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Since their inception in 1979, the Linz Seminars on FuzzyT®ebry have
emphasized the development of mathematical aspects of f&tz by bringing
together researchers in fuzzy sets and established mathizms whose work
outside the fuzzy setting can provide directions for furttesearch. The philos-
ophy of the seminar has always been to keep it deliberatedll nd intimate
so that informal critical discussions remain central.

LINZ 2011 will be the 32nd seminar carrying on this traditemd is devoted
to the theme “Decision Theory: Qualitative and Quantiga#\pproaches”. The
goal of the seminar is to present and to discuss recent aglvamehe theory of
decision procedures and to concentrate on its applicatioverious areas.

A large number of highly interesting contributions were mitited for pos-
sible presentation at LINZ 2011. In order to maintain thalittanal spirit of
the Linz Seminars — no parallel sessions and enough roomigouskions —
we selected those twenty-eight submissions which, in oimiam fitted best to
the focus of this seminar. This volume contains the abstraicthis impressive
selection. These regular contributions are complemenjesixinvited plenary
talks, some of which are intended to give new ideas and irepufl®m outside
the traditional Linz Seminar community.
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Impatience and myopia through belief functions

Zaier Aouant and Alain Chateaunetif

1 College of Business and Economics
Qatar University, Doha, Qatar
aouani@qu.edu.qa
2 PSE-CES
Université Paris |, Paris, France
alain.chateauneuf@univ-parisl.fr

Abstract. Building upon Choquet’s integral representation Theorgnye char-
acterize several continuity properties of totally monet@apacities defined on
the Borel sets of a Polish spa€k in terms of the specific properties of the re-
lated o-additive Mobius transform. In the case of bounded and ovedre in-
come streams, we show that these continuity propertiesacteize myopic or
impatient behaviors of decision-makers evaluating incetreams« through the
Choquet integral ok with respect to the belief function

1 Introduction

Real-valued set functions which are not necessarily additie extensively used in de-
cision theory. According to the interpretation they mayressent a transferable utility
cooperative game or else non-additive probabilities arigfbfeinctions. These func-
tions also appear through Choquet integration as repliageteecision rules for multi-
criteria decision problems and, in particular, multi-perand choice problems.

In multi-period choice problems, the use of totally monaoapacities (belief func-
tions for short)v for ranking income streamsthrough the Choquet integral &fwith
respect tov, has been intensively proposed by several authors induitie pioneer
papers of [5] and [4]. It has also been recognized that in thentable time setting
some continuity properties of totally monotomenable to disentangle myopia from
impatience (see for instance [1], and [2]).

The purpose of this paper is to allow an extension of the pressanalyses to the
general case of possibly continuous time. Therefore thiepaainly focuses on the
characterization of several continuity properties of ltgtenonotone capacities de-
fined on the Borel sets of a Polish spdeeBuilding upon Choquet’s integral repre
sentation Theorem [3], we show that some classical cottyiqubperties are directly
connected with the characterization of the related extrbatief functions, thus pro-
viding a way to compute the desired belief functions throtlgh use of the related
o-additive Mobius transform. In particular, it will be shawhat extreme points of the
set of outer-continuous belief functions (resp. outertitmous andg-inner contin-
uous, inner-continuous) are tleefilter games (resp. unanimity games w.r.t. compact
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sets, unanimity games w.r.t. finite sets). These resultslene to derive integral rep-
resentations for belief functions satisfying the varioastuity properties. Finally we
investigate the link between different notions of intempmral myopic or impatient be-
havior and continuity properties of belief functions (wtka decision-maker evaluates
income streams through the Choquet integral with respexcbigief function).

2 Preliminaries

Let Q be a polish space. Deno®= B(Q) the g-algebra of borelian sets 61. Let ¥

be the set of all games defined Bri.e. ¥V = {v : B — R,v(0) = 0}. The termcapacity
will be used to designate elementsf 7 which aremonotoneé.e. satisfy By € B, =

v(B1) < Vv(B2)] andnormalizedi.e. satisfyv(Q) = 1. A capacityv : B — [0,1] on the
o-algebraB is calledtotally monotoneor abelief functionif v is k-monotone for all
k> 2ke Ni.e. if for every family(By,By, ...,By) € B,

k
v(Us)+ % -1V (NB)) =0 (1)
' 1L,k jed
Lemma 1. [3]
The extreme points of the set of belief functions defined omrasuanable space
(Q,B) are the filter games.

A nonempty sep of elements ofB is called dfilter if

(i) VA,Be B,[Ac p,ACB = Be p),

(i) VA,Be B,[ABe p = AnBep|.
The filterp is calledproperif 0 ¢ p. Agamev : B — {0,1} is called dilter gameif the
setp:={B e B:v(B) =1} is afilter. In this case is denotedi, whereup, is obviously
defined byup(B) = 1 if B € p, andup(B) = 0 otherwise.

A gamev € V is calledouter-continuousdf it is outer-continuous at everg € B
i.e.ifvBe B,Bhe 8,B,/B = v(Bn)rH—o>ov(B).

Agamev € V is calledG-inner-continuous at & G := {open setsif G, € G,Gn 1
G = V(Gn)r:w(G).

3 Some results

Proposition 1. The setextBel, := {“extreme” outer-continuous belief functiohds
the set of filter gamesguwhere p is a proper filter closed under countable intersec-
tion.

Denote byz, thec-algebra on ex@ek, generated by the familf8: B € B,B # 0},
whereB = {up € extBek, : B € p}.

Theorem 1. For every outer-continuous belief function v there existsadditive mea-
sure | on X, such that for all Be B,

v(B) = /extBe|E0 U(B) dhi(U) = w(B). ()
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Conversely, given a-additive measure [ 0By, the expression above defines an outer-
continuous belief function oB.

Proposition 2. The set

extBek, ; := {"extreme” outer-continuous and;-inner-continuous belief functiohs
is the set of unanimity gameg tor some nonempty compact subset Kotk (B) = 1
if B 2 K, uk (B) = 0 otherwise.

Denote byz, ; theo-algebra on eBeIEO‘G generated by the familf8: B ¢ B,B +#
0}, whereB = {uk : K compactd # K C B}.

Theorem 2. For every outer-continous ang@-inner-continuous belief function v there
exists ao-additive measureonz, ; such that for all Be 3,

v(B) = /eXtBeIEO‘(J, u(B) duy(u) = pv({uK : K compact0 # K C B}). (3)

Conversely, given @-additive measure | o, g, the expression above defines an
outer-continuous and;-inner-continuous belief function aB.

4 Myopia and impatience in continuous time(Q =R )

L*(Q) is the set of bounded real-valued measurable function€omB) with B the

set of borelians of). Interpretx € L*(Q) as a continuous stream of incomes. ket
be a weak order obh” representable by a Choquet integral w.r.t. a belief fumction

(Q,B).

Definition 1. = is myopic if for every B By € B such that B | 0, then for every y €
L*, ce R: x >y implies x- y+ ¢ 1g, for n large enough.

Theorem 3. 7 is myopic if and only if v is outer-continuous.

Definition 2. - is impatient if for every x L®, and for everye > 0, there exists a time
To(x,€) :=To € Ry such thatvT > To @ (X+ €)1 1] > X.

Theorem 4. v is G-inner-continuous—>- - is impatient.
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Cooperative games with a
hierarchically structured player set

René van den Brink

Department of Econometrics and Tinbergen Institute
VU University, Amsterdam, The Netherlands
jrbrink@feweb.vu.nl

Abstract. A situation in which a finite set of playef$ C N can generate certain
payoffs by cooperation can be described lmpaperative game with transferable
utility (or simply a TU-game), being a pail,v) wherev: 2N — R is acharac-
teristic functionon N satisfyingv(0) = 0. For anycoalition SC N, v(S) ¢ R is
theworth of coalition S, i.e. the members of coalitiogBcan obtain a total payoff
of v(S) by agreeing to cooperate.

In a TU-gamg N, v) there are no restrictions on the cooperation possibilifebe
players, i.e. every coalitioBC N is feasible and can generate its worth. Various models
with restrictions on coalition formation are discussedhe literature. One of the first
game theoretic models with cooperation restrictions agdimes in coalition structure
in which the set of players is partitioned into disjoint s@tsch represent social groups
such that for a particular player it is more easy to coopendtte players in its own
group than to cooperate with players in other groups. Arratiedel in which there are
restrictions on the possibilities of cooperation are ghenes with limited communica-
tion structurewhere the edges of an undirected graph on the set of playenssent
binary communication links between the players such treteyk can cooperate if and
only if they are connected. A coalition that is not conneatad only earn the sum of
the worths of its maximally connected subsets or components

Games with a permission structure

In this presentation we mainly focus on models of restricteoperation where the re-
strictions arise because the players belong to some higcatcstructure. One of the
first models in this class are tigames with a permission structundich describe situ-
ations in which the players in a TU-game are part of a hieiaatlorganization, refered

to as gpermission structuresuch that there are players that need permission from other
players before they are allowed to cooperate. Thus, thelplitsss of coalition forma-
tion are determined by the positions of the players in thengsion structure. Various
assumptions can be made about how a permission structectsaffie cooperation pos-
sibilities. In theconjunctive approaclit is assumed that every player needs permission
from all its predecessors before it is allowed to cooperate. Comseiyua coalition is
feasible if and only if for every player in the coalition it ldg that all its predecessors
belong to the coalition. Alternatively, in thdisjunctive approacit is assumed that ev-
ery player needs permission frahleast oneof its predecessors (if it has any) before it
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is allowed to cooperate with other players. This means tleagéition is feasible if and
only if every player in the coalition (who has at least onedgeessor in the permission
structure) has at least one predecessor who also belors ¢coalition.

By union closedness of the set of feasible coalitions, egeafition has a unique
largest feasible subset. To take account of the limited ecadfon possibilities, for every
game with a permission structure a restricted game is defitnéch assigns to every
coalition the worth of its largest feasible subcoalitiorthie original game. The disjunc-
tive and conjunctive approach yield different restricteangs. Asolutionfor games
with a permission structure is a function that assigns tayesach a game a payoff
distribution over the individual players. Applying knownlstions for TU-games to the
restricted games yields solutions for games with a permpnissiructure. For example,
applying theShapley valugo the conjunctive, respectively disjunctive, restricgeane,
yields thedisjunctiveandconjunctive Shapley permission valu&gmilar, one can ap-
ply the Banzhaf valueNucleolusor any other solution to the two restricted games. In
this presentation we discuss comparable axiomatizatibtiseo(conjunctive and dis-
junctive) Shapley- and Banzhaf permission values.

Some related models of restricted cooperation

After discussing several solutions for games with a periarisstructure, we mention
some other (more general or specific) models and applicatidriirst generalization
concerns games where the set of feasible coalitions anéimatroid i.e. sets of fea-
sible coalitions that contain the empty set and areclfdsed under uniot, i.e. the
union of every pair of feasible coalitions is also feasip&)d (ii) accessiblg,i.e. for
every feasible coalition there is a player such that withbig player the coalition is
still feasible). Further, the sets of feasible coalitionattcan be the set of conjunctive
feasible coalitions of some permission structure are dtaraed as those antimatroids
that areclosed under intersectiolhe sets of feasible coalitions that can be the set of
disjunctive feasible coalitions of some permission stitetare characterized as those
antimatroids that satisfy the so-callpdth property An example of antimatroids that
cannot be obtained from permission structures are thebieasoalitions inordered
partition votingwhere there is an ordered partition of the player set, suattthacti-
vate players in a particular level, a qualified majority apyad in every higher level is
necessary.

Compared to the properties that define an antimatroid, ritstout that the sets of
connected coalitions of players in an undirected (comnatitin) graph are character-
ized by a weaker union property, but stronger accessilglibperty. The weaker union
property isunion stability(, i.e. the union of every pair of feasible coalitions that ar
not disjoint is also feasible). The stronger accessibjityperty is2-accessibility(, i.e.
for every feasible coalition there are at least two playachghat without any of these
two players the remaining coalition is still feasible). Adgladditional properties char-
acterize special subclasses of undirected graphs. Forpeaadding closedness under
intersection yields the sets of connected coalitions ofesoycle-complete graph.

A further generalization of games on antimatroids are gawits restricted co-
operation where the set of feasible coalitions can be angfggiayers that is closed
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under union. An example which is not an antimatroid im@jority cooperation situa-
tion where the player set is partitioned in a coalition structueh that a coalition is
feasible if, whenever it contains a player from an elemenhefpartition, it contains a
(qualified) majority of the players of that element.

Looking at applications of games with a permission strugtitris useful to know
thatpeer group gameare a special subclass of games with a permission strudiore.
be specific, a game with a permission structure is a peer gyaoye if and only if the
permission structure is a rooted tree and the game is aédjtive. every player has a
weight, and the worth that can be generated by any coalifiptegers is just the sum
of the weights of the players in the coalition). Although &dtfsight this seems a narrow
class of games, it contains many applications such as augdimes, dual airport games
and polluted river games. Another class of applicationshéearchically structured
firms where the permission structure is a rooted tree, and the gameonvex game
defined on the ‘lowest level’ of the hierarchy (, i.e. the @eg/that have no successor).

Finally, we mention that peer group games are also a spdakd of the so-called
(weighted)digraph gamesin these games every player has a weight, but to earn that
weight it needs all its direct predecessors. A digraph ganaepieer group game if and
only if the digraph is transitive.

Acknowledgements. This presentation is based on joint works with the following

thors: Rob Gilles, Guillermo Owen (games with a permissimacsure), Encarna Al-
gaba, Mario Bilbao, Andres Jiménez-Losada (games on atriiiads), Peter Borm (di-
graph games), llya Katsev and Gerard van der Laan (gamesion closed systems).
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Overlap functions, ignorance functions and bi-entropic
functions in pairwise comparisons

Humberto Bustince, Javier Fernandez, Edurne Barrenéched Radko Mesiar

1 Department of Automatica y Computacion
Universidad Publica de Navarra, Pamplona, Spain
{bustince, fcojavier.fernandez, edurne.barrenechea}@unavarra.es
2 Department of Mathematics and Descriptive Geometry
Slovak University of Technology, Bratislava, Slovakia
mesiar@math. sk

In the literature, two main approaches can be found to dehlpveferences, which
can probably be considered the most natural ways of corisgleuch a problem. The
first approach evaluates its preference individually, reigas of which the other pref-
erences are. The second approach compares preferences totlear. This latter ap-
proach makes use of binary relations in order to expresemmetes in a qualitative
way.

Recently, some methods based on pairwise comparison adrprefes have been
proved to be useful for problems of classification in the fieldnachine learning. In
particular, Hullermeier and Brinker([3]) propose a metffior learning fuzzy preference
relations that can be used to solve multi-class classifingiroblems. This method is
based on the use of t-norms and negations to model concegtsasuncomparability
or indifference.

In this talk we propose a different functional approach taleldhese two key con-
cepts. The new approach is based on the concepts of ovenletiou([2]) and ignorance
function ([1]). Overlap functions provide an analyticabtdo measure up to what ex-
tent a given element can be considered to be part of two diffelasses. This is clearly
connected to having data that simultaneously support tfferdnt alternatives. Over-
lap functions can be seen as way of generalizing t-normsiptivious modeling, by,
in particular, dropping out associativity (although we feeed to impose positivity).
Since associativity is not crucial for the constructionradifference relations, overlap
functions allow to model this sort of relations. Neverthslealthough some of the most
common used t-norms (including the minimum) are part of hescof overlap func-
tions, there are t-norms that are not overlap functions dsaseverlap functions that
are not t-norms. Hence we are dealing with a class of funstibffierent from that of
the t-norms.

On the other hand, ignorance functions measure in an acallytiay the lack of
information that an expert suffers when trying to deternifrsegiven element belongs
to one class or another. This can also be seen as linked tmm&sdence, in the sense
that data do not support neither one nor the other alteendtivthis sense, ignorance
functions allow to build in a different way incomparabilitylations that do include but
are not restricted to those given in terms of t-norms and ticega
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Finally we introduce in this talk the concept of bi-entrofiiciction as a unifying
frame for the previous concepts. Bi-entropic functions lsamunderstood as a measure
of non-information, or as an extension of the concept ofagytiwhen dealing with a
preference comparison problem. Both overlap functionsigndrance functions can
be recovered in a functional way from bi-entropic functio@enversely, if appropriate
overlap and ignorance functions are known that fit well foivaiy problem, they can be
used to build a bi-entropic function that in some sense epesses both of them. In this
way, we are able to provide a theoretical framework whichiffeignt from the usual
one to represent indifference and incomparability, tottieem as analytical concepts,
to link the techniques that make use of these two concepectmiques that are used
in other fields, and to derive different properties intaatielg all these concepts.

Acknowledgments H. Bustince, J. Fernandez and E. Barrenechea have beenrsgpo

by Spanish Ministry of Science, Project TIN2010-15055. RshMr has been supported
by grant APVV-0012-07.
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Grouping functions for fuzzy modeling of pairwise
comparisons

Humberto Bustince, Miguel PagdleRadko Mesiat, Eyke Hullermeiet, and
Francisco Herrefa

1 Department of Automatica y Computacion
Universidad Publica de Navarra, Pamplona, Spain
{bustince, fcojavier.fernandez, miguel.pagola}@unavarra.es
2 Department of Mathematics and Descriptive Geometry
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A widely used approach dealing with preferences is to canrpairwise compar-
isons in order to build a binary relation that allows to exgsréhe preferences in a
qualitative way. Recently, some methods based on pairwasgparison of decision
alternatives have been used for problems of classificatiding field of machine learn-
ing. In particular, Hullermeier and Brinker([3]) propaka method for learning fuzzy
preference relations from data that can be used to solve-otadis classification prob-
lems. This method makes use of the so-called indifferendeircomparability rela-
tions, which are a very suitable tool to represent, respalgtitwo different types of
uncertainty when it comes to predicting the class of a newaim®: conflict, which
appears if data provide evidence supporting simultangdbsl two considered alter-
natives and ignorance, if none of them is supported by ddtasd two concepts are
usually modeled by means of very well-known operators astas and negations. For
instance, an indifferendebetween alternative and alternative is usually built from
a weak preference relatidhas follows :

I =T (R(X, % ), RO, X))

with T a t-norm. On the other hand, incomparabillthetween alternative and alter-
nativex; is modeled by means of a t-noffnand a negatioil in this way:

Ik = T(N(R(X,% ), N(R(X, X«))) -

In this talk we propose a different analytical approachtdad of modeling the amount
of evidence supporting simultaneously both preferencesintvoduce the concept of
grouping function, that is, a symmetric, non-decreasirgy@ntinuous mappinGg :

[0,1]2 — [0, 1] that vanishes only at the poif@, 0) and that takes the value 1 if and only
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if one of its inputs is equal to one, as a functional measutb®fmount of data that
supports either one of the alternatives or the other. Fatigwhis line of reasoning, it
can be related to the concept of overlap function (see [Iduah a way that we arrive at
a theoretical framework for fuzzy modeling of pairwise caripon that allows a new
mathematical description of the concepts of indifferenue iacomparability, different
from the one in terms of t-norms, but that also recovers thetrimoportant cases of
the latter approach (in particular, the modeling by using thinimum t-norm). We
will explain in the talk also the conceptual motivation bahthis new approach, that
allows to connect preference problems with other fields sischmage processing. In
particular, also the way in which the concept of strict prefeee can be rewritten in
terms of grouping functions will be explained in the talk.

The efficiency of the new approach is proved by applying itparticular case of
the decision rule proposed in the context of multi-classsifecation by the authors of

[2]:

1 Ni
Xselection= &rg Ma¥c (1 . ny Pa—5la+ Ji

1<1%ken 2 Nk + N;
wherePy, denotes the strict preferencexgfoverx andNg is the number of training
examples belonging to clasg. This formula is nothing but a generalization of the
well-known weighted voting but it accepts further genezatiion in terms of grouping
functions.

Acknowledgments. H. Bustince and M. Pagola have been supported by Spanish Min-
istry of Science, Project TIN2010-15055. R. Mesiar has lsegported by grant APV V-
0012-07.
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Determinization of hondeterministic finite automata is dlvetaborated problem
that plays an important role in text processing, naturajleage processing, compiler
theory, system verification and testing, and many othersaséaomputer science, but
also in fields outside of computer science like moleculafdgp. The standard deter-
minization algorithm, known asubset constructioar powerset constructigrconverts
a nondeterministic automaton withstates into an equivalent deterministic automaton
with up to 2" states. Although in the worst case subset constructionlyial deter-
ministic automaton that is exponentially larger than thmitmondeterministic automa-
ton, which sometimes makes the construction impracticaldige nondeterministic
automata, this determinization algorithm is renownedt®gbod performance in prac-
tice.

Determinization of a fuzzy finite automaton is considererkhas a procedure of
its conversion into an equivalestisp-deterministic fuzzy automatowhich can be
viewed as being deterministic with possibly infinitely mastgites, but with fuzziness
(vagueness) concentrated only in final states. This kindetérdhinism was first stud-
ied in [2], for fuzzy finite automata over a complete disttibe lattice, and in [16], for
fuzzy finite automata over a lattice-ordered monoid, whadhslgorithms were given
which generalize the subset construction. Another allgaritprovided in [9], is also a
generalization of the subset construction and for any iitmenerates a smaller crisp-
deterministic fuzzy automaton than the algorithms froni g}, This crisp-deterministic
fuzzy automaton can be alternatively constructed by mettiedNerode right congru-
ence of the original fuzzy automaton, and it was called ir] {h® Nerode automaton
of this fuzzy automaton. The Nerode automaton was consflnt[9] for fuzzy finite
automata over a complete residuated lattice, but it wagdrtbtg the same construction
can be also applied to fuzzy finite automata over a lattickz@d monoid, and more-
over, to weighted finite automata over a semiring. Neroderaata and some their
improvements were recently studied within the frameworlweighted finite automata
over strong bimonoids [7, 11]. Note that strong bimonoidsleaviewed as a semirings
which might lack distributivity and include both semiringisd lattices.

The above-mentioned determinization methods give cretprehinistic fuzzy au-
tomata which are equivalent to the original fuzzy automatanfthe aspect of recog-
nition of fuzzy languages. However, in addition to the futagyguage recognized by
a fuzzy automaton, there are also other important typeszzyflanguages associated
with fuzzy automata. For instance, fuzzy languages geeefat fuzzy automata play a
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very important role in the theory of fuzzy discrete-everdtsyns. These languages can
not be represented by means of crisp-deterministic fuztonaata, because they require
to keep fuzziness not only in the final state, but also in &lkostates. Here we introduce
a general definition of an automaton with fuzzy states, drippts, and the transition
function which acts deterministically on fuzzy states andinputs. Such an auto-
maton is called just anutomaton with fuzzy stateéd/e show that an automaton with
fuzzy states can be easily constructed starting from artrarpicrisp-deterministic
fuzzy automaton, and these two automata recognize the samg fanguage. On the
other hand, considering fuzzy states as crisp singletaesy eutomaton with fuzzy
states can be transformed into a crisp-deterministic fazzgmaton. We also show that
two important types of crisp-deterministic fuzzy automeda be regarded as automata
with fuzzy states. First, we show that Nerode automata catohsidered as automata
with fuzzy states, and we prove that they are equivalentdémtiginal fuzzy automata
both from the aspects of recognition and generation of fuamguages. Another im-
portant example of automata with fuzzy states isdpévative automatomssociated
with a fuzzy language. It was introduced in [10], and it wasved that it is a unique
(up to an isomorphism) minimal crisp-deterministic fuzayt@maton recognizing the
given fuzzy language. Here we prove that the derivativeraaton can also be consid-
ered as an automaton with fuzzy states, that it is a minimalaaton with fuzzy states
which recognizes the given fuzzy language, and that it geasithe prefix-closure of
this fuzzy language.

In the modeling of fuzzy discrete-event systems, in [3, 428] the classical fuzzy
automata were used, but in [5,14,17-20,23, 24] fuzzy diseeent systems were
modeled using automata with fuzzy states and fuzzy evertsrenfuzzy events are
given by fuzzy matrices associated with input letters. €Hagzy matrices represent de-
grees to which inputs cause transitions between crispsstatel consequently, this kind
of automata with fuzzy states is nothing but Nerode autommftazzy automata. Here
we determine necessary and sufficient conditions undertvwari@automaton with fuzzy
states can be represented as the Nerode automaton of sayafiuamaton. They are
given in terms of solvability of some particular linear srsis of fuzzy relation equa-
tions. We provide an example of a finite automaton with fuzayes which can not be
represented as the Nerode automaton of some fuzzy autonvéeoaso show that au-
tomata with fuzzy states are computationally more poweinfah the fuzzy automata, in
the sense that they generate a larger class of fuzzy languaggther words, we prove
that every fuzzy language generated by a fuzzy automatorefslosed, that every
prefix-closed fuzzy language is generated by an automattimfuzzy states, and that
there are fuzzy languages that are generated by autométduaity states but are not
prefix-closed. However, this is not true if we require auttara be finite, since we can
provide an example of a fuzzy language which is generatedzzy finite automaton,
but it can not be generated by a finite automaton with fuzzgsta

It is well known that fuzzy automata are the basis for the wtfdnultistage fuzzy
decision processes, which was initiated in [1] (see alsp2215]). The automata in-
volved are automata with fuzzy states, fuzzy inputs (regoresd by fuzzy subsets of the
input alphabet), and the transition function which actedatnistically on fuzzy states
and fuzzy inputs. Fuzzy inputs are used to represent fuzagtaints, whereas fuzzy
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goals are represented by fuzzy states. Here we also corsidkera model of fuzzy
automata, its semantics, and relationships with other tsoBepecially, we discuss re-
lationships with the above-mentioned model of automata Wizzy states and fuzzy
events, which was proposed in [19] as the best way to build BF-Becision model. It
is worth noting that such a FDES decision model was applid % to HIV/AIDS
treatment planning.

Acknowledgment. Research supported by Ministry of Science and TechnolbDiea
velopment, Republic of Serbia, Grant No. 174013
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Abstract. We briefly survey earlier and recent results concerning titge gap of
functions, and present an explicit classification of aggtieg functions accord-
ing to their arity gap which is shown to be either 1 or 2.

1 Introduction

The process of merging or combining sets of values (ofteln/edaes) into a single one
is usually achieved by so-called aggregation functionsidllg an aggregation func-
tion on a closed real intervéd, b] C R is a mappingM : [a,b]" — [a,b] which is order-
preserving and fulfills the boundary conditiokKa,...,a) = a andM(b,...,b) = b.
Classical examples of aggregation functions include weigfarithmetic means (dis-
crete versions of Lebesgue integrals), as well as certamaddlitive fuzzy integrals
such as the Choquet integral [3] and the Sugeno integrallBl5For general back-
ground, see [1, 11] and for a recent reference, see [10].

In this paper, we study the arity gap of order-preservingfioms, in particular, of
aggregation functions. Loosely speaking, the arity gap bfretion f measures the
minimum decrease in the number of essential variables whsenéal variables of
are identified.

Let A andB be arbitrary nonempty sets. finction of several variables from A to
Bis a mapf: A" — B for some integen > 1 called thearity of f. If A= B, then we
speak ofoperations on AOperations on the two-element & 1} are calledBoolean
functions.

We say that thé-th variable off : A" — B (1 <i < n) is essentialjf there existn-
tuples(ay,...,&-1,&,&+1,.-..,an),(a1,...,&-1,8,8+1,--.,a) € A" that only differ
in thei-th position, such that

f(alv"'aaiflaaivai+la"'7an) ?é f(al,.--,aifl,ai/,aj+l,---,an).

If the i-th variable off is not essential, then we say that itnessentialThe number of
essential variables df is called theessential arityof f and it is denoted by eds
Fori,j € {1,...,n},i # |, the functionfi_; : A" — B given by the rule

ficj(ay,...,an) = f(ay,...,8-1,aj,8+1,...,an),

for all a3,...,ay € A, is called avariable identification minoof f, obtained by iden-
tifying the i-th variable with thej-th variable. Note that théth variable offi_; is
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necessarily inessential. Two functiohandg are said to bequivalentdenotedf = g,
if each one can be obtained from the other by permutation mdlbkes and addition or
deletion of inessential variables. ClearlyfiE g, then es$ = es9.

Thearity gapof f: A" — B (essf > 2) is gapf := min;j(essf — essfij), where
i andj range over the set of indices of essential variablek dfote that, by definition,
1 < gapf < essf. Moreover, iff = g, then gagd = gapg.

Example 1.Let F be an arbitrary field. Consider the polynomial functibnF3 — F
induced byxiXs — Xox3. It is clear that all variables of are essential, i.e., efs=
3. Looking at the various variable identification minors fofve see that eds, > =
essfy, 1 =0 and es$;, 3 = essfs, 1 = essfy,_ 3 = essfz, » = 2. Hence gap = 1.

Example 2.LetAbe afinite set witlk > 2 elements, sap={1,... ,k}.Letf: A" A
2 < n <Kk, be given by the rulef(ay,...,an) is 2 if (a1,...,an) = (1,...,n), and 1
otherwise. It is easy to see that all variablesfodre essential, and for dll# j, the
function fi_; is identically 1. Hence gap=n.

As shown by the examples above, every positive integer istiye gap of some
function of several variables. Are all positive integersgible as the arity gaps of func-
tions of several variables from to B for a fixed domainA and codomairB? Does
the size of the domain or the codomain have any influence oeethef possible arity
gaps? Or even, could one hope to classify functions acogtditheir arity gap? These
questions have been raised and studied by several authors.

Salomaa [14] showed that the arity gap of any Boolean fundi@at most 2. This
result was extended to functions defined on arbitrary finimains by Willard [17],
who showed that the same upper bound holds for the arity gapyofunctionf : A" —

B, provided that es6= n > max(JA|, 3). In fact, he showed that if the arity gap of such
a functionf is 2, thenf is totally symmetric. This line of research culminated into
a complete classification of functions according to theilyagap originally presented
in [5] in the setting of functions with finite domains; in [A]\Wwas observed that this
result holds for functions with arbitrary, possibly infimilomains.

Salomaa’s [14] result on the upper bound for the arity gapaafiBan functions was
strengthened in [4], where Boolean functions were compyleassified according to
their arity gap. Using tools provided by Berman and Kisigtaw2] and Willard [17],
in [5] a similar explicit classification was established &rpseudo-Boolean functions,
i.e., functionsf: {0,1}" — R. As it turns out, this leads to analogous classifications
of wider classes of functions. In [6], this result on pse®tmwlean functions was the
key step in showing that among polynomial functions of badhdistributive lattices
(in particular, Sugeno integrals) only truncated ternagdrans (ternary medians, re-
spectively) have arity gap 2; all the others have arity gagsing similar techniques,
[8] presented explicit descriptions of the arity gap of walbwn extensions of pseudo-
Boolean functions to the whole real line, namely, Owen anddsa extensions. As the
latter subsume Choquet integrals, a complete classificafi€hoquet integrals accord-
ing to their arity gap was also attained.

Both the Sugeno and Choquet integrals constitute parti@damples of aggre-
gation functions. Thus, it is natural to ask for extensiohthese descriptions of the
arity gap of aggregation functions. This question was a®rsid and answered in [8]
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via a dichotomy theorem which completely classified the ppieserving functions
f: A" — B, for “bidirected” partially ordered set andB, into those with arity gap 1
and those with arity gap 2.

In this paper, we present a corollary to this result wherrictst to the case of
chainsA and B, which explicitly describes those order-preserving fiord that have
arity gap 1 and those that have arity gap 2. As a by-producthwairo similar descrip-
tions for the class of aggregation functions, in particuarthe classes of Sugeno and
Choquet integrals.

2 The arity gap of order-preserving functions

Let A andB be chains (totally ordered sets). A functibn A" — B is said to beorder-
preservingif for all a,b € A", f(a) <g f(b) whenever <a b, wherea < b denotes
the componentwise ordering of tuples. An example is theatgrmedian function med
given by meda,b,c) := (aAb) Vv (anc)Vv (bAac)=(avb)A(avc)A(bvec). The
following result provides an explicit classification of erdpreserving functions (on
chains) according to their arity gap.

Theorem 1 ([8]).Let A and B be chains, and: fA" — B be an order-preserving func-
tion. Thengapf = 2 if and only if n= 3 and f = medh(x1),h(x2),h(x3)) for some
nonconstant order-preserving unary functionh— B (heremeddenotes the median
function onimh). Otherwisegapf = 1.

Choquet and Sugeno integrals are usually defined in termestafic set functions. A
fuzzy measuren [n] = {1,...,n} is any order-preserving map 2I" — [0, 1] satisfying
v(0) = 0 andv([n]) = 1. TheChoquet integrabf x € R" with respect tov is defined by

G(x) = Z]X(i) (V(AG) = V(Aiz1)) 1)

where(-) indicates the permutation dn| such thak ) < X < -+ < X, andA;) =
{(i),...,(n)} andA, 1) = 0. As it turns out [12], Choquet integrals coincide exactly
with the Lovasz extensions of those order-preserving gadioolean functions that
fulfill f(c,...,c)=cforce {0,1};infact, from (1) it follows that Choquet integrals are
idempotent, i.e.f(c,...,c) = cforc € R. As an immediate consequence of Theorem 1,
we get an explicit description of Choquet integrals withyagiap 2.

Corollary 1. A Choquet integral f R" — R has arity gap2 if and only if
f=AX2)+ (XIAX3) + (X2 AX3) — 2 (X1 AX2 A X3).

Any other Choquet integral has arity gdp

Proof. Clearly, the condition is sufficient. To see that it is alscessary just observe

that the functiorh given by Theorem 1 must be the identity function since Chbque
integrals are idempotent.
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As observed in [9, 13], a convenient way to introduce Sugsetegrals is via lattice
polynomial functions, that is, functions which can be ob¢ai as compositions of the
lattice operations and variables (projections) and caontst&ugeno integrals can then
be viewed as idempotent lattice polynomial functions. ThysTheorem 1, we also
have the following explicit classification of Sugeno intaigraccording to their arity

gap.

Corollary 2. A Sugeno integral f A" — A on a chain A has arity gap if and only if
f = medxy, x2,X%3). Any other Sugeno integral has arity gap
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Abstract. Three important properties in aggregation theory are tiyat®d, namely
horizontal min-additivity, horizontal max-additivitynd comonotonic additivity,
which are defined by certain relaxations of the Cauchy fonetiequation in sev-
eral variables. We show that these properties are equivatehwe completely
describe the functions characterized by them. By addinges@gularity condi-
tions, these functions coincide with the Lovasz extersi@nishing at the origin,
which subsume the discrete Choquet integrals.

1 Introduction

A noteworthy aggregation function is the so-called disef&thoquet integral, which has
been widely investigated in aggregation theory, due to @ayrapplications for instance
in decision making. A convenient way to introduce the dige@hoquet integral is via
the concept of Lovasz extension. Arplace Lovasz extension is a continuous function
f: R" — R whose restriction to each of tmésubdomains

Rg={Xx=(X1,-...%) ER":X501) < <X} (0ES)

is an affine function, wher8, denotes the set of permutationsoh= {1,...,n}. An
n-place Choquet integral is simply a nondecreasing (in eatkable)n-place Lovasz
extension which vanishes at the origin. For general backgtpsee [5§5.4].

In this paper we investigate three properties of the disgCébquet integral, namely,
comonotonic additivity, horizontal min-additivity, andtizontal max-additivity. After
recalling the definitions of Lovasz extensions and discf@hoquet integrals (Section
2), we show that the three properties above are actuallywelgmt. We describe the
function class axiomatized by these properties and we shatvip to certain regularity
conditions (based on those we usually add to the Cauchyifuradtequation to get
linear solutions only), these properties completely cti@r@ze thosen-place Lovasz
extensions which vanish at the origin. Nondecreasing nanmiaity is then added to
characterize the class nfplace Choquet integrals (Section 3).

We employ the following notation throughout the paper. Ret= [0,c[ andR_ =
]—00,0]. For everyA C [n], the symbolls denotes the-tuple whosdth component is
1,ifi € A, and 0, otherwise. Let alsb—= 1y and0 = 1. The symbols\ andV denote
the minimum and maximum functions, respectively. For evanction f : R" — R,
we define its diagonal sectidn : R — R by 6¢(x) = f(x1). More generally, for every
A C [n], we define the functiod?: R — R by &(x) = f(x1a).
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It is important to notice that comonotonic additivity as vat horizontal min-
additivity and horizontal max-additivity extend the cliass additivity property defined
by the Cauchy functional equation fosplace functions

fx+x)=fx)+f(xX)  (x,X eR"). (1)

In this regard, recall that the general solutibnR" — R of the Cauchy equation (1) is
given by f(x) = Y¢_; fk(%), where thefi: R — R (k € [n]) are arbitrary solutions of
the basic Cauchy equatidp(x+Xx') = fi(x) + fk(X') (see [152—4]). If fy is continuous

at a point or monotonic or Lebesgue measurable or boundeddre side on a set of
positive measure, thefy is necessarily a linear function ([1]).

2 Lovasz extensions

Consider gpseudo-Boolean functiothat is, a functiorp: {0,1}" — R, and define the
set functionvy: 2 R by vp(A) = @(1a) for everyA C [n]. Hammer and Rudeanu [6]
showed that such a function has a unique representation attiblrmaar polynomial of
n variables

@) = 3 2lA) [
AC[n] i€
where the set functioa,: 2N — R, called theMobius transformof vy, is defined by

ag(A) = BZA(—l)‘AHB‘V(p(B)-

ThelLovasz extensionf a pseudo-Boolean functiam {0,1}" — R is the function
fo: R" — R whose restriction to each subdomdtf (o € S,) is the unique affine
function which agrees witlp at then+ 1 vertices of then-simplex[0,1]"NRY] (see [7,
9]). We then havey| (g 13n = @.

It can be shown (see [85.4.2]) that the Lovasz extension of a pseudo-Boolean
function @: {0,1}" — R is the continuous functiofiip(X) = ¥ ac|n 8(A) AicaXi- Its
restriction toRj is the affine function

fo(X) = (1*Xc(n))(P(0)+Xo<1)th(Ag(1))+;(Xc(i) — X)) Vo(AS(),  (2)

whereAl;(i) = {a(i),...,a(n)}. We say that a functioh: R" — R is aLovasz extension
if there is a pseudo-Boolean functign {0,1}" — R such thatf = f,.

An n-placeChoquet integrais a nondecreasing Lovasz extensfgn R" — R such
that f4(0) = 0. Itis easy to see that a Lovasz extensforR" — R is ann-place Cho-
quet integral if and only if its underlying pseudo-Booleandtiong = f|;q 130 is non-
decreasing and vanishes at the origin (se€$%4]).
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3 Axiomatizations of Lovasz extensions and discrete Choquet
integrals

Two n-tuplesx,x’ € R" are said to becomonotonidf there existso € S, such that
x,x" € RE. A function f: R" — R is said to becomonotonically additivé, for every
comonotoniar-tuplesx,x’ € R", we have

f(x+x)=f(x)+ f(X). (3)

Givenx € R"andc € R, let [x]c = x —xAcand[x]¢ = x —x V c. We say that a function
f:R"—Ris

— horizontally min-additivef, for everyx € R" and everyc € R, we have

f(x) = f(xAc)+ f([X]c)- 4)
— horizontally max-additivé, for everyx € R" and evenyc € R, we have

f(x) = f(xve)+ f([x]°). (5)

We now describe the function classes axiomatized by thes@toperties. To this
extent, we Ietﬂé(i) ={0(1),...,0(i)}.

Theorem 1. A function f: R" — R is horizontally min-additive if and only if there
exists g R" — R, with 8; and &|r, additive for every A [n], such that, for every
gES,

n 1o
f(X) = 8g(Xo(1)) + _%59%(') (Xa(i) = Xo(i-1))  (XE€RG). (6)
=
In this case, we can choosegf.

Theorem 2. A function f: R" — R is horizontally max-additive if and only if there
exists h R" — R, with o, and 5@|K additive for every AC [n], such that, for every

ogeS,
" Akl) \
f(X) = 3n(Xo(n)) + Z O (Xo(i) = Xo(i+1) (X ERG).
=
In this case, we can choose-hf.

Using Theorems 1 and 2, one can show that each of the two mbaizadditivity
properties is equivalent to comonotonic additivity. Thusave the following result.

Theorem 3. For any function f R" — R, the following assertions are equivalent.

(i) fis comonotonically additive.
(ii) f is horizontally min-additive.
(i) f is horizontally max-additive.

If any of these conditions is fulfilled, thép, }|r, , andd}|r  are additivey A C [n].
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We now axiomatize the class ofplace Lovasz extensions. To this extent, a function
f: R" — R is said to bepositively homogeneous of degree d@iné(cx) = c f(x) for
everyx € R" and everyc > 0.

Theorem 4. Let f: R" — R be a function and letgf= f — f(0). Then f is a Lo&sz
extension if and only if the following conditions hold:

(i) fo is comonotonically additive or horizontally min-additiee horizontally max-
additive.

(i) Each of the mapay, andES/f*OhR+ (A C[n]) is continuous at a point or monotonic or
Lebesgue measurable or bounded from one side on a set af/pasitasure.

The sefR. can be replaced bR_ in (ii). Condition(ii) holds whenever Conditiofi)
holds and&;\o is positively homogeneous of degree one for evety[A.

Remark 1.(a) Since any Lovasz extension vanishing at the origin stpely homo-
geneous of degree one, Conditigi of Theorem 4 can be replaced by the stronger
condition: fp is positively homogeneous of degree one.

(b) Axiomatizations of the class ofplace Choquet integrals can be immediately de-
rived from Theorem 4 by adding nondecreasing monotoniSitpilar axiomatiza-
tions using comonotone additivity (resp. horizontal médiivity) were obtained
by de Campos and Bolafios [3] (resp. by Benvenuti et ak43]).

(c) The concept of comonotonic additivity appeared first @ll&cherie [4] and then in
Schmeidler [8]. The concept of horizontal min-additivitgsyreviously considered
by éipoé [10] and then by Benvenuti et al. j2..3] where it was called “horizontal
additivity”.
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A multivalued relatioramong set# andB is any function fromA x Bto V, where
V is a set of values withV| > 2. If B = A we talk about a multivalued relation on
A. The most studied type of multivalued relations frzzy relationsin Zadeh'’s origi-
nal definition of a fuzzy relation [11] values were taken frtma real unit intervalo, 1],
whereas Goguen [7] proposed the study of fuzzy sets andomdatvith values in an
arbitrary lattice. Another important type of multivalueglations are multivalued rela-
tions among finite sets with values in a field, ring, or a semgiriThey are well known
asmatrices

Distributive lattices and related lattice-ordered stoves, such as residuated lat-
tices, lattice-ordered monoids and others, represent aallert framework for the
study of multivalued relations. Namely, ordering and darggood properties of these
structures, such as idempotency of the supremum and dititlp of the infimum or
multiplication over the supremum, enable many importaopprties of the classical
two-valued relations to be transferred to multivaluedtietes. For example, it is possi-
ble to define transitivity, fuzzy equivalences and fuzzysingaders (or fuzzy preorders,
in some sources), to effectively solve fuzzy relation et and inequalities, and so
on. In our research, fuzzy equivalences and fuzzy quasirendere used in [5, 10] to
reduce the number of states of fuzzy automata, and it has ¢femm that they give
better results than crisp relations, which were used far phirpose before. Moreover,
the main role in the study of bisimulations for fuzzy autoananducted in [4] hadni-
form fuzzy relationswhich have been introduced in [3] as a kind of fuzzy equivedss
that relate elements of two possible different sets.

As far as matrices over fields, rings, and semirings are cordethey were usually
studied in terms of solving systems of equations and inéipsgland were not con-
sidered as a generalization of two-valued relations. Thsae for this probably lies
in the fact that, unlike the ordered structures that are usdite theory of fuzzy sets,
semirings are not required to be ordered, and also, thf0s&}, which consists of the
zero and the unit of a semiring, does not necessarily formbaesuiring, and matrices
with entries in{0,1} can not be considered as two-valued relations.

If the methods based on fuzzy relations, developed withéntlieory of fuzzy au-
tomata, we try to apply to weighted automata over semiringsnaturally encounter
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the problem: for which type of semirings matrices over thendve like fuzzy relations
or classical two-valued relations. We show that a very irtgedrand a quite wide class
of semirings, the class afdditively idempotent semiringbas this property. We ex-
amine basic properties of multivalued relations with valirean additively idempotent
semiring, and in particular, we define and study multivalgedsi-orders, equivalences,
uniform relations, and so on. We also consider various egifidins of these multival-
ued relations, including applications in the study of wééghautomata over additively
idempotent semirings.

Itis worth noting that additively idempotent semiringslirse many very important
semirings, such as the well-known tropical semirings,i@smirings, Viterbi semi-
ring, Boolean semiring, and others. Additively idempotsamirings have significant
applications in many areas of mathematics, computer sejema operations research,
e.g., in the theory of automata and formal languages, opitioin theory, idempotent
analysis, theory of programming languages, data analysistete event systems the-
ory, algebraic modeling of fuzziness and uncertainty, lalgef formal processes, etc
(cf. [1, 6, 8]). In particular, applications of additivelgempotent semirings include so-
lution of a wide variety of optimal path problems in graphageasions of classical algo-
rithms for shortest path problems to a whole class of nosidabpath-finding problems
(such as shortest paths with time constraints, shortdss pédth time-dependent lengths
on the arcs, etc.), solution of various nonlinear partiffiedential equations, such as
Hamilton-Jacobi, and Birgers equations, the importancetioth is well-known in
physics, etc.

Acknowledgment. Research supported by Ministry of Science and TechnolbDiea
velopment, Republic of Serbia, Grant No. 174013
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Abstract. Letl C R be a nonempty open interval and fet 3 be a fixed natural
number. In this paper we characterize those conjugate ntgamngariables gen-
erated by a weighted arithmetic mean, and which are weigiptedi-arithmetic
means themselves.

1 Introduction

Throughout this paper 1étC R be a nonempty open interval and ket 2 be a natural
number. A functiorM : 1" — | is called ameanon | if the following properties hold:

1. min{xq,...,.%n} < M(X1,...,%1) < maxX,..., %} for everyxsy,...,xn €1,
2. M is continuous on".

In order to introduce the so-callatbnjugate meansve will need the following
notion. Denote b, the set ofn-tuples(pi,..., pn) such that
n n
min{x; } < Zpixi +(1=3 pi)M < max{x}
i= i

=1

whenever
min{xi} <M <maxx} (i=1,...,n),

holds for the real numbers, ..., X,, M.
In [2] Darbczy and Pales provided the following charaiztion of the set&p:

Theorem 1. (p1,...,pn) € Kn (N> 2) if and only if
n
p]ZO and lel_pjgl (J:17an)
i=

Let CM (1) denote the class of continuous and strictly monotone réakdafunc-
tions defined on the intervé) and letM be a mean oh variables orl. Then for any
¢ e CM(l) andxy, ..., xn €|

MIn{d(4)} < H(M(x..... %)) < maxd(x)}.

36



Hence by Theorem 1 we have that
min{6(x)} < 3 PO+ (L= 3 PIOMGa.....x0) < M (1))

holds for all(ps,...,pn) € Kn andxs,..., X, €1.
Moreover, we have that

is always betweemin{x } andmax{x}, that is,M§* P : 1" — | is a mean. We call
this mearthe conjugate mean generated by M with weights .p, pn.

This class of means includes the weighted quasi-arithmeans, in particular, the
guasi-arithmetic means. For instance) & 2 we get the following mean:

ME™ P2 (x,y) = &~ (P1d(0) + pab(y) + (1 Pr— PO (M(xY)) (kY€1) (1)

where(py, p2) € [0,1)2 (see Theorem 1). Iy + p2 = 1 in (1) we get a weighted quasi-
arithmetic mean, and b1 = p2 = % we get a quasi-arithmetic mean.

Let nowM be then-variable weighted arithmetic mean with fixed weighis. . . , an,
thatis,M(x1,...,X) := Y., aix; wherea +...+ 0, =1 anda; > 0,i =1,...,n. We
are interested in those conjugate means wdiriables generated by the weighted arith-
metic meanM, and which are weighted quasi-arithmetic means themselwesther
words, we seek functiorgs Y € CM (1) and parametensy, ..., pn, d1, - - - ,gn SUCh that

ot <iipi¢(m) +(1- iiloi)fl) (iai)q)) =yt <iiQiLIJ(Xi)>

holds for allxy,...,xn €1, where(ps,..., pn) € Ky and

n n

g=>ya =1 gq,0>0(i=1,...,n).
i;l i; | | | ( )

This problem has been solved in the special cas& and wherM is the arithmetic
mean by Dardczy and Dascal [4]. In the next section we pi@te solutions of this
functional equation fon > 3.

2 Main result

In order to state our main result we need the following notatLet¢, € CM(1). If
there exist # 0 andb such that for everx € |

W(x) = ab(x) + b

then we say thap is equivalento Y onl and denote it by (x) ~ W(x) for everyx € I.
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Theorem 2. Let n> 3 be a fixed natural numbetp1,...,pn) €Kn, h+ ... +0n =
O14...+0n=1, G >0,0; >0 (i =1,...,n). If the functionsp, € CM () are
solutions of the functional equation

= (_ipiq:(m - ipﬁw(iam)) s (iqw(xi)) @

(X1,-..,%y €1) then
n
g—pj=0;1-SYp) (j=1,...,n
j j j i;I

and the following cases are possible

— if 3L, pi = O0theny(x) ~ x on |, ¢ is arbitrary;

—ifyL,pi=1thenif p>0fori=1,...,nthend(x) ~ Y(x) (x,y € I), otherwise
there are no solutions;

—if 3Ly pi # 0,1 thend (x) ~ X, W(x) ~x (xy € I).

Conversely, the functions given in the cases above areisotuof the functional equa-
tion (2).
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We use the God-Einstein-Oppenheimer dice puzzle to intredlue notion of non-
transitive dice and point out the connection with the aricgiame of Rock-Paper-
Scissors. We then introduce the notion of winning probaédibetween the compo-
nents of a real-valued random vector. Assembling theseingrprobabilities into a re-
ciprocal relation facilitates the study of their struciyseoperties, which can be neatly
expressed in the cycle-transitivity framework. This fravoek encompasses numerous
existing types of transitivity for reciprocal relationscluding, inter alia, different types
of so-called stochastic transitivity and Tanino’s muiggltive transitivity.

Cycle-transitivity depends upon the choice of a so-callpden bound function.
When using as upper bound function the well-known probstimlisum t-conorm with
different order statistics as inputs, we unveil truly stastic types of transitivity, which
can be linked with the frequency of so-called product trlaagTwo important real-
izations are weak product transitivity (also called di@msitivity), the type of transi-
tivity characterizing winning probabilities between ipgadent random variables, and
moderate product transitivity, a type of transitivity tigtveaker than mutual rank tran-
sitivity, the type of transitivity exhibited by the mutuank probabilities between the
elements of a poset. In the latter context, we establish aexion with proportional
stochastic transitivity and linear extension majority legc

Time permitting, we discuss a generalization of winninghadoilities between co-
monotone random variables, called proportional expeciiéerences, and show how
they lead to a layered alternative to the popular notionadlsstic dominance, thereby
alleviating a number of shortcomings.
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1 Introduction

Formal concept analysis (FCA) consists of many well knownhoés which may be
used for data analysis and knowledge representation. F@évisloped via Galois con-
nections which are defined between powersets and which &semeed by relations
between the underlying sets. The underlying sets inclué¢af ®bjects and a set of at-
tributes or properties which the objects may have. FCA ehgsbbjects in the powerset
of objects and clusters properties in the powerset of ptagseand these clusters are
paired by the Galois connection. This pairing is naturahwéspect to a given relation
between the sets of objects and properties.

Definition 1. A formal context is an ordered triples, M, R) where G is the set of ob-
jects, M is the set of attributes, and R is a relation from G takl, RC G x M.

Definition 2. A Galois connection is an ordered quadrugie (P, <), (Q,E),9) such
that (P, <) and (Q,C) are partially ordered sets, and fP — Q and g: Q — P are
order-reversing functions such that for eache®, p < gf(p) and for each o= Q,

qC fg(q).

Definition 3. (Alternate Definition) A Galois connection is an ordered dule (f,
(P.<),(Q,C),q) such that(P, <) and (Q,C) are partially ordered sets, and for each
pePandqgeQ, p<g(q) ifand only if qC f(p).

Galois connections may be defined with order-reversing dempreserving func-
tions. They were originally defined by O. Ore [6] with ordesersing functions. Seem-
ingly, the first mention of order-preserving functions inl@s connections was by J.
Schmidtin [7]. For the work described in this abstract, we aigler-reversing functions.

Sometimes for brevity, we writéf, g) instead of( f, (P, <), (Q,E),qg) for a Galois
connection.
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The following proposition is well known; see, for exampl&] &nd [5].

Proposition 1. Let(f,(P,<),(Q,C),g) be a Galois connection.

1. g7 (Q) and f7(P) are anti-isomorphic partially ordered sets, anéfg :g7(Q)
— f7(P) and qﬁ’:((g; : f7(P) — g~ (Q) are order-reversing bijections. In fact,

f|;:((g; and q?:((% are anti-isomorphic inverses of each other.
2. P and Q are naturally organized or structured by the fibdr§ and g, respectively.
Each fiber of f contains exactly one point of Q), and each fiber of g contains
exactly one point of ¥ (P). The image point in each fiber is the largest element of
the fiber.
3. The partition of fibers of P has the same partially orderedcture as g’ (Q), and
the partition of fibers of Q has the same partially orderedisture as f*(P). If Ex
and B are two fibers or equivalence classes, for example, in P, Bien E; if and
only if there exist pe E; and p € Ez such that p < pp. Thus, since g(Q) and
f~ (P) are anti-isomorphic partially ordered sets, then the sdtlmérs in P and the
set of fibers in Q are anti-isomorphic partially ordered sets
4. The image points are called fixed pointse~(Q) if and only if p=gf(p).
Likewise, g= f~(P) if and only if g= fg(q).
fgf=fandgfg=g.
6. If P or Q is a [complete] lattice, then so are’dQ) and f~(P). However, g’ (Q)
and f~(P) may not be sublattices of P and Q, respectively.

o

The following result is from Birkhoff [1] with the terminolgy from Ore [6]. The ex-
pression “Galois connection” was essentially first used by; Ore called the construc-
tion a “Galois connexion.” Birkhoff called his construatiowvhich is defined between
powersets, a polarity.

Proposition 2. Let G and M be arbitrary sets, and let®G x M be a relation. Define
H:0(G)—-0(M)andK:O(M)—0O(G) by

for SC G, H(S) = {me M|gRnvg € S}

forT ¢ M,K(T)={ge GlgRmvme T}

(H,0(X),0(Y),K) is a Galois connection where the orderings on bof{X) andd (Y)
are the subset orderings.

Definition 4. Let(G,M,R) be a formal context. A formal concept of the formal context
is an ordered pair(A,B) with AC G and BC M such that HA) = B and K(B) = A.

If (A,B) and(C,D) are formal concepts dfG,M,R), then(A,;B) < (C,D)ifAcC or
equivalently, if DC B.

Definition 5. Let X = (G, M, R) be a formal context. The set of all formal concepts of
X is called the concept lattice of.
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Theorem 1. Let X = (G,M,R) be a formal context, and I¢H, (X),0(Y),K) be the
associated Galois connection. The concept lattic&ab a complete lattice, and it is
isomorphic to g’ (Q) and anti-isomorphic to (P)

Though not a standard definition in FCA, we find the followirgfidition useful.

Definition 6. Let (G,M,R) be a formal context. A formal pre-concept of the formal
context is an ordered pailC, D) with C C G and DC M such that KHC) = K(D) or
equivalently, HKD) = H(C).

Proposition 3. Let(G,M,R) be a formal context, and I€H,K) be the associated Ga-
lois connection. A formal pre-concept of the formal contsxdn ordered painC,D)
with C C G and DC M such that C and D are elements of anti-isomorphic fibers of H
and K, respectively.

Proposition 4. For a formal contex{G,M,R), (C,D) is a formal pre-concept if and
only if (K(D),H(C)) is a formal concept.

2 A Category of Formal Contexts

To facilitate additional mathematical investigations i@A; we want to define a cate-
gory whose objects are formal contexts. Questions whichediately come to mind
include what are the morphisms of such a category and whaepties does the cate-
gory have. For example, does the category have a base oategfoa natural forgetful
functor.

In the previous paragraph, we phrased the questions agéf isienly one possible
category. Of course, there may be several natural and usafetjories which have
formal contexts as their objects.

As we address the first and most immediate question which & ate the mor-
phisms of this category. We ask ourselves what propertiebaracteristics do formal
contexts have. We want to know what properties the morph#rosld preserve. Inter-
estingly, though a formal context is defined in terms of twis s@d a relation between
them, the important characteristics of a formal contexch@racteristics of the associ-
ated Galois connection.

Thus, given two formal context&; = (G1,M1,R1) and %> = (G2, M2, R2), a mor-
phism from%; to %> needs to respect the Galois connectifiis, 0 (G1),0(M1),K3)
and(Hz,0(Gy),0(M2),Kz), determined byXi and %3, respectively. One way of defin-
ing morphisms fromX; to &> is to define the morphisms as pairs of functidrisg)
suchtha{(f,g) : 1 — K if

f:0(G1) »0(Gp) andg: 0 (M) — O (M2)
with
Hyo f :gOHj_ andfOK]_: Kzog.
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This category is essentially defined in [4]. Lt g) : K1 — %2. [4] considers the
case wheref and g may be arbitrary functions and the case where they are order-
preserving functions. We first assume thaandg are arbitrary functions. From [4],
we get the following:

— If g1 andg] are in the same equivalence classGaf then f(g:) and f(g;) must
be in the same equivalence classG. Similarly, if my andm are in the same
equivalence class dfl,, theng(m;) andg(m;) must be in the same equivalence
class inM».

— f andg take fixed points to fixed points.

— Formal pre-concepts ik; are mapped to formal pre-conceptsip, i.e., if (C,D)
is a formal pre-concept iy, then(f(C),g(D)) is a formal pre-concept ifk.

A powerset has a natural ordering, the subset ordering hésdridering is important
in FCA. Thus, in addition to the above conditions bandg, we require thaf andg
be order-preserving.

In this paper, we are, however, interested in a differerggiaty of formal concepts.
For reasons which will become clear later, we want the sefamction in an ordered
pair of a morphisn{f,g) : K1 — %> to be defined frorl (M) to (M1), i.e., we want
g:0(Mz) —0O(My).

As above, we will require that andg be order-preserving; that they respect the
equivalence classes, i.e., elements in one equivalenss pilast be mapped into the
same equivalence class; and tfizindg map fixed points to fixed points. Further, we
require wherC; € 0(G1) andD; € 0 (My), then(Cy,9(D2)) is a formal pre-concept of
X if and only if (f(C1),D,) is a formal pre-concept ak.

Thus, our category of choice which we denoteHfyl comprises objects which are
formal contextsX = (G,M,R) and morphismsf,¢) : 3 — %> such that

Hi = ¢°PoHzo f andKy = f oKy 0 ¢°P

where(H1,0(G1),0 (M1), K1) and(Hz,0(Gz),0 (M2),K2) are the Galois connections
determined byXj and %>, respectively.

We have replaced thg: O (M) — O (Mj) by $°P: 0 (M2) — 0O (M;z) whereg is a
morphism inSefP.

The base category f&iCl is Set x SefP where the forgetful functor applied tg,
whenX = (G,M,R), yields (O (G),d(M)).
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3 Interchange systems

An interchange system is a recently defined concept [2] whgds a relation to relate
objects in two sets. Interestingly, an interchange systemdeneralization of a topo-
logical system in which the second set is a collection of prtes, and the relation then
matched objects of the first set with their properties in #e8ad set, which in a topo-
logical system is a frame or locale [8]. The next definitiod &me following proposition
are from [2].

Definition 7. An interchange system is a trip{&X, A, ), where(X,A) € |Setx SefP|
andFE is a satisfaction relation from X to A, i.es, C X x A is a relation from X to A.
The set A is said to be the set of predicates. Interchangem®rms between interchange
systems are ordered pairs

(f7¢) : (XvAa':l) - (Yv Ba':Z)

with (f,0) € Setx Sef®?, f: X — Y a set function, and : A — B a Sef® morphism
satisfying the morphism interchange property that for al X and all be B,

f (x) E2 bif and only if x=1 $°P(b).

The categoryntSys comprises all interchange systems and interchange marnshis
along with the compositions and identities inherited fi8atx SefP. In the above, we
refer toSetx SefP as the ground category fdntSys.

Closely associated with interchange systems and integehaworphisms are “inter-
change spaces” and “interchange-continuous” mappingena&n interchange system
(X,AE), there is a mappingxt: A — O (X) defined by

ext(a) = {xe X :xFa},
along with the interchange spage¢, ext™ (A)).

Proposition 5. If (f,9) : (X,AF1) — (Y,B,E>) is anIntSys morphism, then f (X,
ext” (A)) — (Y,ext” (B)) has the property that

W eext” (B), f< (V) eext” (A).
The proposition justifies saying that the mis interchange-continuous.

Theorem 2. Let(X,A F1) and(Y, B, F2) be interchange systems, and(ét¢) : (X, A,
E1) — (Y,B,E2) be an interchange morphisrfX, A1) and (Y, B, ) are formal con-
texts, and if f and®P are surjective, then

(F7,((9°P)7)%P) : (X, A F1) = (Y,B,F2)

has all the characteristics of a morphism KCl, except f* and ¢°P~ may not take
fixed points to fixed points. Hence,

(fév ((¢op)¢)0p) : (XvAa':]-) - (Yv B, ':2>

is @ morphism irfFCl when = = KzoHzo f~ and(¢°P)™ = H; oKy 0 ($°P)~, where
(H1,K1) is the Galois connection induced BY, A 1) and (Hz, K>) is the Galois con-
nection induced byY, B, >).
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The functionsf and$°P need to be surjective because the relatiepand=, may
involve elements irY and A, respectively, which are not in the images of arbitrary
functionsf and$°P, respectively.

Let X = (G,M,R) be a formal context. DefinéxX = (0 (G),0(M),F), whereF
is the relation froni] (G) to O (M), i.e.,F c O(G) xO(M), such thatC D if and
only if (C,D) is a formal pre-concept. Additionally, lex; = (G1,M1,R;) and X =
(Gz2,M2, Rz) be formal contexts witlif, ¢) : K1 — %> a formal context morphism. Then
(f,9): 1K1 — [ K, is aninterchange morphism. To show thé&td) is an interchange
morphism, leCy € 0(G1) andD, € O (My). (f(Cy1),D2) is a formal pre-concept itk
if and only if (C1,$°P(D3)) is a formal pre-concept iki. Thus, f(Cy) 2 Dy if and
only if C; F1 ¢°P(Dy).

Thus, we have a functar: FCI — IntSys such that
I(KX)=IK

and
I((fv(b) . 7(14) 7(2): (f7¢) : IKZL‘) IKZ-

In fact, we have the following.
Theorem 3. I: FCI — IntSys is an embedding.

In [2], lattice-valued extensions to interchange systemasirtroduced. The cur-
rent work goes on to investigate analogous lattice-valugdnsions of both formal
contexts and concepts and the consequences of latticedvaktensions oFCl for
lattice-valued interchange systems and for FCA. Additigneuch of the motivation
for lattice-valued interchange systems comes from préglitansformer semantics.
Thus, the current work will also include possible applicas of lattice-valued FCA
to programming semantics.
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Our starting point is the multiplicative utility functionhich is extensively used in
the theory of multicriteria decision making. Its assowi&fiis shown and as its gener-
alization a fuzzy operator class is introduced with fine ageful properties. As special
cases it reduces to well-known operators of fuzzy theory/méx, product, Einstein,
Hamacher, Dombi and drastic. As a consequence, we gereetiadiaddition of veloci-
ties in Einstein’s special relativity theory to multiple ming objects. Also, a new form
of the Hamacher operator is given, which makes multi-argutroalculations easier.
We examined the De Morgan identity which connects the carjueand disjunctive
operators by a negation. It is shown that in some speciabdasim/max, drastic and
Dombi) the operator class forms a De Morgan triple with awplative negation.

The Multiplicative Utility Function

In their seminal treatment of multiattribute utility (MAUheory, Keeney and Raiffa
show how certain conditions of independence among ate#yield the so called mul-
tiplicative multiattribute utility function

UM(Z)%<|£l(1+kKUi(Zi))1> (2)

wherez = (z,...,z), Ui : R — [0,1] are utility functions,z are evaluations; are
weights of the ith criteria, anklis a scaling constant. The formula can also be expanded
as

(2= 5 k) +S ki) 3)+

i i<
+IY kikjkiui(z)uj(z)u () + ... @)
+ K" kiko .. knUs(21) - . Un(zn).
allowing also fork = 0.
Lemma 1. If k =0then
um(2) = iihui (z)- ®3)
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Proof. By substitutingk = 0 into the expanded formula of, (2) we get the result.

The utility function is normal ifum(z) = 0 whetheru;j(z) = 0, andumw(z) = 1
whether;(z) =1 foralli € {1,...,n}. A normalum(z) implies

1+kf“1+m% 4)

i.e. assuming the normality ofy, k is determined only by the weighks

The Associativity of the Multiplicative Utility Function

Let us substitute; := kiui(z) in the formula (1). Then the transformed multiplicative
utility function is

umm%<ﬁu+m>1> (5)

Theorem 1. The function § is associative.

Proof. The proof is based on the representation theorem of Adz&hn be easily ver-
ified, that (5) can also be written in the foffrix,y) = f~1(f(x) + f(y)), by putting

f(x) = In(1+kx), (6)

and L
r%mzkw—g. 7)

Logical operators and the Multiplicative Utility Function

Letg: [0,1] — [0, 0] be a generator function of a strict operator. Let

f(x) =In(1+vyg(x)), (8)
and so

fla)gl<$é1>. (9)

Note, that for ally € (0, ), f fulfills the requirements of a generator function of a strict
operator. By Aczél's theorem, the associative operatd0,1]" — [0,1] generated by
fis

o) =97 (3 (2000 -1) ). (10
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Similarly to (2), by first expanding the argumentgf’ to

ig(m) +YY 9(x)g(xj)+

i<]

+VS g(6)g(X5)g(x) + ...
+Y (%) - g (%),
we can put
O(Xla"'vxn)|V:0 = gil (Z g(XI)) ) (11)
thus the casg = 0 also results in a strict operator. Next, we will show thdtedent
types of operators fit into the framework depending on theoghof functionf. From

now on, let us assume
() = 1-x\¢
g - X 9
the generator function of the Dombi operator.

The Generalized Dombi operator

Definition 1. The generator functions of the Generalized Dombi operater a
1-x\°
fefX)=In{14+ve —~ ) a>0 (12)

fa(x) =1In <1+yd (1—)()(

whereye, Yg € [0, ). From

a>, a<0 (13)

d(x) = fg*
and
fol(x) = ! Ta a>0 (14)
1+ (e~ 1)
fat(x) = ! a<0 (15)

(o) _ 1
d@ (x) = # a<0 a7
G0 14 Dy, (%)



whereye, yq € [0, ] and

Dy(x) = (% <ﬁ <1+y<1)qxi)a) 1>>l/a. (18)

Equations (16) and (17) differ only in the sign@fand so the Generalized Dombi
operator class is:

1
og%y X) = (19)

(s (oor(5))9)

In the forthcoming sections, we will show theg&y is a strict operator fon €
(—00,0) andy € (0, ).

The Dombi operator case

The Dombi operator has the form

o (x) = 1 — (20)
Tl (®))

andifa > 0 then the operator is conjunctive andik 0 then the operator is disjunctive.
The next corollary follows from lemma 1, by the substitutlos .

Corollary 1. The Dombi operator is a special case of the Generalized Dapédiator,
i.e.ifyc =yg =0then

57 (), (21)

D
A3 o(x) = A5 (x). (22)

Conclusions

In this lecture we have

1. proved the associativity of the multiplicative utilityriction,
2. introduced the generalized operator:

GG )"
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3. presented new forms of rational involutive negations:

1
n\;*(X): 1-v 2 1-x\—1
1+ (v—) (5%
1
nV.Vo(X): 1 -1
' —Vo1l-v (1-
1+ 5005 ()

4. proved that the new operator connectives form a De Monggle with a negation
iff
Yo (1—\)0 1—\))0‘
Ye Vo v
5. proved that the Dombi operators form a De Morgan tripldnaity rational involu-

tive negation
6. showed that the generalized operator has the follownigdi

Value ofa
Type of operatgialue ofy| conj.| dis;j.

Dombi 0 O<aja<O
Product 1 1 -1
Einstein 2 1 -1
Hamacher |ye (0,0)] 1 | —1

Drastic 00 O<aja<O
Min-max 0 0 | —oo

7. introduced new forms of the Hamacher operators

=) 1)

i) =
1+ (% (nin:l (1+Yd (

8. presented new forms of the Einstein operators
1

(%) = 3
Ogp,2(X 1+2(|-|i”:1 (1+2(%)a) } )1/

9. showed that the addition of several velocities in the &awrk of special relativity
c

IS: . _
1+2(My (14255 ) - 1)

This new parametric operator family has some useful agjmics. The two parame-
ters offer more freedom in the sense that by adopting twée&usof just one parameter,
the operator can be made to fit the problem in question bBeause we have two pa-

rameters to play with instead of one.

52



Lexicographic refinements of fuzzy measures, Sugeno
integrals and qualitative bipolar decision criteria

Didier Dubois

IRIT, CNRS and Université de Toulouse, France
dubois@irit.fr

In decision applications, especially multicriteria démismaking, numerical ap-
proaches are often questionable because it is hard to elioiterical values quanti-
fying preference, criteria importance or uncertainty. Bloiften than not, multicrite-
ria decision-making methods come down to number-cruncténipes with debatable
foundations. One way out of this difficulty is to adopt a gtadive approach where
only maximum and minimum operations are used. Such methujdy a property of
scale invariance that insures their robustness. One of tfs¢ sophisticated aggregation
operation making sense on qualitative scales is Sugengraitdt is qualitative, hence
robust to elicitation, and it assumes commensurabilitwben preference intensity and
criteria importance or similarly, utility and uncertaintfowever, since absolute qual-
itative value scales must have few levels so as to remainitbegjy plausible, there
are not more classes of equivalent decisions than valuéslavéhe scale. Hence this
approach suffers from a lack of discrimination power. Irticatar, qualitative aggrega-
tions such as Sugeno integrals cannot be strictly incrgasid violate the strict Pareto
property.

In this talk, we report results obtained when trying to irae the discrimination
power of Sugeno integrals, generalizing known refinemefttssominimum and maxi-
mum such as leximin and leximax. The representation of lexand leximax by sums
of numbers of different orders of magnitude (forming a stipereasing sequence) can
be generalized to weighted max and min (yielding a “bigséelj weighted average)
and Sugeno integral (yielding a “big-stepped” Choquetgrd§. This methodology
also requires the fuzzy measure (monotonic set-functiorglved to be lexicograph-
ically refined. We show this is possible by means of qualieaNoebius transforms
introduced by Michel Grabisch. Such refined fuzzy measwaade represented by nu-
merical set-functions, and we show they can always be balipfausibility functions
in the sense of Shafer. Lexicographic refinements can alsappked to the case of
bipolar bivariate evaluations, thus bridging the gap witmalative prospect theory.
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1 Introduction

The investigation about the dependence among random iesiabone of the main
topic in applied probability and statistics. In fact, praes of the joint probability law
of arandom vectoX = (X1, Xo, ..., X,4) could be crucial interest when one wants to
predict the behaviour of multivariate systems.

Nowadaysgcopulasrepresent the building block of the modern theory of muttiva
ate distributions. In fact, it has been recognizedlijar’'s Theorenf10] that any mul-
tivariate distribution functions associated with a randegntorX can be constructed
and fitted (to some available data) by means of a two-stepeproe: first, the marginals
are chosen; then, the dependence is modelled by means daéblswiopula. For more
details, see for instance [4].

This decomposition allows practitioners to match any sétaif/idual distributions
to a specified dependence structure. Hence, for a given stddm variables, different
dependency structures can be imposed on the variables bifyspg different copulas.
For instance, copulas having tail dependence can be applegpture the observation
that large losses from different risk types tend to strikeudtaneously during stress
situations.

Especially in a financial context, the selection of a sugatdpula associated to a
multivariate stochastic model (representing, e.g., a ptértedit portfolio) is essential
to derive some relevant quantities of the model (likdue-at-risk, which could affect
the possible choices of a risk-manager.

In order to provide a variety of examples of copulas to be usedactice, a number
of families and constructions have been developed duriagydfars (see [3] and the
references therein). However, most of these constructiom®f analytical nature and
do not have a genuine probabilistic interpretation.

In this talk, we will revisit two constructions of copulageddy known, namely
ordinal sumsandshufflesby presenting their possible stochastic representation.

The concept of ordinal sum was introduced in the algebraiméwork of semi-
groups and, hence, it was used in the theory of triangulamedsee [9, 5] and the
references therein). It applies equally well to bivariabpuwas and has been recently
extended to higher-dimensional copulas in [6].

The concept of shuffles of copulas was introduced by [8]rictstg to the case
when the copula coincides with the comonotonicity copula (for an extension, see
also [7]). It is grounded on the fact that one can generateamgwlas by means of a
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suitable rearrangement of the mass distribution of a git@nisg copula. Recently, a
measure-theoretic interpretation of shuffles has beempted in [2].

By using the new approach by [1], we will present a new metlooadnstructing
copulas that encompasses both the multivariate shufflethenardinal sum construc-
tion. Such a method is also used in order to provide an apmation of any copulas.
In order to reach our goal, we rely on measure-theoretiaiigcies that are grounded
on the well-known one-to-one correspondence between aspuld special probability
measures.

Acknowledgement. Support of Free University of Bozen-Bolzano, School of Eco-
nomics and Management, via the project “Multivariate defegte models” is acknowl-
edged.
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1 Introduction

We focus on Choquet integrals with respect to a finite une/irs

While the classical approach almost always assumes thé/fafmeasurable sub-
sets ofN to form an algebra, many practical situatioesy, cooperative games, mul-
ticriteria decision making) require a more general settiitty only the members of a
certain subfamilyF C 2N being feasible and no particular "nice” algebraic struetur
apparent.

In such a general situation, the classical definition of thedLiet integral is no
longer easily utilizable: Many functions become non-meaisie in the sense that their
level sets do not necessarily belong to the fanfily

It is the purpose of the present paper, to extend the notian ©fhoquet integral
to arbitrary families¥ of subsets in such a way that functions can be integrated with
respect to general set functions (and capacities beingteyar case). To do so, we
consider# as an ordered system (whose order relation may arise fronrtaipar
application model under consideration).

2 Fundamental notions

An ordered systers a pair( ¥, <), where# is a family of non-empty subsets of some
setN with n:= |N| < « that covers all elements &, i.e,,

U F=N,

FeF

(partially) ordered by the precedence relatigr{e.g., set inclusion). We set:= | F|
and, for notational convenience, arrange (index) the mesrdfef = {F;,...,Fn} ina
monotonically decreasing fashidre., such that

F-F = i<j (1<i,j<m). (1)

A valuationon ¥ is a functionv: # — R. Setting%o := ¥ U{0} andv(0) := 0,
valuations are usually callegamesdefined on a subfamily of®2 If in additionv is
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non-negative anésotone(or monotongw.r.t. < (i.e., v(F) < v(G) wheneverr < G),
we callv acapacityor afuzzy measure

Given a valuatiorv, we define its Mdbius transforf@as the unique solution of the
system

v(F) = Be,VF € 7.
G=F,Ge¥F

If m> 0, thenv is called abelief function For anyF € F, we define theunanimity
game(or simple (belief) functiod™ by {7 (G) = 1iff G = F, and 0 otherwise. We have
for any valuationv= S Be¢F. Hence we associate tthe belief functions

= 5 Bel" and vii= 5 (-Br)C

Br>0 Br<0

and thus obtain the natural representatieav —v—.
Assume(Fo,=<) = (2N,C) and letv: % — R be a game. For any non-negative
vectorf € R, the(classical) Choquet integrdll] w.r.t. vis defined by

/fdv—/ ({ieN| f > a})da @)

It is well known that, using the Mdbius transfoifin
/fdv:FZNBF min ;. 3)

Proposition 1. (Lovasz, 1983) The functional+> [ f dv is concave if and only if v is
supermodular, i.e., if v satisfies the inequalitfFw G) + v(F NG) > v(F) 4+ v(G), for
allF,G C N.

3 Integrals

We now construct the discrete Choquet integral for an ortigysten( 7, <) in several
steps and first consider belief functions. Apper integralfor the belief functiorvis a
functional[v] : RN — R, such that

(i) [VJ(Af)=A[v|(f)>0 forall scalars\ > 0.
@iy M(f+g)>NM(f)+[v(g) forall f,geRY.
(i) [V](1g) >v(F) forallF € F.

The key observation is that the class of upper integrals ppdssesses a unique lower
envelope/*.

Lemma 1. For any belief function v, there is a unique upper integrativat provides
a lower bound for all upper integralf/] in the sense(f) < [v](f) for all f € RY.
Moreover, one has

vi(f)=max{(wy) [yeRZ, § yele <f}.
FeF
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The same approach has been taken by Lehrer, who calls ¢otieave integral3, 4],
with the difference thaff = 2\ and thaw can be any capacity. We call the upper integral
v* established in Lemma 1 thi@&hoquet integrabf the belief functiorv and henceforth
use the notation

/dev::\f*(f).

We extend the Choquet integral to arbitrary valuationg

/fdv::/ fdv*—/fdv* forall f € RY.
F F F

Note that the Choquet integral is positively homogeneouary valuation.

We now present a heuristic algorithm for the computatiorhef €hoquet integral
relative to the ordered syste(, <), which generalizes the well-knowmorth-west
corner rulefor the solution of assignment problems. As usual, we deti@empty
string by. Also, we setf (X) :={F € # |F C X} forall X C N.

Given the non-negative weightirfge R, consider the following procedure (Monge
Algorithm (MA)):

(MO) Initialize: X «+~ N, M < 0,c+ f,y«+ 0,1t« [J;

(M1) LetM = F € F(X) be the set with minimal indexand choose an elemeptc M
of minimal weightc, = minjem ¢j;

(M2) Update:xX <+ X\ {p}, M < M U{M}, ym < Cp, C< (C—Cplm), Tt<— (TIP);

(M3) If F(X) =0, Stop and OutpufM,y, ). Else goto (M1);

Given any valuatiow, associate with the outp(y, ) of MA the quantity

[F](v) :=(wy) = > yrv(F).
Fer

Since(y, ) does not depend on it is clear that — [f](v) is a linear functional on the
set of valuations.

Theorem 1. Assume y is the output of MA for f. The following are equivialen

@) (v, %)= [, fdZF forallF € 7.
(b) (y,v) = [ fdv for all set functions v.

Corollary 1. Assume that the Monge algorithm computes the Choquet aitfegrall
simple function§™. Then we have

/ fdv=Y B(F)/ fd¢"  for all set functions v= > B(F)Z.
F FeF F FeF

4 Ordering by containment

We investigate in this section systems under the set-tlieamntainment order relation
C and consider the systefif , C).
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Lemma 2. Let(F,C) be arbitrary and f: N — R,.. Then for any Fe ¥,

F _ min f:
/ fa" = minf.
Assume thatf is weakly union-closeh the sensé NG # 0 impliesF UG € ¥ for
alF,Ge 7.

Theorem 2. Let (F,C) be a weakly union-closed system. For alEfR" , all valua-
tions v with v= S+ B(F)Z", we have

<y,v>/dev%BF/fszFgTBFpgpfi.

Corollary 2. Let(¥,C) be weakly union-closed andgfR"Y. Then

/ fdv:/fd\‘/ holds for all valuations ¥
F

andV is determined by(S) = [ 1sdvV= Y maimal inr(9 V(F), vSe 2V

Remark 1. (i) Corollary 2 shows that the Choquet integral on a weaklyposclosed
family essentially equals the classical Choquet integnadi therefore inherits all
its properties (in particular, comonotonic additivity).

(i) Itextends the classical Choquetintegral in the sehagit f is #-measurable then
[y fdv= [ fdv.

(iii) A capacity v on (F,C) may not yieldv'as a capacity oii2V, C). Therefore, the
Choquet integral is not necessarily monotoneis a capacity.

From Proposition 1, we immediately see:

Corollary 3. Let (F,C) be weakly union-closed and v an arbitrary valuation. Then
the following are equivalent:

(i) The operator fi— [, fdv is superadditive ORE.
(i) The extensiow: 2N — R of v is supermodular.

An algebrais a collectionZ of subsets oN that is closed under set union and set
complementation witld,N € 4. In particular,¥ = 4\ {0} is a weakly union-closed
family. Lehrer [2] (see also Teper [5]) has introduced a mditxintegral relative to the
algebraq as follows. Given a probability measuPeon 4 and a non-negative function

f e RY, define
a )\>Op{ g S ( )| g Sis > }

Lehrer shows that the functionél— [, f dP5 is a concave operator dR. Let us
exhibit Lehrer’s integral as a special case of our generab@ht integral.

Proposition 2. Let 4 be an algebra and P a probability measure @n Setting¥ =
4\ {0}, one then has

/fdpﬂ:/ fdP forall f € RY.
L F

In particular, Lehrer’s integral can be computed with the i@ algorithm.
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5 Supermodularity and superadditivity

Theorem 3. (Generalization of Lo&sz’ result (Proposition 1)) Assume thatis union-
closed and v a capacity off ,C). Then the following statements are equivalent:

(i) / fdv=max{(vy) [yeR], 3 yele < f} forall t €RY.
¥ Fer
(i) The functional f— [ fdv is superadditive oRN.
(iii) vis supermodular.

Corollary 4. Let ¥ be a union-closed and v a capacity with extensioon (£, C).
Then the following statements are equivalent:

(i) v: F — Ris supermodular o ¥, C).
(i) v:2N — R is supermodular o2V, C).
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1 Preliminaries

An algebraic structure itocally finite iff each of its finite subset generates a finite
subalgebra only.

In this paper we look at this property of local finiteness forotm based struc-
tures. By T, Tp, Tc we denote the basic t-norms, i.e. the tukasiewicz, the mdu
and the Godel t-norm, respectively. Furthermardp,lc shall be their residuation
operations, and\, ,Np, N the corresponding standard negation functions defined via
Nu (X) = I (x,0) in all these cases (and yielditfNy = Ng).

Generally, given a left continuous t-norimand its residuation operatida, we
denote byNr the corresponding standard negation function giveN@) = I7(x,0).

And Sy shall be the t-conorm related to the t-nofnin the standard way.

2 Results for t-norm-monoids

Proposition 1. The Gdel monoid[0, 1], Tg, 1) is locally finite, and so is its negation-
extended versiofi0, 1], Tg,Ng, 1).

Proposition 2. The product monoid|[0,1],Tp,1) is not locally finite, and so is its
negation-extended versigf0, 1], Tp,Np, 1).

Proof: Any a € (0,1) generates an infinite submonoid(@, 1], Tp, 1).
Proposition 3. The tukasiewicz monoid0, 1], T, , 1) is locally finite.

Theorem 1. A t-norm monoid[0, 1], T,1) with a continuous t-norm T is locally finite
if and only if T does only have locally finite summands in ifgesentation as ordinal
sum of archimedean summands.

Corollary 1. At-norm monoid|[0,1],T,1) with a continuous t-norm T is locally finite
if and only if T does not have a product-norm isomorphic sunghiaits representation
as ordinal sum of archimedean summands.

Proposition 4. If a continous t-norm T has a product-isomorphic summandsiroi-
dinal sum representation then any extension of the t-normaomdq([0, 1], T, 1) is not
locally finite.
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Proposition 5. The t-norm monoid[0, 1], T.m, 1) based upon the nilpotent minimum

min{x,y}, ifu+v>1
Tn X, = .
m(%Y) {0 otherwise

is locally finite.

3 Results for extended t-norm-monoids

Proposition 6. The residuation-extendedd@el monoid([0, 1], Tg,lg,1) is locally fi-
nite.

Proposition 7. The residuation-extended product mon@idl 1], Tp, Ip, 1) is not locally
finite.

Proposition 8. The residuation-extended tukasiewicz morffidi], T, , I ,1) is not lo-
cally finite.

Theorem 2. A residuation-extended t-norm-mondi@, 1], T, I1,1) with a continuous
t-norm T is locally finite if and only if T does only have logdihite summands in its
representation as ordinal sum of archimedean summands.

This theorem immediately yields the following corollary.

Corollary 2. A residuation-extended t-norm-mondi@, 1], T, I1,1) with a continuous
t-norm T is locally finite if and only if it is based upon thé@:l monoid, i.e. iff T=Tg.

Proposition 9. The negation-extended tukasiewicz mor(@@dl], T, ,N., 1) is not lo-
cally finite.

The problem here really comes from the irrational numbers.

Proposition 10. The negation-extended rational Lukasiewicz mogfidl] NQ, T,, N, 1)
is locally finite.

These results can also be extended to the correspondidgassi lattices.
Proposition 11. The Gdel-algebra([0,1],A,V, Tg, ¢, 0) is locally finite.
Proposition 12. The product-algebrg[0, 1], A, V, Tp,Ip,0) is not locally finite.

Proposition 13. The tukasiewicz-algebr@o, 1], A, Vv, T, 11, 0) is not locally finite.
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4 Results for t-norm-bimonoids

Proposition 14. A t-conorm monoid[0, 1], Sr,0) is locally finite iff its corresponding
t-norm monoid([0,1], T, 1) is.

We are also interested in the t-norm based bimon@d@4], T, Sr,1,0). In general,
a bimonoid is an algebraic structulie= (A, x1, x2,€1,€2) such that botijA, x1,e;) and
(A, x2,€2) are monoids.

Proposition 15. The Gdel-bimonoid [0, 1], Tg, S, 1,0) is locally finite.
Proposition 16. The product-bimonoid[0, 1], Tp, Sp,1,0) is not locally finite.
Proposition 17. The tukasiewicz-bimonoid0, 1], T,, S ,1,0) is not locally finite.

Proposition 18. The rational Lukasiewicz-bimonoid0,1] N Q,T.,S.,1,0) is locally
finite.

Theorem 3. Suppose that T is a continuous t-norm with ordinal sum regm&sion
T =Sic ([li,ri], Ti, ¢i) without product-isomorphic summands. Assume furtheriharte
for each Lukasiewicz summafitl, ry], To, k) the interval[1—ry, 1 —Iy] does not over-
lap with any domain intervall;,r;] for a tukasiewicz summan(d,ri],To, i), i € I.
Then the t-norm bimonoid0, 1], T, Sr, 1,0) is locally finite.

Example: The t-norm bimonoid]0, 1], T*, Sr+,1,0) with the continuous t-norm
* 1 *
T = % ([551]7TL7¢ ) (1)
ie{1}

and the order isomorphisi : [3,1] — [0,1] given by¢*(x) = 2x— 1 is locally finite.
By the way, the particular choice of the order isomorphdsnis unimportant here.

Proposition 19. The Tu-bimonoid, based upon the nilpotent minimuyggyTis locally
finite.

5 Relativized local finiteness

Definition 1. A t-norm based algebraic structugt over the unit interval is rationally
locally finite iff each finite set & [0,1] NQ generates only a finite substructurebf

Proposition 20. A t-norm monoid[0,1], T, 1) is rationally locally finite iff its corre-
sponding t-conorm monoido, 1], Sr,0) is rationally locally finite.

Proposition 21. Suppose that T is a continuous t-norm with an ordinal sumesgn-
tation T = Y;¢ ([li,ri], Tu, $i) which has only Lukasiewicz-isomorphic summands. If the
order isomorphisms in the T-summands map rationals to natithen the residuation-
extended t-norm-monoido, 1], T, 11, 1) is rationally locally finite.
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Corollary 3. Supposethat T is a continuous t-norm with an ordinal sumasgmtation
T = Sie ([li,ri], Te, ¢i) which has only tukasiewicz-isomorphic summands. If therord
isomorphisms in the T-summands are rational functions themesiduation-extended
t-norm-monoid [0, 1], T, 1, 1) is rationally locally finite.

Itis a routine matter to include the lattice structuré®il] into these considerations.

Proposition 22. The tukasiewicz-algebrd0, 1], A, Vv, Ti,1.,0) is rationally locally fi-
nite.

Proposition 23. Suppose that T is a continuous t-norm with an ordinal sumesgn-
tation T = S ([li,ri], T, i) which has only tukasiewicz-isomorphic summands. If all
the order isomorphisms in the T-summands are rational fanstthen the t-algebra
([0,1], A, V,T,I7,0) rationally locally finite.

Remark: This notion of rational local finiteness is, of course, onpyagticular case of a
more general notion of relative local finiteness which migdtdefined in the following
way.

Definition 2. Let2( be an algebraic structure and M |2|. Then2( is M-locally finite
iff for each finite GC M one has that the substructuf@)y has a finite carrier.

Actually it is not clear what will be the importance of this reogeneral notion.
However, it seems particularly with respect to computegrsoe topics that the partic-
ular caseM = Q, i.e. the case of rational local finiteness, might be the rimogbrtant
one: internally all numbers used in a computer are rationaso

It is an obvious fact that foM; C M» the M-local finiteness of an algebraic struc-
turel implies itsMj-local finiteness.

Obviously, this relativized local finiteness is also tramséd back and forth between
t-norm based and t-conorm based monoids.

Proposition 24. A t-norm monoid[0,1], T, 1) is M-locally finite iff its corresponding
t-conorm monoid|[0, 1], Sr,0) is (1 — M)-locally finite.
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In decision analysis, and especially in multiple criterizcidion analysis (for an
updated survey see [9]), several non additive integrale lhe@en introduced [11, 12].
Among them we remember the Choquet integral [6], the Sugetegial [27], the
Shilkret integral [26]. Recently the bipolar Choquet indd13, 14] (see also [17]), the
level dependent Choquet integral [16], the level depen8egeno [23], the level de-
pendent Shilkret integral [4] and the bipolar level depenidhoquet [16] integral have
been introduced. Very recently, on the basis of a minimab$eixioms, one concept
of universal integral giving a common framework to many af #bove integrals have
been proposed [20, 21]. In the same line, in this paper wetpydvide a generalization
of one of the above integrals, the Choquet integral, in oraléind the above integrals
and other aggregation functions as its special cases,sttlader some specific condi-
tions. In fact, one of above integrals, the level dependéaQet integral, already has
very interesting good properties in this sense, becausaibis as particular cases the
Choquet integral and the Sugeno integral [17]. The ideaefatel dependent Choquet
integral is to consider a capacity that depends also on tred & evaluations to be
aggregated. The further generalization of the Choquegjiatehat we propose in this
paper, the profile dependent Choquet integral, extendsdésconsidering a capacity
which depends on the whole vector of evaluations to be agtgeg

After remembering the main aggregation functions and natitiad integrals al-
ready introduced in the literature, and after introduciome others new non addtive
integrals and aggregation functions (the bipolar Sugetegial, the bipolar Shilkret in-
tegral, the bipolar level dependent Sugeno integral, thelar level dependent Shilkret
integral, the bipolar cumulative utility) we introduce agide a characterization of the
profile dependent Choquet integral. We show also how it carskd to represent other
aggregation functions and non additive integrals. Someltseselated to some aggre-
gation functions and non additive integrals, either alyelatgew or introduced in this
paper, have an autonomous interest. More in detail, to teedfeour knowledge, the
following results are original:

— the characterization of level dependent Choquet integitabral and cumulative
utility in terms of comonotone modularity;

— the characterization of bipolar level dependent Choquegial integral in terms of
bipolar cardinal tail independence;

— the characterization of bipolar level dependent Choquegial integral and bipolar
cumulative utility in terms of bipolar comonotone modutgyi
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— the characterization of level dependent Shilkret intedsgdolar Sugeno integral,
bipolar Shilkret integral, bipolar level dependent Sugeniegral and bipolar level
dependent Shilkret integral;

— the representation of bipolar Sugeno integral in terms wélldependent bipolar
Choquet integral.

Let us consider a set of criterdh= {1,...,n}. In general an aggregation function
is a functionG : (a,B)" — (a,B), (a,B) C R, where(a, ) means one of the intervals

(o, B].]a, Bl [a, B[, Jot, B,
and possibly also
] 700,8[7] 700,8]7 [C(,+°0[,]C(,+°0[,] 7°°a+°°[7
such that

1. G(a,...,0)=aif a € (a,B) andlim,_,4+G(X,...,x) =aif a ¢ (a,B), andG(B,...,

B) =Bif B € (a,B) andlim,_,g-G(x,...,x) = Bif B¢ (a,B),
2. forallx,y € (a,B)",

X >y = G(x) > G(y).

The following properties of an aggregation functién (a,p)" — (a,B), (a,B) C R,
are useful to characterize some of the aggregation furstios shall discuss in the
following:

— idempotency: for ala € (a,B)" such thag = [a,...,a], G(a) = &;

— homogeneity: for alk € (a, )" andc > 0 such thatx € (a, )", G(cx) = cG(x);

— stable for minimum: for alk € (a,B)" andc e (a,B), G(XA[C,...,c]) = min(G(x),
c), where, for any,y € (a,B)", x Ay = zwith z = min(x,Vi),i = 1,...,n (in case
y € (a,B)"is a constant, i.es = h,i =1,...,n, then we can write A h);

— additivity: for all x,y € (a,B)", G(x+Yy) = G(x) + G(Y);

— maxitivity: for all x,y € (a,B)", G(xVy) = max G(x),G(y)), where, for any,y €
(a,B)", xVy =z with z = max(%,Vi),i=1,...,n;

— modularity: for allx,y € (a,B)", G(x Vy) + G(x Ay) = maxG(x) + G(y);

— comonotonic additivity: for alk,y € (a,)" being comonotone, i.e. such that for
alli,j € N (x —x))(¥i —yj) > 0,G(x+Yy) = G(x) + G(y);

— comonotonic maxitivity: for all comonotoney € (a,B)",

G(xVy)) = maxG(x),G(y));
— comonotonic modularity: for all comonotomey € (a,3)",
G(xVy) +G(xAy) = G(x) + G(y);

— bipolar comonotonic additivity: for alk,y € (a,B)" being bipolar comonotone,
i.e. such that for all, j € N (|x| —|x;|)(lyil — yj|) > 0 andxix; > 0, G(x +Y) =
G(x) +Gl(y);
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— bipolar comonotonic maxitivity: for all bipolar comonoter,y € (a,B)", G(X Vbip
y) = maX’P(G(x),G(y)), where for alla,b € R maxX’'P(a,b) = aif |a| > |b),
maxX’'P(a,b) = bif |a| < |b| and mak’P(a,b) = 0 if |a| = |b|, and forw, z € (a, )",
wVz=h, with hj = maxX’’P(w;,z),i=1,...,n;

— bipolar comonotonic modularity: for all bipolar comonoeony € (o, B)", G(x VPP
y) + G(x APPy) = G(x) + G(y), wherew Az = h, with hj = min®P(wi,z), | =
1,...,nand mi?’P(a,b) = aif |a| < |b|, min®P(a,b) = bif |a] > |b| and mi¥'P(a, b)
=0if |a]=1b|;

— bipolar stability of the sign: for alf,s € (a,B) such thatr > s> 0 and—r,—s¢&
(a,B), and for allA,B C N with ANB =0, G(rlag)G(slag) > 0 or G(rlag) =
G(slag) =0, where A g is the vector with thé—th component equalt to 1 ife A,
equal to -1 ifi € B and 0 otherwise; in simple word&(rlag) andG(slag) have
the same sign;

— bipolar stability with respect to the minimum: for als € (a, ) such that > s> 0
and—r,—se (a,B), and for allA,BC Nwith ANB =0, if |G(r1ag)| > |G(slag)l|,
then|G(slag)| =s;

— cardinal tail independence: for aly,w,z € (a,3)" andA C N such that, for all
icAandjeN-—A;

Xi > Wi, X 2 Zj,Yi 2 Wj,Yi 2 Zj
we have
G(Xa,W_p) = G(ya,W-a) = G(Xa,Z-a) — G(Ya, Z-A)
where, for allh,k € (a,B)", m = (ha,k_a) is defined in such a way that, for all
ieNm=hific Aandm =k ifi e N—A;

— bipolar cardinal tail independence: for ally,w,z € (a,p)" andA C N such that,

forallic Aandj e N—A,

X > |Wjl, % > |zi],yi > |wjl,yi > |zj]
we have
G(xa,W-a) = G(Ya,W-a) = G(Xa,Z-A) — G(Ya, Z-A);

— regularity: for allx,y € (a,p)" such that there existr € (a,B) with r > t, for
whichx =vy; if X <t andx; =r andy; =t if x; > t, thenG(x) — G(y) <r —t.

An aggregation function is aadditive utilityif there exists functiorf; : (a,B) = R,
i=1,...,nsuch that

G(x) = AU(X) = f1(xa) + ...+ fn(Xn)-

Theorem 1. [3, 15] An aggregation function is an additive utility if and onlyitfis
modular.

An aggregation function is weighted averagé there exists a vector of weights

w=[wi,...,wWn,0<w <1ii=1...,n, andw; + ... + W, = 1, such that, for alk €

(a,B)",
G(X) = WAX, W) = WiX1 + ...+ WnXn.
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Theorem 2. An aggregation function is a weighted average if and onlyig additive
and idempotent.

An aggregation function is weighted maxmiif there exists a vector of weights
W= [wi,...,wn],0<w; <1i=1...,n and maxw; = 1, such that, for alkk € (a, )",

G(x) = WMaxMinx,w) = miax(min(wi,xi)).

The weighted maxmin was proposed by Dubois and Prade ureleathe of weigh-
ted maximum [8]. Here we prefer to call it weighted maxmin fder to underline that
it takes the maximum after the evaluations = 1,...,n, are “weighted” by the cor-
respondingn; using the minimum operator. In this way we reserve the ternghted
maximum to another aggregation function which takes theimamn after the evalua-
tionsx,i =1,...,n, are weighted by the correspondiwgusing the usual product. Let
remark also that Marichal calls weithed maxmin another egation function which,
in fact, corresponds to Sugeno integral [22].

Theorem 3. An aggregation function is a weighted maxmin if and onlyilémpotent,
maxitive and stable with respect to minimum (maximum).

An aggregation function is weighted maximurif there exists a vector of weights
W= [wi,...,Wn],0<w < 1i=1,...,n,and maxw; = 1, such that, for alk € (a, )",

G(x) =W Max(x,W) = maxw;X;.
|
Theorem 4. An aggregation function is a weighted maximum if and only itlempo-
tent, maxitive and homogeneous.
A capacity is functionu: 2N — [0, 1] satisfying the following properties:

1. u(0) =0,u(N) =1,
2. forallACBC N,u(A) < u(B).

The Choquet integral [6] of a vector of evaluations [xi, ..., %] € (a, )" with respect
to the capacitytis given by

chix = [

min; X

max X
H({i € N:x >t}dt+ minx;
I

Observe that if we considere (a,B)"NR" the Choquet integral can be written as

+00
Ch(x, ) :/0 M({i e N:x >1t})dt

Theorem 5. [25] An aggregation function G(a,B)" — (a,B) is idempotent and co-
monotone additive if and only if there exists a capacity jhdbat, for allx € (a,p)",

G(x) = Ch(x, l).
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A measure o with a scale(a, B) is any functiorv : 2N — (a, B) such that:

1. v(0) =a,v(N) =B,
2. forallACBCN,v(A) <v(B).

The Sugeno integral [27] of a vectar= [x4,...,X)] € a,B)" with respect to the
measura on N with scale(a, B) is given by

Sux,v) = rpga}\lxmln(v(A),rilgl/Em).

Theorem 6. [7] An aggregation function G(a, )" — (a,B) is idempotent, maxitive
and stable with respect to the minimum if and only if therstexa measure on N with
a scale(a, B) such that, for alk € (a,p)",

G(x) = Sux,v).

The Shilkret integral [26] with respect to a capagitpf a vectorx = [Xq,..., Xy €
R" is given by
Shx, ) = maxxiu({j € N 1xj = % }].

Theorem 7. [26] An aggregation function G(a, 3)" — (a,B) is idempotent, comonote
maxitive and homogeneous if and only if there exists a céypaodbn N such that, for
all x € (a,B)",

G(x) = Shix, ).

A level dependent capacity is a functipnp : 2N x (a,B) — [0,1] satisfying the
following properties:

1. forallt € (a,B), up(0,t) =0, p(N,t) =1,

2. forallt € (a,B) and for allA C B C N, (A1) < p(B,t),

3. for al AC N, wp(At) considered as a function with respectttés Lebesgue
measurable.

The Choquet integral of a vectar= [x1,...,Xn] € (a,B)" with respect to the level
dependent capacity p [16] is given by

max X .
Chp(x) :/ o ({i € N:x > t},t)dt+ minx;
min; X |
Theorem 8. [16] An aggregation function G(a,B)" — (a,B) is idempotent and car-
dinal tail independent if and only if there exists a level eieglent capacity b such
that, for allx € (a,p)",
G(X) = ChLD(X7 P—LD)

Theorem 9. An aggregation function G(a,B)" — (a,B) is idempotent, comonotone
modular and regular if and only if there exists a level depamtatapacity pp such that,
forall x € (a,B)",

G(X) =Chp (X7 P—LD)
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A level dependent measure dhwith a scale(a,B) is any functionv p : 2N x
(a,B) — (a,B) such that:

1. forallt € (a,B)vip(0,t) = a andv p(N,t) =t,
2. forallt,r € (a,B) such that <r,andACBC N,vp(At) <Vv(B,r).

An aggregation function is eumulative utility[5] if there exists a level dependent
measure p, such that, for alk € (a,3)",

G(x) =CU(x,vip)
= > (vo({i e N:x; = X0} X)) —vio({§ € N:Xj = Xy}, Xi-1))),
e
where(-) is a permutation of the indices of criteria such thgt< x4),i=1,...,n—1,
andx ) = a.

Theorem 10. An aggregation function G(a,3)" — (a, B) is idempotent and comonote
modular if and only if there exists a level dependent measuseon N with a scale
(a,B) such that, for allx € (a,B)",

G(x) =CU(x,VLp).
The level dependent Sugeno integral [23] of a veater [Xy,...,X)] € (a,B)" is
given by
Sup(x,vip) = maxvio({j € N 1xj = %}, X).

Theorem 11. [23] An aggregation function G (a,B)" — (a,B) is idempotent and
comonote maxitive if and only if there exists a level depehaeasures p on N with
a scale(a, ) such that, for alx € (a,p)",

G(x) = Sup(X,vip).

A level dependent capacity p is said Shilkret compatible if for for atlr € (a, )
such that <r, andA C Nty p(At) <rup(B,r).

The level dependent Shilkret integral [4] with respect texael dependent capacity
Shilkret compatibley p of a vectorx = [xq, ..., %] € R"is given by

Sho (X lp) = r;;@{mum({] eN:xj >x},%)].

Theorem 12. An aggregation function G(a, )" — (a, B) is idempotent and comonote
maxitive if and only if there exists a level dependent cagaghilkret compatible b
on N such that, for alk € (a,p)",

G(X) = Sh_D(X, HLD)

Corollary 1. An aggregation function G(a, )" — (a,B) is a level dependent Sugeno
integral with respect to a level dependent measugge on N with a scalda, ) if and
only if itis a level dependent Shilkret integral with respieca Shilkret compatible level
dependent capacity g. More precisely, for all € (a,B) and AC N,

VLD (A,t) =tlp (A)
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Let us consider the s€@ = {(A,B) : A/ B C N,ANB = 0}. A bicapacity is function
WU : 2V — [0, 1] satisfying the following properties:

1. up(0,0) =0,
3. forall (A,B),(C,D) € Qsuch thatA C C andB D C, yy(A,B) < p(C,D).

The bipolar Choquet integral [13, 14] (see also [17]) of ateeof evaluationsx =
[x1,...,%n] € R" with respect to the bicapacify, is given by

Chy(X) = /Omax (i €N x > ) i € Nox < —t))dt

Theorem 13. [17] An aggregation function G (a,B)" — (a,B) is idempotent and
bipolar comonotonic additive if and only if there exists adpacity | such that, for all
x e (a,p)",
G(x) = Chy(X; Hp)-
A bipolar measure ol with a scale(a,3), o < 0 < B, is any functiorv, : Q —
(a,B) satisfying the following properties:

1. vp(0,0) =0,
2. Vb(N,Q)) = [3, vb((I),N) =q,
3. forall (A,B),(C,D) € Qsuch thatA C C andB D D, pp(A,B) < u(C,D).

The bipolar Sugeno integral of a vector= [x1,...,%n] € R" with respect to the
bipolar measurep, on N with scale(a, B) is given by

Ub(X,Vb):
masignus({ € N = xi[}.{i €N < ~[x[})
min(ve({] € N > )£ €N < =l )

Theorem 14. An aggregation function G(a,p)" — (a,) is idempotent, bipolar co-
monotone maxitive, bipolar stable with respect to the sigd kipolar stable with re-
spect to the minimum if and only if there exists a bipolar ez, on N with a scale
(a,B) such that, for allx € (a,B)",

G(X) = Sw(X,V).

The bipolar Shilkret integral of a vect&r= [x1, . ..,%,] € R" is given by
bip . .
Shy(x; o) = maXxibo(Mo({j € N2 xj > [xi[}, {J € N1xj < —[xi[}].

Theorem 15. An aggregation function G(a,)" — (a,) is idempotent, bipolar co-
monotone maxitive and homogeneous if and only if thereseaisticapacity g on N
such that, for all € (a,B)",

G(x) = Shy(X; k).
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A bipolar level dependent measure binwith a scale(a,B), a < 0 < B, is any
functionvyp x (a,B) : Q — (a,B) satisfying the following properties:

1. vpp(0,0,t) =0 for allt € (a,B),

2. Vpip(N,0,t) =B, vpip(O,N,t) = a forall t € (a,B),

3. forall(A,B),(C,D) € Qsuchthah C CandB D D, and for allt € (a, ), Ho(A, B,t)
<HC,D;t).

The bipolar level dependent Sugeno integral of a vecter|xa,...,X,] € (a,B)"is
given by

bip . .
SwLp(X, VD) = riT;%XVbLD({J eN:x; > (x|}, {] e N:x; < —[xi[},%).

Theorem 16. An aggregation function G(a,p)" — (a,B) is idempotent and bipolar
comonote maxitive if and only if there exists a bipolar lelegpendent measuvg p on
N with a scalg(a, 3) such that, for alk € (a, )",

G(X) = SWwLd(X,VbLD)-

The bipolar level dependent Shilkret integral of a veater [x1,...,%y] € (a,B)"is
given by

bi . .
Stbuo (X, HoLo) = MéxkbLo({] € N xj = xil}, {j € N xj < — i}, )]

Theorem 17. An aggregation function G(a, )" — (a,) is idempotent and bipolar
comonotone maxitive if and only if there exists a level ddpahcapacity g p on N
such that, for allx € (a,B)",

G(x) = ShpLp(X;, HbLD)-

Corollary 2. An aggregation function G(a, )" — (a,B) is a bipolar level dependent
Sugeno integral with respect to a bipolar level dependerdsueevy, p on N with a
scale(a, ) if and only if it is a bipolar level dependent Shilkret intagwith respect
to a Shilkret compatible bipolar level dependent capaciibpMore precisely, for all
t e (a,B)and(A,B) €Q,

Vb|_|3(A7 B,t) = tp'bLD(A7 B).

A bipolar level dependent bicapacity [16] is a functigip : Qip x [(0,B)NRy] —
[0,1] satisfying the following properties:

1. forallt € (a,B) "R+, Upp(0,0,t) = 0, (N, 0,t) = 1,y p(O,N, 1) = —1

2. forall (A,B,t),(C,D,t) € Q.p, ACC,B D D,y p(AB,t) < Hpp(C,D,t),

3. for all (A,B,t) C Qip, WiLp(A B,t) considered as a function with respectttis
Lebesgue measurable.

The Choquet integral of a vectar= [x, ...,xn] € (a, )" with respect to the level
dependent bicapacity,p [16] is given by

Chyp(x) = /Oma)q " ppp({i € N:x >t} {ie N:x < —t},t)dt
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Theorem 18. [16] An aggregation function G (a,B)" — (a,B) is idempotent and
bipolar cardinal tail independent if and only if there exdist bipolar level dependent
bicapacity j.p such that, for allx € (a, )",

G(X) = ChDLD(X, ubLD)-

Theorem 19. An aggregation function G(a,)" — (a,) is idempotent, bipolar co-
monotone modular and regular if and only if there exists aoldp level dependent
capacity _p such that, for allx € (a,p)",

G(x) = ChoLp(X, HoLD)-

The following result shows the relatioship between the kiplevel dependent Cho-
quet integral and the bipolar Sugeno integral. We define @ l#®pendent bicapacity
Moo Sugeno compatible if for allA, B) € Q andt € (a,f) witht > 0, Yy pt(A,B) =1
or UpLp(A,B,t) = —1 of py p(A,B,t) =0, and|py p(A,B,t)| = 1 if |wp(A,B,r)| =1
for somer > t.

Theorem 20. Ifforall (A,B),(C,D) € Q suchthat A~ Cand BC D, G(1ag)G(1cp) >
0, then there exists a level dependent bicapacity Sugenoatitepu, p and a bipolar
measureyy, such that for allx € (a, )"

Sth(X,Vb) = ChoLp (X, boLp)-
Moreover, and for al(A,B) € Q and te [0,max(|al, |B|)]

— Wpp(AB,t) = —1if vp p(AB) < -t <0,
- ubLD(A; B,'[) =1if \)|3|_D(A7 B) >t>0,
— WpLp(A,B,t) = 0 otherwise.

An aggregation function is bipolar cumulative utilityif there exists a bipolar level
dependent measuvep, such that, for alk € (a,p)",

G(X) = CUb(X;VbLD) = Z‘(CU[T] (X,VbLD) — CU[T]*(X,VDLD))
S

where
CU;" (%, vbo) = VbLo({J € N1 x5 2 X}, {j € Noxj < =[x [}, X)),

CU™ (X, Vbip)) = VbLo({J € N Xj = X}, {J € Noxj < =[x [}, X)),

and[] is a permutation of the indices of criteria such thaf] < [x;,qyl,i=1,...,n—1,
andxg = 0.

Theorem 21. An aggregation function G(a, )" — (a,) is idempotent and bipolar
comonote modular if and only if there exists a bipolar leveppendent measurg, p on
N with a scalg(a, B) such that, for alx € (o, )",

G(X) = CUb(X,VbLD).
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Let us consider the following s& = {(A, (1, ...,%n),t) € 2N x (a,B)™1:AC {i
N:x >t}}. A profile dependent capacity is a functippp : W — [0, 1] satisfying the
following properties:

1. forallx € (a,f)" andt € (a,B), upp(0,X,t) =0,

2. forallx € (a,B)" andt € (a,B) such that mix; > t, wp(N,x,t) =1,

3. for allx € (a,B)" andt € (a,B) such thatAC BC {i € N: % >t} p(A x,t) <

H(B,x,t),

for all (A, x,t) e W, ppp(A,x,t) < 1,

for all (A, x,t), (Ay,t) € W such thatk At =y At, ppp(A,X,t) = ppp(AY,t),

6. forallx € (a,B)", upp({i € N:x >t},x,t) considered as a function with respect
tot is Lebesgue measurable,

7. forallx,y € (a,B)", if x >y then

ok

max X
/ pp({i € N :x >t},x,t)dt+minx >
|

min; X

max yi i .

[ eoldi €Ny = thy.tydt+ miny,
min; y; !

The Choquet integral of a vectar= [xi,...,%n] € (a,B)" with respect to the profile

dependent capacifyp is given by

max X

Chep(X) :/

min; X

ep({i € N:x;i >1t},x,t)dt+ minx
|

Theorem 22. An aggregation function G(a, )" — (a,B) is idempotent and regular
if and only if there exists a profile dependent capacity guch that, for all € (a, )",

G(X) = Ch:vD(X7 p_pD)

Let us consider an aggregation functi@n [0,1]" — [0,1] which is representable
as a profile dependent Choquet integral, but is not reprasknas a level dependent
Choquet integral:

G(Xi, ..., %) = (Maxx — minx) - minx; + minx;.
| | | |

Aggregation functiois can be represented as profile dependent Choquet integraéwho
profile dependent capacity is defined as follow: for(Allx,t) € W, ppp(A,x,t) = 1 if
t < min; X, andupp (A, X,t) = min; x; if t > min;x;.

For any(A,x,t) € W with t < B, let us define, if the limit exists and it is finite,

GL(AX,1) = limp_ s ZIXADE h#) —G(xA).

Theorem 23. If G is dempotent and regular, then there exists a profile ddpat ca-
pacity Wbp such that for all(A,x,t) e W

HPD(AaXat) = G{(A,X,t)
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and
max Xj
G(x) :/ Hpp({i € N :x; >t} x,t)dt+ minx;,
|

min; X
max Xj
G(x) :/ G{(A x At)dt + minx.
min; X |

The following results describe relationships betweenedéht generalizations of
Choquet integral.

Theorem 24. -
Ch(xn, ) = Chip (X, lp)

for anyx € (a,B)" if and only if for all AC N u(A) = w p(A,t) almost everywhere
with respect to & (a, ) [16];

Chip (X, p) = Chep(X, kpD)

foranyx € (a, )" if and only if for all (A, (X1, ...,%n),t) €W pp(At) = Uupp(A X, 1)
almost everywhere with respect ta {a, B);

Chy(X, Mp) = ChyLp(X, HoLD)

for anyx € (a,B)" if and only if for all (A,B) € Q t(A,B) = tLp(A, B,t) almost
everywhere with respect tcet (a, 3) with t > 0 [16];

ChoLp(X, bbLp) = Chep(X, Upp)
for anyx € (a,B)" if and only if for all (A, x,t) e W

Mpp(A X, t) = 1+ P p(O,N — A, —t) ift <O,
Hpp(A X, 1) = tp(A, B, 1) — Wp(0,B,t) if0<t < |miin>q| and miinxi <0,
Hpp (A X,t) = (A, 0,1) if miinx.- >0
almost everywhere with respect te {(a, 3).

We show now how some of the aggregation functions we coreideain be repre-
sented as a Choquet integral or a generalization of the Gagpegral.

Theorem 25. — An aggregation function G is an additive utility if and onfittiere
exists a level dependent capacitysuch that for all AB C N with ANB =0 and
forallt € (a,B) o (AUB,t) = pp(At) + up(B,t) and

G(X) = ChLD(X7 P—LD)

forall x € (a,B)"; inthis case, fix) = wp({i},x) foralli =1,...,nand xe (a,B);
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— an aggregation function G is a weighted average if and ortlydfe exists a capac-
ity 1 such that for all AB C N with AnNB=0, u(AUB) = u(A) + u(B) and

G(x) = Ch(x, )

forall x € (a,B)"; in this case, w=p({i}) foralli =1,...,n;

— an aggregation function G is a weighted maxmin if and onlyef¢ exists a level de-
pendent capacityip being Boolean, i.e. forall A N and for allte (a,B) wo(At)
=0or wp(Ait) =1, antitone with respect to t, i.e. for alltre (a,p) with r >t
and for all AC N yp(a,r) < pp(at), and maxitive, i.e. for all B C N and for
allt € (a,B) H(AUB,t) = max(p(A,t), u(B,t)) and

G(X) = ChLD (X7 P—LD)

for all x € (a,B)"; in this case, w=sup{t € (a,B) : pp({i},t) =1} for alli
1,...,m;

— if an aggregation function G is a weighted maximum with respeweights wi =
1,...,n, then there exists a profile dependent capagity for which pp(A,Xx,t) =
Wi, with wix« = max{wix; : i € N} forall (A x,t) € W, such that for alk € (a,3)"

G(x) = Chep(X, pD);

— an aggregation function G is a Sugeno integral if and onlhére exists a Boolean
and antitone with respect to t level dependent capagityguch that

G(x) = Chip (X, 1)

forall x € (a,3)"; in this casev(A) = supft € (a,B) : pup(At) =1} forall AC N
[16];

— if a regular aggregation function G is a level dependent Swugategral with re-
spect to a level dependent measurg on N, then there exists a profile dependent
capacity p for which for all (A, x,t) e W,

- dvip (A*,'[*)
N dt

Hpp (A, X, t)
where t = minjca: X; and AC A* C N with

vip (A" t%) = max{vLD(B,migxi) :BD A},
le

such that for allx € (o, )"
G(x) = Chpp(X, UpD);

— if a regular aggregation function G is a level dependent I8htlintegral with re-
spect to a level dependent capacifypon N, then there exists a profile depen-
dent capacity pp for which for all (A, x,t) € W, ppp(A,X,t) = pp (A*,t*) where
t* = minjca+ X and AC A* C N with

t*wp (A" t7) = max{ruLD(B,migxi) :BD A},
le
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such that for allx € (o, )"
G(x) = Chpp(X, kD).

The applications of above integrals in real decision proideneeds the determina-
tion of corresponding capacities and, usually, this is atlggomplex task. In these
cases, a very useful approach is the robust ordinal regoegdi9], first proposed
for additive utility functiond18, 10], and then introduced also in the use of the
nonadditive integral§l, 2].
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1 Introduction

This paper is a study of a variety of algebras that arise inrbestigation of the truth
value algebra of type-2 fuzzy sets [5]. The variety generbiethe truth value algebra
of type-2 fuzzy sets with only its two semilattice operasamits type is generated by a
four-element algebra that has a particularly simple formich we call a bichain. Our
initial goal is to understand the equational propertietif particular bichain, and thus
of the truth value algebra of type-2 fuzzy sets. We outlireegtogress on this goal, and
on our study of bichains in general.

2 The Algebra of Fuzzy Truth Values of Type-2 Fuzzy Sets

The underlying set of the algebra of truth values of typezZfisets isM = Map([0, 1],
[0,1]), the set of all functions from the unit interval into its€lhe operations imposed
are certain convolutions of operations [@n1].

The two binary operations andul corresponding to meet and join satisfy the fol-
lowing equations. The details may be found in [4].

Corollary 1. Let f, g, h € M. The following equations hold ifM, M, ).

fuf=ffnf=f

fug=gquf; frng=gnf
fu(guh)=(fug)uh; fr(gnh)y=(frng)nh
fu(fng)=fn(fug)

PwpdPE

Itis not the case that the list of equations above is an eppetbasis for the variety
generated byM, LI, ). Whether there is a finite basis for this variety remains open

3 Bichains in the Variety of Birkhoff Systems

Definition 1. An algebra(A,m,Ll) with two binary operations is called laisemilattice
if it satisfies equations (1)—(3) above, andBakhoff system if it satisfies equations
(1)-(4) above.

In any bisemilattice, each of the operatiomsndU induces a partial order on the
underlying set of elements.
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Definition 2. If an algebra(A,,1!) is a bisemilattice and the partial orders induced
by the two operations andL! are chains, therfA,1,L!) is abichain.

Theorem 1. A bichain is a Birkhoff system.

Thus the variety generated by bichains is contained in thietyaof Birkhoff sys-
tems. However, this containment is strict.

We only consider finite bichains. When describing a bichiir2,...,n} with n
elements, we assume theorder is 1< 2 < --- < n and then just give the-order. Any
permutationp of 1,2,..,n for the Ll-order gives a bichain, so up to isomorphism there
aren! n-element bichains. We will generally depict bichains in fibkowing manner.

n ¢(n)

We list below three bichains that play a big role in what we . list only the
column giving the ordering induced hy,

=T N weRk
>C Wk N
[6)]
BEC P wN P

4

We were led to the consideration of bichains by the fact thatvariety generated by
(M,,L) is generated by the 4-element bich&ifi2, 3].

4 Projective and Subdirectly Irreducible Algebras

We begin with two concepts that play a central role in our tigation.skip

Definition 3. An algebralP is weakly projective in a variety ¥/ if for every homomor-
phism f: P — [E and every onto homomorphism 8 — [E, there is a homomorphism
h:P— A with gh= f.

We refer toweakly projectivesimply asprojective The algebra\, is the only three-
element bichain that is not projective.

Definition 4. An algebraA is subdirectly irreducible in a variety 9/ if whenever it
is a subalgebra of a product, then at least one of the prajectinto a component is
one-to-one.

For an algebr® in a variety? definelp = {A € V : P < A}. HereP < A means
P is not isomorphic to a subalgebrasf Denote by?/(P) the variety generated 3.
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Proposition 1. [1] If P is projective in? and subdirectly irreducible, thefif is a
variety, and is the largest subvariety ®fthat does not contaif.

The situation in the proposition is sometimes referred ta aplitting, as it splits
the lattice of subvarieties o}’ into two parts, those that contain the varigi(P),
and those that are contained#b. Further, such a splitting comes equipped with an
equation, called the splitting equation, defining the \grigp relative to the equations
defining V.

The algebra\s is projective and subdirectly irreducible in the varietyBifkhoff
systems, and so is subdirectly irreducible and projectivthé variety?’ generated by
bichains. The equatidm(y+z)][xy+ x4 = [x(y+2)] + [Xy+x7 is a splitting equation for
As, in other words the equation definirlg,, within the variety generated by bichains.
It is interesting to compare this equation to the usualithistive law.

Proposition 2. The splitting varietyy, contains?(B).

We conjecture that in the variety generated by bichaiis,= 9/(B). To lend cre-
dence to this, we have shown a bichain belongBjgif and only if it belongs tol/(B).
But this remains an open problem. If this conjecture turndobe true, then an equa-
tional basis for?/(B), and hence for/(M,M,L!), is one for the variety generated by
bichains plus the splitting equation.

In investigating bichains in general, one fundamental fgolis determining which
ones are projective. As we have seen, projectivity is cot@alaeith splitting and hence
with equational bases.

In examining the four-element bichains, the projectivestiuened out to be exactly
the ones that did not contaity as a subalgebra. This led to the conjecture that a finite
bichain is projective if and only if it does not containy. This is indeed the case. The
following two definitions are key concepts.

Definition 5. A permutationd of {1,2,...,n} is special if it maps the initial segment
{1,2,....,6~%(n) — 1)} onto itself.

The significance of this is that bichains not havitigas a subalgebra are all given
by special permutations.

Definition 6. Suppos€& is a finite bichain of length n given by the permutatgorand
let xq,...,%n be generators of the free Birkhoff system on n generatorsn ledements
x3,...,x3 by setting ® = x,M---Mx. Then define for each p 0
PEL 2P . p
Xty =Xt U UKl
2 2p+1

Xi2p+ :xﬁp“l‘l---l_lxi p+
We sayC is left-right-projective (and writeL R-projective) if there is a p with&=x""*
foreachi=1,...,n. The least such p is called the-length of C.

Being LR-projective is equivalent to having the above sequenceroigestabiliz-
ing after p steps for any elements, ..., x, in any Birkhoff systemA. Note thatLR-
projective is perhaps stronger than projective. One of cainrtheorems is the follow-

ing.
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Theorem 2. Any finite bichain that does not contady, is LR-projective.

The proof of this is rather long, and involves a number of lesam

One way to prove that a bichalhcontainingA4 is not projective is to construct an
onto homomorphism — C, with A in the variety of Birkhoff systems, such that there
does not exist a homomorphisth— A with the compositiorC — A — C being the
identity map. Using some rather elaborate constructiodssssequence of lemmas, we
have the proved the following.

Theorem 3. A finite bichain is projective in the variety of Birkhoff systs if and only
if it does not contain a copy of the three-element bichain

In particular,LR-projective coincides with projective.
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Systems of fuzzy relation equations and inequalities eatefigpm the study aimed
at medical applications [10,12], and since they have fountuah wider field of ap-
plications, and have been applied in fuzzy control, digcdgtnamic systems, knowl-
edge engineering, identification of fuzzy systems, préatiaif fuzzy systems, decision-
making, fuzzy information retrieval, fuzzy pattern recdgm, image compression and
reconstruction, and in other areas.

The most studied systems wdigear system®f fuzzy relation equations and in-
equalities, by which we mean systems of the farmv; =W (i € 1), or the dual systems
VioU =W (i € 1), or systems that are obtained from them by replacing eiigpgivith
inequalities. Her& denotes an unknown fuzzy relatidfiandW are either given fuzzy
relations or given fuzzy sets, arddenotes the composition operation on fuzzy rela-
tions, or between fuzzy sets and fuzzy relations. Thesemssstvere first studied by
Sanchez [10-13], who discussed linear systems over thelGtrdcture, but here we
consider them in a more general context, over a completéuatgd lattice. It is known
that each linear system of inequalities Vi <W (i € I) has a solution, and also, it has
the greatest one, but the opposite systin U oV, (i € I) may not have a solution in
general (cf. [8,9]). Consequently, a linear system of eignat) oV, =W (i € 1) also
need not be solvable, but if it is solvable, then it has thatps solution, which is the
same as the greatest solutiottoV; <W (i € 1) and it was described by Sanchez using
fuzzy implication (cf. [11, 13]). In particular, linear sgsns of equations withi = W,
for everyi, are solvable and have the greatest solutions.

Here we consider some more complex non-linear systemselmtinopartite case
we deal with a single non-empty s&t given fuzzy relation¥; (i € 1) andZ on A, and
an unknown fuzzy relatiod on A, and we discuss the systems

(M1) UoVi <VioU (i€l),U < Z;
(M2) VioU <UoVi(iel),U<Z;
(M3) UoVi =VioU (i€l),U < Z;
(M4) UoVi <VioU (i€l), U oVi<VioUt (iel)U <
(M5) VioU <UoV (il),VioUt<U oV (i€l),U <
(MB) UoV,=VioU (icl),UtoVi=VioU 1(iel),U<

Z
Z;
4
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In the bipartite case we deal with two possibly different fanpty setsA\ andB, given

fuzzy relationsv; (i € 1) on A andW (i € I) on B, a given fuzzy relatiorz betweerA

andB, and an unknown fuzzy relatidsh betweerA andB, and we discuss the systems:
(B1) U oV, <WoUt(iel),UoW <VioU (ic]),U<Z

(B2) VioU <UoW (i el),WoUt<UtoVi(iel),U<Z;

(B3) U toVi=WoUt(iel)U<zZ

(B4) VioU=UoW (iel),U<Z.

All these systems we call thieeakly linear system3 he inequalityd < Zis included in
all these systems because in many situations we have a tési solutions contained
in a given fuzzy relation.

First we present the main results concerning the monopadie, which was stud-
ied in [5]. We show that each of the systems (M1)—(M6) possetie greatest solution,
and besides, iZ is a fuzzy quasi-order, then the greatest solutions to (M3} are
fuzzy quasi-orders, and & is a fuzzy equivalence, then the greatest solutions to (M4)—
(M6) are fuzzy equivalences. The problem of computing threatgst solutions to sys-
tems (M1)—(M6) we reduce to the problem of computing the gsigost-fixed points
of particular isotone functions on the lattice of fuzzy guaslers or the lattice of fuzzy
equivalences. For each of the systems (M1)—(M6) we defingabdelisotone function
and a descending chain of fuzzy relations which corresptmttsis function and this
system. If the underlying structure of truth values is a llgcinite residuated lattice,
then this chain must be finite and its smallest element is thatgst solution we are
looking for. But, if this structure is not locally finite, thehe chain may not be finite
and its infimum may not be equal to the greatest solution tadmsidered system. We
determine some sulfficient conditions for the finiteness efdéscending chains of the
systems (M1)-(M6), as well as some sufficient conditionseurvehich the infima of
these chains are equal to the greatest solutions to thersysiteis worth noting that in
the iterative procedure for computing the greatest satuticany of the systems (M1)—
(M6), every single step may be viewed as the solving a pdatidinear system, and just
for that reason we call these systems weakly linear. Therighhgo for computing the
greatest solution to any of the systems (M1)—(M6) can be figatiso that it computes
the greatest crisp solution to this system, and this algorivorks when the underlying
structure of truth values is an arbitrary complete resiedittice. However, the great-
est crisp solution can be strictly less, and even have algtgeeater index, than the
greatest fuzzy solution to the system.

In the bipartite case, any of the systems (B1)—(B4) does eodssarily have a non-
trivial solution (different than the empty relation), béitihas, then it has the greatest
solution. For any of the systems (B1) and (B2} iis a partial fuzzy function, then this
greatest solution is also a partial fuzzy function. Redat apartial fuzzy functions
defined as a fuzzy relatidR betweerA andB satisfyingRo Rt o R< R, and a partial
fuzzy function which is a surjectivé-function is called ainiform fuzzy relatior2, 3,
6]. If H is a non-trivial solution to (B1), theRl o H~1 is a solution tdJ oV, < Vi oU
(iel),U<Zoz ™t andH 1oH is a solution taJ oW <WoU (i€ l),U <Z 1o
Z. Moreover, bottH o H~! andH 1o H are symmetric and transitive fuzzy relations,
but they may not be reflexive. We have thhb H-1 andH 1o H are reflexive if and
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only if H is a uniform fuzzy relation. The most important problems weedealing with
is the examination of the existence of a uniform solutiorn®tystem (B1), a solution
that is a uniform fuzzy relation, and construction of theagest uniform solution to
(B1), which is also the greatest solution to the system (B&yall. We show that the
existence and construction of the greatest uniform solwdie given in terms of certain
relationships between the greatest solutions to the quoreing weakly linear systems
onAandB.

It is worth noting that weakly linear systems emerged from thzzy automata
theory, from research aimed at state reduction, bisimaraind equivalence of fuzzy
automata, but we show that they also have important apjgitain other fields, e.g. in
the concurrency theory and social network analysis.

Acknowledgment. Research supported by Ministry of Science and TechnolbDiea
velopment, Republic of Serbia, Grant No. 174013.
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When considering different kinds of comparison or ordesiag a set, several clas-
sical kinds of binary relations (e.qg.: total preorderseiaal orders, semi-orders, acyclic
binary relations) appear in a natural way. Needless to satyithall theses classes of
relations, when we analyze if an elemeris related to another elementthe relation-
ship is either VOID (empty= 0) or TOTAL (= 1): Either they are NOT related, or they
are. No intermediate situation is allowed.

However, it is typical in many models (e.g.: in Economics¢B®n Making, ...) to
consider comparisons or binary relations (e.g. “prefeesfjchat are “"GRADED”, in
order, say, to describe an “intensity” in the relationsheépireen two given elements. In
this case, two elements could be related “at any level bet@gempty-void relation)
and 1 (totally related)”. Of course, in this case, the birratgtion becomes FUZZY.

Typical kinds of binary relations established for the cssfting should be extended
to the fuzzy setting, in some appropriate way. However, ivél known that many
equivalent definitions that appear in the crisp setting.{(@vben defining a total pre-
order, an interval order, a semi-order...) fail to be eqeeawhen extended (in a natural
way) to the fuzzy setting. In this case two natural questaise: the first one is, despite
they are not equivalent, are the different definitions sammebonnected? The second
guestion is which one of the alternatives should be consitias the right definition for
the fuzzy notion?

We have already worked on the first question in some parti@ases as for pre-
orders [2], interval orders [1] or semi-orders [3]. Howeubere are more definitions
than the ones we have considered in these contributionslditi@n to this, the defini-
tion for some fuzzy concept usually involves a t-norm andéfetange the t-norm we
get a different definition. Therefore, there are still mapg problems related to the
first question above.

Concerning the second question, obviously there will no&hmique best defini-
tion. On the contrary, usually each definition verifies prtips than other definitions
do not. Thus, the “right” definition will be related to the dert, it will depend on the
properties we consider the most important in each case.

As itis known, one good property of any definition for a fuzelation is that the defini-
tion is preserved when consideriogcuts, i. €., it is very practical to handle definitions
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such that the fuzzy relation satisfies the property if ang drtheir a-cuts verifies the
same property (for crisp relations). We will study if diféet definitions of semi-order
have a good behavior in this respect.

In addition, in the crisp setting a typical question is thiata@nverting a given quali-
tative scale (say a certain kind of ordering or preferenceleustood as a total preorder,
interval order and so on-) by means of a suitable quan&tatale or numerical rep-
resentation (through, to put an example, a utility functidmis question of numerical
representability has not been translated yet (in a genadhkgstematic way) to the
fuzzy setting, and to the study of graded preferences.

Which could be the difficulties that would immediately arifseve try to do so?

We will analyze these question and related items, tryingtimduce the main open
problems that will be in order.

Acknowledgement. The research reported on in this paper has been partialpostgul
by projects MTM2007-62499 and MTM 010-17844.
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In many economic activities individuals often face risksl amcertainties concern-
ing future events. The probabilities of these events argy&nown, and individuals
are left to act on their subjective beliefs. Since the workligberg (1961), the conven-
tional theory based on (additive) expected utility has beegomewhat controversial,
both on descriptive and normative grounds. There is a cuivelmdication that indi-
viduals often do not use regular (additive) subjective piolity. Rather, they exhibit
what is referred to as an uncertainty aversion.

Schmeidler (1989) proposed an alternative theory to thadlditive subjective prob-
abilities. In Schmeidler's model, individuals make assemsts that fail to be additive
across disjoint events. The expected value of utility witbprect to a non-additive prob-
ability distribution is defined according to the Choquetgral. The decision maker
chooses the act that maximizes the expected utility. Fatig@hoquet, a non-additive
probability is referred to as a capacity.

The central theme of my talk is a new integral for capacitiegined in a fashion
similar to Lebesgue integral. The key feature of this indgrconcavity, interpreted in
the context of decision making, as uncertainty aversion.

The talk will be divided into six short parts.

First part — axiomatization. It turns out that four axioms characterize the concave in-
tegral. Beyond concavity three more axioms are needed. ihedguires that when the
underlying probability space consists of one point, thegral coincides with the con-
ventional integral. The second is an axiom of monotoniciithwespect to capacities.
It states that an additive capacRassigns to every subset a value which is greater than
or equal to that assigned by if and only if the integral of any non-negative function
with respect tP is greater than or equal to the integral taken with respeet to

The last axiom states that when integrating an indicators#t8, the integral de-
pends only on the values that the capacity takes on the subis®tin other words, the
integral of an indicator o§ does not depend on the values that the capacity ascribes to
any event outside d.

Second part — properties of the concave integrallhis part is devoted to some essen-
tial properties of the concave integral. A particularly ionfant question is to identify
the capacities for which the integral coincides with theimimm of the capacity’s core
members. It turns out that these capacities are those havamge core (Sharkey, 1982).

Third part — integral for fuzzy capacities. Fuzzy capacities assign subjective expected
values to some, but not all, random variables (e.g., paosdl In particular, a fuzzy
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capacity may assign subjective probabilities only to soments and not to all. An in-
tegral w.r.t. fuzzy capacities that aggregates all avigladformation is introduced. The
definition of fuzzy capacities enables one to define the mateaf a partially-specified
capacity. This is essential to the case where the underpjiogability is additive but
the decision maker is not fully informed of it.

The integral w.r.t. fuzzy capacities is inspired by Azrialid Lehrer (2007) who
used the operational technique (concavification and aéikgnsively and employed it
to investigate cooperative population games.

Forth part — large spaces.The definition of concave integral for capacities is applied
to large spaces. The notion lafose extendabilitys introduced and its relation to the
concave integral is studied. Some convergence theorengsvaire

Fifth part — Choquet and the concave integral under one roof A general scheme
that generalizes Choquet and the concave integrals ilintesl.

Sixth part — applications. Pricing rules determined by the concave integral are dis-
cussed.
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1 Introduction

According tosimple majority x defeatsy when the number of individuals who prefer
toy is greater than the number of individuals who preféo x. Since simple majority
requires very poor support for declaring an alternative\asaer, other majorities have
been introduced and studied in the literature (see FisHRuehapter 6], Ferejohn and
Grether [1], Saari [15, pp. 122-123], and Garcia-Laprasth Llamazares [4], among
others).

In order to avoid some drawbacks of simple and absolute iitiegrand other vot-
ing systems, in Garcia-Lapresta and Llamazares [4] arednted and analyzedy
majorities a class of voting systems based on difference of votes.nGive alterna-
tives,x andy, for M, x is collectively preferred ty, when the number of individuals
who preferx to y exceeds the number of individuals who prefeio x by at least a
fixed integerk from 0 to m— 1, wherem is the number of voters. We note thi
majorities are located between simple majority and unawijrm the extreme cases of
k=0 andk =m— 1, respectively. SubsequentiMy majorities have been characterized
axiomatically by Llamazares [9] and Houy [7].

A feature of simple majority, and other classic voting sgsieis that they require
individuals to declare dichotomous preferences: they cay aeclare if an alternative
is preferred to another, or if they are indifferent. All kindf preference modalities are
identified and voters’ opinions are misrepresented.

The importance of considering intensities of preferencihédesign of appropri-
ate voting systems has been advocated by Nurmi [14]. In thig ®arcia-Lapresta
and Llamazares [3] provide some axiomatic characterigati several decision rules
that aggregate fuzzy preferences through different kincheéns. Additionally, in [3,
Prop. 2], simple majority has been obtained as a specific afabee mentioned deci-
sion rules. Likewise, another kind of majorities can be otetd through operators that
aggregate fuzzy preferences (on this, see Llamazares acth@&apresta [11,12] and
Llamazares [8, 10]).
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In Garcia-Lapresta and Llamazares [5], majorities basatifterence in support are
introduced and characterized by means of some indepenxiemis These majorities
extend majorities based on difference of votes by allowmdjviduals to show their
intensities of preference among alternatives.

In this paper we analyze when majorities based on differemseipport provide
transitive collective preference relations for every peodif individual preferences sat-
isfying some transitivity conditions.

2 Preliminaries

Considerm voters,V = {1,...,m}, with m > 2, showing the intensity of their pref-
erences om alternatives X = {xy,...,%n}, with n > 2, throughreciprocal preference
relationsRy, : X x X — [0,1], for v=1,...,m, i.e., Ry(X;,Xj) + Ry(xj, ) = 1 for all
Xi,Xj € X. S0, voters can show intensities of preference by meansrobats between
0 and 1:Rv(x;,X;) = 0, whenv prefers absolutely; to x;; R,(xi,Xj) = 0.5, whenv s
indifferent betweerx;, and x;j; Ry(xi,X;j) = 1, whenv prefers absolutely; to x;; and,
whatever number different to 0,9 and 1, for not extreme preferences, nor for indif-
ference, in the sense that the closer the number is to 1, the xnds preferred tox;
(see Nurmi [13] and Garcia-Lapresta and Llamazares [3ith W (X) we denote the
set of reciprocal preference relationsXn

A profileis a vector(Ry,...,Rn) containing the individual reciprocal preferences.
Accordingly, the set of profiles is denoted By(X)™.

We assume that individual preferences are consistent edghect to a kind of tran-
sitivity conditions in the framework of reciprocal prefames (see Garcia-Lapresta and
Meneses [6]).

Definition 1. Given an increasing monotonic functiort {§.5,1)> — [0.5, 1], hence-
forth a monotonic operatorR € R (X) is g-transitiveif for all x;,xj,x € X, when
R(xi,xj) > 0.5 and Rx;j,x) > 0.5, it holds Rx;,x ) > 0.5 and

RO6, %) = 9(R(i, %)), R(Xj, %))

With Tg we denote the set of ajf-transitive reciprocal preference relations.
Notice that iff andg are two monotonic operators such tHat g, then Ty C Ts.

In our analysis we have considered the following cases:

1. R is min-transitive if R is g-transitive being g(a,b) = min{a,b} for all
(a,b) € [0.5,1)2.

2. Risam-transitivef R is g-transitive beingg(a,b) = a—;b forall (a,b) € [0.5,1]2.

3. Ris I-transitiveif R is g-transitive beingg(a,b) = 1 for all (a,b) € [0.5,1]2.

We denote withTmin, Tam and T1 the sets of all min-transitiveam-transitive and
1-transitive reciprocal preference relations, respettivClearly, T C Tam C Tnin-

An ordinary preference relatioron X is anasymmetricbinary relation onX: if
X Px;, then does not happen Px. With P(X) we denote the set of ordinary prefer-
ence relations oiX.
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P € P(X) is transitiveif for all x,xj,x € X it holds that ifx; Px; andxj Px, then
it also holdsx P x.

We now introduce the class ofiajorities based on difference in supp¢@arcia-
Lapresta and Llamazares [5]).

Given a threshold € [0, m), the My majority is the mapping

My : R (X)™ — P(X)

defined byMy(Ry, ..., Rm) = P, where

m m
xRxj < S Ri(x,Xj) > 5 Ri(xj,x)+k
v=1 v=1

It is easy to see (Garcia-Lapresta and Llamazares [5]) Mhatcan be defined
through the average of the individual intensities of prefiee:

B & £ 3 R(,x]) > 054+ =
X RXj < E‘v; v(Xi,Xj) > 0. +%.

3 The results

We now present necessary and sufficient conditions on tbl@sk for ensuring that
majorities based on difference in support provide travesitbllective preferencd for
every profile of several types of individual reciprocal grefince relations. To be more
concrete, we have obtained results for profilegdfansitive individual preferences
such thatg < min or g > ma.

With Ky we denote the set of threshol#ts= [0,m) such thath is transitive for
any profile (R%,...,R™) ¢ Tg". Then, the complement dkg with respect to[0, m),
(Kg)¢, is the set of thresholdk € [0,m) such that is not transitive for some profile
(RL,...,R™ ¢ Tgm. Notice that iff andg are two monotonic operators such that g,
thenK¢ C Kg and, consequentlyKg)© C (K )°.

Proposition 1. There is no ke [0,m) such that R is transitive for every profile of
individual preferencegR?, ..., R™) ¢ Tt 80, Knin = 0.

Corollary 1. For each monotonic operator g min, there does not exist & [0,m)
such that R is transitive for every profile of individual preferencéR!,...,R™) ¢ T
in other words, k= 0.

Proposition 2. If k € [m—1,m), then R is transitive for every profile of individual
preferencegR!,...,R™) € TM. in other words,[m— 1,m) C Kma.

Proposition 3. If k € [0,m— 1), then there exists some profile of individual preferences
(RL,...,R™ € T/" such that Ris not transitive; in other words0,m— 1) C (K3)°®.

Corollary 2. For each monotonic operator g ma, F is transitive for every profile of
individual preferencegR?,...,R™) ¢ Tg" if and only if ke [m— 1,m); in other words,
Kg=[m—1,m).
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4

Further research

Our goal is to get results for any type of individual recipabpreference relation; in
such sense, what remains to be shown is what happens foraeaipelations between
min-transitive ancdim-transitive ones.
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Weighted Banzhaf power and interaction indexes
through weighted approximations of games
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Abstract. In cooperative game theory, various kinds of power indexeuaed
to measure the influence that a given player has on the outobthe game or
to define a way of sharing the benefits of the game among thenglayhe best
known power indexes are due to Shapley [15, 16] and Banzh&] find there
are many other examples of such indexes in the literature.

When one is concerned by the analysis of the behavior of [#dgea game, the
information provided by power indexes might be far insuéfiti for instance due
to the lack of information on how the players interact wittiie game. The notion
of interaction indexwas then introduced to measure an interaction degree among
players in coalitions; see [13,12,7, 8, 14, 10, 6] for therdtifins and axiomatic
characterizations of the Shapley and Banzhaf interactidexes as well as many
others.

In addition to the axiomatic characterizations the Shapleyer index and the
Banzhaf power and interaction indexes were shown to beispkibf simple
least squares approximation problems (see [2] for the 8aptiex, [11] for the
Banzhaf power index and [9] for the Banzhaf interaction k)de

We generalize the non-weighted approach of [11, 9] by addingighted, prob-
abilistic viewpoint: A weightw(S) is assigned to every coalitid®of players that
represents the probability that coaliti®@forms. The solution of the weighted
least squares problem associated with the probabilityilbligion w was given
in [3, 4] in the special case when the players behave indegmlydof each other
to form coalitions.

In this particular setting we introduce a weighted Banzhéériaction index as-
sociated withw by considering, as in [11, 9], the leading coefficients of dpe
proximations of the game by polynomials of specified degré&sthen study the
most important properties of these weighted indexes aridriilations with the
classical Banzhaf and Shapley indexes.

A cooperative gamen a finite set of playerl = {1,...,n} is a set functiorv: 2N —

R which assigns to each coalitidhof players a real number(S) representing the
worth of S? Identifying the subsets dfl with the elements of0,1}", we see that
a gamev: 2V — R corresponds to a pseudo-Boolean function{0,1}" — R (the
correspondence is given byS) = f(1s), wherels denotes the characteristic vector of

1 Usually, the conditiorv() = 0 is required fow to define a game. However, we do not need
this restriction in the present work.
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Sin {0,1}"). We will henceforth use the same symbol to denote both angiseudo-
Boolean function and its underlying set function (game).

Every pseudo-Boolean functidn {0,1}" — R can be represented by a multilinear
polynomial of degree at mostof the form

fx) = 5gNa(S) I]lq,

where the set functioa: 2N — R is theMobius transfornof f.

Let GN denote the set of games BinA power indexf15] onN is a functionp: GN x
N — R that assigns to every playeg N in a gamef € GN his/her prospeay(f,i) from
playing the game. Aiinteraction index{10] on N is a functionl : GN x 2V — R that
measures in a gamec GN the interaction degree among the players of a coalition
SCN.

For instance, th®anzhaf interaction indekl0] of a coalitionSC N in a game
f € gN is defined by

|B(fvs):1zs(%)TSa(T)=i T (@S, (1)

where theS-difference\Sf is defined inductively byA? f = f andASf = AtTAS\i} £
fori € S, with At} f(x) = f(x | x = 1) — f(x | x; = 0). TheBanzhaf power inde6] of
a playeri € N in a gamef € GN is then given bygs (f,i) = Ig(f,{i}).

Let us now introduce a weighted least squares approximptioiplem which gen-
eralizes the one considered in [11,9]. Foe {0,...,n}, denote by the set of all
multilinear polynomialg: {0,1}" — R of degree at mogt, that is of the form

g(x) = % c(S) I]lq, c(S) eR.

ISi<k

We also consider a weight functiom: {0,1}" — ]0,[. For every pseudo-Boolean
functionf: {0,1}" — R, we define théest kth approximation of &s the unique mul-
tilinear polynomialfy € Vi that minimizes the squared distance

; w(x) (f(x) —g(x))° = ;Nw@)(f(swg(s»z 2)
xe{0,1}" -

among all functiong € V.

Clearly, we can assume without loss of generality that thigitew(S) are (mul-
tiplicatively) normalized so thaf s-yW(S) = 1. We then immediately see that the
weights define a probability distribution ovelY 2nd we can interpret(S) as the prob-
ability that coalitionS forms, that isw(S) = Pr(C = S), whereC denotes a random
coalition.

In the special case of equiprobability, the approximatibove reduces to standard
least squares, and a closed form expression of the apprtainTg of f was given in
[11, 9] and it was shown that, writing

fu(x) = gN a(S) I];LN, 3)

IS<k
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we have
ls(f,S) =ag(S). (4)

Thuslg(f,S) is exactly the coefficient of the monomiglcsx; in the best approxima-
tion of f by a multilinear polynomial of degree at mgs}.

Now, suppose that the players behave independently of gheh  form coali-
tions, which means that the everi@> i), for i € N, are independent. Under this as-
sumption, the weight functionis completely determined by the vec (pa, ..., pn),
wherep; = Pr(C 3 1) = 3 55 W(S) (we assume & p; < 1), by the formula

wW(S) = Je_Lpi ie|;ls(1 —pi).

In this particular setting, the weighted approximationdeon was presented and solved
in [3] and [4, Theorem 4] by noticing that the distance in €}He natural?-distance
associated with the measwewith respect to the inner product

(f,0)= ; } w(x)f(x)g(x),
xe{0,1}n

and that the functions
Xi — Pi
VPi(1—pi)

form an orthonormal basis of the vector space of pseudoddodiunctions.
Using these functions, we immediately obtain tfais of the form (3) where

vs: {0,1}" = R: x>
It

MieT\s(—Pi)
9= § NNSTR g o,
S 1%3 Miet Di(l—pi)< v

ITI<k
Using this solution, we define the index by analogy with (4).

Definition 1. The weighted Banzhaf interaction index associated to w is

(f,vs)
lgp: GNx2N 5 R:(,9) — Igp(f,9) =ag(S) = ——F——.
s MiesvPi(1—pi)
Then we show that most of the properties of the standard Bdiztiex can be gener-
alized to the weighted index. For instance, Formula (1) iariqular case of

85,9 = Y al) [] p= 3 BONT)

icT\S TEN\S

wherep? =Pr(T CC C SUT) = [Tict Pi[Ticng\7(1— i)

This shows that the weighted Banzhaf interaction indexroggdo the class of prob-
abilistic interaction indexes introduced in [6], and we caoreover provide a nice in-
terpretation of the probabilitigs? as conditional probabilities.
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We then analyze the behaviour of the index with respect tbanidummy players
or more generally to dummy coalitions, and we show how to aseaphe weighted
Banzhaf index in terms of Owen’s multilinear extensibrof the gamef. We also
provide conversion formulas between the indexes corratipgrio different weights,
and show how to recovdrfrom the weighted Banzhaf index.

Finally, we show that the standard Banzhaf index is the axedd the weighted
Banzhaf indexes over all the possible weights and that tlaI8} index is the average
of the weighted Banzhaf indexes over all possible symmeteights.
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Classification of objects considered in any domain is an itamb tool for the trans-

parentness, better understanding of the considered dpmaialso for construction and
application of discussed objects. As an example, recajlomtion operators in many—
valued logics. They are characterized by the boolean cotipmof propositions "i—th
input is greater or equal to the output”. Similarly, disjtion operators are character-
ized by the boolean conjunction of propositions "i—th inusmaller or equal to the
output”. The aim of this contribution is to open the topic tssification of aggregation
functions acting on bounded posets (covering, among gthergunction and disjunc-
tion operators in many—valued logics). In the area of aggfieg functions acting on
real intervals, such a classification was proposed by DudmmisPrade at AGOP’2001
conference in Oviedo, see also [12]. In Dubois — Prade appr@anjunctive, disjunc-
tive, averaging and remaining aggregation functions werssicered, defined by their
relationship taviin andMax functions. The clasg’ of all (n—ary) conjunctive functions
(acting on a real intervdh, b)) is characterized by the inequality< Min, while the
inequalityA > Maxis characteristic for the disjunctive aggregation funesicConcern-
ing the averaging aggregation functions, they should fgakin < A < Max. To ex-
clude the trivial overlapping of conjunctive and averagfdijunctive and averaging)
aggregation functions, the clagsof pure averaging aggregation functions consists of
all averaging aggregation functions uphin and Max. DenotingA4 the class of all
aggregation functions-ary, on real intervala,b]), X = 4\(CU P) consists of all
remaining aggregation functions, which are neither cottjua, nor disjunctive nor av-
eraging. Thus this standard classificat{@h D, 2, R ) forms a partition of the clasg.
In several domains we need to classify the aggregation of mamplex objects, which
rarely form a chain, but they can be considered as elemerssmé (bounded) lattice
or poset (we will use this abbreviation for a partially orelgtiset throughout this pa-
per). This is, for example, the case of aggregation of fuety ntersection, union), of
distribution functions (convolution), etc. However, suchlassification of aggregation
functions on posets is missing in the literature so far. Obsiy, we cannot repeat the
approach of Dubois and Prade oM andMax are not defined.

Consider a posdlP, <,0,1) and a non—decreasing mappiAg P" — P satisfying
A(0,...,0) =0,A(1,...,1) = 1. ThenA s called an it-ary) aggregation function oR,
and we denote byl the class of all such mappings.

For a given aggregation functigh: P" — P andx = (xg, ..., X)) € P" we denote:

ga(x) = card{i|xi > A(x)},
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0

Fig. 1. Hasse diagram of the diamond lattide

and
sa(x) = card{i|x <A(X)}.

For any subdomai& C P", we define mappingg,o® : 4 — {0,1,...,n} by
Y- (A) =inf{ga(x)|x € E},
o (A) =inf{sa(x)|x € E}.

Finally, we abbreviat§”" =y, = o.
Functionsy® and oF allow to introduce a classification of aggregation funcsion
from 4.

Proposition 1. €E = {CE,cE,...,CE} and DE = {DE, DE, ... DE} given byCE =
(Y5)71({i}) and DE = (o5)~1({i}), i =0,1,...,n, are partitions of4.

Classificationg’E, DF based ofE # P" will be called local, while classifications™ =
C, D™ = D will be called global.

Example 1.(i) Consider, for example, the diamond lattide= {0, a, b, 1} visualised
in Figure 1. Then a mapping : D — D is a unary aggregation function @ if
and only if A(0) = 0 andA(1) = 1 (i.e., the value#\(a) andA(b) can be chosen
arbitrarily). MoreoveA € c2 NP if and only if A(a) = a, A(b) = b.

Define mappind : D2 — D as follows (forx,y € D):

B(x,y) =0if 0 € {x,y},

B(x,y) =1if 1€ {x,y} and0 ¢ {x,y},
B(x,x) =xif xe D,
B(a,b) = B(b,a).
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ThenB is well defined and it is a binary aggregation function@nMoreover, if
B(a,b) = 0, thenB € ¢P* N DP’. If B(a,b) = 1 thenB € ¢§° N DP*. Finally, if
B(a,b) € {a,b} thenB e cP* N DP*,
Finally, we introduce a ternary aggregation functirD3 — D as followsC(x,, 2)
= uwhenever the tripldx,y,z} contains at least two timas C(x,y,z) = 0 when-
ever{x,y,z} = {0,a,b} andC(x,y,z) = 1 wheneverx,y,z} = {1,a,b}. ThenC ¢
D3 D3

T NDr.

(i) Consider the produdi : [0,0]" — [0,]. Thenll € ot e it e n
Do.

All next considerations for local and global classificai@are similar and thus we
will discuss global classifications only.

Proposition 2. Let A: P" — P be a fixed aggregation function. ThgfA) + o(A) <
n+1, and if P is not a chain, theg(A) = n impliesa(A) = 0, anda(A) = n implies
y(A) =0.

An aggregation functiod : P" — P belongs to the class, (Dy) if and only if for all
X=(Xg,...,X) € PMitholdsx > A(x) (x; < A(x)) for eachi € {1,...,n}. In the case of
standard aggregation functions 1] (or any real interval) this means thatis con-
junctive (disjunctive). Therefore, aggregation funcédrom the clasg, will be called
strongly conjunctiveand we identifyC, = Cs. Moreover, the aggregation functions from
Cv= U{‘;ll G will be calledweakly conjunctiveFinally, G = (o is the class of aggrega-
tion functions admitting the existence ot P" such that for eache {1,...,n}, either

X < A(x) orxi L A(x) (x is incomparable t&\(x)); these aggregation functions will
be calledanticonjunctive Similarly, the classe®s, Dy andD; of strongly disjunctive,
weakly disjunctive and antidisjunctive aggregation fimras can be introduced.

Definition 1. Let an aggregation function AP" — P be given. Then

1. Ais called strongly averaging whenever it is both weaklgjanctive and weakly
disjunctive, Ac 4s = Gy N Diy;

2. Ais called weakly averaging whenever it is either weaklgjenctive or weakly
disjunctive, Ac 4y = Gy U Diy.

Definition 2. 1. The partition{Cs, 4w, Ds, CoN Do} will be called a weak classifi-
cation of the class1 of all n—ary aggregation functions on a fixed poget<,0,1).
2. The partition{ Gs, 4s, Ds, G\ Dw, Dw \ G, CoN Do} will be called a strong clas-
sification of the class of all n—ary aggregation functions on a fixed poset<
,0,1).

In the case of bounded lattices which are not chains we hage tifferent general
classifications of aggregation functions:

e weak classificatior Gs, Ds, 4w, CoN Do}

e strong classificatioR Gs, Ds, s, Gu \ As, Dw \ As, CoN Do}

e lattice classificatioq Cs, Ds, 4, R }, whereR = (GU DsU 4) andA € 4 if and
only if Min <A < Max, andA ¢ {Min,Max}.
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(@ C, n D, () © 0

Fig. 2. Strong classification on the clas® described by (a) classes symbols, (b) values of
(Y(A),0(A)), herer, sare arbitrary values frofll,...,n—1}

Note that each strongly conjunctive aggregation funciiGatisfiesA(x) < x; (for each
i and each) and thusA < Min, and thusCsN .4, = 0. Similarly, Dsn .4 = 0.

Note that there are some sufficient conditions ensuringéf@nigingness of consid-
ered aggregation functions into a relevant class. So, famge, letA: P" — P be an
aggregation function with neutral elemdn(0). Then necessarilxis strongly conjunc-
tive (strongly disjunctive). Internality o (i.e.,A(X) € {x4, ..., X} for all x € P") forces
y(A) > 1 ando(A) > 1, thus ifP is not a chainA is necessarily strongly averaging. Ob-
serve also that any kind of averaging we have introducedreashie idempotency &.
Itis well known that ifP is a chain then also the reverse claim is valid (note that #fien
introduced concepts of averaging coincide). In generBljsfa lattice, the idempotency
is equivalent to the lattice — averaging concept (but neithhéhe strong averaging nor
to the weak averaging). Moreover,Hfis a lattice, then the only idempotent strongly
conjunctive (strongly disjunctive) aggregation functisMin (Max). This is not true on
a general poset, where we can have several strongly coijjerstrongly disjunctive)
idempotent aggregation functions.

Acknowledgment. The research summarized in this paper was supported by #resGr
APVV-0012-07 and VEGA 1/0080/10.
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1 Introduction

Mobility indices play important role in social sciences. 8&ing mobility indices Sho-
rrocks [24] defined them on a set of transition matri@éss a continuous function
M : 7 — R. He defines the mobility measuk& for some transition matrife € 7 as a
bounded functioM(1) < M(P) < M(Q), wherel represents a unit matrix to which the
minimal mobility valueM(l) = 0 is assigned, an@ is a transition matrix which has
all identical rows and the maximal mobilit(Q) = 1. In the investigation of mobility
it is clear which matrices have to have the minimal and makirale of the mobility
index, but the question how we should rank matrices whicle tia& value of the mobil-
ity index between 0 and 1 remains open. Different mobilityaswees induce different
orderings of transition matrices [5], while the choice ofbility measure depends on
the kind of investigation. Dardanoni [9, 10] introduced atighordering on a restrict-
ing the domain of transition matrices on monotone matridebi, Neusser and Steiner
[1] define a total quasi-ordering on a set of transition neagiby introducing so called
2-decreasing mobility functional. Some other type of @duirderings on the domain
of transition matrices are also givenin [8, 23].

Square matrices over a semiring gebnerate also a semie@@l5]. In this paper we
investigate the ordering on a set of monotone bistochaticl{ly stochastic) transition
matrices by forming a semiring in which mobility measureunds an ordering in the
Shorrocks’ sense. The proofs and further results are ecwedan the paper [12, 20]. We
shall use the notions an results related to Markov chaingramgdition matrices [22],
nonnegative matrices [13, 18, 22], as well as semiring thggrl1, 15,17, 21].

2 Monotone transition matrices

In the mobility theory there is a need for a restriction of tleenain of transition matri-
ces (see [24]). Many authors propose for that purpose tiss ofamonotone transition
matrices which play important role in intergenerationahility ([6, 9, 16]).

Example 1.Let X andY be father’s and son’s socio-economic status, respectiwély
n possible values, which correspond to socio-economic etagedered from the worst
to the best. The corresponding discrete Markov chains aendiy the equatiop(, =
PP, whereP denotes the x n transition matrix with transition probabilitieg;, i.e.,
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probabilities that the son is in the clagsif the father is in the clasg and py, py are
marginal distributions of father’'s and son’s social stattch rowi, of the transition
matrix P, represents the probability distribution of the son whoskdabelongs to the
social class. The sons whose fathers have a higher social status have antade in
the relation to the sons whose fathers are of a lower soeitlst

Therefore, in the intergenerational mobility there aresidered monotone matrices
[13]: A transition matrixP = [pjj]nxn Of discrete Markov chain with ordered state is
monotonef each row stochastically dominates the row above it, i.e.,

[ [
Z P(it1)j = Z pj foralli=1,2,...,n—1andl =1,2,....n— 1.
=1 =1

3 The mobility measure in Shorrocks’ sense

Definition 1. A function M : 7 — R is mobility measure in Shorrocks’ sensen a
domain of transition matrice¥, if it satisfies the following conditions

(N) Normalization: 06X M(P) < 1, forallPe 7.
(M) Monotonicity: Mobility index reflects the change of irmase in the matrix off-
diagonal elements at the expense of diagonal elements. WtéeRurs P’ when

min(P,P') = P'if pj; > pjj foralli # j andp;; > pjj forsomei #j (1)

holds, and the® >~ P' impliesM(P) > M(P').
(1) Immobility: M(1) = 0, wherel is the unit matrix.
(PM) Perfect mobility: Matrices with identical rows haveestmobility index 1

Shorrocks [24] has given a counterexample for the monoityréxiom and the per-
fect mobility axiom. Shorrocks assumes that a perfectly itleatiructure is given by
the maximal value of the mobility measure and that the pea@rsking is insignificant,
so the main conflict remains between the monotonicity axiachtae perfect mobility
axiom. As one of the way out of this conflict Shorrocks progbaédapting the mono-
tonicity condition by replacing the conditiavi(P) > M(P’) by a weaker one.

Definition 2 (Weak monotonicity (WM)). We have thaP = P’ impliesM(P) > M(P’),
where the conditio® = P’ is related to the operation given by (1).

Definition 3. Let ©° be the set of all bistochastic transitiorx n matrices with the unit
matrix |. We say that a matri® € 2 is more mobile in the Shorrocks’ senden a
matrix Q € 2, in the notatiorP = Q, if it holds M(P) > M(Q), whereM is a mobility

measure which satisfies axioms (1), (WM), (PM).

In our investigations of the mobility index and the corresgiag order we have used
special semirings of transition matrices. One of the resek [12], is contained in the
following theorem.
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Theorem 1. Let P’ be the set of all primitive irreducible bistochastic trati@h nx n
matrices corresponding to homogeneous Markov chain, Wwéhuhit matrix | endowed
with the (idempotent) operatiomin : 2> — 2’ defined for each two matrices, P
from 7’ in the following way:

min(R,P)) =R if M(P) > M(R),

which induces the ordering o’ in the sense of Definition 3. Thé®' ,min, x), where
x IS the usual operation of the matrix multiplication, is a $eng with a neutral and
an unit element.

Many authors have offered an outline of mobility measures properties that meet
them ([2,5, 16, 25]). Therefore it was natural to invesggathether some of known
mobility measures satisfy the conditions of Theorem 1, #eth the properties of the
ordering induced by this mobility measure. It turns out {j2Bat Bartholomew’s index
[4], which is an average number of income classes crosseddiduals, satisfies the
required conditions.

Proposition 1. The normalized Bartholomew’s indexyM: 2 — R given by
3 n n
Mng(P) = pij i — il
n?—1 i; ;1

satisfies the immobility axiom, the monotonicity axiom dredgerfect mobility axiom
on the setP’. It induces in the semiring?’, min, ) a partial ordering.

D’Agostino and Dardanoni [8] have introducB@earman’s footrulas a mobility func-
tion for a permutation matrif given by

MsP) = S i,
(i,)esP)

whereS(P) = {(i, j) | pij = 1} is the characteristic set &f

Proposition 2. The normalized Bartholomew’s index gives the same ordexinger-
mutation matrices in the semiring’, min, ) as the Spearman’s footrule.

Monotone matrices occurring in the investigation of theigenerational mobility
are mostly doubly stochastic, see [25]. Namely, a spediaht@idn is paid to mobility
indices that reflect equality of life chances, usually @aBguilibrium mobility indices.
They satisfy the perfect mobility axiom, and therefore thebitity index reflects the
equality of the sons’ life chances irrelevant of their fatheocial class. On the other
side, mobility indices have to reflect a greater mobility fve ttase when sons go far
from their fathers’ social class, and therefore it is dédeahat they satisfy also the
monotonicity axiom. Therefore, we have transferred, if],[if2e previous results to a
special class of monotone doubly stochastic transitiorriogst, and we prove that the
corresponding ordering is compatible with restrictionsome well-known orderings
to this set, e.g., as Dardanoni’s ordering [9] and an ordegiven by Aebi, Neusser and
Steiner [1].

We shall investigate in the future the extension of the witloé®ry to continuous
state Markov processes, since the theory of stochastic tonieity is recently well
developed there, e.g., [3, 14].
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Conjoint measurement studies relations defined on cantps@ducts. In multiple-
criteria decision making, preference relations on a seltefreatives described by their
multi-dimensional vector of attributes can often be représd by means of a conjoint
measurement model. Another application field is decisiokingaunder uncertainty
where a preference relation compares alternatives eealoatdifferent states of nature.
Many other situations in decision theory are amenable tb suadels, which justifies
their study.

The first part of our talk presents a classical result of téety, namely a character-
ization of relations that can be represented by an addii@function. The relations
characterized in such a manner are very particular singeatee weak orders (com-
plete transitive relations) on the elements of the canegiaduct. We show how the
axiomatic analysis of the relations that are representapbm additive value function
offers clues for the elicitation of these functions. In firee, indeed, the preference re-
lations on the cartesian product are unknown and it is theddithe decision aiding
process to reveal and represent them. Hence, as long as weomsiger the Decision
Maker’s preference as compatible with the axioms of the hade may in principle
obtain information from the DM that allow us to construct #aitive value function.
Note that the necessary information is obtained from thésaetmaker through ques-
tions formulated in terms of preference only. The prefeeergtation normally is the
only observable in such models.

In the second part of this talk, we introduce and discuss isdtiat have been
developed more recently, yet in the same spirit, and are whiogetly connected with
the interests of the Fuzzy Sets Community. While the clasaidditive value functions
theory is concerned with preferences that are transiticecamplete relations, Denis
Bouyssou and myself have been working on more general mddglencompass wide
categories of binary relations. Two main types of modelehaeen analyzed, namely
these based on traces on differences and those based andrdesels [1-4].

Building on this work, we show how to characterize a genelad<of valued re-
lations on a cartesian product. In this model, the valueaatsd with each pair of
alternatives has an ordinal character. In other words, augilued relation is equiva-
lent to a chain of binary relations, which is the set of cutthefvalued relation. Such a
model may be viewed as an ordinal aggregation proceduré¢akes the attribute vec-
tors of any pair of alternatives as input and returns theuwahssociated with this pair
in the preference relation. We discuss some examples oéggtion procedures used
in practice which fit this model.
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1 Exact Functionals and Exact Games

Let(Q,.7) be ameasurable space, wheéféds ag-algebra of subsets of a nonempty set
Q. Denote byB(Q, .#) the vector space of bounded measurable functiorf® with the
sup norm and bya(Q,.%) the vector space of finitely additive bounded set functions
on.%, which is the dual space &(Q,.%), with the corresponding duality, X) for

X € B(Q,.7) andu € ba(Q,.#) given by the integration. Leta(Q,.%) be the vector
subspace dba(Q,.7) consisting of all countably additive bounded set functionsz.

Let (Q,.7,P) be a complete probability space. Denotelli}(Q,.%, P) the vector
space ofP-essentially bounded functions @ with the sup norm. The norm dual of
L*(Q,.7,P) is the vector subspade(Q,.7,P) of ba(Q,.#) consisting of all finitely
additive bounded set functions ¢ which vanish at everp € .% with P(A) = 0. Let
ca(Q,.#,P) be the vector subspacelof(Q,.%#,P) consisting of all countably additive
bounded set functions off. Denote by%?(Q,.%#, P) the set of probability measures in
ca(Q,.#,P).

Definition 1. A functionall’ : B(Q,.#) — R is exact if the following conditions are
satisfied.

(Upper semicontinuity)l is upper semicontinuous.

(Superadditivity)T (X +Y) > T (X) +T(Y) for every XY € B(Q,.%).

(Positive homogeneity]:(aX) = ol (X) for every Xe B(Q,.#) anda > 0.
(Translation invariance)f (X+a) =T (X)+al (1) for every Xe B(Q, .#) anda € R.

A functional satisfying superadditivity and positive hogemeity is said to bsu-
perlinear.

Theorem 1. A functionall : B(Q,.%#) — R is exact if and only if there exists a unique
weak*-compact, convex subgebf ba(Q,.7#) such thaf” (X) = minye« (U, X) for every
X € B(Q,.%#), where? is of the form

% = {ne ba(Q,7) | F(X) < (1 X) VX € B(Q, 7), Q) =T (1)}.

A set functionis a real-valued function o#. A set functionv : .% — R with
v(0) = 0 is agame Thecore % (v) of a gamev is defined by

(v) = {pe ba(Q, F) | v < pandp(Q) = v(Q)}.
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A game isbalancedif its core is nonempty. A balanced game .% — R is exactif
V(A) = minyev) U(A) for everyA € 7.

Definition 2. Afunctionall : B(Q,.#) — R is an exact extension of agame.# — R
to B(Q,.7) ifitis exactand (xa) = V(A) for every Ac .%. The minimal exact extension
Iy of v is an exact extension ofsuch that", < T for every exact extensidnofv.

Recall thatsuperdifferentiabl’ (X) of I atX € B(Q,.%) is given by:
or (X) = {peba(Q,.#) [T(Y) - (X) < (LY - X) VY € B(Q, 7)),

where an element i8" (X) is called asupergradiendf I atX. If I is exact, the@l (X)
is nonempty for everX € B(Q,.7).

Theorem 2. Letv : % — R be a balanced game. Then the following conditions are
equivalent.

(i) visexact.
(i) v has a minimal exact extensionfig : B(Q,.%#) — R given by:

(X)) = i X).
v(X) HQQ;R)<H, )

(iii) v has an exact extensidn: B(Q,.#) — R with ¢’ (v) = 0r (0) =ar(1).

2 Exact Functionals onL*-Spaces

Let (Q,.#,P) be a nonatomic probability space. Thegbability) law (or distribution)

of a random variabl is a probability measur® o X1 on the Borel spacéR, %).
When a random variabl¢ has the same law with, we denoteX ~ Y. Thedistribution
functionof X is given byFx (x) = P(X < x). The upper quantile function g : [0,1) —
RU{—o} of X is defined bygx (t) = inf{x € R | Fx(x) > t}, which is nondecreasing
and right-continuous, and satisfigsx (t) = qx(1—t) a.et € (0,1). For eachu € (0, 1],
define the functionaly : L*(Q,.#,P) — R by qu(X) := %fé‘ gx(t)dt, and fora = 0,

let qo(X) := essinfX. Then,a — gq(X) is a nondecreasing continuous function on
[0,1] for everyX € L*(Q,.Z,P).

Definition 3. A functionall’ : L*(Q,.#,P) — Ris law invariantif[ (X) = ' (Y) when-
ever X~Y.

Definition 4. (i) A subset C of LQ,.Z,P) is law invariant whenever ¥ C and
Y ~Y impliesY € C.

(i) A subsets of ca(Q,.#,P) is law invariant if the set C= {g—g cLY(Q,7#,P)|uc
%'} is law invariant.

Definition 5. A functionalll : L*(Q,.%#,P) — R has the Lebesgue property whenever
Xn — X a.e. withsup, || Xnl|e < o implieslimp I (Xq) = (X).
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Theorem 3. Letl : L*(Q,.%#,P) — R be a functional. Then, the following conditions
are equivalent.

(i) T is a law invariant exact functional with the Lebesgue praper
(i) There exists a unique, law invariant, weak*-compact, crisets C ca(Q,.#,P)
such that™ (X) = minye« (4, X) for every Xe L*(Q,.#,P).
(i) T is superadditive and there exist a subs#tof ca([0, 1]) and a family{vm | me
# '} of law invariant, weak*-continuous, linear functionals bfi(Q,.#,P) such
thatl (X) = infme.z [ fo Ga (X)dm(at) + vim(X)] for every Xe L®(Q,.Z,P).

Definition 6. A functionally : L*(Q,.#,P) — R is the Choquet functional of a func-
tion ¢ : [0,1] — R of bounded variation witlp (0) = Qif it is of the form

00 0
ro00) = [ 0(PX = t)dt+ [ [B(P(X= 1) p(1)dt

Theorem 4. A functionall’ : L*(Q,.%#,P) — R is a law invariant exact functional with
the Lebesgue property if and only if it is superadditive ameré exists a familyl of
functions¢ : [0,1] — R with $(0) = 0 which are written as a difference of two non-
decreasing concave functions @ 1] vanishing at0, and a family{wy | ¢ € M} of
law invariant, weak*-continuous linear functionals off(Q,.#,P) such that" (X) =
infyen [—To(—X) + Wy (X)] for every Xe L*(Q,.7,P).

3 Anonymous Exact Games

Let (Q,#,P) be a probability space. A transformationQ — Q is bi-measurablef

it is a bijection such that both andt~* are measurable mappings. A transformation
T:Q — Q is measure-preservinij it is a measurable mapping such tHab 11 =

P. If T is a bi-measurable, measure-preserving transformati@emt ! is automati-
cally measure-preservinBo T = P. Denote byT' (Q, %, P) the space of bi-measurable,
measure-preserving transformations(@.% , P).

Definition 7. Letv :.# — R be a balanced game.

(i) vis anonymous if there exists a nonatomic control measure B’fo) such that
votT =V foreveryt € T(Q,.#,P).

(i) v has the anonymous core if there exists a nonatomic contrasore P foré’(v)
such that ot € %'(v) for every pe ¢(v) andt € T(Q,.Z,P).

Assumption 1 % is countably generated.
A probability measur® satisfying

lim su A =0
P(A)ﬂoueg(%)u( )

is called acontrol measurdor ¢ (v), with respect to which every element#(v) is
uniformly absolutely continuous.
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Theorem 5. Letv:.% — R be an exact game. Then, the following conditions are equiv-
alent.

(i) visanonymous.
(ii) v has the anonymous core.
(iii) v has a nonatomic control measure P féi(v) such that its minimal exact exten-
sion to I(Q,.Z, P) is a law invariant functional with the Lebesgue property.

Theorem 6. For every continuous, anonymous, exact game# — R, there exist a
nonatomic probability measure P and a unique continuoustfan¢ : [0,1] — R such
thatv=¢oP.

Theorem 7. A bounded continuous game .% — R is anonymous and convex if and
only if there exist a nonatomic probability measure P and &ue, continuous, convex
function¢ : [0,1] — R such thav = ¢ o P.

Let P be a nonatomic probability measure(@ .%). For an arbitrarily give\ € #
andt € [0,1], we define the family# " (A) of measurable subsets Aby:

H4P(A)={Ec.Z | ECc AandP(E) =tP(A)}.

For an arbitrarily giverA, B € .# andt < [0,1], we denote by#" (A B) the family of
setsC € .7 such thaC is a union of two disjoint set& € %" (A) andF € 7", (B). It
can be shown tha¥;" (A, B) is nonempty for ever, B € .# andt < [0,1] (see [6]).

Definition 8. A gamev :.% — R is P-convex if for every B € . and te [0,1], we
havev(C) < tv(A) + (1—t)v(B) for every Ce %" (A B).

Proposition 1 ([3]). A continuous game : .# — R is P-convex if and only if there
exists a unigue, continuous, convex functpr0,1] — R such thatv = ¢ o P.

Corollary 1. A bounded continuous game .# — R is anonymous and convex if and
only if there exist a nonatomic probability measure P suett this P-convex.

Corollary 2. A bounded, continuous, P-convex game is anonymous and exact
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The intention of this paper is to introduce new axioms foeiattion indices, new
interaction indices and new ideas to characterize thesedsd
If time is left we will point out how to generalize these rdsub fuzzy interaction in-
dices working in Sobolev spaces.

In the Grabisch-Roubens characterizations of the Shapteyaction index [2] 5
axioms were used : linearity , dummy player axiom , symmetificiency and a recur-
sivity axiom. The first 4 axioms are rather “natural” axiornst the recursivity axiom is
rather technical and will not be considered by all as a “rdt@xiom. In the Fujimoto-
Kojadinovic-Marichal paper [1] a new set of axioms were megd : Linearity was
replaced by additivity , monotonicity and k-monotonicitwhereas dummy player ax-
iom was exchanged by a dummy partnership axiom. Moreovensstny and efficiency
were overtaken and the complicated recursivity axiom wakoed by a “recursion free
" consistency property for “reduced " partnerships.

(a) Thus it would be desirable to have (instead of [ efficieand recursivity] or
instead of [ efficiency and reduced partnership ]) one gdimech“natural” efficiency
axiom for indices. In this paper we propose such a naturditmraefficiency axiom .

(b) This coalition-efficiency axiom together with linegridummy partnership (or
dummy player ) axiom and symmetry leads to a new charactenizaf the Shapley
interaction index.

(c) We introduce a new random interaction index which can heracterized by
linearity , dummy partnership (or dummy player) axiom andlition efficiency (that
is , no symmetry is needed).

(d) We show the connection between the random interactiexiand the chaining
interaction index.

(e) We unify the Banzhaf, chaining, internal and externigriaction index (see [1])
to a more general Sincov interaction index .

We now give some details. Let U be an infinite set, the univefgdayers.

A game on U is a set function: 2Y — R with v(0) = 0.
The members of'2 are coalitions. A sell C U is carrier of a gameif v(S) = v(SNN)
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for all Sc U. A finite game is a game which has finite support. Moreover we se
U =2Y\ (0) and letG and GN be the set of finite games and the set of games with
finite carrierN c U, respectively.

We denote byly all permutations of the finite set N and By the set of all maximal
chains in the powerset ™. Then there is a bijectiof betweern 1y and My given by
£(19) = my = {0, {T(1)}, {T(1), D)}, .. {(M(1), ... W)} }.

Let us denote by the minimal coalition belonging to the maximal chaip that con-
tains S. In the special caSe= {1(k)} we have thatnﬁ(k) is the set of all precedents of
(k) in the set(N) = {m(1),...,1(n)}.

For any functiond : G x U — R we call for fixedv € GN the mappingd(v,-) :
U — R an interaction value and for fixade GN and for fixedSc N we call$(v,S) an
interaction index (or i-index , for short) of the coalitiorirthe game v.
In order to characterize interaction indices we use 3 chariatic expressions :

() the discrete derivatiodsv(T) = 3, ~s(—1)S'v(LUT) as a measure for the
marginal interaction among the players of the coalition ®é@presence of the coalition
T(SCN,TCN\S|§=s5>2),

(I1) the s-th order derivative of v at S witlsv(T US) = Agv(T) and

(1) the well-known Mébiustransfornrm(v,S) = S1-5(—1)%'v(T) together with
the co- Mobiustransform*(v,S) = Stosm(v, T).

For characterization theorems it is important to choosepanapriate basis fogN.
Weber [3] proposed to takpa : 0 # T < N} (wherew) (S) =1 for T = SN N and
WY (S) = 0 otherwise ). We here propoger : 0 # T C N} whereur(S)=1if SO T
andur (S) = 0 otherwise. To see the difference let us consider all iotemaindices sat-
isfying linearity and dummy partnership axiom. In the firase we get the well known
probabilistic interaction indices

(1) 0w =3TrcmsPE(N)ASV(T) , SremsPR(N)=1 , vegh.

Herep$(N) are real constant®y U is finite and® # Sc N. But if S¢ N then
$(v,S) = 0. Moreover, the expression in (1) is dependent udon

In the second case we obtain “normed” interaction indices

(2 ®(wS=3r-sBEmwT) , BE=1,ScU,Sfinite ,veg.

Here again3$ are real constants, but we have no dependence upon ther ddrrie
sincem(v,S) =0 if S¢ N . The proof for (2) is easy : Linearity implies

O(v.S) = TosrcnB? M. T) , whereB? = ¢(ur,S).
The dummy player axiom implieds = ¢ (ur,S) = 0if S¢Z T, T finite. And the dummy
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partnership axiom implie8S = 1.

It is more complicated to prove (1). The reason is that liganplies that
(VS = TosrenaF(N) V(T) whereaF (N) = ¢(wY,S). But then - going over to (1)
- new real constant will be introduced, namgf(N) = ars(N) (which are now the
“correct” constants).
Let us remark that the connection betwd@$nandp$(N) is given by

B =STiiscTtenys PE(N) for L > Sso thaBg = Srons PR(N) = 1.

If the coefficientsp3(N) in (1) depend only upon the cardinalities BfS and N
then¢(v,S) is called a cardinal-probabilistic interaction index.dtkinown that this is
the case iffp (v, S) satisfies linearity (in the first argument), dummy partngrsixiom
and symmetry.

The same result is true for (2) but the proof for this fact isvnearly trivial. For
example, ifTy D SandT, D Shave the same finite cardinality choose a permutation
of U with (T1) = i(T») andT(S) = S. Then we get
B'Is'l = ¢(UT178) = ¢(T[UT17TIS) = ¢(UT[T178) = ¢(UT2aS) = B%

Note that a concrete cardinal-probabilistic interactiodex must be independent
upon the carrier oN. The following result contains a sufficient condition.

For each family of nonnegative numbers
{pf(n):1<n< o, 1<s<n0<t<n-—s} satisfying

(3 Y10 (" %) pi(n) = 1 andpf(n) = pi(n+1) + pg, (N + 1)

we have foiv € G and for every two nonempty carrieké, N C U
STensPE(MASV(T) = Y1em s PE(M)Asv(T).

Note that all known cardinal-probabilistic interactiomlioes satisfy (3) :

- the Shapley i-index whengé(n) = -1+ ("%t and@ = 1,

- the chaining i-index wherpf(n) = 3; (Sit)*l andpf = ¥ and the generalized

- Banzhaf i-index wher@$(n) = c!(1—c)" 'S andpf = ¢!~ wherec € [0, 1].
Note thatc = % leads to the Banzhaf index, ¢ = 0 gives the well known Mobius-

transform or internal i-indem(v, S) whereas = 1 gives
the co- Mobiustransform or external i-index (v,S) = S tosm(v, T).

Let us here introduce the Sincov i-index (a more generad@&xthan the general-
ized Banzhaf i-index), to see the characterization results] concerning the Bazhaf,
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chaining, internal and external i-index under a unified yieimt:

(4  O(WP)=3r-sBmVT) ., BE-Bs=PR.B>0,TOSOR

Note that that th@ satisfy a Sincov functional equation which implies immeelia
thatps =1 (putt =r =) andf = E—‘;
Thus every Sincov i-index satisfies the dummy partnershignaand results in [1] im-

ply that each cardinal probabilistic i-index satisfying thartnership allocation axiom
(which impliesBf - B = Bt) is a Sincov i-index.

Let us now present the efficiency axiom : we have
for each finite, nonempth c U, for eachv € gN and for eact8c N,S# N

(5) Yien\s$ (v, SUT) = Asv(N).

First note thadsv(N) = Asv(N\ S) is the marginal contribution of the players of S
to the coalitionN \ S.
On the left hand each playee N\ Sis ready to contribute his expected gaifv, SU1)
if he joins the coalition S. The sum of these expected ggjpg s (v, SUI) is equal to
the total contributiodsv(N \ S) which the players oN \ Sare ready to pay if S joins
the coalitionN\ S.

ForS= 0 we getin (5) the usual efficiency axiofen ¢ (V,1) = V(N).

Now we can show in one line that the Shapley i-index is the eimigex satisfying
linearity , dummy player (or dummy partnership) axiom, syatry and efficiency : For
arbitraryj € T\ Swe get

i SUj SUj
1=20sur(T) = Yier\sBF = (t—9)B7 . ThusPr ) = F; or B7 = =

We also remark that in this characterization of the Shapi¢graction index the
dummy player axiom can be replaced by the weaker “finitenasigim :
For each infinitesC U and for eaclv € G we required(v,S) = 0.
Now we define the random order interaction index :

(6) CI)(V, S) = Yreny M 55\/(”1?[) v 2menyn= 1
We see immediately that f@= {i} we get the random order index introduced by
Weber [3] and that (6) is a generalization of the chainingriattion indexig; = ).

n!
Moreover (6) is a probabilistic interaction index :
let us putms = SUT with T < N\ Sto obtain :

O(%S) = TremsTneny mi=s 7 M OV(TUS) =

117



= 2TCN\S2 meny,ms=suT '™ Asv(T).
The statements follow because §f -n\sp? = 1 With p? = 3, rs_g 7 I

The random order interaction index is of interest becausiesofollowing two char-
acterization theorems (in analogy to results of Weber [3]) :
Let ¢ be a probabilistic i-index.

1. Then¢ satisfies the coalition efficiency axiom iff
(1) Siens pﬁJ\i(sJi) =landyjcr p—?J\: =YigrushP' , TCN\S
2. ¢ satisfies the coalition efficiency axiom #fis a random order i-index.

Using this result we can give a further proof that the Shapiésraction index is
characterized by linearity , Dummy axiom, coalition effitig and symmetry. Using
the symmetry we get from (7)

tpit = (n—t—s)pftand(n—9)ps*l ;=1 sothat

1

a="T) R =) R maa= s si=Rt =

1 1 m-s-1\—1 1 n—sy —1
Thusg = 2 (%) L orpi= g (79 0t <n-s
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1 Introduction

Recently, we introduced in [34] a new setting for topologstauctures motivated by
point-set lattice-theoreti¢posla) topologyof S. E. Rodabaugh [27] successfully de-
veloped in the framework of powerset theories with the ulyitey algebraic structures
for topology beingsemi-quantale$31, 30]. Based in category theory and universal
algebra, the new approach is calledtegorically-algebraiqcatalg topologyto un-
derline its motivating theories and to distinguish it frohe tabove-mentioned poslat
setting. The underlying idea is to replace semi-quantalés algebras from an arbi-
trary variety, and to consider an abstract category as thengkfor topology. Simple
as it is, that provides the new setting with a high flexibiligor example, the case
of set-induced ground category, calledriety-based topologyallows one not only to
extend the classical concepts of fixed- and variable-bapiddgy [29], but also to in-
troduce a newnulti-basisone, thereby incorporating the most important topological
theories currently popular in the fuzzy community, e.gar{@ble-basis) lattice-valued
approach of S. E. Rodabaugh [30], (fixed-bagls)M)-fuzzy topological spaces of
C. Guido, U. Hohle, T. Kubiak and ASostak [15,17,21], as well as (multi-basis)
generalized topology of M. Demirci [11]. Moreover, in somases the border be-
tween crisp and many-valued developments gets ultimatabeé. In particular, many-
valued framework of S. E. Rodabaugh appears to be “crispgg@oline with the crisp
categorically-theoretic machinery), whereas the frantewb C. Guidoet al.is a truly
fuzzy setting (requirefattice-valued catalg topology At the moment, the new the-
ory is rapidly progressing in several directions influega#ach other significantly, e.g.,
catalg spaces [34], catalg systems [35, 37], catalg desl[88, 39], catalg powerset
operators [40], catalg attachment [12, 43], lattice-vdloatalg topology [36]. It is the
purpose of this paper to show one of the most promising dpwedmts, namely, the
extension of the natural duality theory.

The theory of natural dualities was motivated by numeropsltmical represen-
tation theorems for algebraic structures from the lastuggntn particular, M. Stone
represented both Boolean algebras [44] and distributitieds [45], whereas L. Pontr-
jagin considered abelian groups [24]. The real push, howesgs given by the famous
representation of distributive lattices of H. Priestle$][2vhich immediately initiated
a plethora of parallel results. The above theorems tranalgebraic problems, usually
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stated in an abstract symbolic language, into dual, topcddgroblems, where geo-
metric intuition comes to our help. Induced by the advantagthe last quarter of the
20th centurynatural duality theorybegan to appear, developed by D. Clark, B. Davey,
M. Haviar, H. Priestleyetc.[4, 7,9, 10, 26], which provided a general machinery (based
in category theory and universal algebra) for obtainingtogical representations of
algebraic structures, (partially) incorporating the ¢iexamples as particular subcases.
Being classically motivated, the theory of natural duaditielies explicitly on crisp
topology. On the other hand, already in 1992 S. E. Rodaba2gjrhas come out with
a poslat generalization of the Stone representation theorinspired by his ideas, in
[41,42] we partially generalized the results of [28] for rjadle-basis) variety-based
topology and turned our attention to fuzzification of theeBtliey representation theo-
rem, which appeared to be more difficult to attack. Finahy|39] we have managed to
break through, providing a fixed-basis variety-based gdization of the result. Almost
immediately, we saw an opening for a much broader theorythat ofcategorically-
algebraic dualitiesextending the classical natural dualities. With the idemind, we
presented a fixed-basis variety-based version of the nearythie [38]. The desired
shift from fixed-basis to variable-basis turned out to beswogasy, but not unmanage-
able. The sticking point was to avoid the truncated variddasis representation frame-
work of S. E. Rodabaugh, restricted to isomorphisms betweennderlying lattices of
the spaces. It is the main goal of this paper to present ablaftzasis modification of
catalg dualities. The achievement serves as yet anothefr@irtihe fruitfulness of catalg
framework, urging the shift from poslat to catalg in the modepological theories, the
latter being a more convenient tool for successful develapraf fuzzy mathematics.
The paper uses both category theory and universal algetlyang more on the for-
mer. The necessary categorical background can be found22 [23]. For the notions
of universal algebra [3, 6, 14] are recommended. Althougtiried to make the paper
as much self-contained as possible, some details arersiifierl and left to the reader.

2 Algebraic preliminaries

For convenience of the reader, we begin with those algelraiccategorical prelimi-
naries, which are crucial for the fruitful perusal of the pap

Definition 1. Let Q = (my))ca be a (possibly proper) class of cardinal numbers. An

Q-algebrais a pair (A, (mﬁ)AG,\) comprising a set A and a family of map?fAui A

(ny-ary primitive operationsn A). AnQ-homomorphisntA, (6%)ycn) 9, (B, (®)ren)
is amap A% B such that & o} = wBo f™ for everyA € A. Alg(Q) is the construct of
Q-algebras and2-homomaorphisms.

From now on, every concrete category comes equipped withrterlying functor
| =1
Definition 2. Let M (resp.E) be the class of2-homomorphisms with injective (resp.
surjective) underlying maps. ¥ariety of Q-algebrass a full subcategory oAlg(Q)

closed under the formation of products{-subobjects andE-quotients. The objects
(resp. morphisms) of a variety are callatbebragresp.homomorphisms
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Definition 3. Given a varietyA, areductof A is a pair (|| — ||, B), whereB is a variety
such thatQg C Qa andA H> B is a concrete functor.

The categorical dual of a variet is denotedLoA, whose objects (resp. mor-
phisms) are calletbcalic algebras(resp.homomorphisn)s Given a homomorphism
¢, the corresponding localic one is denoggd and vice versa. Every localis-algebra

A provides the subcatego84 of LoA, with the only morphism the identit A
The reader should notice a significant deviation from thenéaork of universal
algebra [3, 6, 14], where the algebras have a set of finitagyatjpns.

3 Categorically-algebraic topology

This section serves as a brief introduction into the thedrgategorically-algebraic
topology the subsequent results of the manuscript are based upenedtier is advised
to recall powerset theories of S. E. Rodabaugh [30, 31].

f . . . ,
Every set mapX — Y gives rise to the following two operatordBnage opera-

tor P(X) LN P(Y), f7(S) = {f(x)|x € S} andpreimage operatorP(Y) LA P(X),
f<(T) ={x| f(x) € T}. Preimage operators can be extended to a more generagsettin

Definition 4. A categorically-algebraic backward powerset the@agbp-theoryin a
categoryX (ground categorgf the theory) is a functax i LoA, whereA is a variety.

Example 1.Let Set be the category of sets and maps. Given a varetgvery sub-
categoryC of LoA induces a functoBetx C =07, LoA, ((X,A) AULUN (Y,B)* =

—\op -
Ax UOTT0BY (£.6)¢ (o) = $°Poao . The functorSetx S <~ LoA is denoted

Sa=(—)x and is calledixed-basis approaciThe cas& # Sa is calledvariable-basis
approach In particular, the functoBetx S, % LoCBAlg (complete Boolean al-

gebras), wherg = { L, T}, provides the above-mentioned preimage operator.

Definition 5. Let X be a category and lefi = ((R, (]| — [li,Bi)))ici be a set-indexed

family such thaX P LoAiis a cabp-theory irX and (|| — ||;, Bi) is a reduct ofA; for
every i€ |. A composite categorically-algebraic topological the(gat-theoryin X
r,
induced by7, is the functorX a, [Tiel LOBj, given by the equalit a, Micl LOBi =
P I-115® . : . I
LoBj = X -5 LoA; — LoBj for every jc |, wherel | is the respective projection
functor. A ccat-theory induced by a singleton family is dedadr .

Definition 6. Let T be a ccat-theory in a categoby. CTop(T)) is the concrete cate-
gory overX, whose objectepmposite categorically-algebraic topological spawek-
spacepare pairs(X, (Ti)iel ), where X is arX-object and; is a subalgebra of TX) for
every i€ | ((1j)iel is calledcomposite categorically-algebraic topologyT, -topology

on X), and whose morphisniX, (Ti)ici) AR (Y, (0i)ier ) are X-morphisms X% ¥ such
that ((Ti f)°P)~(aj) C 1; for every ic | (composite categorically-algebraic continuity
or Tj-continuity). The categonCTop(T) is denotediop(T).
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Example 2.The case of the ground categofy= Setx C is calledvariety-based topol-
ogy. In particular, Top((Sq,B)) provides the categor@g-Top, which is the frame-
work for fixed-basis variety-based topolggyhereaslop((5,B)) gives the category
(C,B)-Top, which is the framework fovariable-basis variety-based topologhe case
A = B is denotedC-Top). More specific;Top((?,Frm)) (frameg2, 18]) is isomorphic
to the classical categorfop, whereasCTop(((?,Frm))ic(1,23) is isomorphic to the
categonyBiTop of bitopological spaces and bicontinous maps of J. C. K&l8j.[

Notice that the framework of S. E. Rodabaugh [30] passesttlirlom powerset
theories to topological spaces, never introducing theriméeliate step of topological
theories, which in our case is motivated by the observatian the standard power-
set theory? is based in Boolean algebras, whereas the catefmpyelies on frames
(dropping a part of the algebraic structure). Another aljabint is that the non-variety-
based catalg framework obliterates the conceftasisfor a topological space, going
back to the notion dbase seof powerset of J. A. Goguen [13]. In particular, the numer-
ous debates in the fuzzy community on the advantage of ditteat- or variable-basis
setting over its rival [29] are redundant in case of an aabjtground categor¥(.

Two important properties of catalg topology will be indiggable in the forthcom-
ing developments. The first one generalizes the classisaltref general topology,
stating that continuity of a map can be checked on the eleswéiat subbase, which has
already been extended to poslat topology by S. E. Rodab&%gfi heorem 3.2.6].

Definition 7. Let A be a variety and led C Q. Given an algebra A and a subset
SCA, (S)q stands for the smalle€2-subreduct of A containing %) q, is shortened

to (S)). Given a cat-theorX L LoB, asubclas® C Qg and a T-spacéX, 1), asubset
SC T(X) is anQ-baseof 1 provided thatt = (S)o. Qg-bases are calledubbases

Lemma 1. Let T be a ccat-theory in a categoby and let(X, (Ti)ici ), (Y, (Gi)ic) be

Ti-spaces such that; = (S)q, for every ic I. An X-morphism X1 Y is F-continuous
iff (Tif)°P)7(S) C 1 for every e |.

The second property extends the standard constructionodiupts of topological
spaces.

Lemma 2. Let T be a ccat-theory in a catego¥. If X has products, then the category
CTop(T) has concrete products.

Proof. Given a set-indexed famil{(Xj, (tj )ic))jes Of Ti-spaces, the respective prod-

uct is (Mes Xio (Miea Tk )ier) = (4, (T )ier))jea, where ([ey X — X))jes is an
X-product of(X;)jes and[key T = (Ujes((Titg)°P) 7 (15,)) for everyi € 1. o

Corollary 1. Qg-Top has concrete productgC,B)-Top has concrete products pro-
vided that the categorg has products.

Notice that products i€ are actually coproducts of the respective algebras.
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4 Categorically-algebraic dualities

This section applies variety-based topology to extend lieery of natural dualities.
We start with a modification of the fixed-basis approach ol [a8 unnecessary tight
condition is relaxed), which the variable-basis case seljgon.

4.1 Fixed-basis approach

The theory of natural dualities is based in the concegtbfzophrenic object.e., a fi-
nite setM equipped with two structures: algebraic (providing an bigil,), and topo-
logical (assumed to be discrete) with additional enrichiheensisting of finitary total
and partial operations as well as finitary relations (primgch structured topological
spaceMt). The setting constructs a kind of dual equivalenaral duality) between
the quasi-variety (closure under isomorphic images, sigiebs and productg) gen-
erated by the algebiid, and the topological quasi-variety (closure under isorhimrp
images, closed subspaces and non-empty prodliggenerated by the spabér.

Variety-based framework modifies the setting as follow3:tkie categorylop is
replaced with the catego@g-Top; (2) every requirement of finiteness on the structures
in question is dropped; (3) topological enrichment is rextlio relations, incorporating
both total and partial operations as their particular kir{d} arbitrary topologies on
the setM are allowed; (5) (topological) quasi-variety is subs#tliy the notion of
(sobriety spatialityin the sense of P. T. Johnstone [18]; (6) an equivalence legtie
categories ofober spaceandspatial localic algebrass established.

We begin by developing the framework of enriched topologpaces (the reader
should recall Definitions 1, 2). For the sake of convenietimeprefix ‘Qg” is added to
the respective topological stuff, e.gQg-space”, ‘Qg-topology”, “Qg-continuity”, etc.
Definition 8. LetX = (my)yey be a (possibly proper) class of cardinal numbersz-A
structureis a pair (R, (@R)yey) comprising a set R and a family of subsef$ C R™

(my-ary primitive relationon R). AZ-homomorphisniR, (wf)ycy) N (S (@) vey) is

a map R S such that f™)~ (wR) C w; for everyu € Y. Rel(Z) is the construct of
>-structures and-homomorphisms.

Definition 9. LetR be the class cf-homomorphisms FE» S such that for eveny € Y’
and every(ri)m, € R™, (f(ri))m, € wy implies (ri)m, € @WR. Let M (resp.E) be the
subclass off of those2-homomorphisms which have injective (resp. surjectivelean
lying maps. Avariety of Z-structuress a full subcategory oRel(X) closed under the
formation of products{M -subobjects andE-quotients. The objects (resp. morphisms)
of a variety are calledtructuregresp.homomorphisms

To make a distinction from varieties of algebras, the prefixs added to the re-
spective relational stuff, e.g., “r-variety”, “r-structf, “r-homomorphism”gtc.

Example 3.The construcBPosof bounded partially ordered setsosety and bound-
as well as order-preserving magsdrder-preserving mapss an r-variety induced by
the categoryRel(2,1,1), based in a single binary relation and two unary relations.
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Definition 10. Given an r-varietyR, Qg-RTop is the concrete category overgiop,

whose objects{Qg-space}lare pairs(R, 1), where R is an r-structure andR|, 1) is a
Qg-space, and whose morphismsJg-morphism$ (R 1) AR (S,0) are Qz-continuous
maps(|R|,1) iR (|9],0) such that RS Sisan r-homomorphism.

Example 4.The categoryTop enriched in the r-varietyBPos provides the category
BPosTopof bounded potopological spaces and b-order-preservingmmus maps.

The machinery of variety-based dualities relies on 3 stésieplaceX (resp.A)
with Qg-RTop (resp. a varietye); (2) construct two functorQg-RTop B, LoE and

LoE & Qs-RTop such thatG is a right adjoint toH; (3) single out subcategories of
Qs-RTop (resp.LoE), the restriction to which of the adjunction gives an eqglginae.

The first step being already made, we proceed to the secondlongbtain the
functors in question, we introduce several additionalorei

Definition 11. Suppose& is a subcategory oE. Anr-reductof C is a pair (|| — ||,S),

whereSis an r-variety andC H> Sis a concrete functor. An r-reduct is calledhebraic

provided that for everg-object C and every € Ys, wil)c“ is a subalgebra of ¢.

Example 5.The functorQuant H) LBPos (quantales[20, 32] and lower-bounded
posets) defined bjfA 9, Bl = (A<, 1) 9, (B,<, L) provides an algebraic r-reduct
of Quant, whereag|| — ||,BPo9 gives a non-algebraic r-reduct Quant.

Definition 12. Given a varietyD, a Qz-topologicalD-algebras a pair (D, 1), where D

o

is a D-algebra,(|D|,1) is a Qz-space, and every primitiv@-operation|D|™ —» |D]|
on D is -continuous.

See Examples 8, 9 for a concrete illustration of the condéptice that [38, 39]
use the termQg-continuous instead dg-topological. The change of this paper was
motivated by our wish to be in line with the already existirghiinology.

The preliminaries in hand, we proceed to the variety-basesion of schizophrenic
object, which is the cornerstone of the desired duality.

Definition 13. Avariety-based schizophrenic objéebs-objectis a pair (E,d), where
E is anE-algebra and is a Qs-topology onE|.

Fix a vbs-objectE,d) and introduce the following two requirements:

(R) Ris an algebraic r-reduct &g.
(€) (E,d) is aQg-topological algebra.

It should be underlined that [38, 39] demandedo be an algebraic r-reduct &

instead ofSg. The setting of this paper relaxes the requirement (presgall results)
to boost the flexibility of the framework.
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Lemma 3. If (R), (€) hold, then there exists a functorg€RTop B, LoE given by
f (f(—)op

H((RT) = (S0)) = Qs-RTop(R, |[E[|) ——— Qs-RTop(S,||E[)).

Proof. As an example, show tha@gs-RTop(R, |E||) is a subalgebra of/R. Given

A € A anda; € Qg-RTop(R, ||E||) for everyi € ny, check thatmE'R'(<cxi>nA) is an
r-Qg-morphism. Start with the case of being an r-homomorphisiversu € Yz and
(r)m, € @R, (0 (r}))m, € @b for everyi € ny, that impIies((mE‘R‘ (@) ))(r}))m, =
(WE((@i(r}))n))m, € mﬂEH by (R). To showQg-continuity, notice that products of
Qg-spaces provide th@g-continuous mapr LN |E|™ with 15 0 a = aj (15 being the
respective projection map) for everg n,. Sincew%‘R‘ ((ati)n, ) = W oo andedy is Qg-

continuous by(C), w;E‘R‘ ({ai)n,) must be as well. O
Lemma 4. If (R), (€) hold, then the functor @ RTop 2 LoE has a right adjoint.

Proof. Show that everf in LoE has arH-co-universal arrod G(E) SE—OP> E. Letthe
underlying set o5(E) beE(E,E). Foru € Yz and(¢j)m, € (E(E,E))™, let (¢j)m, €
wg = iff dj(e))m, € mﬂEH for everye € E (pointwise structure). Fa< E anda € 8,
letE(E,E) L:N'e} tea (§) = e%((¢pg5)(a)) =aod(e) and set = ({tex |€ € E, 0 €3}).
Define the majE <& (HG(E) = Qg-RTop(E(E,E), | E|)) by e (€) = ew. O

Corollary 2. If (R), (€) hold, then there exists an adjoint situati¢n,e) : H 4G :
LoE — Qg-RTop.

op op op
Proof. Given alocalic homomorphisiy LAl Ez, G(Ex Ll Ez) =G(E1) S G(E2)

with G$°P = ¢5; . Given an rQg-spaceR, RIR (GH(R) = E(Qg-RTop(R, ||E||),E))

is defined by(nr(r))(f) = f(r). O
Having completed the second step, we turn to the last ongljreirout the subcate-

gories to get an equivalence between. Start by recallingesmategorical preliminaries.

Lemma5. Let(n,g) : F 4G: A — X be an adjoint situation. LeA (resp.X) be the
full subcategory ofA (resp.X) of the objects A (resp. X) such that FA& A (resp.

X n—i) GF(X)) is an isomorphism i (resp.X). There exists the restrictiof,€) : F -
G:A _LY which is an equivalence, maximal in the sense that every etii@valence

(M,€) :F 4G : A — X gives subcategories (resp.X) of A (resp.X).

The following applies Lemma 5 to the adjunction of Coroll@rgnd characterizes
the category oE (resp.Qg-RTop).

Definition 14. An r-Qg-space(R; 1) is called
1. rgs)-Qs-To provided that (a) every distinctijr, € R have an r-@-morphism
RE |E|| suchthat fr1) # f(r2); (b) givenu € Yr and(rj)m, € R™, if (f(rj))m, €
wﬂE“ for every r-Gs-morphism RS IE|l, then(rj)m, € @k,
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2. (g 5)-Qe-So provided that (a) every homomorphisng-@&Top(R, [|E[|) % E has

some re R such thath(f) = f(r) for every r-Gs-morphism R IE|l; (b) T =
({fg (@) |f € Qg-RTop(R [[E[)), a € 8});

3. Ig5)-Qs-sobemrovided that it is both # 5 -Qs-To and rg 5)-Qs-So.

Basically, an Qg-space ig g 5)-Qg-sober iff it is a “closed” (the meaning should
be clarified) rQg-substructure of some power @fE||,d).

The next definition (the dual version of [8, Section 11.201) @xample give the
intuition for the new notions.

Definition 15. A BPosTopspace(X,<,L,T,1) is calledtotally order-disconnected
provided that for every ¥ € X such that £ y, there exists alopen(closed and open)
up-setJ C X (ze U and z< wyield we U) such that xc U and y¢ U.

Example 6.Given the lattice of the varietyLat (lattices),(|| —||,BPo9 is an algebraic
r-reduct ofS,. Equipped with the discrete topolog§ = {@,{L},{T},2}, the lattice
provides a topological algebra (Example 8)BRosTopspaceX is M2y~ To iff X is
totally order-disconnected.

Definition 16. A LoE-object E is called f; 5-Qg-spatialprovided that (a) every dis-

tinct e;,e; € E have a homomorphism £ E with d(e1) # ¢(e2); (b) every r-G-

morphismE(E,E) AN |IE|| has ec E with f(¢) = ¢(e) for every homomorphism LE.
Briefly speaking, d.0E-object isr g 5-Qg-spatial iff it is a “closed” (the meaning

should be clarified) subalgebra of some poweE of
The preliminaries in hand, the desired characterizati@msatter of technique.

Lemma 6. An r-Qg-space Ris  5)-Qp-sober iffnr is an isomorphism. AoE-object
E is 1 5)-Qg-spatial iff e is an isomorphism.

Corollary 3. Qg-RTop is the full subcategory (EE,8)RSobof Qg-RTop comprising
precisely the i 5)-Qg-sober r-Q-spacesLoE is the full subcategory R(E,8)RSpat
of LoE comprising precisely thei 5)-Qg-spatial localic algebras.

The main theorem of this subsection is, thus, as follows.
Theorem 1. If (R) and (€) hold, then there exists the equivalen@g€) : H 4 G :
Qs-(E,8)RSpat— Qp-(E,0)RSoh
4.2 Variable-basis approach

This subsection extends the results of the previous oneetwatiable-basis world, re-
placing the categor@g-Top with (C, B)-Top. The main difference from the framework
of S. E. Rodabaugh [28] is the lack of truncation of the sgttinisomorphisms between
the underlying algebras of the spaces.

We begin by developing the framework of variable-basisammient.
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Definition 17. Given a subcategorg of LoA and an r-varietyR, (C,B)-RTop is the
concrete category ovélC, B)-Top, whose objects{(C, B)-spaceyare triples(R,C, 1)
such that R is an r-structure andR|,C,1) is a (C,B)-space, and whose morphisms

(r-(C,B)-morphism$ (R1,Cy1,T1) M (R2,Cp,T2) are (C,B)-continuous morphisms
(|R1l,C1,11) o), (|R2/,Cz,12) such that R AR Rz is an r-homomorphism.

Example 7.The categorng-Top with A = USQuant (unital semi-quantales), enriched
in the r-varietyBPos gives the categor¢Z-BPosTopof variable-basis poslat bounded
potopological spaces and b-order-preserving continuarphisms.

From now on, the categor@ used in the definition ofC, B)-Top is supposed to
have powers of objects (we never require the existence aliyats).

The following introduces the conditions for obtaining arjusttion between the
categorie§C,B)-Top andLoE. The machinery translates the developments from the
previous subsection into variable-basis language, addinge new requirements.

Definition 18. Given a varietyD, a (C,B)-topologicalD-algebrais a triple (D,C, 1),
where D is aD-algebra,(|D|,C,1) is a(C,B)-space, and for every primitive-opera-
D D
tion |D|™ =, |D| on D and every E n,, the Setx C-morphism|(|D|,C,T)™| M
[(|D],C,T)|, where C» B, C is the respective projection map,(i8, B)-continuous.

The next two lemmas provide important examples of the nevonot

Lemma 7. LetD be afinitary variety and let C be@-object. Suppose th&lg induces
the structure of semi-frame d|C||, and the projections of every power of C@are
sections. For everp-algebra D, the pair(|D|,C) with the discrete(C,B)-topology
1@ = CIPl provides a(C, B)-topological algebra D, C,1%).

Example 8.The lattice2, being equipped with the standard discrete topolodjy=
{2,{L},{T},2}, provides a topological algebra.

Lemma 8. Let D be a variety such tha®p C Qg, let D be aD-algebra, let C be a
(16, )*Potor®
— C™

C-object and letD| 9, |C| be aD-homomorphism such that"®

(1t5,)*Pogory
D™ J2—THD> C™ for everyA € Ap and every jj1, j2 € ny. TheSierpinski(C,B)-
topologyt® = (¢) on (|D|,C) provides a(C, B)-topological algebrgD,C, t°).

Example 9.The frame2, being equipped with the classical Sierpinski topolagy-=
{2,{T},2}, provides a topological algebra.

Definition 19. LetD be a variety, le€ be its reduct and le€ be a subcategory db,
which has copowers of objects.@object C is called (aE-p-entropicprovided that

for everyC-object C, everyA € Ag and every family(C’ A, C)ien, of C-morphisms,

. bi e . . bi ;
the composition Cﬂ) cm A s a C-morphism, where C% cn &e=

c’ ﬂ> C for every i€ ny; (b) E-c-idempotenprovided that for everi-algebra E, every

127



A e Ae and Em ool (5O — here C [EIC is th
€ \g and everye)n, € E™, w, ((Me ) Mot (e, )» Where C= is the

respective copower injection; (c) dp-c-modeprovided that C is botlE-p-entropic
and E-c-idempotentC is called E-p-entropic(E-c-idempotentthe category oE-p-c-
mode3 provided that everg-object isE-p-entropiq E-c-idempotentan E-p-c-mode.

The terminology of Definition 19 is motivated by the theoryrbdes(idempo-
tent, entropic algebras) [33]. In particular, ev&rc-idempotenC-algebraC provides
the idempotenE-algebrd|C||, whereas every entropi2-algebra isD-p-entropic w.r.t.
every full subcategory db. Further examples follow.

Example 10.If D = E = Set, thenD is the category oE-p-c-modes.

Example 11.If D = E = CSLat(V) (\V-semilattices), the is E-p-entropic, but not
E-c-idempotent.

Example 12.If D is aD-algebra, ther®y is the category oE-p-c-modes iff||D|| is an
idempotentE-algebra. IfE has nullary operations, the® is the category oE-p-c-
modes iffD is a singleton algebra.

The preliminaries in hand, we proceed to the definition ofréatde-basis analogue
of variety-based schizophrenic object.

Definition 20. A variable-basis variety-based schizophrenic obfeebs-objec} is a
triple (E, C,8) with E anE-algebra,C a C-object, andd a (C, B)-topology on(|E|, C).

To obtain the required adjunction, we fix a vvbs-obj@etC,8) and consider the
following set of requirements, for the sake of shortnesotsE{REQ):

(R1) Eis areduct oB.

(R2) Ris an algebraic r-reduct &.

(e ) (E C,d) is a(C,B)-topological algebra.
(M) LoC is a category oE-p-c-modes.

Lemma 9. If (REQ) hold, then there exists a funct¢€, B)-RTop LNS given by

ff‘d)“ op
H((RCrt1) 1% (R, Ca.T2)) = (C.B)-RTop((Ry.CL ) (|E. €. 8) S
(C,B)-RTop((Rx,C2, 12), (|| E|[,C, 8))

Proof. To show tha{C, B)-RTop((R,C,1), (| E|,C,8)) is a subalgebra @R x||C/€l|,
useE-p-entropicity of(M) to verify that giverh € Ag and(f;,¢i) € H(R C, 1) for every

) 07y
i €y, themapC >——2,C=C ™ cm A, CisaloC- -morphism. O

Lemma 10. If (REQ) hold, then the functofC, B)-RTop " LoE hasa right adjoint.

op
Proof. Show that every.oE-objectE has arH-co-universal arrod G(E) *ELE. The
underlying pointwise r-structure @G(E) is already described in Lemma 4, whereas the
algebraic basis dB(E) is the powerC/El. Givene € E anda € 8, let E(E,E) = CIEl,
Sea (9) = ew((9, ) (o)) = (€)oo ¢(6) and puto = ({sw | € € E, a € 8}). De-
fine the maE 5 (HG(E) = (C,B)-RTop((E(E,E),CEl,0), (|E|/,C,8))) by ee (e) =
(ew, T§) and useE-c-idempotency of M) to show thakg is anE-homomorphism. O

128



Corollary 4. If (REQ) hold, then there exists an adjoint situatign,s) : H 4G :
LoE — (C,B)-RTop.
. . . oOP ¢oP G¢$oP
Proof. Given a localic homomorphisi — Ep, G(E; — Ez) =G(E1) — G(Ep)
El

with G$°P = (¢, W), wherey is defined byClE1l ¥ ClEal Te T, ¢ — Bl 2, ¢ for

everye € E. Given an r{C,B)-space(R,C,1), (R,C,1) (GH(RC,1) =
(E((C.B)-RTop((R.C. 1), (|E[,C.8)), E). C*RC1 0)) is defined by(g(r ))(f ) =

Ol (rC)

Nre1)=(9.9)
—_—

f(r), whereasp is the C-morphism[¢]yrc 1), provided by the equalltyt

CHRCH 4, Tiro c=c ¥ Cforevery(f,¢) e HR.C,T). 0
The adjunction obtained, we single out the subcategoriesfidable-basis duality.

Definition 21. An r-(C,B)-space(R,C,1) is called

1. rgcs)-(C,B)-To provided that (a) every distincirz € R have an rC, B)-morp-
hlsm(R C1) — UUN (||IE|\ C,d) with f(r1) # f(r2); (b) givenu E Yh and(rj)m, €

o if (F(rj))m, wl', ! for every r{C,B)-morphism(R,C T) (|\]E|| C,9),
then(rj)m, € @; (c) the homomorphisi@HRCV @M» C is surjective;
2. rg,cs)-(C,B)-S provided that (a) every homomorphisi@, B)-RTop((R,C, 1),
(|IE],C 5)) g E has anre R such tha$(g, ) = g(r) for every r{C, B)-morphism
(RC.1) 2% (|EJ.C.8) () T= ({(F.0) (@)[(1.0) € (C.B)-RTOp((RC.1),
(|[E||,C,8)),a € 8}); (c) the homomorphisreH(RC.D Whireo)”, ¢ js injective;
3. Ig,c5)-(C,B)-sobemrovided that it is [g ¢ 5)-(C,B)-To and g ¢ 5)-(C, B)-So.
Definition 22. A LoE-object E is called f ¢ 5)-(C, B)-spatialprovided that (a) every

distinct ,e € E have either a homomorphism% E with ¢(e1) # §(e2), orace

€ with (€)°°(c) # (1)°°(c); (b) every r{C,B)-morphism(E(E.E),C¥l,t) 2}

(|IE||,C,8) has an e< E such that fy) = Y(e) for everyy € E(E,E), and¢ = 1.
The preliminaries in hand, the desired characterizatistrégghtforward.

Lemma 11. A spaceR,C,1) is I g ¢ 5)-(C, B)-sober iffngr is an isomorphism. AoE-
object E is {g ¢ 5)-(C, B)-spatial iffeg is an isomorphism.

Corollary 5. (C,B)-RTop is the full subcategor{C, B)-(E,C,8)RSobof (C,B)-RTop

comprising precisely theg ¢ 5)-(C, B)-sober spaces, whereasE is the full subcat-
egory(C,B)-(E,C,8)RSpatof LoE comprising precisely thes ¢ 5)-(C, B)-spatial lo-
calic algebras.

We are now ready to state the main result of this subsection.

Theorem 2. If requirement§REQ) hold, then there exists the equivalerigeg) : H
G: (C,B)-(E,C,0)RSpat— (C,B)-(E,C,0)RSoh
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4.3 Examples

Below we include the representation theorem(s) of H. Reggresp. M. Stone) for
distributive lattices (resp. bounded distributive la#icand Boolean algebras) into our
variable- (resp. fixed-) basis setting.

Priestley representation theorem.The cabp-theor® of Example 1 provides the cate-
gory (S, Frm)-Top isomorphic (and thus, shortened) to the categogyof crisp topo-
logical spaces. Consider the categBRosTopof Example 4 and leE = Lat, E = 2.
Equip (]2],2) with the discrete topology” and get the continuous algel(i&, C,) =
(2,2,1%). Satisfaction of REQ) (Example 12) provides the adjunctién,s) : H 4 G :
LoLat — BPosTop where (1)BPosTopi> LoLat, H(X) = (PCOU(X),n,U), Hf =
(f)°P with PCOU(X) the proper (non-empty) clopen up-setsXaf (2) LoLat S,
BPosTop G(E) = (PF(E),C,1), G = (¢°P) with PF(E) the prime filters oE (in-
cluding @, E) andt = ({pe|e € E}U {pPe|€ € E}), whereF € pe (resp.F € pe) iff
ecF (resp.e¢F); ) E N HG(E), ee(e) = pe; (4) X LN GH(X), nx(x) ={U €
PCOU(X)|x € U}. The obtained framework is that of H. Priestley, exceptfiertarget
categoriesLat (resp.BPosTop in place ofDLat (distributive lattices) (res@BPrSpc
(bounded Priestley spaces)). Theorem 2 gives rise to thieagnce(,€) : H 4 G:
(2,2,1%)Spat— (2,2,19)Soh

Lemma 12. A lattice E is r<2,2,Td)-spatiaI iff it is distributive. A bounded potopological
space X is (rzﬁz’rd)-sober iff it is a bounded Priestley space.

Proof. As an example, prove the first statement. Necessity: fm(ﬁ}d)-spatial lattice

E, E = HG(E) = PCOU(PF(E)), the latter lattice being distributive as a sublattice
of P(PF(E)). Sufficiency: use the Priestley duality [4] to get that Hheco-universal
arroweg is an isomorphism and then apply Lemma 11. a

Theorem 3 (Priestley duality). There exists the equivalenceDLat ~ BPrSpc.

Stone representation theorems.Enrich Top in Setinstead ofBPos and letE =
Frm, E = 2. Equip|2| with the Sierpinski topology® and get the continuous alge-
bra(E,8) = (2,1%). Satisfaction of R), (€) gives the adjoint situatiofn,&) : H 4G
Loc — Top, where (1)Top 2 Loc, H(X) = (1,n,U), Hf = (f<)°P; (2) Loc < Top,
G(E) = (CPF(E),C,1), GO = (¢°P)< with CPF(E) the completely prime filters dE
andt = {pe|e c E}; (3) E 5 HG(E), £e(€) = pe; (4) X = GH(X), nx(x) = {U €
Tx | X € U}. The setting is precisely that of P. T. Johnstone, providiregequivalence
(M,€) :HA4G: (2,1%)Spat— (2,1%)Sobby Theorem 1.

Lemma 13 (P. T. Johnstone). LoBDLat(bounded distributive lattices) is isomorphic
to the subcategorohLoc of (2,1%)Spatof coherent locales and coherent maps.

Theorem 4 (Stone duality 1). With CohSpc(coherent spaces) being the preimage of
CohLoc underH, there exists the equivalentceBDLat ~ CohSpc
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SinceBAlg is a subcategory dDLat, the restriction of the above duality gives

Theorem 5 (Stone duality Il). There exists the equivalenteBAlg ~ StSpc(Stone
spaces).

Notice that since the fram2 is not a singleton, Example 12 does not allow the
extension of the machinery to the variable-basis case.

5 Conclusion

Motivated by the new categorically-algebraic framewornkdoing topology, we intro-
duced a variable-basis variety-based generalizationetlhssical theory of natural
dualities, replacing the standard crisp topology with theety-based one. The advan-
tages of the new developments in the fixed-basis case haadglbeen discussed in
[38, 39]. The shift to variable-basis not only extends theotly, but also brings several
new problems, some of which are discussed below.

As was already mentioned, our variable-basis approachssfeom the idea of
S. E. Rodabaugh [28, 29], but is essentially different frariie new setting is strictly
richer than its poslat counterpart, truncated to isomarpkibetween the underlying lat-
tices of the spaces (a rather heavy restriction, cuttingheffoenefit of variable-basis).
On the other hand, in our framework the fixed-basis case ia patticular instance of
the variable-basis case (see the examples of the previotisrge and that is the most
crucial distinction. Meta-mathematically restated, ttendard definition of the fixed-
basis approach of the fuzzy community is too weak to acconateotthe demands of
variety-based dualities. The next problem then springsnmind at once.

Problem 1. What will be the extension of the notion of fixed-basis to brihin line
with the variable-basis concept of categorically-algehdaalities?

Briefly speaking, allowing something apart from isomorpigsn the variable-basis
case, one should allow other morphisms than identity in tteglfbasis one.

To continue the topic of the previous paragraph, recalltoatvariety-based catalg
setting disguises the notion of basis for topology in anralestcategoryX. With the
idea in mind, the second (and more challenging) problem fslksvs.

Problem 2. What will be the generalization of the theory of natural died to the
non-variety-based categorically-algebraic framework?

The recent paper of D. Hofmann and I. Stubbe [16] on “Stonditglifor topolog-
ical theories (in the monadic sense of the authors) could sbme light on the topic.

The classical natural duality theory relies on the notiontopological) quasi-
variety generated by algebraic (resp. topological) sidecbfzophrenic object. Variety-
based framework replaces quasi-varieties with the cosaggobriety and spatiality.
The remarks after Definitions 14, 16, however, show that #vemodified approach is
potentially expressible in the language of varieties. Hs¢problem is then immediate.
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Problem 3. Can one define the categori@s-(C,8)RSob (resp.(C,B)-(E,C,86)RSoh)
andQg-(C,0)RSpat (resp.(C,B)-(E,C,8)RSpat) as particular “(quasi-)varieties” (the
meaning is to clarify) generated i6jyC||,d) (resp.(||E|,C,8)) andC (resp.(E,C))?

The answer can be found in a close inspection ofttmwlogical quasi-varieties
of [5].
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We start by considering relevant families of utility furais (in a scalar variable),
characterized in terms @fbsolute local measure of risk aversi@nd families of uni-
variate survival functions, possessing different prapsfageing

In a first part of the talk we then discuss several relatiorts amalogies between
such two types of families.

The economic-probabilistic meaning of such relations aldlb be analyzed.

Within our discussion we will, in particular, make use of tition of semi-copula
and of the representation, in terms of “dependence” pragsedf appropriate semi-
copulas, of notions of ageing.

In the second part of the talk we shall point out some specifieets related with
the extension of the above study to the analysis of multanitility functions.

The above developments are related with topics treateckineterences listed be-
low.
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Dedication: This paper is devoted to the Igor Vajda, my gedteague, who died
unexpectedly in May 2010.

What is the optimal statistical decision? And how it is rethto the statistical in-
formation theory?

By trying to answer these difficult questions, we will illtste the necessity of un-
derstanding of structure of information divergences. Tigy be understand in particu-
lar through deconvolutions, leading to an optimal statidtinference. We will illustrate
deconvolution of information divergence in the expondrigéimily, which will gave us
an optimal tests (optimal in the sense of Bahadur (see [1, 2])

0.1 Deconvolution of information divergence and optimal teting

Consider a statistical model with independent observatiogs, ..., yn Which are dis-
tributed according to gamma densities

vi—1
f(yil9) = { W(9)" iy X V(@)m). for yi > 0, "
0, fory; <O0.

Hered := (91,...,9p) is vector of unknown scale parameters, which are the pa-
rameters of interest and= (vi,...,vN) is the vector of known shape parameters. The
parameter spad® is an open subset &P, y, € C?(©) and matrix of first order deriva-
tives of the mapping:= (yi, ..., yn) has full rank or®.

This model is motivated e.g. by a situation when we obseme thtervals between
(N+ 1) succesive random events in a Poisson process. In this eapatiimeterg (%)
are equal to the (usually parametrized) intengignd the shape parameters are equal
identically 1.

Model (1) is a regular exponential family (see [3]), the suifint statistics for the
canonical parametere I' has the fornt(y) = —y andl" = {(y1,...,\n),¥i > 0; i =
1,...,N}. The "covering” property

{ty):yeY} C{Et(y):yer}
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(see [4]) together with the relation

_ 0k(Y)
BRI =5,
wherek(y) = NIn(I'(v)) —vy N In(yi), enables us to associate with each valug(pf
avalueyy € I which satisfies

P sy =) @
It follows from (16) thatyy is the MLE of the canonical parametgm the family (1).
By the use of (16) we can define thalivergence of the observed vectoin the sense
of [4]:

IN(Y;Y) = 1(%:V)-
Herel (y*,y) is the Kullback-Leibler divergence between the paramgteasdy. Thel -
divergence has nice geometrical properties, let us meatityrthe Pythagorean relation

H(Y.y) = 1.y + 1Y Y)

for everyy,y,y* € int(I") such thatEy(t) — Ey(t))T (y* —y) = 0. Hereint(I") denotes
the interior of the sef. The Pythagorean relation can be used for construction of the
MLE density in regular exponential family, see [5] for détai

Thel-divergence has nice statistical consequences. Let usdeortke likelihood
ratio (LR) A1 of the test of the hypothesis (2) and the BRof the test of the homo-
geneity hypothesislp : y1 = ... = yn in the family (1). Then we have the following
interesting relation for every vector of canonical paraaretyo, ..,Yo) € I :

IN(Y; (Y0,--,Y0)) = = INA1+ (= INAzlyr = ... = n). 3)
Here the variables- InA; and—InAz|y1 = ... = n, i.e. the—InA2 under the condition
Ho:y1 = ... = YN, are independent. The deconvolution (3)¢fis the consequence of

the Theorem 4 in [6]. Both tests are asymptotically optimathe Bahadur sense ([7,
7).

0.2 Generally on relation between thep-divergences and statistical information

After demonstrating the importance of studying decompmsit of | -divergences, we
will discuss relation betweeh-divergence® (P, Q) and statistical information:(P,
Q) = In(P,Q) (differencesB;; — Bn(P, Q) between the prior and posterior Bayes risks).
This relationship has been established by [9]).

We discuss generalization of this relationship toahernativep-divergencey(Py,
P, ...,Py) and generadtatistical informationsr, ,,... w, ,(P1, P2, ..., Pn) of [10, 11].

Here thealternativeg-divergenceDy(P1, P>, ..., P,) means the integral

dP
/(P(pl, P2,..., pn)dp for pi:d—u', u> {P,P2,....Pa} (4)
X
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where@: [0,00)" — (—o0,00] is convex, continuous and homogeneous in the sense

o(aty, aty,...,aty) = a@(ty,ty, ...,tn) foralla > 0. (5)

These@-divergences were introduced by [12]. Igor Vajda extenddbénition of ¢-
divergences by:

(i) admitting in (4) convex function@: [0,00)" — (—oo, 0] which are finite or(0, )"
and possibly infinite at the boundary,

(i) replacing the continuity by the lower semicontinuity, and
(iii) assuming strict convexity &ty to,...,t) = (1,1,...,1) with ¢(1,...,1) = 0.

The last assumption guaratnees tgtP., P, ..., Py) is nonnegative, equal zero if and
only if all probability measureBy, P, ..., P, coincide.

Thestatistical information/r, r,,... n, ,(P1,P2,...,Pn) is the difference between the
classical prior Bayes risBy, ... m,_, and the posterior Bayes risky ... m,_, (P1, P2,
...,Pn) in the statistical decision model with conditional probégpimeasures, P, ...,

Pn on an observation spacé which is equipped with @-algebra and a dominating
o-finite measureu leading to the densities considered in (4). These prolaliea-
sures are assumed to govern observations with prior pridiit, 1o, ..., T, where
T, T, ..., Tl_1 are from the open simplex

n—1 n-1
S1=3m>0,Ym<1ycR"™ andm=1-§ m.
{ 2, } 2,

Integral (4) is well defined (but possibly infinite) which kmlvs from the inequality
betweeny(t,to, ...,tn) and its support plane at the poitti, to, ...,tn) = (1,1,...,1).
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Abstract. Decision making in risk management is basically a complestesy
usually with uncertain input factors and approximate reaspprinciple. Based
on the strength of those attributes it is a reasonable wafafrand human-like
decision to group the factors or decision rules, and to usefuhzy approach
in the risk level calculation modeling. The paper points existing approaches,
and presents an additional advantage of this model-strictioe possibility to
gain the different factor-group’s impact in the system othia decision making
process, and the multilevel construction of the decisiarcess. As example a
possible crisis monitoring application is presented.

1 Introduction

Risk managementis a complex, multi-criteria and multigpaetrical system full of un-
certainties and vagueness. Considering all those condifizy set theory helps man-
age complexity and uncertainties and gives a user-friemidlyalization of the system
construction and working model.

The fuzzy-based risk management models assume that thfactsks are fuzzified
(because of their uncertainties or linguistic represamgtfurthermore the risk man-
agement and risk level calculation statements are repiesenthe form off premises
then conclusiomule forms, and the risk factor calculation or output demisjsumma-
rized output) is obtained using fuzzy approximate reagpniethods.

Considering fuzzy set theory and system theory resultse tisea further possibility
to extend the fuzzy-based risk management models with #ratachical or multilevel
construction of the decision process, grouping the riskofaoor rules. This approach
supports the possibility of gaining some risk factors’ gyewr rule subsystems, de-
pending on their importance or other significant environtedaracteristics or by lay-
ing emphasis on risk management actors’. Other possésildre the extension of the
modeling with type 2 fuzzy sets, representing the level efuhcertainties of the mem-
bership values, or using of special, problem-oriented sypieoperators in the fuzzy
decision making process.

The relationship between risk factors, risks and their equnences are represented
in different forms, but in [1] a well-structured solutionitable for the fuzzy approach
is given. A risk management system can be built up as a muétiter hierarchical sys-
tem of the risk factors (inputs), risk management actioesigon making system) and
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direction or directions for the next level of risk situatisolving algorithm. A possible
preliminary system construction of the risk managememtgipie can be given based
on this structured risk factor classification and on the, fdett some risk factor groups,
risk factors or management actions have a weighted roleeisystem operation. The
system parameters are represented with the fuzzy setshangrauped risk factors
values give intermediate result. Considering some systgmut iparameters, which de-
termine the risk factors role in the decision making systiemermediate results can be
weighted and forwarded to the next level of the reasoninggs® [2]. Actually outputs
of previous decision making level are risk factors for thiaarcon the next level of the
risk management process. Risk factors in a complex systergrauped according to
the risk relevant events or decision steps. Actions or detiseps are described by the
‘if ... then’ type rules. With the output those components frameuniein the hole
risk management system, where the items are usually gragoeniding to the princi-
ple of the time-scheduling, significance or other criteRag( 1 shows a global system
construction). Input Risk Factors (RF) grouped and assigoghe current action are
described by the Fuzzy Risk Measure Sets (FRMS), and candadhe fuzziness of
their measured or detected membership.

Risk event and actions
(if.. then rules)1

1
Risk Factorll Risk Factor 1n
{the output signal of risk action 0

213

Risk event and actions
(if.. then rules)21

Risk Factor21/1 ]

Risk Factor21/2 ]

Figure 1. The hierarchical constructed risk management system

2 Example

Crisis or disaster event monitoring provides basic infdiamafor many decisions in
today’s social life. The disaster recovery strategies efdbuntry, the financial invest-
ment plans of investors, or the level of the tourism and tiagectivities all depend on
different groups of disaster or crisis factors.

The disaster can be defined as an unforeseen event that cgaaeslamage, de-
struction and human suffering, evolved from a natural or imade event that nega-
tively affects life, property, livelihood or industry. A shster is the start of a crisis, and
often results in permanent changes to human societies¢tisgstem and environment.
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Based on the experts’ observations [3], [4], the risk fagtarhich (prejudice) predict
disaster situation can be classified in the group of natusakters and man-made dis-
asters. Furthermore, a risk management system was caestindMatlab fuzzy envi-
ronment, based on the mentioned principle, with fuzzifisl factor inputs and hierar-
chically constructed rule base system, shown in Fig. 2. Tdiear disaster factors, as
the inputs of one subsystem of the global fuzzy decision ntakystem, give outputs
for the next level of decision, where the main natural and -male disaster classes
result the total impact of this risk category.

hydro- ; o
metcoriogical|  geoptysical biological
@ disasters disasters
lisasters;

Figure 2. Hierarchically constructed decision system

This approach allows additional possibilities to handke skt of risk factors. It is
easy to add one factor to a factors-subset; the complexitiyeofule base system has
been changed only in the affected subsystem. In differexgicses, environmental situ-
ations, and so on, some of the risk groups are more impowtattté global conclusion
than others, so they can be achieved with an importancerféatoumber from the
[0,1]).

The man-made disasters have an element of human intent ligeTeze. However,
some of those events can also occur as the result of a natsaatel. The man-made
factors and disasters can be structured in a similar wayhe@satural risks, events.
One of the possible classifications of the basic man-makéatsors or disaster events
(applied in our example) is as follows:

1. Unintended events (industrial accidents, chemicalssgibllapses of industrial in-
frastructures); transport or telecommunication accisléoy air, rail, road or water
means of transport); economic crises (growth collapseghigfiation, and financial
Crisis).

2. Willful events (violence, terrorism, civil strife, ristand war).

The effects of man-made disasters as the inputs in the deamsaking process are
represented with their relative frequency, and the presro$éne related fuzzy rules are
very often represented with the membership functions: meaeely, frequently, etc.

The final traveling risk level in a country depending on bd#adters as risk factors’
groups is shown in Fig. 3.
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hurman nature

Figure 3. The final conclusion about traveling risk in a country
based on both disasters’ as risk factors’ groups
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1 Introduction

The Choquet integral is known to be among the most powerflgtio the Multicriteria
Decision Making Theory [6]. Nevertheless, the dynamic aspéthe fuzzy measure-
based modelling has been very scarcely if at all researchttbtpresent moment. To
the author’s best knowledge, the only papers discussingrtitdem of the Choquet in-
tegral maximization are [3], and to some extent [2]. Inugily, the motivation for such
problems can be given in the following way. Assume one is gadéan resource distri-
bution planning for some complex system. In applicationshsas risk management,
portfolio optimization, research planning, informatiatarity, etc, the system can usu-
ally be represented as a hierarchical structure. The lttevs to depict a taxonomy of
the problem subfactors(criteria) and to analyse logic&dibetween them. The relative
weights of criteria and their interactions can be modellgdneans of a capacity with
aggregation process relying on the Choquet integral. Nothéevalues of the criteria
(X1,...,%n) to be not just static constants but functidixg = f1(z1),...,% = fn(zn))
dependant on some variables and possibly non-linear. Magitbles are used to con-
trol the system parameters, e.g. the amount of hours spaeisearch in some area or
perhaps the volume of the investment made to improve sonteoparcomplex sys-
tem. We would like to obtain the best strategy for resoursg&ibution under a budget
constraint.

The paper is focused on three main points. These are simgtet optimization,
propagation of optimal values along the hierarchy and agpatentification coupled
with robust solution search. We now go through them in detail

2 Single-branch Optimization

We look at the following problem.
Cv(f1(z2),..., fa(zn)) T max

2 =8B
-

WhereC, is the Choquet integral w.r.t. capacityof evaluating functiorF : X — R,
which valuesx, = fi(z) are concave and smooth functions (for justification in appli
cations see e.g. [4]). We analyse the influence of the cappwiperties on the prob-
lem, starting by extending the Lovasz convexity theorent¢7a non-linear case. For
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k-monotone capacityk( 2) the objective function is shown to be concave (though non-
differentiable), and therefore, might be easily optimizddwever, the general case re-
quires some further elaboration. We first prove the problemplexity to ensure that its
special structure does not lead to a polynomial time algorifThis is done by reducing
to quadratic maximization on a non-convex set, which is kmtmbe NP-hard [8].

We then introduce an algorithm which allows to deduce a slsbdisjunctive de-
composition of an arbitrary capacity to a set of totally mmme measures(i.e. belief
functions). The original Choquet integral is represented a

/de: max /FdBeI
v=maxBej};

whereBel are totally monotone and the number of disjuncts is minifiae result is
achieved by starting from the totally monotone core, inicet in [1], and further elab-
oration on bijective correspondences between sets of nadxinains, elements of2
whereX is the set of criteria, and partitions of the feasible areg#éx. The decompo-
sition allows to obtain the global optimum by solving sevexncave problems, while
the minimality ensures that the algorithm is optimal. Weogtsopose a local search
algorithm based on convexification of the objective funetilb is known that the Cho-
guetintegral w.r.t. any capacity can be represented byferdifce of two integrals with
respect to totally monotone measures [3]

/de:/de*—/de*

In the optimization context, the class of functions, allogisuch decomposition is
called D.C. (difference of convex). Convexification is thgrformed by substituting
J Fdv~ with its linear approximation.

3 Optimal Value Propagation

We next analyse the propagation of optimal values along eatulkical structure. In
the decision making context such models are known by the mdmeltistep Choquet
integrals [9]. Capacity properties are once again empldgethe analysis of solution
stability and behaviour of the optimal value and optimalnpdunctions. The main
research object is the following parametric function

Ci(z,B) = mzaxCV(z), ZZ: B

It is shown that k-monotone& (> 2) capacity produces a concave optimal value func-
tion and, therefore, the whole tree can be represented agla sioncave optimization
problem. In the general case, the optimal function is shaaretquasi-concave, hence
the methods employed for single-branch optimization artedirectly applicable. We
propose some approximation approaches to perform multstgpagation and discuss
how the disjunctive decomposition obtained earlier canrbpleyed.
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4 Capacity Identification and Robust Optimization

The majority of known up-to-date capacity identificationthals [5] employ some
sort of an approximation scheme, requiring the decisioner(@8) to evaluate sev-
eral learning samples. Unfortunately, this is not alwayssgde in some modelling
applications among listed above. Another aspect of thelenolis imprecision in the
assessment of the criteria weights and their interactianacier. These factors require
for some robust mechanisms to be introduced in the model.n&yse the following
problem
mvax(C* (v) —C(v,z)) i} n;jn

st. ved

Y2 -8

z € [0;B]
whereC*(v) = mzaxQ,(z) and U is the feasible set defined by the DM preferences on

criteria weights and interaction. In other words, our pweois to find the solution which
minimizes the maximum possible deviation from optimum fibcapacities compliant
with the information provided by the DM. Known methods, sashthe Shapley value
and the interaction index [5] are modified to account for pti& errors in the DM
evaluations. This is done by surrounding the nominal vatdeained during the initial
evaluation with some confidence intervals.

We again discern between the convex and non-convex caseanale the de-
pendence between the capacity properties, solution yadaild computability. Due to
linearity of the Choquet integral in measure, it becomesipdes to reduce the semi-
infinite problem above to a finite one. However, the dimeralibnof the problem still
does not allow to obtain a precise solution. We thereforeqed with the approxima-
tion of the upper bound. Notice that for somgn andvmax , such thatmin <V < Vmax
for all v € U the following holds for a fixeds > 0

The upper bound can then be obtained by solving
C*(Vmax) —C(Vmin, %) { n;(in

s.t. Vmax,\)min S u

yu-8

z € [0;B]

wherevmax andvmin are not generally unique but belong to some Pareto-optietal s
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1 Introduction

Medical decision support aims at facilitating the procdsteeiding on a patient’s treat-
ment on the basis of the available information. In partigiftam electronically docu-
mented signs and symptoms of a patient, possibly presezaishis are expected to be
determined in an automatic way.

In this contribution, we take into account a characterifgture of the decision-
making process in medicine that suggests the usage of rcertai-classical logics.
Namely, arguments supporting a conjecture are typicaltyneated as of proving char-
acter, but just as an indication for a certain possibilitg. & particular consequence,
arguments in favour of a conjecture and arguments againshjgature are collected
independently. A medical decision support system shoufddhnot just provide a list
of diseases whose presence is possible. It should rathemnirthat certain facts indi-
cate the presence and others indicate the absence of aadist@agover, contradiction
should be allowed rather than result in an error message.

We consider in the sequel a couple of logics that emulatekihi$ of reasoning.
We stay at the propositional level and, in contrast to moen&disms to deal with
uncertainty [2], we address qualitative aspects only.

Among the considered logics, one is apparently new, the oties are well-known.
In case of the latter, the achievement s that they are viéwata common perspective.
Moreover, there have been heated debates around the quiéstistain non-classical
logics are meaningful. In the present context, Belnap's-f@lued logic, among others,
turns up in a natural way and on well-defined grounds.

2 Reasoning about not directly testable facts

Let us once more consider the example of medical decisiopastipNVe deal on the
one hand with a patient’s signs and symptoms; they représeatailable information.
On the other hand, we deal with the question if a patient hastaio disease; we may
assume that the presence of the disease can in general noebitydested. Indeed,
decision support would otherwise not really make senses Ttiavailable facts are in
general not sufficient to decide the question under coreasiider.

According to this observation our logics are designed. Fdigmnwe start as usual
with a set of worlds. The worlds are meant to vary over thelalold facts; a single world
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is meant to a represent a possible situation, charactdristte detectable information.
Properties that are not directly testable, in whose clatifim we might anyhow be
interested do themselves not appear in our model. In facdovet model a property by
the set of worlds in which it holds. We rather associate wéttheproperty those worlds
in which the available information is sufficient to decid@dsitively or negatively, or

in which the available information at least suggests itgtar falsity.

Thus a world represents information that may give an indioatf a property. This
does not imply that the property in question actually hotdshis world; if the property
holds or not is left open. It is understood that the propéssli can in general not be re-
constructed from the available information, not even péytiWe deal with arguments
in favour of or against some conjecture, not more. We undedsbur logics as a formal
tool to interchange arguments pro and contra.

With any property we associate a set of worlds, and this seges those worlds
that reflect testable facts speaking in favour of the prgpéitis means that the set
associated with a property and the set associated with gfatiom are not necessarily
set-theoretic complements. The relationship between fa¢avour of and facts against
a conjecture is not fixed. We will review five possibilitiesmthis relationship can look
like and indicate the corresponding logics.

3 The general framework

The logics have the following specifications in common. Taeguage comprises a
countable set1,do,... of variables and the constantsand L. Lattice formulas or
formulasfor short, are built up by means of the connectives/, and—. An implica-
tional formulg orimplicationfor short, is a paio, 3 of lattice formulas, writterm — f3.
On the semantical side, we have a (¥t B) of a non-empty s&¥/, whose elements
are calledworlds and a subseB of PW containingd andW and closed unden, U.
Formulas are modelled i, the constants being assigridndW, respectively, and,,
V being interpreted by, U, respectively. Ifv is an evaluation of the formulas, then an
implicationa — 3 is satisfied ifv(a) C v(B).
The five logics below differ in their interpretation ef In addition,W might be
endowed with additional structure.

4 The negation interpreted in a constructive way

We have to determine the way the negation is handled in oicdo@onsider a set of
worldsW; let ¢ be a variable assigned the set of wondg). We understand as rep-
resenting a yes-no property and we understgg as containing the worlds reflecting
those facts speaking in favour ¢f Furthermore, we understangh as representing
the negated propertly. We have to specify which subset) is assigned. In fact, the
question how the interpretations of a propetand its negatiom are interrelated is
open.

Let us first consider the possibility that—¢) depends ov(¢) in a constructive
way; this means that —¢) is derivable fromv(¢) on the basis of the structure of the set
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of worlds. A reasonable principle seems to be tifath) contains the worlds that speak
againsth because they are, in a sense to be made precise, separated| fnarlds that
speak in favour ob.

The simplest way to construet—¢) fromv(¢) is to set

V(=) = v(9)°.

To use the set-theoretic complement amounts to sayptbhanh be told to hold or not to
hold in all worlds. The result is classical propositionailg restricted to (what we call)
implications.

This procedure might be reasonabl®\fis finite; in general we guess that classical
logic is in the present context of little interest.

If W represents a continuum of possibilities, a sharp boundetyéd®env(¢) and
v(—¢) is usually inappropriate. In such cases, we should regoaeworlds speaking
in favour of¢ and againsp are separated from each other by some form of neighbour-
hood.

A modest approach to realise this idea is to enfféwvith a topology and to call
two worlds separated if they possess disjoint open neigtifomals. We request that
each formula is interpreted by an open set and that a worldratgal by any world
speaking in favour o speaks againgt. This leads to the definition

V(=) = (V(¢)")",

whereA~ denotes the closure & C W. We are led to intuitionistic logic, endowed
with its residual negation as an extra connective and thetnicted to implications. An
axiomatisation can be found in [6].

A more application-friendly procedure is to enddWwith a metric and call two
worlds separated if their distance is larger than or equaldiven threshold > 0. We
note that our setting has then some resemblance with tliegseftWilliamson’s Logic
of Clarity [8]. Proceeding analogously as before, we define

V(=) = (Us(v(9))",

whereUs(A) is the opers-neighbourhood of C W. For an axiomatisation, the key fact
to be used is that our models are distributive lattices erdomith a lower-semicomple-
ment function- such that < ——a.

5 The negation interpreted in an independent way

Alternatively, we may want the set—¢) to contain those worlds that actually speak
againstd. In this case the situation is symmetric with respeap @nd—¢ and we are
required to let the interpretations ¢fand—¢ “float freely”, that is, we do not assume
thatv(—0) is derivable fromv(¢) inside (W, B).

In this case we may reasonably assume that both the intatipreof a property
and the interpretation of its negation determine this prigpeniquely. Consequently,
we can assume thatd) andv(—¢) determine each other mutually, so that there is an
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order-reversing, involutive operation mappw(@) to v(—¢). We are led to De Morgan
algebras as associated to our calculi.

There are now two ways to go. We may first assume that the irsftiomthat a world
provides with respect to an unknown falcis never contradictory: either it speaks in
favour of¢ or againsth or neither of these two possibilities applies. The intetgirens
of ¢ and—¢ should then have an empty intersection. The resulting legiteene’s
three-valued logic.

Second, we may allow that facts speak both in favour of anéhaga property.
Only in this case our initial requirement to allow contrains is fulfilled; the setting
is actually in best accordance with our introductory examgi. [1]. The resulting logic
is Belnap’s four-valued logic [3].

6 Gradedness

We have considered the situation that facts either speafviouf of some unknown
property or against it. Needless to say, in applicationf statements typically turn up
in graded form. In medicine we might want to specify the degoewhich we find the
presence of a disease plausible.

The last three logics considered above allow generalisstio this respect. The
logic with fixed distance betwednand—¢ can be modified to a logic with a continuous
transition. As an appropriate formal setting, the Logic gfpfoximate Reasoning [4]
may, e.g., serve. In case of the logics where propertiedeaiidtegations are interpreted
independently, we may replace the crisp sets modeflingd—¢ by fuzzy sets, whose
support is optionally requested not to overlap. For apgreadn this direction see [5,
7].
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