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Since their inception in 1979 the Linz Seminars on Fuzzy Set Theory have emphasized the develop-
ment of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and estab-
lished mathematicians whose work outside the fuzzy setting can provide direction for further research.
The seminar is deliberately kept small and intimate so that informal critical discussion remains cen-
tral. There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2004 will be already the 25th seminar carrying on this tradition. It is therefore a good
opportunity to review the most important mathematical aspects of fuzzy systems. As usual, the aim
of the seminar is an intermediate and interactive exchange of surveys and recent results. We expect
that the presented talks will provide a comprehensive mathematical framework for the theory and
application of fuzzy systems.

Erich Peter Klement
Endre Pap
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Fuzzy random variables: development and state of the art

MARÍA ÁNGELESGIL

Departamento de Estadística e I.O. y D.M.
Universidad de Oviedo
33071 Oviedo, Spain

E-mail: angeles@pinon.ccu.uniovi.es

1 Introduction

The concept of random variable is clearly fundamental to the fields of Probability and Statistics.

A random experiment is a process in which the result or outcome is not known with certainty
before the experiment is performed. A (classical) random variable is a measurable function defined
on the sample space of the random experiment which converts each particular experimental outcome
into a real or vectorial value. Measurability is supposed to guarantee that many useful probabilities
can be computed.

In addition to randomness, a certain imprecision can arise either in perceiving or reporting existing
real/vectorial values, or in identifying existing values which are essentially imprecise. Fuzzy random
variables have been introduced to model imprecisely-valued measurable functions where imprecision
is formalized in terms of fuzzy sets.

2 Fuzzy random variables as a model for fuzzy perceptions/observations
of existing real-valued random mechanisms

Kwakernaak (1978, 1979), and later Kruse and Meyer (1987) in a more elaborated way, introduced
fuzzy random variables as a model for the situations in which fuzzy imprecision arises either in the
perception or in the report of values of a real-valued random variable (referred to as the ‘original’).

Let Fc(R) denote the class of the normal convex fuzzy subsets of the Euclidean spaceR having
compactα-levels forα ∈ [0,1], that is, the class of mappingsU : R −→ [0,1] such thatUα = {x ∈
R |U(x)≥ α} if α ∈ (0,1], = cl(suppU) if α = 0, are nonempty compact intervals. Then,

Definition 1. (Kruse and Meyer, 1987)Let (Ω,A ,P) be a probability space. Afuzzy random
variable is a mappingX : Ω−→ Fc(R) such that for anyα ∈ [0,1] the real-valued mappings infXα :
Ω−→R, supXα : Ω−→R (with inf Xα(ω) = inf

(
X (ω)

)
α, supXα(ω) = sup

(
X (ω)

)
α, for all ω ∈Ω)

are real-valued random variables (i.e., Borel-measurable real-valued functions).

In this approach when one refers toparametersassociated with a fuzzy random variable, one
is considering either real/vectorial-valued parameters of the probability distribution of the original
random variable or fuzzy-valued parameters defined on the basis of Zadeh’s extension principle (see
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Kruse and Meyer, 1987). Thus, ifθ(X) is a parameter of a real-valued random variableX, and
E(Ω,A ,P) is the class of possible originals ofX , the associatedfuzzy parameterof variableX cor-
responds toθ(X ) : R−→ [0,1] such that

θ(X )(t) = sup
X∈E(Ω,A ,P),θ(X)=t

inf
ω∈Ω

{
X (ω)

(
X(ω)

)}
for all t ∈ R.

In particular, whenθ(X) = E(X|P) is the population expected value ofX, then thepopulation
fuzzy expected valueθ(X ) is the fuzzy set inFc(R) such that

(
θ(X )

)
α =

[
E(inf Xα|P),E(supXα|P)

]
for all α ∈ [0,1].

3 Fuzzy random variables as a model for existing fuzzy-valued random
mechanisms

A second approach to fuzzy random variables conceives them as a model for the situations in which
fuzzy imprecision arises in the definition of the values of the random mechanism or variable. More
precisely, a fuzzy random variable is intended to be a measurable function defined on the sample space
of the random experiment and converting each particular experimental outcome into a fuzzy subset of
a separable Banach space (often a Euclidean one).

Let (B, | · |) be a separable Banach space, and letF (B) = {U : B−→ [0,1] |Uα ∈K (B) for all α ∈
[0,1]}, with Uα = {x∈ B|U(x) ≥ α} for α ∈ (0,1], = cl(suppU) if α = 0, andK (B) = {nonempty
bounded and closed subsets ofB}. In other words,F (B) is the class of the normal upper semicontin-
uous[0,1]-valued functions defined onB with bounded closure of the support.

Puri and Ralescu (1986) formalized fuzzy random variables (also calledrandom fuzzy sets) as an
extension of random sets as follows:

Definition 2. (Puri and Ralescu, 1986)Let (Ω,A ,P) be a probability space. Afuzzy random
variable is a mappingX : Ω−→ F (B) such that for anyα ∈ [0,1] the set-valued mappingXα : Ω−→
K (B) (with Xα(ω) =

(
X (ω)

)
α for all ω ∈Ω) is a compact random set, that is, it is Borel-measurable

with the Borelσ-field generated by the topology associated with the well-known Hausdorff metric on
K (B),

dH(K,K′) = max

{
sup
k∈K

inf
k′∈K′
|k−k′|, sup

k′∈K′
inf
k∈K
|k−k′|

}
.

Recently (see Colubiet al., 2001, 2002), Definition 3.1 has been proven to be equivalent to the
one formalizing fuzzy random variables asF (B)-valued random elements (that is, Borel-measurable
F (B)-valued functions) whenF (B) is equipped with the Skorohod metric

dS(U,U ′) = inf
λ∈Λ

max

{
sup

α
|λ(α)−α| , sup

α
dH(Uα,U ′λ(α))

}
,

whereΛ = {λ : [0,1]−→ [0,1] | strict increasing function withλ(0) = 0,λ(1) = 1} for U,U ′ ∈ F (B).

Furthermore (see also Colubiet al., 2001, 2002), the measurability condition in Definition 3.1 has
been proven to be equivalent to that (cf. Diamond and Kloeden, 1994) based on thedq metrics on

F (B) by Klementet al. (1986), for allq∈ [1,∞), wheredq(U,U ′) =
(∫

[0,1]
[
dH(Uα,U ′α)

]q
dα
)1/q

.

On the other hand, Klementet al. (1986) have introduced fuzzy random variables asF (B)-valued
random elements whenF (B) is equipped with the sup-metric, that is,
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Definition 3. (Klement, Puri and Ralescu, 1986)Let (Ω,A ,P) be a probability space. Afuzzy
random variable is a mappingX : Ω −→ F (B) which is Borel-measurable with the Borelσ-field
generated by the topology associated with the metric

d∞(U,U ′) = sup
α∈[0,1]

dH(Uα,U ′α)

for all U,U ′ ∈ F (B).

The connections between notions in Definitions 3.1 and 3.2 are the following ones (see Colubiet
al., 2001, 2002):

Proposition 4. If X : Ω−→ F (B) is Borel-measurable with the Borelσ-field generated by the topol-
ogy associated with d∞, then it is Borel-measurable with the Borelσ-field generated by the topology
associated with the dS.

However, the converse implication fails, since the requirements for fuzzy random variables in
Definition 3.2 are too rectrictive. An illustrative counterexample for this assertion can be found in
Colubiet al. (2002).

Moreover, whenB= R and ImX ⊂Fc(R), then Definitions 2.1 and 3.1 coincide (see, for instance,
Zhong and Zhou, 1987), although they represent models for different situations in practice.

In this second approach theparametersassociated with a fuzzy random variableX are usually
defined on the basis of those for the corresponding parameters for compact random sets. As an exam-
ple, if E

(
dH(X0,{0})

∣∣P) < ∞, then Puri and Ralescu (1986) have defined thefuzzy expected value
of X as the unique fuzzy setE(X |P) ∈ F (B) such that

(
E(X |P)

)
α = Aumann’s integral of the com-

pact random setXα for all α ∈ [0,1] (i.e.,
(
E(X |P)

)
α =

{
E(X|P) |X : Ω −→ B, X ∈ L1(Ω,A ,P),

X ∈ Xα a.s. [P]
}
).

It is convenient to remark that ranges of fuzzy random variables have been extended in some
studies to include unbounded values (see, for instance, Li and Ogura, 1999).

4 Some probabilistic and statistical studies concerning fuzzy random
variables

Since from a mathematical viewpoint Definition 3.1 includes 2.1 and 3.2 as special cases, from now
on we will assume fuzzy random variables we deal with are random elements in the Skorohod sense.

Metric propertiesof the space(F (B),dS) indicate (Colubiet al., 2002) that it is complete and
separable. In this respect, it should be pointed out that(F (B),d∞) is complete but non-separable
(Puri and Ralescu, 1986, Klementet al., 1986), whence handling this space would be definitely more
complex than working with(F (B),dS).

Fuzzy random variables can becharacterizedin generalas certain limits of sequences of elemen-
tary types(more precisely, either simple or having simpleα-levels) of these variables (see López-Díaz
and Gil, 1997, 1998a).

In the set-valued case, when we work in a statistical setting the choice of the Aumann expectation
(1965) of a compact random set among possible integrals (see, for instance, Molchanov, 1998), can
be justified by means of the Laws of Large Numbers for random sets (see Artstein and Vitale, 1975).
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In an analogous way,Laws of Large Numbers(like those by Klementet al., 1986, Colubiet al., 1999,
Molchanov, 1999, Tayloret al., 2001, Krätschmer, 2002, Proske and Puri, 2003, and so on) justify the
choice of the fuzzy expected value in Puri and Ralescu’s sense.

Some other probabilistic results concerningdifferentiability (see, for instance, Puri and Ralescu,
1983, Román-Flores and Rojas Medar, 1998, Rodríguez-Muñizet al., 2003), integrability (see, for
instance, Gong and Wu, 2002, Rodríguez-Muñiz and López-Díaz, 2003, Krätschmer, 2004),limit
theorems(cf. Tayloret al., 2001, Liet al., 2003),reversing the order of integration(see López-Díaz
and Gil, 1998b),fuzzy martingales(see, Stojaković, 1994, Li and Ogura, 2001, Terán, 2003), and so
on, can be found in the recent literature.

In which concern statistical developments involving fuzzy random variables, we can mention
on one handdecision problems including fuzzy-valued utilitiesor rewards(see Gil and López-Díaz,
1996, Kuranoet al., 2002),regression analysis(see Näther and Körner, 2002, Wünsche and Näther,
2002) and, on the other hand, recent studies oninferential techniques on either real- or fuzzy-valued
parameters of a fuzzy random variable. As an example for the last one, we can mention inferences on
the fuzzy expected value of a fuzzy random variable (see Körner, 2000, Montenegroet al., 2003).
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Fuzzy filter functors revisited: a 2-categorical overview
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It was noted in [1] that limits in 2-categories are not as easy to describe as limits in ordinary categories.
In particular, there is a class of (2-categorical) limits called weighted or indexed limits [2-4] which can
be defined as follows: take a 2-functor G:D−→ H, and define also a weight onD to be a 2-functor F:
D −→ CAT (the category of categories). If, following the notation of [4], we denote by [D, CAT ] the
2-category whose objects are 2-functors fromD to CAT , whose 1-cells are natural transformations,
and whose 2-cells are modifications, then the F-weighted limit of G:D −→ H is a representing object
for [D, CAT] (F, H(-, G)). A great advantage of a 2-categorical point-of-view and of the more general
versions of limits it allows is that paths are opened to simple algebraic constructions over categories
which may not be available if the scope is restricted to ordinary categories.

Eklund and Gahler [5] defined a fuzzy filter to be an element M of LLx s.t.

(1) M(α−) = α (α is the constant mapping of X into L with valueα)

(2) f, g in LX and f≤ g imply M(f) ≤M(g)

(3) ∀f, g in LX, M(f ∧ g)≥M(f) ∧M(g)

where X is a set and M is a meet semilattice. They then define the covariant set functor FL related
to L, which they call the fuzzy filter functor, to be the functor which assigns each set X to the set of all
(L-) fuzzy filters on X. When L is {0, 1}, they call FL the proper filter functor. As noted in [1], they
show that the proper filter functor becomes a monad in certain cases, as does the fuzzy filter functor,
and they point out that Eilenberg-Moore objects can be defined for the proper filter functor as monad,
but they do not carry this further to FL as monad.

But, again as discussed in [1], a great deal more can be done. In fact, it is proved in [1] that the
fuzzy filter functor is (isomorphic to) a 2-functor FS : Dsimp −→ idl , whereDsimp is the category
with one object (*) whose morphisms (from * to *) comprise the simplicial category of finite ordinals
and order-preserving maps (see [2] or [4]) andidl is the 2-category whose 1-cells (morphisms) are
order-ideals (relations compatible with the orders on the domain and on the codomain) and whose
2-cells are inclusions. Given this, Eilenberg-Moore objects for the fuzzy filter functor emerge natu-
rally as they do for any other 2-functor fromDsimp to any 2-category. Furthermore, it is known that
Eilenberg-Moore objects are constructible from products, inserters, and equifiers (see [4], p. 44).
Since Eilenberg-Moore objects are constructible from the fuzzy filter functor, it must be the case that
a relation exists between the fuzzy filter functor and the more elementary constructs products, insert-
ers, and equifiers. This means that the fuzzy filter functor can be broken down into a set of simpler
functors (details and references may be found in [1]).

This paper carries these results and ideas a bit further. We describe, first of all, exactly what
these constructs (products, inserters, and equifiers) which underlie the fuzzy functor would look like.
Second, we show that certain already known properties of the fuzzy filter functor have very simple

16



2-categorical analogues. Thus, for instance, the fact the fuzzy filter monad is a submonad of the
crisp filter monad ([5], Prop. 7.14, p.135) has an interesting simple expression when expressed in
2-categorical terms. We also explore the implications of this 2-categorical view for fuzzy topology.

Perhaps most importantly, this paper takes a number of finite limit types, including products,
inserters, equifiers, inverters, and lax limits, and describes how requirements for their existence “con-
strain” the set (lattice, semilattice, ...) over which the fuzzy filters are taken and how they constrain
the nature of the fuzzy filters themselves. Consider, for instance, the inserter. If I is the inserter object
and A is any object, then for any pair of 1-cells a, b : A -> I, there must exist a 2-cell (the “inserted”
2-cell) θ : i • a => i • b (see, e.g., [4], p. 38). Now consider the enriched monad D of finitely gener-
ated up sets overPosas described in [6] (see esp. p. 262). The internal hom-functor over its (strict)
algebras is given by the equalizer

Hom((B,≤), (A, ≤)) = all order-preserving maps in AB ordered pointwise

which equalizes AB−> A(DB) and AB−> DA(DB)−> A(DB). If we now “generalize” this equal-
izer to be an inserter, we must restrict further the set of maps in Hom((B,≤), (A, ≤)) to ensure that
the inserted 2-cells actually exist. Such restrictions and conditions have interesting implications for
the nature of Eilenberg-Moore objects over fuzzy filters and for fuzzy topologies.

SOME USEFUL BACKGROUND

MONADS

Given a category C, a monad consists of an endofunctor T along with two natural transformations
η: idC −→ T andµ : T2 −→ T s.t. µ(A) • Tη(A) = idTA = µ(A) • η(TA) andµ(A) • Tµ(A) =
µ(A) • µ(TA). In a 2-categoryC, a monad may be defined as an object X along with an endo-1-cell S
and two 2-cells, a unit 2-cellη: 1−→ S and a multiplication 2-cellµ: SS−→ S [7].

LIMITS

Generally speaking, one takes limits over functors whose domains are small categories (I , J, ...)
and whose codomains are locally small categories (C). The so-called abstract definition of a limit is
the definition in terms of representations. For a functor G:I −→ C, an object L inC is a limit for G
iff there is a representation C(X, L)∼= [I, C](∆X, G), i.e., for every natural transformation from the
diagonal functor to G there is a representing morphism from X to the limit object inC for every object
X in C. This description converts readily to the “concrete” description in terms of cones. Note that for
ordinary categories the natural isomorphism from C(X, L) (the covariant hom-functor) to [I, C](∆X,
G), two functors from C toSet, is straightforward.

Now consider the definition of a limit in a 2-category. We shall define such a limit, for reasons
that will soon be apparent, as follows: a (2-categorical) limit L for a 2-functor G:I −→ C is given by
the representation C(X, L)∼= [Iop, Cat](!, (∆X, G)) (here! is the terminal 2-category - see [8]). There
are two important aspects of this definition for our purposes. First, both sides of the isomorphism
are categories (by assumption), so we must take account of 2-cells as well as morphisms (1-cells).
Second, we expand the right side to include !; this doesn’t accomplish anything in particular here but
will prove useful when we turn to weighted limits below. As far as 2-cells are concerned, the universal
property requires that there be an invertible 2-cell which takes each Gu (Gi −→G j) • τi (X −→Gi)
to τ j (X −→ G j).

For full generality, we need somewhat more from our notion of a limit. Suppose we replace the
terminal 2-category (!) in our definition above by a (any) 2-functor fromI to Cat (known as an
“index” or “weight”). Now, since (∆X, G) is also a functor fromI to Cat (by composition of G and
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the hom-functor), a weighted cone over G with vertex X is given by a 2-natural transformation from
F to (∆X, G). Where an ordinary limit, then, requires only a single morphism to connect X with each
vertex of G (each G(-) in the diagram below), a weighted limit requires a set of morphisms (in fact,
since these are 2-categories, a category of morphisms) from X to each Gi .

← X −→
↓ f j ↓ fk

G( j) −→
G(u)

G(k)
u : j −→ k

FUZZY FILTERS AS MONADS

There are two fundamental objectives served by the construction of monads in a (2-) category
C. One is the derivation of Eilenberg-Moore objects or algebras from the monads, and the other is
the construction of a (2-) category of the monads themselves through which functors intoC may be
factored. Suppose we begin withrel, the 2-category whose objects are sets, whose 1-cells (morphisms)
are binary relations, and whose 2-cells (morphisms of morphisms) are inclusions. We ask what sorts
of objects inrel (i.e., which sets), if any, are monadic, that is, which objects X may be equipped with
an associative multiplicationχ (more specifically, an endo-1-cell x and a 2-cellχ such thatχ takes
xx to x and is associative), and with a unit 2-cellχ‘ from X (i.e., the 1-cell idx) to x (note that we
follow here, for the most part, the presentation in [9]). Monads inrel, then, are just pre-ordered sets
<X, ≤>, the pre-ordering providing the obvious multiplication and unit. These pre-ordered sets can
be seen to be the objects of a 2-category with morphisms (called M-modules by Koslowski in [9])
<X, ≤> −→ <Y,<−> those relations r for which (≤r) ⊆ r ⊆ (r<-). In other words, if there is
an arrow x−→ x’ in X and r: x’ −→ y then also r: x−→ y and the same mutatis mutandis for r, y,
and y’. Such relations are called order-ideals, and, along with inclusions as 2-cells, they comprise the
category of monads inrel calledidl in [9].

We know also ([5], p. 135) that the fuzzy filter functor generates monads in (the ordinary category)
set, i.e., that the set of all fuzzy filters on a set X is a monad inset. However, in a 2-categorical sense,
the set of all fuzzy filters on a set X may also be thought of as a monad inidl , since such monads are
simply closure operators (see [9], p. 198). It is this role which leads to the construction of Eilenberg-
Moore objects for the fuzzy filter functor and hence to pie limits as described above.
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1 Introduction

In this communication we propose two logically sound fuzzification and defuzzification techniques for
implementing a credibility calculus on a set of propositional expressions. Both rely on a credibility
evaluation domain using the rational interval[−1,1] where the sign carries a split truth/falseness
denotation. The first technique implements the classic min and max operators where as the second
technique implements Bochvar-like operators. Main interest in the communication is given to the
concept ofnatural fuzzificationof a propositional calculus. A formal definition is proposed and the
demonstration that both fuzzification techniques indeed verify this definition is provided.

2 Logical fuzzification and polarization: an adjoint pair

2.1 Introducing logical fuzziness

Let P be a set of constants or ground propositions. Let¬, ∨ and∧ denote respectively the contradic-
tion, disjunction and conjunction operators.

The setE of all well formulated finite expressionswill be generated inductively from the following
grammar:

∀p∈ P : p∈ E, (1)

∀x,y∈ E : ¬x | (x) | x∨y | x∧y ∈ E. (2)

The unarycontradictionoperator¬ has a higher precedence in the interpretation of a formula, but
we generally use brackets to control the application range of a given operator and thus to make all
formulas have unambiguous semantics. We suppose in the sequel that all other operators such as
implication, equivalence, xor etc are derived with the help of these three basic operators: contradiction,
conjunction and disjunction.

With these well formulated propositional expressions we associate a rational credibility evaluation
r : E → [−1,1] where∀x,y∈ E, rx = 1 meansx is certainly true, rx = −1 means thatx is certainly
falseandrx > ry (resp. rx < ry) means that propositional expressionx is more (resp. less) credible
than propositional expressiony. Such a credibility domain is calledL , and we denoteEL = {(x, rx) |
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x∈ E, rx ∈ [−1,1]} a given set of such more or less credible propositional expressions, also called for
shortL-expressions.

We implement thecontradictionoperator onL-expressions by simplychanging the signof the
associated credibility evaluation, i.e.

∀(x, rx) ∈ EL : ¬(r, rx) = (¬x,−rx). (3)

The sign exchange thus implements an antitone bijection on the rational interval[−1,1] where the
zerovalue appears as contradiction fix-point.

In classical bi-valued logic, it is usual to work syntactically only on thetruth point of view of
the logic, theuntruthor falsenesspoint of view being redundant through the coercion to the excluded
middle. For instance, writing ”(a,b) ∈ R” implicitly means assuming that this proposition is actually
true and its contradiction false, otherwise we would write ”(a,b) 6∈ R”.

We will also rely syntactically on such an implicit truthfulness point of view and always denote
the truthfulness possibly induced from the underlying credibility calculus through a truth projection
operator1 µ, acting as apositivedomain and range restriction on the credibility operatorr.

Figure 1: Split Truth/Falseness Semantics

Let (x, rx) ∈ EL be anL-expression:

µ(x, rx) =

{
(x, rx) if rx≥ r¬x,

(¬x, r¬x) otherwise.
(4)

Truthfulness of a given expressionx is thus only defined in case the expression’s credibilityrx

exceeds the credibilityr¬x of its contradiction¬x, otherwise the logical point of view is switched to
¬x, i.e the contradicted version of the expression (see Figure 1).

As rx ≥ r¬x⇔ rx ≥ 0 it follows from Equation 4 that the sign (+ or−) of rx immediately carries
the truth functional semantics ofL-expressions, in the sense that anL-expression(x, rx) such that
rx ≥ 0 may be calledmore or less true(L-true for short) and an expression(x, rx) such thatrx ≤ 0
may be calledmore or less false(L-false for short).

1In fuzzy set theory, theµ operator generally denotes a fuzzy membership function. We here choose the sameµ symbol
on purpose as our mainL-valued formulas mostly concernL-valued characteristic functions.
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Only 0-valued expressions appear to be bothL-true andL-false, therefore they are calledL −
undetermined2.

To be able to compute the credibility evaluation associated with anyL-expression, we still need
to implementL-valued versions of the conjunction and disjunction operators.

The classic min and max operators may be used:
∀(x, rx),(y, ry) ∈ EL :

(x, rx)∨ (y, ry) = (x∨y,max(rx, ry)) (5)

(x, rx)∧ (y, ry) = (x∧y,min(rx, ry)) (6)

The operator triple<−,min,max> implements on the rational interval[−1,1] an ordinal credibil-
ity calculus, denoted for shortLo, that gives a first example of what we shall call anatural fuzzification
of propositional calculus.

To appreciate usefulness of our split truth/falseness semantics, let us look at what happens in the
Lo-valued framework with the truthfulness of certain classical tautologies or antilogies.

For instance, truthfulness of the tautology(x∨¬x) is always given, as max( rx,−rx)) ≥ 0 in any
case. TautologicalLo-valued propositions thus appear as beingLo-true in any case. Therefore we
call themLo-tautologies. On the other hand, truthfulness of the antilogy(x∧¬x) is only defined
when min(rx, r¬x) = 0. More or less “untruthfulness” of such an expression is however always given.
Therefore, we call such propositionsLo-antilogies.

Finally, let us investigate an implicativeLo-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication, i.e. falseness of the
conjunction ofr(x) and¬r(y), we obtain

min( rx,max(−rx, ry)) ≥ 0 ⇒ ry≥ 0,

i.e. the followingLo-tautology: “(x, rx) and(x, rx)⇒ (y, ry) being conjointlyLo-true always implies
(y, ry) beingLo-true “.

As a main result of our construction, we recover in this sense all classical tautologies and antilogies
as particular limit case if we reduce ourLo-valued credibility calculus to a bi-valued{−1,1} one.

2.2 On natural logical polarization

To explore the formal consequences of our split truth/falseness semantics, we need to formalize the
logicaldefuzzificationor polarizationwe implicitly operate when applying toL-expressions anL-true
or L-false denotation.

Unfortunately, the standard defuzzification technique, denoted in the fuzzy literature asλ-cuts
(see Fodor & Roubens [4]), whereλ ∈ [−1,1] represents the level of credibilityrx from which on a
givenL-expression is considered to be true, is not generally consistent with our split truth/falseness
semantics (see Bisdorff [2]).

2“ . . . I have long felt that it is a serious defect in existing logic that it takes no heed of thelimit between two realms. I
do not say that the Principle of Excluded Middle is downrightfalse; but I do say that in every field of thought whatsoever
there is an intermediate ground betweenpositive assertionandnegative assertionwhich is just as Real as they. . . .“(C. S.
Peirce, Letter from February 29, 1909 to William James)
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What we need is an extended three-valued cut operator (see Bisdorff & Roubens [1]). LetEL be
a set ofL-expressions and letL3 denote the restriction ofL to the three credibility values{−1,0,1}.
π : EL → EL3

represents a logical polarization operator defined as follows:
∀(x, rx) ∈ EL :

π(x, rx) =


(x,1) ⇔ rx > 0
(x,−1) ⇔ rx < 0
(x,0) ⇔ rx = 0

Thatπ operator indeed implements our split truth/falseness semantics may be summarized by stating
the following categorical equation.

µ◦π = π◦µ. (7)

and a credibility calculusL verifying Equation 7 is callednatural.

For instance, we may show thatLo implements a such natural credibility calculus. For this we
must proof that theπ operation gives a natural transformation ofLo-valued expressions. Following
the general inductive construction ofEL it is sufficient to show naturality ofLo for each of the basic
logical operators.

Lo-valued contradiction: for any(x, rx)∈ELo, if rx > 0 ,µ(π(x, rx))= µ(x,1)= (x,1)= π(µ(x, rx));
if rx < 0 , µ(π(x, rx)) = µ(x,−1) = (¬x,1) = π(¬x,−rx) = π(µ(x, rx)); and if rx = 0 , µ(π(x, rx)) =
µ(x,0) = (x,1) == π(x, rx) = π(µ(x, rx)).

Lo-valued disjubction: for any(x, rx),(y, ry) ∈ ELo, if rx > 0 or ry > 0, µ(π(x∨y,max(rx, ry))) =
µ(x∨y,1) = (x∨y,1) = π(x∨y,max(rx, ry)) = π(µ(x∨y,max(rx, ry))); if rx < 0 andry < 0, µ(π(x∨
y,max(rx, ry))) = µ(x∨y,−1) = (¬(x∨y),1) = π(¬(x∨y),min(−rx,−ry)) = π(µ(x∨y,max(rx, ry))).

Finally,Lo-valued conjunction: for any(x, rx),(y, ry) ∈ ELo, if rx > 0 andry > 0,µ(π(x∧y,min(rx, ry)))=
µ(x∧ y,1) = (x∧ y,1) = π(x∧ y,min(rx, ry)) = π(µ(x∧ y,min(rx, ry))); if rx < 0 or ry < 0, µ(π(x∧
y,min(rx, ry))) = µ(x∧y,−1) = (¬(x∧y),1) = π(¬(x∧y),max(−rx,−ry)) = π(µ(x∧y,min(rx, ry))).

This completes the demonstration.

The Lo credibility calculus is however not the only possible natural credibility calculus we may
define onE.

3 A Bochvar-like fuzzification of propositional expressions

A second example is given by a multiplicative fuzzification of the classic three-valued Bochvar logic.
We shall denoteLb such a credibility calculus where the operator triple is denoted<−,g,f >.

We keep the traditional sign exchange asLb-valued contradiction.

Themultiplicative conjunctionoperatorf on a setEL of L-expressions is defined as follows:

∀x,y∈ E : rx∧y = rx f ry =
{

| rx× ry | if (rx > 0) ∧ ry > 0),
− | rx× ry | otherwise.

In Figure 2, we may notice that thef-operator, when restricted to a{−1,1}-valued domain, is
isomorphic to the classic Boolean conjunction operator.

Similarly, we define themultiplicative disjunctionoperatorg as follows:
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Figure 2: Graphical representation of the multiplicative conjunctive operator
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Figure 3: Graphical representation of the multiplicative disjunctive operator

∀x,y∈ P : rx∨y = rx g ry =
{
− | rx× ry | if (rx < 0) ∧ (ry < 0),
| rx× ry | otherwise.

Again, we may notice in Figure 3 that we recover in the limit, when restricted to only−1,1-valued
expressions, the classic Boolean disjunction operator.

First, we may verify that the De Morgan duality properties are verified inLb. Indeed, we easily
see that:

∀(x, rx),(y, ry) ∈ ELb : rx∧y = r(¬(¬x∨¬y)).

Indeed, ifrx, ry > 0, rx f ry = rx× ry. At the same time,r¬x g r¬y = (r¬x× r¬y) =−(rx× ry). On the
contrary, ifrx, ry < 0, rx f ry =−(rx× ry), thenr¬x g r¬y) = (r¬x× r¬y) = (−rx×−r(y) = rx× ry. If
eitherrx > 0 andry < 0 or vice versa, the duality relation is equally verified.

It is most interesting to notice that in the case where bothLb-expressions areLb-true, respectively
Lb-false, both operatorsf andg give the sameLb-credibility. The operators diverge in their result
only when contradictoryLb-truth assessments are to be combined. The conjunctive operator aligns
theLb-false part where as the disjunctive operator sustains theLb-true part of the pair of propositions.
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We may furthermore notice that the negational fix-point, the zero value, figures as logical “black
hole” as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through
any of both binary operators.

∀(x, rx) ∈ ELb : rx f0 = rx g0 = 0.

Let us denoteELb
/−1;1 the equivalence classes of all certainly true or falseLb-expressions. The

restriction of theLb credibility calculus toELb
/−1:1 gives a classic Boolean algebra.

It is remarkable however, that such a priori obvious properties as impotency of conjunction and
disjunction, are only satisfied in this limit Boolean case. Indeed in general, the natural logical conse-
quence of combining more and more fuzzy propositions will sooner or later necessarily end up with
a completely undetermined proposition. The same is true when combining conjunctively or disjunc-
tively a number of times the same fuzzy proposition. Indeed,∀(x, rx),(y, ry) ∈ ELb such thatrx 6= 0 we
have:

| rx | > | rx f ry |,
| rx | > | rx g ry | .

We recover here a similar situation as in classic error propagation. The more we operate with impre-
cise numbers, we more we increase the imprecision of the out-coming result, and this imprecision is
essentially related to the imprecision of the initial inputs.

Finally, to validate now the naturality property of theLb calculus, we must show that the curly
operatorsg andf verify Equation 7. In order to do so, it is again sufficient to show that for any
(x, rx),(y, ry) ∈ ELb and both the curly operators we have:

µ(π(x∨y, rx g ry)) = π(µ(x∨y, rx g ry)),
µ(π(x∧y, rx f ry)) = π(µ(x∧y, rx f ry)).

Indeed, for any(x, rx),(y, ry) ∈ ELo, if rx > 0 or ry > 0, µ(π(x∨ y, rx g ry))) = µ(x∨ y,1) = (x∨
y,1) = π(x∨y, rx g ry) = π(µ(x∨y, rx g ry); if rx < 0 andry < 0, µ(π(x∨y, rx g ry)) = µ(x∨y,−1) =
(¬(x∨y),1) = π(¬(x∨y), rx f ry) = π(µ(x∨y, rx g ry)).

And for any(x, rx),(y, ry) ∈ ELo, if rx > 0 andry > 0,µ(π(x∧y, rxf ry)) = µ(x∧y,1) = (x∧y,1) =
π(x∧ y, rx f ry) = π(µ(x∧ y, rx f ry); if rx < 0 or ry < 0, µ(π(x∧ y, rx f ry)) = µ(x∧ y,−1) = (¬(x∧
y),1) = π(¬(x∧y), rx g ry) = π(µ(x∧y, rx f ry)).

This concludes the demonstration thatLb does indeed implements a natural credibility calculus.

4 Moving on

In order to situate now the whole family of natural credibility calculus one may define on propositional
expressions, let us explore two directions for further investigations.

Following the general properties of theLo calculus, we may want to consider the t-norm concept
as potential generalization. Unfortunately, the split truth/falseness semantics is not quite compatible
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with the formal properties of a t-norm. Indeed, let us recall that a t-normT defined on the interval
[−1;1] should verify the following four axioms:

T(1, rx) = rx,∀rx ∈ [−1;1] (8)

T(rx, ry) = T(ry, rx),∀rx, ry ∈ [−1;1] (9)

T(rx, ry)≤ T(ru, rv) if −1≤ rx≤ ru≤ 1,−1≤ ry≤ rv≤ 1 (10)

T(rx,T(ry, rz)) = T(T(rx, ry), rz),∀rx, ry, rz∈ [−1;1]. (11)

It is easily verified that the multiplicative conjunctive operatorf verifies three of these axioms, i.e.
all except the third one. This is not astonishing, as this axiom is not so “naturally” a logical axiom but
rather a geometrical axiom underlying the “triangularity” heritage of the t-norm concept.

What axiom could advantageously replace the “triangular” t-norm condition in order to make fit
conceptually the t-norm to a natural credibility calculus on the rational interval[−1,1] ?

A possibility might be the following:

| T(rx, ry) |≤| T(ru, rv) | if 0 ≤| rx |≤| ru |≤ 1,0≤| ry |≤| rv |≤ 1.

In some sense we would recover the triangular axiom in some absolute terms. But this idea has still
to be further explored.

Finally, more following the semiotical intuitions of C.S. Peirce, we may interpret the classic or-
dinal Lo credibility calculus and the above introduced Bochvar-likeLb credibility calculus as some
limit constructions of a same semiotical foundation of logical fuzziness. Indeed, theLo calculus to be
applicable in a practical setting supposes a same closed universal semiotical reference for all ground
propositionsp∈P as is usual in a mathematical logic context for instance, where as the multiplicative
model apparently supposes shared semiotical references for all determined parts and disjoint semiot-
ical references for the logically undetermined parts of each propositionp∈ P as is usual for instance
in repetitive physical measures with error propagation.

These general considerations leave open the case where each ground expressionp ∈ P is com-
pletely supported by a different semiotical reference. In this last case we would get as third limit case
some kind of aggregational logic (see Bisdorff [3]) as implemented by the concordance principle in
the multicriteria approach to preference aggregation for instance.
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Weak orders, i.e. reflexive, transitive, and complete binary relations, are among the most fundamental
concepts in preference modeling. It is well-known that weak orders are nothing else but linear orders
of equivalence classes, where the corresponding equivalence relation is the symmetric kernel of the
weak order. If the underlying set of alternativesX is finite, a weak order can be represented by a single
score function [2].

In analogy to the crisp case, fuzzy weak orders are fundamental concepts in fuzzy preference
modeling [3, 4, 5]. Given a non-empty set of alternativesX, a fuzzy relationR : X2→ [0,1] is a fuzzy
weak orderif it fulfills the following three axioms for allx,y,z∈ X (whereT is a left-continuous
t-norm):

R(x,x) = 1 (reflexivity)
T
(
R(x,y),R(y,z)

)
≤ R(x,z) (T-transitivity)

R(x,y) = 1 orR(y,x) = 1 (strong completeness)

In this contribution, we give an overview of construction and representation results for fuzzy weak
orders. This includes both known results and new insights:

(i) Every fuzzy weak order can be represented as a union of a crisp linear order and a fuzzy equiv-
alence relation—which is a full analogue to the crisp case [1]. Based on this discovery, we
are able to construct fuzzy weak orders from pseudo-metrics if the t-normT is continuous
Archimedean [1].

(ii) For the case thatX is finite, we give a necessary and sufficient condition that a fuzzy weak order
is determined only by the degrees to which two consecutive equivalence classes are related to
each other.

(iii) Every fuzzy weak order can be represented by score functions [6], but not necessarily by a single
one, not even ifX is finite [3]. A necessary and sufficient condition for the representability by
a single score function is given.
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(iv) Fuzzy weak orders can be represented by an embedding to the fuzzy power setF (X) equipped
with the fuzzy inclusion induced by the t-normT [1].

All these reviews and new results are demonstrated by means of detailed examples.
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In this talk (strictly linked with that by Romano Scozzafava with the same title) we start from our
approach to fuzzy set theory in terms of conditional events andcoherentconditional probabilities,
showing also how the concept ofpossibility functionnaturally arises in this context. Coherent con-
ditional probability is looked on as a general non-additive “uncertainty” measureψ(·) = P(E| ·) of
the conditioning events. In particular, we show thatψ can be interpreted as apossibilitymeasure,
giving a relevant characterization:ψ is apossibilityif and only if it is acapacity. Moreover, we give
also a characterization of the measureψ as an (antimonotone)information measure. Any coherent
extension of a membership function is between these two extreme cases, but the converse is not true.
So we discuss also a characterization ofcoherenceof such extensions in terms of a suitable weighted
mean of conditional probabilities.

We recall from the previous talk (with the same title) the following basic notions.

Let ϕ be anypropertyrelated to a random quantityX : notice that aproperty, even if expressed by
a statement, does not single–out anevent, since the latter needs to be expressed by anonambiguous
proposition that can be eithertrueor false.

Consider now theevent Eϕ = “You claim ϕ ” and a coherent conditional probabilityP(Eϕ|Ax),
looked on as a real functionµEϕ(x) = P(Eϕ|Ax) defined onCX, the range ofX. Then afuzzy subset E∗ϕ
of CX is the pair

E∗ϕ = {Eϕ , µEϕ},

with µEϕ(x) = P(Eϕ|Ax) for everyx∈CX.

So a coherent conditional probabilityP(Eϕ|Ax) is a measure of how much You, given the event
Ax = {X = x}, are willing toclaim the propertyϕ , and it plays the role of the membership function
of the fuzzy subsetE∗ϕ. We recall that we have been able not only to define fuzzy subsets, but also to
introduce in a very natural way the basic continuous T-norms and the relevant dual T-conorms, bound
to the former bycoherence.

On the other hand, if we consider the weakestT-norm

To(x,y) =

{
min(x,y) ifmax(x,y) = 1,

0 otherwise

we can prove that the choice ofp = P(Eϕ∧Eψ|Ax∧Ay) agreeing withTo is notcoherent.
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The three coherent choices discussed in the previous talk correspond to the particular valuesλ = 0,
λ = 1, λ = ∞, respectively, of the fundamental (archimedean) Frank t-normsTλ and t-conormsSλ (see
[6]), with λ ∈ [0,∞], that is (forλ different from the above three values)

Tλ(x,y) = logλ

(
1+

(λx−1)(λy−1)
λ−1

)
, Sλ(x,y) = 1− logλ

(
1+

(λ1−x−1)(λ1−y−1)
λ−1

)
.

In our framework (where, given at-norm singling-out the valueP(Eϕ ∧Eψ|Ax∧Ay) of the con-
junction, then the corresponding choice of thet-conorm, which determines the value of the disjunction
P(Eϕ ∨Eψ|Ax∧Ay) , is uniquelydriven by the coherence of the relevant conditional probability) we
are able to capture also Frank t-norms and t-conorms (for anyλ ∈ [0,∞]), archimedean or not.

In our setting it is completely natural to consider fuzzy measures, taking as starting point a mem-
bership function, regarded as a pointwise distribution. This requires in fact only to extend a coherent
conditional probability assessment on the family{Eϕ|Ax} to the larger family of events{Eϕ|A}, with
A element of the algebraA spanned by events{Ax}.

Intuitively, P(Eϕ|A) is the probability that “You claimϕ” in the hypothesis that the value of the
variableX belongs toA.

The results that follow are mainly taken from [3] and [4]. Let us introduce the following (“natu-
ral”) definitions:

(D1) Let E be an arbitrary event andP any coherent conditional probability on the familyG =
{E}×{Ax}x∈CX , admittingP(E|Ω) = 1 as (coherent) extension. Adistribution of possibilityonCX is
the real functionπ defined byπ(x) = P(E|Ax).

Actually, along the same lines we can as well introduce any general distributionψ, to be called
justuncertainty measure.

(D2) Under the same conditions of(D1), a distribution of uncertainty measureonCX is the real
functionψ defined byψ(x) = P(E|Ax).

WhenCX is finite, since every extension ofP(E| ·) must satisfy the axioms of a conditional prob-
ability, conditionP(E|Ω) = 1 gives

P(E|Ω) = ∑
x∈Cx

P(Ax|Ω)P(E|Ax) and ∑
x∈Cx

P(Ax|Ω) = 1.

Then 1= P(E|Ω)≤max
x∈Cx

P(E|Ax) ; thereforeP(E|Ax) = 1 for at least one eventAx.

On the other hand, we notice that in our framework (wherenull probabilities for possible condi-
tioning events are allowed) it does not necessarily follow thatP(E|Ax) = 1 for everyx; in fact we may
well haveP(E|Ay) = 0 (or else equal to any other number between 0 and 1) for somey∈CX . Obvi-
ously, the constraintP(E|Ax) = 1 for somex is not necessary when the cardinality ofCX is infinite.

From now on, given an arbitrary eventE, let C be a family of conditional events{E|Hi}i∈I , where
card(I) is arbitrary and eventsHi ’s are apartition of Ω , P(E| ·) an arbitrary (coherent) conditional
probability onC , H the algebra spanned by theHi ’s, andH o = H \{ /0}.

Here we list some of the main results:
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(A) Any coherent extension ofP to C ′ = {E|H : H ∈H o} is such that, for everyH,K ∈H , with
H ∧K = /0,

(1) min{P(E|H),P(E|K)} ≤ P(E|H ∨K)≤max{P(E|H),P(E|K)} .

It follows that any coherent extension ofP to C ′ = {E|H : H ∈ H o} is such that, for every
H,K ∈H , with H ∧K = /0 ,

P(E|H ∨K)≤ P(E|H)+P(E|K).

On the other hand

(B) Any real functionf defined onH such that, ifH ∧K = /0,

min{ f (H), f (K)} ≤ f (H ∨K)≤max{ f (H), f (K)} ,

is acapacityif and only if, for everyH,K ∈H ,

f (H ∨K) = max{ f (H), f (K)} .

So the functionf (H) = P(E|H), with P a coherent conditional probability, in generalis not a capacity.

The question now is: are there coherent conditional probabilitiesP(E| ·) monotone with respect
to ⊆? We reached a positive answer by means of the following result (given in [5]), which repre-
sents the main tool to introducepossibility measuresin our context referring to coherent conditional
probabilities.

(C) Let f : C → [0,1] beanyfunction such that

(2) f (E|Hi) = 0 if E∧Hi = /0 and f (E|Hi) = 1 if Hi ⊆ E

holds. Then anyP extendingf on K = {E}×H o and such that

(3) P(E|H ∨K) = max{P(E|H),P(E|K)} , foreveryH,K ∈H o

is a coherent conditional probability.

(D3) Let H be an algebra of subsets ofCX andE an arbitrary event. IfP is any coherent condi-
tional probability onK = {E}×H o, with P(E|Ω) = 1 and such that

P(E|H ∨K) = max{P(E|H),P(E|K)} , foreveryH,K ∈H o ,

then apossibility measureon H is the real functionΠ defined byΠ(H) = P(E|H) for H ∈ H o and
Π( /0) = 0.

In our context,(C) assures that any possibilitymeasurecan be obtained as coherent extension
(unique, in the finite case) of a possibilitydistribution. Vice versa, given any possibility measureΠ
on an algebraH , there exists an eventE and a coherent conditional probabilityP on K = {E}×H o

agreeing withΠ, i.e. whose extension to{E}×H (puttingP(E| /0) = 0) coincides withΠ.

So an immediate consequence of(B) and(C) is thatany coherentP extending f on K = {E}×
H o is a capacity if and only if it is a possibility.
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Going back to our interpretation of a membership functionµ(x) through a suitable coherent con-
ditional probability (a measure of how much You, given the eventAx, are willing toclaim the relevant
propertyϕ ), and putting

Ho = {x∈ CX : µ(x) = 0} , H1 = {x∈ CX : µ(x) = 1} ,

the conditional probabilityP(E|Hc), with H = Ho∨H1 , is a measure of how much You are willing
to claim propertyϕ if the only fact you know is thatx∈ Hc . On the other hand,every membership
function can be regarded as a possibility distribution. If A is an algebra of subsets ofCX, the ensuing
possibility measurecan be interpreted in the following way: it is a sort of “global” membership
(relative to each finiteA ∈ A ) which takes, among all the possible choices for its value onA, i.e.
among all possible extensions satisfying (2), themaximumof the membership inA.

Moreover, we can regard every possibility measureΠ as a decreasing function of the elements
of the zero-layer set{0,1,2, . . . ,k} associated to theclass{Pα} of unconditional probabilities that
are used to represent a coherent conditional probability in our main characterization theorem (see [2],
p.81).

In conclusion,the coherent extensions of a conditional probability P(E|Ax) that satisfy (3) give
rise to different zero-layersfor theatoms Ax corresponding to differentP(E|Ax), so that such a coher-
ent conditional probabilityP(E| ·) can be suitably associated to a measure of your “disbelief” in the
eventsA∈ A .

Then some of the usual arguments may appear counterintuitive: in fact, the “global” membership
should possibly decrease when the information is not concentrated on a givenx, but is “spread” over a
larger set (for example, considering the statement “Mary is young”, you may be willing, if you know
that Mary’s age isx= 39, to putµ(x) = .2, while if you know that her age isy= 26, you may be willing
to put µ(y) = .9; on the other hand, knowing that her age is between 26 and 39, the corresponding
possibility is still .9).

So our results may suggest to take as such global measure a function which isnot a capacity, yet
satisfying the weaker conditions under(A).

With the aim of studyinginformationmeasures in the framework of coherent conditional prob-
abilities, we gave also the following definition, which parallels, in a sense, those(D1) and(D2) for
uncertainty (includingpossibility) measures.

(D4) Let F be an arbitrary event andP any coherent conditional probability on the familyG =
{F}× {Ax}x∈CX , admittingP(F |Ω) = 0 as (coherent) extension. We definepointwise information
measureonCX the real functionψ defined byψ(x) = P(F |Ax).

WhenCX is finite, since every extension ofP(F | ·) must satisfy the axioms of a conditional prob-
ability, considering the conditionP(F |Ω) = 0, we necessarily have

P(F |Ω) = ∑
x∈Cx

P(Ax|Ω)P(F |Ax) and ∑
x∈Cx

P(Ax|Ω) = 1.

Then 0= P(F |Ω)≥min
x∈Cx

P(F |Ax), soP(F |Ax) = 0 for at least one eventAx.

On the other hand, we notice that in our framework it does not necessarily follow thatP(F |Ax) = 0
for everyx; in fact we may well haveP(F |Ay) = 1 (or to any other number between 0 and 1) for some
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y∈CX . Obviously, the constraintP(F |Ax) = 0 for somex is not necessary when the cardinality ofCX

is infinite.

Under the same conditions mentioned before(A), we get an immediate consequence of(A) itself:

(B1) Any real functionf defined onH such that, ifH ∧K = /0,

min{ f (H), f (K)} ≤ f (H ∨K)≤max{ f (H), f (K)} ,

is antimonotonewith respect to⊆ if and only if, for everyH,K ∈H ,

f (H ∨K) = min{ f (H), f (K)} .

The following result proves the existence of coherent conditional probabilitiesP(F | ·) antimono-
tone with respect to⊆ . It represents also the main tool to introduceinformation measuresin our
context referring to coherent conditional probabilities.

(C1) Let f : C → [0,1] beanyfunction such that

f (F |Hi) = 0 if F ∧Hi = /0 and f (F |Hi) = 1 if Hi ⊆ F

holds . Then anyP extendingf on K = {F}×H o and such that

P(F |H ∨K) = min{P(F |H),P(F |K)} , foreveryH,K ∈H o ,

is a coherent conditional probability.

In the case that the assessmentP(F |Hi) admitsP(F |Ω) = 0 as coherent extension, we obtain as
well a coherent extension by requiring bothP(F |Ω) = 0 and choosing “min” as combination rule to
make the extension ofP.

Are the two extreme cases

– P(E|Ax) extended to the disjunction of conditioning events by taking themaximum(possibility
measure,monotone)

– P(E|Ax) extended to the disjunction of conditioning events taking theminimum(antimonotone
measure)

the most natural ways to extend membership functions?

We recall that coherence implies

min{P(E|H),P(E|K)} ≤ P(E|H ∨K)≤max{P(E|H),P(E|K)}

but the converse is NOT true. So, in general, a value between the two extremes is not necessarily
a coherent choice for the conditional probabilityP(E|H ∨K) (which can be looked on as a sort of
“global” membership ...).

Coherent choices have been characterized in [1]: they areweighted meansof P(E|H) andP(E|K)
(weights equal to zero or one are allowed). More generally, this result can be stated with reference to
the disjunction of any finite number ofconditioningevents.
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The purpose of this lecture is twofold. Firstly, we revise the class ofstable copulas[7], i.e. the class of
copulas that coincide with theirsurvival copula[11]. Secondly, we describe two comparison models,
adeterministicone and astochasticone, in which stable commutative copulas play a simplifying role.

We propose a method for constructing copulas which largely generalizes the ordinal sum construc-
tion method. The method is based on a grid structure and the use of what we have calledforeground
andbackgroundcopulas [2]. It can be applied in particular to constructcommutative copulasandsta-
ble commutative copulas. Requiring associativity as well leads to the usual ordinal sum construction
of t-norms, which for the purpose of constructing stable copulas reduces to the well-known ‘symmet-
ric’ ordinal sums of Frank t-norms [7].

In the deterministic model, objects are represented by feature vectors that indicate presence or
absence of certain properties. A typical way of comparing objects is by means ofcardinality-based
similarity measuresoperating on the corresponding feature vectors [4]. The generalization to fuzzy
feature vectors requires the choice of an appropriate model of fuzzy intersection along withfuzzifica-
tion rulesfor other set-theoretic operations [1]. For more than two decades now, t-norms have become
the standard model for that purpose, and their use is hardly questioned. However, here we show the
power of stable commutative copulas. Indeed,TL -transitivity andTP-transitivity of the cardinality-
based similarity measures are preserved in the fuzzification process when using a stable commutative
copula as model for fuzzy set intersection [9]. Links withBell-type inequalitiesfor copulas and t-
norms will be discussed as well [8, 10].

The second comparison model deals with random variables. For a random vector(X1,X2, . . . ,Xn),
its components are compared pairwisely by considering the‘winning probabilities’ of one over the
other. More specifically, a probabilistic relationQ is defined:Q(Xi ,Xj) = P (Xi > Xj)+ 1/2P (Xi =
Xj). This relation indeed satisfiesQ(Xi ,Xj)+Q(Xj ,Xi) = 1. Moreover, its computation requires only
the knowledge of the bivariate marginal distributions, which are in turn uniquely determined from the
univariate marginal distributions and the copula that binds them. We consider the case where all pairs
of variables are coupled by a same commutative copulaC. One of the key issues in comparison models
is the transitivity exhibited by the model. For probabilistic relations, we have previously developed
the rich framework ofcycle-transitivity[6]. Remarkably, the transitivity of the probabilistic relation
expressing the winning probabilities can be classified within this framework, and the corresponding
upper bound function only depends on the commutative copulaC considered [5]. In caseC is stable,
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this upper bound function is given byU(α,β,γ) = β +C(1− β,γ) = γ +C(β,1− γ). In particular,
whenC = TF

λ is a Frank t-norm, thenU(α,β,γ) = SF
1/λ(β,γ). In the specific case of independent

random variables, i.e.C = TP, we recover the previously studieddice model[6] characterized by
U(α,β,γ) = β+ γ−βγ, i.e. dice-transitivity.
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The notion of fuzzy function based on many-valued equivalence relations (many-valued similarity
relations (equalities) [17, 18, 19], fuzzy equivalence relations [4, 6, 7, 21, 22, 26], similarity relations
[1, 2, 3, 15, 28], indistinguishability operators [27], etc.) has been introduced by several authors, and
applied to category theory [5], approximate reasoning and fuzzy control theory [8, 10, 15, 22]. The
author of this talk [8, 9, 10] later proposed other versions of this kind of fuzzy function, known as
strong fuzzy function and perfect fuzzy function, which have more desirable and powerful represen-
tation properties than the others. Many-valued equivalence relation-based fuzzy orderings have been
studied by Höhle-Blanchard [16] and Bodenhofer [1, 2, 3] w.r.t. different special integral, commuta-
tive cqm-lattices. Later on, these fuzzy orderings are generalized on the basis of a fixed and a general
integral, commutative cqm-latticeM = (L,≤,∗) under the nameM-vague orderings [13, 14]. For a
given nonempty setX and anM-equivalence relationE on it, anM-vague ordering onX is a special
L-fuzzy relation onX satisfying some further properties by means ofE.

Strong (perfect) fuzzy functions [8, 9, 10] form the elementary tools of vague algebra [9, 11, 12]
and vague lattices [13, 14]. In contrast to fuzzy algebra [23] and fuzzy lattices [25], vague algebra
and vague lattices basically involve vaguely defined binary operations (M-vague binary operations
[9, 11, 12]) and vaguely defined ordering relations (M-vague orderings), where the integral, commu-
tative cqm-latticeM = (L,≤,∗) [10, 20] denotes the many-valued logical basis of these studies. A
vague binary operation ˜◦ onX can be roughly described as a specialL-fuzzy relation (more precisely,
a special strong fuzzy function) fromX×X to X with some reasonable properties formulated in terms
of E [9, 11, 12]. Strong (perfect) fuzzy functions propose a new approach to the fuzzy setting of nu-
merous different branches of mathematics. Vague algebra and vague lattices are only two important
cases of such an approach. The development of a sound theory of real line equipped withM-vague
orderings,M-vague addition operations andM-vague multiplication operations [9, 12], which will
be called vague real line, lies at the heart of future studies in the theory of many-valued equivalence
relation-based fuzzy functions. It is well-known that basic axioms of the real line in the classical sense
have been derived starting from an abstract ordered field in the classical sense. For this reason, in an
analogue manner to the real line in the classical case, it is natural to start from a vague ordered field
for the establishment of an axiomatic theory of vague real line. Vague ordered fields and the transition
from vague ordered fields to the vague real line will be the main subjects of this presentation. The
outline of this talk can be expressed as follows. After a brief introduction of strong (perfect) fuzzy
functions and vague algebraic notions, we will define many-valued equivalence relation-based strict
fuzzy orderings, which will be an essential tool of the vague ordered fields, and establish the connec-
tion between these kinds of strict fuzzy orderings andM-vague orderings. Then we will introduce
vague ordered fields, and touch on the problem of the derivation of the basic axioms of vague real line
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starting from vague ordered fields. All necessary fundamental axioms of vague real line, which have
not yet been revealed in their entirity, are crucial problems in developing a sound theory for vague real
line. The aim of this talk can be summarized as the introduction of vague real line and the invitation
of the researchers to this new and bachelor field.
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Semirings are algebraic structures with two associative binary operations, where one distributes over
the other, introduced by Vandiver [10] in 1934. In more recent times semirings have been deeply
studied, especially in relation with applications ([5]). For example semirings have been used to model
formal languages and automata theory (see [4]), to deal with scheduling problems ([3]) and semirings
over real numbers ((max,+)-semirings) are the basis for the idempotent analysis [7].

In this work, we establish a relationship between semirings and many-valued logics.

Many-valued logic has been proposed to model phenomena in which uncertainty and vagueness
are involved. One of the more general classes of many-valued logics is the Basic logic defined in
[6] as the logic of continuous t-norms. Special cases of Basic logics are Łukasiewicz, Godel and
Product logic. In particular Łukasiewicz logic has been deeply investigated, together with its algebraic
counterpart, MV-algebras, introduced by Chang in [1] to prove completeness theorem of Łukasiewicz
logic.

MV-algebras have nice algebraic properties and can be considered as intervals of lattice-ordered
groups (see [2]). Łukasiewicz disjunction and conjunction are interpreted by the operations⊕ and�
of the MV-algebra[0,1] given by

x⊕y = min{1,x+y}, x�y = max{0,x+y−1}.

In spite of satisfying theoretical results regarding Łukasiewicz logic, all the attempts to use it as
an instrument to deal with uncertainty phenomena, for example in the fuzzy context, had to deal with
one of its main characteristic: conjunction and disjunction do not distribute one with respect to the
other.

In this paper we stress that operations� and⊕ in any MV-algebraA both come from the same
operation in the lattice ordered group associated withA. In order to model the notion of conjunction
and disjunction one have instead to consider a lattice operation∧ (or dually,∨) together with the
MV-algebraic operation⊕ (or dually�).

An example of how this representation can be useful to model fuzzy phenomena will be given
in the field of automata. Indeed in [4], semirings have been proposed to give a generalization of
automata, the so calledK-Σ- automata. More recently, automata with values in semirings over the
natural numbers or the real numbers sets have been deeply investigated both to finding results on
nondeterminism or infinite behavior of finite automata, and in the context of formal power series (see
[8], [9]). We shall give a description of automata having values in BL-algebras and MV-algebras.
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Introduction 
 

 Operations for combining [0,1]–valued fuzzy set membership functions pointwisely, 
such as triangular norms or co-norms, uni-norms, null-norms, etc, have been extensively 
studied. Such operations indeed provide two services by returning a real number as a result of 
the combination of the membership degrees: i) a numerical degree of conjoint membership is 
assessed ; ii) one can take advantage of the linear order of the real numbers for comparing the 
degrees. 
 However, in many practical problems (such as multiple criteria analysis, flexible 
constraints satisfaction problems), the scale [0,1] is too rich for being used, and more 
qualitative scales having a finite number of levels have to be preferred. But, the internal 
operations that can be defined on the latter scales (e.g., Godo and Sierra, 1988; Mas et al., 
1999; Fodor, 2000) have a limited discriminating power since they take values on a finite 
range. 
 In order to escape the dilemma of using either too expressive a scale which would 
enable an accurate discrimination between the degrees, or a more appropriate scale leading to 
too many ties, we investigate another route in this preliminary note. We are no longer looking 
for global evaluations which then can be compared, but we are rather handling the 
comparison of vectors of the membership degrees directly (following ideas already outlined in 
(Dubois and Prade, 2001)) by introducing refinements of Pareto ordering. 
 

 Let L = {α0 = 0 < α1 < …< αL = 1} be a finite scale. Vectors of a given size N (α1, …, 
αk, … , αN) made of values in L, can be partially ordered by Pareto ordering, denoted by <P.   
Let us, for instance, consider the case N = 2. We have (α0, α0) <P (α0, α1) <P (α1, α1) <P … <P 
(αL-1, αL) <P (αL, αL). For notational simplicity we shall write (i, j) < (i’, j’), in place of (αi, 
αj) <P (αi’, αj’). We assume symmetry, thus pairs (i, j) and (j, i) are equivalent, and by 
convention when we write (i, j) it is assumed that i ��j. More generally, we have (i, j) < (k, l) 
as soon as i ��k and j < l, or i < k and j ��l.  The only undetermined cases are such that i < k 
and j > l.  
 

Motivating example  

Once Pareto ordering is applied, what remains to specify is the ordering between pairs (i, j) 
and (k, l) such that i > k and j < l (Moura-Pires and Prade, 2000). The situation for the case N 
= 2, with L = {α0 = 0 < α1 < α2 < α3 = 1}, is pictured in Fig. 1. 
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Fig. 1. Refinements of Pareto ordering 

 

 The pending decisions are indicated in dotted lines. Such a refinement of <P will be 
denoted by <r (refined ordering). For instance, as pictured in Fig. 1, (1, 3) <P (2, 3) and (2, 2) 
<P (2, 3), while (2, 2) is <P-incomparable to (1, 3) and to (0, 3). Moreover, when specifying a 
refinement <r, one should obey the transitivity requirement. For instance, it is impossible to 
enforce (1, 3) <r (2, 2) and (2, 2) <r (0, 3) in the same time. One may also choose to complete 
the Pareto ordering by enforcing equalities, e.g. (1, 1) =r (0, 2). 

 
 It can be checked that there are 12 different “linearizations” of <P without ties for N = 
2 and L = 3. Here are four examples (the added decisions are indicated in bold): 

(0, 0) <r (0, 1) <r (0, 2) <r (0, 3) <r (1, 1) <r (1, 2) <r (1, 3) <r  (2, 2) <r (2, 3) <r (3, 3) 

(0, 0) <r (0, 1) <r  (1, 1) <r (0, 2) <r (1, 2) <r (2, 2) <r (0, 3) <r (1, 3) <r (2, 3) <r (3, 3)  

(0, 0) <r (0, 1) <r (0, 2) <r (1, 1) <r (0, 3) <r (1, 2) <r (1, 3) <r  (2, 2) <r (2, 3) <r (3, 3) 

(0, 0) <r (0, 1) <r  (1, 1) <r (0, 2) <r (1, 2) <r (0, 3) <r (1, 3) <r  (2, 2) <r (2, 3) <r (3, 3). 

The two first orderings are just the lexi-min and the lexi-max ordering respectively. In case L 
is an interval scale, the third ordering above would correspond to the one that would be given 
by an arithmetic mean refined by minimum, while the last ordering seems to be less simple to 
interpret. Note that the number of levels that are thus obtained amounts to 10 elements (from 
(0, 0) to (3, 3)), while L has 4 levels only. 
 

 Conversely, one may also consider the possibility of a coarsening (<c) of the Pareto 
ordering, if some pairs, ordered by <P, are found as equally good, e. g., ∀i,j (0, i) =c (0, j), or 
∀i,j (i, k) =c (j, k) for some k. We can thus express a form of absorption-like property for 
some levels. Thus, other combination schemes can be recovered, by both completing and 
coarsening the Pareto ordering, including the minimum:  

 (0, 0) =c (0, 1) =c (0, 2) =c (0, 3) <r  (1, 1) =c (1, 2) =c (1, 3) <r  (2, 2) =c (2, 3) <P (3, 3). 
 
General framework 
 

 The above example has shown that it is possible to specify a variety of ranking modes 
that are sufficiently discriminating, but still remaining in a qualitative setting. Generally 
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speaking, the problem is how to efficiently describe any Pareto-compatible ranking using a 
small number of conditions on the relative positioning of a few tuples and to study the 
characteristic properties of such rankings.  

Lexi-f and other refinements 

A natural idea is to start with an operation f from L×… ×L to L, defined by an 
aggregation structure (f1, f2, f3, … , fk, … ) where f1 is the identity and fk is defined on Lk has k 
arguments, and to use a refinement principle. One may for instance apply the lexi-f, a 
generalization of the lexi-min or the lexi-max, defined for any globally increasing f (f strictlty 
increases when all its arguments strictly increase), defined in the following way (Dubois, 
Prade, 2001). Let us consider two N-vectors of evaluations I = (i1, …  , iN) and J = (j1, …  , jN). 
Then I >lexi-f J ⇔ f(M(I) –  M(J)) > f(M(J) –  M(I)) where M(I) is the multi-set of evaluations 
αik 

associated with I, and thus identical evaluations are discarded before applying f. This 
means that in the above example with a 4-level scale, f(L×L) = {f2(0, 0), f2(1, 1), f2(2, 2), f2(3, 
3)}. Thus, we cannot represent in this way an ordering such that (1, 1) <  (0, 3) <  (2, 2) for 
instance (as it is the case for the two last examples of linear orderings of the previous section), 
since f2(0, 3)∈ f(L×L) and the lexi-f cannot provide any refinement for the considered pairs. It 
shows that any complete pre-order cannot be generated has a lexi-f ordering for some 
qualitative aggregation structure f. An open question is how to characterize the descriptive 
power of the lexi-f? Are there other meaningful refinement principles based on a N-ary 
operation closed on L? We might think of using a transposition of Lorenz dominance defined 
for real-valued vectors by  u <Lorenz v ⇔ L(u) <P L(v) where L(u) = (u1, u1 + u2, … , u1 + …  + 
uN), assuming u1 ��X2 ��«���XN. Taking L(u) = (u1, f(u1, u2), … , f(u1, … , uN))  enables the 
non-trivial refinement of Pareto ordering for suitable choices of f. 

Possible requirements 

Indeed the above example indicates that there exists a large set of worth investigating 
refinements which can be specified without using an aggregation structure f. Obviously, it 
raises the question of how requirements on the ordering between the vectors can be expressed 
in the general case, i.e., for N larger than 2, or when L has more than 4 levels. What would be 
natural in order to moderate the combinatorics for defining a complete relation <r in the 
general case is to introduce various requirements on the ordering. We already mentioned the 
symmetry condition (the comparison of two vectors should not depend on the way the 
components of the vectors are displayed). Other possible natural requirements that may be 
thought of are the following ones: 

- A weak form of preferential independence holds, namely:  

            (αi, αj) <r (αi’, αj’) ⇒ (αI, αi, αJ, αj, αK) <r  (αI, αi', αJ, αj’ , αK)             (PI) 

where I, J, K are subsets of exponents and αI stands for the vector of αk’ s where k ∈ I. Note 
that this requirement is still in the spirit of the lexi-f. This leads using Pareto ordering to 

   (αi, αj) <r (αi’, αj’), αI �P αI’, αJ �P αJ’, αK �P αK’ ⇒ (αI, αi, αJ, αj, αK) <r  (αI’, αi’, αJ’, αj’ , 
αK’) 

Thus, we will have (1, 1) < r (0, 2) ⇒ (1, 1, 1) <r (0, 1, 2) <P (0, 2, 2).  

- However, the use of this principle can be seriously questioned as suggested by the following 
example. Assume (0, 3) <r (1, 2). Then (0, 3, 4, 5) < (1, 2, 4, 5) applying PI. But it may be the 
case that (3, 4) >r (2, 5) and (0, 5) >r (1, 4), which would rather lead to state (0, 3, 4, 5) >r (1, 
2, 4, 5), at least if we assume the other natural cumulative principle and we use symmetry:  

αI <r αI’, αJ <r αJ’ ⇒ (αI, αJ) <r  (αI’, αJ’)       (C) 

But this new principle itself cannot lead to a safe extension of <r, as shown by the following 
example. Assume (0, 3) <r (1, 2), (3, 6) <r (4, 5), (2, 4) <r (3, 3), (1, 5) <r (0, 6). (C) applied to 
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the two first relations entail (0, 3, 3, 6) <r (1, 2, 4, 5), while the last two lead to (0, 3, 3, 6) >r 
(1, 2, 4, 5)! 

- Other examples of generic principles are “translation” rules. Namely,  

(αI, αi , αJ, αj, αK) <r  (αI’, αi’, αJ’, αj’ , αK’) ⇒ (αI, αi+x , αJ, αj+x, αK) <r  (αI’, αi’+x, αJ’, αj’ +x, 
αK’) 

for x> 0, and i+x, j+x, i'+x, j’ +x less than L. A similar condition can be used changing + x 
into − x. 

- Lastly, one may also use a “transference” principle of the form (i, i) < (i − 1, i + 1) for any i 
�����RU�PRUH�JHQHUDOO\�WKDW��L�M�����L�− 1, j + 1) (we may also think of the converse principle). 
This latter condition applied to the case of a 5-level scale, for instance, considerably reduces 
the number of remaining questions to answer in order to define a complete ordering. Namely 
we have, applying Pareto ordering together with the latter condition, (0, 0) < (0, 1) < (1, 1) < 
(0, 2) < (1, 2) < (0, 3)? (2, 2) < (1, 3) < (0, 4)? (2, 3) < (1, 4)? (3, 3) < (2, 4) < (3, 4) < (4, 4), 
where the question marks stand for undetermined relations. We would even have only one 
indetermination, (0, 3)? (2, 2), if we add the previous translation constraints (i, j) < (i', j’ ) ⇒ 
(i, j + 1) < (i', j’  +1) and (i + 1, j) < (i' + 1, j’ ) with i + 1 < j and i' + 1 < j’ . 

Note that the transference principle is in the spirit of Pigou-Dalton transferring in social 
choice, which enables Pareto ordering on vectors of real numbers u = (u1, … , uN) to be 
extended by stating (..., ui, … , uj, … ) < (..., ui − ε, … , uj + ε, … ) where 0 ��ε ��Xi − uj. It is 
known that this refinement is equivalent to Lorenz dominance. See (Spanjaard, 2003) for 
details and references. Note that in our framework, the counterpart of this idea is written 

(αi, αj) < (αi−1, αj+1)  where ∀k, αk∈ L, since neither αj  + ε nor αj  + αk make sense. 

Using conditions on the rank of the elements of the scale 

As it can be seen, the refinements of Pareto ordering raise problems, and anyway do 
not lead to a complete ordering generally. A more efficient way for getting complete 
orderings is to define them through conditions and operations on the indices numbering the 
elements of the scale.  Namely 

f(i, j) < f(i’ , j’ )  ⇒ (αi, αj) <r (αi’ , αj’) 

If f is associative, it is simple to extend the definition to N-vectors. This is compatible with 
Pareto ordering if f is non-decreasing, i.e.   

(αi, αj) <P (αi’ , αj’) ⇒ f(i, j) < f(i’ , j’ ) 
In case f(i, j) = f(i’ , j’ ) it might be further refined by another condition. For example, 
        (0, 0) <r (0, 1) <r (0, 2) <r (1, 1) <r (0, 3) <r (1, 2) <r (1, 3) <r  (2, 2) <r (2, 3) <r (3, 3) 
is generated by f(i, j) = i +j refined by min(i, j) < min(i’ , j’ ) if i + j = i’  + j’ . Note that this 
ordering violates the transference property.  
However, generally speaking, it is not clear that any complete pre-ordering refining Pareto 
ordering can be specified in such a way using integer-valued arithmetic operations. 
 
Conclusion 

This informal discussion is not intended to bring any new substantial result. Still it is a 
preliminary attempt at understanding how to characterize complete pre-order structures 
capable of modeling different behaviors for comparing qualitative evaluation profiles. 
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Quantitative possibility theory (QPT) was proposed as an approach to the representation of 
quantified uncertainty (Zadeh, 1978; Dubois and Prade 1988, 2000). In order to sustain this 
claim, operational semantics could be instrumental. In the subjectivist context, quantitative 
possibility theory somehow competes with probability theory in its personalistic or Bayesian 
views and with the Transferable Belief Model (TBM) (Smets and Kennes 1994; Smets 1998), 
both of which also intend to represent degrees of belief. We use the term ‘subjectivist’ to 
mean that we consider the concepts of beliefs (how much we believe) and betting behaviors 
(how much would we pay to enter into a game) without regard to the possible random nature 
and repeatability of the events. An operational definition, and the assessment methods that 
can be derived from it, provides a meaning to the value .7 encountered in statements like  ‘my 
degree of belief is .7’. Bayesians claim that any state of incomplete knowledge of an agent can 
be modeled by a single probability distribution on the appropriate referential, and that degrees 
of belief coincide with probabilities that can be revealed by a betting experiment in which the 
agent provides betting odds under an exchangeable bet assumption. A similar setting exists 
for imprecise probabilities (Walley, 1991), relaxing the assumption of exchangeable bets, and 
more recently for the TBM as well (Smets, 1997), introducing several betting frames 
corresponding to various partitions of the referential. In that sense, numerical values 
encountered in these three theories are well defined. 
 
QPT seems to be a theory worth exploring as well, and rejecting it because of the current lack 
of convincing semantics would be unfortunate. The recent revival, by De Cooman and 
colleagues (1999),  of a form of subjectivist QPT due to Giles (1982), and the development of 
possibilistic networks based on incomplete statistical data (Borgelt and Kruse, 2003) suggests 
on the contrary that it is fruitful to investigate various operational semantics for possibility 
theory. This is due to several reasons: first possibility theory is a special case of most existing 
non-additive uncertainty theories, be they numerical or not. Hence progress in one of these 
theories usually has impact in possibility theory. Another major reason is that possibility 
theory is very simple, certainly the simplest competitor for probability theory, for instance 
when using fuzzy numbers in fuzzy optimization problems. The aim of this paper is to 
propose subjectivist semantics for numerical possibility theory. 
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Such subjectivist semantics differs from the upper and lower probabilistic setting proposed by  
Giles and followers, without questioning its merit. Instead of making the bets non-
exchangeable, we assume that the exchangeable betting rates only imperfectly reflect an 
agent’s beliefs. 
 
For long, it had been realized that possibility functions are mathematically identical to 
consonant plausibility functions (Shafer, 1976) so using the semantics of the TBM for 
producing a  semantics for quantitative epistemic possibility theory  is an obvious approach, 
even if not explored in depth so far.  
 
Consider what beliefs held by  an agent on what is the actual value of a variable ranging on a 
set ���Falled the frame of discernment. It is assumed that such beliefs can be represented by a 
belief function. A belief function can be mathematically defined from a finite random set that 
has a very specific interpretation. The so-called basic belief mass assigned to each set is 
understood as the weight given to the fact that all the agent may know is that the value of the 
variable of interest lies somewhere in that set. A plausibility function evaluates to what extent 
events are consistent with the available evidence. When the sets with positive mass are nested, 
the plausibility function is called a possibility measure, and can be characterized, just like 
probability, by an assignment of weights to singletons, called a possibility distribution. 
 
The agent’s beliefs cannot be directly assessed. All that can be known is the value of the 
p̀ignistic' probabilities the agent would use to bet on the frame �� �6PHWV�� ������� 7KH�

pignistic probability induced by a mass function is built by defining a uniform probability on 
each set of positive mass, and performing the convex mixture  of these probabilities according 
to the mass function. In terms of game theory it corresponds to the Shapley value of a game; 
in terms  of upper and lower probabilities it is the centre of gravity of the  set of probabilities 
dominating the belief function. The pignistic probability is what is obtained by means of the 
random simulation of a fuzzy number, picking a cut at random followed by a random choice 
of an element in the cut, as studied by Chanas and Nowakowski (1988), among others. 
 
The knowledge of the values of the probability p allocated to the elements of Ω is not 
sufficient to construct a unique underlying belief function whose pignistic transform is p. 
Many belief functions induce the same probability distribution. For instance, uniform betting 
rates on Ω either correspond to complete ignorance on the values of the variable, or to the 
knowledge that the variable is random and uniformly distributed. So all that is known about 
the mass function that represents the agent's beliefs is that it belongs to the ones that induce 
the supplied probability. Under this scheme, we do not question the exchangeability of bets, 
as done by Walley, Giles and others. What we question is the assumption of a one-to-one 
correspondence between betting rates produced by the agent, and the actual beliefs 
entertained by the agent. Betting rates do not tell if the uncertainty of the agent results from 
the perceived randomness of the phenomenon under study or from a simple lack of 
information about it. 
 
The belief functions whose pignistic transform is p are called isopignistic belief functions and 
form the set IP(p). Since several mass functions lead to the same betting rates, one has to 
select one that most plausibly reflects the actual state of belief of the agent. A cautious 
approach is to obey a l̀east commitment principle' that states that one should never 
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presuppose more beliefs than justified. Then, one should select the ‘least committed’ element 
in the family of mass functions compatible with the pignistic probability function prescribed 
by the obtained betting rates. The first main result of this paper is that the least committed 
belief function, among the ones which share the same pignistic transform, is consonant, that 
is, the corresponding plausibility function is a possibility function. This possibility function is 
the unique one in the set of plausibility functions having this prescribed pignistic probability, 
because the pignistic transformation is a bijection between possibilities and probabilities.  So 
this possibility function corresponds to the least committed mass function whose transform is 
equal to the probability supplied by the agent. 
 
This result is formalized on the basis of a measure of non-commitment of a belief function, 
namely the average of the cardinalities of its focal elements weighted by the mass function. 
Let m be a mass function from 2

�

 to [0, 1], and let I(m) = �A⊆Ω m(A)card(A) be its 
imprecision measure estimating the extent to which it is non-committal. Let p be the 
probability distribution obtained by eliciting an agent’s betting rates on the frame ��� ,W� LV�
assumed that the actual belief of the agent is modeled by a mass function on ��VXFK�WKDW�S� �
Pig(m)  is the pignistic transform of m, that is : 
 

p(w) = �A: w ∈A m(A)/ card(A)     (1) 
 

This is an extension of Laplace indifference principle, according to which equally possible 
outcomes have equal probability. It is a weighted form thereof. It is suggested that the least 
debatable representation of an agent’s belief is the mass function m* which maximizes I(m) 
under the constraint (1) induced by betting rates. 
 
Theorem 1: The mass function m* which maximizes I(m) under the constraint Pig(m) = p is 
consonant. It defines a unique possibility distribution π defined by  
 

π(w) = �u ∈ 
�  min(p(w), p(u)),  w ∈ ������������������������� 

 
It is the converse of the pignistic transform of a possibility distribution, the converse of the 
transformation used by Chanas and Nowakovski. This probability/possibility transform was  
already proposed without formal justification by Dubois and Prade (1983).  
 
This result was already announced by the authors in (Dubois et al. 2001), but its proof is still 
unpublished. It contrasts with a similar result by Smets (2000) that uses a notion of 
information index based on the commonality function.  
 

Moreover, Smets (2000) suggested that the least specific isopignistic belief function 
according to the commonality ordering (based on Q(A) = �A⊆E m(E) ) is also Pig−1(Pig(m)). 

This ordering is less intuitive than the specialization ordering and the inclusion of Bel-Pl 

intervals. However, there is indeed a unique minimally Q-informative belief function in 

IP(p), and it is precisely the one found by maximizing I(m). But the commonality ordering 

turns to be more natural than one could think at first glance, since, in order to show the above 

result expressed by Theorem 2 below, we first prove that, for ensuring comparability in the 
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sense of the Q-informativeness ordering between a consonant belief function and a belief 

function, it is enough to rely on singletons: 

 

Lemma : Consider a belief function with mass function m and a possibility distribution 
π with respective commonality functions Q and Qπ.. Then Qπ(A) ≥ Q(A), ∀A ⊆ Ω  if and only 
if π(ω) ≥ Pl({ω}), ∀ω ∈ Ω. 
 
Theorem 2: The unique consonant mass function in IP(p) (induced by the possibility 
distribution defined by (2)), is minimally Q-informative. 
 
These results provide a first reply to objections raised by Bayesian subjectivists against the 
use of fuzzy numbers and numerical possibility theory in decision-making and uncertainty 
modeling tasks. Interestingly, this approach does not refute the Bayesian operational setting; it 
only questions the interpretation of betting rates as full-fledged degrees of belief.   
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Composing various powerset functors with the term monad gives rise to the concept of generalised
terms. The goal is to extend traditional term unification with unification involving powersets of terms.
This enables a study of substitutions and unifiers within Kleisli categories related to particular monads.

As constructions of monads involve complicated calculations with natural transformations, proofs
are supported by a graphical approach that provides a useful tool for handling various conditions, such
as those for distributive laws.

Monads equipped with order structures extends suitably to so called partially ordered monads.
We will show how these partially ordered monads, together with their subconstructions, contribute
to providing a generalised notion of powerset Kleene algebras. This generalisation builds upon more
general powerset functor setting far beyond just strings (Kleene, 1956) and relations (Tarski, 1941)

References

[1] P. Eklund, W. Gähler,Fuzzy filter functors and convergence, Applications of category theory
to fuzzy subsets. (S. E. Rodabaugh, et al ed.), Theory and Decision Library B, Kluwer, 1992,
109-136.

[2] P. Eklund, W. Gähler,Completions and Compactifications by Means of Monads, in: Fuzzy
Logic; State of Art, Kluwer, Dortrecht/Boston/London 1993, pp 39-56.

[3] P. Eklund, M.A. Galán, M. Ojeda-Aciego, A. Valverde,Set functors and generalised terms,
Proc. 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems
Conference (IPMU 2000), 1595-1599.

[4] P. Eklund, M.A. Galán, J. Medina, M. Ojeda-Aciego, A. Valverde,Composing submonads, Proc.
31st IEEE Int. Symposium on Multiple-Valued Logic (ISMVL 2001), May 22-24, 2001, Warsaw,
Poland, 367-372.

[5] P. Eklund, M. A. Galán, J. Medina, M. Ojeda Aciego, A. Valverde,A categorical approach to
unification of generalised terms, Electronic Notes in Theoretical Computer Science66 No 5
(2002). URL: http://www.elsevier.nl/locate/entcs
/volume66.html.

51



[6] W. Gähler,General Topology – The monadic case, examples, applications, Acta Math. Hungar.
88 (2000), 279-290.

[7] W. Gähler, P. Eklund,Extension structures and compactifications, In: Categorical Methods in
Algebra and Topology (CatMAT 2000), 181–205.

[8] S. C. Kleene,Representation of events in nerve nets and finite automata, In: Automata Studies
(Eds. C. E. Shannon, J. McCarthy), Princeton University Press, 1956, 3-41.

[9] D. E. Rydeheard, R. M. Burstall,A categorical unification algorithm, Proc. Summer Workshop
on Category Theory and Computer Programming, 1985, LNCS 240, Springer-Verlag, 1986,
493-505.

[10] A. Tarski,On the calculus of relations, J. Symbolic Logic6 (1941), 65-106.

52



Structured lattices and ground categories ofL-sets

ANNA FRASCELLA, COSIMO GUIDO

Dept. of Mathematics
University of Lecce
73100 Lecce, Italy

E-mail: cosimo.guido@unile.it

It is quite well known since [4] in the contest of fuzzy mathematics that in many disciplines and
especially in fuzzy topology it is very useful to set up the classes of objects and of morphisms to deal
with (e.g. the working category, dubbed “ground category”) as well as to associate to each morphism
between two objects suitable operators, in both directions,(namely powerset operators) between the
lattices of “canonical subobjects”(namely powersets) of the considered objects.

Among papers mainly devoted to this topic we quote [2, 3, 5, 6] : the ground categories constructed
in [5, 6], either in the fixed-basis or in the variable-basis context, contain only objects associated to
(crisp) sets; the objects of the ground categories considered in [2, 3] are arbitraryL-sets (L a suitable,
fixed complete lattice).

Though not explicitly listed among the elements of the ground categories, powersets associated to
objects and powerset operators associated to morphisms (i.e. powerset functors, as they are defined
in [2]) are fundamental in most applications of this sort of set theory based on ground categories; for
instance, in fuzzy topology, which in any case lies between classical topology and pointless topology,
topologies are (M)-subsets of some ground object and (special) morphisms are maps satisfying prop-
erties expressed in terms of the powerset operators. In [5, 6] one can find a detailed and motivated
justification for extending powersets and powerset operators from the traditional case of classical set
theory to a more general context, including, as a first step, the Zadeh powerset operators. These op-
erators are also the fundamental tool for the construction of powerset operators in [2, 3] and so they
will be in this new approach.
Here an original idea of [1] is extended and developed so as to allow the construction of powerset
operators to be applied in more general situation, including those considered in [2, 3] and a special
case of variable-basis fuzzy set theory extended to arbitraryL-sets.

The fundamental aspect of the construction presented here is a sort of localization of the process
leading to the definition of forward and backward powerset operators both of which can be obtained
in the same way, by using the corresponding Zadeh operators.

This process could be further extended by considering fuzzy sets as lattice-bundles so as to extend
and include the general case of Rodabaugh’s variable-basis fuzzy set theories.
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In fuzzy control, it is a well known approach to transfer, with reference to the compositional rule of
inference, a list of linguistic control rules of the form

IF α is Ai , THEN β is Bi , i = 1, . . . ,n

into a system of fuzzy relation equations

Ai ◦R= Bi , 1≤ i ≤ n,

for a fuzzy relationRwhich has to be determined as a solution of this system of relation equations.

The presentation shall have its focus on methodological considerations, will remind some ap-
proaches toward solvability considerations for such systems as well as toward approximate solutions
like [4, 3], and extend them slightly with reference to some recent results explained e.g. in the papers
[1, 2, 5].

But we will also give an embedding of this methodology to treat fuzzy control problems into a
wider perspective of handling an interpolation problem in an approximative way.

And we shall go on to look at some open problems from a rather general point of view.
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1 Introduction

Capacities [3] have been introduced by Choquet, and rediscovered by Sugeno [13] under the name of
fuzzy measures. On a mathematical point of view, these are monotonic set functionsµ : P (N)−→ [0,1]
over some setN (assumed to be finite in this paper), or otherwise said, isotone mappings from the
Boolean lattice(2N,⊆) to the linear lattice([0,1],≤), preserving top and bottom. Usual tools used in
capacity theory are the Möbius transform [11], the Choquet integral, and interaction index [5].

Recently, Grabisch and Labreuche have proposed the concept ofbi-capacities[7, 6], which gen-
eralizes capacities for bipolar scales in a context of decision making. Mathematically speaking, these
are functionsv : Q (N) −→ [−1,1], whereQ (N) := {(A,B) ∈ 2N× 2N | A∩B = /0}, being increas-
ing in first coordinate and decreasing in second one. More abstractly, a bi-capacity is an isotone
mapping from the lattice(3N,v) to the linear lattice([−1,1],≤) preserving top and bottom, where
(A,B)v (C,D) iff A⊆C andB⊇ D. Usual tools of capacity theory mentionned above have all been
generalized to bi-capacities.

Taking this as a starting point, one may define capacities as isotone mappings from some latticeL
to ([−1,1],≤), preserving top and bottom. This can be interpreted in decision making and even larger
domains such as knowledge discovery [10]. The aim of the paper is to show how to generalize usual
tools of capacity theory to this general setting, using the less possible restrictions on the latticeL. For
the Choquet integral, we refer the reader to [9].

We will make a particular mention of belief functions (see a pioneering work by Barthélemy
defining belief functions on lattices [1]), and refer the reader to [8] for the case of possibility measures.

2 Capacities on lattices

(for a reference on lattices, see [2]) Let(L,≤) be a finite lower locally distributive lattice, we denote
as usual∨,∧,>,⊥ supremum, infimum, top and bottom. Any such lattice can be represented uniquely
by its∨-irreducible elements in an irredundant decomposition [4]. An elementi ∈ L is a∨-irreducible
elementif i 6=⊥ and it has only one predecessor. Let us callJ (L) the set of all∨-irreducible elements
of L. For anyx ∈ L, we denote byη∗(x) its unique irredundant decomposition in join-irreducible
elements.

For x,y ∈ L, we say thatx covers y(or y is a predecessorof x), denotedx� y, if there is no
z∈ L,z 6= x,y such thatx≤ z≤ y.
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Let v : L−→R be a real-valued function onL. v is acapacityif v is isotone. Bottom and top have
to be preserved if one replacesR by any closed interval.

3 Möbius transform

The first fundamental concept in capacity theory is the Möbius transform. Following the general
definition of Rota [11] (see also [2, p. 102]), we have already a definition for the general case. For any
function f on (L,≤), theMöbius transformof f is the functionm : L−→ R solution of the equation:

f (x) = ∑
y≤x

m(y).

The expression ofm is obtained through the Möbius functionµ by:

m(x) = ∑
y≤x

µ(y,x) f (y)

whereµ is defined inductively by

µ(x,y) =


1, if x = y
−∑x≤t<yµ(x, t), if x < y
0, otherwise.

4 Derivative of functions on lattices

Let (L,≤) be a finite lower locally distributive lattice, andf : L−→ R a real-valued function on it.

Definition 1. Let i ∈ J (L). Thederivativeof f w.r.t. i at pointx∈ L is given by:

∆i f (x) := f (x∨ i)− f (x).

Note that∆i f (x) = 0 if i ≤ x. We say that the derivative∆i f (x) is Booleanif [x,x∨ i] is the Boolean
lattice 21, otherwise saidx∨ i � x.

Using the irredundant decomposition, the derivative w.r.t any elementy can be defined.

Definition 2. Let x,y∈ L, andy = ∨n
k=1ik be the irredundant decomposition ofy into join-irreducible

elements. Then the derivative off w.r.t y at pointx is given by:

∆y f (x) = ∆i1(∆i2(· · ·∆in f (x) · · ·)).

The derivative isBooleanif [x,x∨ y] is the Boolean lattice 2n. The derivative is 0 if for somek,
ik ≤ x.

We express the derivative in terms of the Möbius transform off .

Theorem 3. Let x,y∈ L, such that∆y f (x) is Boolean. Then

∆y f (x) = ∑
z∈[y,x∨y]

m(z).
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5 Shapley value and interaction index

We need some additional structure onL at this point. We consider finite lower locally distributive
latticesL1, . . . ,Ln, with top and bottom ofLi denoted>i ,⊥i , i = 1, . . . ,n, andL is the product lattice
L := L1×·· ·×Ln with the product order. Avertexof L is an elementx = (x1, . . . ,xn) of L wherexi is
either>i or⊥i , for i = 1, . . . ,n. We denoteΓ(L) the set of vertices ofL. Note that ifL is a Boolean
lattice, thenL = Γ(L).

We begin by defining the importance index as the interaction index w.r.t. a single join-irreducible
element.

Definition 4. Let i = (⊥1, . . . ,⊥ j−1, i0,⊥ j+1, . . . ,⊥n) be a join-irreducible element ofL. Theinterac-
tion w.r.t. i of v is any function of the form

I(i) := ∑
x∈Γ(∏ j−1

k=1 Lk)×{i0}×Γ(∏n
k= j+1 Lk)

α1
h(x)∆iv(x), (1)

wherei0 is the (unique) predecessor ofi0 in L j , h(x) is the number of components ofx equal to>l ,
l = 1, . . . ,n, andα1

k ∈ R for any integerk.

Observe that the constantsα1
h(x) do not depend oni. Also, the derivative is Boolean.

Let us generalize Definition 4 to a class of elements ofL denotedL̃ and defined as follows:̃L :=⋃
J⊆N L̃J, with

L̃J := {x∈ L | ∀k∈ J,∃ik ∈ Lk such that∀i ∈ η∗(xk), i � ik,

andxk =⊥k if k∈ N\J}

In words, it is the set of elements whose coordinates are either bottom or such that the irredundant
decomposition covers a unique element. Observe that for the case whereLk is a linear lattice or a
Boolean one (i.e. practical cases fo interest),L̃ = L.

Definition 5. Let K ⊆ N, andx∈ L̃K , and denote as above for allk∈ K, ik the element covered by all
i ∈ η∗(xk). Theinteraction w.r.t. xof v is any function of the form

I(x) := ∑
y|yk=>k or⊥k if k6∈K,yk=ik else

α|J|h(y)∆xv(y) (2)

whereJ is the set of join-irreducible elements in the decomposition ofx.

The derivative is Boolean if in addition theLk’s are modular (and hence distributive).

We have the following general result.

Theorem 6. Let K⊆ N, and assume distributivity holds for every Lk, k∈ K. The expression of the
interaction index for x∈ L̃K in terms of the Möbius transform is given by:

I(x) = ∑
z∈[x,x̌]

β|J|,|K|k(z) m(z),

with x̌k := (>k) for k 6∈ K, andx̌k = xk else, J is the set of join-irreducible elements in the decomposi-
tion of x, and k(z) is the number of coordinates of z not equal to⊥l , l = 1, . . . ,n. Moreover, the real

constantsβ|J|,|K|k(z) are related to theα|J|h(x)’s by:

β|J|,|K|k(z) =
n−k(z)

∑
l=0

(
n−k(z)

l

)
α|J|(k(z)−|K|+l) (3)
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6 Belief functions on lattices

Let L be a lattice. Following the classical definition, we say that a capacityv : L −→ [0,1] on L is a
belief functioniff its Möbius transform is non negative, andv preserves top and bottom. Barthélemy
has shown in [1] that this is equivalent to say thatv is k-monotone for allk > 2, the definition of
k-monotonicity being adapted in the obvious way for our general setting.

In fact, most of properties of belief functions are still true when defined on a lattice. We show in
the sequel the decomposition of belief functions into simple support functions, which generalizes the
classical result of Shafer [12].

For any belief functionb on L, we define the correspondingcommonality function qby q(x) :=
∑y≥xm(y), wherem is the Möbius transform ofb.

Let b1,b2 be two belief functions onL, m1,m2 their Möbius transform, andq1,q2 their common-
ality functions. TheDempster rule of combinationof b1,b2, denotedb1⊕b2 is defined in terms of its
Möbius transform by

m1⊕m2(x) = ∑
y1∧y2=x

m1(y1)m2(y2)

It is easy to show that the commonality functionq1⊕q2 associated tob1⊕b2 is

q1⊕q2(x) = q1(x)q2(x).

Definition 7. We call simple support function focussed on y, denotedyω, the function of which the
Möbius transform satisfies

m(x) =


1−ω, if x = y

ω, if x =>
0, otherwise.

The decomposition of some belief functionb in terms of simple support functions is thus to write
b under the form:

b(x) =
⊕
y∈L

yωy(x).

It can be shown that the coefficientsωy of this decomposition write

ωy = ∏
x≥y

q(x)−µ(x,y)

whereµ(x,y) is the Möbius function. Note that as in the classical case, these coefficients may be
strictly greater than 1, hence corresponding simple support functions have negative Möbius transform.
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Abstract

Given a complete lattice(L,≤) with an order–reversing involution, we find conditions to exist a
residuated binary operation∗ such that the order–reversing involution is determined by the resid-
uation associated to the binary operation∗. Particularly, if (L,≤,) is a completely distributive
lattice with an order–reversing involution′ we prove that there exists an operation∗ such that
(L,≤,∗) is an integral, commutative Frobenius lattice in whichα−→⊥ = α′ for eachα ∈ L if
and only if α≤ β′ wheneverα∧β.

Keywords: Order–reversing involution,po–semigroup, residuation, Heyting algebra.
AMS Classification: 18A40, 54A40.

1 Preliminaries

Let (L,≤) be a complete lattice with universal bounds⊥ and>. In particular
∨

∅ = ⊥ and
∧

∅ =
>. A unary operation′ is an order–reversing involution(or a quasi-complementation) if it is an
involution (i.e. α′′ = α for all α ∈ L) that inverts the ordering (i.e.α≤ β implies β′ ≤ α′).

A po–groupoid(short for partially ordered groupoid) is a poset(L,≤) with a binary operation∗
on L which satisfies theisotonicitycondition: α ≤ β impliesα∗ γ ≤
β∗ γ and γ∗α ≤ γ∗β for all α,β,γ ∈ L. When∗ is commutative or associative,(L,≤,∗) is called a
commutative po–groupoid orpo–semigroup, respectively.

In a po–groupoid(L,≤,∗) an elementα is calledidealelement ifα∗β ≤ α∧β for all α,β ∈ L.
An po–groupoid(L,≤,∗) is calledintegral if and only if the universal upper bound> acts as unit
element w.r.t.∗. In an integralpo–groupoid(L,≤,∗) all elements are ideal.

Let (L,≤,∗) be apo–groupoid andα,β∈ L. Theright–residualα ∗−→r β of β by α is the largest
γ ∈ L (if it exists) such thatα ∗ γ ≤ β; the left–residualα ∗−→l β of β by α is the largestγ ∈ L (if
it exists) such thatγ ∗α ≤ β. A residuated latticeis an m–lattice (L,≤,∗) in which α ∗−→r β and
α ∗−→l β always exists for anyα,β ∈ L. Obviously, in case(L,≤,∗) is commutative, bothα ∗−→r β
and α ∗−→l β coincide. We shall denote them byα ∗−→ β and call it theimplication associated to
∗. The existence of residuals implies that the operation∗ preserves all existing supremss in each
argument.

A po–groupoid(L,≤,∗) in which
(
α ∗−→l ⊥

) ∗−→r ⊥ = α for every right-ideal elementα and(
β ∗−→r ⊥

) ∗−→l ⊥ = β for every left-ideal elementβ is a Frobenius po–groupoid(cf. [1, page
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341]). In particular, if(L,≤,∗) is an integral commutative residuated lattice, then it is Frobenius if
and only if

(
α ∗−→⊥

) ∗−→⊥ = α for every α ∈ L.

A lattice (L,≤) is said to be aHeyting algebraif (L,≤,∧) is a residuated lattice. Obviously,
(L,≤,∧) is an integral commutative residuated lattice.

An elementp in a latticeL is calledprime if and only if the relationp ≥ α∧β always implies
p ≥ α or p ≥ β. The set of all prime elements is denoted PRIMEL. Dually, an elementq in a lattice
L is calledcoprimeif and only if the relationq ≤ α∨β always impliesq ≤ α or q ≤ β. The set of
all coprime elements is denoted COPRIMEL.

2 Order-reversing involutions and residuated lattices

We shall try to answer the following question:

Given a lattice with an order–reversing involution (L,≤, ′), does there exist a binary
operation ∗ such that the order–reversing involution ′ is determined by the implication
∗−→ associated to ∗, i.e. α ∗−→⊥ = α′ for each α ∈ L?

In view of the structures considered in the preliminaries, we can reformulate the previous question
in a more precise way:

Given a lattice with an order–reversing involution (L,≤, ′), does there exist an integral
commutative Frobenius lattice (L,≤,∗) such that the order–reversing involution ′ is de-
termined by the implication ∗−→ associated to ∗, i.e. α ∗−→⊥ = α′ for each α ∈ L?

This question has been studied by Esteva and Godo in [2] in the case of bounded chains.

The answer to the previous question is obviously NOT in general. In fact, we have the following
example:

ExampleLet L = {⊥,α,β,>} whereα∧β = ⊥, α∨β = >, α′ = α and β′ = β. Let assume that
there exists an integral, commutative m–lattice(L,≤,∗) such that the order–reversing involution′ is
determined by the implication

∗−→. Thenα∗β ≤ α∧β = ⊥ and soβ ≤ α ∗−→⊥ = α′ = α.

Consequently we see that in order to have a positive answer the lattice must satisfy some additional
condition. Particularly, the existence of such a binary operation requires that the order–reversing
involution satisfies the following condition:

∀α,β ∈ L α∧β = ⊥ =⇒ α ≤ β′ (F)

Now we can reformulate the previous question:

Given a lattice with an order–reversing involution (L,≤, ′) satisfying condition F, does
there exist an integral, commutative, Frobenius lattice (L,≤,∗) such that the order–
reversing involution ′ is given by the implication ∗−→, that is, α′ = α ∗−→ ⊥ for all
α ∈ L?
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In order to have an answer to this question we shall use the residuation associated to the infimum
and consequently from now on we shall assume that(L,≤) is a Heyting algebra. We have then the
following lemmata:

Lemma 1. Let (L,≤, ′) be a Heyting algebra with an order–reversing involution′. Then condition
F is equivalent to the following condition:

∀α ∈ L α ∧−→⊥ ≤ α′ (FF)

Lemma 2. Let (L,≤, ′) be a Heyting algebra with an order–reversing involution′. Then for each
α,β ∈ L such thatβ is coprime we have

α ∧−→ β′ =
{
>, if α ≤ β′;
β′, if α 6≤ β′.

Consequently

α∧
(
α ∧−→ β′

)′ ={ ⊥, if α≤ β′;
α∧β, if α 6≤ β′. ≤ γ ⇐⇒ β≤ α′∨

(
α ∧−→ γ

)
Corollary 3. Let (L,≤, ′) be a Heyting algebra with an order–reversing involution′. Then for each
α,β ∈ L such thatα and β are coprime we have(

α ∧−→ β′
)′∧ (β ∧−→ α′

)′ = β∧
(
β ∧−→ α′

)′ =
(
α ∧−→ β′

)′∧α.

Theorem 4. Let (L,≤, ′) be a complete lattice with an order–reversing involution′ such that:
(i) (L,≤) is a Heyting algebra and
(ii) any element of L is the supremum of all coprime elements below it.
Then the following binary operation∗ defined for eachα,β ∈ L by

α∗β = ∨
{

q1∧q2 : q1,q2 coprime, q1≤ α, q2≤ β and q1 6≤ q′2
}

determines a commutative, residuated lattice structure(L,≤,∗). The corresponding residuation
∗−→

is defined for eachβ,γ ∈ L by

β ∗−→ γ = ∧
{

q′∨ p : q coprime, p prime, q≤ β,γ ≤ p
}
.

Moreover, if (L,≤, ′) satisfies conditionF, then (L,≤,∗) is an integral, commutative Frobenius
lattice satisfyingα′ = α ∗−→⊥ for all α ∈ L.

As a consequence on the previous theorem we have the following corollaries which are the an-
nounced answers to the stated question:

Corollary 5. Let (L,≤, ′) be a Heyting algebra with an order–reversing involution′ such that any
element is the supremum of all coprime elements below it. Then there exists an operation∗ such that
(L,≤,∗) is an integral, commutative Frobenius lattice in whichα ∗−→⊥ = α′ for eachα ∈ L if and
only if conditionF is satisfied.

If the lattice is continuous, then condition (i) in the theorem is equivalent to distributivity of the
lattice (see [4]). Moreover, a lattice is completely distributive if and only if it is continuous and
satisfies condition (ii) in the theorem. Consequently, we have the following:
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Corollary 6. Let (L,≤, ′) be a completely distributive lattice with an order–reversing involution′.
Then there exists an operation∗ such that(L,≤,∗) is an integral, commutative Frobenius lattice in
which α ∗−→⊥ = α′ for eachα ∈ L if and only if conditionF is satisfied.

Particularly in the case of a bounded chain, conditionF is always satisfied and we have the
following:

Corollary 7. (Proposition A.4 in[2]) Let (L,≤, ′) be a bounded chain with an order–reversing invo-
lution ′. Then there exists an operation∗ such that(L,≤,∗) is an integral, commutative Frobenius
lattice in whichα ∗−→⊥ = α′ for eachα ∈ L.
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Mathematical fuzzy logic (or fuzzy logic in the narrow sense) is understood as a kind of many-valued
logic with comparative notion of truth and with the real unit interval[0,1] as the standard set of truth
values. We further postulate truth-functionality (existence of truth-functions of connectives) and base
the theory of truth functions on the notion of a t-norm as a truth function of conjunction. The basic
fuzzy logic BL works with continuous t-norms as truth functions of conjunction and their residua as
corresponding truth functions of implication; more generally, the monoidal t-norm based logic MTL
works with left-continuous t-norms and their residua. Other generalizations will be mentioned.

Part 1 of the talk will be devoted to a very quick survey of propositional logics BL, MTL and
stronger logics related to particular t-norms (Łukasiewicz, Gödel, product logic and some others).
(For a detailed survey see [8].)

Part 2will describe in some details the predicate logics BL∀ and MTL∀ and other predicate logics
built over the propositional logics of Part 1 ([9, 6, 7, 10]). Here again we shall distinguish standard
semantics (of [0,1]-fuzzy relational structures) and general semantics (fuzzy relational structures over
linearly ordered BL-algebras, MTL-algebras and similar algebras). Tarski style truth definition will
be given and completeness of very natural axiom systems with respect to the general semantics will be
presented. But several important predicate fuzzy logic are not recursively axiomatizable with respect
to their standard semantics; some others are. This will be surveyed and degree of undecidability of
most of these logics will be explicitly stated ([12, 13, 1, 2, 3, 4, 19, 17, 18]). Main examples: the
set of standard tautologies of the fuzzy predicate logic BL∀ is not arithmetical, whereas the set of
standard tautologies of the logic MTL∀ coincides with the set of general tautologies of this logic
and therefore is recursively enumerable. When defining the general semantics of BL∀ we cannot
restrict ourselves to interpretations over BL-chains that are completely ordered; this would lead again
to a non-arithmetical set of tautologies [20]. On the other hand, we can give up linear order of the
algebras; one gets a complete axiomatization of this semantics just by deleting one axiom from the
corresponding axiomatization based on linearly ordered algebras. Then we refer on corresponding
falsity-free (positive) logics and their semantics based on algebras called hoops [7]. Completeness
and conservativity results will be presented.

Part 3 will deal with mathematics based on fuzzy predicate logic. We go into some details con-
cerning set theory. We describe a Zermelo-Fraenkel-like fuzzy set theory over Basic predicate logic
and Cantor-like set theory with full comprehension over Łukasiewicz predicate logic. The latter theory
can be shown to contain full Peano arithmetic with its classical logic ([23, 24, 25, 15, 16, 14]).
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It is a remarkable fact that the historic development of fuzzy set theory (cf. [2]) proceeds completely
isolated from sheaf theory3. Also the long lasting debate on categorical foundations of fuzzy set
theory (cf. [6]) does not open the horizon for sheaf-theoretic arguments in the formulation of such
fundamental notions asmembership function, measurement of membership, similarity, fuzzy ordering,
fuzzy relational equation, etc.

The aim of this paper is to explain that large parts of fuzzy set theory are actually subfields of sheaf
theory. We show that fuzzy sets aresubsheavesof simple sheaves — so-called sheaves of level cuts,
similarity relations aresheaves of ordinary equivalence relations, fuzzy subgroups aresubsheaves
of subgroupsof simple sheaves of groups, and stratifiedΩ-valued topological spaces aretopological
space objectsin the category of sheaves. Further, intersections, unions, images and inverse images
of fuzzy sets, the max−min-composition of fuzzy relations are special categorical constructions in
the category of sheaves. Fuzzy power sets are nothing but power sheaves of simple sheaves. Fuzzy
relational equations are equations in the Kleisli category associated with the power object monad in the
category of sheaves. Moreover, fuzzy theorists are not able to give a proper solution of the quotient
problem w.r.t. similarity relations and a proper construction of fuzzy factor groups w.r.t. invariant
fuzzy subgroups.

In order to overcome these shortcomings some fundamental knowledge from sheaf theory is in-
evitable. Therefore we begin with some basic facts from sheaf theory including the role of the so-
calledespace étalé, the concept ofΩ-valued setsand thetilde-construction. We recall the construc-
tion of the subobject classifier and the identification of subobjects with characteristic morphisms in the
category of sheaves, resp. completeΩ-valued sets. The importance of these constructions will appear
immediately for every fuzzy set theoretist, when their relationships to standard techniques in fuzzy
set theory are explained — e.g. level cut techniques or the interpretation of fuzzy sets by their proto-
types. Further, we discuss the set-theoretical operations on fuzzy sets in the light of sheaf theory and
quote the importantcategorical axiomsfor fuzzy preorderings, similarity relations and fuzzy partial
orderings. We solve the quotient problem w.r.t. similarity relations in terms of anexact diagramand
show by using only categorical arguments that thesymmetrizationof (fuzzy) preorders leads always
to a (fuzzy) partial ordering on the respective quotient.

Further, we describe group objects in the category of sheaves, resp. completeΩ-valued sets and
characterize fuzzy subgroups as subgroup objects of simple sheaves of groups. Since we have already
solved the quotient problem w.r.t. similarity relations, we are in the position to give a proper construc-
tion of fuzzy factor groups which are again of course a part of an exact diagram. Finally, we study
higher order constructions and give a detailed description of theformation of unionof fuzzy systems

3A historic account on sheaf theory can be found in [3].
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of fuzzy sets. After having understood the power object monad in the category of sheaves, resp.
completeΩ-valued sets, we recall the axioms of topological space objects, and show that topologi-
cal space objects on simple sheaves andstratifiedΩ-valued topological spacesare the same things.
We close this talk with two important examples of topological space objects: One is generated by
fibrewise topological spaces, while the other one is construced from separated presheaves of ordinary
topological spaces. In this context it is interesting to see that there exists an adjoint situation between
topological space objects on completeΩ-valued sets and separated presheaves of ordinary topological
spaces onΩ.
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In recent years many papers have been written generalizing some theorems, known from the Kol-
mogorovian probability theory, to MV-algebras. To achieve such results, so-called product MV-
algebras were introduced and, using the product, the joint probability distribution was defined. In
this paper we present an approach how to define the joint distributions on MV-algebras which are not
necessarily closed under product. First we construct conditional measures on a given MV-algebra.
And, using these conditional measures, we define the joint probability distributions.

We will work with a semi-simple MV-algebra,M , which is represented by a system of integrable
functions defined on a probability space(Ω,S ,µ) with their range in[0;1] and such that/0 ∈M and
the systemM is closed under the operations∗ and⊕ defined pointwise by

f ∗(x) = 1− f (x), ( f ⊕g)(x) = min{1, f (x)+g(x)}

Theconditional probability distribution, γ, on the MV-algebraM is an additive normed measure
on M , defined as follows

ν( f ) = ν(g)γ( f |g)+ν(g∗)γ( f |g∗)

with the following conditions holding forγ∫
f gdµ= 0 ⇒ γ( f |g) = 0∫

f g∗dµ= 0 ⇒ γ( f |g∗) = 0

whereν( f ) =
∫

f dµ.

Now, we will show that such conditional distibutions onM are not given uniquely.

DenoteT the system of all transformationsτ : M −→ [0;1]Ω such that for eachf ∈M

1. τ( f ) is S -measurable

2.
∫

f dµ=
∫

τ( f )dµ

3. for anyx∈Ω there holdsf (x) = 0 ⇒ (τ( f ))(x) = 0.

Theorem 1. Let τ ∈ T be such that for any g∈M

τ(g∗) = 1− τ(g) (1)
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Define for any f,g∈M

γ( f |g) =


∫

f ·τ(g)dµ∫
τ(g)dµ if 0 < ν(g) < 1

ν( f ) if ν(g) = 1
0 if ν(g) = 0.

(2)

Then for any g∈M such thatν(g) > 0, γ(.|g) is a conditional measure.

We will say that eventf is independentof g with respect to a conditional measureγ iff ν( f ) =
γ( f |g). γ will always denote the conditional measure defined by Formula 2 from Theorem 1.

Remark 2. As we will see in the next example, the independence of eventf of g does not imply
the independence of the eventg of f . This nonsymmetric relation of independence allows us to
distinguish between a cause and its effects. Similar results concerning the ortho-modular lattices have
been achieved also by O. Nánásiová in [4].

Example 3. Let Ω = [0;1] andµ be Lebesgue measure. Letτ be the transformation given by

(τ( f ))(x) =


1

µ(A( f ))
∫

A( f ) f dµ iff f (x) ∈]0.5;1[ andA( f ) = {x∈Ω; f (x) ∈]0.5;1[}
1

µ(B( f ))
∫

B( f ) f dµ iff f (x) ∈]0;0.5[ andB( f ) = {x∈Ω; f (x) ∈]0;0.5[}
f (x) otherwise

providedµ(A( f )) 6= 0, µ(B( f )) 6= 0. If e.g. µ(A( f )) = 0, we can put any value to(τ(g))(x) for
x∈ A( f ).
Take f (x) = x andg(x) = 1

2x.Then we get

(τ( f ))(x) =


0.25 iff x∈]0;0.5[
0.75 iff x∈]0.5;1[
x otherwise

(τ(g))(x) =
{

0.25 iff x∈]0;1[
x otherwise

Now, compute the conditional measure

γ( f |g) =
∫ 1

0 f · τ(g)dµ∫ 1
0 gdµ

=
0.25

∫ 1
0 xdµ

0.25
= 0.5 = ν( f )

γ(g|g) =
∫ 1

0 g· τ(g)dµ∫ 1
0 gdµ

=
0.25

∫ 1
0 0.5xdµ
0.25

= 0.25= ν(g)

γ(g| f ) =
∫ 1

0 g· τ( f )dµ∫ 1
0 f dµ

=
0.25

∫ 0.5
0 0.5xdµ+0.75

∫ 1
0.50.5xdµ

0.5
=

5
16
6= ν(g) = 0.25

γ( f | f ) =
∫ 1

0 f · τ( f )dµ∫ 1
0 f dµ

=
0.25

∫ 0.5
0 xdµ+0.75

∫ 1
0.5xdµ

0.5
=

5
8
6= ν( f ) = 0.5

Hence we get thatg is dependent onf and f is also dependent onf . On the other hand,f is inde-
pendent ofg and alsog is independent of itself. In the Kolmogorovian probability theory we are not
used to the fact that an event is independent of itself. But even this can happen when dealing with
MV-algebtras instead of Boolean algebras.

Remark 4. Once having defined for any pairf , g of elements of the MV-algebraM the measure
γ( f |g), the conditional measure ifν(g) > 0, we can define also the two-dimensional distribution on
M ×M – the measure (probability) of occurence of this pairf , g. This, in fact represents the inter-
action of f andg. And the interaction can be different if we change the order.
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Themeasure of interactionof a pair f , g∈M will be denoted byp( f ,g) and defined as

p( f ,g) = γ( f |g)γ(g|1) (3)

Theorem 5 (Basic properties of p).Let p be a measure of interaction on the MV-algebraM and
f ,g be any elements ofM . Then

1. p( f ,1) = p(1, f ) = ν( f )

2. p( f ,g) = p(g, f ) = 0, if
∫

f gdµ= 0

3. p( f ,g)≤min{ν( f );ν(g)}, particularly p( f , f )≤ ν( f )

4. the variables of p do not commute, i.e. in general p( f ,g) 6= p(g, f )

Example 6. Assume thatΩ = [0;1] andµ is the Lebesgue measure. The transformationτ will be
defined by the following

(τ( f ))(x) =


0, if f (x) = 0
1, if f (x) = 1

1
µ(A( f ))

∫
A( f ) f (x)dµ(x) otherwise, whereA( f ) = {x;0 < f (x) < 1}

Let f (x) = x andg(x) = min{0,x−0.5}. Then

(τ( f ))(x) =


0, if x = 0
1, if x = 1
0.5 otherwise

(τ(g))(x) =
{

0, if x≤ 0.5
0.25 if x > 0.5

Then

p(g, f ) =
∫ 1

0
g0.5dµ= 0.5

∫ 1

0.5
(0.5−x)dµ=

1
16

p( f ,g) =
∫ 1

0.5
x0.25dµ=

1
4

3
8

=
3
32

p( f , f ) =
∫ 1

0
x0.5dµ=

1
4

p(g,g) =
∫ 1

0.5
(x−0.5)0.25dµ=

1
32

We add some references where you can find papers with related topics.
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The success of fuzzy systems in real world applications is based on their capability to model human
expert knowledge in an easily understandable way using simple rules incorporating vague concepts
represented by fuzzy sets. However, the use of rules in conjunction with vague concepts alone does
not guarantee the interpretability of a fuzzy system.

There is a number of other aspects that have to be considered.

• The shape of the fuzzy sets should be chosen in such a way that they really correspond to real
world vague concepts.

• The number of rules should be strictly limited, especially the number of rules firing at the same
time.

• The number of attributes or variables occurring in a single rule should be kept very small.

• Finally, the way in which the fuzzy sets are aggregated to determine the firing degree of a rule,
implies a certain independence assumption of the underlying vague concepts.

Here we will mainly concentrate on the last of these aspects.

Understanding fuzzy sets as induced concepts in the context of similarity or equality relations
[9, 6, 8, 2, 5, 7, 1] leads to a rigorous and consistent interpretation the vague concepts. Fuzzy sets can
no longer be chosen arbitrarily, but have to be in accordance with the underlying similarity relations.
A very simple way to define suitable equality relations is based on the concept of scaling [4].

The similarity relations specify how exact values have to be distinguished in a certain range of a
domain in order to solve the task for which the fuzzy system is designed. Taking a look at standard
fuzzy systems, the underlying similarity relations for the single domains are assumed to be indepen-
dent, i.e. the similarity of two tuples of values depends only on the similarities of the single values.
However, this assumption is only partly satisfied in most real world applications.

Here we take a closer look at the notion of independence in the context of similarity relations. It
turns out [3] that independence in the context of similarity relations is a non-symmetric concept in
contrast to the well known probabilistic independence notion, where for instanceP(A|B) = P(A)⇒
P(B|A) = P(B) holds.
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1 Introduction

Clearly, each triangular norm [15, 26] is a special semigroup operation on the unit interval[0,1]. To
be precise,([0,1],T,≤) is a fully ordered abelian semigroup with neutral element 1. Several results
and constructions from the theory of general semigroups [3, 6, 9] have been carried over to t-norms.
Well-known examples are [24, 25] and the full characterization of continuous t-norms based onI -
semigroups [5, 19, 20]. In this contribution we give a survey on recent advances in this context (for
an extensive survey see [17]).

2 Archimedean components

To simplify terminology, we shall identify, ifT is a triangular norm, the fully ordered semigroup
([0,1],T,≤) with the t-normT since the underlying set and the order are clear in this context. In
particular, we shall also speak about subsemigroups of t-norms (which are necessarily fully ordered)
without mentioning the order≤ explicitly.

In semigroups(X,∗) with X ⊆ R, in particular for([0,1],T) whereT is a t-norm, we shall write
x(n)
∗ andx(n)

T , respectively, or simplyx(n) if the semigroup operation is clear, in order to distinguish it
from the usual powerxn (with respect to the multiplication of real numbers).
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Let T be a t-norm and let(X,∗) be a subsemigroup ofT. Then it is evident that(X,∗) is a fully
ordered commutative semigroup where the operation∗ is bounded from above by the minimum, i.e.,
x∗ y≤ min(x,y) for all x,y∈ X. If 0 and 1 are contained inX then they are annihilator and neutral
element of(X,∗), respectively.

In general, it is not clear whether for each semigroup(X,∗,≤), whereX ⊆ [0,1], where the oper-
ation∗ is bounded from above by the minimum and where 1, whenever it is contained inX, acts as
neutral element, the operation∗ can be extended to a triangular norm.

However, in the special case whenX is a convex subset of[0,1], i.e., a subinterval of[0,1], we
shall see that such an extension is always possible. In order to show this, we use the following notions
going back to [16] and [10]. Note that the name tosab is an acronym fortotally ordered semigroup,
abelian, bounded by the minimum.

Definition 1. Let I be a non-empty subinterval of the closed unit interval[0,1].

(i) A fully ordered commutative semigroup(I ,∗) where∗ is bounded from above by the minimum
will be called atosab.

(ii) If ([0,1],∗) is a tosab then the operation∗ is called at-subnorm.

When investigating the structure of t-norms, their Archimedean subsemigroups play an important
role (compare [6, 14]).

Definition 2. Let T be a t-norm. Two elementsx,y∈ [0,1] are calledArchimedean equivalentif there
is ann∈N such thatx(n) ≤ y≤ x or y(n) ≤ x≤ y. For eachx∈ [0,1] the equivalence classIx containing
x is called aT-Archimedean classof T or Archimedean classif T is either irrelevant or clear from
context.

Clearly, as noted in [7], each Archimedean class is a convex subset of[0,1]. Obviously, by com-
plete analogy we may define the Archimedean classes of tosabs and, in particular, of t-subnorms. The
following result can be found in [14, Proposition 3.2].

Proposition 3. Let T be a t-norm.

(i) For all (x,y) ∈ [0,1]2 we have IT(x,y) = Imin(x,y).

(ii) For each x∈ [0,1] the pair(Ix,T|I 2
x
) is a subsemigroup of([0,1],T) (and, hence, a tosab), and it

is called anArchimedean componentof T .

As a consequence, for two t-normsT1 andT2 with the same Archimedean components we have
x(n)

T1
= x(n)

T2
for eachx∈ [0,1] andn∈ N.

A necessary and sufficient condition for a singleton{x} to be a (trivial) Archimedean class for a t-
normT is thatT(y,z) = x holds if and only if min(y,z) = x. As a consequence,{1} is an Archimedean
class of each t-normT.

It is easy to see that a triangular norm is Archimedean if and only if its only non-trivial Archime-
dean class is either[0,1[ or ]0,1[. Similarly, a non-trivial tosab is Archimedean if and only if it has
only one non-trivial Archimedean class.

From [15, Proposition 1.6 and Theorem 2.12] the following characterization of Archimedean
components follows immediately.
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Lemma 4. A fully ordered commutative semigroup(I ,∗) is an Archimedean component of some t-
norm T if and only if either I= {1} or I is a convex subset of[0,1[ such that for all x∈ I we have
lim

n−→∞
x(n)
∗ = inf I.

The following result, whose proof is straightforward, will be helpful for determining the unique-
ness of t-norms with given Archimedean components.

Lemma 5. Let T be a t-norm and{Ix | x ∈ [0,1]} the set of Archimedean components. Then the
following are equivalent:

(i) For each t-normT̃ withT̃ 6= T there is an element x∈ [0,1] such that the Archimedean component
(Ĩx, T̃|(Ĩx)2) of T̃ and the Archimedean component(Ix,T|I 2

x
) of T are different.

(ii) For all (x,y)∈ [0,1]2 with x≤ y there is a unique fully ordered commutative semigroup(I{x,y},∗),
where the operation∗ is bounded from above by the minimum, such that both(Ix,T|I 2

x
) and

(Iy,T|I 2
y
) are subsemigroups of(I{x,y},∗).

Lemma 6. Assume that Iu equals[a,b[ or ]a,b[ and let(Iu,∗u) be an Archimedean component of some
t-norm T such that for each x∈ ]a,b[ there is a y∈ ]a,b[ with x∗u y > a and such that the conditional
cancellation law holds. Then, putting I= Iu∪ Ib, the semigroup(I ,T|I2) is the ordinal sum of(Iu,∗u)
and(Ib,T|I 2

b
).

Theorem 7. Let T be a t-norm and suppose that each of its non-trivial Archimedean components
satisfies the hypotheses of Lemma6. Then there is no other t-norm̃T having the same Archimedean
components as T .

Corollary 8. Let T be a t-norm, suppose that each of its non-trivial Archimedean components is
continuous and satisfies the hypotheses of Lemma6 and, additionally,limz↗bx T(y,z) = y if x∈ [0,1],
y∈ Ix and bx = supIx. Then T is a continuous t-norm, and it is uniquely determined by its Archimedean
components.

Example 9. Assume thatT is a t-norm whose Archimedean components are
([

0, 1
2

[
,∗1
)

with x∗1y=
x ·y,

([
1
2,1
[
,∗2
)

with x∗2 y = 1
2, and the trivial component({1},∗). Then we get

T(x,y) =


x ·y if (x,y) ∈

[
0, 1

2

[2
,

1
2 if (x,y) ∈

[
1
2,1
[2

,

min(x,y) otherwise,

i.e.,T necessarily is the ordinal sum of its Archimedean components (see Proposition 13).

Note also that Archimedean components play a key role in the characterization of several spe-
cific semigroups. For example, in thetorsion semigroupsintroduced in [22] for eachx the set
{x1,x2, . . . ,xn, . . .} is finite. Therefore, for atorsion t-norm Tand for eachx ∈ [0,1] there is an
n∈ N such thatx(n)

T is an idempotent element ofT. However, this is equivalent to the fact that each
Archimedean component(I ,∗) of T is a torsion semigroup which, in addition, satisfies infI ∈ I . Ob-
serve that, for a continuous t-normT, ([0,1],T) is a torsion semigroup if and only if each Archimedean
summand ofT is nilpotent. A special subclass of torsion t-norms are the so-calledn-contractive t-
normsstudied in [1], in which casex(n)

T is an idempotent element for eachx∈ [0,1] (son-contractive
t-norms can be viewed as uniform torsion semigroups). A characterization ofn-contractive t-norms
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by means of their Archimedean components, together with a construction method forn-contractive
t-norms, can be found in [18].

Another interesting algebraic property closely linked to Archimedean components is the weak
cancellativity investigated in [23]. A semigroup(X,∗) is said to beweakly cancellativeif x∗x= x∗y=
y∗ y impliesx = y, which, in the case of a t-normT, is equivalent with saying thatT(x,x) = T(y,y)
implies x = y, because of the monotonicity ofT. Observe that a continuous t-normT is weakly
cancellative if and only if each Archimedean summand ofT is strict. In general, a t-normT is weakly
cancellative if and only each Archimedean component ofT is weakly cancellative. Note that a weakly
cancellative Archimedean t-norm never has zero divisors, but it is not necessarily cancellative (an
example for that is the Krause t-norm [15, Appendix B]).

3 Ordinal sums

Ordinal sums of abstract semigroups were introduced by A. H. Clifford in [2] (see also [8, 21]),
foreshadowed in [4, 12], yielding a semigroup structure on the union of pairwise disjoint semigroups.
We recall this fundamental result for convenience.

Theorem 10.Let(A,�) be a linearly ordered set with A6= /0 and((Xα,∗α))α∈A a family of semigroups
such that Xα∩Xβ = /0 wheneverα 6= β. Put X=

⋃
α∈AXα and define the operation∗ : X2−→ X by

x∗y =


x∗α y if (x,y) ∈ X2

α ,

x if (x,y) ∈ Xα×Xβ andα≺ β,

y if (x,y) ∈ Xα×Xβ andβ≺ α.

(1)

Then(X,∗) is a semigroup, and it will be called the ordinal sum of the semigroups((Xα,∗α))α∈A.

This result can be directly applied (see [25, 26] and Theorem 7.1 in Chapter 1) to construct new
triangular norms from a given family of t-norms. The t-norm obtained via this construction will be
referred to as anordinal sum of t-norms:

Theorem 11. Let(Tα)α∈A be a family of t-norms and(]aα,bα[)α∈A be a family of non-empty, pairwise
disjoint open subintervals of[0,1]. Then the following function T: [0,1]2−→ [0,1] is a t-norm:

T(x,y) =

{
aα +(bα−aα) ·Tα

( x−aα
bα−aα

, y−aα
bα−aα

)
if (x,y) ∈ [aα,bα[2 ,

min(x,y) otherwise.
(2)

Proposition 12. Let (A,�) be a linearly ordered set with A6= /0 and((Xα,∗α))α∈A a family of semi-
groups such that(Xα)α∈A is a partition of the closed unit interval[0,1]. If the operation∗ : [0,1]2−→
[0,1] given by(1) is a triangular norm, then we have:

(i) Each Xα is a subinterval of[0,1].
(ii) Each semigroup(Xα,∗α) is a fully ordered commutative semigroup where the operation∗α is

bounded from above by the minimum, i.e., we have x∗α y≤min(x,y) for all x,y∈ Xα.

(iii) The order� on A is compatible with the usual order≤ on [0,1], i.e., forα,β ∈ A we haveα≺ β
if and only if x< y for all x∈ Xα and y∈ Xβ.
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(iv) For all (x,y) ∈ [0,1]2 we have

x∗y =

{
x∗α y if (x,y) ∈ X2

α ,

min(x,y) otherwise.
(3)

Proposition 13. Let ([0,1],∗) be the ordinal sum of a family((Xα,∗α))α∈A of semigroups. Then the
operation∗ is a t-norm if and only if each(Xα,∗α) is a tosab, if the order� on A is compatible with
the usual order≤ on [0,1], and if there is anα0 ∈ A such that1 is the neutral element of∗α0.

Theorem 14. Let I be a non-empty subinterval of[0,1]. A semigroup(I ,∗) is a continuous tosab
if and only if it is an ordinal sum of idempotent tosabs and continuous Archimedean tosabs with
neutral element with possibly one exception if for some summand(Iα0,∗α0) we havesupIα0 = supI ∈
Iα0∪ ([0,1]\ I), in which case(Iα0,∗α0) need not have a neutral element.

Definition 15. A tosab is calledordinally irreducible if it cannot be expressed as an ordinal sum of
two or more non-singleton tosabs.

Proposition 16. Let T be a t-norm. Then the following are equivalent:

(i) T is ordinally irreducible.
(ii) For each x∈ ]0,1[ there exist y,z∈ [0,1] with y< x < z and T(y,z) < y.

The following modification of Theorem 11, where the resulting t-normT will be referred to as an
ordinal sum of t-subnorms, was proved in [11].

Theorem 17. Let (Vα)α∈A be a family of t-subnorms and(]aα,bα[)α∈A be a family of non-empty,
pairwise disjoint open subintervals of[0,1]. Further, if bα0 = 1 for someα0 ∈ A then assume that Vα0

is a t-norm, and if bα0 = aβ0 for someα0,β0 ∈ A then assume either that Vα0 is a t-norm or that Vβ0

has no zero divisors. Then the following function T: [0,1]2−→ [0,1] is a t-norm:

T(x,y) =

{
aα +(bα−aα) ·Vα

( x−aα
bα−aα

, y−aα
bα−aα

)
if (x,y) ∈ ]aα,bα]2 ,

min(x,y) otherwise.
(4)

The construction in Theorem 17 is not identical to the one in Theorem 10 (for instance,T|]aα,bα]2 is
not necessarily a semigroup operation on]aα,bα]). However, in Theorem 18 below we shall show that
each t-normT where([0,1],T) is an ordinal sum of semigroups as in Theorem 10 can be rewritten as
an ordinal sum of t-subnorms as in Theorem 17.

In [16, Theorem 3.1] it was shown that the construction in Theorem 17 is the most general way to
obtain a t-norm as an ordinal sum of semigroups.

Theorem 18. Let T be a t-norm. Then the following are equivalent:

(i) ([0,1],T) is an ordinal sum of semigroups.
(ii) T is an ordinal sum of t-subnorms.
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1 Introduction

In this contribution the main attention will be paid to two–dimensional quasi–copulas, which are a
special type of binary 1–Lipschitz aggregation operators. Quasi–copulas will be characterized as
solutions to a certain functional equation. We also show that quasi–copulas and dual quasi–copulas are
important for describing the structure of 1–Lipschitz aggregation operators with any neutral element
or annihilator in the unit interval. Finally, we will study under which conditions the composition
of any two quasi–copulas is again a quasi–copula. The study of these problems was motivated by
several papers on fuzzy preference modeling [5, 6], and by papers concerning some problems in fuzzy
probability calculus, e.g., [10] and others. Therefore we expect applications of obtained results in
these areas.

Recall first the definitions and properties of basic notions which are used throughout the paper.

Definition 1. Let n ∈ N, n ≥ 2. An n–ary aggregation operator Ais a non–decreasing function
A : [0,1]n−→ [0,1] satisfying the boundary conditionsA(0, . . . ,0) = 0 andA(1, . . . ,1) = 1.

In this paper we will deal with binary aggregation operators only. Therefore if no confusion can
arise, we will use for them the name aggregation operators only.

Aggregation operators satisfying the standard Lipschitz condition with constant 1, i.e., satisfying the
property

|A(x1,y1)−A(x2,y2)| ≤ |x1−x2|+ |y1−y2|,

for all x1, x2, y1, y2 ∈ [0,1], will be called1–Lipschitz aggregation operators.

From well–known types of binary aggregation operators, for example, the arithmetic meanM, the
product operatorΠ, Min andMax operators, as well as weighted means, OWA operators, copulas,
quasi–copulas, Choquet integral-based aggregation operators, Sugeno intergal–based aggregation op-
erators are 1–Lipschitz aggregation operators. More details on these classes of aggregation operators
can be found, e.g., in [2].

Distinguished classes of 1–Lipschitz aggregation operators are the classes of copulas and quasi–
copulas.
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Definition 2. A (two–dimensional)copula Cis a functionC : [0,1]2−→ [0,1] with the properties:

• C(0,x) = C(x,0) = 0 andC(x,1) = C(1,x) = x for all x∈ [0,1];

• C(x1,y1) +C(x2,y2) ≥C(x2,y1) +C(x1,y2) for all x1, x2, y1, y2 ∈ [0,1] such thatx1 ≤ x2 and
y1≤ y2.

Definition 3. [9] A (two–dimensional)quasi–copula Qis a functionQ : [0,1]2 −→ [0,1] with the
properties:

• Q(0,x) = Q(x,0) = 0 andQ(x,1) = Q(1,x) = x for all x∈ [0,1];

• Q is non–decreasing in each of its arguments;

• Q satisfies Lipschitz’s condition with constant 1.

Copulas are also non–decreasing functions in each variable and 1–Lipschitz. Each copula is evi-
dently a quasi–copula. Due to the 1–Lipschitz property, copulas as well as quasi–copulas are contin-
uous functions on the unit square.

Note that the conditions in the first two items of the definition of a quasi–copula mean that quasi–
copulas are aggregation operators with zero annihilator and neutral element equal to 1. One of the
last two properties is superfluous because for 1–Lipschitz aggregation operators they are equivalent.
Therefore quasi–copulas can be equivalently characterized as

• 1–Lipschitz aggregation operators with neutral element 1,

or as

• 1–Lipschitz aggregation operators with zero annihilator.

The set of all quasi–copulas will be denoted byQ .

The following claim is only a slight modification of a given definition of a quasi–copula.

Lemma 4. A function Q : [0,1]2 −→ [0,1] is a quasi–copula if and only if it satisfies the following
conditions:

(i) Q is non–decreasing;

(ii) Q is 1–Lipschitz;

(iii) Q(0,1) = Q(1,0) = 0 andQ(1,1) = 1.

Since an aggregation operatorA is always monotone and satisfies the propertyA(1,1) = 1, we obtain
the following result.

Corollary 5. An aggregation operatorA is a quasi–copula if and only if it is 1–Lipschitz andA(0,1) =
A(1,0) = 0.
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For anyQ∈ Q , the functionQ∗, so–called dual of a quasi–copulaQ, is defined by

Q∗ : [0,1]2−→ [0,1], Q∗(x,y) = x+y−Q(x,y).

The dual of any quasi–copula is also a non–decreasing and 1–Lipschitz function, but with zero neutral
element and annihilator equal to 1.
Denote byD the set of all functionsf : [0,1]2 −→ [0,1] which are non–decreasing, 1–Lipschitz and
with zero neutral element (and 1 as neutral element). The setD will be called the set of all dual
quasi–copulas.

2 Characterization of quasi–copulas

In [12], cf. [16], 1–Lipschitz aggregation operators have been characterized as solutions to a simple
functional equation, similar to the Frank functional equation [8], in the following way.

Theorem 6. A binary aggregation operatorA is 1–Lipschitz if and only if there is a binary aggregation
operatorB, such that for allx, y∈ [0,1] it holds

A(x,y)+B(x,y) = x+y. (1)

Commutative quasi–copulas can also be characterized as solutions to the following type of a func-
tional equation.

Theorem 7. A commutative aggregation operatorA is a commutative quasi–copula if and only if
there exists an aggregation operatorB such that for allx, y∈ [0,1] we have

A(x,y)+B(1−x,y) = y. (2)

Remark 8. The previous claim without the commutativity condition must be reformulated in the
following way: An aggregation operatorA is a quasi–copula if and only if there exist aggregation
operatorsB andC such that for eachx, y∈ [0,1] we have

A(x,y)+B(1−x,y) = y and A(x,y)+C(x,1−y) = x.

3 The structure of binary 1–Lipschitz aggregation operators with anni-
hilator or neutral element

Quasi–copulas also play an important role in the characterization of 1–Lipschitz aggregation opera-
tors with annihilator or neutral element from the unit interval. We first show that each 1–Lipschitz
aggregation operator with annihilatora∈]0,1[ can be built up from a quasi–copula, dual quasi–copula
and the valuea. Then we also clarify the structure of 1–Lipschitz aggregation operators with neutral
elemente∈]0,1[.

For a given aggregation operatorAdenoteA∗(x,y) = x+y−A(x,y), (x,y)∈ [0,1]2. Then(A∗)∗= A
and due to Theorem 6 it holds that the operatorA is 1–Lipschitz if and only ifA∗ is a 1–Lipschitz
aggregation operator.
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If a 1–Lipschitz aggregation operatorA has neutral elementeA, then for∀x ∈ [0,1], A∗(x,eA) =
A∗(eA,x) = eA, which means that the elementeA is the annihilator of the operatorA∗, i.e.,eA = aA∗ .
Analogously, for the annihilator ofA, if it exists, we haveaA = eA∗ .

The structure of 1–Lipschitz aggregation operators with annihilator

Let A be a 1–Lipschitz aggregation operator with annihilatoraA∈ [0,1]. According to the previous
discussions:

• if aA = 0 thenA is a quasi–copula;

• if aA = 1 thenA is a dual quasi–copula.

• In the case thataA = a∈ ]0,1[, define, similarly as in the case of nullnorms [3], the mappings
ϕa, ψa by

ϕa(x) =
x
a
, , ψa(x) =

x−a
1−a

. (3)

Then the functionQA : [0,1]2−→ [0,1],

QA(x,y) = ψa
(
A
(
ψ−1

a (x),ψ−1
a (y)

))
=

A(a+(1−a)x,a+(1−a)y)−a
1−a

(4)

is a quasi–copula, and the functionDA : [0,1]2−→ [0,1]

DA(x,y) = ϕa
(
A
(
ϕ−1

a (x),ϕ−1
a (y)

))
=

A(ax,ay)
a

(5)

is a dual quasi–copula.
Therefore the operatorA can be expressed on the squares[0,a]2 and [a,1]2, as a transformation of
some dual quasi–copula and some quasi–copula, respectively, i.e.,

A(x,y) =
{

ϕ−1
a (DA(ϕa(x),ϕa(y))) if (x,y) ∈ [0,a]2

ψ−1
a (QA(ψa(x),ψa(y))) if (x,y) ∈ [a,1]2.

If (x,y) ∈ [0,a[×]a,1], then
a = A(x,a)≤ A(x,y)≤ A(a,y) = a,

which means thatA(x,y) = a, and the same is true for the rest of the unit square]a,1]× [0,a[.

The structure of 1–Lipschitz aggregation operators with neutral element

A similar situation to the previous one is for 1–Lipschitz aggregation operators with neutral ele-
ment.

Let A be a 1–Lipschitz aggregation operator with neutral elementeA ∈ [0,1]. Trivially,

• if eA = 1 thenA is a quasi–copula;

• if eA = 0 thenA is a dual quasi–copula.
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• If eA = e∈ ]0,1[, then the functionQA : [0,1]2−→ [0,1],

QA(x,y) = ϕe
(
A
(
ϕ−1

e (x),ϕ−1
e (y)

))
(6)

is a quasi–copula, and the functionDA : [0,1]2−→ [0,1],

DA(x,y) = ψe
(
A
(
ψ−1

e (x),ψ−1
e (y)

))
(7)

is a dual quasi–copula. Therefore

A(x,y) =
{

ϕ−1
e (QA(ϕe(x),ϕe(y))) if (x,y) ∈ [0,e]2

ψ−1
e (DA(ψe(x),ψe(y))) if (x,y) ∈ [e,1]2.

In the case of uninorms [7] which is similar to this one, the values on the rest parts of the unit square
are not determined uniquely, they are between the values ofMin andMaxoperators, in general. In the
case of 1–Lipschitz aggregation operators the values at the points(x,y) ∈ [0,e[×]e,1] ∪ ]e,1]× [0,e[
are determined uniquely. Indeed, if the operatorA is 1–Lipschitz aggregation operator, the same is
true for A∗, and moreover,aA∗ = e. Using the results of the previous part, the values ofA∗ at these
points areA∗(x,y) = e, that is,A(x,y) = x+y−eat all points(x,y) ∈ [0,e[×]e,1] ∪ ]e,1]× [0,e[.

4 On composition of quasi–copulas

For arbitrary binary aggregation operatorsA, B andF , the functionF(A,B) : [0,1]2−→ [0,1] defined
by

F(A,B)(x,y) = F(A(x,y),B(x,y)),

is also a binary aggregation operator and is called acomposed aggregation operator. It is easy to
verify thatF(A,B) really possesses the properties of an aggregation operator.

In this section we give a necessary and sufficient condition under which composition of any two
quasi–copulas is again a quasi–copula.

Preserving the 1–Lipschitz property: It is known, that although all three aggregation operators
A, B, F are 1–Lipschitz, the composed aggregation operatorF(A,B) need not be of this property. For
example, despite the Łukasiewicz t–conormSL is a 1–Lipschitz aggregation operator, the composed
operatorSL(SL,SL) does not possess this property [12]. However, if the outer operatorF is a kernel
aggregation operator, andA, B are 1–Lipschitz, thenF(A,B) is always 1–Lipschitz aggregation oper-
ator [4, 12].
Recall that a binary aggregation operatorF has thekernel propertyif
for all u1,u2, v1, v2 ∈ [0,1]2 we have

|F(u1,v1)−F(u2,v2)| ≤max(|u1−u2|, |v1−v2|) .

It is clear that each kernel aggregation operator is also 1–Lipschitz. More details on kernel aggregation
operators can be found in [13, 14, 15]. It can be shown that the kernel property of an outer operator is
also a necessary condition for the 1–Lipschitz property of a composed aggregation operator [16].

Theorem 9. Let F be a binary aggregation operator. Then for any binary 1-Lipschitz aggregation
operatorsA andB the composed aggregation operatorF(A,B) is 1-Lipschitz if and only ifF is a
kernel aggregation operator.

87



As a consequence of this theorem we obtain the sufficient condition for quasi–copulas.

Corollary 10. If the outer operatorF is kernel, then composition of any two quasi–copulas is a quasi–
copula.

The 1–Lipschitz property of the composed operatorF(Q1,Q2) is preserved by Theorem 9. Observe
that due to the propertyF(0,0) = 0 the operatorF(Q1,Q2) possesses zero as annihilator.

However, for quasi–copulas, as a special type of 1–Lipschitz aggregation operators, the kernel
property ofF on [0,1]2 can be relaxed, because the points with coordinates(Q1(x,y),Q2(x,y)) for
any two quasi–copulasQ1, Q2 and all points(x,y) ∈ [0,1]2, never fill in the whole unite square.

Lemma 11. DenoteK = {(Q1(x,y),Q2(x,y)) ; (x,y) ∈ [0,1]2,Q1, Q2 ∈ Q }. Then

K =
{

(u,v) ; u∈ [0,1], v∈
[
max(2u−1,0),

u+1
2

]}
.

Because of this property of quasi–copulas we obtain the following claim.

Theorem 12. Let F be an aggregation operator. For any quasi–copulasQ1, Q2, a composed aggrega-
tion operatorF(Q1,Q2) is a quasi–copula if and only if the operatorF has the kernel property on the
setK defined in Lemma 11.

Note that for composition of copulas the claim analogous to that one in Corollary 2, is not true.
Despite the outer operator is kernel, the composition of two copulas need not be a copula, as we can
see in the following example.

Example 13. Let F = medk, k∈ [0,1], i.e.,F(x,y) = med(x,y,k). SetC1 = TL andC2 = TP, whereTP

is the product t–norm. Then the composed operator isAk = medk(TL,TP).
The operatorsC1 andC2 are copulas and each operatorF = medk is a kernel aggregation operator on
[0,1]2. According to Theorem 9, the composed operatorAk is always 1–Lipschitz. For example, for
k = 0.5 we obtain the operator

A0.5(x,y) =


TL(x,y) if TL(x,y)≥ 0.5
TP(x,y) if TP(x,y)≤ 0.5
0.5 if TL ≤ 0.5≤ TP(x,y).

The operatorA0.5 is not a copula because it is not 2–monotone. To show this, consider the points
x = 2

3, x′ = 3
4, y = 2

3 andy′ = 3
4. Then we have

A0.5(
3
4
,
3
4
)+A0.5(

2
3
,
2
3
)−A0.5(

2
3
,
3
4
)−A0.5(

3
4
,
2
3
) = 0.5+

4
9
−0.5−0.5 =− 1

18
< 0,

which contradicts the 2–monotonicity ofA0.5.
Note that by the previous theorem, all operatorsAk, k ∈ [0,1], are quasi–copulas. The claim follows
from the facts thatTL andTP are quasi–copulas (each copula is also a quasi–copula) and the outer
operator med(x,y,k) is kernel on[0,1]2 and thus also on the setK.
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Modifying L-sets: two views based on level-sets
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In this paper we present two views of modifiers defined by means of level-sets. The author has studied
these modifiers earlier and the current paper serves mainly as a survey of this work.

The author has studiedcompositional modifier operators(see e.g. [4, 5, 6, 11]), and especially
modifiers which are also interior operators in Alexandroff topologies. In an Alexandroff topology the
intersection of every family of open sets is open (see e.g. [1]).L-sets on U([2]) are generalizations of
fuzzy sets([13]), defined as mappingsA : U −→ L, and they are modified by operating its level-sets by
means of interior operators in Alexandroff topologies. These generalized operators are calledlevel-
set generated modifiersand denoted byFFF L ([10]). In this case Representation Theorems presented
by C. V. Negoita and D. A. Ralescu (see [12] and also [3]) are applicable when representingL-sets
by means of level-sets. In this paper we demand thatL = (L,≤,∧,∨,⊗) is acl-quasi-monoid([3]),
and axioms forL-interior operatorsandL-topologiesare given in [3]. Under certain conditions the
level-set generated modifiers are alsoL-interior operators ([10]).

The author has also studiedcoarsening operatorsin [7, 8, 9]. Certain coarsening operators,
namelynatural coarsening operatorsdenoted byCCCL, can be defined by means of open sets of Alexan-
droff topologies, andL-sets are modified by omitting those level-sets which are not open. In this case
also Representation Theorems are applicable when representingL-sets by means of level-sets.

Because under certain conditions the level-set generated modifiers areL-interior operators, the
image of this operator is aL-topology, sayTTT1. In this case we will show that the image of a natural
coarsening operator is also aL-topology, sayTTT2, while the natural coarsening operators do not gen-
erally need to beL-interior operators (see [9]). We will show that∀A ∈ LU , CCCL(A) ⊂ FFF L(A) and
TTT1 = TTT2. Still, the category of producedL-topological spaces is isomorphic to the category of crisp
Alexandroff spaces.
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1 Introduction

Concepts of random fuzzy sets, often also called fuzzy random variables, have been introduced to
extend the classical notion of random variables to random experiments with outcomes in form of
fuzzy subsets ofRk. The idea behind is to represent outcomes of random experiments in a more
adequate way by integrating those inherent aspects of vagueness which are of non-random nature.

From a technical point of view it had been turned out that the notion of random fuzzy sets by Puri
and Ralescu (cf. [15]) is the most general suggestion which admits also a probobability theory with
extensions of the classical limit theorems (cf. [10], [13]). The talk deals with the notion of integrals
of random fuzzy sets in the sense of Puri and Ralescu. The aim of the talk is to develop different ways
to define integrals and then to investigate their mutual relationships.

The seminal paper by Puri and Ralescu has offered the mostly accepted approach. As they defined
random fuzzy sets as extended random compact sets they could transfer Aumann’s concept to define
integrals for random compact sets, the so called Aumann-integral. A new direction has been initialized
by Diamond and Kloeden who introduced the class ofLp−metrics on sample spaces consisting of
fuzzy subsets ofRk ([4], for extensions see [12]). These metrics yield other concepts of random fuzzy
sets as random elements in Banach spaces which makes possible to embed the probability theory with
fuzzy observations into the general probability theory in Banach spaces ([9], [14], [11], [13]). The
Lp−metrics work on subspaces of the sample spaces considered by Puri and Ralescu. Moreover, it
has been shown that in most cases the different notions of random fuzzy sets coincide ([10], [13]).
Therefore, reasonable alternatives to define integrals might be obtained by adaption of Bochner- and
Pettis-integration.

Then two problems will be tackled within the talk. If the range of a random fuzzy set is restricted
to a sample space where one of theLp−metrics works, when does the Aumann-integral belong to this
sample space? Secondly what are the mutual relationships between Aumann- and the adaptions of
Bochner- as well as Pettis-integration? Both problems are not investigated systematically in literature.
A first attempt concerning the first problem had been offered by the talk "Probability theory in sample
spaces of fuzzy subsets” held at the 23rd Linz-Seminar of Fuzzy Sets 2003 (cf.[13]). Answers to the
second problem w.r.t. theL2−metric are given in [9] and [14], a comprehensive account was presented
at the 23rd Linz-Seminar (cf. [13]). However these results suffer from quite unsatisfactory conditions
of integrability that the random fuzzy sets should fulfil. Moreover, only sufficient conditions are
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available which ensure that the Aumann-integral of a random fuzzy set belongs to the sample space
under consideration. The conditions of integrability will be improved and the sufficient conditions
will be completed by necessary ones.

As applications of the investigations dominated convergence theorems and strong laws of large
numbers as well as central limit theorems will be derived. The obtained versions generalize and
improve already known results from literature, especially those that were presented at the 23rd Linz-
Seminar.

2 Random fuzzy sets

Let K +
co(Rk) gather all nonvoid convex compact subsets ofRk. We will restrict ourselves to the sample

spaceFno
coc(Rk) which consists of all fuzzy subsets ofRk with α−cuts belonging toK +

co(Rk). Applying
Zadeh’s extension principle we can define onFno

coc(Rk) a semilinear structure{⊕F ,λ�F | λ ∈ R}. It
turns out that it is inherited from the Minkowski operations onK +

co(Rk) on theα−cuts, that is

[Ã⊕F B̃]α = [Ã]α⊕ [B̃]α, [λ�F Ã]α = λ� [Ã]α

for all Ã, B̃∈Fno
coc(Rk), λ∈R, α∈]0,1] (c.f. e.g. [4]). The fuzzy subset ofRk with 1{0} as membership

function will be denoted bỹ0. It is the neutral element w.r.t.⊕F .

Due to a widely used suggestion by Puri and Ralescu ([15]) we can extend the notion of random
compact sets toFno

coc(Rk) in the following way:

Each mapping̃Y : Ω→ Fno
coc(Rk) is associated with itsα−cut-mappings

[Ỹ]α : Ω→K +
co(Rk), ω 7→ [Ỹ(ω)]α (α ∈]0,1])

Puri and Ralescu called a mappingỸ : Ω→ Fno
coc(Rk) a fuzzy random variable over some probability

space(Ω,F ,P) if all the α−cut-mappings are convex-valued random compact sets over(Ω,F ,P).
However from the point of view of general probability theory this definition is not convenient since
there is not any natural notion of distribution emerging from it. Therefore it is more reasonable to
conceptualize random fuzzy sets asFno

coc(Rk)−valued measurable mappings. For this purpose we
need a suitableσ−algebra onFno

coc(Rk). The suggestion below was introduced the first time in [10].

Since every fuzzy subset ofRk is uniquely determined by it positive rationalα−cuts we may
deduce a topologyτFno

coc
on Fno

coc(Rk) from the product topologyτpδ∞ on K +
co(Rk)]0,1]∩Q w.r.t. the

Hausdorff metricδ∞, which is separably metrizable.

Now a mapping̃Y : Ω→ Fno
coc(Rk) is defined to be arandom fuzzy setif it is Borel-measurable

w.r.t. τFno
coc

. The image measure underỸ is called thedistribution of Ỹ. SinceτFno
coc

is metrizable, every
random fuzzy set is a random element inFno

coc(Rk) w.r.t. to every metric which inducesτFno
coc

. Therefore
it is natural to speak of asimple random fuzzy setin the case that a random fuzzy set has only a
finite range. In fact the introduced notion of random fuzzy sets is equivalent with the concept of fuzzy
random variables by Puri and Ralescu (cf. [10]).

Other concepts to define random fuzzy sets are based on the identification of each fuzzy subset
Ã from Fno

coc(Rk) with its support functionsÃ : [0,1]×Sk−1→ R, whereSk−1 denotes the euclidean
unit sphere inRk. Every support function is measurable w.r.t the productσ−algebra consisting of the
Borel subsets of[0,1]×Sk−1 ([12]). This property is the basis to build the subspaces of fuzzy subsets
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with integrable support functions. Integrability will be defined w.r.t.λ1⊗λSk−1
, the product measure

of the Lebesgue-Borel measureλ1 on [0,1] andλSk−1
, the unit Lebesgue-Borel measure onSk−1.

Let for p∈ [1,∞[ define the spaceFno
cocp(Rk) to consist of fuzzy subsets fromFno

coc(Rk) with support

functions beingλ1⊗λSk−1−integrable of orderp. Additionally, letFno
coc∞(Rk) be the space of all fuzzy

subsets fromFno
coc(Rk) with support functions being essentially bounded w.r.t.λ1⊗ λSk−1

. Indeed
this space gathers all the fuzzy subsets fromFno

coc(Rk) with bounded supports. The restriction of the
semilinear structure{⊕F ,λ�F | λ ∈ R} to Fno

cocp(Rk) is well defined for everyp∈ [1,∞] (cf. [13]).

By the mappingjFno
cocp(Rk) : Fno

cocp(Rk) → Lp([0,1]×Sk−1) (p ∈ [1,∞]), which identifies fuzzy

subsets with the respective equivalence classes of their support functions every spaceFno
cocp(Rk) can

be embedded into theLp−spaceLp([0,1]×Sk−1) w.r.t. λ1⊗λSk−1
as a positive cone (cf. [13]).

Using theLp−norm onLp([0,1]×Sk−1) one can define a metricρp on Fno
cocp(Rk), called the

Lp−metric. Another custom concept is the so calledLp,∞−metric, which is a completion of the
metric onFno

coc∞(Rk) introduced by Klement, Puri and Ralescu in [8] (cf. [12]). Each pairρp,dp

induces the same topology (cf. [12]), and in the case ofp = ∞ both metrics are even identical (cf.
[13]).

The Lp− andLp,∞−metrics give the opportunity to consider random elements in the subspaces
Fno

cocp(Rk) w.r.t. the respectiveLp− or Lp,∞−metric. Those random elements can be identified, via the
embeddingsjFno

cocp(Rk), with random elements in theLp−spacesLp([0,1]×Sk−1). It turns out that in
fact all these random elements are random fuzzy sets ([10], [13]).

Proposition 1. Let (Ω,F ,P) be a probability space and let̃Y : Ω→ Fno
coc(Rk). Then we can state:

.1 If Ỹ is Fno
cocp(Rk)−valued for p∈ [1,∞[, then the following statements are equivalent:

(i) Ỹ is a random fuzzy set over(Ω,F ,P).

(ii) Ỹ is a random element in Fno
cocp(Rk) w.r.t. ρp over(Ω,F ,P).

(iii) Ỹ is a random element in Fno
cocp(Rk) w.r.t. dp over(Ω,F ,P).

.2 If Ỹ is Fno
coc∞(Rk)−valued, then the following statements are equivalent:

(i) Ỹ is a random fuzzy set over(Ω,F ,P).

(ii) Every mapping[Ỹ]α : Ω→K +
co(Rk), ω 7→ [Ỹ(ω)]α (α ∈ [0,1]) is a convex-valued random

compact set over(Ω,F ,P), where[Ỹ(ω)]0 denotes the topological closure of the support
of Ỹ(ω).

.3 If Ỹ is a random element in Fno
coc∞(Rk) w.r.t. ρ∞ = d∞ over(Ω,F ,P), then it is a random fuzzy

set over(Ω,F ,P). The converse is not necessarily true.

�

3 Integrably bounded random fuzzy sets

Since every random fuzzy set can be regarded as an extended convex-valued random compact set,
it suggests itself to define integrals for random fuzzy sets by carrying over Aumann’s well accepted
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concept (cf. [1]). Related to a random fuzzy setỸ the task is to find a fuzzy subsetẼAỸ ∈ Fno
coc(Rk)

which satisfies[ẼAỸ]α = EA[Ỹ]α for all α ∈]0,1]. Since the setsEA[Ỹ]α (α ∈]0,1]) should belong to
K +

co(Rk), theα−cut mappings[Ỹ]α (α ∈]0,1]) have to be integrably bounded convex-valued random
compact sets.

A random fuzzy set with integrably boundedα−cut mappings is known as anintegrably bounded
random fuzzy set(cf. [15]). Indeed the concept of integrably bounded random fuzzy sets is sufficient
to find the desired extendedAumann-integral (cf. [15], Theorem 3.1).

The Aumann-integral for a simple random fuzzy setỸ with distributionQỸ and different outcomes
Ã1, ..., Ãm∈ Fno

coc(Rk) may be easily calculated as

ẼAỸ = (QỸỸ−1(Ã1)�F Ã1)⊕F ...⊕F (QỸỸ−1(Ãm)�F Ãm)

SinceτFno
coc

is separably metrizable, every integrably bounded random fuzzy set can be approximated
pointwise by a sequence of simple random fuzzy sets. So we can raise the question whether the
Aumann-integral of integrably bounded random fuzzy sets can be described as a kind of Bochner-
integral? Is it possible to attain the Aumann-integral of integrably bounded random fuzzy sets as limit
points of sequences of Aumann-integrals of simple random fuzzy sets? The answer is affirmative as
the following theorem shows.

Theorem 2. Let d be a metric on Fno
coc(Rk) that inducesτFno

coc
, let δ∞ be the Hausdorff metric on

K +
co(Rk), and letỸ : Ω→ Fno

coc(Rk) be a random fuzzy set over some probability space(Ω,F ,P). Then
the following statements are equivalent:

.1 Ỹ is integrably bounded.

.2 There exists some A∈ F ,PA = 1, and a sequence(Ỹn)n of simple random fuzzy sets over
(Ω,F ,P) such that

(i) lim
n−→∞

d(Ỹn(ω),Ỹ(ω)) = 0 for all ω ∈ A.

(ii) sup
n

δ∞([Ỹn]α,{0}) is P−integrable for everyα ∈]0,1]∩Q.

If one of the statements .1, .2 is satisfied, thenlim
n−→∞

d(ẼAỸn, ẼAỸ) = 0 holds for any sequence(Ỹn)n of

simple random fuzzy sets as in statement .2. �

Remark:

Theorem 2 is an extension of a classical result from the theory of random compact sets: Debreu
suggested a kind of Bochner-integral for convex-valued random compact sets. He has shown that it
coincides with the Aumann-integral in the case of integrably bounded convex-valued random compact
sets (cf. [3]; see also [7]). The characterization of the integral by statement .2 of Theorem 2 may be
regarded as an generalization of Debreu’s concept. Moreover, the extensions of the Aumann- as well
as Debreu-integrals coincide. �

Considering random fuzzy sets with outcomes in the spacesFno
cocp(Rk) w.r.t. the respectiveLp−

or Lp,∞−metrics it is interesting to find necessary and sufficient conditions which characterize them
as integrably bounded with Aumann-integrals belonging to the respective subspace. The following
theorem gives a complete answer to this problem.
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Theorem 3. Let p∈ [1,∞] and letỸ : Ω→ Fno
cocp(Rk) denote a random fuzzy set over some probability

space(Ω,F ,P).

.1 For p = 1 the random fuzzy set̃Y is integrably bounded with̃EAỸ ∈ Fno
coc1(Rk) if and only if

eitherρ1(Ỹ, 0̃) or d1(Ỹ, 0̃) is P−integrable. In this case jFno
coc1(Rk) ◦Ỹ isP−Pettis-integrable and

jFno
coc1(Rk)(ẼAỸ) coincides with the Pettis integral of jFno

coc1(Rk) ◦Ỹ.

.2 For p∈]1,∞[ the random fuzzy set̃Y is integrably bounded with̃EAỸ ∈ Fno
cocp(Rk) if and only

if jFno
cocp(Rk) ◦Ỹ isP−Pettis-integrable as well as eitherρ1(Ỹ, 0̃) or d1(Ỹ, 0̃) is P−integrable. In

this case jFno
cocp(Rk)(ẼAỸ) coincides with the Pettis integral of jFno

cocp(Rk) ◦Ỹ.

.3 For p = ∞ the random fuzzy set̃Y is integrably bounded with̃EAỸ ∈ Fno
coc∞(Rk) if and only if

ρ∞(Ỹ, 0̃) = d∞(Ỹ, 0̃) is P−integrable.

�

Remark:
In [13] it has been shown that someFno

cocp(Rk)−valued random fuzzy set̃Y over a probability space

(Ω,F ,P) is integrably bounded with̃EAỸ ∈ Fno
cocp(Rk) if ρp(Ỹ, 0̃) is{

P−integrable of orderp : p∈ [1,∞[
P−integrable : p = ∞

.

This result is now improved by Theorem 3. Moreover, the converse direction has been found.�

4 Pettis-integrable random fuzzy sets

If Fno
cocp(Rk)−valued random fuzzy sets are considered as random elements w.r.t. theLp−metric ρp

or theLp,∞−metric dp, they can be identified, via the standard embedding, with random elements
in a real Banach space. So the concepts of Pettis- or Bochner-integrals may be used as alternative
ways to define integrals for random fuzzy sets. This section deals with the approach inspired by the
Pettis-integration.

Definition 4. Let p∈ [1,∞] and let̃Y : Ω→Fno
cocp(Rk) denote a random fuzzy set over some probability

space(Ω,F ,P). ThenỸ will be defined as P−Pettis-integrable w.r.t. ρp if it satisfies the following
properties

(i) Ỹ is a random element inFno
cocp(Rk) w.r.t. ρp over(Ω,F ,P).

(ii) jFno
cocp(Rk) ◦Ỹ is P−Pettis-integrable.

(iii) There exists somẽEPỸ ∈ Fno
cocp(Rk) with jFno

cocp(Rk)(ẼPỸ) being identical with the Pettis-integral

of jFno
cocp(Rk) ◦Ỹ.

If Ỹ is P−Pettis-integrable w.r.t.ρp, thenẼPỸ will be called thePettis-integral of Ỹ. �
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Remark:
Since the embeddingjFno

cocp(Rk) is injective, the fuzzy subset̃EPỸ is unique if it exists. �

One can derive the following relationship between Aumann- and Pettis-integration ofFno
cocp(Rk)-

valued random fuzzy sets forp∈ [1,∞].

Theorem 5. Let p∈ [1,∞] and letỸ : Ω→ Fno
cocp(Rk) denote a random fuzzy set over some probability

space(Ω,F ,P).

.1 If p∈ [1,∞[, and ifỸ is integrably bounded with̃EAỸ∈Fno
cocp(Rk), thenỸ isP−Pettis-integrable

andẼAỸ = ẼPỸ.

.2 If d∞(Ỹ, 0̃) = ρ∞(Ỹ, 0̃) is P−integrable, theñY isP−Pettis-integrable with̃EAỸ = ẼPỸ.

�

Remark:
As remarked above after Theorem 3, Theorem 5 improves a former result forFno

cocp(Rk)−valued ran-

dom fuzzy sets̃Y with ρp(Ỹ, 0̃) being integrable of orderp for p∈ [1,∞[. In particular, it also improves
a result by Näther who has shown the result of Theorem 5 forFno

coc2(Rk)−valued random fuzzy sets̃Y
with ρ2(Ỹ, 0̃) being integrable of order 2 (cf. [14]). �

5 Bochner-integrable random fuzzy sets

Analogously to Pettis-integrability one can develop Bochner-integration of random fuzzy sets.

Definition 6. Let p∈ [1,∞] and let̃Y : Ω→Fno
cocp(Rk) denote a random fuzzy set over some probability

space(Ω,F ,P). ThenỸ will be defined as P−Bochner-integrable w.r.t. ρp if it satisfies the following
properties

(i) Ỹ is a separably-valued random element inFno
cocp(Rk) w.r.t. ρp over(Ω,F ,P).

(ii) jFno
cocp(Rk) ◦Ỹ is P−Bochner-integrable.

(iii) There exists somẽEBỸ ∈ Fno
cocp(Rk) with jFno

cocp(Rk)(ẼBỸ) being identical with the Bochner-

integral of jFno
cocp(Rk) ◦Ỹ.

If Ỹ is P−Bochner-integrable w.r.t.ρp, thenẼBỸ will be called theBochner-integral of Ỹ. �

Remarks:
1) Since each embeddingjFno

cocp(Rk) is injective, the fuzzy subset̃EBỸ is unique if it exists.

2) Observe that for everyp ∈ [1,∞[ the Fno
cocp(Rk)−valued random fuzzy sets are exactly the

separably-valued random elements inFno
cocp(Rk) w.r.t. ρp sinceρp is separable.

3) For everyp∈ [1,∞] each simple random element inFno
cocp(Rk) w.r.t. ρp is integrably bounded

as well as Bochner-integrable, andẼAỸ = ẼBỸ holds.
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�

It turns out that forp ∈ [1,∞[ Aumann- and Bochner-integration ofFno
cocp(Rk)−valued random

fuzzy sets are closely related.

Theorem 7. Let p∈ [1,∞[, and letỸ : Ω→ Fno
cocp(Rk) denote a random fuzzy set over some probability

space(Ω,F ,P). Then the following statements are equivalent:

.1 Ỹ isP−Bochner-integrable.

.2 Ỹ is integrably bounded with̃EAỸ ∈ Fno
cocp(Rk), and jFno

cocp(Rk) ◦Ỹ isP−Bochner-integrable with

jFno
cocp(Rk)(ẼAỸ) being identical with the Bochner-integral of jFno

cocp(Rk) ◦Ỹ.

.3 Either ρp(Ỹ, 0̃) or dp(Ỹ, 0̃) is P−integrable.

.4 There exists some sequence(Ỹn)n of simple Fno
cocp(Rk)−valued random fuzzy sets over(Ω,F ,P)

which satisfy

(i) lim
n−→∞

ρp(Ỹn(ω),Ỹ(ω)) = 0 for all ω ∈Ω

(ii) lim
n−→∞

Eρp(Ỹn,Ỹ) = 0

If any of the statements .1 - .4 is fulfilled, thenỸ is integrably bounded with̃EAỸ ∈ Fno
cocp(Rk), and

ẼAỸ = ẼBỸ as well as lim
n−→∞

ρp(ẼAỸn, Ẽ
AỸ) = 0

whenever(Ỹn)n is a sequence of simple Fno
cocp(Rk)−valued random fuzzy sets as in statement .4.�

Remark:

Theorem 7 improves a former result in [13] where it has been shown that aFno
cocp(Rk)− valued

random fuzzy set̃Y satisfies statement .2 of Theorem 7 ifρp(Ỹ, 0̃) is integrable of orderp. In partic-
ular also a result by Körner is improved who has proved that statement .2 of Theorem 7 holds for a
Fno

coc2(Rk)−valued random fuzzy set̃Y with ρ2(Ỹ, 0̃) being integrable of order 2 (cf. [9]). �

In the case ofFno
coc∞(Rk)−valued random fuzzy sets the concept of Bochner-integrals are much

more restrictive than Aumann-integration.

Theorem 8. LetỸ : Ω→ Fno
coc∞(Rk) denote a random fuzzy set over some probability space(Ω,F ,P).

Then the following statements are equivalent:

.1 Ỹ isP−Bochner-integrable.

.2 Ỹ is integrably bounded with̃EAỸ ∈ Fno
coc∞(Rk), and jFno

coc∞(Rk) ◦Ỹ isP−Bochner-integrable with

jFno
coc∞(Rk)(ẼAỸ) being identical with the Bochner-integral of jFno

coc∞(Rk) ◦Ỹ.

.3 Ỹ is a separably-valued random element in Fno
coc∞(Rk) w.r.t. ρ∞ = d∞

over(Ω,F ,P), andρ∞(Ỹ, 0̃) = d∞(Ỹ, 0̃) is P−integrable.

.4 There exists some sequence(Ỹn)n of simple Fno
coc∞(Rk)−valued random fuzzy sets over(Ω,F ,P)

which satisfy
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(i) lim
n−→∞

ρ∞(Ỹn(ω),Ỹ(ω)) = 0 for all ω ∈Ω

(ii) lim
n−→∞

Eρ∞(Ỹn,Ỹ) = 0

If any of the statements .1 - .4 is fulfilled, thenỸ is integrably bounded with̃EAỸ ∈ Fno
coc∞(Rk), and

ẼAỸ = ẼBỸ as well as lim
n−→∞

ρ∞(ẼAỸn, Ẽ
AỸ) = 0

whenever(Ỹn)n is a sequence of simple Fno
coc∞(Rk)−valued random fuzzy sets as in statement .4.�

Every Bochner-integrable random fuzzy set is Pettis-integrable, and the Bochner- coincides with
the Pettis-integral. This is a result in accordance with the integration of random elements in Banach
spaces.

Theorem 9. Let p∈ [1,∞] and letỸ : Ω→ Fno
cocp(Rk) be a random fuzzy set over some probability

space(Ω,F ,P).

If Ỹ isP−Bochner-integrable w.r.t.ρp, then it is alsoP−Pettis-integrable w.r.t.ρp with ẼBỸ =
ẼPỸ.

�

6 Dominated convergence theorems for random fuzzy sets

As a quite easy application of the discussion on integrability of random fuzzy sets we can derive
several dominated convergence theorems, dependent on the sample space.

Theorem 10. Let{Ỹ,Ỹn | n∈ N} be a set of integrably bounded random fuzzy sets over some proba-
bility space(Ω,F ,P) such thatsup

n
δ∞([Ỹn]α,{0}) is P−integrable for everyα ∈]0,1]∩Q.

If lim
n−→∞

d(Ỹn,Ỹ) = 0 a.s. holds for any metric d which inducesτFno
coc

, then lim
n−→∞

d(ẼAỸn, ẼAỸ) = 0.

�

Dealing withFno
cocp(Rk)−valued random fuzzy sets (p∈ [1,∞]), one obtains the following domi-

nated convergence theorem.

Theorem 11. Let p∈ [1,∞] be fixed and let{Ỹ,Ỹn | n ∈ N} be a set of Fno
cocp(Rk)−valued random

fuzzy sets over some probability space(Ω,F ,P) which satisfy

(i) ρp(Ỹ, 0̃) is P−integrable.

(ii) sup
n

ρp(Ỹn, 0̃) is P−integrable.

.1 If p ∈ [1,∞[, and if lim
n−→∞

ρp(Ỹn,Ỹ) = 0 a.s., then

lim
n−→∞

ρp(ẼAỸn, Ẽ
AỸ) = lim

n−→∞
ρp(ẼPỸn, Ẽ

PỸ) = lim
n−→∞

ρp(ẼBỸn, Ẽ
BỸ)

= lim
n−→∞

dp(ẼAỸn, Ẽ
AỸ) = lim

n−→∞
dp(ẼPỸn, Ẽ

PỸ) = lim
n−→∞

dp(ẼBỸn, Ẽ
BỸ)

= 0
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.2 If lim
n−→∞

ρ∞(Ỹn,Ỹ) = 0 a.s., then lim
n−→∞

d∞(ẼAỸn, ẼAỸ) = lim
n−→∞

ρ∞(ẼAỸn, ẼAỸ) = 0

�

Remark:

Statement .2 of Theorem 11 is known from [13], whereas statement .2 generalizes and improves
already known dominated convergence theorems:

• All the previous results are formulated w.r.t. the Aumann-integrals only.

• The respective theorems in [8] and [11] are restricted toFno
coc∞(Rk)−valued random fuzzy sets

assuming that the mappingsd∞(Ỹn, 0̃) andd∞(Ỹ, 0̃) are integrable.

• In [13] the results from [8] and [11] have been extended to arbitraryFno
cocp(Rk)−valued random

fuzzy sets̃Y,Ỹn under the quite unsatisfactory condition that the mappingsρp(Ỹ, 0̃) andρp(Ỹn, 0̃)
are integrable of orderp for p∈ [1,∞[.

7 Strong law of large numbers and central limit theorems for random
fuzzy sets

SinceFno
cocp(Rk)−valued integrably bounded random fuzzy sets are closely related with Bochner-

integrable random elements inLp([0,1]×Sk−1) for p ∈ [1,∞[, we can make use of limit theorems
for random elements in real Banach spaces to obtain strong laws of large numbers and central limit
theorems for random fuzzy sets.

Considering pairwise independent, identically distributed random fuzzy sets, Etemadi’s strong law
of large numbers ([5]) may be applied since(Lp([0,1]×Sk−1),‖ ·‖p) is a real separable Banach space
for p∈ [1,∞[.

Theorem 12. Let p∈ [1,∞[, and let (Ỹn)n denote a sequence of pairwise independent, identically
distributed Fno

cocp(Rk)−valued random fuzzy sets over some probability space(Ω,F ,P).

If ρp(Ỹ1, 0̃) is P−integrable, then lim
n−→∞

ρp(1
n�F (Ỹ1⊕F ...⊕F Ỹn), ẼAỸ1) = 0 a.s..

Conversely, if there exists somẽA0 ∈ Fno
cocp(Rk) such that lim

n−→∞
ρp(1

n �F (Ỹ1⊕F ...⊕F Ỹn), Ã0) =

0 a.s. holds, thenρp(Ỹ1, 0̃) is P−integrable, in particularỸ1 is integrably boundend as well as
P−Bochner- andP−Pettis-integrable with̃EAỸ1 = ẼBỸ1 = ẼPỸ1 = Ã0 ∈ Fno

cocp(Rk). �

Remark:

Theorem 12 completes a result forFno
coc∞(Rk)−valued random fuzzy sets by Colubi, Lopez-Diaz

and Gil (cf. [2]). �

Hoffmann-Jorgensen and Pisier introduced a classification of Banach spaces, where classical
strong laws of large numbers and central limit theorems can be extended immediately. Their in-
vestigations led to the concept of types of Banach spaces. The type of a Banach space is directly
linked with the validity of certain limit theorems (cf. [6]). Since(Lp([0,1]×Sk−1),‖ · ‖p) is a real
separable Banach space of typep in the case ofp∈ [1,2] and of type 2 ifp∈ [2,∞[, one can draw on
the limit theorems for random elements in these classes of real Banach spaces.
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Theorem 13. Let p∈ [1,∞[ and(Ỹn)n be a sequence of independent Fno
cocp(Rk)−valued random fuzzy

sets over some probability space(Ω,F ,P) such that

(i) ρp(Ỹn, 0̃) is P−integrable for all n,

(ii)
∞
∑

n=1

Eρp(Ỹn, ẼAỸn)q

nq < ∞ for q = p if p∈ [1,2] and q= 2 if p ∈ [2,∞[.

Then

lim
n−→∞

ρp
(1

n
�F (Ỹ1⊕F ...⊕F Ỹn),

1
n
�F (ẼAỸ1⊕F ...⊕F ẼAỸn)

)
= 0 a.s.

�

Theorem 14.Let p∈ [2,∞[, and let(Ỹn)n denote a sequence of independent and identically distributed
Fno

cocp(Rk)−valued random fuzzy sets over some probability space(Ω,F ,P) such thatρp(Ỹ1, 0̃) is P−
integrable of order2.

Then there exists a Gaussian element Z in Lp([0,1]×Sk−1) with vanishing Bochner-integral and

covariance operator as jFno
cocp(Rk)◦Ỹ1 such that the sequence

(
1√
n

n
∑

i=1
jFno

cocp(Rk)◦Ỹi−
√

n jFno
cocp(Rk)(ẼAỸ1)

)
n

converges weakly to Z. �

Remark:
Theorems 13, 14 improve corresponding previous results in [11] (Theorems 5.1, 5.2) and [13] (Theo-
rems 5, 6) where sequences of independentFno

cocp(Rk)−valued random fuzzy sets are considered with

ρp(Ỹn, 0̃) being integrable of orderp for all n. �
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1 Introduction

The aim of this contribution is a partial characterization ofT-product possibility measures, where
T is a t-norm satisfying the Lipschitz property with the constant 1. Any possibility measure can
be assigned a set of distribution functions which are dominated by this possibility measure. It will
be demonstrated that the set of all joint distribution functions dominated by aT-product possibility
measure contains each joint distribution function obtained by an application of a copulaC ≤ T to
some marginal distribution functions dominated by marginal possibility measures.

2 Basic Notions

2.1 Possibility Theory and t-norms

See [1] for a thorough theoretical exposition. LetX be a non-empty set andA be acomplete Boolean
algebraof its subsets:A containsX and it is closed under complementation and arbitrary unions.
Consequently,A is closed under arbitrary intersections. Apossibility measureΠ onX is a set function
Π : A → [0,1] such that for any family(Ai)i∈I of elements ofA the condition

Π(
⋃

i∈I Ai) = supi∈I Π(Ai) is satisfied andΠ(X) = 1. The last condition means that onlynormal
possibility measures are considered. Apossibility distributionπ is a mappingπ : X→ [0,1] such that
Π(A) = supx∈A π(x) for any A ∈ A andπ−1({a ∈ [0,1] : a≤ a′}) ∈ A for any a′ ∈ [0,1]. A purely
technical requirement is thatX always contains an elementx such thatπ(x) = 0. Assume thatΠX×Y

is a possibility measure on a Cartesian productX×Y. Then itsmarginal possibility measureΠX is
uniquely determined by the formulaΠX(A) := ΠX×Y(A×Y), A∈ A .

The t-norm T is a commutative, associative and monotone binary operation on[0,1] with the
neutral element 1. Significant examples of (continuous) t-norms are these: the t-normminimum
TM(a,b) = min(a,b), the product t-norm TP(a,b) = ab and theŁukasiewicz’ t-norm TL(a,b) =
max(0,a+ b−1). If ΠX, ΠY are possibility measures onX, Y, respectively, andT is a continuous
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t-norm, then we say thatΠT
X×Y : AX⊗AY→ [0,1] is aT-product possibility measureonX×Y, where

AX⊗AY ⊆ 2X×Y is aproduct algebraof AX andAY, if

ΠT
X×Y(A×B) = T(ΠX(A),ΠY(B)), A∈ AX,B∈ AY. (1)

A notion of theT-product possibility measure was introduced in [1] and it is evidently a more general
analog of the product probability measure used in classical probability theory.

2.2 Copulas

A copula Cis a binary operation on[0,1] such that

1. for everya,b∈ [0,1],
C(a,0) = C(0,b) = 0,

and
C(a,1) = a and C(1,b) = b;

2. for everya1,a2,b1,b2 ∈ [0,1] such thata1≤ a2 andb1≤ b2,

C(a2,b2)−C(a2,b1)−C(a1,b2)+C(a1,b1)≥ 0.

The t-normsTM,TP,TL are all copulas. Moreover, for every copulaC and(a,b) ∈ [0,1]2,

TL(a,b)≤C(a,b)≤ TM(a,b). (2)

Any t-normT is a copula if and only ifT satisfies Lipschitz property with the constant 1 [3].

3 Characterization of T-product Possibilities

Each possibility measureΠX onX can be assigned a setPΠX of finitely-additive probability measures
PX onX dominated byΠX:

PΠX :=
{

PX : PX(A)≤ΠX(A), A∈ AX}. (3)

It was proven in [2] thatΠX is even anupper envelopeof PΠX , i.e.

ΠX(A) = sup
PX∈PΠX

PX(A), A∈ AX. (4)

Instead of probability measures, distribution functions can be considered. Let� be the total
ordering onX agreeing with the one given by values of the possibility distributionπX, that isx1� x2

iff πX(x1)≤ πX(x2). Let thenx andx denote the greatest and the lowest element ofX in this ordering,
respectively. Consequently, the mappingFX : X→ [0,1] defined by

FX(x) := PX({x′ ∈ X : x′ � x}), x∈ X, (5)
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is adistribution functionsinceFX is non-decreasing andFX(x) = 1, FX(x) = 0. We can define

FΠX :=
{

FX : F(x)≤ΠX({x′ ∈ X : x′ � x}), x∈ X
}
. (6)

If FX andFY are distribution functions onX andY, respectively, andC is a copula, then the mapping

FC
X×Y(x,y) := C(FX(x),FY(y)), (x,y) ∈ X×Y, (7)

is thejoint distribution functionof FX andFY onX×Y.

Let us consider aT-product possibility measureΠT
X×Y, where the t-normT satisfies Lipschitz

property with the constant 1. Under this assumption, we can partially characterize the set of joint
distribution functions dominated byΠT

X×Y.

Proposition 1. Let ΠX, ΠY be possibility measures on X, Y , respectively,ΠT
X×Y be a T-product

possibility measure, where T is a t-norm satisfying Lipschitz property with the constant1. Consider
the set of copulas

CT = {C : C≤ T}.

Then any FX×Y ∈ FΠT
X×Y

has marginal distribution functions FX ∈ FΠX , FY ∈ FΠY and

FΠT
X×Y
⊇

⋃
(FX ,FY)∈FΠX×FΠY

{
FC

X×Y : FC
X×Y = C(FX,FY), C∈ CT

}
. (8)

Proof. For the sake of further brevity, let us stipulate that

{x′ � x} := {x′ ∈ X : x′ � x}.

Let FX×Y ∈ FΠT
X×Y

. Then

FX(x) = FX×Y(x,y)≤ΠT
X×Y({x′ � x}×Y) = ΠX({x′ � x}),

and analogously forFY. Consequently,FX ∈ FΠX andFY ∈ FΠY . Notice that the setCT is always
non-empty sinceT is also a copula and, according to (2), there is always at least one copula which
is lower or equal toT. To prove the second part of the proposition, let us consider an arbitrary pair
of marginal distribution functions(FX,FY) ∈ FΠX ×FΠY and any copulaC ∈ CT . Then for any pair
(x,y) ∈ X×Y,

FC
X×Y(x,y) = C(FX(x),FY(y))≤ T(FX(x),FY(y))≤ T(ΠX({x′ ≤ x}),ΠY({y′ ≤ y})),

and thusFC
X×Y ∈ FΠT

X×Y
. 2

The previous proposition provides merely a partial characterization ofT-product possibility measures:
it can be demonstrated that in general case the set of joint distribution functions on the right-hand side
of (8) is a proper subset ofFΠT

X×Y
. Nevertheless, a complete characterization is obtained in some

special cases as the following example demonstrates.
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Example 2. If T = TM, thenCTM consists of all copulas since TM is the greatest copula. Due to
Proposition 1, any FX×Y ∈ FΠTM

X×Y
has marginal distribution functions FX, FY belonging toFΠX and

FΠY , respectively. Sklar’s theorem [4] now implies that there is a copula C such that FX×Y =C(FX,FY)
andFΠTM

X×Y
thus consists of the joint distribution functions obtained by an application of all copulas to

all pairs (FX,FY) ∈ FΠX ×FΠY .
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SemicontinuousL-real valued functions

TOMASZ KUBIAK

Wydział Matematyki i Informatyki
Uniwersytet im. Adama Mickiewicza

61614 Poznán, Poland

E-mail: tkubiak@amu.edu.pl

Recall that whenX is a topological space, the lower and upper limit functionsf∗ and f ∗ of a given
f : X→ R (or toR) are defined as follows:

f∗(x) =
∨
{
∧

f (U) : U is an open nbhd ofx}

and
f ∗(x) =

∧
{
∨

f (U) : U is an open nbhd ofx}.

In this report we study lower and upper limits ofL-real valued functions by extending the operators
(·)∗ and(·)∗ to the framework ofL-topological spaces. The approach we are taking involves scales of
L-sets.

More specifically, let(L,′ ) be a complete lattice with an order-reversing involution and letX be
a set. Each order-preserving familyA = {ar : r ∈ Q∩R} ⊂ LX is called anextended scaleof L,
and it is called ascalewhenever

∨
A = 1X and

∧
A = 1/0. It is well known that for everyx∈ X and

t ∈ R, the functionαx : R→ L, defined byαx(t) =
∧

r<t a′r(x), is order-reversing and, whenA is a
scale, then

∨
αx(R) = 1 and

∧
αx(R) = 0. The functionf : X→R(L) (respectively,R(L)), defined by

f (x) = [αx], is said to be genrated by the scale (respectively, extended scale)A . ForX anL-topological
space and an (extended) scaleA , we let

A∗ = {ClX ar : r ∈Q∩R} and A∗ = {IntX ar : r ∈Q∩R}.

Then the functionsf∗ and f ∗ generated by, respectively,A∗ and A∗, are calledlower and limit
functionsof f . When theL-real line R(L) is endowed with the rightL-topology RL = {Rt : t ∈
R}∪{1/0,1R(L)} or with the leftL-topologyLL = {Lt : t ∈ R}∪{1/0,1R(L)}, then members of

LSC(X,R(L)) = { f ∈ R(L)X : u◦ f is open inX for all u∈ RL}

and
USC(X,R(L)) = { f ∈ R(L)X : u◦ f is open inX for all u∈ LL}

are calledlower anduper semicontinuousfunction onX.

A detailed study of the operators(·)∗ and(·)∗ will be presented. In particular, one hasLSC(X) =
{ f : f = f∗} andUSC(X) = { f : f = f ∗}. Also, the concept of an epigraph of anL-real valued
function will be defined and the classical relationship between the closedness of the epigraph and
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lower semicontinuity will be shown to hold for the case of stratifiedL-topological space. Specifically,
when(L,′ ) is a frame, thenf ∈ LSC(X,R(L)) if and only if

Gf =
∨
t∈R

(Rt ◦ f )×Lt

is open in the productL-topological spaceX×R(L).

For I(L)-valued function, the assignmentI(L)X 3 f 7→ Gf ∈ LX×[0,1)(L) will be used to construct
the hypergraph functor form the categoryTOP(I(L)) of I(L)-topological spaces into the category
TOP(L) of L-topological spaces, which withL the two-pont chain reduces to the classical hypergraph
functor. WithL a meet-continuous lattice, the link between that hypergraph functor and the functors
ΩL : TOP(L)→ TOP(I(L)) and IL : TOP(I(L))→ TOP(L) continues to hold.

SemicontinuousL-real valued functions are well-known to play an important role in characterizing
some important classes ofL-topological spaces, includingL-normal and completelyL-regular spaces.
Some of those results will be restated (and sometimes reproved) in trems of lower and upper limit
functions.
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1 Preliminaries

For MV-algebras, we refer to [1], [2] and for bounded commutativeBCK-algebras to [3]. In [3]
refered to [7], it is showed that anMV- algebra defines a bounded commutativeBCK-algebra and
conversely. In fact, let· and + be the binary operations and− the unary operation of anMV-algebra.
If ? is the operation of a bounded commutativeBCK-algebra, thenx? y = x · ȳ. On the other hand,
we have ¯x = 1? x, x · y = x? ȳ, x+ y = (x̄? y)−. The partial ordering≤ in a bounded commutative
BCK-algebra is defined as follows:x≤ y iff x?y= 0. By [3], I is an ideal of anMV-algebra iffI is an
ideal of aBCK-algebra. ForBCK-algebras and ideals of aBCK-algebra and anMV-algebra see [5],
[1] and [2]. For the Riemann surfaces we refer to [6].

2 Topological locally finiteMV-algebra

2.1 Linear Topology induced by Ideals

In [4], it is constructed a topology for anMV-algebraA considered as a bounded commutativeBCK-
algebra.

Let Λ be a directed set i.e. a partially ordered set such that forλ,µ∈ Λ there isν ∈ Λ for which
λ≤ ν andµ≤ ν.

Let F = {Iλ | λ ∈ Λ} be a family of ideals ofA such that ifλ < µ thenIµ⊂ Iλ. Define a relation∼
in the following way [5]:

x∼ y modIλ iff x?y∈ Iλ and y?x∈ Iλ, (1)

and let

U(x,λ) = {y∈ A | x∼ y modIλ} (2)

The neighborhoodsU(x,λ) defines a topology inA called the linear topology induced byF. Fur-
ther,(x,y)→ x?y andx→ x̄ are continuous. Therefore,A is a topologicalMV-algebra.
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2.2 Locally finite MV-algebras as TopologicalMV-algebras

The following proposition is proved by C.S.Hoo:

Proposition 1. [4] The topology on a locally finite MV-algebra is one of the following types:

1. Hausdorff and connected,

2. Hausdorff and totally disconnected,

3. the trivial topology.

It is known that a locally finiteMV-algebraA is isomorphic to a subset of the unit interval [0,1],
[1], with a Lukasiewicz structure. Without loss of generality we suppose that the smallest and the
greatest elements of this subset are 0 and 1. We keepA just as this subset and obtain

x?y = x · ȳ = max(0,x+1−y−1) = max(0,x−y). (3)

y?x = y· x̄ = max(0,y+1−x−1) = max(0,y−x). (4)

Therefore, if

x≥ y, x?y = x−y = |x−y| (5)

y?x = 0 (6)

y≥ x, y?x = y−x = |y−x| (7)

x?y = 0 (8)

Let I be an ideal ofA. By relation∼moduloI

x∼ y modI iff x?y∈ I and y?x∈ I iff |x−y| ∈ I . (9)

and so

U(x) = {y∈ A | x∼ y modI} = {y∈ A | |x−y| ∈ I}. (10)

Since the only ideals ofA are{0} and the wholeA [1], we analyse the results of Proposition 1
with the neighborhoodsU(x):

1. Let I = {0}. Thenx = y andU(x) = {x} for everyx∈ A. In this case every singleton{x} is
open and the topology is discrete and so totally disconnected. Conversely, ifA is totally disconnected,
then for everyx ∈ A, the component ofx is {x}. Especially, the component of 0 is{0}. Since the
component is an ideal [4],I = {0}. It is proved thatI = {0} iff A is totally disconnected.

2. Let I = A. The topology is trivial iffU(x) = A for everyx∈ A.

3. LetI = A such thatU(x) 6= A for somex∈A. NeitherA is totally disconnected nor the topology
on A is trivial, by Proposition 1,A is Hausdorff and connected. In this case we choose the relative
usual topology onA.
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3 Topological locally finiteMV-algebra as the Riemann Surface

The theory of the Riemann surface which is used is found from [6]. LetA be a topological locally
finite MV-algebra. Consider the case whereA is Hausdorff and connected.

Proposition 2. Let A be a topological locally finite MV-algebra. If A is Hausdorff and connected,
then A×A is a compact Riemann surface which is topologically a torus.

Proof. The theory of the Riemann surface which is used is found from [6]. LetSbe a Riemann surface
which has the complex plane as its universal covering surfaceD. Assume the covering groupG has
two generatorsz→ z+1 andz→ z+ i (translations). A fundamental domain is now the interior of the
square with vertices at 0,1,1+ i, i, which is (isomorphic to) the interior of[0,1]× [0,1]. In this case
the Riemann surfaceS= D/G (modulo conformal equivalence) is compact. Since the opposite sides
of the square 0,1,1+ i, i are equivalent underG, topologicallyS= A×A is a torus.
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1. Introduction. The traditional mathematics over numerical fields can be dequantized as the
Planck constant ¯h tends to zero taking pure imaginary values. This dequantization leads to the
so-called Idempotent Mathematics based on replacing the usual arithmetic operations by a new set
of basic operations (e.g., such as maximum or minimum), that is on the concepts of idempotent
semifield and semiring. Typical examples are given by the so-called(max,+) algebraRmax and
(min,+) algebraRmin. Let R be the field of real numbers. ThenRmax = R∪{−∞} with operations
x⊕y= max{x,y} andx�y= x+y. SimilarlyRmin = R∪{+∞}with the operations⊕= min,�= +.
The new addition⊕ is idempotent, i.e.,x⊕x = x for all elementsx. Some problems that are nonlinear
in the traditional sense turn out to be linear over a suitable idempotent semiring (idempotent superpo-
sition principle [1]). For example, the Hamilton-Jacobi equation (which is an idempotent version of
the Schrödinger equation) is linear overRmin andRmax.

The basic paradigm is expressed in terms of anidempotent correspondence principle[2].This
principle is similar to the well-known correspondence principle of N. Bohr in quantum theory (and
closely related to it). Actually, there exists a heuristic correspondence between important, interesting
and useful constructions and results of the traditional mathematics over fields and analogous con-
structions and results over idempotent semirings and semifields (i.e., semirings and semifields with
idempotent addition). For example, the well-known Legendre transform can be treated as anRmax-
version of the traditional Fourier transform (this observation is due to V. P. Maslov).

A systematic and consistent application of the idempotent correspondence principle leads to a
variety of results, often quite unexpected. As a result, in parallel with the traditional mathematics
over rings, its “shadow”, the Idempotent Mathematics, appears. This “shadow” stands approximately
in the same relation to the traditional mathematics as classical physics to quantum theory. In many
respects Idempotent Mathematics is simpler than the traditional one. However, the transition from
traditional concepts and results to their idempotent analogs is often nontrivial.

In this talk a brief survey of basic ideas of Idempotent Mathematics is presented. Relations be-
tween this theory and the theory of fuzzy sets as well as the possibility theory and some applications
(including computer applications) are discussed. Hystorical surveys and the corresponding references
can be found in [2]–[5].

2. Semirings, semifields, and idempotent dequantization.Consider a setSequipped with two
algebraic operations:addition⊕ andmultiplication�. It is asemiringif the following conditions are
satisfied:

• the addition⊕ and the multiplication� are associative;

• the addition⊕ is commutative;
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• the multiplication� is distributive with respect to the addition⊕: x� (y⊕z) = (x�y)⊕ (x�z)
and(x⊕y)�z= (x�z)⊕ (y�z) for all x,y,z∈ S.

The semiring iscommutativeif the multiplication� is commutative. Aunity of a semiringS is
an element1∈ Ssuch that1�x = x�1 = x for all x∈ S. A zeroof a semiringS is an element0∈ S
such that0 6= 1 and0⊕ x = x, 0� x = x�0 = 0 for all x∈ S. A semiringS is called anidempotent
semiringif x⊕x = x for all x∈ S. A semiringSwith neutral elements0 and1 is called asemifieldif
every nonzero element ofS is invertible.

The following examples are important. LetP be the segment[0,1] equipped with the operations
x⊕ y = max{x,y} andx� y = min{x,y}; thenP is a commutative idempotent semiring (but not a
semifield). The subsetB = {0,1} in M equipped with the same operations is the well-known Boolean
algebra which is an idempotent semifield. In this case⊕ and� are the usual Boolean operations
(disjunction and conjunction). In the general case the semiring addition and multiplication could be
treated as generalized logical (Boolean) operations.

Let R be the field of real numbers andR+ the semiring of all nonnegative real numbers (with
respect to the usual addition and multiplication). The change of variablesx 7→ u = hlnx, h > 0,
defines a mapΦh : R+ −→ S= R∪{−∞}. Let the addition and multiplication operations be mapped
from R to S by Φh, i.e., letu⊕h v = hln(exp(u/h) + exp(v/h)), u� v = u+ v, 0 = −∞ = Φh(0),
1 = 0 = Φh(1). It can easily be checked thatu⊕h v−→max{u,v} ash−→ 0 andS forms a semiring
with respect to additionu⊕v= max{u,v} and multiplicationu�v= u+v with zero0=−∞ and unit
1 = 0. Denote this semiring byRmax; it is idempotent. The semiringRmax is actually a commutative
semifield. This construction is due to V.P. Maslov [1]; now it is known asMaslov’s dequantization.

The analogy with quantization is obvious; the parameterh plays the rôle of the Planck constant,
soR+ (or R) can be viewed as a “quantum object” andRmax as the result of its “dequantization”. A
similar procedure gives the semiringRmin = R∪{+∞} with the operations⊕= min,�= +; in this
case0 = +∞, 1 = 0. The semiringsRmax andRmin are isomorphic. Connections with physics and
imaginary values of the Planck constant are discussed in [4]. The commutative idempotent semiring
R∪{−∞}∪{+∞} with the operations⊕ = max,� = min can be obtained as a result of a “second
dequantization” ofR (orR+). Dozens of interesting examples of nonisomorphic idempotent semirings
may be cited as well as a number of standard methods of deriving new semirings from these (see, e.g.,
[2]–[5]).

Idempotent dequantizationis a generalization of Maslov’s dequantization. This is a passage from
fields to idempotent semifields and semirings in mathematical constructions and results. The idempo-
tent correspondence principle (see Introduction and [2, 4]) often works for this idempotent dequanti-
zation.

3. Idempotent Analysis. Let S be an arbitrary semiring with idempotent addition⊕ (which is
always assumed to be commutative), multiplication�, zero0, and unit1. The setS is supplied with
thestandard partial order4: by definition,a 4 b if and only if a⊕b = b. Thus all elements ofSare
positive:0 4 a for all a∈ S. Due to the existence of this order, Idempotent Analysis is closely related
to the lattice theory, the theory of vector lattices, and the theory of ordered spaces. Moreover, this
partial order allows to simulate a number of basic notions and results of Idempotent Analysis at the
purely algebraic level.

Calculus deals mainly with functions whose values are numbers. The idempotent analog of a
numerical function is a mapX −→ S, whereX is an arbitrary set andS is an idempotent semiring.
Functions with values inScan be added, multiplied by each other, and multiplied by elements ofS.

114



The idempotent analog of a linear functional space is a set ofS-valued functions that is closed
under addition of functions and multiplication of functions by elements ofS, or anS-semimodule.
Consider, e.g., theS-semimoduleB(X,S) of functionsX −→ S that are bounded in the sense of the
standard order onS.

If S= Rmax, then the idempotent analog of integration is defined by the formula

I(ϕ) =
∫ ⊕

X
ϕ(x)dx= sup

x∈X
ϕ(x), (1)

whereϕ ∈ B(X,S). Indeed, a Riemann sum of the form∑
i

ϕ(xi) ·σi corresponds to the expression⊕
i

ϕ(xi)�σi = max
i
{ϕ(xi)+ σi}, which tends to the right-hand side of (1) asσi −→ 0. Of course,

this is a purely heuristic argument. Formula (1) defines the idempotent integral not only for functions
taking values inRmax, but also in the general case when any of bounded (from above) subsets ofShas
the least upper bound.

An idempotent measure onX is defined bymψ(Y) = sup
x∈Y

ψ(x), whereψ ∈ B(X,S). The integral

with respect to this measure is defined by

Iψ(ϕ) =
∫ ⊕

X
ϕ(x)dmψ =

∫ ⊕
X

ϕ(x)�ψ(x)dx= sup
x∈X

(ϕ(x)�ψ(x)). (2)

Obviously, if S= Rmin, then the standard order4 is opposite to the conventional order6, so in
this case equation (2) assumes the form∫ ⊕

X
ϕ(x)dmψ =

∫ ⊕
X

ϕ(x)�ψ(x)dx= inf
x∈X

(ϕ(x)�ψ(x)), (3)

where inf is understood in the sense of the conventional order6.

The functionalsI(ϕ) and Iψ(ϕ) are linear overS; their values correspond to limits of Lebesgue
(or Riemann) sums. The formula forIψ(ϕ) defines the idempotent scalar product of the functionsψ
andϕ. Various idempotent functional spaces and an idempotent version of the theory of distributions
can be constructed on the basis of the idempotent integration, see, e.g., [1], [3]–[5]. The analogy
of idempotent and probability measures leads to spectacular parallels between optimization theory
and probability theory. For example, the Chapman–Kolmogorov equation corresponds to the Bellman
equation (see, e.g., [6, 5]). Many other idempotent analogs may be cited (in particular, for basic
constructions and theorems of functional analysis [4]).

4. The superposition principle and linear problems. Basic equations of quantum theory are
linear (the superposition principle). The Hamilton–Jacobi equation, the basic equation of classical
mechanics, is nonlinear in the conventional sense. However it is linear over the semiringsRmin and
Rmax. Also, different versions of the Bellman equation, the basic equation of optimization theory,
are linear over suitable idempotent semirings (V. P. Maslov’s idempotent superposition principle), see
[1, 3]. For instance, the finite-dimensional stationary Bellman equation can be written in the formX =
H�X⊕F , whereX, H, F are matrices with coefficients in an idempotent semiringSand the unknown
matrixX is determined byH andF [7]. In particular, standard problems of dynamic programming and
the well-known shortest path problem correspond to the casesS= Rmax andS= Rmin, respectively. In
[7], it was shown that main optimization algorithms for finite graphs correspond to standard methods
for solving systems of linear equations of this type (i.e., over semirings). Specifically, Bellman’s
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shortest path algorithm corresponds to a version of Jacobi’s algorithm, Ford’s algorithm corresponds
to the Gauss–Seidel iterative scheme, etc.

Linearity of the Hamilton–Jacobi equation overRmin (andRmax) is closely related to the (conven-
tional) linearity of the Schrödinger equation, see [4] for details.

5. Correspondence principle for algorithms and their computer implementations.The idem-
potent correspondence principle is valid for algorithms as well as for their software and hardware
implementations [2]. In particular, according to the superposition principle, analogs of linear algebra
algorithms are especially important. It is well-known that algorithms of linear algebra are convenient
for parallel computations; so their idempotent analogs accept a parallelization. This is a regular way to
use parallel computations for many problems including basic optimization problems. It is convenient
to use universal algorithms which do not depend on a concrete semiring and its concrete computer
model. Software implementations for universal semiring algorithms are based on object-oriented and
generic programming; program modules can deal with abstract (and variable) operations and data
types, see [2, 8] for details.

The most important and standard algorithms have many hardware realizations in the form of tech-
nical devices or special processors. These devices often can be used as prototypes for new hardware
units generated by substitution of the usual arithmetic operations for its semiring analogs, see [2] for
details. Good and efficient technical ideas and decisions can be transposed from prototypes into new
hardware units. Thus the correspondence principle generates a regular heuristic method for hardware
design. Note that to get a patent it is necessary to present the so-called “invention formula”, that is to
indicate a prototype for the suggested device and the difference between these devices.

6. Idempotent interval analysis. An idempotent version of the traditional interval analysis is
presented in [9]. LetS be an idempotent semiring equipped with the standard partial order (see the
beginning of Section 3). Aclosed intervalin S is a subset of the formx = [x,x] = {x∈ S|x 4 x 4 x},
where the elementsx 4 x are calledlower andupper boundsof the intervalx. A weak interval ex-
tension I(S) of the semiringS is the set of all closed intervals inSendowed with operations⊕ and�
defined asx⊕y = [x⊕y,x⊕y], x�y = [x�y,x�y]; the setI(S) is a new idempotent semiring with
respect to these operations. It is proved that basic problems of idempotent linear algebra are polyno-
mial, whereas in the traditional interval analysis problems of this kind are generally NP-hard. Exact
interval solutions for the discrete stationary Bellman equation (this is the matrix equation discussed
in Section 4) and for the corresponding optimization problems are constructed and examined.

7. Generalized fuzzy sets.Let Ω be the so-called universe consisting of “elementary events” and
San idempotent semiring. Denote byF (S) the set of functions defined onΩ and taking their values
in S; thenF (S) is an idempotent semiring with respect to the pointwise addition and multiplication
of functions. We shall say that elements ofF (S) aregeneralized fuzzy sets. We have the well known
classical definition of fuzzy sets (L.A. Zadeh [10]) ifS= P, whereP is the segment[0,1] with the
semiring operations⊕ = max and� = min, see Section 2. Of course, functions fromF (P) taking
their values in the Boolean algebraB = {0,1} ⊂ P correspond to traditional sets fromΩ and semiring
operations correspond to standard operations for sets. In the general case ifShas neutral elements0
and1 (and0 6= 1), then functions fromF (S) taking their values inB = {0,1} ⊂ S can be treated as
traditional subsets inΩ. If S is a lattice (i.e.x�y = inf{x,y} andx⊕y = sup{x,y}), then generalized
fuzzy sets coincide withL-fuzzy sets in the sense of J.A. Goguen [11]. The setI(S) of intervals is an
idempotent semiring (see Section 6), so elements ofF (I(S)) can be treated as interval (generalized)
fuzzy sets.
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It is well known that the classical theory of fuzzy sets is a basis for the theory of possibility
[12]. Of course, it is possible to develop a similar generalized theory of possibility starting from
generalized fuzzy sets. In general the generalized theories are noncommutative; they seem to be more
qualitative and less quantitative with respect to the classical theories presented in [10, 12]. We see
that Idempotent Analysis and the theory of (generalized) fuzzy sets and possibility have the same
objects, i.e. functions taking their values in semirings. However, basic problems and methods could
be different for these theories (like for the measure theory and the probability theory).
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Abstract

The purpose of normal forms is to provide a standard representation or approximation of var-
ious kinds of functions. Boolean functions, for instance, have both a disjunctive and conjunctive
normal form representation. Interpreting these normal forms in a suitable t-norm-based logic
leads to some interval-valued fuzzification of the original Boolean function. We will deal with
two mathematical questions: first, in which t-norm-based logic do we actually obtain intervals
and second, if so, to what extent does the length of the intervals depend on the original Boolean
function.

1 Introduction

A Boolean expression is an expression involving variables each of which can take either the value true
or false. These variables are combined using Boolean operations such as conjunction (∧), disjunction
(∨) and negation (′). It is common knowledge that each Boolean function can be represented by a
well-formed formula in Boolean propositional logic. Moreover, there are two special forms, the dis-
junctive and conjunctive normal form, which are of great interest, for each of these forms defines the
Boolean function in a unique way.

In many cases, crisp models are too ‘poor’ to represent the ‘human way of thinking’. Fuzzy sets
provide a widely accepted solution to that end. Typical to fuzzy set theory is the large set of options
(logical operations, shapes of membership functions, parameters) that are available to the user. A
unique and definite definition of the intersection of two fuzzy sets, for instance, cannot be expected.
However, fuzzifying the disjunctive and conjunctive normal form representation of a Boolean expres-
sion results in two standard fuzzifications of the original Boolean function. All attention so far has
focused on the comparability of these fuzzified normal forms, in particular for binary Boolean func-
tions [1, 3, 11, 12, 13, 14]. We contribute to the existing knowledge on this comparability. Because of
their theoretical importance, special attention will be drawn to left-continuous t-norms.

Before we start we fix some notations. Letφ be an[0,1]-automorphism andN the standard negator,
then the De Morgan triplets〈(TM )φ ,(SM )φ ,Nφ〉, 〈(TP)φ ,(SP)φ ,Nφ〉, 〈(TL )φ ,(SL )φ ,Nφ〉,
〈(TD)φ ,(SD)φ ,Nφ〉 and〈(TnM )φ,(SnM )φ,Nφ〉will be called respectively(M,φ)-, (P,φ)-, (L,φ)-, (D,φ)-
and(nM,φ)-triplets. In caseφ is the identity mapping, we talk about the M-, P-, L-, D- and nM-triplet.
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2 Fuzzified normal forms ofn-ary Boolean functions

Consider the Boolean algebra({0,1},∨,∧,′ ,0,1). The disjunctive and conjunctive normal forms of
ann-ary Boolean functionf are given by

DB( f )(x1, ...,xn) =
∨

f (e1,...,en)=1

xe1
1 ∧ ...∧xen

n (1)

and
CB( f )(x1, ...,xn) =

∧
f (e1,...,en)=0

x
e′1
1 ∨ ...∨xe′n

n , (2)

wherexe = x if e= 1 andxe = x′ if e= 0. One can fuzzify expressions (1) and (2) by replacing(∧,∨,′ )
by a triplet(T,S,N), with N an involutive negation. The corresponding disjunctive and conjunctive
fuzzified normal forms are denoted byDF andCF . For eachn-ary Boolean functionf we obtain two
[0,1]n−→ [0,1] mappingsDF( f ) andCF( f ):

DF( f )(x) = S{ f (e) T(xe) | e∈ {0,1}n} ,

CF( f )(x) = T

{[
(1− f (e)) S

(
x(e0)

)N
]N

| e∈ {0,1}n
}

,

wherex ∈ [0,1]n, 0 = (0, ...,0) andxe = (xe1
1 , ...,xen

n ).

While DF ≤CF
4 does not hold for all continuous De Morgan triplets [14, 10], we wonder whether

DF ≤CF is true for the basic continuous De Morgan triplets(M,φ), (P,φ), and(L,φ). Remark that,
in case we work with the M-triplet, the inequalityDF ≤CF also follows from [3].

Theorem 1. [10] For any(M,φ)-, (P,φ)- and(L,φ)-triplet it holds that DF( f )≤CF( f ), for all n-ary
Boolean functions f .

Because a full characterization of non-continuous t-norms, in particular left-continuous ones, is
still lacking, we restrict ourselves in the non-continuous case to the basic triplets(D,φ) and(nM,φ).
We obtain a similar result as for the three prototypical continuous triplets.

Theorem 2. [10] For any(D,φ)-, (nM,φ)-triplet it holds that DF( f )≤CF( f ), for all n-ary Boolean
functions f .

3 Independence of then-ary Boolean function:
a system of functional equations

Knowing thatDF ≤CF holds for a triplet(T,S,N), it remains an intriguing problem, from a math-
ematical point of view, to understand to what extentCF( f )−DF( f ) depends on then-ary Boolean
function f . More specifically, we wonder for which tripletsCF( f )(x)−DF( f )(x) is only a function
of the variablex ∈ [0,1]n (i.e. independent of the Boolean functionf ). In [10], we have already en-
countered three solutions: the L-triplet, the nM-triplet and all(D,φ)-triplets.

4DF ≤CF is a shorthand to express thatDF ( f )(x)≤CF ( f )(x), for everyx ∈ [0,1]n
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As shown in the following lemma, although there are 22n
different n-ary Boolean functionsf , im-

posing thatCF( f )(x)−DF( f )(x) must be independent of the Boolean functionf , is equivalent to a
system of 3 functional equations.

Theorem 3. Consider a triplet(T,S,N), with N an involutive negation with fixpoint aN. Then
CF( f )(x)−DF( f )(x) is independent of the Boolean function f if and only if for allx ∈ [0,aN]n,
x1≤ x2≤ ...≤ xn, the following expressions are equal to each other

S(x1, ...,xn−1,xN
n )−T(xN

1 , ...,xN
n−1,x

N
n ) , (3)

S(x1, ...,xn−1,xn)−T(xN
1 , ...,xN

n−1,xn) , (4)

T(S(x1, ...,xn−1,xN
n ),S(x1, ...,xn−1,xn)) , (5)

1−S(T(xN
1 , ...,xN

n−1,xn),T(xN
1 , ...,xN

n−1,x
N
n )) . (6)

When considering a De Morgan triplet〈T,S,N 〉, this system of functional equations reduces to a
single functional equation in two dimensions:

Theorem 4. Consider a De Morgan triplet〈T,S,N 〉. Then CF( f )(x)−DF( f )(x) is independent of
the Boolean function f if and only if

S(T(xN ,y),T(xN ,yN )) = T(xN ,y)+T(xN ,yN ) ,

for any(x,y) ∈ [0,1/2]2, x≤ y.

We have shown that the L-triplet is the only continuous De Morgan triplet for which the difference
between both normal forms is independent of then-ary Boolean functionf .

Theorem 5. Consider a triplet(T,S,N), with T a left-continuous t-norm, S a right-continuous t-
conorm and N an involutive negation with fixpoint aN. Suppose that T(x,aN) and S(x,aN) are contin-
uous and that(T,S,N) is a De Morgan triplet or N= N . Then CF( f )(x)−DF( f )(x) is independent
of the Boolean function f if and only if(T,S,N) is theL-triplet.

Further, we characterize the De Morgan triplets〈T,S,N〉, with T a left-continuous t-norm that
fulfills some additional continuity conditions, for whichCF( f )(x)−DF( f )(x) is only a function of
the variablex ∈ [0,1]n. We obtain a unique De Morgan triplet that is based on a t-normTλ, with
λ ∈ [0,1/2[, defined by

Tλ(x,y) =



0 , if x+y≤ 1,

min(x,y) , if x+y > 1 ∧ min(x,y) ∈ ]λ,1−λ] ,
x+y−1 , if x+y > 1

∧ (x+y≥ 2−λ ∨ min(x,y) ∈ [0,λ]) ,
1−λ , if x+y≤ 2−λ ∧ min(x,y) ∈ ]1−λ,1] .

Every t-norm in this family can be obtained by applying the rotation construction of Jenei [4, 5, 6, 7]
on a suitable ordinal sum [8]. The nilpotent minimumTnM [2] corresponds toλ = 0.
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Theorem 6. Consider a De Morgan triplet〈T,S,N〉 based on a left-continuous t-norm T and an
involutive negation N with fixpoint aN. Suppose that Ty(x) := T(x,y) is continuous on]yN,1] for any
y∈ [0,aN] and is continuous on[y,1] for any y∈ ]aN,1]. Suppose also that

lim
x

>→aN

T(x,aN) > 0.

Then CF( f )(x)−DF( f )(x) is independent of the Boolean function f if and only if N= N and T= Tλ,
for someλ ∈ [0,1/2[.

4 Further research

In future work, it would be worthwhile to try once again to get rid of the extra conditions (N = N ,
(T,S,N) is a De Morgan triplet, ...) in the characterization theorems. Moreover, the new insights in
the treated system of functional equations force us to review the inequalityDF ≤CF more closely. It
would be preferable to establish a necessary condition on(T,S,N) for DF ≤CF to hold, when working
with n-ary Boolean functions, and which covers all the known suitable triplets(T,S,N). Finally, we
are challenged to lay bare all connections between interval-valued preference structures, based on
fuzzified normal forms [1], and those based on a pair of generators [9].

References

[1] T. Bilgiç, Interval-valued preference structures, European J. of Operational Research105
(1998), 162–183.

[2] J. Fodor,Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems69 (1995),
141–156.

[3] M. Gehrke, C. Walker, and E. Walker,Normal forms and truth tables for fuzzy logics, Fuzzy Sets
and Systems138(2003), 25–51.

[4] S. Jenei, Structure of left-continuous triangular norms with strong induced
negations. (I) Rotation construction, J. Appl. Non-Classical Logics 10 (2000),
83–92.

[5] S. Jenei,Structure of left-continuous triangular norms with strong induced negations. (II)
Rotation-annihilation construction, J. Appl. Non-Classical Logics11 (2001), 351–366.

[6] S. Jenei,Structure of left-continuous triangular norms with strong induced negations. (III) Con-
struction and decomposition, Fuzzy Sets and Systems128(2002), 197–208.

[7] S. Jenei,A characterization theorem on the rotation construction for triangular norms, Fuzzy
Sets and Systems136(2003), 283–289.

[8] E. Klement, R. Mesiar, and E. Pap,Triangular Norms, Trends in Logic, Vol. 8, Kluwer, Dor-
drecht, 2000.

[9] K. Maes and B. De Baets,Extracting strict orders from fuzzy preference relations, Lecture Notes
in Computer Science2715(2003), 261–268.

121



[10] K. Maes and B. De Baets,Facts and figures on fuzzified normal forms, 2003, submitted.
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Abstract

We define an aggregation function to be (at most)k-intolerant if it is bounded from above
by its kth lowest input value. Applying this definition to the discrete Choquet integral and its
underlying capacity, we introduce the concept ofk-intolerant capacities which, when varyingk
from 1 to n, cover all the possible capacities onn objects. Just as the concepts ofk-additive
capacities andp-symmetric capacities have been previously introduced essentially to overcome
the problem of computational complexity of capacities,k-intolerant capacities are proposed here
for the same purpose but also for dealing with intolerant or tolerant behaviors of aggregation.

Keywords: multi-criteria analysis, interacting criteria; capacities; Choquet integral.

1 Introduction

In a previous work [7] the author investigated the intolerant behavior of the discrete Choquet integral
when used to aggregate interacting criteria. Roughly speaking, the Choquet integralCv, or equiv-
alently its associated capacityv, has an intolerant behavior if its output (aggregated) value is often
close to the lowest of its input values. More precisely, consider the domain[0,1]n of Cv as a proba-
bility space, with uniform distribution, and the mathematical expectation ofCv, which expresses the
typical position ofCv within the unit interval. A low expectation then means that the Choquet integral
is rather intolerant and behaves nearly like the minimum on average. Similarly, a high expectation
means that the Choquet integral is rather tolerant and behaves nearly like the maximum on average.
Note that such an analysis is meaningless when criteria are independent since, in that case, the Cho-
quet integral boils down to a weighted arithmetic mean whose expectation is always one half (neither
tolerant nor intolerant.)

In this paper we pursue this idea by definingk-intolerant Choquet integrals5. The casek = 1
corresponds to the unique most intolerant Choquet integral, namely the minimum. The casek = 2
corresponds to the subclass ofn-variable Choquet integrals that are bounded from above by their
second lowest input values. Those Choquet integrals are more or less intolerant but not as much as
the minimum. As an example, the following 3-variable Choquet integral

Cv(x1,x2,x3) =
1
2

min(x1,x2)+
1
2

min(x1,x3)

5Equivalently, we definek-intolerant capacities since there is a one-to-one correspondence betweenn-variable Choquet
integrals and capacities defined onn objects.
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is clearly 2-intolerant, while being different from the minimum.

More generally, denoting byx(1), . . . ,x(n) the order statistics resulting from reorderingx1, . . . ,xn in
the nondecreasing order, we say that ann-variable Choquet integralCv, or equivalently its underlying
capacityv, is at mostk-intolerant if

Cv(x)≤ x(k) (x∈ [0,1]n) (1)

and it is exactlyk-intolerant if, in addition, there isx∗ ∈ [0,1]n such thatCv(x∗) > x∗(k−1), with conven-
tion thatx(0) := 0.

Interestingly, condition (1) clearly implies that the output value ofCv is zero whenever at leastk
input values are zeros. We will see in Section 3 that the converse holds true as well.

At first glance, definingk-intolerant aggregation functions may appear as a pure mathematical
exercise without any real application behind. In fact, in many real-life decision problems, experts or
decision-makers are or must be intolerant. This is often the case when, in a given selection problem,
we search for most qualified candidates among a wide population of potential alternatives. It is then
sensible to reject every candidate which fails at leastk criteria.

Example 1. Consider a (simplified) problem of selecting candidates applying for a university perma-
nent position and suppose that the evaluation procedure is handled by appointed expert-consultants on
the basis of the following academic selection criteria:

1. Scientific value of curriculum vitae,

2. Teaching effectiveness,

3. Ability to supervise staff and work in a team environment,

4. Ability to communicate easily in English,

5. Work experience in the industry,

6. Recommendations by faculty and other individuals.

Assume also that one of the rules of the evaluation procedure states that the complete failure of any
two of these criteria results in automatic rejection of the applicant. This quite reasonable rule forces
the Choquet integral, when used for the aggregation procedure, to be 2-intolerant, thus restricting the
class of possible Choquet integrals for such a selection problem.

On the other hand, there are real-life situations where it is recommended to be tolerant, especially
if the criteria are hard to meet simultaneously and if the potential alternatives are not numerous. To
deal with such situations, we introducek-tolerant aggregation functions and we will say that ann-
variable Choquet integralCv, or equivalently its underlying capacityv, is at mostk-tolerant if

Cv(x)≥ x(n−k+1) (x∈ [0,1]n).

In that case, the output value ofCv is one whenever at leastk input values are ones.

Example 2. Consider a family who consults a Real Estate agent to buy a house. The parents propose
the following house buying criteria:
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1. Close to a school,

2. With parks for their children to play in,

3. With safe neighborhood for children to grow up in,

4. At least 100 meters from the closest major road,

5. At a fair distance from the nearest shopping mall,

6. Within reasonable distance of the airport.

Feeling that it is likely unrealistic to satisfy all six criteria simultaneously, the parents are ready to
accept a house that would fully succeed any five over the six criteria. If a 6-variable Choquet integral
is used in this selection problem, it must be 5-tolerant.

Consideringk-intolerant andk-tolerant capacities can also be viewed as a way to make real appli-
cations easier to model from a computational viewpoint. Those “simplified” capacities indeed require
less parameters than classical capacities (actuallyO(nk−1) parameters instead ofO(2n); see Section 3).
Moreover, when varyingk from 1 ton, we clearly recover all the possible capacities onn objects.

Notice however that this idea of partitioning capacities into subclasses is not new. Grabisch [3]
proposed thek-additive capacities, which gradually cover all the possible capacities starting from
additive capacities (k = 1). Later, Miranda et al. [8] introduced thep-symmetric capacities, also
covering the possible capacities but starting from symmetric capacities (p = 1). Note also that other
approaches to overcome the exponential complexity of capacities have also been previously proposed
in the literature: Sugenoλ-measures [10],⊥-decomposable measures (see e.g. [5]), hierarchically
decomposable measures [11], distorted probabilities (see e.g. [9]) to name a few.

2 Basic definitions

Let F : [0,1]n −→ [0,1] be an aggregation function. By considering the cube[0,1]n as a probability
space with uniform distribution, we can compute the mathematical expectation ofF , that is,

E(F) :=
∫

[0,1]n
F(x)dx. (2)

This value gives the average position ofF within the interval[0,1].

WhenF is internal (i.e., min≤ F ≤max) then it is convenient to rescaleE(F) within the interval
[E(min),E(max)]. This leads to the following normalized and mutually complementary values [1, 7]:

andness(F) :=
E(max)−E(F)

E(max)−E(min)
(3)

orness(F) :=
E(F)−E(min)

E(max)−E(min)
(4)

Thus defined, the degree ofandness(resp.orness) of F represents the degree or intensity (between
0 and 1) to which the average value ofF is close to that of “min” (resp. “max”). In some sense, it also
reflects the extent to whichF behaves like the minimum (resp. the maximum) on average.
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Define thekth order statistic function OSk : [0,1]n−→ [0,1] as

OSk(x) = x(k) (x∈ [0,1]n),

wherex(k) is thekth lowest coordinate ofx. It can be proved [7] that

E(OSk) =
k

n+1
(k∈ {1, . . . ,n})

and hence the set{E(OSk) | k = 1, . . . ,n} partitions the unit interval[0,1] into n+ 1 equal-length
subintervals.

Now, as mentioned in the introduction, when a functionF : [0,1]n −→ [0,1] is used to aggregate
decision criteria, it is clear that the moreE(F) is low, the moreF has an intolerant behavior. This
suggests the following definition:

Definition 3. Let k∈ {1, . . . ,n}. An aggregation functionF : [0,1]n −→ [0,1] is at most k-intolerant
if F ≤OSk. It is k-intolerantif, in addition,F � OSk−1, where OS0 := 0 by convention.

It follows immediately from this definition that, for anyk-intolerant functionF , we haveE(F)≤
E(OSk) and, ifF is internal, we have andness(F)≥ andness(OSk) and orness(F)≤ orness(OSk).

Example 4. The productF(x) = ∏i xi , defined on[0,1]n, is 1-intolerant and we haveE(F) = 1/2n.

By duality, we can also introducek-tolerant functions as follows:

Definition 5. Let k∈ {1, . . . ,n}. An aggregation functionF : [0,1]n−→ [0,1] is at most k-tolerantif
F ≥OSn−k+1. It is k-tolerantif, in addition,F � OSn−k+2, where OSn+1 := 1 by convention.

It is immediate to see that when a functionF : [0,1]n −→ [0,1] is k-intolerant, itsdual F∗ :
[0,1]n−→ [0,1], defined by

F∗(x1, . . . ,xn) := 1−F(1−x1, . . . ,1−xn) (x∈ [0,1]n) (5)

is k-tolerant and vice versa.

In the next section we investigate the particular case whereF is the Choquet integral and we define
the concepts ofk-intolerant andk-tolerant capacities.

3 Case of Choquet integrals and capacities

The use of the Choquet integral has been proposed by many authors as an adequate substitute to the
weighted arithmetic mean to aggregate interacting criteria; see e.g. [2, 6]. In the weighted arithmetic
mean model, each criterion is given a weight representing the importance of this criterion in the
decision. In the Choquet integral model, where criteria can be dependent, a capacity is used to define
a weight on each combination of criteria, thus making it possible to model the interaction existing
among criteria.

Let us first recall the formal definitions of these concepts. Throughout, we will use the notation
N := {1, . . . ,n} for the set of criteria.
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Definition 6. A capacityon N is a set functionv : 2N −→ [0,1], that is nondecreasing with respect to
set inclusion and such thatv(∅) = 0 andv(N) = 1.

Definition 7. Let v be a capacity onN. The Choquet integralof x : N −→ R with respect tov is
defined by

Cv(x) :=
n

∑
i=1

x(i) [v(A(i))−v(A(i+1))], (6)

where(·) indicates a permutation onN such thatx(1) ≤ . . . ≤ x(n). FurthermoreA(i) := {(i), . . . ,(n)}
andA(n+1) := ∅.

In this section we apply the ideas ofk-intolerance andk-tolerance (cf. Definitions 3 and 5) to the
Choquet integral. Since this integral is internal, it can be seen as a function from[0,1]n to [0,1].

Let us denote byFN the set of all capacities onN. The following proposition, inspired from [7,
S4], gives equivalent conditions for a Choquet integral to be at mostk-intolerant.

Proposition 8. Let k∈ {1, . . . ,n} and v∈ FN. Then the following assertions are equivalent:

i) Cv(x)≤ x(k) ∀x∈ [0,1]n,
ii) v(T) = 0 ∀T ⊆ N such that|T| ≤ n−k,

iii ) Cv(x) = 0 ∀x∈ [0,1]n such that x(k) = 0,
iv) Cv(x) is independent of x(k+1), . . . ,x(n),
v) ∃λ ∈ [0,1) such that∀x∈ [0,1]n we have x(k) ≤ λ ⇒ Cv(x)≤ λ,

As we can see, some assertions of Proposition 8 are natural and can be interpreted easily. Some
others are more surprising and show that the Choquet integral may have an unexpected behavior.

First, assertion(ii) enables us to definek-intolerant capacities as follows:

Definition 9. Let k∈ {1, . . . ,n}. A capacityv∈ FN is k-intolerantif v(T) = 0 for all T ⊆N such that
|T| ≤ n−k and there isT∗ ⊆ N, with |T∗|= n−k+1, such thatv(T∗) 6= 0.

Assertion(iii ) says that the output value of the Choquet integral is zero whenever at leastk input
values are zeros. This is actually a straightforward consequence ofk-intolerance.

Assertion(iv) is more surprising. It says that the output value of the Choquet integral does not
take into account the values ofx(k+1), . . . ,x(n). Back to Example 1, only the two lowest scores are
taken into account to provide a global evaluation, regardless of the other scores.

Assertion(v) is also of interest. By imposing thatCv(x)≤ λ wheneverx(k) ≤ λ for a given thresh-
old λ ∈ [0,1), we necessarily forceCv to be at mostk-intolerant. For instance, consider the problem
of evaluating students with respect to different courses and suppose that it is decided that if the lowest
k marks obtained by a student are less than 18/20 then his/her global mark must be less than 18/20. In
this case, the Choquet integral utilized is at mostk-intolerant.

Proposition 8 can be easily rewritten fork-tolerance by considering the dualC ∗v of the Choquet
integralCv as defined in Eq. (5). On this issue, Grabisch et al. [4, S4] showed that the dualC ∗v of Cv is
the Choquet integralCv∗ defined from thedual capacity v∗, which is constructed fromv by

v(T) = 1−v(N\T) (T ⊆ N).

We then have
Cv≥OSn−k+1 ⇔ Cv∗ ≤OSk.
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Proposition 10. Let k∈ {1, . . . ,n} and v∈ FN. Then the following assertions are equivalent:

i) Cv(x)≥ x(n−k+1) ∀x∈ [0,1]n,
ii) v(T) = 1 ∀T ⊆ N such that|T| ≥ k,

iii ) Cv(x) = 1 ∀x∈ [0,1]n such that x(n−k+1) = 1,
iv) Cv(x) is independent of x(1), . . . ,x(n−k),
v) ∃λ ∈ (0,1] such that∀x∈ [0,1]n we have x(n−k+1) ≥ λ ⇒ Cv(x)≥ λ,

Here again, some assertions are of interest. First, assertion(ii) enables us to definek-tolerant
capacities as follows:

Definition 11. Let k∈ {1, . . . ,n}. A capacityv∈ FN is k-tolerantif v(T) = 1 for all T ⊆ N such that
|T| ≥ k and there isT∗ ⊆ N, with |T∗|= k−1, such thatv(T∗) 6= 1.

Assertion(iii ) says that the output value of the Choquet integral is one whenever at leastk input
values are ones.

Assertion(iv) says that the output value of the Choquet integral does not take into account the
values ofx(1), . . . ,x(n−k). As an application, consider students who are evaluated according ton home-
work assignments and assume that the evaluation procedure states that the two lowest homework
scores of each student are dropped, which implies that each student can miss two homework assign-
ments without affecting his/her final grade. If an-variable Choquet integral is used to aggregate the
homework scores, it should not takex(1) andx(2) into consideration and hence it is at most(n−2)-
tolerant.

4 Conclusion

In this paper, which can be considered as the sequel of [7], we have proposed the concepts ofk-
intolerant andk-tolerant Choquet integrals and capacities. Besides the obvious computational advan-
tage of these concepts (comparable to that ofk-additive andp-symmetric capacities), they can be
easily interpreted in practical decision problems where the decision makers must be intolerant or tol-
erant. In an extended version of this paper, we also introduce axiomatically intolerance and tolerance
indices which measure the degree to which the Choquet integral isk-intolerant andk-tolerant. These
indices, when varyingk from 1 to n−1, make it possible to identify and measure the intolerant or
tolerant character of the decision maker.
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The Analytic Hierarchy Process (AHP), developed by Thomas L. Saaty [6] [7] [8] [9], is a well-known
multicriteria aggregation model. It is based on pairwise comparison matrices at two fundamental
levels: the lower level encodes pairwise comparison matrices between alternatives (one such matrix
for each criterion) and the higher level encodes a single pairwise comparison matrix between criteria.
In its most general form, the higher level of the AHP can be structured hierarchically, with several
layers of criteria, but in this paper we focus on the single layer case, with a single matrix of pairwise
comparisons between criteria.

Pairwise comparison matrices are typically inconsistent. However, the AHP extracts from each pair-
wise comparison matrix a vector of importance weights (also called priorities) given by the principal
eigenvector or, alternatively, by the geometric mean vector. In both cases the priority vectors have
positive components normalized to unit sum. In this paper we consider only the geometric mean
method, because its structural properties are more suited for our study. Once the priority vectors are
obtained, the AHP uses the priority vector at the higher level to aggregate (by means of a weighted
average) the lower level priority vectors.

In this paper we propose an extension of Saaty’s AHP based on Choquet measures. In our model,
inconsistency is explicitly used in the aggregation process in order to attenuate the importance values
of those criteria that (on average) are more inconsistent with the others. Accordingly, our model
emphasizes the importance values of those criteria that (on average) are more consistent with the
remaining ones.

Consider a finite set of interacting criteriaN = {1,2, . . . ,n}.
A Choquet measure[2] on the setN is a set functionµ : P (N)−→ [0,1] satisfying

(i) µ( /0) = 0, µ(N) = 1

(ii) S⊆ T ⊆ N ⇒ µ(S)≤ µ(T).

Given a Choquet measureµwe can define theChoquet integral[2] [3] [4] of a vectorx = (x1, . . . ,xn)∈
[0,1]n with respect toµ as

Cµ(x) =
n

∑
i=1

[µ(A(i))−µ(A(i+1))]x(i) (1)

where(·) indicates a permutation onN such thatx(1) ≤ x(2) ≤ . . .≤ x(n). AlsoA(i) = {(i), . . . ,(n)} and
A(n+1) = /0.
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Notice that the Choquet integral with respect to an additive measureµ reduces to a weighted arithmetic
mean, whose weightswi are given by theµ(i) values,

µ(A(i)) = µ((i))+µ((i +1))+ . . .+µ((n))

Cµ(x) =
n

∑
i=1

[µ(A(i))−µ(A(i+1))]x(i) =
n

∑
i=1

µ((i))x(i) =
n

∑
i=1

wixi . (2)

The importance indexor Shapley value[5] [10] of criterion i ∈ N with respect toµ is defined as

φµ(i) = ∑
T⊆N\i

(n−1− t)!t!
n!

[µ(T ∪ i)−µ(T)] ,
n

∑
i=1

φµ(i) = 1. (3)

It amounts to a weighted average of the marginal contribution of elementi with respect to all coalitions
T ⊆ N\ i and it can be interpreted as an effective importance weight.
Consider now a positive reciprocaln×n matrixA = [ai j ],

ai j > 0 a ji = 1/ai j i, j = 1, . . . ,n (4)

All pairwise comparison matrices in Saaty’s AHP are of this form. However, our model regards
only the single pairwise comparison matrix between criteria at the higher level of the AHP. This is
because that matrix is the one that controls the aggregation process: in Saaty’s AHP, the aggregation is
performed through a weighted average whose weights are the components of the higher level priority
vector.

In general, the positive reciprocal matrixA above is inconsistent, where consistency meansai j = aikak j

for all i, j,k = 1, . . . ,n. However, we can associate to the matrixA a consistent matrix̃A = [ãi j ] in the
following way,

ãi j = wi/w j wi = ui/Σn
j=1u j i, j = 1, . . . ,n (5)

whereui is the geometric mean of the elements of the rowi,

ui = n

√
Πn

j=1ai j i, j = 1, . . . ,n (6)

and the weightswi > 0 are normalizedΣn
j=1wi = 1.

The positive reciprocal matrix̃A is in fact consistent, since

ãi j = wi/w j = (wi/wk)(wk/w j) = ãikãk j i, j,k = 1, . . . ,n . (7)

Moreover,ũi = n

√
Πn

j=1ãi j = wi/ n

√
Πn

j=1w j and thus ˜wi = ũi/Σn
j=1ũ j = wi , which means that the con-

sistent matrix associated tõA is againÃ itself.

Given an elementai j of the matrixA we define theneighbourhood U(ai j ) as the set of the elements
of the rowi and the columnj of A,

U(ai j ) = {aik ,al j |k, l = 1, . . . ,n} . (8)

We say thatai j is locally consistentif, on average, it is consistent with the elements in its neighbour-
hood,

ai j = ãi j = n
√

Πn
k=1aikak j i, j = 1, . . . ,n . (9)

We now define thescaling function f: (0,∞)→ (0,1) as f (x) = 2/(x+x−1), for x > 0, whose graph
is shown below.
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Notice that the scaling functionf has a single critical point atx = 1, where it reaches the maximum
value f (1) = 1. Moreover, the scaling functionf has the important propertyf (x) = f (x−1), for all
x > 0.
By means of the scaling functionf , we can associate a positive symmetricn×n matrix V = [vi j ] to
the matrixA = [ai j ] in the following way,

vi j = f (ai j /ãi j ) i, j = 1, . . . ,n (10)

We have
vi j ∈ (0,1] vi j = v ji i, j = 1, . . . ,n . (11)

The fact that then×n matrix V = [vi j ] is symmetric is due to the reciprocity of the positive matrixA
plus the fact thatf (x) = f (x−1), for x > 0, since

v ji = f (a ji/ã ji ) = f (ãi j /ai j ) = f (ai j /ãi j ) = vi j i, j = 1, . . . ,n . (12)

Notice thatvi j = 1 if and only if ai j = ãi j , otherwise 0< vi j < 1: the moreai j /ãi j differs from 1
the morevi j gets closer to 0. Therefore we can consider the matrixV = [vi j ] as a measure of local
consistency. Moreover, we note that our matrixV = [vi j ] can be regarded as a[0,1]-scaled version
of the so-called totally inconsistent matrix associated with the original pairwise comparison matrix
A = [ai j ], see [1].

Given a general (typically inconsistent) positive reciprocaln×n matrix A = [ai j ], one can define a 2-
additive Choquet measureµ : 2N −→ [0,1] in the following way: making use of the Möbius transform
m of the measureµ, we definem(i) = wi/N for each singlet{i} andm(i j ) = −wi(1−vi j )w j/N for
each doublet{i, j}, with null higher order terms. Then, we define the value of the 2-additive measure
µ on a coalitionSas the sum of the singlets and doublets contained in the coalitionS, as given by the
Möbius transformm,

µ(S) = ∑
{i}⊆S

wi/N + ∑
{i, j}⊆S

(−wi(1−vi j )w j)/N (13)

where the normalization factorN is the sum of all singlets and doublets in the setN,

N = ∑
{i}⊆N

wi + ∑
{i, j}⊆N

−wi(1−vi j )w j = 1− 1
2

n

∑
i, j=1

wi(1−vi j )w j

=
1
2
(1+

n

∑
i, j=1

wivi j w j) =
1
2
(1+

n

∑
i=1

wivi) =
1
2
(1+v) (14)

wherevi = ∑n
j=1vi j w j andv = ∑n

i=1wivi denote weighted averages of local consistency values, with
wi < vi ≤ 1 for i = 1, . . . ,n and∑n

i=1w2
i < v≤ 1. In particular, we have

µ(i) = wi/N i, j = 1, . . . ,n
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µ(i j ) = (wi +w j −wi(1−vi j )w j)/N . (15)

The graph interpretation of this definition, in which singlets correspond to nodes and doublets corre-
spond to edges between nodes, is that the value of the 2-additive measureµ on a coalitionS is the sum
of the nodes and edges contained in the subgraph associated with the coalitionS.

The measureµ satisfies the boundary conditionsµ( /0) = 0 andµ(N) = 1, and is monotonic and sub-
additive. The (strict) monotonicity of the measure is guaranteed by the fact that the positive value
wi associated to each node of the graph dominates (in absolute value) the sum of the negative values
−wi(1−vi j )w j associated to then−1 edges connecting that node with the other nodes in the graph,

wi−
n

∑
j=1

wi(1−vi j )w j = wi−wi(1−vi) = wivi > w2
i > 0 i = 1, . . . ,n . (16)

Notice that this model is an extension of Saaty’s AHP: if the matrixA is consistent then the Choquet
measureµ is additive and the Choquet integral coincides with a weighted arithmetic mean whose
weights arewi as in Saaty’s AHP.
The Shapley valuesφi , i = 1, . . . ,n associated with the measureµ defined above are given by

φi =
ϕi

Σn
j=1ϕ j

i = 1, . . . ,n (17)

where the unnormalized valuesϕi > 0, i = 1, . . . ,n are given by

ϕi = wi−
1
2

n

∑
j=1

wi(1−vi j )w j =
1
2

wi(1+vi) i = 1, . . . ,n (18)

which means thatΣn
j=1ϕ j = 1

2(1+v) = N .

In our multicriteria aggregation model the Shapley values encode the effective importance weights
of the various criteria. When the matrixA is consistent, we havevi j = 1 for all i, j = 1, . . . ,n and
equation (18) implies that the Shapley values areφi = wi . In general, the fact thatA is inconsistent
changes the original distribution of weights, attenuating the importance values of those criteria that on
average are more inconsistent with the others and emphasizing those criteria that on average are more
consistent with the others.

In fact, if we compute the second order Taylor expansion of the Shapley valuesφi = wi(1+vi)/(1+v),
i = 1, . . . ,n, around the consistency condition we get

φi ≈ wi(1+
1
2
(vi−v)(1+

1
2
(1−v))) i = 1, . . . ,n (19)

Notice that the second order approximation of the Shapley values is still normalized to unit sum,
since∑n

i=1wi(vi − v) = 0. Moreover, the Taylor expansion above shows clearly that, in the small
inconsistency approximation, the Shapley valueφi increases ifvi > v and decreases ifvi < v. In other
words, the Shapley value increases (decreases) if the single consistency measurevi is greater (smaller)
than the overall consistency measurev, in a compensatory mechanism typical of weighted averaging
schemes.

Finally, we note that the definition of the scaling function can easily be extended in order to accom-
modate a free parameterβ ≥ 0. We define the parametrizedscaling function f: (0,∞)→ (0,1) as
fβ(x) = 2/(xβ +x−β), for x > 0. Clearly, fβ=0 = 1. The graphs of the scaling functionfβ for β = 2,4
andβ = 1

2, 1
4 are shown below.
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As before, the scaling functionfβ has a single critical point atx = 1, where it reaches the maximum
value fβ(1) = 1. Moreover, the scaling functionfβ has the important propertyfβ(x) = fβ(x−1), for all
x > 0.

The scaling functionfβ has two different asymptotic behaviours close to the origin in relation with
the parameter ranges 0< β < 1 (vertical asymptote at the origin) andβ > 1 (horizontal asymptote at
the origin), as can be easily derived from the expressions below,

fβ(x) =
2xβ

1+x2β f ′β(x) =
2βxβ−1(1−x2β)

(1+x2β)2
x > 0 . (20)

Moreover, it is straightforward to show that the consistency measure provided by the scaling function
becomes stricter for increasing values ofβ. In other words, asβ increases, all the local consistency
measuresvi j (β) decrease, with the exception of those associated with exact consistencyvi j = 1. Ac-
cordingly, the inconsistency effects in the context of our model can be attenuated or emphasized,
relatively to the original caseβ = 1, by means of appropriate choices of the parameterβ: higher
values of the parameter lead to stronger inconsistency effects.
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1 Introduction

We consider an idea, how to generate modifiers byn-placed functions defined on[0,1]n. The subject
matter of modifiers are fuzzy sets, i.e. membership functions defined on intervalI = [0,1]. We give the
definition of modifiers and the case, hown-placed generator functions fit together with this definition.
We consider some few properties of modifiers. Some examples of generator functions and modifiers
generated by them are given. The examples illustrate how graded modifier systems can be created.
The place numbern of a generator function can take effect to the strength of a modifier. It is also
possible to keep the place numbern constant and use numbers 1 or 0 in some places of the variables
of the function.

The concept of ’modifier’ appears in many ways in the scope of fuzzy logic. For example, Prof.
L. A. Zadeh used this term already in the early theory of fuzzy logic. The author has studied modifiers
and their logics from modal logical point of view and created some logical systems for modifiers
basing on relational Kripke structures of graded modalities (see e.g. Mattila [9]). Kortelainen’s [3]
conceptmodified setsis one example about the use of this term. In the linguistic view, a modifier can
be an adjective, or an adverb, or a phase or clause acting as an adjective or adverb. In every case, the
basic principle is the same: the modifier adds information to another element in the sentence (Frances
Peck, ’Terms of use’, University of Ottawa). Also some fuzzy logic blocs altering the behavior of PID
controllers are called modifiers, too.

The author has considered modifiers and modifier logics in several situations (see e.g. J. K. Mattila
[6, 7, 8]). Some considerations about modifiers generated by t-norms and t-conorms are done in [8].
After this work Dr. József Dombi suggested the author to study modifiers generated by n-placed
functions in the way to use some t-norms and t-conorms generalized for several variables. Some
results from these studies are [10] and [11].

We refer to Kortelainen’s conceptmodified sets. His operators are set functions modifying at first
hand ordinary sets. We concentrate here upon modifiers generated by n-placed functions, n = 2, 3, . . . .
EntitiesM considered here are so-calledcompositional modifiersbecause the result of modifying a
fuzzy setµ by a modifierM is the composition ofM andµ, M ◦µ. The aim is to consider modifiers as
operators for modifying fuzzy sets. One important example is to use especially t-norms and t-conorms
and their generalizations for more than two-placed cases as basic tools. (This case is considered in
[10].)

136



2 Basic Concepts

We choose the range of fuzzy sets (i.e. membership functions) to be the unit intervalI = [0,1], as
usually. Thus the set of all fuzzy sets of a non-empty setX is the setIX (including the usual power-set
2X (i.e. the set of all characteristic functions of the usual subsets ofX) as a special case). It is also a
well-known fact thatI andIX are partially ordered sets. In fact, they are also completely distributed
complete lattices and Brouwerian lattices (see e.g. Lowen [5]).

These modifiers we consider here arecompositional, because when we apply a modifier to a fuzzy
set we form a composition of two functions.

Definition 1. (Modifier). We say that a mappingM : IX −→ IX is (i) a substantiating modifierif for
any fuzzy setµ∈ IX,

∀x∈ X,M(µ(x))≤ µ(x), (1)

(ii) a weakening modifierif for any µ∈ IX,

∀x∈ X,µ(x)≤M(µ(x)), (2)

(iii) an identity modifier if for anyµ∈ IX,

∀x∈ X,M(µ(x)) = µ(x). (3)

Identity modifiers are identity mappings onIX. They are sometimes needed as links between
substantiating and weakening modifiers in some logical structures of modifiers.

A given modifier we can associate with the dual modifier according to the following

Definition 2. (Dual Modifier). Let M andM∗ be modifiers. We say thatM∗ is thedual modifier
associated withM, if for any fuzzy setµ∈ IX,

∀x∈ X,M∗(µ(x)) = n(M(n(µ(x)))), (4)

wheren is a strong negation.

Proposition 3. If M is a substantiating modifier then its dual M∗ is a weakening modifierand vice
versa.

Proof. (See also [10]) Supposeµ∈ IX, andM is a substantiating modifier. Thus∀x∈X,M(µ(x))≤
µ(x). We have to show that∀x ∈ X,µ(x) = M∗(µ(x)). Let n be a strong negation function. Thus
∀x∈ X,M∗((x)) = n(M(n(µ(x)))). Clearly

M(n(µ(x)))≤ n(µ(x))

by Def.1. From this it follows by the properties of membership functions that

∀x∈ X,n(M(n(µ(x))))≥ n(n(µ(x))) = µ(x),

i.e.
M∗(µ(x))≥ µ(x). (5)

Conversely, the result follows in the similar way.�
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The condition
∀x∈ X,M∗(µ(x)) = n(M(n(µ(x)))) (6)

in the previous proof says that the operatorsM, M∗, andn satisfy DeMorgańns law. Thus dual pairs
of modifiers with strong negation form classes called DeMorgan triples of operators ([1]). Originally,
DeMorgan triples used to consist of a t-norm, corresponding t-conorm, and negation.

We denoteα-level set of a fuzzy setµ, as usually,

µα = {x∈ X | µ(x)≥ α, α ∈ I}

Thus theα-level set ofM(µ) is

(M ◦µ)α = {x∈ X |M(µ(x))≥ α, α ∈ I}. (7)

It is easy to see that modifiers have following properties. SupposeM is a substantiating modifier.
Then we have

M(0X) = 0X, (8)

M∗(1X) = 1X, (9)

(M∗)∗(µ(x)) = M(µ(x)), (10)

where0X and1X are the constant functions0X(x) = 0 and1X(x) = 1 for all x∈ X.

3 The idea of generating modifiers using n-ary functions

The simplest idea usingn-ary functions for generating modifiers for fuzzy sets is to replace every
variable with the membership function of a fuzzy set to be modified. To illustrate the idea, we proceed
in the following way. We put the same argumentx in every place in then-tuple of arguments in
the function f . Thus we have the generating formulas for substantiating, weakening and identity
modifiers. A substantiating modifier is generated by any functionf , such that

∀ x∈ I , f (x,x, . . . ,x)≤ x. (11)

A weakening modifier is generated by any functionf , such that

∀ x∈ I , f (x,x, . . . ,x)≥ x. (12)

An identity operator is generated by any functionf , such that

∀ x∈ I , f (x,x, . . . ,x) = x. (13)

According to the formulas (11), (12), and (13), we prove some results concerning modifiers gen-
erated by thosen-ary functions. For this task, suppose that a modifierM is generated by a function
f (x1,x2, . . . ,xn), xi ∈ I (i = 1, . . . ,n), such that

M(µ) = M ◦µ= f (µ,µ, . . . ,µ), (14)

whereµ is any fuzzy set. The functionf is (at least piecewise) continuous on the intervalI .
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Proposition 4. Let f : In−→ I be an n-ary function, then f generates asubstantiating modifier

F(µ(x)) = (F ◦µ)(x) = f (µ(x),µ(x), . . . ,µ(x)) (15)

if for all t1, t2, . . . , tn ∈ [0,1] the condition

f (t1, t2, . . . , tn)≤min(t1, t2, . . . , tn) (16)

holds.

Proof. Suppose the formula (16) holds and denotemin(t1, t2, . . . , tn) = tmin. Especially, ifti = a
for all ti ∈ I thentmin = a, and thusf (a, . . . ,a) ≤ a for anya∈ I by (16). Letµ be any fuzzy set and
x0 ∈ X arbitrarily chosen. Thus

f (µ(x0),µ(x0), . . . ,µ(x0))≤ µ(x0).

Becausex0 is arbitrarily chosen fromX, the same holds for otherx’s, too. Thus we have

f (µ(x),µ(x), . . . ,µ(x)) = F(µ(x))≤ µ(x)

for anyx∈ X. Thus the formula (15) holds, and f generates a substantiating modifierF by means of
Def.1. �

Proposition 5. Let f : In−→ I be an n-ary function, then f generates aweakening modifier

H(µ(x)) = (H ◦µ)(x) = f (µ(x),µ(x), . . . ,µ(x)) (17)

if for all t1, t2, . . . , tn ∈ [0,1] the condition

f (t1, t2, . . . , tn)≥max(t1, t2, . . . , tn) (18)

holds.

Proof. Suppose the formula (18) holds. From this it follows that for alla∈ I , H(a)= f (a, . . . ,a)≥
a by (14). Letµ be any fuzzy set, andx0 ∈ X is arbitrarily chosen. Thus

H(µ(x0)) = f (µ(x0), . . . ,µ(x0))≥ µ(x0).

Becausex0 is an arbitray element ofX, the formula

∀ x∈ X, H(µ(x), . . . ,µ(x))≥ µ(x)

holds. Thus the formula (17) holds, andf generates a weakening modifier.�

Proposition 6. Let f : In−→ I be an n-ary function, then f generates anidentity modifier

F0(µ(x)) = (F0◦µ) = f (µ(x),µ(x), . . . ,µ(x)) (19)

if for all t1, t2, . . . , tn ∈ [0,1] the condition

min(t1, t2, . . . , tn)≤ f (t1, t2, . . . , tn)≤max(t1, t2, . . . , tn) (20)

holds.
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Proof. Suppose the formula (20) holds. From this it follows that for alla ∈ I ,min(a, . . . ,a) ≤
f (a, . . . ,a)≤max(a, . . . ,a). This is equivalent toa≤ f (a, . . . ,a)≤awhich is equivalent tof (a, . . . ,a)=
a. Letµbe any fuzzy set andx0∈X is arbitrarily chosen. Thus we haveF0(µ(x0))= f (µ(x0), . . . ,µ(x0))=
µ(x0). Becausex0 is arbitrarily chosen fromX, this means that the formula

∀ x∈ X, F0(µ(x)) f (µ(x), . . . ,µ(x)) = µ(x).

Thus the formula (19) holds, andf generates an identity modifier. �

We see that the Definition1 and the Propositions 4, 5 and 6 correspond to each others.

According to the Propositions 4, 5, and 6, we can use the formulas (16), (18), and (20) as the
conditions forn-ary functions generating modifiers.

We can have the inverse results of the Propositions 4, 5, and 6. For this we need the following
lemma.

Lemma 7. Let f : In−→ I be a (at least piecewise) continuous n-ary function.

(a) If f generates a substantiating modifier then this implies the formula (16).

(b) If f generates a weakening modifier then this implies the formula (18).

(c) If f generates an identity modifier then this implies the formula (20).

Proof. (a) Let us give the counter-hypothesis:f (t1, . . . , tn) > min(t1, . . . , tn). From this it follows
that f generates either an identity modifier by Proposition 6 or a weakening modifier by Proposition
5. This contradicts the supposition thatf generates a substantiating modifier. Thus the counter-
hypothesis is not correct.

The cases (b) and (c) can be proved in similar ways.�.

After collecting the results from Propositions 4, 5, 6, and Lemma 7 we have proved the following

Theorem 8. Let f : In−→ I be (at least piecewise) continuous n-ary function. f generates a modifier
F ◦µ which is

(a) substantiating iff f(t1, . . . , tn)≤min(t1, . . . , tn),

(b) weakening iff f(t1, . . . , tn)≥max(t1, . . . , tn),

(c) an identity modifier iffmin(t1, . . . , tn)≤ f (t1, . . . , tn)≤max(t1, . . . , tn),

where the compositions are calculated by means of (14.

Using Theorem 8 we can prove the following

Theorem 9. Let f : In−→ I be a function generating a substantiating modifier F. Then the function
fco : In −→ I : fco(x1, . . . ,xn) = 1− f (1−x1, . . . ,1−xn) generates a weakening modifier being the
dual of F.
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Proof. It follows from the supposition, thatf generates a substantiating modifier, thatf (x1, . . . ,xn)≤
min(x1, . . . ,xn), and∀ x∈ X, F(µ(x) = f (µ(x), . . . ,µ(x))≤ µ(x) by Theorem 8. This is equivalent to
1−F(µ(x))≥ 1−µ(x). Replaceµ(x) by 1−µ(x), then we have

1−F(1−µ(x))≥ 1− (1−µ(x)).

On the other hand, 1−F(1−µ(x)) = 1− f (1−µ(x), . . . ,1−µ(x)). Thus

1− f (1−µ(x), . . . ,1−µ(x))≥ 1− (1−µ(x)).

Thus the conclusion is that the functionfco(x1, . . . ,xn) = 1− f (1− x1, . . . ,1− xn) generates a weak-
ening modifier by Theorem 8. Clearly this modifier is the dual ofF . �

Example 10. The formula

f (x1,x2, . . . ,xn) =
n

∏
i=1

xi , ∀i,xi ∈ [0,1], (21)

generates a substantiating modifier

Fn−1(µ(x)) = (µ(x))n, ∀x∈ X, (22)

because it clearly satisfies the condition (16), i.e.f (x1,x2, . . . ,xn)≤min(x1,x2, . . . ,xn). The biggern is
the more substantiating modifier we have. Thus we can have a graded system of modifiers. Especially,
if n = 1, we have the identity modifierF0 = µ, that have no substantiating effect.

Example 11. The formula

f (x1,x2, . . . ,xn) = 1−
n

∏
i=1

(1−xi), ∀i,xi ∈ [0,1], (23)

generates a weakening modifier

Hn−1(µ(x)) = 1− (1−µ(x))n, ∀x∈ X (24)

because it clearly satisfies the condition (18). To see this, let a delivery of values from the interval[0,1]
be such thatxk,1≤ k≤ n, has the greatest value. In this situation we can writemax(x1,x2, . . . ,xn) = xk.
Thus we have 1−xk ≥ 1−xi ,1≤ i ≤ n, and this implies

(1−xk)n≥
n

∏
i=1

(1−xi)

which implies

1−
n

∏
i=1

(1−xi ≥ 1− (1−xk)n.

From this it clearly follows that 1− (1− xk)n ≥ 1− (1− xk) = xk = max(x1,x2, . . . ,xn) by the sup-
poaition of the delivery of values. The special casen = 1 gives the idetity modifierH0(µ(x)) =
µ(x)∀x∈ X, as it should be.
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Example 12. In addition to the special cases of previous examples, consider some generators for
identity modifier. The formula

f (x1,x2, . . . ,xn) =
1
n
(x1 +x2 + . . .+xn), (25)

generates identity modifier, because (18) holds clearly.

Another way for generating identity modifier is to use the function

f (x1,x2, . . . ,xn) =
n

∑
i=1

λixi , (26)

where∑n
i=1 λi = 1. It is easy to show that this function satisfies the condition (18).

Also max(x1,x2, . . . ,xn) andmin(x1,x2, . . . ,xn) generate identity modifiers, because the operators
max and min do not have any modifying effect.

According to Def.2, thedualof a modifierF is defined by the condition

F∗(x) = n(F(n(x))) (27)

wheren is a strong negation function. This also means that ifF is substantiating thenF∗ is weakening,
and ifH is weakening thenH∗ is substantiating, by Proposition 3.

Example 13. The modifiers given in Examples 10 and 11 are duals of each others when∀x ∈
X,n(µ(x)) = 1−µ(x). The modifiers (22) and (24) are basing on extensions of the t-normalgebraic
productand the t-conormalgebraic sum, respectively.

4 Some Concluding Remarks

One purpose for studying modifiers is to create some concrete tools for manipulating fuzzy numbers
so that we can have arithmetic operations to be easily used. However, these operations should be in
accordance with the original definition where extension principle is used. Also the study of logical
systems of modifiers is very interesting. From this study we can draw connections to topological
properties of fuzzy systems (see e.g. Kortelainen’s paper [3] and his other papers, too).

According to the substance itself,n-ary functions being extensions of some Archimedean t-norms
and t-conorms are very interesting for generators of modifiers, as we already had a short view in the
form of Examples 10 – 13 above. It is well known that Archimedean t-norms and corresponding
t-conorms have modifying effects (see e.g. Mattila [8]).
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1 Introduction

This paper presents an ordered sorting procedure based on the Choquet integral as a discriminant
function. It uses information provided by the Decision Maker (DM) in terms of a set of prototypes
(alternatives well-known to theDM). The capacities of the Choquet integral are assessed through the
solving of a linear program or a quadratic program. An interpretation of the results is provided by
means of importance and interaction indexes of the points of view.

We analyze a sorting procedure for ordinal data in a very general case, where the points of view
can have interactions. Its name, TOMASO stands forTool for Ordinal MultiAttribute Sorting and
Ordering. The first version of this method has been described in [7] and [9]. Later, in [6] the authors
present further evolutions to the first ideas, and describe a software which is directly inspired from the
sorting procedure.

Three important features differentiate this procedure from other multiple criteria sorting methods.
First of all, the possibility to treat purely ordinal data. Secondly, the use of a Choquet integral [1] as
a discriminant function. And finally, the way the capacities ("weights") of the aggregator are learnt
from a reference set of alternatives called prototypes. These three key features allow to treat a quite
large set of problems. In particular, the learning feature of the method is interesting as it allows to
ask the Decision Maker (DM) a minimal set of technical details. In order to allow a more effective
and objective analysis of the problem, we think that it is useful to have a permanent interaction with
the DM. But this questioning should mainly be restricted to his expertise domain and not to technical
parameters of the method. The use of the prototypes fits to this philosophy.

The method works in two steps. First of all, the ordinal data is transformed into partial net scores,
where each alternative is compared to all the other ones for each point of view. Then, the Choquet
integral is used to aggregate these partial net scores. As already mentioned earlier, the capacities
of the aggregator are learnt from the reference set of prototypes. Here, two options appear: either
the prototypes don’t violate the axioms ([11]) for the use of a Choquet integral as a discriminant
function, or the structure of the prototypes does not allow its use as an aggregator. In the first case,
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the capacities are learnt by solving a linear constraints satisfaction problem. This procedure is briefly
recalled in section 3.1. In the second case, the capacities are learnt by trying to be as close as possible
to the original sorting imposed by the prototypes. This part is described in section 3.2.

This paper is organized as follows. First of all, general concepts are introduced in section 2. Then,
in section 3.1 we recall the first ideas of TOMASO already published in [6]. In section 3.2 we present
how to work in case the classical way fails. Finally, in 4 we draw some conclusions, and discuss
further improvements.

2 Preliminary considerations

Let A be a set ofq potential alternatives which are to be assigned to disjoint ordered classes. Let
F = {g1, . . . ,gn} be a set of points of view. For each index of point of viewj ∈ J = {1, . . . ,n}, the
alternatives are evaluated according to asj -point ordinal performance scale represented by a totally
ordered set

Xj := {g j
1≺ j . . .≺ j g j

sj
}.

Therefore, an alternativex∈ A can be identified with its corresponding profile

(x1, . . . ,xn) ∈
n

∏
j=1

Xj =: X,

where for anyj ∈ J , x j is the partial evaluation ofx on point of view j.

Let us consider a partition ofX := Πn
j=1Xj into mnonempty increasingly ordered classes{Clt}mt=1.

This means that for anyr,s∈ {1, . . . ,m}, with r > s, the elements ofClr are considered as better than
the elements ofCls. The sorting problem we are dealing with consists in partitioning assigning the
alternatives ofA to the classes{Clt}mt=1.

In Roubens [9] it is justified how ann-place Choquet integral as a discriminant function and
normalised scores as criteria function can be used to solve this problem. Hereafter we present the
sorting procedure derived from this particular case.

3 The TOMASO method

The TOMASO method (Technique forOrdinal MultiattributeSorting andOrdering) is mainly based
on two techniques (which can lead to the same results under certain conditions). The original method
has first been described in [9]. In the following Subsection, we present its basics. In Subsection 3.2
we show how it is possible to deal with a larger set of problems.

3.1 The classical way

The different stages of the original TOMASO are listed below:

1. Modification of the criteria evaluations into normalised scores;

2. Use of a Choquet integral as a discriminant function;
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3. Assessment of fuzzy measures by questionning theDM and by solving a linear constraint
satisfaction problem;

4. Calculation of the borders of the classes and assignment of the alternatives to the classes;

5. Analysis of the results (interaction, importance, leave one out, visualisation).

In this Section we roughly present these different elements.

First of all, concerning the scales on the points of view, two natural approaches can be considered:
either the score of each alternative is built on the basis of all the alternatives inA or this score is con-
structed in a context-free manner, that is, independently of the other alternatives. The decision maker
must be aware that the final results may significantly differ according to the considered approach.
Therefore, a prior analysis of the problem is recommended to choose the scores appropriately.

In the first approach, one possible way to build the scores is to consider comparisons of the al-
ternatives on each of the points of view. We considerSj(x), the jth partial net score of alternative
x∈ A along point of viewj ∈ J , as the number of times thatx is preferred to any other alternative of
A minus the number of times that any other alternative ofA is preferred tox for point of view j. We
furthermore normalize these scores so that they range in the unit interval, i.e.,

SN
j (x) :=

Sj(x)+(q−1)
2(q−1)

∈ [0,1] ( j ∈ J ,

whereq = |A|. Clearly, this normalized score is not a utility, and should not be considered as such.
Indeed, observing an extreme value (close to 0 or 1) means thatx is rather “atypical” compared to
the other alternatives along point of viewj. Thus, the resulting evaluations strongly depend on the
alternatives which have been chosen to buildA.

Consider now the second approach, that is, where the score of each alternative does not depend
on the other alternatives inA. In this case, we suggest the decision maker provides the score functions
as utility functions. Alternatively, we can approximate these utility functions by the following linear
formula:

SN
j (x) :=

ordj(x)−1
sj −1

∈ [0,1] ( j ∈ J ),

where ordj : A→ {1, . . . ,sj} is a mapping defined by ordj(x) = r if and only if x j = g j
r . In this latter

case,SN
j does not necessarily represent a real utility and probably does not correspond to the utility

the decision maker has in mind. We therefore continue to call it a score.

We now come to the crucial part of the aggregation of the normalised partial net scores of a given
alternativex by means of a Choquet integral [1]. The advantage of this aggregator is mainly that it
allows to deal with interacting (depending) points of view. According to the general definition of the
Choquet integral, we have:

Cv(SN(x)) :=
n

∑
j=1

SN
( j)(x)[v(A( j))−v(A( j+1))]

wherev is a fuzzy measure onJ ; that is a monotone set functionv : 2J → [0,1] fulfilling v( /0) = 0 and
v(J ) = 1. The parentheses used for indexes stand for a permutation onJ such that

SN
(1)(x)≤ . . .≤ SN

(n)(x),
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and for any j ∈ J , A( j) represents the subset{( j), . . . ,(n)}. The characterisation of the Choquet
integral by Marichal ( [4], [5]) clearly justifies the way the partial scores are aggregated.

The next step of this method is to assess the fuzzy measures in order to classify the alternatives
of A. One can easily understand that it is impossible to ask theDM to give values for the 2n− 2
free parameters of the fuzzy measurev. Practically, the assessment of the fuzzy measures is done by
asking theDM to provide a set of prototypesP⊆ A and their assignments to the given classes; that is
a partition ofP into prototypic classes{Pt}mt=1 wherePt := P∩Clt for t ∈ {1, . . . ,m}. The values of
the fuzzy measure are then derived from this information as described hereafter.

We would like the Choquet integral to strictly separate the classesClt . Therefore, the following
necessary condition is imposed

Cv(SN(x))−Cv(SN(x′))≥ ε (1)

for each ordered pair(x,x′) ∈ Pt ×Pt−1 and eacht ∈ {2, . . . ,m}, whereε is a given strictly positive
thershold.

Due to the increasing monotonicity of the Choquet integral, the number of separation constraints 1
can be reduced significantly. Thus, it is enough to considerborder elementsof the classes. To for-
malise this concept, we first define a dominance relationD (partial order) onX by

xDy iff x j � j y j , for all j ∈ J .

As upper borderof the prototypic classPt we use the set of non-dominated alternatives ofPt defined
by

NDt := {x∈ Pt s.t. 6 ∃x′ ∈ Pt \{x} : x′Dx}.

Similarly, thelower borderof the prototypic class is given by the set of non-dominating alternatives
of Pt which is defined by

Ndt := {x∈ Pt s.t. 6 ∃x′ ∈ Pt \{x} : xDx′}.

The separation conditions restricted to the prototypes of the subsetsNDt ∪Ndt , t ∈ {1, . . . ,m} put
together with the monotonicity constraints on the fuzzy measure, form a linear program [7] whose
unknowns are the capacitiesv(S), S⊂ J and whereε is a non-negative variable to be maximised in
order to deliver well separated classes.

We use the principle of parsimony for the resolution of this problem. If there exists ak-additive
fuzzy measurev∗ ([3]), k being kept as low as possible, then we determine the boundaries of the
classes as follows:

• lower boundary ofClt : z(t) := minx∈Ndt Cv∗(SN(x));

• upper boundary ofClt : Z(t) := maxx∈NDt Cv∗(SN(x)).

At this point, any alternativex∈ A can be classified in the following way:

• x is assigned to classClt if zt ≤ Cv∗(SN(x))≤ Zt ;

• x is assigned to classClt ∪Clt−1 if Zt−1 < Cv∗(SN(x)) < zt .
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A final step of the classical TOMASO method concerns the evaluation of the results and the inter-
pretation of the behavior of the Choquet integral. The meaning of the valuesv(T) is not clear to the
DM. They don’t immediatly indicate the global importance of the points of view, nor their degree of
interaction. It is possible to derive some indexes from the fuzzy measure which are helpful to inter-
pret its behavior. Among them, the TOMASO method proposes to have a closer look at the importance
indexes [10] and the interaction indexes [8].

3.2 An alternate way

It may happen that the linear program described in Subsection 3.1 has no solution. This occurs when
the prototypic elements violate the axioms that are imposed to produce a discriminant function of
Choquet type ([5] [11]), in particular the triple cancellation axiom.

In such a case, and in order to present a solution to theDM, we suggest to find a fuzzy measure by
solving the following quadratic program

min ∑
x∈∪t∈{1,...,m}{NDt∪NDt}

[Cv(SN(x))−y(x)]2,

where the unkowns are

• the capacitiesv(S) which determine the fuzzy measure;

• some global evaluationsy(x) for eachx∈ ∪t∈{1,...,m}{NDt ∪Ndt}.

The capacitiesv(S) are constrained by the monotonicity conditions (as previously shown in Sec-
tion 3.1). The global evaluationsy(x) must verify the classification imposed by theDM. In other
words, for every ordered pair(x,x′) ∈ Ndt ×NDt−1, t ∈ {2, . . . ,m} the conditiony(x)− y(x′) ≥ ε′,
ε′ > 0 must be satisfied.

Intuitively, for a given alternativex∈ A, its Choquet integralCv(SN(x)) should be as close as pos-
sible to the global evaluationy(x), without being constrained by monotonicity conditions which might
violate the triple cancellation axiom for example. On the other hand, the evaluationy(x) is constrained
by the conditions derived from the original classification given by theDM on the prototypes.

Unlike the method described in Section 3.1, in this case,ε′ plays the role of a parameter, which
needs to be fixed by theDM. As previously, we use the principle of parsimony when searching for a
solution (keepk as low as possible; at worstk equals the number of points of view). A correct choice
of ε′ remains one of the main challenges of our future research. It is clear thatε′ has to be chosen in
]0,1/n[.

As in the classical method, the next step is to determine the structure of the classes. We determine
an assignment for every alternative ofX in terms of intervals of contiguous classes on the basis of the
information provided by the Choquet integrals related to the prototypes ofP⊆ A.

First of all, let us suppose thatSN(x−) := (0, . . . ,0) is classified to the worst class,Cl1 and that
SN(x+) := (1, . . . ,1) is classified to the best class,Clm.

To each assignmentI(x) correspond a lower class labell(x) and an upper class labell(x), l , l ∈ J .
We say that the alternativex ∈ X is precisely assignedto Cll(x) if for the assignmentI(x) we have
l(x) = l(x) =: l(x). Else, the alternativex is said to beambiguously assignedto the interval of labels
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I(x) = [l(x), l(x)]. The degree of the assignmentcorresponds to the number of contiguous classes
contained inI(x), d(x) = l(x)− l(x)+1.

The assignments are done according to the procedure described hereafter. Starting from the proto-
typesx∈ P, their Choquet integralsCv(SN(x)) and their original classification labelCl(x) (according
to theDM ’s choice), we define for everyu∈ [0,1],

m(u) = max
x∈P:Cv(SN(x))≤u

Cl(x),and

M(u) = min
x∈P:Cv(SN(x))≥u

Cl(x).

m (resp.M) is a right (resp. left) continuous stepwise function of argumentu with values belonging
to the discrete finite setJ .

We now define for eachu∈ [0,1] an interval of contiguous classesI(u) = [l(u), l(u)] where

l(u) = min{m(u),M(u)}

l(u) = max{m(u),M(u)}.

Obviouslyl(u)≤ l(u) and due to monotonicity ofm andM we have:l(u)≤ l(v), l(u)≤ l(v),∀u,v∈
[0,1] with u≤ v.

The interval[0,1] is partitioned into (closed, semi-open or open) intervalsIs,s = 1, . . . ,S, and
each of those intervals of[0,1] receives an assignment of the type[l(s), l(s)] (or semi-open or open)
in such a way that: ifu,v ∈ [0,1],u≤ v and if u is assigned toIr := [l(r), l(r)] andv is assigned to
Ir ′ := [l(r ′), l(r ′)] thenl(r)≤ l(r ′) andl(r)≤ l(r ′).

Moreover if u = Cv(SN(x)),x ∈ P then l(u) ≤ Cl(x) ≤ l(u). This means that each prototype is
correctly classified, possibly with ambiguity ifd(x)≥ 1.

The assignment of a prototypea to the intervals of classes leads now to two scenarios:

• a is assigned to a single class (d(a) = 1) which corresponds to the original class decided by the
DM

• a is assigned to an interval of classes and the original class decided by theDM belongs to this
interval.

The quality of a model (classifier) depends on different ratios. A good model has the following
naturalproperties:

• a simple model according to parsimony (lowk);

• a high number of precise assignments of the elements ofP;

• a low number of ambiguous assignments of the elements ofP (and the lower the degree of the
assignment, the better the model)

For a givenε′, theDM has to select a model (k) which seems the best compromise to him in terms
of the previously described assignments. The simplest additive model (k = 1) can in certain situations
be this ideal compromise between simplicity and quality. But in more complex problems,k has to be
increased in order to obtain a satisfying number of precisely assigned prototypes.
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3.3 Behavioral analysis of aggregation

Now that we have a sorting model for assigning alternatives to classes (based on the linear program
or the quadratic program), an important question arises: How can we interpret the behavior of the
Choquet integral or that of its associated fuzzy measure? Of course the meaning of the valuesv(T)
is not always clear for theDM. These values do not give immediately the global importance of the
points of view, nor the degree of interaction among them.

In fact, from a given fuzzy measure, it is possible to derive some indexes or parameters that will
enable us to interpret the behavior of the fuzzy measure. These indexes constitute a kind ofid cardof
the fuzzy measure. The TOMASO method presently allows to analyse both the importance of points
of view (Shapley indexes [10]), and their interactions ([8]).

3.4 Interpretation of the behaviour of the fuzzy measure

In this Section we briefly show the main advantage to use a Choquet integral rather than the weighted
sum as a discriminant function. We therefore take the simple case of two points of view, which can
be represented in a plane. Figure 4 presents 5 possible ranges of values for the weightsv and the
corresponding structures of the limits of the classes. One can see that the main difference between the
classical weighted sum and the Choquet integral is the greater flexibility of the borders of the classes.
The Choquet integral creates piecewise linear borders, which allows to build more precise classes.
The different possibilities are summarised by the following list:

• I: v(1)+v(2) < v(12): synergy

• II: v(1)+v(2) > v(12): redundancy

• III: v(1)+v(2) = v(12) = 1: additivity

• IV: v(1) = v(2) = 0: limit case; maximal synergy

• V: v(1) = v(2) = 1: limit case; maximal redundancy
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Figure 4: Interpretation of the discriminant functions
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In [2] the authors give an interpretation to the first two cases. In case of synergy, although the
importance of a single criterion for the decision is rather low, the importance of the pair is large. The
criteria are said to becomplementary. In case of redundance, or negative synergy, the union of criteria
does not bring much, and the importance of the pair might be roughly the same as the importance of
a single criterion.

The limit case (IV) occurs for maximal synergy. In that case, the Choquet integral corresponds
to the aggregation by the min function. Maximal redundancy occurs for case (V), where the Choquet
integral is the max function.

In case the number of points of view is larger than two, it becomes quite hard to represent the
problem. Nevertheless, the previous short example helps to understand how the borders of the classes
are built in such more general examples.

3.5 The softwareTOMASO

In this short part of the paper we briefly present the key-characteristics of the software TOMASO .
It can be downloaded on http://patrickmeyer.tripod.com. It is an implementation of the algorithms
which were presented previously. Its name stands for “Tool for Ordinal MultiAttribute Sorting and
Ordering”. It is written in Visual Basic and uses two external solvers: a free linear program solver
(lp_solve 3.0, ftp://ftp.ics.ele.tue.nl/pub/lp_solve/, released under the LGPL license), and a non free
quadratic program solver (bpmpd, free trial version at http://www.sztaki.hu/ meszaros/bpmpd/).

It is still under development and many improvements are added on a regular basis. The general
steps of the software are outlined hereafter:

• Loading of the ordinal data;

• Choice of a scoring method according to the problem’s specificities and calculation of the nor-
malised partial net scores;

• Definition of the prototypes by theDM;

• Search for a fuzzy measure (either by the linear program, or the quadratic program)

• Analysis of the results (classes, Shapley indexes, interaction indexes, accuracies,. . .)

A detailed description of the software can be obtained from the author.

4 Concluding remarks

We have presented a procedure for ordinal sorting in the presence of interacting points of view. It
has already been applied to real life cases (in particular to a noise annoyance problem) quite suc-
cessfully. Future work will concern the simplification of the software in order to make it even more
user-friendly. Furthermore, the automatic determination ofε′ will also be one of our main concerns.
The implementation of other indexes (veto, favour,. . .) is also planned.

151



References

[1] G. Choquet, Theory of capacities,Annales de l’Institut Fourier, 5, (1953) 131-295.

[2] M. Grabisch, M. Roubens, Application of the Choquet Integral in Multicriteria Decision Making,
In: M. Grabisch, T. Murofushi, M. Sugeno (eds.):Fuzzy Measures and Integrals, Physica Verlag,
Heidelberg, (2000) 348-374.

[3] M. Grabisch,k-order additive discrete fuzzy measure and their representation,Fuzzy Sets and
Systems, 92, (1997) 167-189.

[4] J.-L. Marichal,Aggregation operators for multicriteria decision aid, Ph.D. thesis, Institute of
Mathematics, University of Liège, Liège, Belgium, (1998).

[5] J-L. Marichal, An axiomatic approach of the discrete Choquet integral as a tool to aggregate
interacting criteria,IEEE Transactions on Fuzzy Systems, 8, (2000) 800-807.

[6] J.-L. Marichal, P. Meyer and M. Roubens, Sorting multiattribute alternatives: The TOMASO
method,International Journal of Computers & Operations Research, 2003, in press.

[7] J-L. Marichal, M. Roubens, On a sorting procedure in the presence of qualitative interacting
points of view. In: J. Chojean, J. Leski (eds.):Fuzzy Sets and their Applications. Silesian Univer-
sity Press, Gliwice, (2001) 217-230.

[8] T. Murofushi, S. Soneda, Techniques for reading fuzzy measures (III): interaction index,9th
Fuzzy Sytem Symposium, Sapporo, Japan, (1993) 693-696. In Japanese.

[9] M. Roubens, Ordinal multiattribute sorting and ordering in the presence of interacting points
of view. In: D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinsky, D. Vanderpooten and
P. Vincke (eds.):Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy.
Kluwer Academic Publishers, Dordrecht, (2001) 229-246.

[10] L.S. Shapley, A value forn-person games. In: H.W. Kuhn, A.W. Tucker (eds.):Contributions
to the Theory of Games, Vol. II, Annals of Mathematics Studies, 28, Princeton University Press,
Princeton, NJ, (1953) 307-317.

[11] P. Wakker,Additive Representations of Preferences: A new Foundation of Decision Analysis,
Kluwer Academic Publishers, Dordrecht, Boston, London, (1989).

152



Regular measures on tribes of fuzzy sets

M IRKO NAVARA 1, PAVEL PTÁK 2

1Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University
16627 Praha, Czech Republic

E-Mail: navara@cmp.felk.cvut.cz
2Department of Mathematics

Faculty of Electrical Engineering
Czech Technical University

16627 Praha, Czech Republic

E-Mail: ptak@math.feld.cvut.cz

Abstract

The classical measure and probability theory is based on the notion ofσ-algebra of subsets of
a set. Butnariu and Klement [3] generalized it to fuzzy sets by considering collections of fuzzy
sets calledT-tribes (whereT denotes a fixed triangular norm). Their concept ofT-measure is
fundamental in the fuzzification of classical measure theory. However, it has been successfully
applied elsewhere, too (e.g., in finding solutions of games with fuzzy coalitions, see [4]). Here
we summarize results about characterization of measures on tribes. Unlike preceding papers, we
put emphasis onregular measures which were introduced in [21]. We argue that this notion could
be considered as a promising alternative to the original notion of Butnariu and Klement.

1 Introduction

The notion of “fuzzy measure theory” is used in different meanings (see [10] and the overview in [23]).
Here we try to definereal-valuedmeasures on collections offuzzy sets. Thus, we want to fuzzify the
domainbut not therangeof a measure. When the generalized notions are restricted to systems of
crisp sets, we expect them to coincide with the classical ones. A certain work in this direction was
initiated by Butnariu and Klement [3, 4, 11]. They introducedT-tribes of fuzzy sets withT-measures
as a natural generalization of a measure space. They made the first steps towards a characterization of
monotone real-valuedT-measures for a Frank triangular normT. This project has been completed by
Mesiar and Navara in [16]. Detailed summaries of this approach, together with a thorough analysis of
Jordan decomposition, Lyapunov theorem, etc., may be found in [5, 6].

Later on, Barbieri and H. Weber and independently Navara found two generalizations, one for
vector-valuedT-measures with respect to Frank t-norms (in particular for non-monotone ones) [2],
the other for monotone real-valuedT-measures with respect to general strict t-norms [20]. A common
generalization of these two results was proved by Barbieri, Navara, and H. Weber in[1]—
a characterization of non-monotone (even vector-valued)T-measures with respect to an arbitrary strict
t-norm.
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All these results assumed a special structure of the tribes. Recently in [7] it was found that these
assumptions are satisfied for many, but not all strict t-norms. The measure-theoretical consequences of
this fact, as well as a new approach to proofs of all preceding results, form the subject of the paper [21];
here we summarize its main conclusions. Unless specified otherwise, we use the terminology and
notation of [12].

2 Tribes

The notion of tribe was suggested by Butnariu and Klement [3, 4] as a fuzzification of aσ-algebra.
In order to define measures on fuzzy subsets of some set, we need the underlying collections of
measurable fuzzy sets (tribes) to be closed under fuzzy operations corresponding to those used in a
σ-algebra. In particular, we need a fuzzy complement and a fuzzy union or a fuzzy intersection.

Assumption 1. Throughout this paper we assume that afuzzy complement, f ′, of a fuzzy setf is ob-
tained by the pointwise application of a(strong) fuzzy negation, i.e., an involutive decreasing bijection
′ : [0,1]−→ [0,1]. A fuzzy intersection, resp. afuzzy union, is obtained by a pointwise application of
a t-normT, resp. the t-conormS dual toT with respect to′. (We use the same symbols for fuzzy
operations on truth values from[0,1] and operations on fuzzy sets induced by them.) The symbol
≤ denotes the usual ordering of fuzzy sets as real-valued functions (fuzzy inclusion), andfn↗ f
(resp. fn↘ f ) stands for the pointwise convergence of an increasing (resp. decreasing) sequence of
functions( fn)n∈N.

Definition 2. Let X be a non-empty set. Atribe on X is a pentuple(T ,T, ′,0,≤), whereT ⊆ [0,1]X,
T is a t-norm,′ is a fuzzy negation, 0 is the constant zero function onX,≤ is the fuzzy inclusion, and
the following conditions are satisfied:

(T1) 0∈ T ,

(T2) f ∈ T =⇒ f ′ ∈ T ,

(T3) f ,g∈ T =⇒ T( f ,g) ∈ T ,

(T4) ( fn)n∈N ∈ T N, fn↗ f =⇒ f ∈ T .

We refer toX as thedomainof the tribe(T ,T, ′,0,≤). By T-tribe operationswe mean the following
operations: nulary 0, unary′, binaryT, and the limit of increasing sequences.

Assumption 3. From now on, we shall consider only tribes with thestandard negation a′ = 1−a.

Remark 4. The latter assumption is not much restrictive, because every tribe is isomorphic to a
tribe in which ′ is the standard negation. (All preceding papers—including [3, 4]—admitted only the
standard negation in the definition of a tribe. In this aspect, our definition is more general.)

Using a multiplicative generator, also any strict t-norm may be considered equivalent to the prod-
uct t-norm. However, this does not mean that any tribe is isomorphic to a tribe with the product t-norm
and the standard negation. The problem is that the multiplicative generator does not have to preserve
the standard negation. Thus only one of the operations—the t-norm or the fuzzy negation—can be
standardized using an isomorphism of tribes.
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We have already fixed the standard fuzzy negation′. Also 0 and≤ have their stable meaning. On
the other hand, the choice of the t-normT is crucial and we shall always need to specify it. When
there is no risk of confusion, we shall speak briefly of a tribe(T ,T) (as in [1]), resp. of aT-tribe T .
(The latter is the original terminology of [3, 4]. The full notation(T ,T, ′,0,≤) was used in [23].) We
also speak of aT-tribe when we need to refer to the t-normT, but not to the tribe itself.

Condition (T2) allows us to use duality, hence everyT-tribe contains the constant function 1 and it
is closed under the t-conormSdual toT and under limits of decreasing sequences. Thus everyT-tribe
is closed also under the application of t-normT to infinite sequences:

(T3+) ( fn)n∈N ∈ T N =⇒ T
n∈N

fn ∈ T ,

becauseT n∈N fn is the limit of the decreasing sequence(T k
n=1 fn)k∈N. In the original definition of aT-

tribe by Butnariu and Klement [3, 4], conditions (T3), (T4) were replaced by (T3+). In this aspect, our
definition is slightly less general. However, this difference is not essential. In fact, in many important
cases the two definitions coincide. In particular, all results found in the literature were obtained for
tribes which satisfy also our definition. We shall see that the definition presented here is quite natural
and advantageous for introducing measures on tribes.

Let T be a t-norm and(T ,T) be a tribe onX. The elements ofT ∩{0,1}X are calledBoolean
elements.

Let A be aσ-algebra of subsets of a setX. Let S be the corresponding collection of characteristic
functions,

S = {χA | A∈ A} ,

and
T = { f ∈ [0,1]X | f is A-measurable} .

For any t-normT, (S ,T) is a tribe called theBoolean tribeinduced byA . For any measurable t-norm
T, (T ,T), is a tribe called thefull tribe induced byA . (Full tribes were first studied in [3], where they
were calledgenerated tribes. Here we use the terminology from [22].)

3 Measures on tribes

In [3, 4], Butnariu and Klement introducedT-measuresas a natural generalization ofσ-additive mea-
sures onσ-algebras. Here we call them onlymeasuresbecause the t-normT is specified with the
tribe. ByR+ we denote the set of all non-negative reals.

Definition 5. Let (T ,T, ′,0,≤) be a tribe. A functionalµ: T −→R+ is called ameasureif it satisfies
the following axioms:

(M1) µ(0) = 0 ,

(M2) f ,g∈ T =⇒ µ(T( f ,g))+µ(S( f ,g)) = µ( f )+µ(g) ,

(M3) ( fn)n∈N ∈ T N, fn↗ f =⇒ lim
n∈N

µ( fn) = µ( f ) .
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Remark 6. Condition (T4) ensures thatf ∈ T in (M3). In the original definition of aT-measure [3],
(T4) was not required and (M3) was replaced by a weaker condition which applies only to sequences
whose limits are inT :

(M3–) f ∈ T , ( fn)n∈N ∈ T N, fn↗ f =⇒ lim
n∈N

µ( fn) = µ( f ) .

Although using a more general condition (M3–), all previous papers on this topic dealt with special
cases of tribes satisfying (T4) and measures satisfying (M3).

Condition (M3) is the left continuity of the measure. In fact, in a Boolean tribe it implies also the
right continuity. However, this is not generally true for tribes. Therefore the following more specific
notion has been introduced in [21]:

Definition 7. A measureµ on a tribe(T ,T) is calledregular if it satisfies (M1), (M2), and

(M3+) ( fn)n∈N ∈ T N, ( fn↗ f or fn↘ f ) =⇒ lim
n∈N

µ( fn) = µ( f ) .

Proposition 8. Let T be a t-norm and(T ,T, ′,0,≤) be a tribe satisfying the law of contradiction,
i.e., T( f , f ′) = 0 for all f ∈ T . Then every measure on(T ,T, ′,0,≤) is regular. In particular, every
measure on a Boolean tribe or on a TL -tribe (where TL is the Łukasiewicz t-norm) is regular.

For a tribe(T ,T) onX, we define

Ť = {A⊆ X | χA ∈ T } .

It is aσ-algebra of subsets ofX. A measureµ on (T ,T) induces a measure ˇµ on Ť (introduced in [3])

µ̌(A) = µ(χA) .

4 Frank and nearly Frank t-norms

Frank t-normsTF
λ , λ ∈ [0,∞], were defined in [9] by

TF
λ (x,y) :=


logλ

(
1+ (λx−1)(λy−1)

λ−1

)
if λ ∈ ]0,∞[\{1} ,

min(x,y) if λ = 0,
x ·y if λ = 1,
max(x+y−1,0) if λ = ∞ .

(The t-normsTM = TF
0 ,TP = TF

1 ,TL = TF
∞ are the minimum, the product, and the Łukasiewicz t-norm,

respectively.) Frank t-normsTF
λ are strict iffλ∈ ]0,∞[. They play a special role in the characterization

of measures due to the following property [9]:

Theorem 9. Let T be a Frank t-norm and S its dual t-conorm. Then

∀a,b∈ [0,1] : T(a,b)+S(a,b) = a+b. (1)

Conversely, if a continuous Archimedean t-norm T and its dual S satisfy(1), then they are Frank.
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Let us recall the definition of nearly Frank t-norms [20]. We say that an increasing bijection
h: [0,1]−→ [0,1] commutes with the standard negationif

∀a∈ [0,1] : h(a′) = h(a)′ .

(Thenh is called anegation preserving automorphism[20].)

Definition 10. A t-normT is callednearly Frankif there is an increasing bijectionh: [0,1]−→ [0,1]
which commutes with the standard negation and a Frank t-normT∗ satisfying

T∗(a,b) = h(T(h−1(a),h−1(b))) (2)

for all a,b∈ [0,1].

Proposition 11 (see [20]). If T is a nearly Frank t-norm different from TM , then the bijection h and
the Frank t-norm T∗ satisfying(2) are unique.

The question of how to recognize whether or not a given t-norm is nearly Frank has been solved
in [15].

5 Characterization of regular measures

Measures onT-tribes, whereT is a nearly Frank t-norm, were characterized in [16]. For regular
measures, we obtain the following consequence:

Theorem 12. Let T be a strict nearly Frank t-norm with h satisfying(2) and(T ,T) be a tribe. Then
regular measures on(T ,T) are exactly all functionals of the form

µ( f ) =
∫

h◦ f dν , f ∈ T , (3)

whereν = µ̌ is a measure oňT .

For Frank t-norms,h = id and we obtain the following:

Corollary 13. Let TF
λ , λ ∈ ]0,∞[, be a strict Frank t-norm and(T ,TF

λ ) be a tribe. Then also(T ,TL )
is a tribe and regular measures on(T ,TF

λ ) are exactly (regular) measures on(T ,TL ). They are of the
form

µ( f ) =
∫

f dν , f ∈ T , (4)

whereν = µ̌ is a measure oňT .

Following [20], a regular measureµ of the form (3) is called a(generalized) integral measure. The
particular form (4) obtained for Frank t-norms is called alinear integral measure. It coincides with
measures onσ-complete MV-algebras studied in [8, 22].

If the t-normT is not nearly Frank, the characterization of measures is different. For the special
case of a full tribe, it follows from [1]:
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Theorem 14. Let T be a strict t-norm which is not nearly Frank. Then there is no non-zero regular
measure on any full T -tribe.

To analyze tribes which are not full, we introduce several notions. Let(T ,T) be a tribe onX and
Y be a non-empty subset ofX. Let

TY = { f �Y | f ∈ T } ⊆ [0,1]Y .

Then(TY,T) is a tribe onY called therestrictionof (T ,T) to Y. Suppose, moreover, thatY ∈ Ť and
µ is a measure on(T ,T). ThenµY : TY −→ R+ defined by

µY( f �Y) = µ( f ·χY) (5)

is a measure on(TY,T) called therestrictionof µ to Y.

Remark 15. In fact, the restrictionµY of a measureµ may be understood as a measureconditionedby
a (crisp) eventY. A probabilistic interpretation is straightforward. Nevertheless, attempts to introduce
conditional probability which is conditioned byfuzzyevents lead to difficulties even in the special
case ofTL -tribes (see [22]).

Let (T ,T) be a tribe. Forf ∈ T , we denote the following subsets:

U f = f−1(1) ,
F f = f−1(]0,1[) ,

suppf = U f ∪F f = f−1(]0,1]) (thesupportof f ).

They all belong toŤ .

Proposition 16. Let (T ,T) be a tribe and let µ be a measure on(T ,T). Then

µ( f ) = µ(χU f )+µ( f ·χF f ) = µ̌(U f )+µF f ( f �F f ) . (6)

If F f = /0, then f is Boolean andµ( f ) = µ̌(U f ). It only remains to determine the summand
µF f ( f �F f ) for F f 6= /0. We have its characterization if the restriction(TF f ,T) is a full tribe. As we
shall see, this is often the case (not only for strict nearly Frank t-norms). Even if(TF f ,T) is not a full
tribe, we can characterize regular measures [21]. For this, we define

∆T = {F f | f ∈ T } .

It is a σ-ideal in theσ-algebraŤ .

Theorem 17. Let T be a strict t-norm which is not nearly Frank and(T ,T) be a tribe. Then regular
measures on(T ,T) are exactly all functionals of the form(4), whereν = µ̌ is a measure oňT such
that ν�∆T = 0.

Remark 18. In Theorem 17,ν(F f ) = µ̌(F f ) = 0. Then (4) may be written in many equivalent forms:

µ( f ) =
∫

f dν = ν(suppf ) = ν(U f )

and also as (3), whereh: [0,1]−→ [0,1] is any increasing bijection.

According to the above results, any regular measure on a tribe is fully determined by a measure
on aσ-algebra. This characterization allows us to use many results derived in the classical measure
theory. On the other hand, the context of full tribes is more general and extension to fuzzy subsets
brings new phenomena.
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6 Characterization of general measures

Now we shall generalize the results from the preceding section to measures which need not be regular
(we assume only left continuity in (M3)). A new type of measure occurs:

Proposition 19. Let T be a t-norm and(T ,T) be a tribe. The functional µ onT defined by

µ( f ) = µ̌(suppf )

is a measure on(T ,T) called asupport measure.

The characterization from [20] may be reformulated as follows:

Theorem 20. Let T be a strict nearly Frank t-norm and let(T ,T) be a tribe on X. Every measure µ
on (T ,T) is a linear combination of an integral measure and a support measure.

As in Remark 18, a measure on a Boolean element may be considered an integral measure as well
as a support measure. Therefore the decomposition to an integral measure and a support measure in
Theorem 20 is not unique. The coefficients of the linear combination need not be non-negative:

Example 21. Let TF
λ , λ ∈ ]0,∞[ be a strict Frank t-norm. Then each measureµ on ([0,1],TF

λ ) (the full
TF

λ -tribe with a singleton domain) is of the form

µ(a) =

{
p+qa if a > 0,

0 if a = 0,

wherep≥ 0 andp+q≥ 0. The measureµ is

• regular iff p = 0,

• monotone iffq≥ 0.

E.g., if we takep = 1, q =−1, we obtain

µ(a) =

{
1−a if a > 0,

0 if a = 0.

This is a measure which is not monotone.

As in the case of regular measures, we use Proposition 16. It is helpful if the restriction(TF f ,T)
is full. In fact, the proof of Theorem 20 is based on Proposition 19, the characterization of regular
measures from Theorem 12, and the following:

Lemma 22. Let T be a strict nearly Frank t-norm and let(T ,T) be a tribe on X. If there is an f∈ T
such that F f= X, then the restriction(T ,T) is a full tribe.

Recently in [7] Lemma 22 was generalized to many other strict t-norms which are calledsufficient
because they give rise to sufficient (orfunctionally complete) sets of fuzzy logical connectives (see [7]
for details about this notion). In particular, sufficient t-norms include all t-norms from the Aczél–
Alsina and Mizumoto eighth and tenth families (see [12, 13] for the definitions and [7] for further
examples).
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Theorem 23. Let T be a strict sufficient t-norm which is not nearly Frank and let(T ,T) be a tribe.
Every measure µ on(T ,T) is a support measure.

The question whether Lemma 22 remains valid for all strict t-norms has been open for many years.
It is related to problems published, e.g., in [14, 16, 17, 18]. Counterexamples were found recently
in [7]; the Hamacher product is one of them. For t-norms which are not sufficient, a characterization
of measures on tribes is known only in special cases when it leads again to support measures.

Problem 24. Is there a strict t-normT which is not nearly Frank, a tribe(T ,T) and a measureµ on
(T ,T) which is not a support measure?

For regular measures, the characterization is known forall strict t-norms.
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The logic and algebra of fuzzy IF-THEN rules
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This paper is an (incomplete) overview of the existing approaches to interpretation of fuzzy IF-THEN
rules and derivation of a conclusion on the basis of them.

We will focus especially on two principal interpretations of linguistic description. The first one
is calledrelational. The main idea is to find a good approximation of some function known only
roughly. Therefore, it is divided into imprecise “parts” using fuzzy relations constructed from fuzzy
sets with continuous membership functions of more or less arbitrary shape. Each such membership
function is assigned some name to be able to get better orientation in the rules, but without real
linguistic meaning. Formally, these are sets of fuzzy IF-THEN rules assigned one of two kinds of
normal forms: the disjunctive or conjunctive normal form (see [10]). The resulting fuzzy relation then
depends on the choice of the underlying algebra of truth values.

Most interpretations of fuzzy IF-THEN rules found in the literature stick on this interpretation.
Then derivation of a conclusion on the basis of them is done on the level of semantics rather than on
the level of syntax. However, there are alsological interpretations, e.g. those presented in [6, 9] and
elsewhere. An important case which, at the same time, belongs to logical interpretation is presented
in [9, 7]. Its main goal is to use genuine linguistic expressions interpreted in a way which mimics
human understanding to them. The fuzzy IF-THEN rules, which are then interpreted as linguistically
characterised logical implications, form special axioms of some formal theory.

There are several other kinds of interpretations which in various degrees can be ranked to the
relational one (cf. [5]). In the paper, we will discuss and compare these interpretations from several
points of view.
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[9] Novák, V., Perfilieva I., Mǒckǒr, J. (1999), Mathematical Principles of Fuzzy Logic. Kluwer,
Boston/Dordrecht.

[10] Perfilieva, I. (2001), Normal Forms for Fuzzy Logic Functions and Their Approximation Ability.
Fuzzy Sets and Systems 124, 371–384.

163



Solvability and approximate solvability of a system of fuzzy relation
equations from functional point of view
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Abstract: The paper summarized the last author’s results concerning the problem of solvability and
approximate solvability of a system of fuzzy relation equations. A number of new criteria of the so
called Mamdani relation to be a solution to the system is suggested. At the same time those criteria
are sufficient conditions of a solvability of the system in general. A new, easy to check criterion of a
solvability of the system with special fuzzy parameters is found.

With the notion of a fuzzy function as a mapping between universes of fuzzy sets we threw a
new light on the problem of solvability and approximate solvability. In this setting, precise and ap-
proximate solutions to a system of fuzzy relation equations are considered as the interpolating and
approximating fuzzy functions with respect to the given data. Different approximating spaces and dif-
ferent criteria of approximation have been introduced. We have proved that the widely known fuzzy
relations introduced by E. Sanchez and E. H. Mamdani are the best approximations in the respective
spaces and under the respective criteria.

Keywords: system of fuzzy relation equations, solvability of a fuzzy relation equation system, fuzzy
equivalence, fuzzy point, fuzzy function

1 Introduction

Systems of fuzzy relation equations are connected with applications like fuzzy control, identifica-
tion of fuzzy systems, prediction of fuzzy systems, decision-making, etc. Such systems arise in the
process of formalization of fuzzy IF–THEN rules, which well recommend themselves as an approxi-
mating instrument for continuous dependencies. In this correspondence, the problem of solvability of
a system of fuzzy relation equations relates to a problem of verification of correctness of the chosen
formalization of fuzzy IF–THEN rules.

In the proposed overview, we will consider the problem of solvability of a system of fuzzy relation
equations in the following aspects:

• criteria of general solvability, i.e. necessary and sufficient and only necessary or only sufficient
[4, 10, 16, 18, 19];

• simple criteria of solvability in special cases where original data are fuzzy sets which constitute
fuzzy partitions of respective universes [10, 15];

• solvability and interpolation of fuzzy functions [17, 16];
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• criteria of solvability in the case of finite universes;

• approximate solvability in different approximating spaces and with respect to different criteria
[17, 16];

• approximate solvability and approximation of fuzzy functions [13, 16, 17, 20];

• approximate solvability in special metric spaces induced by t-norm.

For this publication we have chosen only new results recently established by the author.

1.1 Basic algebra of logic operations

We choose a BL-algebra (BL stands for basic fuzzy logic) as a basic algebra of operations. In a
certain sense, the BL-algebra generalizes boolean one and occurs when the conjunction is split in two
different operations: a pure lattice operation and the other monoidal one (called multiplication) which
a pseudo-inverse. The following definition summarizes definitions originally introduced in [9].

Definition 1. A BL-algebrais an algebra

L = 〈L,∨,∧,∗,→,0,1〉 (1)

with four binary operations and two constants such that

(i) (L,∨,∧,0,1) is a lattice with0 and1 as the least and greatest elements w.r.t. the lattice ordering,

(ii) (L,∗,1) is a commutative semigroup with unit1, such that the multiplication∗ is associative,
commutative and 1∗x = x for all x∈ L,

(iii) ∗ and→ form an adjoint pair, i.e.
z≤ (x→ y) iff x∗z≤ y for all x,y,z∈ L,

(iv) and moreover, for allx,y∈ L
x∗(x→ y) = x∧y,
(x→ y)∨ (y→ x) = 1.

The well known examples of BL-algebra are Gødel, Łukasiewicz and product algebras.

Another binary operation↔ of L can be defined by:

x↔ y = (x→ y)∧ (y→ x).

The following properties will be used in the sequel:

x≤ y iff (x→ y) = 1,

x↔ y = 1 iff x = y.

Note that, in particular, ifL = [0,1] then∗ is at-norm.

From now and until the end of this paper, we fix some complete BL-algebraL with a supportL.
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1.2 Fuzzy sets and fuzzy relations

We accept here a mathematical definition of a fuzzy set. LetX be a non-empty set. Then a fuzzy set
or better, a fuzzy subset ofX is identified with a functionA : X −→ L. This function is known as a
membership function of fuzzy setA. The set of all fuzzy subsets ofX is denoted byF (X), so that we
can write

F (X) = {A : X −→ L}= LX.

For two fuzzy setsA,B∈ F (X) we let

A = B iff (∀x)A(x) = B(x)

and
A≤ B iff (∀x)A(x)≤ B(x).

A fuzzy setA ∈ F (X) is callednormal if A(x0) = 1 holds for somex0 ∈ X. The algebra of
operations over fuzzy subsets ofX is introduced as the induced BL-algebra onLX. This means that
each operation fromL is the operation onLX taken pointwise. For example, the∗-operation between
fuzzy setsA andB is defined by

(A∗B)(x) = A(x)∗B(x).

The operations over fuzzy subsets fulfill the same properties as the corresponding operations in the
respective BL-algebra.

Let X andY be two universes, not necessary different. A (binary) fuzzy relation onX×Y is a
fuzzy subset of this set, i.e. a functionR : X×Y −→ L. The set of all fuzzy relations onX×Y is
denoted byF (X×Y). An n-ary fuzzy relation can be introduced analogously.

If R∈ F (X×Y) andS∈ F (Y×Z) then the fuzzy relationT onX×Z

T(x,z) =
∨
y∈Y

R(x,y)∗S(y,z)

is called a composition (or sup−∗-composition) ofRandSand denoted by

T = R◦S.

In particular, if A is a unary fuzzy relation onX or a fuzzy subset ofX then sup−∗-composition
betweenA andR∈ F (X×Y) is defined by

B(y) =
∨
x∈X

A(x)∗R(x,y),

so thatB = A◦RandB∈ F (Y).

1.3 Fuzzy equivalence and fuzzy points

Fuzzy equivalence is a special fuzzy relation on a universeX which, analogously as the classical
equivalence fulfills the properties of reflexivity, symmetry and transitivity, but with the generalized
meaning. Namely, we say thatE : X×X −→ L is a fuzzy equivalence onX if

E(x,x) = 1,

E(x,y) = E(y,x),
E(x,y)∗E(y,z)≤ E(x,z)
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holds true for allx,y,z∈ X.

Suppose that some fuzzy equivalenceE onX is given. Then we may fix one argumentx = x0 and
consider the functionA(x) = E(x0,x) which determines a normal fuzzy subset ofX. We say that the
fuzzy subset of this type is a fuzzy point ofX with respect tox0 and fuzzy equivalenceE.

It is not difficult to show that each normal fuzzy subsetA of X, such thatA(x0) = 1, can be
considered as a fuzzy point with respect tox0 and special fuzzy equivalenceE given by

E(x,y) = A(x)↔ A(y).

The situation is more difficult if we have a collection of normal fuzzy subsets ofX. The following
theorem has been proved in [11].

Theorem 2. Let Ai , i ∈ I, be a family of normal fuzzy subsets ofX, such that there exist xi ∈ X which
make true the following: Ai(xi) = 1. Then the following two statements are equivalent

• there exists a fuzzy equivalence E onX, such that all fuzzy sets Ai are fuzzy points with respect
to xi and E, i.e.

Ai(x) = E(xi ,x) (2)

• for all i , j ∈ I ∨
x∈X

(Ai(x)∗A j(x))≤
∧
y∈X

(Ai(y)↔ A j(y)) (3)

holds.

Remark 3. From the proof of this theorem it follows that

• if (3) is true then each fuzzy setAi from the above given family is a fuzzy point with respect to
xi and fuzzy equivalencêE given by

Ê(x,y) =
∧
i∈I

(Ai(x)↔ Ai(y)). (4)

• if each fuzzy setAi from the above given family is a fuzzy point with respect toxi and some
fuzzy equivalenceE then it is a fuzzy point with respect toxi and fuzzy equivalencêE.

The following lemma can be proved as a corollary of Theorem 2.

Lemma 4. Let Ai , i ∈ I, be a family of normal fuzzy subsets ofX, such that there exist xi ∈ X which
make true the following: Ai(xi) = 1. Moreover, let inequality (3) hold true. Then inequality (3) turns
to the equality ∨

x∈X

(Ai(x)∗A j(x)) =
∧
y∈X

(Ai(y)↔ A j(y))

=Ê(xi ,x j) (5)

where i, j ∈ I and Ê(x,y) is given by (4).

Corollary 5. Let the conditions of Lemma 4 be fulfilled. Then inequality (3) turns to the equality∨
x∈X

(Ai(x)∗A j(x)) =
∧
y∈X

(Ai(y)↔ A j(y)) =

= E(xi ,x j) (6)

where i, j ∈ I and E(x,y) is any fuzzy equivalence which makes all fuzzy subsets Ai to be fuzzy points
with respect to it and xi .
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1.4 System of fuzzy relation equations

Let X andY be two universes, not necessary different. A system of fuzzy relation equations

Ai ◦R= Bi , 1≤ i ≤ n, (7)

whereAi ∈ F (X),Bi ∈ F (Y) andR∈ F (X×Y) and ‘◦’ is the sup-*-composition, is considered with
respect to unknown fuzzy relationR.

Since in general, solution of (7) may not exist, the investigation of necessary and sufficient, or
also of only sufficient conditions for solvability becomes necessary. This problem has been widely
studied in the literature, and some nice theoretical results have been obtained. Let us point out some
of them: [19], [18], [4] with necessary and sufficient conditions, [5], [10] with sufficient conditions.

All of these results have practical importance only in the case when universes of discourseX and
Y are finite. If these universes are infinite, then the complexity of verification of these conditions is
comparable with the direct checking of solvability. Therefore, the problem of discovering easy to
check solvability conditions or criteria is still actual. This paper is a contribution to this topic.

We recall basic facts concerning solvability of system (7) of fuzzy relation equations

Ai ◦R= Bi , 1≤ i ≤ n,

whereAi ∈ F (X),Bi ∈ F (Y) andR∈ F (X×Y).

• If system (7) with respect to unknown fuzzy relationR is solvable then relation

R̂(x,y) =
n∧

i=1

(Ai(x)→ Bi(y)) (8)

is the greatest solution to (7) (see [19]).

• Let fuzzy setsAi ∈ F (X) andBi ∈ F (Y), 1≤ i ≤ n, be normal. Then fuzzy relation

Ř(x,y) =
n∨

i=1

(Ai(x)∗Bi(y)) (9)

is a solution to (7) if and only if for alli, j = 1, . . . ,n∨
x∈X

(Ai(x)∗A j(x))≤
∧
y∈Y

(Bi(y)↔ B j(y)) (10)

holds (see [10]).

It is worth notice that fuzzy relatioňR is known in literature as Mamdani relation.

2 Sufficient conditions of solvability

As mentioned above, a system of fuzzy relation equations arises on the way of formalization of a set of
fuzzy IF–THEN rules. In fact, a fuzzy relationR which solves the system of fuzzy relation equations
in the form (7) describes a certain dependence between variablesx∈ X andy∈ Y. If the variablex is
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furthermore specified by some value expressed by a fuzzy setA∈ F (X) then the respective (fuzzy)
value of variabley can be computed by taking the sup-*-composition

B = A◦R. (11)

This procedure is used as an interpretation of so the called Generalized Modus Ponens inference rule
in the fuzzy logic in broader sense.

Keeping in mind the computation of sup-*-composition (11), in whichR is replaced by a solution
to system (7), we may argue that fuzzy relationŘ requires less computations that fuzzy relationR̂.
Therefore, the conditions which guarantee thatŘ is a solution to (7) are more important than condi-
tions of general solvability. On the other hand, these conditions are sufficient with respect to general
solvability of (7).

Therefore, we focus in this section on conditions ensuring thatŘ is a solution to (7). Of course, the
inequality (10) is the first representative of such conditions. The next theorem proved in [1], presents
the equivalence between (10) and another inequality, which can be used as the second condition of
this type.

Theorem 6. The inequality (10) is equivalent with

Ř≤ R̂. (12)

The following corollary immediately follows from Theorem 6 and Klawonn’s condition of solv-
ability.

Corollary 7. Let fuzzy sets Ai ∈ F (X) and Bi ∈ F (Y), 1≤ i ≤ n, be normal. Then the fuzzy relation
Ř in (9) is a solution to (7) if and only if Ř≤ R̂.

Remark 8. If the fuzzy relationŘ is a solution to (7) then the system (7) is solvable. Therefore, the
condition (12) is a sufficient condition for the solvability of the system (7), provided that fuzzy sets
Ai ∈ F (X) andBi ∈ F (Y) are normal.

Let us investigate a special situation when fuzzy setsAi ∈ F (X) andBi ∈ F (Y) are fuzzy points
with respect to fuzzy equivalencesE on X and F on Y. The following nice (and easy to check)
criterion of solvability of (7) by fuzzy relatioňRsummarizes almost all the facts discussed above.

Theorem 9. Let fuzzy sets Ai ∈ F (X) and Bi ∈ F (Y), 1≤ i ≤ n, be normal, so that there exist xi ∈ X
and yi ∈ Y which make true the following: Ai(xi) = 1, Bi(yi) = 1. Further, let fuzzy equivalence E on
X and fuzzy equivalence F onY exist so that all the fuzzy sets Ai are fuzzy points with respect to xi

and E, and all the fuzzy sets Bi are fuzzy points with respect to yi and F, i.e.

(∀x)Ai(x) = E(xi ,x) (13)

and

(∀y)Bi(y) = F(yi ,y). (14)

Then the fuzzy relatioňR in (9) is a solution to (7) if and only if

(∀i)(∀ j)Ai(x j)≤ Bi(y j). (15)

We can again remark that condition (15) and the assumptions of Theorem 9 give easy to check
sufficient condition of solvability of system (7).
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3 One useful necessary condition of solvability

Necessary conditions are very useful in verifying the solvability in general. When they are not ful-
filled, the system cannot be solvable. We will suggest hear one condition which has easy to understand
interpretation.

Theorem 10. If the system (7) is solvable then for arbitrary i, j ∈ {1, . . . ,n}∧
x∈X

(Ai(x)↔ A j(x))≤
∧
y∈Y

(Bi(y)↔ B j(y)). (16)

The interpretation of the condition (16) is such that the setsAi ,A j cannot be closer than their
respective counterpartsBi andB j .

4 A new criterion of solvability

In this section we prove even more: the condition (15) is the necessary and sufficient condition for the
solvability of system (7) provided that (13) is fulfilled.

Theorem 11. Let the conditions of Theorem 9 be fulfilled. Then (15) is the necessary and sufficient
condition of the general solvability of system (7).

5 Fuzzy function. Interpolation of a fuzzy function

We will introduce the problem of solvability of fuzzy relation equations in a new framework as the
problem of interpolation and approximation of a fuzzy function.

Our idea is to introduce a fuzzy function as a mapping between two universesF (X) andF (Y) of
fuzzy sets, so that it maps uniquely a fuzzy “point” from one universe to the respective fuzzy “point”
from the other universe. Trying to be as much as possible close to the classical case we give the
following definition (see also Perfilieva & Gottwald [17]).

Definition 12. Let F (X),F (Y) be the classes of all fuzzy subsets on the universes of discourseX and
Y. A mappingf from F (X) into F (Y) is called afuzzy functionif for any fuzzy subsetsA,A′ ∈F (X)
and for fuzzy subsetsB,B′ ∈ F (Y) which aref -related withA,A′, respectively,

A = A′⇒ B = B′. (17)

holds true.

Example 13. Any fuzzy relationR∈ F (X×Y) determines via sup-*-composition a fuzzy function,
defined as the mappingfR from F (X) to F (Y) which is described by

fR(A)(y) = (A◦R)(y) =
∨
x∈X

(A(x)∗R(x,y)).

In this example, the fuzzy setfR(A) = A◦R is the value of fuzzy functionfR determined byR in
the “fuzzy point” determined byA.
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Remark 14. As mentioned in Introduction, there is another approach to the notion of a fuzzy function
shared by the authors [9, 10]. According to their approach, a fuzzy function is a special kind of a
fuzzy relation — which “respects” two given similarities on the universes of discourse. The “fuzzy”
constituent in their definitions refers to the uniqueness property, so that they define what may be called
a “blurred” mapping. Moreover, they clearly distinguish between partial and total fuzzy function.

Contrary to the definitions cited above, we stress that a fuzzy function is a (ordinary) mapping
between two universes of fuzzy sets, so that it maps uniquely a fuzzy “point” from one universe to
the respective fuzzy “point” from the other universe. In our opinion, it is not necessary to indicate in
the general definition of a function whether it is partially defined or not. It is reasonable to stress this
characteristics when we speak, for example about the problem of interpolation. (Below, we formulate
this problem and discuss methods of its solution.) However, in general we suppose that a fuzzy
function is defined on the whole universeF (X).

The definition of a (fuzzy) function, in general, does not provide us with a constructive way of its
representation (except for finiteF (X)). Therefore, the problem of representation of a function is of a
primary importance. By this we mean, that having a function as a mapping, we want to find a formula
which represents this mapping. However, in practice we know a mapping (between infinite or large
universes) only partially, as a finite set of couples and therefore, the problem of representation may
be solved also partially. There are two possible approaches to obtain a formulation of, say, partial
representation problem: one leads to the interpolation and the other one — to the approximation of a
function. We give formulations of both problems in fuzzy setting and then discuss the specificity of
these problems in the case when fuzzy function is determined by a fuzzy relation.

Definition 15. Let a list of original data consisting of ordered pairs of fuzzy sets(Ai ,Bi) whereAi ∈
F (X),Bi ∈ F (Y), i = 1, . . . ,n, be given. A fuzzy functionf defined onF (X) interpolatesthese data
if

f (Ai) = Bi , i = 1, . . . ,n. (18)

We will also call f an interpolating fuzzy function.

Very often, the above defined interpolation problem appears in the literature as a problem of
finding a fuzzy relation partially described by a list of fuzzy IF–THEN rules

IF x is Ai THEN y is Bi , i = 1, . . . ,n,

whereAi ∈ F (X),Bi ∈ F (Y). The natural requirement for such a fuzzy relation is that it should
“agree” with the original data. This means in our terminology that the required fuzzy relation deter-
mines the fuzzy function which interpolates the given data (the details are below in Lemma 16).

As an important remark, we point out that interpolation of a fuzzy function may not exist; if it
exists, it need not be unique. In the latter case, this is the reason why the interpolation problem in
classical mathematics is solved in a predetermined class of (interpolating) functions, for example in
the class of polynomials.

We consider a solution to the fuzzy interpolation problem in the class of fuzzy functions repre-
sented by fuzzy relations. It is easy to see that there is a close relation between the existence of an
interpolation function and the solvability of the respective system of fuzzy relation equations.

Lemma 16. Let ordered pairs of fuzzy sets(Ai ,Bi) be given where Ai ∈F (X),Bi ∈F (Y), i = 1, . . . ,n.
A fuzzy relation R determines an interpolating fuzzy function with respect to the given data(Ai ,Bi),
i = 1, . . . ,n, if and only if R is a solution of the corresponding system (7) of relation equations.
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Proof. Obvious.

As a consequence of this statement, we can assert that not every fuzzy function can be determined
by the respective fuzzy relation. This is due to the fact that not every system of fuzzy relation equations
is solvable.

6 Approximation of a fuzzy function. Approximate solutions to a sys-
tem of fuzzy relation equations and their approximation quality

The problem of approximation of a partially given fuzzy function arises when we want to complete
partially given mapping, but we do not insist on a precise agreement with the given data. The other
reason to consider approximation is that the interpolation problem may not be solvable in the chosen
class of interpolating functions. For example, if interpolating fuzzy functions are those which are
determined by fuzzy relations then the interpolation problem is equivalent to the existence of a solution
to system (7). Because the latter may not be solvable, this implies that there exist fuzzy data(Ai ,Bi),
i = 1, . . . ,n, which cannot be “joined” by any fuzzy relation. In this situation we may weaken the
interpolation problem and consider the problem of approximation. We start with a rough formulation
of this problem and then, after explanation of details, give a precise formulation.

Given fuzzy data(Ai ,Bi) whereAi ∈ F (X),Bi ∈ F (Y), i = 1, . . . ,n, find a fuzzy function, deter-
mined by a fuzzy relation which gives an approximate solution to system (7).

By this formulation, we reduce the problem of finding of an approximating fuzzy function to
the problem of finding an approximate solution to system (7). The latter will be the core of our
investigation in the rest of this paper. However, it requires further specification. Two things have to
be specified: an approximating space and a quality of approximation. Below we will introduce three
different approximating spaces and different qualities of approximation in them.

1. The widest approximating space consists of all fuzzy relations onX×Y

R = {R | R∈ F (X×Y)}. (19)

However, we will not deal with this space in this paper, because it is too wide to find an optimal
approximation in it.

We will consider two other, more restrictive approximation spaces which are subspaces ofR
(Perfilieva & Gottwald [17]). UnlikeR , they are determined by parametersAi ,Bi of system (7).

2. The space of lower approximations

Rl = {R∈ F (X×Y) | Ai ◦R≤ Bi , 1≤ i ≤ n} (20)

consists of those relations which make compositions lower than the intended right hand sides.

3. The space of upper approximations

Ru = {R∈ F (X×Y) | Ai ◦R≥ Bi , 1≤ i ≤ n}. (21)

consists of those relations which make compositions greater than the intended right hand sides.
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An evaluation of a quality of approximation inR stems from a comparison of the intended values
Bi and those ones determined by the compositionR∈ R andAi , i.e. from a value (Gottwald [6])

δ(R) =
n∧

i=1

∧
y∈Y

(Bi(y)↔ (Ai ◦R)(y)). (22)

Being equipped with the evaluationδ(R) of a quality of approximation we may compare two
different approximate solutions, saying thatR′ ∈ R is better thanR′′ ∈ R if and only if its solution
degree is higher; formally

R′ ≤δ R′′ iff δ(R′′)≤ δ(R′). (23)

The same indexδ(R) may serve as a quality of approximation in two other spacesRl andRu.

It is easy to see that with help ofδ(R) we have introduced a preorder≤δ (i.e. reflexive and
transitive binary relation) on each of the approximation spacesR , Rl andRu.

Though a quality of approximation inRl and Ru may be estimated byδ(R), we will also use
another, non-numeric estimation according to the following preorders≤l on Rl

R′ ≤l R′′ iff R′,R′′ ∈ Rl and Ai ◦R′′ ≤ Ai ◦R′, 1≤ i ≤ n, (24)

and≤u on Ru

R′ ≤u R′′ iff R′,R′′ ∈ Ru and Ai ◦R′ ≤ Ai ◦R′′, 1≤ i ≤ n. (25)

Let us remark that in the literature on fuzzy relation equations, the preorder≤l has been implicitly
used in Wu [20] and later on in Klir & Yuan [13] for estimation of approximation quality inRl .

7 Optimal approximations

In a certain sense, any element from an approximating space can be taken as an approximate solution
so that the respective quality of approximation can be computed. However, we would prefer to have an
approximate solution with the best possible quality of approximation. This leads us to the following
definitions (cf. Perfilieva & Gottwald [17]).

Definition 17. A fuzzy relationRopt is a best approximate solution to system (7) in the approximation
spaceR (Rl or Ru) with respect to the qualityδ(R) if

δ(Ropt) = sup
R∈R

δ(R) (26)

(δ(Ropt) = sup
R∈Rl

δ(R) or δ(Ropt) = sup
R∈Ru

δ(R)). (27)

In the approximation spacesRl andRu, we may also define best approximation with respect to
preorders≤l and≤u.

Definition 18. • Rl
opt ∈ Rl is a best approximate solution to system (7) w.r.t.≤l if there is no

fuzzy relationR∈ Rl such thatR≤l Rl
opt andAi ◦R 6= Ai ◦Rl

opt for at least onei ∈ {1, . . . ,n}.
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• Ru
opt ∈ Ru is a best approximate solution to system (7) w.r.t.≤u if there is no fuzzy relation

R∈ Ru such thatR≤u Ru
opt andAi ◦R 6= Ai ◦Ru

opt for at least onei ∈ {1, . . . ,n}.

As we will see later, a best approximate solution to system (7) in the approximating spaceRl w.r.t.
≤l maximizes formsAi ◦R, i = 1, . . . ,n (see Theorem 21), and a best approximate solution to sys-
tem (7) in the approximating spaceRu w.r.t.≤u minimizes formsAi ◦R, i = 1, . . . ,n (see Theorem 27).

As a consequence of this, a best approximate solution to system (7) inRl or Ru with respect to
above introduced approximation qualities if it exists, may not be unique. In Subsection 10 we will see
where it may happen. Therefore, in those particular cases we will take into consideration additional
characteristics of approximate solutions.

Our next goal is to show that pseudo-solutionsR̂ and Ř are the best approximate solutions to
system (7) in the spacesRl , Ru with respect to the introduced preorders.

For the pseudo-solution̂R, an optimality in the approximation spaceRl and a preorder similar to
(24), has been proved in [20, 13]. Below, we will prove a more rigid result.

8 Optimality of pseudo-solutionR̂

We will show thatR̂ is a best approximate solution to system (7) in the approximation spaceRl with
respect to both preorders≤l and≤δ(R). Moreover,R̂ is the greatest element in this space with respect
to the ordinary ordering≤ between fuzzy sets.

Lemma 19. If the system (7) is unsolvable then the fuzzy relationR̂ is the greatest element in the
approximation spaceRl w.r.t. the ordinary ordering≤.

8.1 Optimality of R̂with respect to the preorder≤l

In the theorem given below, we prove the first of the best approximation results aboutR̂ in Rl with
respect to≤l .

Theorem 20. Let the system (7) be unsolvable. Then the fuzzy relation

R̂(x,y) =
n∧

i=1

(Ai(x)→ Bi(y))

is a best approximate solution to system (7) in the spaceRl under the preorder≤l (cf. (24)).

The following simple theorem shows even more. If the original system (7) is unsolvable then the
first solvable system (when decreasing the right hand sides of (7)) is the system withBi replaced by
Ai ◦ R̂.

Theorem 21. Let system (7) be unsolvable and fuzzy sets Ci ∈ F (Y) fulfill the inequalities

Ci ≤ Bi , i = 1, . . . ,n.

Then if the system
Ai ◦R= Ci , i = 1, . . . ,n.

is solvable then
Ci ≤ B̂i , i = 1, . . . ,n,

whereB̂i = Ai ◦ R̂.
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8.2 Optimality of R̂with respect to the preorder≤δ

The theorem below contains the second of the best approximation results aboutR̂ in Rl with respect
to≤δ.

Theorem 22. Let system (7) be unsolvable. Then the fuzzy relation

R̂(x,y) =
n∧

i=1

(Ai(x)→ Bi(y))

is a best approximate solution to system (7) inRl with respect to the approximation qualityδ(R) (cf.
(22)).

9 Optimality of pseudo-solutionŘ

The relationŘgiven by (9) is not an optimal approximate solution to system (7) in the spaceRu either
with respect to the preorder≤u or with respect to the qualityδ(R). This result has been proved in
[17]. However, we will obtain the optimality of̌R in both cases for special systems of fuzzy relation
equations, such that they are solvable if and only if when they areŘ-solvable.

9.1 Solvability and Ř-solvability

We put restrictions on fuzzy setsA1, . . . ,An ∈ F (X) assuming that they are normal and form a semi-
partition ofX. For this, we recall the definition of a semi-partition (see [3]).

Definition 23. Normal fuzzy setsA1, . . . ,An ∈ F (X) form a semi-partition ofX if

(∀i)(∀ j)

(∨
x∈X

(Ai(x)∗A j(x))≤
∧
x∈X

(Ai(x)↔ A j(x))

)
. (28)

Throughout this section we will suppose that fuzzy setsA1, . . . ,An ∈ F (X) in system (7) are
normal and form a semi-partition ofX.

Definition 24. We say that system(7) of fuzzy relation equations išR-solvableif its pseudo-solution
Řgiven by (9) is a solution to this system. We also denote

B̌i(y) = (Ai ◦ Ř)(y), 1≤ i ≤ n. (29)

Although solvability andŘ-solvability of system (7) are not in general equivalent, this is true under
the accepted assumption about semi-partitioning ofX. The theorem given below proves this fact.

Theorem 25.Let fuzzy sets A1, . . . ,An∈F (X) be normal and form a semi-partition ofX. Then system
(7) is solvable if and only if it išR-solvable.
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9.2 Optimality of Řwith respect to the preorder≤u

For systems of fuzzy relation equations whose parametersAi ,1≤ i ≤ n, form a semi-partition ofX,
we will prove the optimality ofŘ in Ru with respect to the preorder≤u, and with respect to≤δ in the
next subsection.

Theorem 26. Let system (7) be unsolvable and fuzzy sets Ai , 1≤ i ≤ n, be normal and form a semi-
partition ofX. Then the fuzzy relation

Ř(x,y) =
n∨

i=1

(Ai(x)∗Bi(y))

is a best approximate solution to system (7) in the spaceRu with respect to the preorder≤u (cf. (25)).

The following theorem shows that if the original system (7) is unsolvable then the first solvable
system (when increasing the right hand sides of (7)) is the system withBi replaced byB̌i .

Theorem 27. Let the conditions of Theorem 26 be fulfilled and fuzzy sets Ci ∈ F (Y) be such that

Ci ≥ Bi , i = 1, . . . ,n.

Then if the system
Ai ◦R= Ci , i = 1, . . . ,n.

is solvable then
Ci ≥ B̌i , i = 1, . . . ,n,

whereB̌i = Ai ◦ Ř.

9.3 Optimality of Řwith respect to the preorder≤δ

As the last result of this section, we will prove thatŘ(x,y) is an optimal solution to system (7) with
respect to≤δ too.

Theorem 28. Let the conditions of Theorem 26 be satisfied. Then fuzzy relationŘ(x,y) is a best
approximate solution to system (7) inRu with respect to the approximation qualityδ(R).

10 Optimality of other pseudo-solutions

Though we introduced various approximation spaces, only two representatives, i.e.R̂andŘhave been
considered as their members. We have introduced in [8] another candidate for optimal approximation
— the iterated relation

ˇ̂R(x,y) =
n∨

i=1

(Ai(x)∗ B̂i(y)) =
n∨

i=1

(Ai(x)∗
∨
x∈X

(Ai(x)∗
n∧

j=1

(A j(x)→ B j(y)))).

As before, we use the notation

B̂i(y)) = (Ai ◦ R̂)(y) =
∨
x∈X

(Ai(x)∗
n∧

j=1

(A j(x)→ B j(y))).
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The idea lying in the construction of̂̌R is to replaceBis in the relationŘby Ai ◦ R̂ (which are smaller)
and by this, create a new relation which is smaller thanŘ. Actually,

ˇ̂R≤ Ř

and, as shown in [8],
Ai ◦ R̂≤ Ai ◦ ˇ̂R≤ Ai ◦ Ř.

Therefore, the optimality of̌̂R is expected, and this is proved in the theorem below.

Theorem 29. Let system (7) be not solvable and suppose that the system

Ai ◦R= B̂i (30)

is Ř-solvable. Then the iterated relation̂̌R is a best approximate solution to (7) inRl with respect to
the preorder≤l as well as with respect to the qualityδ(R).

Remark 30. • It follows from Theorem 29 that there are at least two best approximate solutions
to (7) in Rl , both with respect to the preorder≤l as well as to the qualityδ(R).

The non-uniqueness of a best approximation is a consequence of the fact that the solvability of
(7) is not equivalent to the existence of exactly one solution. Let us explain this claim in more
details.

Our optimality criteria have been chosen in such a way that they measure a deviation from the
original right-hand side of system (7). Therefore, if some approximate solutionR̃ is optimal then
any other fuzzy relation which solves (7) with the same right-hand side asR̃does, is optimal as
well.

• If we want to distinguish various best approximations more subtly, we should specify fuzzy rela-
tions (solutions) according to their additional properties. For example, the approximate solution
R̂ is the greatest element inRl (with respect to the ordinary ordering), and this distinguishes it
among other (best) approximate solutions.

• We conlucde from Theorems 22, 28, 29 thatδ(R) can be taken as a universal measure of ap-
proximation quality in the approximation spacesRl andRu.

11 Optimality under the stronger criterion

Let us summarize the above used methodology for construction of approximate solutions to system
(7). We replaced the right-hand sides of equations in (7) by those which guarantee the solvability
and took the guaranteed solution as the approximate one. Then we have noticed that the guaranteed
solutions composed with the fixed left-hand sides of equations in (7) produced either lower or upper
approximations of the given right-hand sides. This observation led us to the introduction of two
approximating spaces consisting of those fuzzy relations which, when composed with the fixed left-
hand sides, produce various lower or upper approximations of the given right-hand sides. In each
approximating space the respective guaranteed solution was among the best approximate solutions to
system (7).

In this section, we will extend the approximating space by fuzzy relations which, when composed
with fuzzy sets greater than the given left-hand sides of equations in (7), produce smaller right-hand
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sides than the given ones. We will show that in such extended space the known fuzzy relationR̂ is
again among the best approximate solutions with respect to the below introduced preorder≤γ.

Suppose as before that system (7) is not solvable and introduce the approximating space

Rlr = {R∈ F (X×Y) | Di ◦R= Ci , 1≤ i ≤ n,

for some D1, . . . ,Dn ∈ F (X),C1, . . . ,Cn ∈ F (Y) such that

Ai ≤ Di ,Ci ≤ Bi} (31)

and the following quality of approximation

γ(R) =
n∧

i=1

(∧
y∈Y

(Bi(y)↔ (Ai ◦R)(y))∧

∧
∧
x∈X

(Ai(x)↔
∧
y∈Y

(R(x,y)→ Bi(y)))

)
. (32)

The second term in (32) arises from the expression in (??) which gives the maximal solution to (7)
with respect to unknownAi .

We can compare different relations saying thatR′ ∈ Rlr is better thanR′′ ∈ Rlr if and only if its
γ-quality γ(R′) is higher. Formally:

R′ ≤γ R′′ iff γ(R′′)≤ γ(R′). (33)

Moreover, we can define an optimal approximation as follows.

Definition 31. A fuzzy relationRopt is a best approximate solution to system (7) in the approximation
spaceRlr with respect to the qualityγ(R) if

γ(Ropt) = sup
R∈Rlr

γ(R). (34)

The following theorem shows that the relationR̂ is again a best one with respect to the quality
γ(R).

Theorem 32. Let system (7) be not solvable. Then the setRlr is non-empty and fuzzy relation̂R is a
best approximate solution in the setRlr with respect to the qualityγ(R).

Corollary 33. The fuzzy relationR̂ is the largest approximate solution inRlr with respect to the
ordinal ordering≤.

12 Concluding remarks

Most of the known results about solvability of systems of fuzzy relation equations have practical
importance only in the case when universes of discourseX andY are finite. In case when these
universes are infinite, the complexity of verifying theoretical conditions is comparable with a direct
checking of a solvability. Therefore, the problem of discovering easy to check conditions or criteria
is still actual. This paper is (among others) a contribution to this topic.
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A number of new criteria of the so called Mamdani relation to be a solution to the system is
suggested. At the same time, these criteria are sufficient conditions for solvability of the system in
general. A new, easy to check criterion of a solvability of the system with special fuzzy parameters is
found.

With the notion of a fuzzy function as a mapping between universes of fuzzy sets we threw a new
light on the problem of solvability and approximate solvability. In this setting, precise and approxi-
mate solutions to a system of fuzzy relation equations are considered as the interpolating and approx-
imating fuzzy functions with respect to the given data. We concentrated on a problem of approximate
solvability of a system of fuzzy relation equations. Different approximating spaces and different cri-
teria of approximation have been introduced. We have proved that the widely known fuzzy relations
introduced by E. Sanchez and E. H. Mamdani are the best approximations in the respective spaces and
under the respective criteria.
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Point-set lattice-theoretic (or poslat) topology refers to that sort of topology for which a space, roughly
speaking, is determined from a (carrier) setX, a latticeL of some sort, and an associated topology—
either a family ofL-valued mappings onX or an operator on the powerset of allL-valued mappings,
and for which there are appropriate continuous morphisms. Such topology is also called lattice-valued,
many-valued, fuzzy, etc.

For the last 35 years, poslat topology has been intensely developed, aided in significant measure
by theInternational Seminar on Fuzzy Set Theory, also known as theLinz Seminar. It is our purpose
to outline certain aspects of this poslat topology from a (partly) categorical point of view with the
general goal of identifying some categories which serve as relevant frameworks for poslat topology,
relevantin the sense that these categories are topological and contain important examples.

This goal is pursued by doing the following: sampling well-known lattice-theoretic and ground
categories and overlying fixed-basis and variable-basis categories for poslat topology; discussing their
relationships to point-free categories for topology, Wang’s category for lattice-valued topology, and
Vicker’s category for topological systems arising from domains in computer science; indicating in
what sense these categories are topological; sketching functorial relationships between these cate-
gories; and inventoring some important examples of objects and morphisms for poslat topology.

1 Preliminaries

1.1 Lattice-theoretic conditions

The most general lattice structure we will consider is that of acomplete quasi-monoidal lattice
(cqml) as defined in [61]: a complete lattice equipped with a binary operation, called atensor prod-
uct, which is isotone in both arguments and has the top element as an idempotent. See [23] for
stronger versions of this definition. Many examples of cqml’s are catalogued in [23, 64].

1.2 Lattice-theoretic categories

The categoryCqml [23, 61] comprises the class of all cqml’s, together with the class of all mappings
between cqml’s which preserve tensor products, arbitrary joins, and top elements. The dual category
Cqmlop is denotedLoqml and is called thecategory of localic quasi-monoidal lattices.Most of the
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lattice-theoretic categories of interest in poslat topology are isomorphic to subcategories ofCqml or
Loqml , including [61]SFrm (semiframes), its dualSLoc (semilocales),Frm (frames),Loc (locales),
Dmrg (complete deMorgan algebras), its dualDmrgop, Hut (Hutton algebras), and its dualFuzLat,
as well as various categories in which the tensor is not the binary meet.

1.3 Ground categories and powerset operators

1.3.1 Fixed-basis grounds and powerset operators

For the case when the cqmlL is fixed, the ground category isSet, with the associated Zadeh powerset
operatorsf→L , f←L betweenLX andLY for a ground morphismf : X → Y [10, 46, 59, 60]. Many
properties and characterizations are known for these Zadeh operators, including thatf→L a f←L .

1.3.2 Variable-basis grounds and powerset operators

For the case when the cqmlL may vary, a subcategoryC of Loqml—within whichL varies—is fixed
and the ground category isSet×C, with ground morphisms of the form( f ,φ) : (X,L)→ (Y,M)
with f : X→Y in Setandφop : L←M in Cop⊂ Cqml, and with the associated powerset operators
( f ,φ)→ ,( f ,φ)← are betweenLX andMY [10, 54, 55, 56, 59, 60]

Theorem. ( f ,φ)→ a ( f ,φ)← if and only if φop preserves arbitrary meets. The consequent holds if:φ∈
Dmrgop(L,M); φop is a backward Zadeh operator; i.e.∃N ∈ |CQML | , ∃g∈ Set(W,Z) , φop = g←N ; φ
is any of the examples constructed in 7.1.7.2 of [61] or 9.9(2(b), 3) of [62]; orφ is an isomorphism in
Loqml .

1.4 Adjoint Functor Theorem

Let f : L→M, g : L←M be isotone maps between preordered sets. Thenf agprovided[∀a∈ L, a≤ g( f (a))]
and[∀b∈M, f (g(b))≤ b], or equivalently,[∀a∈ L, b∈M, a≤ g(b)⇔ f (a)≤ b]. If f a g, then we
write g = f ` and f = ga.

Theorem (Adjoint Functor Theorem [26]). Let f : L→ M [g : L← M] be a function such thatL
[M] has arbitrary

∨
[
∧

] and f [g] preserves arbitrary
∨

[M, respectively]. Thenf [g] is isotone,
∃ ! f ` : L←M [ga : L→M], and f ` [ga] preserves all

∧
[
∨

] existing inM [L].

2 Categories For Poslat Topological Structures

2.1 Some Fixed-Basis Categories

Fixed-basis categories are fixed with respect to the underlying cqmlL, but varying with respect to the
underlying ground object (or set).

Fixing L in Cqml, the well-known categoryL-Top [2, 11, 23, 61] has ground categorySet, with
the topology being a crisp subset of theL-powerset closed under (binary) tensor products and arbitrary
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∨
and containing the topL-subset; and the well-known categoryL-FTop [15, 31, 71, 22, 40, 23] has

ground categorySet, with the topology being anL-subset of theL-powerset which assigns as degree
of openness to tensor products the least degree of the tensorands, to arbitrary joins the least degree of
the disjuncts, and to the topL-subset the top element ofL. See the analysis of important subcategories
in [23], often using underlyingL with richer structure or with additional conditions on the topology
(such as in [42]).

2.2 Some Point-Free Categories

The categoryLoc may be considered to have groundSetop. Each locale may be regarded as the (sober)
topology of someL-topological space; and ifL turns out to be2 in that statement, the locale is called
spatial [55, 56, 57, 58]. More generally, we may replaceLoc with Loqml or C ↪→ Loqml ; restated,
each subcategory ofLoqml can be viewed as a point-free category of topological structures.

Fixing C a subcategory ofLoqml , the categoryC-HTop [25, 55, 61] has ground categoryC, with
the topology being a crisp subset of someL in C that is closed under the tensor and arbitrary joins
and containing the top element; the famous definition originally given in [25] usedC = FuzLat as the
ground category. Further, the categoryC-HFTop has ground categoryC, with the topology being an
L-subset of someL in C which has properties analogous to those of the topologies inL-FTop.

It is our contention that every point-free approach is essentially a variable-basis approach (see
below). We have listed these separately from the variable-basis approaches since, with the exception
of C-HFTop, their origins were independent of, and prior to, variable-basis topology.

2.3 Some Variable-Basis Categories

The underlying set is free to change in fixed-basis topology while the lattice-theoretic base is fixed; and
the underlying set is fixed in point-free topology (as a singleton—see below) while the lattice-theoretic
base is free to change. In variable-basis topology, both the underlying set and the lattice-theoretic base
are free to change.

Fixing C a subcategory ofLoqml , the categoryC-Top [5, 6, 7, 10, 52, 53, 55, 56, 61] has ground
categorySet×C, objects being of the form(X,L,τ), with (X,τ) ∈ |L-Top|, and morphisms being of
the form( f ,φ) : (X,L,τ)→ (Y,M,σ), with τ⊃ (( f ,φ)←)→ (σ) . Further, the categoryC-FTop [61] has
ground categorySet×C, objects being of the form(X,L,T ), with (X,T )∈ |L-FTop|, and morphisms
being of the form( f ,φ) : (X,L,T )→ (Y,M,S), with T ◦ ( f ,φ)← ≥ φop◦S onMY.

2.4 Category Of Topological Systems

Topological systems [75] stem from placing domain theory of computer science into a topological
setting [68, 69, 70]. The central idea in topological systems is that of asatisfactionor modeling
relation.

We initially view topological systems as categorically havingSet×Loc as ground. The category
TopSys[75] has objects of the form(X,A, |=), with (X,A) ∈ |Set×Loc| and|= ⊂ X×A satisfying:

1. ∀x∈ X, ∀S⊂ A, x |=
∨

S⇔ ∃a∈ A, x |= a.

2. ∀x∈ X, ∀ finite S⊂ A, x |=
∧

S⇔ ∀a∈ A, x |= a.
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And morphisms are of the form( f ,φ) : (X,A, |=)→ (Y,M, |=), where∀x∈ X, ∀b∈ B, f (x) |= b⇔
x |= φop(b). (The same symbol is used for both the domain and codomain satisfaction relations.)

Clearly, TopSys is a variable-basis approach. But we have separately listed this approach for
two reasons: the notion of topological system arose independently of, and subsequent to, variable-
basis topology; and the categorical behavior of topological systems is strikingly different than that of
variable-basis topology (see below).

2.5 Category Of Wang Topological Spaces

From [76, 77, 78] comes a schemum of categories not having an obvious ground category. Let
C ↪→ Dmrgop (the original definition requiresC = FuzLat).

GivenL,M ∈ |C|, a set mappingφ : L→M is anorder homomorphism if φ preserves arbitrary∨
and∀b∈M,

(
φ` (b′)

)
=
(
φ` (b)

)′
(i.e. φ` ∈Dmrg). The categoryC-WTop has objects of the form(

LX,τ
)
, whereX ∈ |Set|, L ∈ |C|, and(X,τ) ∈ |L-Top|, and morphisms of the formφ :

(
LX,τ

)
→(

MY,σ
)
, whereφ : LX→MY is an order homomorphism andτ⊃

(
φ`
)→ (σ).

As will be seen below, the Wang approach is essentially a point-free approach and is isomorphic
to a subcategory of singleton spaces inC-Top.

3 Topological Categories For Poslat Topological Structures

3.1 Definition Of Topological Categories

The definition of “A is topological w.r.t. category X and functorV” comes from [1]; see commen-
tary on this definition in [61]. These variations are also useful:

1. A is small topological w.r.t. category X and functorV if the indexing class forV-structured
sources is always a set.

2. A is quasi-topological w.r.t. category X and functorV if the unique existence of the lifted
morphism in the definition of initiality is replaced by existence.

3. A isc.e.m. topological w.r.t. category X and functorV if theV-structured source is collection-
wise extremally monomorphic in the language of [49] or a mono-extremal source in the lan-
guage of [1].

4. A is essentially topological [small toplogical, quasi-topological, c.e.m. topological] w.r.t.
category X and functor V if “unique initial V-lift” is replaced by the condition that initial
V-lifts of the sameV-structured source are isomorphic in the appropriate definitions above.

3.2 Examples Of Topological Categories

In the following statements, the functorV is the forgetful functor, such a functor being obvious once
the ground category is specified (using the word “over”).
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Theorem [23, 61]. If L ∈ |Cqml|, thenL-Top andL-FTop are topological overSet; if C ↪→ Loqml ,
then C-Top and C-FTop are topological overSet×C; and if C ↪→ Loqml , thenC, C-HTop, C-
HFTop are topological overSet×C w.r.t. the forgetful functor of the previous theorem as modified
by the embeddings given below of these categories intoC-Top, C-Top, andC-FTop, respectively (so
thatLoc is topological in this way overSet×Loc).

3.3 Special Case Of Topological Systems

In view of the motivation of topological systems and their relationship to variable-basis spaces given
later, the behavior ofTopSysis rather surprising.

Theorem. TopSys is not topological overSet×Loc in any sense or with any modifier as defined
above—V-structured sources comprising only one morphism need not even have lifts;TopSys is
essentially small topological overSet—each smallV-structured source has a initial lift that is unique
up to isomorphism; andSobTopSysis essentially c.e.m. topological and essentially quasi-topological
overLoc.

Conjecture. TopSysis neither topological overSetnor overLoc.

3.4 Special Case Of Wang Topological Spaces

Let C ↪→ Dmrgop. The problem withC-WTop is the lack so far of a well-defined ground category. It
is therefore not known in what sense (if any)C-WTop is topological.

4 Relationships Between Categories For Poslat Topological Structures

4.1 Adjoint Pairs Between Top AndL-Top

The relationships betweenTop andL-Top may be classified as concrete or nonconcrete.

4.1.1 Concrete Adjunctions Between Top AndL-Top

Many of the concrete adjoint relationships betweenTop andL-Top can be unified by the concept
of indexed families of mappings between the traditional andL-based fibres [48]. FixX ∈ |Set| and
L ∈ |SFrm|, and letTXL be the fibre of all traditional topologies onX and τXL be the fibre of all
L-topologies onX. A pair of isotone mapsFXL : TX → τXL, GXL : TX ← τXL is said to be an (L-
)fibre pair (of maps) and this fibre-pair iscovariant [contravariant] if GXL a FXL [FXL a GXL]. An
indexed family{FXL,GXL}X∈|Set| of such maps is said to be ancovariant [contravariant] indexed
family of (L-)fibre pairs, and the following conditions can be considered:

1. Such a familyjoint-covariantly [joint-contravariantly] generated if ∀X ∈ |Set| , ∃ a gener-
ator

gXL : 2℘(X)← LX [ fXL : 2℘(X)→ LX]
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such that∀T ∈ TX, ∀τ ∈ τXL,

FXL (T) = 〈〈g←XL (↓(T))〉〉 , GXL (τ) =

〈〈⋃
u∈τ

gXL (u)

〉〉
[
FXL (T) = 〈〈g←XL (↓(T))〉〉 , GXL (τ) =

〈〈{⋃
U : U ∈ f←XL (τ)

}〉〉]
2. A jointly-covariantly [jointly-contravariantly] generated family
{FXL,GXL}X∈|Set| is joint-covariantly [joint-contravariantly] natural if ∀X,Y ∈ |Set|, the
diagram commutes:

gXL◦ f←L = ( f←)→ ◦gYL

[ fXL◦ ( f←)→ = f←L ◦ fYL]

3. An indexed family{FXL,GXL}X∈|Set| of fibre-pairs isseparately generatedif ∀X ∈ |Set| , ∃
generators

fXL :℘(X)→ LX, gXL :℘(X)← LX

such that∀T ∈ TX, ∀τ ∈ τXL,

FXL (T) = 〈〈 f→XL(T)〉〉 , GXL (τ) = 〈〈g→XL (τ)〉〉

4. A separately generated family{FXL,GXL}X∈|Set| of fibre-pairs isseparately natural if these
diagrams commute:

fXL◦ f← = f←L ◦ fYL, gXL◦ f←L = f← ◦gYL

Examples. The characteristic and MartinGχ,Mχ fibre maps [47, 61] comprise a joint-contravariantly
natural family of fibre-pairs as well as a separately natural, contravariant family of fibre-maps; the
Kubiak-LowenωL, ιL fibre maps [42, 34] comprise a joint-covariantly natural family of fibre-pairs;
and the level fibre mapsFα,Sα [43, 51, 55, 61] comprise a joint-covariantly natural family of fibre-
pairs (α prime).

Theorem. Let L ∈ |SFrm|, let {FXL,GXL}X∈|Set| be an indexed family ofL-fibre pairs, and let the
bi-level mappingsF : Top→ L-Top, G : Top← L-Top be defined as follows:

F (X,T) = (X,FXL (T)) , F ( f ) = f

G(X,τ) = (X,GXL (τ)) , G( f ) = f

1. If {FXL,GXL}X∈|Set| is joint-covariantly natural, thenF is a concrete functor,G is a concrete
functor, andF aG.

2. If {FXL,GXL}X∈|Set| is joint-contravariantly natural, thenF is a concrete functor,G is a concrete
functor, andGa F .

3. If {FXL,GXL}X∈|Set| is separately natural covariant [contravariant], thenF is a concrete functor,
G is a concrete functor, andF aG [Ga F ].

Corollary . The examples and the theorem imply theMχ aGχ, ωL a ιL, Fα a Sα (α prime) adjunctions
betweenTop andL-Top.
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4.1.2 Non-Concrete Adjunctions Between Top AndL-Top

Examples of non-concrete adjunctions include the hypergraph functor [67, 43, 51, 9] and the adjunc-
tion based on it (assumingL a spatial frame) in [17, 18], as well as the adjunction based on theL-2
and2-L soberification functors [62]. The role of the hypergraph functor in fuzzy addition and fuzzy
multiplication can be seen in the references of [63], and the role of the soberification adjunction in
building alternative fuzzy real lines and unit intervals can be seen in Sections 2 and 8 of [62]..

4.2 Embedding Of Fixed-Basis And Crisp Variable-Basis Into Fuzzy Variable-Basis

Given L ∈ |C|, L-Top embeds intoC-Top and L-FTop embeds intoC-FTop by simply choosing
φ = idL. The adjunction betweenC-Top andC-FTop (Section 6 of [61]) induces from an “indexed
family of fibre pairs” which are an extension of the characteristic-Martin fibre pairs referenced above.
In this more general setting, given(X,L,τ) and(X,L,T ), Gχ (τ) =

∧
T ≥χτ T andMχ (T ) = coker(T ) .

4.3 Singleton Embeddings Of Point-Free And Wang Into Variable-Basis

The embeddings ofLoc, C ↪→ Loqml , C-HTop into C-Top and the embedding ofC-HTop into C-
FTop are given in [54, 55, 61] and are allsingleton functors making each point-free category iso-
morphic to a subcategory of singleton spaces.

To illustrate,Loc embeds intoLoc-Top viaA 7→
(
1,A,A1

)
, [φ : A→ B] 7→

[
(id,φ) :

(
1,A,A1

)
→
(
1,B,B1

)]
.

Letting S : Loc→ Loc-Top be the embedding just described andLoc-Topsk be the full subcategory
of stratified singleton spaces,Sa Ω|Loc-Topsk

a S, whereΩ(X,L,τ) = τ andΩ( f ,φ) = [( f ,φ)←]op.
It follows that S is an isomorphism ontoLoc-Topsk and we should regardLoc as a special case of
variable-basis point-set lattice-theoretic topology, namelyLoc is a special case ofsingleton variable-
basis topologyor variable-basis topology of singleton spaces. From this point of view, point-free
topology is not a generalization of topology, but rather the special and important case of singleton
space topology which focuses on the lattice-theoretics of poslat topology.

The case ofC-WTop (with C ↪→ Dmrgop) requires only a slight modification of the singleton
functor embeddingC-HTop into C-Top:

(
LX,τ

)
7→
(

1,LX,τ1
)

,

[
φ :
(
LX,τ

)
→
(
MY,σ

)]
7→
[(

id,
(

φ`
)op)

:
(

1,LX,τ1
)
→
(

1,MY,σ1
)]

This embedding means that the Wang approach is isomorphic to a subcategory of singleton spaces,
despite the set exponent in Wang objects being non-singleton.

Essentially, the Wang morphisms do not recognize these non-singleton sets and treats them as
if they are singletons. Restated, the Wang approach is essentially point-free. For categories of the
form C-WTop, it would seem that the mixed syntax, lack of a clearly defined ground category, and
seeming lack of being a topological category are issues and questions that need resolution for this
popular approach.

187



4.4 Embeddings Of Fixed-Basis Into Topological Systems [4]

For manyL ∈ |Frm |, there are simple embeddings ofL-Top into TopSys. Fix L ∈ |Frm | such thatL
has a prime elementα, and let(X,τ) ∈ |L-Top|. Note(X,τ) ∈ |Set×Loc|. Define|=τ,α on (X,τ) by
putting∀x ∈ X, u∈ τ, x |=τ,α u ⇔ u(x) > α. Further, givenf : (X,τ)→ (Y,σ) ∈ L-Top, define the
ground morphism( f ,( f←L )op) : (X,τ)→ (Y,σ) in Set×Loc. ThenFα (X,τ) = (X,τ, |=τ,α) , Fα ( f ) =
( f ,( f←L )op) definesFα as a functor fromL-Top to TopSyswhich is an embedding. This generalizes
the spatialization embedding ofTop into TopSysof [75].

4.5 Embedding Of Topological Systems Into Variable-Basis [4]

The relationship betweenTopSysandLoc-Top is induced by another variety of maps between posets
of structures.

Let (X,A, |=) ∈ |TopSys| be given, put

F (|=) = τ|=
≡
{

u∈ AX : (∀x∈ X)(x |= u(x)) or (∀x∈ X)(u(x) =⊥)
}

F (X,A, |=) =
(
X,A,τ|=

)
, F ( f ,φ) = ( f ,φ). ThenF : TopSys→ Loc-Top is a functorial embedding.

We noteTopSysis isomorphic to a proper subcategory ofLoc-Top since the latter is topological over
Set×Loc andTopSys is not topological overSet×Loc and the forgetful functor fromTopSys to
Set×Loc factors throughF and the forgetful functor fromLoc-Top to Set×Loc.

Given that each ofLoc and Top embed intoTopSys—the former [latter] by the localification
[spatialization] functor of [75], we can now answer a long-standing question whetherLoc-Top is the
smallest supercategory, up to embedding, ofLoc andTop: the answer isno, namely,Loc andTop
embed properly intoTopSysandTopSysembeds properly intoLoc-Top.

Finally, the fact thatTopSysis not topological means that only inLoc-Top can the initial and final
lifts of forgetful functor structured sources fromTopSysbe constructed.

5 Examples Of Objects And Morphisms For Poslat Topological Struc-
tures

It is not sufficient to have topological categories. Such categories must also exhibit important exam-
ples of objects and morphisms justifying the study of such categories and the approaches to topology
they represent.

From [4, 8, 17, 18, 19, 23, 24, 30, 33, 34, 35, 36, 37, 38, 39, 44, 45, 50, 51, 55, 58, 59, 61, 62, 63,
64] and their bibliographies an inventory of many important examples can be constructed.

Here is a sample of significant objects in poslat topology:

1. R(L) andI(L), for L a deMorgan quasi-monoidal lattice (which includes distributive and non-
distributive deMorgan algebras).

2. R andI equipped with the dual L-topologies induced fromR(L) andI(L) (L as above).
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3. R∗(L) andI∗(L), the alternativeL-fuzzy real line and L-fuzzy unit interval, formed by theL-2
soberification functor acting onR andI for any complete quasi-monoidal lattice (which includes
all complete lattices)—and indeed each complete latticeA generates a canonicalL-sober space
LPT(A).

4. The space of probability measures on the Borel sets of a separable metric space, which gives a
stratified, non-generatedI-topological space.

5. Traditional limit spaces generate for each complete Heyting algebra a class ofL-topological
spaces.

6. I-rigid topological spaces constructed usingτ-smooth Borel probability measures on ordinary
spaces and Radon measures on ordinary compact Hausdorff spaces, constructions allowing
Boolean negation to extend continuously to Łukasiewicz negation.

7. Each ordinaryT1 spaceX with at most finitely many components generates anL-topological
spaceX (L) for L ∈ |Hut | with ⊥meet-irreducible such that ifL = 2, X (L) is L-homeomorphic
to Gχ (X), and ifX = R or I, X (L) is L-homeomorphic toR(L) or I(L).

8. Variable-basis spaces generated from specific topological systems.

Here is a sample of significant morphisms in poslat topology:

9. Fuzzy addition and fuzzy multiplication inR(L).

10. Fuzzy translation and fuzzy scaling (especially in light of the behavior of the inverse mappings
of these maps)

11. Fuzzy addition as uniformly continuous

12. Units of adjunctions having universal lifting and extension properties, such as theL-continuous
and variable-basis morphisms generated by compactification reflectors from any non-(Chang)
compact space such as the canonicalR(L), R∗(L), (0,1)(L), (0,1)∗(L), etc, catalogued above.

13. Extensions of important continuous maps.

14. The rich inventory of variable-basis morphisms between fuzzy real lines, between induced
spaces, between soberifications, all with different underlying bases.
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In this talk (strictly linked with that by Giulianella Coletti with the same title) we expound our interpre-
tation of fuzzy set theory (both from a semantic and a syntactic point of view) in terms of conditional
events andcoherentconditional probabilities. During past years, many papers have been devoted to
support the negative view maintaining that probability is inadequate to capture what is usually treated
by fuzzy theory. In our approach we emphasize the role ofconditioning(in a proper framework,
i.e. de Finetti’s coherence) to get rid of many controversial aspects. Moreover, we introduce suitable
operations between fuzzy subsets, looked on as corresponding operations between conditional events
endowed with the relevant conditional probability.

Let us start from the intuitive idea of fuzzy subset: where does it come from and what is its
“operational” meaning? We will refer to the state of information (at a given moment) of a real (or
fictitious) person (for instance, a “randomly” chosen one) that will be denoted by “You”.

If X is a (not necessarily numerical) random quantity with rangeCX, let Ax, for anyx∈CX, be the
event{X = x}. The family{Ax}x∈Cx is obviously apartition of the certain eventΩ = CX . Now, letϕ
be anypropertyrelated to the random quantityX : from a pragmatic point of view, it is natural to think
that You have some information about possible values ofX, which allows You to refer to a suitable
membership function of the fuzzy subset of “elements ofCX with the propertyϕ”.

For example, ifX is a numerical quantity, for You the membership function may be put equal to
1 for values ofX less than a givenx1, while it is put equal to 0 for values greater thanx2 ; then it is
taken as decreasing from 1 to 0 in the interval fromx1 to x2 : this choice of the membership function
implies that, for You, elements ofCX less thanx1 have the propertyϕ, while those greater thanx2 do
not. So the real problem is that You are uncertain on having or not the propertyϕ those elements of
CX betweenx1 andx2 .

Then the interest is in fact directed towardconditional eventssuch asE|Ax, wherex ranges over
the interval fromx1 to x2 , with

E ={You claim the propertyϕ},
Ax ={the value ofX is x}.

It follows that You may assign a subjective probabilityP(E|Ax) equal, e.g., to 0.2 without any
need to assign a degree of belief of 0.8 to the eventE under the assumptionAc

x (i.e., the value ofX is
notx), since an additivity rulewith respect to the conditioning eventsdoes not hold.

In other words, it seems sensible to identify the values of the membership function with suitable
conditional probabilities. In particular, putting
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Ho ={the value ofX is greater thanx2},
H1 ={the value ofX is less thanx1},

we may assume thatE andHo are incompatible and thatH1 impliesE, so that, by the properties of a
conditional probability,P(E|Ho) = 0 andP(E|H1) = 1.

Notice that the conditional probabilityP(E|Ax) has beendirectly introduced as a function on the
set of conditional events (and without assuming any given algebraic structure). Is that possible? In the
usual (Kolmorogovian) approach to conditional probability the answer is NO, since the introduction
of P(E|Ax) would require the consideration (and the assessment) ofP(E∧Ax) andP(Ax) (assuming
positivity of the latter). But this is anot a simple task: in fact in this context the only sensible
procedure is to assign directlyP(E|Ax) . For example, to assign the (conditional) probability that You
claim “Mary is young” knowing her agex, but not that of “the probability that Mary has the agex”
(not to mention that, for different choices of the random quantityX , the corresponding probability
can be zero).

The probabilistic approach adopted here differs radically from the usual theory based on a measure-
theoretic framework, which assumes that auniqueprobability measure is defined on analgebra(or
σ-algebra) of events constituting the so-calledsample spaceΩ. Directing attention to events as sub-
sets of the sample space (and to algebras of events) may be unsuitable for many real world situations,
which make instead very significant both giving events a more general meaning and not assuming any
specific structure for the set where probability is assessed.

Probability is seen as ameasure of belief in a given proposition. Notice that a proposition – which
can be eithertrueor false– must not be looked on as anassertion: so, even if beliefs may come from
various sources, they can be treated in the same way, since the relevant events (including possibly
statistical data) need always to be considered (going back to a terminology due to Koopman) as being
contemplated(or, similarly,assumed) and notassertedpropositions.

This aspect is very crucial, since in our approach an essential role is played byconditioning: in
fact the very concept of conditional probability is deeper than the usual restrictive view emphasizing
P(E|H) only asa probability for each given H(looked on as a givenfact). Regarding instead also
the conditioning eventH as a “variable”, we get something which isnot just a probability (notice that
H also – likeE – plays the role of anuncertainevent whose truth value is not necessarily given and
known).

Our probabilistic framework is that based on the concept ofconditional eventand on the ensuing
concept ofcoherent conditional probability. Our concept of conditional events differs from those
adopted by many others in the relevant literature. Actually, in [1] we showed that, if we do not assign
the same “third value”t(E|H) = u (undetermined) toall conditional events, but make it suitably
depend onE|H, it turns out that this functiont(E|H) can be taken as a general conditionaluncertainty
measure(and conditionalprobability corresponds to a particular choice of the relevant operations
between conditional events).

Then a conditional probabilityP(E|H) can be – through coherence –directly introduced and it is
notdefined as the ratio of the (unconditional) probabilitiesP(E∧H) andP(H), assuming positivity of
the latter. This allows to deal withconditioning events of zero probability, avoiding to resort, as in the
classic approach, to the Radon-Nikodym framework, which (rather than make conditional probability
just depend on the givenconditioningevent) requires theknowledge of the whole conditioning distri-
bution, a situation which is clearly unsound and contradicts the “inferential” meaning of a conditional
event.
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Finally, among the peculiarities of the concept of coherentconditionalprobability versus the usual
one, we underline the possibility forP(E|H) of assuming the extreme values 0 and 1 also for situations
which are different, respectively, from the trivial onesE∧H = /0 andH ⊆E ; moreover, we emphasize
the “natural”looking at the conditional event E|H as “a whole”, and not separately at the two events
E and H.

A complete account of probabilistic logic in a coherent setting is in the book [2]. We just mention
that a coherent conditional probability can be characterized by suitably representing it by means of a
class{Pα} of unconditional probabilities giving rise to the so-calledzero-layers(for details, see [2],
p.81).

In particular, given a familyC of conditional events{Ei |Hi}i∈I , wherecard(I) is arbitrary and
the eventsHi ’s are apartition of Ω, we recall the following two corollaries of the aforementioned
characterization theorem:

(A) Anyfunction f : C → [0,1] such thatf (Ei |Hi) = 0 if Ei ∧Hi = /0 and f (Ei |Hi) = 1 if Hi ⊆ Ei

is a coherent conditional probability.

(B) If P(·|·) is a coherent conditional probability such thatP(E|Hi) ∈ {0,1}, then the following
two statements are equivalent

(i) P(·|·) is theonlycoherent assessment onC ;

(ii) it is Hi ∧E = /0 for everyHi ∈Ho andHi ⊆ E for everyHi ∈H1 , whereHr = {Hi : P(E|Hi) =
r} , r = 0,1.

The results that follow are taken from [3]. Letϕ be anypropertyrelated to the random quantity
X : notice that aproperty, even if expressed by a statement, does not single–out anevent, since the
latter needs to be expressed by anonambiguousproposition that can be eithertrueor false.

Consider now theevent Eϕ = “You claim ϕ ” and a coherent conditional probabilityP(Eϕ|Ax),
looked on as a real functionµEϕ(x) = P(Eϕ|Ax) defined onCX.

Since the eventsAx are incompatible, then – by(A) – everyµEϕ(x) with values in[0,1] is a coherent
conditional probability. So we candefinea fuzzy subset in this way:

Given a random quantityX with rangeCX and a related propertyϕ, a fuzzy subset E∗ϕ of CX is the
pair

E∗ϕ = {Eϕ , µEϕ},

with µEϕ(x) = P(Eϕ|Ax) for everyx∈CX.

So a coherent conditional probabilityP(Eϕ|Ax) is a measure of how much You, given the event
Ax = {X = x}, are willing toclaim the propertyϕ , and it plays the role of the membership function
of the fuzzy subsetE∗ϕ.

Notice also that (as already remarked above) the significance of the conditional eventEϕ|Ax is
reinforced by looking on it as “a whole”, avoiding a separate consideration of the two propositionsEϕ
andAx.

Obviously, a fuzzy subsetE∗ϕ is a crisp setwhen there isonly a coherent assessmentµEϕ(x) =
P(Eϕ|Ax) with range{0,1}.

Then, by property(B) above, a fuzzy subsetE∗ϕ is a crisp set when the propertyϕ is such that, for
everyx∈CX, eitherEϕ∧Ax = /0 or Ax⊆ Eϕ.
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Given two fuzzy subsetsE∗ϕ, E∗ψ, corresponding to the random quantitiesX andY (possiblyX =
Y), assume that, for everyx∈CX andy∈CY, both the following equalities hold

(1) P(Eϕ|Ax∧Ay) = P(Eϕ|Ax) , P(Eψ|Ax∧Ay) = P(Eψ|Ay) ,

with Ay = {Y = y}. The definitionsof the binary operations ofunion and intersectionand that of
complementationare as follows:

Given two fuzzy subsets (respectively, ofCX andCY) E∗ϕ andE∗ψ , put

E∗ϕ∪E∗ψ = {Eϕ∨ψ , µEϕ∨ψ} , E∗ϕ∩E∗ψ = {Eϕ∧ψ , µEϕ∧ψ} , (E∗ϕ)′ = {E¬ϕ , µE¬ϕ} ,

where (by a fairly improper notation)ϕ∨ψ , ϕ∧ψ denote, respectively, the properties “ϕ or ψ ” , “ ϕ
andψ ” , andEϕ∨ψ = Eϕ∨Eψ , Eϕ∧ψ = Eϕ∧Eψ , while µEϕ∨ψ andµEϕ∧ψ are defined onCXY = CX×CY

by putting
µEϕ∨ψ(x,y) = P(Eϕ∨Eψ|Ax∧Ay) , µEϕ∧ψ(x,y) = P(Eϕ∧Eψ|Ax∧Ay) .

The conditional event(Eϕ ∨Eψ)|(Ax∧Ay) is true iff Ax∧Ay andEϕ ∨Eψ are both true: and the
latter event is true, by definition of disjunction, when at least one of the two events is true, that is
when “You claimϕ” or when “You claimψ”. On the other hand,Eϕ∨ψ is true when “You claimϕ
or ψ”, and this requires to putEϕ∨ψ = Eϕ∨Eψ . Similar considerations apply to the eventsEϕ∧ψ and
Eϕ ∧Eψ . Notice also the following relation:E¬ϕ 6= (Eϕ)c , where(Eϕ)c denotes thecontraryof the
eventEϕ (while the equality holds only for a crisp set); for example, the propositions “Youclaim
not young” and “You do not claim young” are logically independent. Then, whileEϕ ∨ (Eϕ)c = CX,
we have insteadEϕ∨E¬ϕ ⊆CX . We could also introduce thetautologicalpropertyT = ϕ∨¬ϕ (for
any ϕ ), which satisfies (trivially) the relationET ⊆ Ω , and thevoid propertyV = ϕ∧¬ϕ (for any
ϕ ), which satisfies the relationEV 6= /0 . Therefore, if we consider the union of a fuzzy subset and its
complement

E∗ϕ∪ (E∗ϕ)′ = {Eϕ∨¬ϕ , µEϕ∨¬ϕ}

we obtain in general afuzzy subsetof (the universe)CX.

On the other hand, it is easy to check that the complement of a crisp set is also a crisp set: in fact,
from Eϕ ∧Ax = /0 it follows Ax ⊆ (Eϕ)c = E¬ϕ , and fromAx ⊆ Eϕ it follows (Eϕ)c∧Ax = /0 , that is
E¬ϕ∧Ax = /0 .

Consider now two fuzzy subsetsE∗ϕ andE∗ψ : the rules of conditional probability give, taking into
account (1),

(2) P(Eϕ∨Eψ|Ax∧Ay) = P(Eϕ|Ax)+P(Eψ|Ay)−P(Eϕ∧Eψ|Ax∧Ay) .

Therefore, to evaluateP(Eϕ∨Eψ|Ax∧Ay) it is necessary (and sufficient) to know also the value of
the conditional probabilityp = P(Eϕ∧Eψ|Ax∧Ay), and vice versa.

By resorting to the theorem characterizing coherent conditional probability assessments, it is not
difficult to prove that theonlyconstraint for the value ofp is

max{P(Eϕ|Ax)+P(Eψ|Ay)−1, 0} ≤ p≤min{P(Eϕ|Ax),P(Eψ|Ay)} .

Three possible choices for the value of the conditional probabilityp give rise to different well-
known (see, e.g., [4]) t-norms and t-conorms :
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(a) give p themaximum possible value, that isp = min{P(Eϕ|Ax),P(Eψ|Ay)} ; then in this case
we necessarily obtain, by (2), that

P(Eϕ∨Eψ|Ax∧Ay) = max{P(Eϕ|Ax),P(Eψ|Ay)}.

This assignment corresponds to the choice of the so-calledTM andSM asT-norm andT-conorm.

(b) give p theminimum value, that is max{P(Eϕ|Ax)+ P(Eψ|Ay)−1, 0} , i.e. the Łukasiewicz
T-norm. In this case we necessarily obtain, again by (2), that

P(Eϕ∨Eψ|Ax∧Ay) = min{P(Eϕ|Ax)+P(Eψ|Ay) , 1}

i.e. the Łukasiewicz T-conorm.

(c) give p the valueP(Eϕ|Ax)P(Eψ|Ay) , that is assume thatEϕ is stochastically independent of
Eψ givenAx∧Ay. In this case we necessarily obtain

P(Eϕ∨Eψ|Ax∧Ay) = P(Eϕ|Ax)+P(Eψ|Ay)−P(Eϕ|Ax)P(Eψ|Ay) ,

i.e. the so-called probabilistic sumSP and productTP.
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We present a natural interpretation of fuzzy groups in a cumulative Heyting valued model for intu-
itionistic set thoery. With the interpretation we can deduce the essential part of the definitions of fuzzy
groups in the literature.

In the natural interpretation fuzzy sets and fuzzy relations are interpreted as sets and relations in
the model. Membership functions are related to fuzzy sets by using the canonical embedding from the
class of all crisp sets into the model, which assigns each crisp set to its check set. We can deduce most
of the standard equations or inequalities of definitions or properties on the basic concepts of fuzzy
sets or fuzzy relations ([3]). Fuzzy mappings are interpreted as mappings in the same model, and
we can obtain a characterization of fuzzy mappings with membership functions, which is different
from all known definitions. The meaning of the extension princilple by Zadeh is made clear with
the interpretation of fuzzy mappings ([5]). We can also consider notions such as operations of fuzzy
subsets of different universes, fuzzy relations and mappings between fuzzy subsets ([2]). Moreover
fuzzy equivalence relations and corresponding fuzzy partitions can be naturally considered with the
interpretation ([4]).

Therefore, as far as fuzzy sets, fuzzy relations, etc. are considered as extensions of crisp sets,
relations etc., this interpretation seems to be most natural.

In the following we first recall briefly some properties on the canonical embedding and fuzzy
mappings, then we consider fuzzy subgroups of a crisp group and present a characterization of fuzzy
subgroup with membership functions, which is almost the same as the defining equations in the liter-
ature. Our interpretation has its origin from [1], where the interpretation is applied only to elements
of a group.

Let H be a complete Heyting algebra andVH be the cumulativeH-valued model. The Heyting
value‖ϕ‖ is defined for every sentenceϕ of VH . Foru,v∈VH , u andv aresimilar iff ‖u = v‖= 1.

For every crisp setx in V, x̌∈VH is defined recursively by:

D(x̌) = {y̌;y∈ x}, Ex̌ = 1, x̌ : y̌ 7−→ 1.

We call x̌ the check set of x. The check set of a pair (resp. an ordered pair or a cartesian product)
of crisp sets is exactly identical with the pair (resp. the ordered pair or the cartesian product) of the
check sets of the crisp sets.

Proposition 1. Supposeϕ(a1, · · · ,an) is a bounded formula of VH and x1, · · · ,xn ∈V. Then

ϕ(x1, · · · ,xn) holds iff ‖ϕ(x̌1, · · · , x̌n)‖= 1, and

¬ϕ(x1, · · · ,xn) holds iff ‖ϕ(x̌1, · · · , x̌n)‖= 0.
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Basic operations such as intersection, union, and complement of sets, composition and inverse of
relations (and mappings) are naturally defined in the model.

Every setA in VH is called anH-fuzzy set, and for a crisp setX every subset inVH of the check set
X̌ is called anH-fuzzy subset of X. The mappingµA : X−→H; x 7−→ ‖ x̌∈A‖ is called themembership
function of A on X. There is a natural correspondence betweenH-fuzzy subsets ofX and mappings
from X to H, which preserves order and basic set operations.

An H-fuzzy subsetR of X×Y is called anH-fuzzy relation from X to Y. An H-fuzzy mapping
from X to Yis a mapping fromX̌ to Y̌ in VH .

Lemma 2. Letϕ : X−→Y be a crisp mapping between crisp sets. Then the check setϕ̌ is an H-fuzzy
mapping from X to Y, anďϕ(x̌) is similar to the check set ofϕ(x) for every x∈ X.

In the model various algebras such as groups, rings etc. can be considered. Here a crisp group
means a crisp set which is a group with suitable operations. Then the canonical embedding preserves
the group structre as following.

Proposition 3. For every set G, G is a crisp group iff̌G is a group in VH .

The check sets of the operations (multiplication, inverse, and unit) onG become the corresponding
operations on the check setǦ by Proposition 1 and Lemma 2. Since the axioms of group are bounded,
Proposition 1 is used in the proof.

For a crisp groupG, a setK in VH is called anH-fuzzy subgroup of Gif ‖K is a subgroup of̌G‖=
1. Obviously anH-fuzzy subgroup ofG is anH-fuzzy subset ofG.

Theorem 4. Let G be a crisp group with the unit e, K be an H-fuzzy subset ofǦ, and µK be the
membership function of K on G. Then K is an H-fuzzy subgroup of G iff it satisfies the following three
conditions:

(1) µK(x)∧µK(y)≤ µK(xy) (∀x,y∈ X),
(2) µK(x)≤ µK(x−1) (∀x∈ X),
(3) µK(e) = 1.

In general, a subgroupK of a groupG is normaliff xy∈K impliesyx∈K for everyx,y∈G. Then
in the theoremK is a normal subgroup of̌G in VH iff it additionally satisfies the following condition:

(4) µK(xy) = µK(yx) (∀x,y∈ X).

Theorem 5. Let G be a crisp group with the unit e and µ be a crisp mapping from G to H. Suppose
µ satisfies the following three conditions:

(1) µ(x)∧µ(y)≤ µ(xy) (∀x,y∈ X),
(2) µ(x)≤ µ(x−1) (∀x∈ X),
(3) µ(e) = 1.

Then there is an H-fuzzy subgroup K of G such that µ= µK, where µK is the membership function of
K on G.
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In the theorem ifµ also satisfies the following condition:

(4) µ(xy) = µ(yx) (∀x,y∈ X),

then theH-fuzzy subgroupK becomes normal.
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Let M = (M,≤,∧,∨,∗) be aGL-monoid with universal upper and lower bounds 1 and 0 resp. and let
7→ : E×E −→ E be the corresponding residuation. Following U. Höhle [1] by a(global) M-valued
equality on a set Xwe call a mappingE : X×X −→M such that:

1. E(x,x) = 1 ∀x∈ X;

2. E(x,y) = E(y,x) ∀x,y∈ X;

3. E(x,y)∗E(y,z))≤ E(x,z) ∀x,y,z∈ X.

An M-valued equalityE is calledseparatedif E(x,y) = 1 impliesx = y. In caseE satisfies at least the
first two of these conditions, it will be called anM-valued similarity relation.

A many-valued, or anM-valued set is a pair(X,E) whereX is a set andE is anM-valued equality
on it. Let SET(M) denote the category whose objects areM-valued sets and whose morphisms are
mappingsf : (X,EX) −→ (Y,EY) s.t. EX(x,x′) ≤ EY( f (x), f (x′)) for all x,x′ ∈ X (cf [1]), and let
SET(Ms) denote its full subcategory consisting of separatedM-valued sets. In some cases we restrict
the set of values whichE can accept by a complete submonoidK ⊂ M. The corresponding full
subcategory ofSET(M) is denoted bySET(M,K).

Further, letL be a complete sublattice ofM. An L-subsetA of (X,E) is calledextensionalif
A(x) ∗E(x,x′) ≤ A(x′) for all x,x′ ∈ X. Let LX (resp. L(X,E)) denote the family of all (resp. all
extensional)L-subsets ofX.

GivenL-subsetsA,B of X we definethe degree of similarityas follows:

E(A,B) = I (A,B)∧ I (B,A) whereI (A,B) :=
∧
x

(
A(x)7→

∨
x′

(E(x,x′)∗B(x′))
)
.

Proposition 1. The mappingE : LX×LX −→ M thus defined is an M-valued similarity relation on
LX and its restriction to L(X,E) is an M-valued equality.

Note that ifE is crisp andL = M = K, thenE is the natural equality relation onLX considered in
[3, p. 157]. On the other hand for anyM-valued equalityE the inducedM-valued equalityE when
restricted toL(X,E) also coincides with the natural equality.

Given a morphismf : (X,EX)−→ (Y,EY) in SET(M) let f−→ : LX −→ LY be the corresponding
(forward)L-powerset operator (see e.g. [5]).

Proposition 2. If f : (X,EX)−→ (Y,EY) is a morphism inSET(M) and L is completely distributive,
thenEX(A,B)≤ EY

(
f−→(A), f−→(B)

)
∀A,B∈ LX.
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Proposition 3. If f : (X,EX) −→ (Y,EY) is a morphism inSET(M,K) and C,D ∈ L(X,E), then
EY(C,D)≤ EX(C◦ f ,D◦ f ).

Proposition 4. Let f : (X,EX) −→ (Y,EY) be a morphism inSET(M,K) and L be completely dis-
tributive. Then for any extensional L-sets A,B∈ L(X,E) it holds f→(A)∗E(A,B)≤ f→(B).

Let L-SET(M,K) denote the category whose objects are quadruples(X,E,LX,E) where(X,E) ∈
Ob(SET(M,K)), LX is theL-powerset ofX andE is the similarity relation onLX induced byE and
whose morphisms are pairs( f , f→) where f : (X,EX) −→ (Y,EY) is a morphism inSET(M,K) and
f→ : (LX,EX) −→ (LY,EY) is the corresponding powerset operator. Further, letEL-SET(M,K) be
the full subcategory ofL-SET(M,K) whose objects are of the form(X,E,L(X,E),E).

Theorem 5. By assigning to an M-valued set(X,E) the quadrupleΦL(X,E) := (X,E,LX,E) and
assigning to a morphism f: (X,EX) −→ (Y,EY) the pairΦL( f ) := ( f , f→) we define a functorΦL :
SET(M,K)−→ L−SET(M,K). Besides, if A,B∈ L(X,E), thenΦL( f )(A)∗E(A,B)≤ΦL( f )(B). The
forgetful functorΨL : L−SET(M,K) −→ SET(M,K) defined byΨL(X,E,LX) = (X,E) on objects
andΨL( f , f→) = f on morphisms is obviously left inverse ofΦL.

Recall that anM-valued topology on theL-powersetLX or an(L,M)-topology on a setX for short
is a mappingT : LX −→M such that

1. T (0X) = T (1X) = 1;

2. T (U ∧V)≥ T (U)∧T (V) ∀U,V ∈ LX;

3. T (
∨

i∈I (Ui)≥
∧

i∈I T (Ui) ∀{Ui | i ∈ I} ⊂ LX.

A mapping f : (X,TX) −→ (Y,TY) is called continuous ifTX(V ◦ f ) ≥ TY(V) ∀V ∈ LY. Theory of
M-valuedL-topologies in case whenE is crisp (and mostly whenM = L) was developed in [3], [2],
[4], and in other works.

Since in our case the ground categoriesL−SET(M,K) and EL−SET(M,K) are defined on
the basis of many-valued sets(X,E), our pricipal interest concerns extensional topologies, that is
topologies such that

T (U)∗E(U,V)≤ T (V) ∀U,V ∈ LX (resp.U,V ∈ L(X,E)).

Sometimes we restrict the codomain ofT by a complete sublatticeN of M.

[Lattices of (L,N)-topologies]Let (X,E) be an object ofSET(M,K) and letTK
M(L,N,X) denote the

family of all (L,N)-topologies on it. Let

T1� T2 iff T1(A)≤ T2(A) for all A∈ LX.

ThenTK
M(L,N,X) endowed with relation� becomes a complete lattice, its upper bound and lower

bounds are respectively the discrete and indiscrete(L,N)-topologiesTdis andTind Further, since in-
tersection of a family of extensional(L,N)-topologies is extensional, the familyETK

M(L,N,X) of all
extensional(L,N)-topologies on(X,E) is a complete sublattice ofTK

M(L,N,X).

[Generation of (L,N)-topologies]Given (X,E) ∈ Ob(SET(M,K)) and a mappingS : LX −→ N let
TS (resp.ETS ) denote the family of all (resp. all extensional)(L,N)-topologies on(X,E) such that
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S(A) ≤ T (A) for all A∈ LX. The infimumTS of TS belongs toTS and hence is the minimal ele-
ment of this family;S is called a subbase of the(L,N)-topologyTS . Respectively, the infimumTES
of ETS is the minimal element of this family; in this caseS is called a subbase of the extensional
(L,N)-topologyTES .

We define categoriesL-TOPN(M,K), L-ETOPN(M,K), EL-TOPN(M,K) andEL-ETOPN(M,K) as
follows:

1. Objects ofL-TOPN(M,K) are pairs(X ,T ) whereX =(X,E,LX,E) is an object ofL-SET(M,K)
andT : LX −→ N is an(L,N)-topology on it.

2. Objects ofEL-TOPN(M,K) are pairs(X ,T ) whereX = (X,E,LX,E) is an object ofEL-
SET(M,K) andT : L(X,E) −→ N is an(L,N)-topology on it.

3. Objects ofL-ETOPN(M,K) are pairs(X ,T ) whereX =(X,E,LX,E) is an object ofL-SET(M,K)
andT : LX −→ N is an extensional(L,N)-topology on it.

4. Objects ofEL-ETOPN(M,K) are pairs(X ,T ) whereX = (X,E,L(X ,E),E) is an object ofEL-
SET(M,K) andT : LX −→ N is an extensional(L,N)-topology on it.

As morphisms between(X ,TX) and(Y ,TY) in all these categories we take those morphisms( f , f→) :
X −→ Y which are continuous with respect to the corresponding(L,N)-topologies.

Example (1) The category2-TOP2(2s, 2) is the category of ordinary topological spaces.
(2)The categoryL-TOPL(Ls,2) is the categoryL-FTOP studied in [3];
(3) The categoryEL-TOPL(Ms, 2) is isomorphic to the categoryEL-ETOPL(Ms,2) and in caseM = L
it is the categoryEL-FTOP introduced in [3].
(4) The categoryL-TOP2(Ms,2) is isomorphic to the categoryL-TOP of Chang-GoguenL-topological
spaces.

Proposition 6. Let(X1,T1) :=(X1,E1,LX1,T1) and(X2,T2) :=(X2,E2,LX2,T2) be objects of L-TOPN(M,K)
and( f , f→) : X1−→ X2 be a morphism in L-SET(M,K). Further, letS : LX2 −→ N be a subbase for
T2. Then the following are equivalent:

1. ( f , f→) : (X1,T1)−→ (X2,T2) is continuous;

2. S(B)≤ T1(B◦ f ) for every B∈ LX2.

Proposition 7. Let ( f , f→) : X1−→ X2 be a morphism in L-SET(M,K) and letT1 be an extensional
(L,N)-topology onX1. Then the mappingR : L(X2,E2) −→ N defined byR (B) := T1(B◦ f ) for all
B∈ L(X2,E2) is an extensional(L,N)-topology onX2,E2,L(X2,E2),E2).

Theorem 8. (a) Category L-TOPN(M,K) is topological over the ground category L-SET(M,K)
with respect to the forgetful functorF : L-TOPN(M,K) −→ L-SET(M,K).

(b) CategoryEL-TOPN(M,K) is topological over the ground categoryEL-SET(M,K) with respect
to the forgetful functorF : EL-TOPN(M,K) −→ EL-SET(M,K).

Theorem 9. (a) L-ETOPN(M,K) is a coreflective subcategory of the category L-TOP(M,K).

(b) EL-ETOPN(M,K) is a coreflective subcategory of the categoryEL-TOP(M,K)
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Much of the existing work on categorical foundations for Fuzzy sets deals with a single category of
fuzzy sets with values in a particular lattice with sufficient a dditional properties to capture the con-
nectives used in fuzzy propositional logic. Goguen’s early characterization of fuzzy set categories
[1], my work relating fuzzy set categories to topoi and quasitopoi [10, 11, 12, 13] (particularly using
the Higgs [2] approach to sheaves on a complete Heyting algebra and the fuzzy powerset of Pultr [9]
as starting point2), Höhle’s work on structures based on MV algebras, and further consideration of
monoidal structures and weak classification of subobjects of various kinds [4, 5, 3] all fix the lattice
in which the fuzzy sets are to have their truth values. The categories we have looked at all allow for
a certain amount of internalization of the higher order logic of fuzzy sets with values in a particular
complete lattice ordered semigroup– including both quantification and powerobject formation paral-
leling, though somewhat more difficult because of non-uniqueness concerns– paralleling the theory in
topoi.

At the Linz seminar in 2000 I presented some preliminary work on properties of the lattice change
functors between categories of fuzzy sets using the Goguen definition and the predicate logic struc-
ture given by unbalanced subobjects and a second monoidal structure arising from a t-norm as in [12].
Through participation in the Linz seminar I have become aware of Rodabaugh’s work in fuzzy topol-
ogy in which a much larger category is considered in fuzzy topologies with values in many different
lattices are all objects in a single category and constructions are allowed to change lattice to solve
topological problems. That suggested to me that it might be valuable to look at a single kind of struc-
ture incorporating categorical viewpoints on the propositional and predicate logic of fuzzy sets over
many different lattices. Bart Jacobs’s work on the use of fibrations as a framework for categorical
logic [6] suggested to me that looking at a double fibration (over bothSetsandClosgmight combine
the structures in categories of fuzzy sets into one rich structure. This paper takes a different approach,
making a structure out of several closely linked categories rather than putting all of the objects into a
single category.

This paper presents an approach to predicate logic in a fuzzy setting using a categorical fabric.
This structure has two dimensions woven together: one dimension connects the predicates of different
types (where types are taken from the “warp” category, oftenSetsfor us) but with a fixed proposi-
tional logic given by a complete lattice; the other dimension connects predicates of a single type with
variation of the lattice for propositional logic, making a category of lattices of possible truth values
into the “weft” of our fabric.

If we restrict our attention to fuzzy predicate logic overSetswith values in a particular latticeL for
each setSwe get a categoryPL(S) (typically a partial order) of predicates aboutS. These categories
of predicates are connected to each other using trios of functors: for any functionf : S−→ T there
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are functorsf ∗ : PL(T)−→ PL(S), ∃ f : PL(S)−→ PL(T) and∀ f : PL(S)−→ PL(T) with ∃ f−| f ∗−|∀ f .
Furthermore, a pullback square inSets

S
f−→ T

h ↓ pull ↓ g

U
k−→ V

gives rise to the Beck conditions

∃h f ∗ = k∗∃g and∀h f ∗ = k∗∀g

as in the internal logic of topoi. This representation of predicate logic has its roots in the early work
of Lawvere in [7, 8].

The truth functional nature of fuzzy sets shows up in our ability to recapture the lattice of truth
valuesL from the structures on the terminal> (a one element set) and then use the fact that the
terminal is a generator inSetsto recoverPL(S) as a colimit of the diagram consisting of the functors
paq∗ : PL(S)−→ PL(>) for all of the functionspaq :>−→ S.

If we restrict our attention to a particular setS and look at how variation in the propositional
logic affects predicates we again get from a suitable function of latticesλ : L−→ L′ a trio of functors
λ↑,λ◦,λ↓. In the cases of fuzzy sets with values in the lattices these have the following effects:

λ◦ : PL(S)−→ PL′(S) takesα : S−→ L to λ◦α : S−→ L′

λ↑ : PL′(S)−→ PL(S) takesβ : S−→ L′ to s 7→
∨
{l ∈ L|λ(l)≤ β(s)}

λ↓ : PL′(S)−→ PL(S) takesβ : S−→ L′ to s 7→
∧
{l ∈ L|λ(l)≥ β(s)}

With these definitionsλ↑ is the smallest left inverse forλ◦ andλ↓ is the largest left inverse. In partic-
ular, if λ preserves

∨
thenλ↑−|λ◦; if λ preserves

∧
thenλ◦−|λ↓.

If we think of all of the categoriesPL(S) as objects in a category where the arrows are functors
between them, then the assignment ofPL(S) to a setSwith functors f ∗ assigned to functionsf : S−→
T gives a contravariant functor for each latticeL. All of the functorsλ↓, λ◦, andλ↑ then give natural
transformations. Naturality of any of these with the covariant functors using∃ f or ∀ f will require that
λ have further preservation properties or that the relevant lattices be completely distributive.
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In fuzzy control system the system state is described by a fuzzy rule base system, and the relation-
ship between fuzzy rule base system, system output and system input is modeled by compositional
rule of inference. The first successful practical applications of fuzzy sets were realized by means of
the Mamdani inference [12], but the Mamdani’s approach is not fully coherent with the paradigm of
approximate reasoning [1, 11]. In the fuzzy rule based control theory and usually in the approximate
reasoning the covering over of fuzzy rule base input and rule premise of a rule determine the im-
portance of that fuzzy rule and the rule output, too. The practical realization of that notion usually
depends on the application. A very thorough overview of mathematical background of that principle
can be found in [4, 7]. The Mamdani type controller is based on Generalized Modus Ponens (GMP)
inference rule, and the rule output is given with a fuzzy set, which is derived from rule consequence,
as a cut of them. This cut is the generalized degree of firing level of the rule, considering actual rule
base input, and usually it is the supremum of the minimum of the rule premise and rule input (calcu-
lating with their membership functions, of course). In fact the uninorms [5] offer new possibilities in
fuzzy approximate reasoning, because the low level of covering over of rule premise and rule input has
measurable influence on rule output as well. In some applications the meaning of that novel approach,
has practical importance. The modified Mamdani’s approach , with similarity measures between rule
premises and rule input, does not rely on the compositional rule inference any more, but still satisfies
the basic conditions supposed for the approximate reasoning for a fuzzy rule base system [14]. The
using of distance based operators in fuzzy logic control theory (FLC) was described in [13]. From
mathematical point of view, and having results from [3], we can introduce residuum-based inference
mechanism ([9]) using distance-based uninorms.

The distance-based operators can be expressed by means of the min and max operators. The
modification of the distance based operators from [10] is related to the boundary condition for the
neutral elemente. The maximum distance minimum operator with respect toe∈]0,1] is defined by

maxmin
e =


max(x,y) if y > 2e−x,
min(x,y) if y < 2e−x,
min(x,y) if y = 2e−x.

The minimum distance minimum operator with respect toe∈ [0,1[ is defined by

minmin
e =


min(x,y) if y > 2e−x,
max(x,y) if y < 2e−x,
min(x,y) if y = 2e−x.
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The maximum distance maximum operator with respect toe∈]0,1] is defined by

maxmax
e =


max(x,y) if y > 2e−x,
min(x,y) if y < 2e−x,
max(x,y) if y = 2e−x.

The minimum distance maximum operator with respect toe∈ [0,1[ is defined by

minmin
e =


min(x,y) if y > 2e−x,
max(x,y) if y < 2e−x,
max(x,y) if y = 2e−x.

The distance-based operators have the following properties

• maxmin
e and maxmax

e are uninorms,

• the dual operator of the uninorm maxmin
e is maxmax

1−e, and

• the dual operator of the uninorm maxmax
e is maxmin

1−e.

In [3] and [2] there were studied two important classes of uninorms: the class of left-continuous
and the class of right-continuos ones. We can find there also the properties of the conjunctive left-
continuous idempotent uninorm with neutral elemente∈]0,1] , and of the disjunctive right-continuous
idempotent uninorm with neutral elemente∈ [0,1[ with a super-involutive decreasing unary operator
g. Based on [3] and [2], we conclude: Operator maxmin

0.5 is a conjunctive left-continuous idempotent
uninorm with neutral elemente∈]0,1] with the super-involutive decreasing unary operatorg(x) =
2e− x = 1− x. Operator minmax

0.5 is a disjunctive right-continuous idempotent uninorm with neutral
elemente∈]0,1] with the sub-involutive decreasing unary operatorg(x) = 2e−x = 1−x.

The paper [3] contain general theoretical results related the residual implicators of uninorms,
based on residual implicators of t-norms and t-conorms. Residual operatorRU , considering a uninorm
U can be represented in the following form for all(x,y) ∈ [0,1]2

RU(x,y) = sup{z∈ [0,1] |U(x,z)≤ y}.

Uninorms with neutral elementse = 0 ande = 1 are t-norms and t-conorms, respectively, and
related residual operators are investigated in [3, 5, 6, 8, 9]. If we consider a uninormU with neutral
elemente∈]0,1[ , then the binary operatorRU is an implicator if and only if(∀z∈]e,1[)(U(0,z) = 0)
. The residual implicatorRU of uninormU is denoted byImpU . According to Theorem 8. in [3]
we introduce implicator of the distance based operator maxmin

0.5 . Operator maxmin
0.5 is a conjunctive

left-continuous idempotent uninorm with the unary operatorg(x) = 1−x, and its residual implicator
Impmaxmin

0.5
is given by

Impmaxmin
0.5

=
{

max(1−x,y) if x≤ y,
min(1−x,y) elsewhere.

(1)

In the theory of approximate reasoning introduced by Zadeh in 1979, the knowledge of system
behavior and system control can be stated in the form of if-then rules. In Mamdani-based sources it
was suggested to represent an

if x is A theny is B
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rule simply as a connection (for example as a t-norm,T(A,B), specially min) between the so called
rule premise:x is A and rule consequence:y is B. Let x be from universeX, y from universeY, and
let x andy be linguistic variables. Normal fuzzy setA on X ⊂ R finite universe is characterized by its
membership functionµA : X −→ [0,1], and normal fuzzy setB on universeY ⊂ R is characterized by
its membership functionµB : Y −→ [0,1]. The Generalized Modus Ponens reflects the real influences
of the implication or connection choice on the inference mechanisms in fuzzy systems. Usually the
general rule consequenceB′i(y) for ith rule from a rule system, for rule base inputA′(x) is obtained by

B
′
i(y) = sup

x∈X
(T(A′(x), Imp(Ai(x),Bi(y))). (2)

The FLC rule base output is constructed as a crisp value calculated with a defuzzification model, from
rule base output

B
′
out(y) = S(B

′
n,S(B

′
n−1,S(. . . ,S(B

′
1,B

′
2,B

′
1)))).

Rule base output is an aggregation of all rule consequencesB
′
i(y) from the rule base (i = 1,2, . . . ,n).

As aggregation operator, t-conorms are usually used.

Although the minimum plays an exceptional role in fuzzy control theory, there are situations re-
quiring new models. In system control one would intuitively expect: to make the powerful coincidence
between fuzzy sets stronger, and the weak coincidence even weaker. The distance-based operators
group satisfy these properties. The papers [13, 14] contain the basics of approximate reasoning with
distance-based operators using Degree of Coincidence(Doc) in the inference mechanism.

Let we consider residuum-based approximate reasoning and inference mechanism for special class
of distance based operators. Hence, and because of the results from (2), we can consider the general
rule consequence forith rule from a rule system as

B
′
i(y) = sup

x∈X
(maxmin

0.5 (A′(x), Impmaxmin
0.5

(Ai(x),Bi(y))),

or using (1)

B
′
i(y) = sup

x∈X

{
maxmin

0.5 (A′(x),max(1−Ai(x),Bi(y)) if Ai(x)≤ Bi(y),
maxmin

0.5 (A′(x),min(1−Ai(x),Bi(y)) elsewhere.
(3)

The crisp rule base output is constructed also with a defuzzyfication model, from rule base output
B
′
out by (3). As aggregation operator for rule consequences in this case, dual operator maxmax

0.5 of the
maxmin

0.5 can be used.

Taken into account Proposition 13 from [3], it can be conclude, that conjunctive left-continuous
idempotent uninorm maxmin

0.5 and its implicatorImpmaxmin
0.5

satisfy the inequality

maxmin
0.5 (A′(x), Impmaxmin

0.5
(Ai(x),Bi(y))≤ Bi(y)

if A′(x) = Ai(x) for all x∈ X.
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Fuzzy deductive and inductive systems with similarity based unification
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We will present mathematical results on deductive and inductive aspects of different rule based sys-
tems of fuzzy logic motivated by computer science applications and related to fuzzy logic program-
ming (FLP), fuzzy databases, fuzzy inductive logic programming (FILP) and fuzzy similarity based
unification. We refer on results obtained with several coauthors. Our results are mainly generaliza-
tions of older results of many other researchers in the direction of extending them to a wider class of
operators. In the talk we will try to put them into a suitable historical perspective (which we cannot
list completely here in this extended abstract).

We split our presentation to results on rule based systems and to results on fuzzy similarity based
unification.

In the classical logic the implicationH ← B is equivalent to the clauseH ∨¬B. This is no more
true in fuzzy logic in general. So, it is natural to study two types of rule systems – those where rules
are implications and those where rules are clauses ([2]).

Implication rule systems without negation.We will study an FLP system based on the fuzzy
modus ponens for weighted formulas

(B,b),(H← B, r)
(H,CI (b, r))

whereI is the truth function of the implication←, andCI is the residual conjunctor (not necessary a
t-norm). The FLP computation can be based on the backward use of this rule, namely, starting with
query ?−H, having the rule(H← B, r) we proceed with query ?−CI (B, r), and having the fact(B,b)
we finish with the computed answerCI (b, r). The notion of a correct answer is based on satisfaction of
truth functional fuzzy logic in narrow sense ([4]). To model the aggregation of partial results, bodies
of our rules have the form @(B1, . . . , ...Bn).

We prove ([10]) a Pavelka-like completeness results for implication rule based FLP systems with-
out negation under condition that allCI ’s and aggregations @ in body are left continuous.

We show ([6]) that FLP are equivalent to a variant of generalized annotated programs GAP under
following transformations:

FLP (H←@(B1, . . . ,Bn), r) transform to GAPH : CI (@(x1, . . . ,xn), r)← B1 : x1& . . .&Bn : xn

whereCI (@(x1, . . . ,xn), r) is here considered as an head annotation term and

GAPH : f (x1, . . . ,xn)← B1 : x1& . . .&Bn : xn transform to FLP(H←@f (B1, . . . ,Bn),1)
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where @f is a body aggregation induced by the head annotation termf .

We study a fuzzy relational algebra based on this FLP and discuss join evaluation strategies for
finding best, top-k, threshold andε-best answer based on an upper residuation operator.

A model of fuzzy inductive logic programming ([11]) is based on a multiple use of classical
ILP system learning the annotation term of the transformed GAP program for a graded classification
example. A comparison with classification trees on a small example will be given. A problem of
learning with qualitative condition will be formulated.

Our acquaintance is that FLP systems are more suitable for deductive (database) applications and
GAP systems are more suitable for inductive tasks. Equivalence between FLP and GAP yields a
system with unified deductive and inductive part. Informally, we can say, that what is in FLP hidden
in the aggregation operator of the body, this is in the GAP represented by the annotation term of the
head of the rule.

We will discuss connections of FLP, and more directly of GAP, to Bayesian networks, where the
probability production operator corresponds to the head annotation term.

Fuzzy resolution for clausal rule systems.We study operatorsf∨ for which the fuzzy resolution
rule with weighted clauses

(γ∨α,x),(β∨¬α,y)
(γ∨β, f∨(x,y))

is sound and compare it to results in the deMorgan logic with involutive negation ([1,5]), approximate
reasoning, possibilistic logic and different forms of residuation and fuzzy operators. HavingD the
truth function of the disjunction andRD the corresponding residual, for the operator

f∨(x,y) = inf
a∈[0,1]

(D(RD(a,x),RD(1−a,y)))

we prove the soundness result ([9]).

Similarity based unification.Based on the presented model of FLP ([7]), a similarity based uni-
fication approach is constructed by adding axioms of fuzzy equality to a fuzzy logic program. Con-
nections to several max-min similarity based systems ([3], [8]]) are discussed. Several models of
generating fuzzy similarities are presented (e.g. from the geometry of the sample space, from fuzzy
sets of linguistic expressions, ...).

From a point of view of flexible querying systems, we consider the object-attribute model. We
distinguish, whether the data type of the attribute value is an element of the attribute domain from the
case when the data type is a subset of the domain. In the case when a fuzzy set acts as an attribute
value of data type being an element of the domain, we discuss several possibilities of defining the
degree of unification (e.g. degree of fuzzy equality of fuzzy sets, measure theoretic and metric space
approach, generalization of the probability of the equality of two random variables, ...).

We will illustrate our approach on several small illustrative examples. Several problems will be
formulated.

References

[1] D. Butnariu, E. P. Klement, S. Zafrany:On triangular norm-based propositional fuzzy logics,
Fuzzy Sets and Systems69 (1995), 241–295.

214



[2] D. Dubois, J. Lang, H. Prade:Fuzzy sets in approximate reasoning. Part 2: Logical approaches,
Fuzzy Sets and Systems40 (1991) 203–244

[3] F. Formato, G. Gerla, M. I. Sessa:Similarity based unification, Fund. Inform.41(2000) 393–414

[4] P. Hájek:Metamathematics of fuzzy logic, Kluwer, Dodrecht, (1999)

[5] E. P. Klement, M. Navara:A survey of different triangular norm-based propositional logics,
Fuzzy Sets and Systems101(1999) 241–251
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