton functors making each point-free category iso-
morphic to a subcategory of singleton spaces.

Toillustrate,Loc embeds intd.oc-Top viaA— (1A Al) | [@: A— B]+— [(id, @) : (1A AY) — (1,B,BY)].
Letting S: Loc — Loc-Top be the embedding just described dmut-Topsk be the full subcategory
of stratified singleton spaceS,- Q|Loc-Top,, S WhereQ (X,L,1) =1 andQ(f,q) = [(f,) "]
It follows thatSis an isomorphism ontboc-Topsk and we should regardoc as a special case of
variable-basis point-set lattice-theoretic topology, nanely is a special case @ingleton variable-
basis topologyor variable-basis topology of singleton spacesrom this point of view, point-free
topology is not a generalization of topology, but rather the special and important case of singleton
space topology which focuses on the lattice-theoretics of poslat topology.

The case ofc-WTop (with C — Dmrg°P) requires only a slight modification of the singleton
functor embeddingc-HTop into C-Top:

(LX,1) (1, Lx,rl),

[@: (LX,1) — (MY,0)] — [(id, (qf)op) : (1, LX,T1> - (l,MY,ol)}

This embedding means that the Wang approach is isomorphic to a subcategory of singleton spaces,
despite the set exponent in Wang objects being non-singleton

Essentially, the Wang morphisms do not recognize these non-singleton sets and treats them as
if they are singletons. Restated, the Wang approach is essentially point-free. For categories of the
form C-WTop, it would seem that the mixed syntax, lack of a clearly defined ground category, and
seeming lack of being a topological category are issues and questions that need resolution for this
popular approach.
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4.4 Embeddings Of Fixed-Basis Into Topological Systems [4]

For manyL € |[Frm|, there are simple embeddingslofTop into TopSys Fix L € |Frm| such thatl
has a prime elemert, and let(X, 1) € |[L-Top|. Note (X, 1) € |Setx Loc|. Definel= 4 on (X, 1) by
puttingVx € X, u € T, X =1 g U < u(X) > a. Further, givenf : (X,1) — (Y,0) € L-Top, define the
ground morphisntf, (f7)°P) : (X,1) — (Y,0) in Setx Loc. ThenFy (X,1) = (X,T,Era), Fa (f) =
(f,(f)°P) definesk, as a functor fronL-Top to TopSyswhich is an embedding. This generalizes
the spatialization embedding ®bp into TopSysof [75].

4.5 Embedding Of Topological Systems Into Variable-Basis [4]

The relationship betweefopSysandLoc-Top is induced by another variety of maps between posets
of structures.

Let (X,A, =) € |TopSyq be given, put

FE) = 1

= {ue A% (vxe X) (xf=u(x) or (vxe X) (u(x)= 1)}
F(X,AE) = (X,At),F(f,@) = (f,@). ThenF : TopSys— Loc-Top is a functorial embedding.
We noteTopSysis isomorphic to a proper subcategoryLafc-Top since the latter is topological over

Setx Loc and TopSysis not topological ovefSetx Loc and the forgetful functor fromfopSysto
Setx Loc factors through+ and the forgetful functor frorhoc-Top to Setx Loc.

Given that each of.oc and Top embed intoTopSys—the former [latter] by the localification
[spatialization] functor of [75], we can now answer a long-standing question whietkefop is the
smallest supercategory, up to embeddingl.@é and Top: the answer is10, namely,Loc and Top
embed properly intdopSysandTopSysembeds properly intboc-Top.

Finally, the fact thaTopSysis not topological means that only ifoc-Top can the initial and final
lifts of forgetful functor structured sources frofopSysbe constructed.

5 Examples Of Objects And Morphisms For Poslat Topological Struc-
tures

It is not sufficient to have topological categories. Such categories must also exhibit important exam-
ples of objects and morphisms justifying the study of such categories and the approaches to topology
they represent.

From [4, 8, 17, 18, 19, 23, 24, 30, 33, 34, 35, 36, 37, 38, 39, 44, 45, 50, 51, 55, 58, 59, 61, 62, 63,
64] and their bibliographies an inventory of many important examples can be constructed.

Here is a sample of significant objects in poslat topology:

1. R(L) andI(L), for L a deMorgan quasi-monoidal lattice (which includes distributive and non-
distributive deMorgan algebras).

2. R andI equipped with the dual L-topologies induced frd(lL) andI(L) (L as above).
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10.

11.

12.

13.
14.

. R*(L) andI*(L), the alternativd_-fuzzy real line and L-fuzzy unit interval, formed by the2

soberification functor acting dR andI for any complete quasi-monoidal lattice (which includes
all complete lattices)—and indeed each complete laftigenerates a canonidalsober space
LPT(A).

. The space of probability measures on the Borel sets of a separable metric space, which gives a

stratified, non-generatdetopological space.

. Traditional limit spaces generate for each complete Heyting algebra a classpblogical

spaces.

I-rigid topological spaces constructed usirngmooth Borel probability measures on ordinary
spaces and Radon measures on ordinary compact Hausdorff spaces, constructions allowing
Boolean negation to extend continuously to tukasiewicz negation.

Each ordinaryT; spaceX with at most finitely many components generated aonpological
spaceX (L) for L € [Hut| with L meet-irreducible such thatlif= 2, X (L) is L-homeomorphic
to Gy (X), and ifX =R or I, X (L) is L-homeomorphic tdR (L) or I(L).

Variable-basis spaces generated from specific topological systems.

Here is a sample of significant morphisms in poslat topology:

. Fuzzy addition and fuzzy multiplication iR (L).

Fuzzy translation and fuzzy scaling (especially in light of the behavior of the inverse mappings
of these maps)

Fuzzy addition as uniformly continuous

Units of adjunctions having universal lifting and extension properties, such asdbmetinuous
and variable-basis morphisms generated by compactification reflectors from any non-(Chang)
compact space such as the canonidl), R*(L), (0,1)(L), (0,1)*(L), etc, catalogued above.

Extensions of important continuous maps.

The rich inventory of variable-basis morphisms between fuzzy real lines, between induced
spaces, between soberifications, all with different underlying bases.
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A bridge between fuzzy set theory and coherent conditional
probabilities (1)
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In this talk (strictly linked with that by Giulianella Coletti with the same title) we expound our interpre-
tation of fuzzy set theory (both from a semantic and a syntactic point of view) in terms of conditional
events and@oherentconditional probabilities. During past years, many papers have been devoted to
support the negative view maintaining that probability is inadequate to capture what is usually treated
by fuzzy theory. In our approach we emphasize the roleasfditioning(in a proper framework,

i.e. de Finetti’'s coherence) to get rid of many controversial aspects. Moreover, we introduce suitable
operations between fuzzy subsets, looked on as corresponding operations between conditional events
endowed with the relevant conditional probability.

Let us start from the intuitive idea of fuzzy subset: where does it come from and what is its
“operational” meaning? We will refer to the state of information (at a given moment) of a real (or
fictitious) person (for instance, a “randomly” chosen one) that will be denoted by “You”.

If X is a (not necessarily numerical) random quantity with rabggdet Ay, for anyx € Cy, be the
event{ X = x}. The family{A}xec, is obviously gpartition of the certain ever@ = Cx . Now, let¢
be anypropertyrelated to the random quant¥y. from a pragmatic point of view, it is natural to think
that You have some information about possible valueX,afrhich allows You to refer to a suitable
membership function of the fuzzy subset of “element€pivith the propertyd”.

For example, ifX is a numerical quantity, for You the membership function may be put equal to
1 for values ofX less than a giver;, while it is put equal to O for values greater than then it is
taken as decreasing from 1 to 0 in the interval fnonto x, : this choice of the membership function
implies that, for You, elements @k less tharx; have the propertg, while those greater than do
not. So the real problem is that You are uncertain on having or not the prapényse elements of
Cx betweerx; andx,.

Then the interest is in fact directed towardnditional eventsuch as|Ay, wherex ranges over
the interval fromx, to X, with
E ={You claim the propertyp},
Ay ={the value ofX is x}.

It follows that You may assign a subjective probabilR{E|Ax) equal, e.g., to 0.2 without any
need to assign a degree of belief of 0.8 to the etenhder the assumptiok (i.e., the value oKX is
notx), since an additivity rulevith respect to the conditioning evemises not hold.

In other words, it seems sensible to identify the values of the membership function with suitable
conditional probabilities. In particular, putting
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Ho ={the value ofX is greater tham,},
H; ={the value ofX is less tharxi},
we may assume th& andH, are incompatible and that; impliesE, so that, by the properties of a
conditional probabilityP(E|H,) = 0 andP(E|H1) = 1.

Notice that the conditional probabilify(E|Ax) has beerirectly introduced as a function on the
set of conditional events (and without assuming any given algebraic structure). Is that possible? In the
usual (Kolmorogovian) approach to conditional probability the answer is NO, since the introduction
of P(E|Ax) would require the consideration (and the assessmemjBi A;) andP(Ay) (assuming
positivity of the latter). But this is aot a simple task: in fact in this context the only sensible
procedure is to assign directB(E|Ay) . For example, to assign the (conditional) probability that You
claim “Mary is young” knowing her agg, but not that of “the probability that Mary has the age
(not to mention that, for different choices of the random quarfitythe corresponding probability
can be zero).

The probabilistic approach adopted here differs radically from the usual theory based on a measure-
theoretic framework, which assumes thatraqueprobability measure is defined on algebra(or
o-algebra) of events constituting the so-caltaanple spac€. Directing attention to events as sub-
sets of the sample space (and to algebras of events) may be unsuitable for many real world situations,
which make instead very significant both giving events a more general meaning and not assuming any
specific structure for the set where probability is assessed.

Probability is seen asrmeasure of belief in a given propositioNotice that a proposition — which
can be eithetrue or false— must not be looked on as assertion so, even if beliefs may come from
various sources, they can be treated in the same way, since the relevant events (including possibly
statistical data) need always to be considered (going back to a terminology due to Koopman) as being
contemplatedor, similarly,assumepland notassertedoropositions.

This aspect is very crucial, since in our approach an essential role is playamhditioning in
fact the very concept of conditional probability is deeper than the usual restrictive view emphasizing
P(E|H) only asa probability for each given Hlooked on as a givefact). Regarding instead also
the conditioning evenitl as a “variable”, we get something whichristjust a probability (notice that
H also — likeE — plays the role of amncertainevent whose truth value is not necessarily given and
known).

Our probabilistic framework is that based on the concegiooiditional evenaind on the ensuing
concept ofcoherent conditional probability Our concept of conditional events differs from those
adopted by many others in the relevant literature. Actually, in [1] we showed that, if we do not assign
the same “third valuet(E|H) = u (undetermined) tall conditional events, but make it suitably
depend orE|H, it turns out that this functioti E|H ) can be taken as a general conditiomatertainty
measure(and conditionalprobability corresponds to a particular choice of the relevant operations
between conditional events).

Then a conditional probabiliti?(E|H) can be — through coherencealirectly introduced and it is
notdefined as the ratio of the (unconditional) probabilitéE A H) andP(H), assuming positivity of
the latter. This allows to deal wittonditioning events of zero probabilitgvoiding to resort, as in the
classic approach, to the Radon-Nikodym framework, which (rather than make conditional probability
just depend on the giveronditioningevent) requires thkenowledge of the whole conditioning distri-
bution a situation which is clearly unsound and contradicts the “inferential” meaning of a conditional
event.
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Finally, among the peculiarities of the concept of cohecenditionalprobability versus the usual
one, we underline the possibility f&(E|H ) of assuming the extreme values 0 and 1 also for situations
which are different, respectively, from the trivial orfeg H = 0 andH C E ; moreover, we emphasize
the “natural’looking at the conditional event|H as “a whole”, and not separately at the two events
E and H

A complete account of probabilistic logic in a coherent setting is in the book [2]. We just mention
that a coherent conditional probability can be characterized by suitably representing it by means of a
class{Py} of unconditional probabilities giving rise to the so-callezto-layerqfor details, see [2],

p.81).

In particular, given a familyC of conditional event§E;|Hi}ici, wherecard(l) is arbitrary and
the eventd;’s are apartition of Q, we recall the following two corollaries of the aforementioned
characterization theorem:

(A) Anyfunctionf : C — [0,1] such thatf (Ej|H;) =0 if EEAH;=0and f(E|H)) =1if H CE
is a coherent conditional probability.

(B) If P(-|-) is a coherent conditional probability such tf{E|H;) € {0,1}, then the following
two statements are equivalent
(i) P(:|-) is theonly coherent assessment on

(i) itis Hi AE = 0for everyH; € #, andH; C E for everyH; € #;, where#; = {H; : P(E|H;) =
ry,r=0,1.

The results that follow are taken from [3]. Létbe anypropertyrelated to the random quantity
X: notice that goroperty, even if expressed by a statement, does not single—oetv@mt since the
latter needs to be expressed byanambiguougroposition that can be eitheue or false

Consider now theventEy = “You claim ¢” and a coherent conditional probabiliB(Ey|Ax),
looked on as a real functiqu, (X) = P(Eg|Ax) defined orCx.

Since the eventd, are incompatible, then — A) — everypg, (x) with values in[0, 1] is a coherent
conditional probability. So we cagtefinea fuzzy subset in this way:

Given a random quantit with rangeCx and a related property, afuzzy subsetf=of Cx is the
pair
By = {Ep, Mgy}
with pg, (X) = P(Ey|Ax) for everyx € Cx.
So a coherent conditional probabiliB(Ey|Ax) is a measure of how much You, given the event

Ay = {X =x}, are willing toclaim the propertyp, and it plays the role of the membership function
of the fuzzy subseg.

Notice also that (as already remarked above) the significance of the conditionaEgy&pis
reinforced by looking on it as “a whole”, avoiding a separate consideration of the two propogijions
andAy.

Obviously, a fuzzy subseig is acrisp setwhen there inly a coherent assessmag, (x) =
P(Ep|Ax) with range{0, 1}.

Then, by propertyB) above, a fuzzy subs& is a crisp set when the properpyis such that, for
everyx € Cx, eitherEy A Ay =0 or Ay C Ey.
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Given two fuzzy subsetsy, Ej, corresponding to the random quantitésndY (possiblyX =
Y), assume that, for everye Cx andy € Gy, both the following equalities hold

L) P(Eg|AxAAy) = P(Ey|Ax) ; P(Ey|AxAAy) = P(EylAy),

with Ay = {Y =y}. Thedefinitionsof the binary operations ainion andintersectionand that of
complementatioare as follows:

Given two fuzzy subsets (respectively,@f andCy) Eg andEj, put

E(; UEJJ = {E(I)\/IJJ’ “Eq,vq,} ) E$ N ELTJ = {E¢/\llJ7 qu,/\qJ} ) (Et;)/ = {Eﬁd)v UEﬁ(p}u

where (by a fairly improper notatior) vV {, ¢ A Y denote, respectively, the propertidgs 6r ¢, “ ¢
andy”, andEgyy = By V By, Egay = Ey AEy, While ig,, andpg,,, are defined oxy = Cx x Cy
by putting

HE, .y (%) = P(Ep VEy|AAA) MEg g (%,y) = P(Ep NEy|AAA).

The conditional eventEy V Ey)|(Ax A Ay) is true iff Ay A Ay andEy v Ey are both true: and the
latter event is true, by definition of disjunction, when at least one of the two events is true, that is
when “You claim¢” or when “You claimy”. On the other handEyy is true when “You claimp
or Y, and this requires to puEyy = Ey V Ey. Similar considerations apply to the eveBs,, and
Ey AEy. Notice also the following relationE-y # (Ey)®, where(Ey)© denotes theontrary of the
eventEy (while the equality holds only for a crisp set); for example, the propositions ‘taim
not yound and “You do not claim youngare logically independent. Then, whikg, Vv (Ey)¢ = Cx,
we have insteaéfy V E-y C Cx. We could also introduce thtautologicalpropertyT = ¢ vV —¢ (for
any ¢), which satisfies (trivially) the relatiokr C Q, and thevoid propertyV = ¢ A =¢ (for any
¢ ), which satisfies the relatioB, # 0. Therefore, if we consider the union of a fuzzy subset and its
complement

By U(Eg)" = {Epvp Heyy )
we obtain in general tuzzy subsetf (the universeLx.

On the other hand, it is easy to check that the complement of a crisp set is also a crisp set: in fact,
from Ey A Ax = 0 it follows Ay C (Ey)¢ = E~¢, and fromA, C Ey it follows (Ey)°AAx =0, that is
E—|¢ A AX - 0

Consider now two fuzzy subsely andEj;: the rules of conditional probability give, taking into
account (1),

(2) P(Ep V EylAcAAy) = P(Ep|Ax) +P(Ey|Ay) — P(Ey AEy|AXAA).

Therefore, to evaluate(Ey V Ey|Ac A Ay) itis necessary (and sufficient) to know also the value of
the conditional probabilityp = P(Ey A Ey|Ax A Ay), and vice versa.

By resorting to the theorem characterizing coherent conditional probability assessments, it is not
difficult to prove that thenly constraint for the value op is

max{P(Eg|Ax) + P(Ey|Ay) — 1,0} < p < min{P(Ey|Ax), P(Ey|Ay)}-

Three possible choices for the value of the conditional probakjlityive rise to different well-
known (see, e.g., [4]) t-norms and t-conorms :
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(a) give p themaximum possible valuéhat isp = min{P(Ey|Ay), P(Ey|Ay) }; then in this case
we necessarily obtain, by (2), that

P(Ey v Ey|AcA Ay) = max{P(Ey|Ad), P(Ey|A,)}.
This assignment corresponds to the choice of the so-cgllethdSy asT-norm andT -conorm.

(b) give p theminimum valugthat is maxP(Ey|Ax) + P(Ey|Ay) — 1,0}, i.e. the tukasiewicz
T-norm. In this case we necessarily obtain, again by (2), that

P(Ep V Ey|AxAAy) = min{P(Ey|Ay) + P(Ey|Ay), 1}
i.e. the tukasiewicz T-conorm.

(c) give p the valueP(Ey|Ax)P(Ey|Ay), that is assume thddy is stochastically independent of
Ey givenAc A Ay. In this case we necessarily obtain

P(Ep V Ey|AAAy) = P(Ep|Ax) + P(Ey|Ay) — P(Ey|A)P(EylAy) ,

i.e. the so-called probabilistic su and producilp.
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We present a natural interpretation of fuzzy groups in a cumulative Heyting valued model for intu-
itionistic set thoery. With the interpretation we can deduce the essential part of the definitions of fuzzy
groups in the literature.

In the natural interpretation fuzzy sets and fuzzy relations are interpreted as sets and relations in
the model. Membership functions are related to fuzzy sets by using the canonical embedding from the
class of all crisp sets into the model, which assigns each crisp set to its check set. We can deduce most
of the standard equations or inequalities of definitions or properties on the basic concepts of fuzzy
sets or fuzzy relations ([3]). Fuzzy mappings are interpreted as mappings in the same model, and
we can obtain a characterization of fuzzy mappings with membership functions, which is different
from all known definitions. The meaning of the extension princilple by Zadeh is made clear with
the interpretation of fuzzy mappings ([5]). We can also consider notions such as operations of fuzzy
subsets of different universes, fuzzy relations and mappings between fuzzy subsets ([2]). Moreover
fuzzy equivalence relations and corresponding fuzzy partitions can be naturally considered with the
interpretation ([4]).

Therefore, as far as fuzzy sets, fuzzy relations, etc. are considered as extensions of crisp sets,
relations etc., this interpretation seems to be most natural.

In the following we first recall briefly some properties on the canonical embedding and fuzzy
mappings, then we consider fuzzy subgroups of a crisp group and present a characterization of fuzzy
subgroup with membership functions, which is almost the same as the defining equations in the liter-
ature. Our interpretation has its origin from [1], where the interpretation is applied only to elements
of a group.

Let H be a complete Heyting algebra a8l be the cumulativéd-valued model. The Heyting
value||¢|| is defined for every sentendeof V. Foru,v € VM, uandv aresimilariff [ju=v| = 1.

For every crisp setin V, X € VH is defined recursively by:
DX)={y;yex}, EX=1 X:y~—1

We call X the check set of X The check set of a pair (resp. an ordered pair or a cartesian product)
of crisp sets is exactly identical with the pair (resp. the ordered pair or the cartesian product) of the
check sets of the crisp sets.

Proposition 1. Supposeb(ay,---,an) is a bounded formula of Wand x,--- ,x, € V. Then

(X1, -+, %n) holds iff ||(Xa,---,%)|| =1, and
=0 (X1, ,Xn) holds iff [|¢ (X, -+, %)|| = 0.
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Basic operations such as intersection, union, and complement of sets, composition and inverse of
relations (and mappings) are naturally defined in the model.

Every setAin V" is called arH-fuzzy setand for a crisp seX every subset iv" of the check set
X is called arH-fuzzy subset of XThe mappingia: X — H; x— || X A| is called thenembership
function of A on X There is a natural correspondence betwideiuzzy subsets oK and mappings
from X to H, which preserves order and basic set operations.

An H-fuzzy subseR of X x Y is called anH-fuzzy relation from X to Y An H-fuzzy mapping
from X to Yis a mapping fronX to Y in VH.

Lemma2. Let¢: X — Y be acrisp mapping between crisp sets. Then the chefksan H-fuzzy
mapping from X to Y, andl(X) is similar to the check set @f(x) for every xe X.

In the model various algebras such as groups, rings etc. can be considered. Here a crisp group

means a crisp set which is a group with suitable operations. Then the canonical embedding preserves

the group structre as following.

Proposition 3. For every set G, G is a crisp group @ isa group in V.

The check sets of the operations (multiplication, inverse, and un{®loecome the corresponding
operations on the check getby Proposition 1 and Lemma 2. Since the axioms of group are bounded,
Proposition 1 is used in the proof.

For a crisp groufs, a setK in VH is called arH-fuzzy subgroup of @ ||K is a subgroup OGH =
1. Obviously anH-fuzzy subgroup o is anH-fuzzy subset o6.

Theorem 4. Let G be a crisp group with the unit e, K be an H-fuzzy subs&,adnd |k be the
membership function of K on G. Then K is an H-fuzzy subgroup of G iff it satisfies the following three
conditions:

(1) () A (Y) < (xy)  (WXy € X),
(2) (X)) <H(Xh) (VX EX),
(3) (e)=1.

In general, a subgroug of a groupG is normaliff xy € K impliesyx € K for everyx,y € G. Then
in the theorenK is a normal subgroup d in VH iff it additionally satisfies the following condition:

(4) (Xy) = I (Y¥) (VX y € X).

Theorem 5. Let G be a crisp group with the unit e and p be a crisp mapping from G to H. Suppose
U satisfies the following three conditions:

(1) u(X) Au(y) < H(xy) (WYXY€ X),
(2) u) <p(x Y (VxeX),
(3) ue) =1

Then there is an H-fuzzy subgroup K of G such that ., where | is the membership function of
KonG.
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In the theorem if1 also satisfies the following condition:

(4) u(xy) =H(yx) (¥xyeX),

then theH-fuzzy subgroug< becomes normal.

References

[1] H. Kodera, [0,1]-valued sheaf model of an intuitionistic set theory and fuzzy gr@upietin of
Aichi Univ. of Education44 (Natural Science), 9-23, 1995.

[2] M. Shimoda, A natural interpretation of fuzzy set theory, in: M.J. Smith, W.A. Gruver, L.O. Hall

(Eds.), Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Confer-
ence, 493-498, 2001.

[3] M. Shimoda, A natural interpretation of fuzzy sets and fuzzy relations, Fuzzy Sets and Systems,
128(2), 135-147, 2002.

[4] M. Shimoda, Fuzzy equivalence in a natural interpretation, in: T. Bilgic and B.D. Baets (Eds.),
IFSA 2003: Proceedings of the 10th IFSA World Congress, 23-26, 2003.

[5] M. Shimoda, A natural interpretation of fuzzy mappings, Fuzzy Sets and Systems, 138(1), 67-82,
2003.

201



On many-valued topologies orl_-powersets of many-valued sets

ALEXANDER SOSTAK

University of Latvia
1586 Rga, Latvia

E-mail: sostaks@latnet.lv

LetM = (M, <, A,V,*) be aGL-monoid with universal upper and lower bounds 1 and 0 resp. and let
— . E x E — E be the corresponding residuation. Following U. Hohle [1] kiglabal) M-valued
equality on a set Xve call a mappingt : X x X — M such that:

1. E(x,x) =1V¥xeX;
2. E(x,y) =E(y,X) VX,y € X;
3. E(x,y)*xE(y,2)) <E(X,2) VX, y,z€ X.

An M-valued equalityE is calledseparatedf E(x,y) = 1 impliesx =Y. In caseE satisfies at least the
first two of these conditions, it will be called &h-valued similarity relation

A many-valued, or aM-valued set is a paiiX,E) whereX is a set andk is anM-valued equality
on it. Let SET(M) denote the category whose objects Brevalued sets and whose morphisms are
mappingsf : (X,Ex) — (Y,Ey) s.t. Ex(x,X) < Ey(f(x), f(X)) for all x,x' € X (cf [1]), and let
SET(Ms) denote its full subcategory consisting of separdfiedalued sets. In some cases we restrict
the set of values whiclt can accept by a complete submon#&id- M. The corresponding full
subcategory o8ET(M) is denoted bySET(M, K).

Further, letL be a complete sublattice &1. An L-subsetA of (X,E) is calledextensionalf
AX)*E(x,X) < A(X) forall x,x € X. Let L* (resp. L®*F)) denote the family of all (resp. all
extensional)l.-subsets oK.

GivenL-subsets\, B of X we definethe degree of similaritgs follows:

£(A,B) = I(A,B) A I(B,A) where(A,B) := /\(A(x)n—>\/(E(x,x’) x B(x’))).

Proposition 1. The mappingE : L* x LX — M thus defined is an M-valued similarity relation on
LX and its restriction to [XF) is an M-valued equality.

Note that ifE is crisp and. = M = K, then‘E is the natural equality relation drf considered in
[3, p. 157]. On the other hand for am}-valued equalitye the inducedVi-valued equalityE when
restricted td_*E) also coincides with the natural equality.

Given a morphisnf : (X,Ex) — (Y,Ey) in SET(M) let f — : LX — LY be the corresponding
(forward) L-powerset operator (see e.g. [5]).

Proposition 2. If f : (X,Ex) — (Y,Ey) is a morphism irSET(M) and L is completely distributive,
thenZx (A,B) < By (f—(A), f—(B)) VA,Be L*.
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Proposition 3. If f : (X,Ex) — (Y,Ey) is a morphism inSET(M,K) and CD € LXB), then
%y(C,D) < Ex(Co f,Do f).

Proposition 4. Let f: (X,Ex) — (Y,Ey) be a morphism ir6ET(M,K) and L be completely dis-
tributive. Then for any extensional L-setsBAc LB it holds f~(A) * £(A,B) < f~(B).

Let L-SET(M,K) denote the category whose objects are quadrypes, L*, £) where(X,E) €
O|(SET(M,K)), LX is theL-powerset ofX andZ is the similarity relation on.X induced byE and
whose morphisms are pait$, f ) wheref : (X,Ex) — (Y,Ey) is a morphism irSET(M, K) and
f=: (LX,Bx) — (LY, By) is the corresponding powerset operator. FurtherEleSET(M,K) be
the full subcategory of-SET(M, K) whose objects are of the fortX,E,L%5) £).

Theorem 5. By assigning to an M-valued s€X,E) the quadruple®, (X,E) := (X,E,LX,E) and
assigning to a morphism :f(X,Ex) — (Y, Ey) the pair®_(f) := (f, f~) we define a functo®, :

SET(M,K) — L — SET(M,K). Besides, if AB € L*B), then®d, (f)(A)* E(A B) < ® (f)(B). The
forgetful functor®| : L — SET(M,K) — SET(M,K) defined by¥| (X,E,LX) = (X,E) on objects
andW¥ (f, f~) = f on morphisms is obviously left inversedf.

Recall that arM-valued topology on the-powerset* or an(L, M)-topology on a seX for short
is a mappingZ : LX — M such that

1. T(Ox) = T(lx) =1;
2. TUAV) > TU)AT(V) VU,V € LX;
3. T(Viey(Un) > Ay T(U) WU i €1} € LX,

A mapping f : (X,7x) — (Y,%y) is called continuous iffx(V o f) > (V) W € LY. Theory of
M-valuedL-topologies in case whel is crisp (and mostly wheM = L) was developed in [3], [2],
[4], and in other works.

Since in our case the ground categories SET(M,K) and EL — SET(M,K) are defined on
the basis of many-valued sefX,E), our pricipal interest concerns extensional topologies, that is
topologies such that

T(U)*EU,V)<T(V)VU,V e LX (respU,V e LXE)),

Sometimes we restrict the codomain®Dty a complete sublattidd of M.

[Lattices of (L,N)-topologies]Let (X, E) be an object oBET(M,K) and letTk (L,N, X) denote the
family of all (L, N)-topologies on it. Let

T < T, iff T1(A) < T(A) forall Ae LX.

ThenZK (L,N,X) endowed with relation< becomes a complete lattice, its upper bound and lower
bounds are respectively the discrete and indisdfletd )-topologiesTZgis and Zing Further, since in-
tersection of a family of extensionéL, N)-topologies is extensional, the famiBZ; (L, N, X) of all
extensionalL, N)-topologies on(X, E) is a complete sublattice 6f (L, N, X).

[Generation of (L,N)-topologies]Given (X,E) € O|(SET(M,K)) and a mapping : LX — N let

Ts (resp.EX) denote the family of all (resp. all extensionél),N)-topologies on(X, E) such that
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S(A) <T(A) forall Ac LX. The infimumZs of T belongs ta¥s and hence is the minimal ele-
ment of this family;S is called a subbase of thl{&, N)-topology‘Zs. Respectively, the infimurfizg

of EX is the minimal element of this family; in this cageis called a subbase of the extensional
(L,N)-topology Ts.

We define categorids TOPN(M,K), L-ETOPN(M,K), EL-TOPN(M,K) andEL-ETOPN(M,K) as
follows:

1. Objects ofL-TOPN(M,K) are pairg X, T) wherex = (X,E,LX, E) is an object ot -SET(M,K)
and7 : LX — Nis an(L,N)-topology on it.

2. Objects of EL-TOPN(M,K) are pairs(X,7) where X = (X,E,LX,E) is an object ofEL-
SET(M,K) and7 : L®*E) — Nis an(L,N)-topology on it.

3. Objects ofL-ETOPN(M, K) are paird X, 7) wherex = (X,E,LX, ) is an object of -SET(M, K)
and7 : LX — N is an extensionalL, N)-topology on it.

4. Objects ofEL-ETOPN(M,K) are pairs.X,T) whereX = (X,E,L(E) ) is an object offL-
SET(M,K) and7 : L* — N is an extensiong]L, N)-topology on it.

As morphisms betweefiX, Zx) and(9", %) in all these categories we take those morphisms$ ) :
X — 9 which are continuous with respect to the correspondingy)-topologies.

Example (1) The categor@-TOP?(2s, 2) is the category of ordinary topological spaces.

(2)The category.-TOP'(Ls,2) is the category.-FTOP studied in [3];

(3) The categorEL-TOP(Ms, 2) is isomorphic to the categofL-ETOP-(Ms,2) and in caséM = L
it is the categonfL-FTOP introduced in [3].

(4) The category.-TOP?(Ms,2) is isomorphic to the categoty TOP of Chang-Gogueh-topological
spaces.

Proposition 6. Let (X1, ;) := (X1, E1, L, T1) and (Xo, T2) := (X2, E2, L2, 1) be objects of LFOPN (M, K)
and(f,f~): X3 — Xz be a morphism in LISET(M, K). Further, lets : L*2 — N be a subbase for
T,. Then the following are equivalent:

1. (f,f7):(X1,71) — (X2,T2) is continuous;
2. 5(B) < T1(Bo f) for every Be L.

Proposition 7. Let(f, f~) : X; — X, be a morphism in LSET(M, K) and let7; be an extensional
(L,N)-topology onX;. Then the mapping. : L*2F2) — N defined byR (B) := 71(Bo f) for all
B € L*2B) js an extensionallL, N)-topology onX, £, L*2E2) ).

Theorem 8. (a) Category LTOPN(M,K) is topological over the ground categorySET(M,K)
with respect to the forgetful funct@ : L-TOPN(M,K) — L-SET(M,K).

(b) CategoryEL-TOPN(M,K) is topological over the ground categaBf-SET(M, K) with respect
to the forgetful functo : EL-TOPN(M,K) — EL-SET(M,K).

Theorem 9. (a) L-ETOPN(M,K) is a coreflective subcategory of the category@P (M, K).
(b) EL-ETOPN(M,K) is a coreflective subcategory of the categBty TOP(M, K)
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Much of the existing work on categorical foundations for Fuzzy sets deals with a single category of
fuzzy sets with values in a particular lattice with sufficient a dditional properties to capture the con-
nectives used in fuzzy propositional logic. Goguen’s early characterization of fuzzy set categories
[1], my work relating fuzzy set categories to topoi and quasitopoi [10, 11, 12, 13] (particularly using
the Higgs [2] approach to sheaves on a complete Heyting algebra and the fuzzy powerset of Pultr [9]
as starting point2), Héhle's work on structures based on MV algebras, and further consideration of
monoidal structures and weak classification of subobjects of various kinds [4, 5, 3] all fix the lattice
in which the fuzzy sets are to have their truth values. The categories we have looked at all allow for
a certain amount of internalization of the higher order logic of fuzzy sets with values in a particular
complete lattice ordered semigroup— including both quantification and powerobject formation paral-
leling, though somewhat more difficult because of non-uniqueness concerns— paralleling the theory in
topoi.

At the Linz seminar in 2000 | presented some preliminary work on properties of the lattice change
functors between categories of fuzzy sets using the Goguen definition and the predicate logic struc-
ture given by unbalanced subobjects and a second monoidal structure arising from a t-norm as in [12].
Through participation in the Linz seminar | have become aware of Rodabaugh’s work in fuzzy topol-
ogy in which a much larger category is considered in fuzzy topologies with values in many different
lattices are all objects in a single category and constructions are allowed to change lattice to solve
topological problems. That suggested to me that it might be valuable to look at a single kind of struc-
ture incorporating categorical viewpoints on the propositional and predicate logic of fuzzy sets over
many different lattices. Bart Jacobs’s work on the use of fibrations as a framework for categorical
logic [6] suggested to me that looking at a double fibration (over Betisand Closgmight combine
the structures in categories of fuzzy sets into one rich structure. This paper takes a different approach,
making a structure out of several closely linked categories rather than putting all of the objects into a
single category.

This paper presents an approach to predicate logic in a fuzzy setting using a categorical fabric.
This structure has two dimensions woven together: one dimension connects the predicates of different
types (where types are taken from the “warp” category, o8etsfor us) but with a fixed proposi-
tional logic given by a complete lattice; the other dimension connects predicates of a single type with
variation of the lattice for propositional logic, making a category of lattices of possible truth values
into the “weft” of our fabric.

If we restrict our attention to fuzzy predicate logic o@atswith values in a particular lattice for
each seBwe get a categor®,(S) (typically a partial order) of predicates abdtThese categories
of predicates are connected to each other using trios of functors: for any furictidr— T there
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are functorsf* : A.(T) — A(S), It : A(S) — BA(T) and¥s : A(S) — A(T) with F¢ F*{ V5.
Furthermore, a pullback squareSets

s T
h] pull | g
u - v
gives rise to the Beck conditions
as in the internal logic of topoi. This representation of predicate logic has its roots in the early work
of Lawvere in [7, 8].

The truth functional nature of fuzzy sets shows up in our ability to recapture the lattice of truth
valuesL from the structures on the termindl (a one element set) and then use the fact that the
terminal is a generator iBetsto recover? (S) as a colimit of the diagram consisting of the functors
fa™: A (S) — A.(T) for all of the functionsa™: T — S

If we restrict our attention to a particular sétand look at how variation in the propositional
logic affects predicates we again get from a suitable function of laticés— L’ a trio of functors
A A° AL In the cases of fuzzy sets with values in the lattices these have the following effects:

N:P(S) — P(S takeso:S—Lto Aoa:S— L’
A B (S) — B(S) takesB:S— L'to s \/{l e LA(I) <B(s)}
A B(S) — P(S) takesB:S— L'to s A{l eLIA(l) > B(s)}

With these definitiond! is the smallest left inverse far andA! is the largest left inverse. In partic-
ular, if A preserves/ then\T-| A°; if A preserveg\ thenA°-Al.

If we think of all of the categoried (S) as objects in a category where the arrows are functors
between them, then the assignmenfofS) to a setSwith functorsf* assigned to functiont: S—
T gives a contravariant functor for each latticeAll of the functorsA!, A°, andA! then give natural
transformations. Naturality of any of these with the covariant functors usirg V¢ will require that
A have further preservation properties or that the relevant lattices be completely distributive.
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In fuzzy control system the system state is described by a fuzzy rule base system, and the relation-
ship between fuzzy rule base system, system output and system input is modeled by compositional
rule of inference. The first successful practical applications of fuzzy sets were realized by means of
the Mamdani inference [12], but the Mamdani’s approach is not fully coherent with the paradigm of
approximate reasoning [1, 11]. In the fuzzy rule based control theory and usually in the approximate
reasoning the covering over of fuzzy rule base input and rule premise of a rule determine the im-
portance of that fuzzy rule and the rule output, too. The practical realization of that notion usually
depends on the application. A very thorough overview of mathematical background of that principle
can be found in [4, 7]. The Mamdani type controller is based on Generalized Modus Ponens (GMP)
inference rule, and the rule output is given with a fuzzy set, which is derived from rule consequence,
as a cut of them. This cut is the generalized degree of firing level of the rule, considering actual rule
base input, and usually it is the supremum of the minimum of the rule premise and rule input (calcu-
lating with their membership functions, of course). In fact the uninorms [5] offer new possibilities in
fuzzy approximate reasoning, because the low level of covering over of rule premise and rule input has
measurable influence on rule output as well. In some applications the meaning of that novel approach,
has practical importance. The modified Mamdani’'s approach , with similarity measures between rule
premises and rule input, does not rely on the compositional rule inference any more, but still satisfies
the basic conditions supposed for the approximate reasoning for a fuzzy rule base system [14]. The
using of distance based operators in fuzzy logic control theory (FLC) was described in [13]. From
mathematical point of view, and having results from [3], we can introduce residuum-based inference
mechanism ([9]) using distance-based uninorms.

The distance-based operators can be expressed by means of the min and max operators. The
modification of the distance based operators from [10] is related to the boundary condition for the
neutral elemeng. The maximum distance minimum operator with respeed0, 1] is defined by

_ max(x,y) if y>2e—x,
max" =< min(x,y) if y<?2e—x,
min(x,y) if y=2e—x

The minimum distance minimum operator with respec o]0, 1] is defined by
_ min(x,y) if y>2e—x,
mind" = ¢ maxx,y) ify<?2e—x,

min(x,y) if y=2e—x
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The maximum distance maximum operator with respeetd0, 1] is defined by

max(x,y) if y>2e—x,
maxl™ = ¢ min(x,y) ify<2e—x,
max(x,y) if y=2e—x.

The minimum distance maximum operator with respe&¢0|0, 1] is defined by

‘ min(x,y) if y>2e—x,
minI" = ¢ maxx,y) ify<2e—x,
max(x,y) if y=2e—x.

The distance-based operators have the following properties

o max" and mag'® are uninorms,
e the dual operator of the uninorm nﬁ&is maX'®, and

e the dual operator of the uninorm n&&is max"".

In [3] and [2] there were studied two important classes of uninorms: the class of left-continuous
and the class of right-continuos ones. We can find there also the properties of the conjunctive left-
continuous idempotent uninorm with neutral elemeai0, 1] , and of the disjunctive right-continuous
idempotent uninorm with neutral elemex¢ [0, 1] with a super-involutive decreasing unary operator
g. Based on [3] and [2], we conclude: Operator if{8%s a conjunctive left-continuous idempotent
uninorm with neutral elemer# €]0, 1] with the super-involutive decreasing unary operaoq) =
2e—x=1—x. Operator mifg* is a disjunctive right-continuous idempotent uninorm with neutral
elemente €]0, 1] with the sub-involutive decreasing unary operaor = 2e—x=1—x.

The paper [3] contain general theoretical results related the residual implicators of uninorms,
based on residual implicators of t-norms and t-conorms. Residual opBgatoonsidering a uninorm
U can be represented in the following form for @tly) € [0,1)?

Ru(x,y) =sup{z€ [0,1] |U(x,2) <Vy}.

Uninorms with neutral elements= 0 ande = 1 are t-norms and t-conorms, respectively, and
related residual operators are investigated in [3, 5, 6, 8, 9]. If we consider a urliheritih neutral
elemente €]0,1[, then the binary operat®, is an implicator if and only i{Vz €]e, 1[)(U(0,z) = 0)

. The residual implicatoR, of uninormU is denoted bymp,. According to Theorem 8. in [3]
we introduce implicator of the distance based operatorg?g‘iaxOperator ma@@,‘;‘ is a conjunctive
left-continuous idempotent uninorm with the unary opergte) = 1 — x, and its residual implicator
Impma)gisn is given by
max(1—xy) if x<y,
M Praygis = { min(1—x,y) elsewhere (1)

In the theory of approximate reasoning introduced by Zadeh in 1979, the knowledge of system
behavior and system control can be stated in the form of if-then rules. In Mamdani-based sources it
was suggested to represent an

if xis Athenyis B
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rule simply as a connection (for example as a t-norii#, B), specially min) between the so called
rule premisex is A and rule consequencg:is B. Let x be from universeX, y from universeY, and
let x andy be linguistic variables. Normal fuzzy s&ton X C R finite universe is characterized by its
membership functiopa : X — [0, 1], and normal fuzzy seB on universer C R is characterized by
its membership functiopg : Y — [0, 1]. The Generalized Modus Ponens reflects the real influences
of the implication or connection choice on the inference mechanisms in fuzzy systems. Usually the
general rule consequenBHYy) for it rule from a rule system, for rule base inpifx) is obtained by

Bi(y) = SUXF(T(A’(X), Imp(Ai(X),Bi(Y)))- )
Xe
The FLC rule base output is constructed as a crisp value calculated with a defuzzification model, from
rule base output

B:)ut(y) = S(B,nv S(Blnfl? S( - 7S(B/17 B/27 Bll))))

Rule base output is an aggregation of all rule consequd%i(:ye)sfrom the rule basei & 1,2,...,n).
As aggregation operator, t-conorms are usually used.

Although the minimum plays an exceptional role in fuzzy control theory, there are situations re-
quiring new models. In system control one would intuitively expect: to make the powerful coincidence
between fuzzy sets stronger, and the weak coincidence even weaker. The distance-based operators
group satisfy these properties. The papers [13, 14] contain the basics of approximate reasoning with
distance-based operators using Degree of Coincidddaee) in the inference mechanism.

Let we consider residuum-based approximate reasoning and inference mechanism for special class
of distance based operators. Hence, and because of the results from (2), we can consider the general
rule consequence fd¥ rule from a rule system as

B (y) = SUp(MaX(A'(x), IM Pyyan (A (X). Bi())).

XeX
or using (1)
') — maxs' (A (x), max(1— Ai(x),Bi(y)) if A(x) <Bi(y),
Bi(y) = feuxp{ ma E”(A’(x),min(l—Ai(x),Bi (y)) elsewhere 3)

The crisp rule base output is constructed also with a defuzzyfication model, from rule base output
B;ut by (3). As aggregation operator for rule consequences in this case, dual opergfgr ofake
maxj's' can be used.

Taken into account Proposition 13 from [3], it can be conclude, that conjunctive left-continuous
idempotent uninorm mg¥' and its implicatorlmpma@i_’n satisfy the inequality

Maxg's (A (X), 1M Pryaumn (A (X), Bi(Y)) < Bi(Y)
if A'(x) =Ai(x) forall xe X.
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We will present mathematical results on deductive and inductive aspects of different rule based sys-
tems of fuzzy logic motivated by computer science applications and related to fuzzy logic program-
ming (FLP), fuzzy databases, fuzzy inductive logic programming (FILP) and fuzzy similarity based
unification. We refer on results obtained with several coauthors. Our results are mainly generaliza-
tions of older results of many other researchers in the direction of extending them to a wider class of
operators. In the talk we will try to put them into a suitable historical perspective (which we cannot
list completely here in this extended abstract).

We split our presentation to results on rule based systems and to results on fuzzy similarity based
unification.

In the classical logic the implicatiod < B is equivalent to the claudé v —B. This is no more
true in fuzzy logic in general. So, it is natural to study two types of rule systems — those where rules
are implications and those where rules are clauses ([2]).

Implication rule systems without negatio®e will study an FLP system based on the fuzzy
modus ponens for weighted formulas
(B,b), (H < B,r)
(H7C| (b, I'))

wherel is the truth function of the implicatios-, andC, is the residual conjunctor (not necessary a
t-norm). The FLP computation can be based on the backward use of this rule, namely, starting with
query ?- H, having the ruléH «— B,r) we proceed with query2C; (B, r), and having the fadi, b)

we finish with the computed answ@r(b,r). The notion of a correct answer is based on satisfaction of
truth functional fuzzy logic in narrow sense ([4]). To model the aggregation of partial results, bodies
of our rules have the form @;,...,...By).

We prove ([10]) a Pavelka-like completeness results for implication rule based FLP systems with-
out negation under condition that @'s and aggregations @ in body are left continuous.

We show ([6]) that FLP are equivalent to a variant of generalized annotated programs GAP under
following transformations:

FLP (H «— @(Bs,...,Bn),r) transform to GAFH : C (@(X1,...,Xn),r) < B1 : X1& ... &Bp : X,

whereC, (@(x,...,%n),r) is here considered as an head annotation term and
GAPH : f(Xg,...,%X1) < By : X1& ... &By @ X, transform to FLRH — @+ (By,...,By),1)
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where @ is a body aggregation induced by the head annotation ferm

We study a fuzzy relational algebra based on this FLP and discuss join evaluation strategies for
finding best, top-k, threshold argebest answer based on an upper residuation operator.

A model of fuzzy inductive logic programming ([11]) is based on a multiple use of classical
ILP system learning the annotation term of the transformed GAP program for a graded classification
example. A comparison with classification trees on a small example will be given. A problem of
learning with qualitative condition will be formulated.

Our acquaintance is that FLP systems are more suitable for deductive (database) applications and
GAP systems are more suitable for inductive tasks. Equivalence between FLP and GAP yields a
system with unified deductive and inductive part. Informally, we can say, that what is in FLP hidden
in the aggregation operator of the body, this is in the GAP represented by the annotation term of the
head of the rule.

We will discuss connections of FLP, and more directly of GAP, to Bayesian networks, where the
probability production operator corresponds to the head annotation term.

Fuzzy resolution for clausal rule systenWe study operator$, for which the fuzzy resolution
rule with weighted clauses
(y\/G,X), (B\/_'avy)
(YVB, fu(xy))
is sound and compare it to results in the deMorgan logic with involutive negation ([1,5]), approximate
reasoning, possibilistic logic and different forms of residuation and fuzzy operators. Hawimg
truth function of the disjunction anidp the corresponding residual, for the operator

fv(xvy) = aeir[})fl](D(RD(aa)()a RD(l_ a>y)))

we prove the soundness result ([9]).

Similarity based unificationBased on the presented model of FLP ([7]), a similarity based uni-
fication approach is constructed by adding axioms of fuzzy equality to a fuzzy logic program. Con-
nections to several max-min similarity based systems ([3], [8]]) are discussed. Several models of
generating fuzzy similarities are presented (e.g. from the geometry of the sample space, from fuzzy
sets of linguistic expressions, ...).

From a point of view of flexible querying systems, we consider the object-attribute model. We
distinguish, whether the data type of the attribute value is an element of the attribute domain from the
case when the data type is a subset of the domain. In the case when a fuzzy set acts as an attribute
value of data type being an element of the domain, we discuss several possibilities of defining the
degree of unification (e.g. degree of fuzzy equality of fuzzy sets, measure theoretic and metric space
approach, generalization of the probability of the equality of two random variables, ...).

We will illustrate our approach on several small illustrative examples. Several problems will be
formulated.
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