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2 Mikkeli University of Applied Sciences
FI-50100 Mikkeli, Finland

3 Illinois Wesleyan University
Bloomington, IL 61702-2900, U.S.A.

Fuzzy mathematics often starts by taking a piece of classical mathematics and in-
troducing fuzziness to existing mathematical concepts, and then proceeds to a more
essential adoption of a fuzzy perspective. Our paper explores this progression for two
important monads: the powerset monad and its generalizations to fuzzy powerobjects,
and the term monad and its generalization to using fuzzy sets of constants. This brings
together two lines of research previously discussed at Linz.The powerset and its fuzzy
analogs are important in the development of topology in a fuzzy world and the term
monad and its fuzzy analogs are vital in understanding fuzzy computer science.

We work with fuzzy sets with values in a completely distributive lattice L equipped
with a semigroup operator ? which distributes over both

V
and

W
. Such a lattice will

have residuation for both ? and ∧, we write a→− for the right adjoint to a ?− and
a⇒− for the right adjoint to a∧−. This generalizes the setting of working over the
unit interval with a continuous t-norm.

1 Categories of increasing fuzziness

Most of mathematics is done in the category Set whose objects are sets and morphisms
are mappings (functions). One step in fuzzifying this is to replace subsets of A with
functions from A to L. This still lives in the category Set: LA is an object of Set and L-
sets α : A→ L are just elements of LA. To increase incorporate fuzziness from the start
we can work in the category Set(L) introduced by Goguen in [6]. Others have worked
in categories allowing multiple lattices or in categories generalizing the category of sets
with relations instead of functions.

The category Set(L) has as objects pairs (A,α) where α : A→ L and as morphisms
f : (A,α)→ (B,β) mappings f : A→ B such that β( f (a)≥ α(a) for all a ∈ A.

It is known that Set(L) is topological over Set and has a monoidal structure using
(A,α)⊗(B,β) = (A×B,α?β) and products using (A,α)×(B,β) = (A×B,α∧β). Pultr
[8] showed how to get exponentials for both. Because Set(L) is topological, it has all
limits and colimits [1]. The category Set(L) is also a quasitopos, but not a topos. As
pointed out in [9] the logic studied in fuzzy set theory is the logic of unbalanced sub-
objects (those with underlying map the identity) rather than the logic in the quasitopos
structure. This observation informs our choice of fuzzy powerobject functor.



There is a lifting functor C : Set→ Set(L) taking A to the crisp fuzzy set (A,>). On
functions this functor is the identity.

There are three natural functors from Set(L) to Set to consider:

1. the underlying set functor U taking (A,α) to A and f : (A,α)→ (B,β) to f
2. the full members functor F taking (A,α) to {a|α(a) =>}. A function f : (A,α)→

(B,β) takes full members to full members, so the action of this functor on maps is
restriction to the full members.

3. the support functor S taking (A,α) to {a|α(a) >⊥}. Again maps f : (A,α)→ (B,β)
restrict to functions on the supports since we have β( f (a))≥ α(a) >⊥.

We get UC = FC = SC = id and U−−| C−−| F.

2 Monads with increasing fuzziness

2.1 Powerobject monads

As mentioned in Section 1, it is possible to replace a set A by LA and still work in
Set. The powerset monad Lid = (Lid ,η,µ), from Manes [7], can be seen as the first
step to introduce fuzziness in a categorical setting: The covariant powerset functor
Lid : Set→ Set is obtained by LidA = LA, and, following [5], for a morphism f : A→ B
in Set, by defining for all y∈B, Lid f (α)(y) =

W
f (x)=y α(x). The natural transformations

ηA : A =⇒ LidA by ηA(x)(x′) => if x = x′ and ⊥ otherwise, and µA : LidLidA =⇒ LidA
by µA(A)(x) =

W
β∈LidA α(x)∧A(β). In [7] it was shown that Lid = (Lid ,η,µ) is a

monad.
Another variant of this monad uses a ? in the definition of µ:

µ?
X (A)(x) =

_
A∈LidX

A(x)?A(A)

This can be made more fully fuzzy by considering the internal fuzzy powerobject
functor from Set(L) to Set(L) which has action on objects given by

U?(A,α) = (LA,π(A,α)) where π(A,α)( f ) =
^
a∈A

( f (a)→ α(a))

Notice that one of the options for ? is ∧, in which case we write⇒ for the residuation
and we get

U∧(A,α) = (LA,ξ(A,α)) where ξ(A,α)( f ) =
^
a∈A

( f (a)⇒ α(a))

There are three functors U? : Set(L)→ Set(L) giving unbalanced powerobjects as ob-
jects of Set(L): one contravariant (inverse image) and its covariant right adjoint and
(corresponding to direct image) left adjoint taking f : (A,α)→ (B,β) to ∃ f where

∃ f (A,α′)(b) =
_

f (a)=b

α
′(a)



The covariant internal unbalanced powerobject monad uses the functor U? with ∃ f
for its action on maps.

The monadic structure comes from

η(A,α) : (A,α) =⇒U?(A,α)

where

η(A,α)(a)(t) =
{
> if t = a
⊥ otherwise

Notice that the degree of membership of η(A,α)(a) in U(A,α) is^
t
(η(A,α)(a)(t)→ α(t)) =>→ α(a) = α(a)

so η(A,α) is a map in Set(L).
The union is given by the natural transformation

µ?
(A,α)(U

?)2(A,α) =⇒U?(A,α)

with
µ?

A(LA,τ)(a) =
_

f

(τ( f )? f (a))

Proposition 1. (U?,η,µ?) is a monad.

We can use the crisp functor to relate these monads on Set and Set(L). We get
C(νA) = ηC(A) and µ? : U?(U?(C(A)) = C

(
LLA

)
→ U?(C(A)) = C

(
LA

)
is C(µ? :

LLA → LA).

2.2 Term monads

It is useful to adopt a more functorial presentation of the set of terms, as opposed to
using the conventional inductive definition of terms, where we bind ourselves to certain
styles of proofs. The term monad over Set is used, for example, in [4, 5]. In [7] it was
shown that TΩ = (TΩ,ηTΩ ,µTΩ) is a monad.

The first step to generalize term monad to fuzzy terms was to compose the monads
Lid and TΩ. This requires a distributive law in the form of a natural transformation
σ : TΩLid =⇒ LidTΩ.

To introduce the term monad in Set(L) we set id0(A,α) = ({∅},>) and idn(A,α) =
(idnA, idn(α), where idn(α)(a1, . . . ,an)=

Vn
i=1 α(ai). When we need the monoidal struc-

ture we replace ∧ by ?. A constant Set(L)- covariant functor (A,α)Set(L) assings any
(X ,ξ) to (A,α) and all morphisms f : (X ,ξ)→ (Y,υ) to the identity morphism id(A,α).
If {(Ai,αi) | i ∈ I} is a family of L-sets then the coproduct is

F
i∈I(Ai,αi).

Let k be a cardinal number and {(Ωn,ϑn) | n≤ k} be a family of L-sets. We haveG
n≤k

(Ωn,ϑn)Set(L)× idn(X ,ξ) =
([

n≤k

{n}×Ωn× idnX ,α
)
, (1)



where α(n,ω,(x)i≤n) = ϑn(ω)∧ idn(ξ)((xi)i≤n), ω ∈Ωn and (xi)i≤n ∈ Xn.
Consider (Ω,ϑ) =

F
n≤k(Ωn,ϑn) as a fuzzy operator domain. The term functor over

Set(L) can now be defined by transfinite induction. Let T 0
(Ω,ϑ) = id and T 1(X ,ξ) be the

right side of the equation 1. Define

T ι

(Ω,ϑ)(X ,ξ) =
G
n≤k

(Ωn,ϑn)Set(L)× idn
_

0<κ<ι

T κ

(Ω,ϑ)(X ,ξ)

for each positive ordinal ι. Finally, let T(Ω,ϑ)(X ,ξ) =
F
{T 0(X ,ξ),

W
0<ι<k̄ T ι

(Ω,ϑ)(X ,ξ)},
where k̄ is the least cardinal greater than k and ℵ0. Notice that T ι

(Ω,ϑ),T(Ω,ϑ) : Set(L)→
Set(L) and

W
0<ι<k̄ T ι

(Ω,ϑ)(X ,ξ) denotes the colimit for the family {T ι

(Ω,ϑ)(X ,ξ) | 0 < ι <

k̄}.
Lemma 1. For each positive ordinal there exists a unique αι, such that T ι

(Ω,ϑ)(X ,ξ) =
(T ι

Ω
X ,αι), and there exists a unique α such that T(Ω,ϑ)(X ,ξ) = (TΩX ,α).

Using Lemma 1 we can easily see that T(Ω,ϑ) indeed is a functor. Further, we can
extend the functor to a monad, since T(Ω,ϑ) can be shown to be idempotent. Once we
have the fuzzy term monad on Set(L) we consider the composition with the unbal-
anced powerobject monad by constructing a natural transformation σ? : T(Ω,ϑ)U? =⇒
U?T(Ω,ϑ) as a prerequisite for the monad composition of U? and T(Ω,ϑ) using distribu-
tive laws [2].

This understanding of the term monad in a fuzzy setting gives a start to a well
founded non-classical logic programming. What remains is a similar understanding of
unification.
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