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Since their inception in 1979, the Linz Seminars on FuzzyT®ebry have
emphasized the development of mathematical aspects of &ets by bring-
ing together researchers in fuzzy sets and establishedematitians whose
work outside of fuzzy set theory can provide directions fottier research. The
philosophy of the seminar has always been to keep it detidlgramall and
intimate so that informal critical discussions remain calnfThere are no paral-
lel sessions and during the week there are several rounestabdiscuss open
problems and promising directions for further work.

LINZ 2012 will be the 33rd seminar carrying on this traditiand is devoted
to the theme “Enriched Category Theory and Related Topitsé goal of the
seminar is to present and to discuss recent advances imetdrgategory theory
and its various applications in pure and applied mathematic

A large number of highly interesting contributions were msitted for pre-
sentation at LINZ 2012. This volume contains the abstratthie impressive
collection. The regular contributions are complementedday invited talks
which are intended to give new ideas and impulses from ceitsid traditional
Linz Seminar community.
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On the nature of correspondence between
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Michael Bukatirt, Ralph Koppermah and Steve Matthews

1 Nokia Corporation
Boston, Massachusetts, USA
bukatin@cs.brandeis.edu
2 Department of Mathematics
City College, City University of New York, New York, USA
rdkcc@ccny. cuny.edu
3 Department of Computer Science
University of Warwick, Coventry, UK
Steve.Matthews@warwick.ac.uk

1 Introduction

The correspondence between partial metrics and fuzzy iigealvas discovered in
2006 [1]. It was immediately apparent that there was a dubltween metric and
logical viewpoints, and so the question about the natureoofespondence between
partial metrics and fuzzy equalities arose.

Initially, the authors of [1] suggested that we should tddkat equivalence between
partial metrics and fuzzy equalities up to the choice of diwhtion. This suggestion
was based on the notion that the duality between metric ayicdbviewpoints belonged
to the metalevel and was a part of the mindset of the pracét®in the respective fields,
but did not affect the mathematical structures involved.réfer to this suggestion as
theequivalence approach

The equivalence approach remains a legitimate way of vigttiis correspondence.
In particular, while there is a varierty of possible choicésllowed spaces and mor-
phisms, in all cases studied so far there are (covarianmjasphisms of the correspond-
ing categories of partial metric spaces and spaces equipileduzzy equalities. The
induced specialization orders on a partial metric spacethedorresponding space
equipped with a fuzzy equality also coincide. So, in thissgetihere seems to be no
duality between partial metrics and fuzzy equalities thelires.

Later Mustafa Demirci suggested that the duality betweetniongnd logical view-
points should nevertheless be brought into formalizatfahis correspondence by ex-
plictly requiring that logical values and distances wepresented by dual structures.
We refer to this suggestion as teality approach.

It turns out that the duality approach to understandingghigation is preferrable.
It allows to formally express a larger chunk of existing imfml mathematical practice,
and it allows to do so without explicitly considering the malevel. Even more impor-
tantly, being closer to the respective intuitions of thecfitiners in the related fields
the duality approach makes it easier to develop application



Another aspect of the duality between logical values anthdies is that the mul-
tiplicative notation is used on the logical side and the tgglinotation is used on the
metric side. This suggests that it might be possible to bsmge kind ofexponentia-
tion into play as well, potentially resulting in a more compledtorrespondence and,
perhaps, a genuine duality between partial metrics and/fegmalities. To the best of
our knowledge, this has not been done so far and should bédeoed an open prob-
lem. (It should be noted here that it is not uncommon to stétt &metricd(x,y), to
express the degree of similarity oaindy as f (x,y) = e 4*¥), and to call the resulting
f(x,y) a fuzzy metric with the appropriate transformation of thees of a metric.)

2 Definitions

We provide informal sketches of definitions of quantalesedl partial metrics [3] and
quantale-valued sets (sets equipped with quantale-vélzeg equalities) [2].

2.1 Quantale-valued Partial Metrics

The quantal®/ is a complete lattice with an associative and commutatiezaton-+,
distributed with respect to the arbitrary infima. The unéreknt is the bottom element
0. The right adjoint to the map — a+ b is defined as the map+— b—a= A{cec
Vl]a+c > b}. Certain additional conditions are imposed.

Definition 1. A V-partialpseudometric space is a set X equipped with a maj p
X —V (partial pseudometric) subject to the axioms

® p(X,x) < p(x,y)
* p(xy) = p(y,x) _
* p(x,2) < p(x,y)+ (P(Y,2)— p(Y,Y))

2.2 Quantale-valued Sets

The quantaléVl is a complete lattice with an associative and commutatiezatpns,
distributed with respect to the arbitrary suprema. The elgiinent is the top element
1. The right adjoint to the map+— axb is defined as the madp— a=b=\/{ce
Vl]axcC b}. Certain additional conditions are imposed.

Definition 2. An M-valued set is a set X equipped with a mapXx X — M (fuzzy
equality) subject to the axioms

e E(x,y) C E(x,X)
b E(Xay):E(an)
o E(x,y)*(E(y,y) = E(Y,2) CE(X.2)
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3 Equivalence approach

Whenever we have a quantale in the sense of section 2.1, wegean it with a dual
order,C=>, and it becomes a quantale in the sense of section 2.2 (agdetisa in the
opposite direction).
Definex as+, a= b ash—a, 1 as 0 (and vice versa in the opposite direction).
Then partial pseudometrics and fuzzy equalities coincidseds of functions. This
justifies the equivalence approach.

4 Duality approach

However we found it convenient to press the duality appr@eactar as possible.

4.1 Partial Ultrametrics Valued in Browerian algebras

For example, consideR-sets valued in Heyting algebras. Following the duality ap-
proach, on the metric side of things we will talk about pantirametrics valued in
dual Heyting algebras, but really pressing this approadarass possible, we’ll use the
terminology "partial ultrametrics valued in Browerian aliyas”, and whef is actually
the algebra of open sets of a topological spaceve will consider partial ultrametrics
valued in the algebra of closed sets of the same space.

This helps to understand and establish the following result

4.2 Sheaves of Sets as Co-sheavesafiitrametrics and Non-expansive Maps

Consider a complete Heyting algelfdaConsider a corresponding complete Browerian
algebrao.

Then every separated pre-sheaf of sets @varan be thought of as a separated
co-pre-sheaf ofi-ultrametrics and non-expansive maps aver

To develop the necessary intuition one should first congidecase whe anda
are the algebras of, respectively, open and closed setsieématppological space.

4.3 Partial Metrics into Non-negative Reals

In the logical situations (arising in domains for denotatibsemantics, and, in general,
in connection with the specialization order on the spacestadces) we typically have
to flip the ray of non-negative reals, making O the top element

If we press the duality approach as far as possible, thedbgmunter-part of the
partial metrics into non-negative reals ought tofbezy equalities valued in non-
positive reals So instead of flipping the ray of non-negative reals we i@pitwith the
symmetric ray of non-positive reals.

Partial ultrametrics correspond to idempotent logic (Uguto the ordinary intu-
itionistic logic). Partial metrics should typically cosgond to linear logic, and we think
about linear logic as the resource-sensitive logic. Sopfttee linear logic point of view,
it is natural to think about the weight (self-distance) ofed@ment as the work which
still needs to be done to make it fully defined. This is the wirbe done, something
owed, hence negative.

11



4.4 Intuition Related to Relaxed Metrics

Relaxed metrics typically mafx, y) into an interval numbelt (x,y),u(x,y)], whereu is
usually a partial metric, arlds usually a symmetric function, such thét,y) < u(x,y).

Functionu yields an upper bound for the inequality between “true, ulydey x
andy”; essentially, k andy differ no more thau(x,y)”, while | yields a lower bound
for that, essentially,X andy differ at least byl (x,y)". There is an intimate relationship
betweerl and negative information, and also betwéemd tolerances.

From the earlier logical considerations of relaxed metriesknow thatu dualizes,
butl does not. This means that on the logical slddyecames negative (non-positive,
actually), but. remains non-negative.

So, whileU represents a work still owed (a work to estimate distancehetctu-
ally), and hence negative,represents a work done, and hence positive (on the logical
side). Interestingly enough, the conditit(x,y) < u(x,y) on the metric side becomes
L(x,y) +U(x,y) <0 on the logical side.

If the distance between elementsandy, is precesely defined (often the case for
maximal elementg andy), thenl(x,y) = u(x,y), or equivalentlyL(x,y) + U (x,y) = 0,
expressing the fact that no further computations are owed.

In general the amount which expresses debt here Id oY), butL(x,y)+U (x,y) =
I(x,y) —u(x,y). (Note that (x,x) is always 0, so the self-distance is always fully owed.)

5 Conclusion

The correspondence between partial metrics and fuzzy itiqaalllows for the transfer
of results and methods between these field, and helps indarirg non-trivial inter-
play between metric and logical situations.

There is a long list of situations where this correspondaiceild be useful. We
only name a few of them here.

Itis particularly importantto study metric counterpartti® logical research gener-
alizing the fuzzy equalities to the non-commutative casktarcategories, in particular
results for sets valued in non-commutative quantales glahd Kubiak) and results
for sets valued in Grothendieck topologies (Higgs).

Weighted quasi-metrics are a remarkably effective insanihon the metric side,
and their logical counterparts would probably be as useftiha global quantale-valued
sets which are the logical counterparts of weighted metrics
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A Stone-type adjunction for fixed-basis fuzzy topological
spaces in abstract categories and its applications

Mustafa Demirci
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Abstract. In this study, fixed-basis fuzzy topological spaces are tdated on
the basis of a certain object of an abstract category, andree8ype adjunction
for them is established. Applications and consequencedsioatijunction is dis-
cussed. As its particular consequence, itis shown thagtiegory oB-categories
(and so the category of quantale preordered sets) is dudjiinato the category
of base spaces.

1 Introduction and motivation

Since the inception of the fuzzy topological spaces (cdaledattice-valued topological
spaces or the many valued topological spaces in more rez@ninblogy), their truth
value structures (or their bases in the terminology of [8 2% 13]) have been extensively
studied in the literature. The selection of bases variesn frathor to author and from pa-
per to paper. Completely distributive complete latticeghwirder-reversing involutions
[16], semiframes [11], frames [6], £imonoids [10], GL-monoids with square roots
[7], complete groupoids [5], complete quasi-monoidaidat [8, 12], semi-quantales
[2,13] and algebras in varieties [14] are known examplesiohdases. The diversity
of bases naturally brings the question of how the notion efdfikasis fuzzy topological
space can be defined on the basis of an oljesft an abstract categoi®@. Although

a similar categorical question is also valid for other apgtees to the notion of fuzzy
topological spaces such as variable-basis fuzzy topabgjaces [11-13] and general-
ized lattice-valued topological spaces [2], we focus ory ¢iné fixed-basis case in this
study. Apart from fuzzy topologies, Stone-type adjundiéorm an important theme
of the order-theory (see [3] and the references thereinodgrothers, the adjunction
between the categoiyoc of locales and the categomop of topological spaces is a
well-known example of these adjunctions. The studies oné&tgpe adjunctions give
rise to a fundamental question: Is it possible to extend thenetion betweeh.oc and
Top to an adjunction between an abstract categdgnd a category of spaces in some
generalized sense? This question is tantamount to the fatiou of Stone-type ad-
junctions for abstract categories. Its solution relieshenfixed-basis fuzzy topological
spaces asked in the former question. The main aim of thig/dtutb introduce the
notion of C-M-L-space as a categorical generalization of fixed-basis ftomylogical
space being an answer to the former question, and is to cehstdual adjunction be-
tweenC and the category df-M-L-spaces providing an answer to the latter question.

13



2 C-M-L-spaces and their dual adjunction with C

Let the categorfC have products, and I/ be a class of monomorphisms@ Fur-
thermore, let us fix £-objectL.

Definition 1. For a set X, we call the pai(X,r m LX) a C-M-L-space, and - L
a C-2-L-topology on X ifft > LX is an M -morphism.

Proposition 1. Each function f. X — Y determines a uniqu@-morphism f : LY —
LX (called backwardC-L-power operator of f) such thato f~ = 1 (x forallx € X.

Definition 2. GivenC-M—L-spaces(X,r s LX) and (Y,v i LY), afunction f: X —
Y isC-M-L-continuous iff there exists@-morphism § : v — Tt filling out the following
commuting diagram:
LY oy X
my 1 T m
r
v 5 1

C-M-L-spaces an@-H-L-continuous maps constitute a category that we denote
by C-a-L-SPC. By supplying examples, it will be justified th@: M -L-SPCis a cat-
egorical unification of many familiar categories of fixedstssfuzzy topological spaces.
As the central result of this study, we will establish a catezal generalization of the
adjunction betweehoc andTop in the following manner:

Theorem 1. For £ C Mor (C) and M C Mon(C), let C have(E, M )-factorizations
and the uniquéZ, M )-diagonalization property in the sense of [1]. Thénrs dually
adjoint toC--L-SPC.

Referring to the unit and co-unit of the adjuncti6GAP 4 C-M-L-SPC, we define
L-spatialC-objects and.-soberC-M -L-spaces, and then point out in this study that the
restriction of the adjunction in Theorem 1 to the full sulecatry of C of all L-spatial
objects and the full subcategory 6F-L-SPC of all L-sober objects gives a dual
equivalence between these subcategories. The adjur€tidn C-M-L-SPC covers
many known and new dual adjunctions between various kindsdered-structures and
various kinds of generalized topological spaces. Becaligeotical purposes, we pay
a special attention to the explicit determinatiorf\/-L-SPCfor a concrete category
C. In particular, it will be proven in this talk to be an appliican of Theorem 1 that the
categoryCat(B) of B-categories [9, 15] (and so the categpr®-Setof pre-Q-sets [9])
is dually adjoint to the categoS of base spaces [4].
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This work is motivated in part by a question arising from prgming: if bitstream
X corresponds to bitstreaynto some degrea, and if bitstrearny satisfies predicata
to some degre@, then would it not be appropriate to model the possibilitgtthit-
streamx satisfies predicata to at least some degree related to batland 3? The
current multi-valued literature on topological and othgstems, e.g., [1, 2,4,5, 9, 10],
ultimately rooted from [11], does not address this questdmtions from enriched cat-
egories help us address this question and its consequences.

An enriched category [7] over a monoidal categoiyM, ®,1,a, A, p) [8] is a class
of objects with the following data (C1, C2, C3) subject to folowing axioms (D1,
D2, D3), where in the latter the last applied compositioresfaom % and the other
compositions come from (C3):

ClVabe (C,3!C(ab) e ]M\ (existence of hom-objegts

C2 Vae C, Jida: | — C(a,a) (identitieg.

C3 Va,b,ce C, 3 ogpc: C(b,c)® C(a,b) — C(a,c) (composition of hom-objedts
D1 Va,b,c,d € C,

(Oabd) o (Obcd® 1) = (Oacd) o (1® oapc) © 0.

D2 Va,be C,
A = (oapp) o (Idp®1).
D3 Va,be C,

p = (Oaab) o (1®ida)-
It is also said that” is an/ -enriched category
Itis well-known that a meet semilattite(a poset closed under finite meets), taken
as a preordered category, is a (strict) monoidal categompinh ® is the binary meet,

is the top element, and the associatorand the unitord, p are all identities. Further,
it can be shown:

16



Proposition 1. A set X, replacing” above, is an L-enriched category if and only if
there is anequality relatiorE on X such that:

El E: X x X — L is a mapping degrees of correspondence
E2 vxe X, E(x,X) =T (total existencg
E3 ¥x,y,z€ X, E(x,y) AE(Y,2) < E(X,2) (transitivity).

It should be noted that each;jCorresponds precisely to eachE

The consequent of the proposition is taken as the definitfo(iXoE) as anL-
enriched set

If (E2) were to be replaced by a symmetry conditior,{ € X, E (x,y) = E (y,X)),
then the Fourman-Scott definition [3] of &rvalued setvould result as cited by Hohle
in [6].

For L-enriched setX,E), E (x,y) is interpreted as the degree to which bitstream
corresponds to bitstreayn

Finally, with an eye to variable-basis notions latef, E,L) is called arenriched
set

Example 1.Examples of enriched sets include the following:

1. LetX be a set antl be a meet semilattide with |L| > 2. Chooseac L—{T} and

Put: X x X — L by
a X
ey {3 373

Then(X,E,L) is an enriched set.
2. Let(X,d) be an ultrametric space bounded by 1, andBuX x X — L by

E(va) =1-d (X7y) .
Then(X,E,L) is an enriched set.

Given M -enriched categorie§ and D, thenF : ¢ — D is anM -enriched functor
[7] if the following hold:

F1 Vae C,3'F(a) € D.

F2 Va,be C,3'Fap e M (C(a,b),D(F (a),F (b))).
F3 Vac C, Faacida = idg (4 (in M).

F4 Va,b,ce C,in M itis the case that

Fac © (capc) = (OF(a)F(b)F(c)) 0 (Foc® Fap) -

Proposition 2. Given L-enriched setSX,E) and(Y,F), where L is a meet semilattice,
it is the case that f (X,E) — (Y,F) is an L-enriched functor if and only :fX — Y is
a mapping such thatx,y € X,

E(xy) <F(f(9,f(y)).

17



The variable-basis extensionlofenriched functors makes use of monoidal functors
as defined in [8]. LetM, Al be monoidal categories and I€tbe an -enriched cate-
gory and® be anA(-enriched category. Theffr, W) : C — D is a(n) (ariable-basis
enriched functoif the following hold:

VO WOP: af + A is a monoidal functor as defined in [8].
V1 Vae C,3'F(a) e D.

V2 Va,be C,3'Fap € M (C(a,b),¥°P[D(F (a),F (b))]).
V3 Vae C, Faaoida = WOP (idg (o)) (in M).

V4 Va,b,ce C,in M itis the case that

Fac o (cabe) = WP (or(@)Fb)F(c)) © (Foc® Fab) -

The backward direction of, and notation f8°P are both motivated by topological
systems and variable-basis topology and, in particulaicleed topological systems
taken up below.

Proposition 3. Given enriched setsX,E,L) and (Y,F,M), where LM are meet semi-
lattices, it is the case thatf, ) : (X,E,L) — (Y,F,M) is an enriched functor if and
only f: X —Y is a mapping ang®?: L + M is a meet-semilattice morphism such that
X,y € X,

E(xY) <WPF (f(x), ().

The proposition justifies the following definition:

Definition 1. The categonEnrSet comprises enriched setX,E,L) as objects and
enriched functor$f, ) as morphisms; and in this setting, the latter are cakediched
mappings The full subcategory in which each L is a frame and e#dcls a localic

morphism is denoteBnrSetg, .

It is straightforward thaEnrSet andEnrSetg,y, are categories using the composi-
tions and identities oBetandSLat(A), the latter denoting the category of (finite) meet
semilattices and (finite) meet preserving mappings.

Enriched topological systems, namely topological systéased upon enriched
sets, can now be defined.

Definition 2. EnrTopSys has ground categorfnrSetgy, x Loc and comprises the
following data satisfying the following axioms:

1. Objects: ((X,L,E),A E), calledenriched topological systems.
(@) (X,L,E)is an enriched set, A is a localground conditions
(b) E is an L-satisfaction relation o(X,A), i.e., = satisfies both arbitrary/ and
finite A interchange lawstppological system consitign
(c) E andF are compatible, i.eyx,y € X,Vac A E(x,y)A E (y,a) < E (x,a)
(compatibility conditiof).
2. Morphisms: (f,y,¢) : ((X,L,E),AF) — ((Y,M,F),B,kF), calledenriched con-
tinuous functions
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(@ (f,w): (X,E,L) — (Y,F,M) is an enriched mapping) : A — B is a localic
morphism §round condition)s
(b) ¥xeX,¥be B, E (x,°P(b)) < W°P(F (f (x),b)) (partial adjointnegs
3. Composition and identities: those of the groun&nrSetgm, x Loc.

Both enriched topological systems and enriched continfiougions are in plenti-
ful supply, with a number of example classes at hand, inolyittie following example
class.

Example 2.Each enriched s€iX, L, E) with L a frame generates an enriched topologi-
cal system. GiveifX,L,E), put

T={uclX:vxyeX,E(xy)Au(y) <u(x)}.

1. vweX By : X—=LbyEy(x) =E(xY). It follows that{Ey :y € X} C 1. Itis im-
portant to note that the proof makes explicit use of the itizitg condition (E3)
above.

. The collectiort contains all constarnt-subsets oK.

3. It follows from the infinite distributive law oE thatt is anL-topology onX and

hence a stratifiel-topology onX.

N

SincelL is a framef is a locale. Now put : X x T — L by
E(Xu)=u(x).

It can be checked th&t satisfies the arbitrary and finiteA interchange laws and that
E andE are compatible. HenogX, E,L),T1,F) is an enriched topological system.

Returning to the definition of an enriched topological systeertain comments
should be made. First, the compatibility condition addeegbe question posed at the
beginning of this abstract. Second, it should be noted thdigb adjointness is a signif-
icant weakening of the adjointness condition of Vickerq |@rid the associated systems
literature, but it should also be noted that the inequabtained above from Vickers’
adjointness is a natural and important one from the stamdpbprogramming. These
considerations motivate weakening the adjointness domdidr the morphisms of the
important categorizoc-TopSys|[2, 9, 10] to partial adjointness as formally stated in the
above definition, thereby forming the categhnc-TopSyg<).

Theorem 1. EnrTopSysmaps functorially intd.oc-TopSys(<).

This theorem (with its proof) indicates that with respeabbgects, traditional topo-
logical systems in the sense lofc-TopSysalready accommodate enriched topologi-
cal systems; but with respect to morphisins¢-TopSysmust be generalized tooc-
TopSyq <) to accommodate enriched continuous functions betweentestitopolog-
ical systems.

Finally, enriched topological systems afford new links attite-valued topology
andL-topological spaces in particular. For example((&,L,E),A,F) be an enriched
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topological system. In addition to the already known franapexi : A — LX and the
attendant.-topological spacéX,ex{” (A)), there is the frame map

exte) :A— L% by exter) (@) (xy) =E(xy)A F (%,a)
as well as, for fixe¢ € Y, the frame map

exXterLy (A= LS by extgry (@) (X)=E(XY)AF(y.a).

Theorem 2. Let ((X,L,E),AF) be an enriched topological system. The following
hold:

1. Wyevy, ext@Ly) (A) < exi” (A), i.e., the former L-topology is a refinement of the
latter L-topology with respect to the ordering of L
2. Within L) | it is the case that

ext’ (A) c\/ extg ) (A) = << U extgLy) (A)>> .

yex yeX
3. (X,ext” (A)) L-homeomorphically embeds in<0( X X,exl(*E"L) (A)) , hamely the

former is L-homeomorphic to the subsp{m(x x X), [ex EL) (A)} axex) )
) X
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An equivalent formulation of the title question idfe terms important?Yet an-
other isomorphic formulation id§ concept (of) a typ€?

Quantales are nice. Rosenthal [19] defined a (unital) qleat@e,1,V) to be a
monoid (Q,e,1) and a complete semilattid®, V), so thate distributes over . This
abstract was partly inspired by the LINZ2012 call for pafiers “quantales and its ap-
plications to theoretical computer science”, yet, thisasan abstract about “quantales
and its applications to theoretical computer science”. Viththis abstract then about?
It is about logic, it is about fuzzy and uncertainty repreéagan, but in particular it is
also, but not only, and very much in particular not only, atiowth values.

We are bold enough to say, that this abstract is not givercgjsintil the reader is
eventually at a saturated understanding about the mam dthis abstract (not saying
the reader has to agree with the authors on the claim), inbficig one important
main claims of our work during the past decade, ever sincarierlying ideas behind
compositions involving the term monad [4] was presenteddZR000.

This main claim is stated in the following

Theorem 1. Yes, terms are important!

Initially we want to say something informally also about titeer questions. It will be
clear that

Proposition 1. “Ontology < Logic” iff “Concept is a type”, and “Ontology = Logic”
iff “Concept is of a type”.

Corollary 1. “Being of a type” and “Being a type” is mutually exclusive.

1 Logic and fuzzy logic

Logic is not only computing with truth values. For propasital calculus, yes, but as
soon as we involve sentences with content as provided bystemnturn building upon
an underlying signature, logic computation involves muahéthan mere manipulation
of truth values.

21



Fuzzy logic is in a simple view extensions of whatever isgrigraditionally, fuzzy
logic is extending crisp truth values to fuzzy truth valudsst of the fuzzy logic litera-
ture indeed does not go beyond fuzzification of anythinglalgéruth values. Moreover,
approach like Hajek’s BL [14] do go on into predicates, buttginside predicates are
left as crisp objects so that e.g. substitution still is theptraditional and crisp one.

The situation ‘Ontology Logic’ appears typically in description logic, which as-
sumes concepts to be atomic, i.e. description logic appwars like a propositional
calculus than a predicate calculus. In fact, the underlgggymption seems very much
like having one single typeoncept, and having often a huge number of atomic con-
cepts, like e.g. seen in the medical vocabulary SNOMED Cit, ltke OWL/RDF has
adopted EL++ as a variant of description logic for its ongidal purposes. The sim-
plicity of description logic is certainly intentional, ake motivation of using such a
‘partial logic’ is given the need to capture vocabularymarology and thesauri more
than explicitely reasoning with these concepts and strastu

However, were we to become interested in fuzzy ontologyetieea risk that fuzzy
ontology in this narrow sense takes routes that even movayg fram logical thinking.
Such fuzzy ontologies may later appear in fuzzy reasoning tlaen it is not clear that
fuzzy approaches in fuzzyfying ontologies correlates \iitzzification of the logical
machineries.

This calls for using terms, and indeed assigning an impobrtda to terms and their
semantics. Clearly, we also strongly speak in favour of teimthe wider sense, in
particular concerning uncertainty modelling of terms and aot just involving terms.

2 Terms in the wider sense

Terms are not interesting as such. Terms are interestingrasfsentences, and not to
forget, terms are interesting as part of other terms, therlatterest obviously leading
to substitution

Terms are defined by a corresponding term monad, means thsiiitations are
morphisms in the Kleisli category related to that partictdéem monad.

In [5, 6] we pointed a number of paradigms capturing différeays of modelling
uncertainty in these respects. These paradigms make adi$iaction between ‘op-
erating with fuzzy’ and ‘fuzzy operation’. The underlyingrin monad for the former
is the composition of the fuzzy powerset monad with the tiaal term monad, and
doing all this oveiSet. The underlying term monad for the latter builds upon an endo
functor overset(Q), where in principleQ could be a quantale, or could be something
else, yet appropriate. This gives us the basis for the “fiullzy” situation which has
it's starting point in considerations for terms and substig with terms. Note that truth
values of sentences have not yet entered the scene at abliaine might even allow
oneself to have a crisp logic with “fully fuzzy” terms. In fain real life applications,
this is indeed what happens mostly, i.e. observations ssesaments of data and infor-
mation are fuzzy, but decision-making, like in health caneiiterventions, must in the
end be crisp.
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It should also be remarked that a shift from one-sorted toyrsamted is far from
trivial, even if folklore literature claims otherwise. Adfraic considerations need also
be precisely handled, as pointed out in [6].

Such terms then as included in sentences provides leads taggilestion and no-
tions about fuzzy sentences, and so on and so forth. Theedatiic machinery all
the way down to inference calculi can be nicely described ia.ghe framework of
Meseguer’s general logic [16]. Moreover, general logic lsariurther generalized from
the viewpoint of Theorem 1, namely, that a substitutionried generalized general
logic indeed is more than feasible, not to say very desirghig].

3 Type theory

Whereas for terms, informal definitions of the term set nyostkrespond to the formal
definitions of terms, so that ambiguities are avoided. Coring A-terms, the situation
with informal definitions about what is and isiktterms is less obvious, in particular
in the typed case. In [8] we make this situation explicit bypsidering levels of signa-
tures, i.e. being very observant about where particulasymd related operators reside
especially before and aftarabstraction. Type constructors also need to be handled for
mally, and their respective algebras must be identified wtithost care.

In this abstract we will not provide detail. However, we may ¢hat starting from
a usual signatur® = (S,Q), identifying the underlying primitive operations, we have
the term monad's, overSet, or fully fuzzy overSet(Q). This situation issignatures,
terms and algebras at level one

Then we may create a new signat@e= ({type},Q’), on signature level twp
with type as the only sort, and operators@i to be understood as type constructors.
Interesting on level two is the algebra ofpe, namely,2((type) is the underlying
category of your choice.

Now we can makéls, @ the sort set fosignature level threeand the interesting
part is defining some operators into this signature.

In this separation of levels it is very transparent how epgerators at level one are
shifted over to level three. The most important observadiothis stage is that is not
a ‘term transformer’ but an ‘operator mover’ between levet @and level three.

All this notions can be made precise, and we are able to shpwhew problems
with variable renaming can be avoided. This is fully develdm [8].

Acknowledgements. This abstract and all our work on invoking uncertainty mautgl
using suitable underlying categories is truly inspired layvkence Neff Stout. Thanks,
Larry!
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Motivated by the study of the sentential logics amdhstitutions, we introduce
the notion of closure operator on modules over quantalaiadd,always driven by the
search of the solution of the Isomorphism Problem, as weaéxgdelow, we intro-
duce the notions of interpretability and representabliiégyween closure operators. This
yields a very rich theory with many nice properties: We prthet there exists a dual-
ity in the categories of modules over quantaloids, that greystrongly complete and
strongly cocomplete, that they are (Epi, Mono)-structuegglilar categories, that they
have enough injectives and projectives, and that theyfgdtie strong amalgamation
property, among others. Some of these results are gerstiafiz of the same results
obtained by Solovyov for categories of modules over quastédee [10]). We charac-
terize monos and epis in the categories of modules over glaoéad, and furthermore
prove that every epi is induced by a closure operator on isaiio.

We also study the notions of closure system on a module ovesiaatgloid, and
prove that they are exactly the submodules of the dual moduie that the standard
correspondence between closure operators and closussyshn a set extends to a
natural isomorphism. We prove that the set of closure opesdhat are interpretable
by a given morphisnt is a principal filter of the lattice of closure operators o it
domain. As a consequence, we obtain that every extension ioterpretable closure
operator is also interpretable by the same morphism. Oneritigtion of this result is
the well-known fact (see Theorem 2.15 of [4]) that if a setidtogic has an algebraic
semantics, then every extension of it also has an algelaiastics and with the same
defining equations.

The Problem of the Isomorphism has its origin in the work adkBand Jonsson,
who in order to study the property of algebraizability fontntial logics, and the
equivalence between deductive systems in general, indezthihe notion oéquivalence
betweerstructural closure operatorsn a setX acted on by a monoiil, or anM-set
(see [1]). As usual, given a monai, -, 1), anM-set consists of a s&t and a monoid
actionx : M x X — X, where Ixx = x andax* (bxx) = (a-b) xx, for all a,b € M and
x € X. While the use of closure operators to encode entailmeatioek is very well
known, the action of the monoid is introduced to formalize tiotion of structurality,
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thatis, “entailments are preserved by uniform substihgjba property usually required
for logics.

Given anM-set(X, ), a closure operat@ on X is structuralon (X, -) if and only if
it satisfies the following property: for evegye M, and evenylr C X, 0-CIr CC(o-IN),
whereo-I' = {o-¢: ¢ € I'}. This can be shortly written as follows:

YoeM, oC<Co. (Str)

This is known as thetructurality propertyfor C, since it takes the following form, when
expressed in terms ¢f;, the closure relation oK associated with the closure operator
C (defined by € CI iff I ¢ ¢): for everyl” C X, everyd € X, and eveno € M,

NlNcé=0Ttco- 0.

For everyo € M, a unary operatio@o on CI(C) = (CI(C),C), the lattice ofthe-
oriesor closed set®f C, is defined in the following wayCo (') = C(o-I'). Theex-
panded lattice of theoriesf a structural closure operat@ris defined as the structure
(CI(C), (Ca)gem)-

In their approximation, Blok and Jonsson define two strniattclosure operators on
two M-sets to be equivalent if their expanded lattices of theaie isomorphic. Later,
they prove that under certain hypotheses (the existencasi$) this is equivalent to
the existence of conservative and mutually inverse in&tgpions, which is the original
idea of equivalence between deductive systems emergingthe work of Blok and
Pigozzi. This equivalence between the lattice-theoretiperty of having isomorphic
expanded lattices of theories, and the semantic propeligiafy mutually interpretable
is known by the name of thisomorphism TheorenAnd the problem of determining
in which situations there exists an Isomorphism Theorenaied thelsomorphism
Problem

The first Isomorphism Theorem was proved by Blok and PigaziP] for alge-
braizable sentential logics, and later it was obtainedkfdimensional deductive sys-
tems by them in [3] and for Gentzen systems by Rebagliato &nd i [9]. But there is
not a general Isomorphism Theorem for structural closuegatprs orM-sets, as there
are counterexamples for that (see [8]).

In turn, Voutsadakis studied in [11] the notion of equivalerof Teinstitutions at
different levels (quasi-equivalence and deductive edemnee) and identified termr-
institutions, for which a certain kind of Isomorphism Theuor also holds. The notion
of Trinstitution was introduced by Fiadeiro and Sernadas iir tiréicle [5] and can be
viewed as a generalization of deductive systems allowinigjpheisorts. They constitute
a very wide categorical framework embracing sententiatlgsentzen systems, etc.,
as they include structural closure operatordvbisets as a particular case. Therefore, a
general Isomorphism Theorem fminstitutions is not possible (see [7]).

Sufficient conditions for the existence of an Isomorphisnediem were provided
in [8] and [7] for structural closure operators bhsets (and graduatéd-sets), andt-
institutions that encompass all the previous known cadas fifst complete solution of
the Isomorphism Problem was found for closure operators adutes over residuated
complete lattices, oquantalegsee [6]). In this article, the modules providing an Iso-
morphism Theorem are identified as the projective modubgzatticular, cyclic projec-
tive modules are characterized in several ways, from whietigomorphism Theorem
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for k-deductive systems follows, and also for Gentzen systesisg that coproducts of
projectives are projective. The Isomorphism Problenvfamstitutions remained open.

One of our main results, as an application of the theory ofwile operators on
modules over quantaloids to Algebraic Logic, is the follogi

Theorem 1. If Q is a quantaloid, then & -module P is projective if and only if every
representation of a closure operator on P into another ctesaperator is induced.

This is the key result to establish that every equivalent¢eden two closure op-
erators on projective modules is induced by mutually ineeéngerpretations. That is
the general solution for the Isomorphism Problem in thersgtif modules over quan-
taloids.

We also explain how everg-institution induces a closure operator on a module
over a quantaloid, and every translation betwaenstitutions induces a morphism in
the fibered category of all modules over quantaloids. Thigsskhow how the theory
of closure operators on modules over quantaloids is a gkregian of the theory of
interpretations and representationgwihstitutions.

Acknowledgment. The second author was supported by grant P202/10/1826 of the
Czech Science Foundation.
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We define a category whose objects are fuzzy sets and whose anapelations
subject to certain natural conditions. We enrich this catggyith additional structure
coming from t-norms and negations on the unit interval. Westigp the basic properties
of this category and consider its relation to other famitiategories.
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1 Introduction

Itis well known that sheaves on a topological sp@XeO) give rise to a category called
a Grothendieck topos [7], which can be seen as a construstiverse of sets. The local
sections of a shedf exist locally at opens oX, such that the subobjects Bfform a
complete Heyting algebra (or frame), not necessarily a @mohlgebra. This sketches
a rough idea of the link between logic and geometry, whicloiguitfully exploited in
topos theory.

Another important field is non-commutative geometry [2]which geometry is
dealt with implicitly through the study of non-commutatizigebras, likeC*-algebras.
Attempts to make the hidden non-commutative topology mepdict have led to sev-
eral formalisms, including the theory of (involutive) quales [8, 11]. Frames, like the
lattice of opens of a topological space, are commutativenieent quantales (with
a trivial involution). It is not a surprise that people stattthinking about sheaves on
quantales.

This idea sounds very natural, but there is a certain risklred: are quantales
really good candidates for non-commutative topology andwa find a definition of
sheaves on a quantale that encapsulateslgebras? Unfortunately, this is still a matter
of discussion, after almost thirty years of research.

Although older definitions of sheaves on quantales (e.§),iffy diverge, more
recent versions are based on the observation that sheaeelwoale (frame can be
presented in the form idempotent symmetric matrices withe&inO [3]. The indices
of the matrix represent the local sections and the valuelseirtatrix give the regions
in which pairs of local sections agree. By replacing the fdoy an involutive quantale
Q, we obtainQ-valued sets. Many more references can be found in the rpepet of
Resende [10].

2 Enrichment over involutive quantaloids
The matrix approach is elegant, but problems emerge wheiri@sgo conceptualize

the sheafification of)-valued sets. By considerir@-valued sets as enriched categories
[1], we obtain more insight in these matters. They resemiefgimspaces, which can be
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considered as categories enriched over the quantale diveasial numbers (extended
with infinity). Some caution is in ordef)-valued sets are not categories enriched over
Q, but rather over an involutive quantalo@k, obtained by splitting a certain clags

of idempotents o). Alternatively phrasedQ-valued sets are rathexflexive transitive
and symmetric matrices with values@k (i.e., symmetric monads or equivalence re-
lations). Having settled this, the sheafification@¥alued sets may be defined as the
Cauchy completion ofg-categories ([14] is an early example). Many elements of en-
riched category theory contribute to sheaf theory (diatobs [12], limits, etc.). On the
other hand, sheaves on an involutive quan@atsan be cast in the form of modules over
Q[13,6,5]. The more lattice theoretic oriented module théw@s several advantages.

3 Grothendieck quantales

The sheaves on a locale give a localic Grothendieck toposat\&hout non-localic
Grothendieck toposes? We will show that every Grothendiepks can be seen as the
category (allegory [4]) of sheaves on what we calirathendieck quantalé plausible
definition of a Grothendieck quantale might be: an involitiyjuantale such that the
category of sheaves on it is a topos (this definition is sigkimplified). The main
result of the talk is a simple axiomatization of Grothen#ligoantales [5]. If there is
time left, | would like to address some of the questions rhieghe introduction.
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Abstract. The purpose of this talk is to explain that topological sgacan be
formulated in any framework of premultiplicative quanidloln particular, the
following results are obtained in a cooperation with TomEsibiak (Poznan,
Poland) during summer 2011.

Let Q be a quantaloid ([2]). First we recall the cocompletion@fenriched cate-
gories (so-called -categories (cf. [3])) and specify the pow@rcategory monad p
which is hidden behind the concept of cocompletion. Then aeehhe following the-
orems.

Theorem 1. Let P(X) LN X be aQ-functor. Then the following assertions are
equivalent:

(i) (X,&) satisfies the first algebra axiom — i&.nx = 1x.
(i) (X,&)is aTp-algebra.

Theorem 2. LetX be a skeletal -category and®(X) be the poweR -category. Then
the following assertions are equivalent:

(i) Xis cocomplete.
(i) There exists & -functor P(X) L X satisfying the first algebra axiom w.r.t.
the powerQ -category monad.

After these preparations we introduce the concept of priégpfichtive quantaloids.

Definition 1. A quantaloid Q is called premultiplicative if every hom-set
Q(a,b) has an binary operatio satisfying the following conditions:

(pm1) © is distributive ovemnon emptyjoins in both variables,

(pm2) © is subdistributiveover thecompositionin both variables — i.e. for all
a,b,c € obj(Q) anda,p € Q(a,b) the subsequent relations are valid:
y-(@oB) < (y-a)o(y-B), ye Q(b,c)
(@OB)-y < (a-y)©(B-y), ye Q(c,a).

31



In this contexto is a called apremultiplication a

Example 1.Let [0, 1] be the real unit interval equipped with the usual orderirdyaith
tukasiewicz’ arithmetic conjunction—i.e.

a*f3 = maxa+p—1,0), ao,pe][0,1].

Obviously,([0,1],*) is a unital quantale. Further, I€t be the quantaloid with one ob-
ject determined by[0, 1], ). ThenQ is a premultiplicative quantaloid w.r.t. thenary
minimumas well as w.r.t. théinary arithmetic mean a

Example 2.Let (L,") be a complete De Morgan algebra — this meanslthiata com-
plete (not necessarily distributive) lattice providedwdtn order reversing involution
In particular, the universal upper (resp. lower) bound.iis denoted byT (resp..l).
Then we construct a quantalo@ as follows. The set of objects @ is given byL
enlarged by a further elemewt— i.e.

obj(Q) = Lu{w}.
The hom-sets of) with their respective partial orderings are given by:

— Q(a,a) is the two-point lattice for alh € LU {w}.

— Q(a,b) is asingleton, i, b € L with a# b.

— Q(w,b) = {AeL| A < b} with the ordering froni, if w# b.
— Q(a,w) = {AeL | & < A} with the ordering fromL.°P, if a # w.

Then there exists a unique composition law satisfying tiieviang properties:

— The composition preserves arbitrary joins in each vagiabparately.
— OnQ(a,a) the composition is the meet of the two-point lattice.
— If a# b andb # c, then the composition attaches the universal lower bound of

Q(a,c) to all (A1,A2) € Q(a,b) x Q(b,c).

Finally, the multiplicative structure oqQ is determined as follows: OQ(a,a) we
use again the meet, while on hom-sets consisting of a unicarphism the binary
operation is evident. In order to complete the situation &eehonly to define binary
operations o (w, b) andQ (a, w) with a,b € L:

A, Ao # L, Ao, M1 # T,
MDA = MOPA2 =
treh? {L,)\zzi. trat? T, A2=T.
All this shows thatQ is a premultiplicative quantaloid. a

Let Q be a premultiplicative quantaloid with the local premdlgption ©® and
Cat(Q be the category of)-categories and)-functors. We fix aQ-categoryX =
(X,e,d) and consider th& -functord : P(X) x P(X) — P(X) induced by®. Further,

let 1 EESN P(X) be aQ-functor defined by:

Tx(@) = (af]), fa (0 =\Qaex), xeX, acobj(Q).
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An extremal subobjecty —— P(X) of P(X) is called atopologyon X iff |
satisfies the following axioms:

(T1) Tx factors through.
(T2) - (1 x1) factors through.
(T3) px-P(1) factors through.

The axiom (T1) means that ‘the whole space is open. (T2) istieesection axiom and
(T3) means thatis closed under internal joins — i.eis cocontinuous.

If X'is provided with a topology, then(X;1) is called atopological space in the
sense of the quantaloi.

Topological spaces in the sense @fform a category which is topological over
Cat(Q).

In the case of Example 1 topological spaces are many valpedagical spaces (cf.
[1]), while in the case of Example 2 we obtain non-commuttibpological spaces pro-
vided the underlying De Morgan algebra is given by the latt€all closed subspaces
of an arbitrary Hilbert space.
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Abstract. We present two very recent Mostert-Shields style classifioghe-
orems on residuatedmonoids along with some related results in substructural
logics.

1 Introduction

Residuated lattices have been introduced in the 30s of #teéntury by Ward and
Dilworth [30] to investigate ideal theory of commutativags with unit. Examples of
residuated lattices include Boolean algebras, Heytingkatgs [6], MV-algebras [3],
basic logic algebras, [8] and lattice-ordered groups; &taof other algebraic struc-
tures can be rendered as residuated lattices. The topicotlidlecome a leading trend
on its own right back then. Nowadays the investigation oidtgsted lattices (that is,
residuated monoids on lattices) has got a new impetus anddeasstaying in the fo-
cus of strong international attention. The reason is tretivated lattices turned out to
be algebraic counterparts of substructural logics [27,2fplications of substructural
logics and residuated lattices span across proof the@gbed, and computer science.
An extensive monograph discussing residuated lattice$ twgorint in 2007 [7]. Sub-
structural logics encompass among many others, classiga, lintuitionistic logic,
relevance logics, many-valued logics, t-norm-based Kdinear logic and their non-
commutative versions. These logics had different motivesj different methodology,
and have mainly been investigated by isolated groups ofarekers. The theory of
substructural logics has put all these logics, along witmynathers, under the same
motivational and methodological umbrella. Residuatetickes themselves have been
the key component in this remarkable unification.

Residuated lattices on the real unit interj@ll] are of particular interest. 0, 1],
FLe-monoids (see Definition 1) are referred to as uninormsghale-Le-monoids are
referred to as t-norms. Because they are residuated, thoserms and t-norms
are left-continuous, as two-place functions. The residuanis given byx — y =
sup{z: zxx < y}. They determine both a substructural logic (obtained bgrpreting
conjunction as« and implication as—) and a variety of commutative, integral and
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bounded residuated lattices, see [7]. It follows that é@fittinuous uninorms originate
a substructural logic, which may lack not only contractiomt also weakening.

Both for left-continuous t-norms and for left-continuousinorms, those with an
involutive negation are of special interest. (Note thattfoorms negation is defined
by —x = x — 0, while for uninorms negation is defined ag = x — f, wheref is
a fixed, but arbitrary element 90, 1], and stands for falsum just like O does in case
of a t-norm). Involutive t-norms and uninorms have very ieging symmetry proper-
ties [11, 14,10, 24] and, as a consequence, for involut@tas and uninorms we have
beautiful geometric constructions which are lacking fangral left-continuous t-norms
and uninorms [12, 20, 23]. Furthermore, not only involutiveorms and uninorms have
very interesting symmetry properties, but their logicdtal have important symmetry
properties too: Both sides of a sequent may contain moregharfiormula, while (hy-
per)sequent calculi for their non-involutive counterpatimit at most one formula on
the right.

A particularly interesting question is whether the variefyalgebras of a certain
logic are generated by only the algebrag@r] which are calledtandard algebradf
the answer is yes, we say that the logic in question admitglatd completeness. For
the logicsBL andMTL this problem has been solved in [2] and [17], respectively.

As for theclassification problerof residuated lattices, this task seems to be possible
only by posing additional conditions. The first result instiirection is due to Mostert
and Shields who investigated certain topological semigsoon compact manifolds
with connected, regular boundary in [28]. Being topolobiteeans that the monoid
operation of the residuated lattice is continuous with eespo the underlying topol-
ogy. They proved that such semigroups are ordinal sums isghse of Clifford [4] of
product, Boolean, and tukasieticz summands.

Next, the dropping of the topologically connected propeftthe underlying chain
can successfully be compensated by assuming the divigibdindition (which is, in
fact, the dual notion of the well-known naturally ordere@dmgerty). The divisibility
condition is the algebraic analogue of the Intermediate&dlheorem in real analysis,
and it can be considered a stronger version of continuithefrhonoidal operation:
Indeed, on a finite chain the order topology is the discrets en every operation is
continuous and hence does not necessarily obey the diitisibondition. Under the
assumption of divisibility, residuated chains, that is &hains, have been classified,
again, as ordinal sums with product, Boolean, and tukagietimmands. The divisi-
bility condition proved to be strong enough for the clasatiion of residuated lattices
over arbitrary lattices too [22]. Fodor has classified thasieorms which have continu-
ous underlying t-norm and t-conorm [5]. But divisibilityidse, no classification seemed
to be likely to exist due to the richness of residuated stmest.

In this paper a first step is made in this direction: In one eftilio classification
theorems of ours we do not assume divisibility nor even tightdst version of conti-
nuity.

First of all, we classify strongly involutive uninorms algas (SIU-algebras), that is
bounded, representable, sharp, involutive-Rtonoids over arbitrary lattices for which
their cone operations are dually isomorphic. Let us remiaak assuming the duality
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condition proved to be equivalent to assuming the divigib#ondition only for the
positive and negative cones of such algebras.

Second, we classify sharp involutive &monoids on complete, order-dense, semi-
separable chains. Here neither divisibility nor even thakest form of continuity is
assumed. Surprisingly, the restriction of those monoidkédr negative cone is neces-
sarily continuous with respect to the order topology ofitheiderlying chain. The result
seems only to hold under the conditiba- f, and hence a classification for involutive
FLe-monoids is still lacking, but in any case the result is varpsising, as involutive
integralmonoids may have discontinuities even below the fixed pdittieir negation.
While for involutive integral monoids (and even for inval t-norms) a classifica-
tion is still lacking, for sharp involutive F:-monoids on complete, order-dense, semi-
separable chains we can present a classification. $intids a complete, order-dense,
semi-separable chain, our result provides with the classifin of sharp, involutive
uninorms too. Remarkably, the adding of the involution dtiad to residuatedhtegral
monoids does not bring wmy closerto the solution of the related classification prob-
lem: As revealed by the rotation construction [12], evesjdeated integral monoid can
arise as a subsemigroup of an involutive residuated integvaoid.

Third, from the logical point of view, we want to solve somarsiard completeness
problems. Since uninorm logics are algebraizable in theesefBlok and Pigozzi [1],
we can state the standard completeness problem in an algelana recalling that valid
equations correspond to theorems of the associated lodieadial quasiequations cor-
respond to provable consequence relations. Now the quastibthere is an equation
(resp., a quasiequation) of sharp, involutive, represgeft&L.-monoids which is valid
in all sharp, involutive Fk-monoids on[0, 1] but not in all sharp, representable invo-
lutive FLe-monoids? When such an equation (resp., quasiequatios)raueexist, the
corresponding logic is standard complete (resp., finittdyrgly standard complete).
In [25], it is shown that the logic of uninorm algebras is stard complete, and the
problem has been left open for the logic of involutive unmalgebras (aka. bounded,
representable, sharp, involutive &algebras). We prove that the logic of sharp, involu-
tive uninorm algebras is not standard complete and thabtyie bf involutive uninorm
algebras is not finitely strongly standard complete. In taidli we axiomatize the logic
of SlU-algebras and prove that it is finitely strongly contpleith respect to the class
of standard SlU-algebras, it is not strongly complete wéhpect to the class of all
standard SlU-algebras, and that tautologicity and coreseopirelation in it are co-NP
complete.

2 Preliminaries

As said in the introduction, uninorms are commutative,asetmonoids ori0, 1]. On
general universe, however, we shall refer to them asrRbnoids:

Definition 1. Call U = (X,#,<,t,f) and as well its monoidal operationan FLe-
monoidif ¢ = (X, <) is a poset ané is a commutative, residuated monoid over
with neutral element. Define the positive and the negative coneldoby X+ = {x €

4 An FLe-monoid is representable if it is subdirect product of ckain
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X | x>t} andX™ = {xe X | x <t}, respectively. Call an R-monoid U involu-
tive, if for x € X, (X')’ = x holds, whereX = x—, f. Call an involutive Fle-monoid
U sharp if t = f. Call a sharp, involutive Fi-monoid a SIU-algebra, if fox,y € X,
X 8y = (xey) holds.

Standing notation: For an Fle-monoid(X,s, < t, f), throughout the paper we de-
note the negative and the positive cone operatiof) bfy @ and®, respectively.

Let U be an Fle-monoid. The algebral, and as well is calledconic if every
element ofX is comparable with, that is, if X = XT UX~. U is calledfiniteif X is a
finite set, U is calledboundedf X has topT and bottomL element. IfX is linearly
ordered, we speak about Echains Sinces is residuated, it is as well partially-ordered
(isotone), and thereforé,: X — X is an order-reversing involution. A partially-ordered
monoid is called integral (resp. dually integral) if the enlging poset has its greatest
(resp. least) element and it coincides with the neutral etgrof the monoid. It is not
difficult to see thab restricted taX~ (resp.X™) is integral (resp. dually integral).

3 Two new Mostert-Shields type classification theorems

In [20] the authors give a structural description of conigjolutive FLe-monoids by
proving that the cone operations of any involutive, coni¢-Rlonoid uniquely deter-
mine the Fle-monoid via, what is called twin rotation:

Theorem 1. [20] (Conic Representation Theorem)For any conic, involutive Fi-
monoid it holds true that

XPYy if X,y € Xt

XQy if X,y e X~

(x—=gY) ifxeXt,ye X ,and x<y )
(y—eX) ifxeXt,ye X ,andx£y -

(y—=aoX) ifxe X", ye XT,and x< y

(X—eY) ifxe X", ye XT,and x£ y

Xey =

In [15] SIU-algebras o0, 1] have been classified. This result has been generalized in
[18], where we classify SIU-algebras over arbitrary lasic

Theorem 2. ([18]) U = (X,e,<,t, f) is a SIU-algebra if and only if its negative cone
is a BL-algebra with components which are either product eximum components;
is the dual ofg, ande is given by (1).

Then, in [19] the authors can even weaken the quite usualntotyt condition,
which was posed for the cone operators in SlU-algebras, Essify a subclass of
sharp, involutive Fk-monoids on0, 1] as follows:

Definition 2. ([19])A chain (X, <) is called semi-separable if there exi¥ts X such
thatY is dense irX and the cardinality of is smaller than the cardinality of.
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Definition 3. For an involutive Fle-monoid U = (X, e, <,t, f) on a complete poset let

SKX) = max{ue Xt |uex=x}, if xe X+t
)=\ (inffue X~ [uax=x}), if xe X

and call it the skeleton aof (c.f. [21]).

Theorem 3. ([19]) On a complete, order-dense, semi-separable chains a sharp,
involutive FLe-monoid satisfying

forxe X—, SKx)' ex =X 2

if and only if the negative cone @f is a BL-chain without tukasievicz components, its
positive cone is the dual of its negative cone with respeGtande is given by (1).

We remark that due to the well-known Mostert—Shields cfasdion theorem, a BL-
chain without Lukasievicz components is exactly an ordauah of Boolean and prod-
uct summands in the sense of Clifford [4].

4 Applications in Substructural Logic

4.1 The logic of SIU-algebras: axiomatization and standar@¢ompleteness

Substructural fuzzy logics on a countable propositionaglaage with formulas built
inductively as usual from a set of propositional variablesary connective§), —, A,
Vv, and constants, T, f, t, with defined connectives:

“A=get AT
ADB =get 7(-AO —B)
A+ B=get (A—>B)A(B—A)

Definition 4. MAILL (which is equivalent td-Le with 1 andT) is the substructural
logic consisting of the following axioms and rules:

(L) A=A

(L2) (A—»B)— ((B—>C)— (A—0Q))
(L3) (A—-(B—C))—>(B— (A—0Q))
(L4) (AOB)—=C)«< (A—(B—C))
(L5) (AAB) — A

(L6) (AAB) —>B

(L7) (A—=B)A(A—=C)) —» (A— (BAQC))
(L8) A— (AVB)

(L9) B— (AVB)

(L10) (A—=C)A(B—C))— ((AVB)—=C)
(L11) A+ (t—A)

(L12) L —A

(L13) A= T

o~ —

A A—B A B

B (mp) ANB (adj)
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Definition 5. Uninorm logicUL and involutive uninorm logi¢dUL are MAILL plus
(PRL) (A—B)At)V((B— A)At) andUL plus (INV) =——A — A, respectively. Strongly
involutive uninorm logicSIUL is IUL plusf — eand(oO W) — (¢ O W).

It turns out thatSIUL is algebraizable in the sense of [1], and its equivalenttadgje
semantics is constituted by the variety of SIU-algebras.

Theorem 4. ([18]) (1) SIUL is finitely strongly complete with respect to the class of
standard SlU-algebras. (ZIUL is not strongly complete with respect to the class of
all standard SlU-algebras. (3) Tautologicity and conseugeerelation inSIUL are co-

NP complete.
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Level dependent capacities have been proposed in [1] dtif@g8" Linz Seminar
in 2007 (see also [2, 4]). An axiomatic approach to univargafral based on standard
capacities was given in [3]. We discuss the axiomatizatfaimaversal integrals based
on level dependent capacities.

Given a measurable spac¥, 1), the set of all measurable functions frofnto
[0,1] is denoted bﬂm and the set of all capacities @K, .2) by M XA A level
dependent capacity o(r)( A) is a family (m)i¢)01 Of set functionsm: 4 — [0,1],
where eacm is a capacity or{X, 4), and for the set of all level dependent capacities
on (X, 4) we write sm(lx A | M = (mal)te]o,l] andM;, = (ml)te]o,l] are two level
dependent capacities then we say tifatis smallerthan My (in symbolsM; < M)
if M1,Mz € im(lx’ﬂ) for some measurable spaf¢,4), andm; 1( ) < m 2(A) for all
t €1]0,1] andA € 4. For a fixedM € 9)?(1X’ ), a functionf € 701 ) is calledM-4-

measurabléf the functionhy 1 : ]0,1] — [0, 1] given by
bt (1) = m({f > t})

is Borel measurable. The set of kit 4- measurablefunctlonsnﬁ ] ) will be denoted

(X,4,M)

by ?0 1] . Moreover, we put

o= U | U (Mxsgg™) |

X X, 4
(X,2)es Memg )
wheres is the class of all measurable spaces. Similarly, we put

Doy= U (Ml(xﬂ) X f[(()?(i]ﬂ)) :

(X,2)es
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Definition 1. A functionL : L0y — [0,1] is called alevel dependent capacity-based
universal integralf the following axioms hold:

(L1) L is nondecreasing in each component, i.e., for each meds\spdcg X, 42), for
all level dependent capacitiéd;, M, zmﬁ“’ satisfyingM; < My, and for all
functionsf; € Tio1 X’O‘Ml ,foce T4 X’O‘MZ with f; < f, we have

L(My, f1) <L (Mg, f2),

L2) there is a universal integrat Q)Ol — [0,1] such that for each measurable space
[ ]
(X,A4), for each capacitpn e fM for eachf T (X ﬂM , and for each level de-

pendent capacityl = (M )icj0.1) € 9)1(1 satlsfylngm =mforallt € [inf f,supf]N
10,1] we have
LM, f) =1(m,f),

(L3) for all pairs(Mq, f1), (My, f2) € Lo,y With hyy 1, = hw, 1, we have
L(Mq, f1) =L (Mg, f2).

Observe that, because of axiom (L2), each level dependpatitg-based universal
integralL is an extension of some universal intedral

Remark 1. (i) The Choquet integral with respect to level dependenaciies (intro-
duced in [2], see also [1]) is a special case of Definition 1hia $ense that the
universal integral in axiom (L2) is the classical Choquet integral.

(ii) The Sugeno integral based on level dependent capa¢&iadied in [4]) is another
special case of Definition 1: here the universal integialaxiom (L2) is the clas-
sical Sugeno integral.

Because of axiom (L3), for each level dependent capacisgdaniversal integral
L and for each paifM, f) € Lj 1}, the value_ (M, f) depends only on the functidm ¢
which is Borel measurable. Denote {the set of all Borel measurable functions from
10,1] to [0,1].

Theorem 1. AfunctionL : i) — [0, 1] is a level dependent capacity-based universal
integral if and only if there is a semicoputa: [0,1]? — [0,1] and a function . ¥ —
[0,1] satisfying the following conditions:

(V1) V is nondecreasing,
(V2) V(d 1) =c®dforallc,d € [0,1],
(V3) L(M, f) =V (hu ) forall (M, f) Lo -
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A unital quantaleQ, &) is divisible if wheneverm < b in Q, there areci,c2 € Q
such thata = c1&b = b&cy. Given a divisible unital quantal@, &), it is possible to
construct different quantaloids from it. In this note, faca divisible quantaléQ, &)
we consider two special quantaloi@sandQ. Q has only one object which is identified
with the top element & Q, andQ(1,1) = Q with composition given byio = a&.
The quantaloid is constructed as in [3],

objects: elementa € Q.

morphismsQ(a,b) = {a € Q:a <aAb}.

compositionfoa = (B b)&a =B& (b, a) foralla € Q(a,b),B € Q(b,c).
the unit , of Q(a,a) isa.

— the partial order o (a,b) is inherited fromQ.

A Q-categoryA is a setA equipped with a map : A x A— Q such that

(1) ¥xe AJA(x,x) =1,
(2) Yx,y,z€ A A(Y, 2&A(XY) < A(X,2).

Q-categories are a special case of categories enriched imaidab closed category
[2], and have been studied both as quantitative domainsn@Jea sets endowed with
fuzzy orders [1].

A Q-categoryA is a setA equipped with a map : A x A — Q satisfying:

(1) A(xy) <AXX)AA(y,y) forall x,y € X;
(2) Ay, 2&(A(y,y) \VA(XY)) < A(xz) forall x,y,z€ A

Q-categories are examples of categories enriched in a gwatfB, 10], and can be
studied af)-subsets with quantale-valued preorders [7].

We are concerned with the relationship betweerQbeategories and) -categories.
This problem belongs to the change-base issue in the théeryiched categories [4].
We consider three lax functogs,, ®; and® from Q, to Q, given by&,a = b\, a,
Gia=a,/ aandda = (b, a)A(a  a)foralla c Q(a,b). These lax functors give
rise to three functors:

— & : Q-Cat — Q-Cat, the backward globalization functor;
- &;: Q-Cat — Q-Cat, the forward globalization functor;
— & : Q-Cat — Q-Cat, the globalization functor.
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Theorem 1. Supposé\ is a Cauchy complet@ -category. Then both the forward glob-
alization®;A and the backward globalizatiati, A are Cauchy complet®-categories.

But, whether the functa® preserves Cauchy completeness remains open.
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A partial metric space is a generalisation of a metric spatteducing non zero self
distance. Originally motivated by the need to model comipletpartially defined infor-
mation such as the asymmetric topological spaces of Scotagotheory in Computer
Science, it now falls short in an important respect. present cosbf computing infor-
mation, such as processor time or memory used, is rarelessgimle in domain theory.
In contrast contemporary algorithms incorporate tighttomrover the cost of com-
puting resources. Complexity theory in Computer Sciencedramatically advanced
through the understanding of algorithms over discretdlyotkefined data structures
such as directed graphs, and without the need of partiaflpetkinformation. And so
we have an unfortunate longstanding separation of parédtionspaces for modelling
partially defined computable information from the highlywadced complexity theory
of algorithms for costing totally defined computable infation. It is thus reasonable
to propose that a theory of cost for partial metric spaceg breipossible to help bridge
the separation of domain theory and complexity theory. yadialk will present our
research into understanding and resolving the issues rafdinting a complexity the-
ory style notion of cost to partial metric spaces. As workixgmples we consider the
cost of computing a double negatienp in two-valued propositional logic, the cost
of computingnegation as failurén logic programming, and a cost model for thia-
tontime delay proposed by Wadge. The importance of our reséstorkeep pushing
forward from an earlier world of classical domain theory raltidg computability of
partially defined information to the contemporary realifyfGomputer Science being
a world of dynamic, adaptive, intelligent, & biocomputingstems. Building better
minds together ... No challenge today is more important tty@ating beneficial arti-
ficial general intelligence (AGI), with broad capabilities the human level and ulti-
mately beyontf. Given then a fuzzy s\, m: A — [0,1]) so useful in modelling such
sophisticated systems it is necessary to ask what is thetostmputingm(x) for any
x € A? More precisely, how can the definitionrafe constrained to always incorporate
an appropriate notion of cost? While we are a long way fromdpable to answer this
fascinating question there is a relevant role model for hategory theory has already
enriched computation. The introductionrabnadsy MoggpP to computation and later

4 Open Cog Foundation opencog.org
5 Notions of computation and monads, Eugenio Moggi, Inforamaand Computation 93(1)
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functional programming in Haskélis being used to formalise our understanding of
how to introduce cost to partial metric spaces. Why? Funefiprogramming offers a
A-calculus based model of what can be defined in a logic of ceatipn, which can
then be enriched with monads to provide a behavioural mddew efficiently a func-
tional program is being used. From this programming expegeof the complexity
of computation we work to extrapolate a theory & practicalisicrete partial metric
spaces

6 www.haskell.org
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1 Introduction and preliminaries

One purpose of this paper is to propose a new kirld-fafzzy closure operators which is
equivalent td_-fuzzy closure systems. Besides, some other characierizaifL-fuzzy
closure systems will be presented.

Throughout this pape(L, Vv, A,”) denotes a completely distributive De Morgan al-
gebra. The smallest element and the largest elemehtdre denoted byl and T,
respectively. The set of nonzero coprimes iis denoted byl(L). Fora, b € L, we say
“ais wedge belovb” in symbola < bif for every subseb CL,\/D > bimpliesa< d
for somed € D.

For a nonempty seX, L* denotes the set of all-fuzzy subsets oX. The set of
nonzero coprimes ibX is denoted by)(L*X). It is easy to see thak(L*) is exactly the
set of all fuzzy points, (A € J(L)). The smallest element and the largest element in
LX are denoted by. andT, respectively.

Definition 1 ([7]). A mapping} : LX — L is called an L-fuzzy closure system on X if it
satisfies the following conditions:

(S1) ¢(L)=T; (S2) ¢(i/€\|Aa)>i/€\l¢(Ai)-

The pair (X, ) is called an L-fuzzy closure system spac$ i an L-fuzzy closure
system on X

A mapping f: X — Y between two L-fuzzy closure system spéXesx ) and(Y,dv) is
called continuous YA€ LY, dx (< (A)) > ¢y (A), where - is defined by f(A)(x) =
A(f(%)) [18].

Itis easy to check that-fuzzy closure system spaces and their continuous mappings
form a category, denoted hyFCS.

Definition 2 ([8]). A mappingt : L* — L is called an L-fuzzy pretopology on X if it
satisfies the following conditions:
(LFPT1) (1) =T; (LFPT2) T(VA)> AT(A).
i iel

i€l
The pair(X,1) is called an L-fuzzy pretopological space iis an L-fuzzy pretopology

on X. A mapping f: X =Y between two L-fuzzy pretopological spa¢¥stx) and
(Y,Ty) is called continuous VA € LY, tx (f<(A)) > 1y (A).

Itis easy to check that-fuzzy pretopological spaces and their continuous maggping
form a category, denoted byFPTOP.

Theorem 1. L-FCSis isomorphic to LFPTOP.
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2 L-fuzzy closure systems characterized bi-fuzzy closure
operators

(¥

Definition 3. An L-fuzzy closure operator on X is a mappigL* — L") satisfying

the following conditions:

(C1) C(L)(%\) = L forany % € J(LX);
(C2) C(A)(xy) =T forany ¥ <A;
(C3) A<B= C(A) < C(B);

(CH cAx)= AV CB)W-
N EB=AY LB

A set X equipped with an L-fuzzy closure operafodenoted by X, C), is called an
L-fuzzy closure space. A mappingX — Y between two L-fuzzy closure spaésCx)
and(Y, ¢y) is called continuous if’xy € J(LX), VA€ LX, Cx(A) (%) < & (F7(A) (F(X)n).

Itis easy to check thdt-fuzzy closure spaces and their continuous mappings form
a category, denoted ly-FC.

Theorem 2. A mapping f: X — Y between two L-fuzzy closure spa¢¥sCx) and
(Y, &) is continuous if and only ifx, € J(LX), VB LY, G (< (B)) (%) < G (B)(f(X)y).

Theorem 3. If ¢ is an L-fuzzy closure system on X, defige LX — L") as follows,

W € I(L7), VAELY, G(A(x) = A ¢(B),
\ £B>A

then(y is an L-fuzzy closure operator on X.

Theorem 4. If f : (X,$x) — (Y,dy) is continuous with respect to L-fuzzy closure sys-
tems¢x and ¢y, then f: (X, Gyy) — (Y, Gpy) is continuous with respect to L-fuzzy
closure operatorgy, and Cy, .

Theorem 5. Let C be an L-fuzzy closure operator on X. Define: LX — L by

VAEL®, dc(A) = N (C(A(X))"-

X)p;{A
Theng - is an L-fuzzy closure system on X.

Theorem 6. If f : (X, x) — (Y, &) is continuous with respect to L-fuzzy closure op-
erators (x and &y, then f: (X,¢4) — (Y, ) is continuous with respect to L-fuzzy
closure systemé, andd, .

Theorem 7. (1) If Cis an L-fuzzy closure operator, thely . = C.
(2) If ¢ is an L-fuzzy closure system, thigg, = ¢.

Theorem 8. L-FCSis isomorphic to LFC.
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3 The other characterizations ofL-fuzzy closure systems

(LX

Definition 4. An L-fuzzy interior operator on X is a mappig LX — L") satisfying

the following conditions:

(1) I(T)(%\) = T for any % € I(LX);

(12) I(A)(x\) = Lforany » £A;

(13) A<B=I(A) < I(B);

(14) 1A =V A I(B)(y

X\ <BLAyu=<B
A set X equipped with an L-fuzzy interior operatbrdenoted by(X, I), is called
an L-fuzzy interior space. A mapping: K — Y between two L-fuzzy interior spaces
(X, Ix) and (Y, k) is called continuous if’x, € J(LX), VB € LY, Ix(f(B))(x\) >
K (B)(f(X)n)-
It is easy to check thdt-fuzzy interior spaces and their continuous mappings form

a category, denoted hyFI.

Definition 5. An L-fuzzy neighborhood system on X is defined to be asef¥, | x) €
J(LX)} of mappings § : L* — L satisfying the following conditions:

(LN1) No (T) =T, Ny (L) =L,

(LN2) N, (A) = L foranyx £ A;

(LN3) A< B = Ny, (A) < Ny (B);

(LN4) No(A)= 'V A Ny(B).

X <B<AYu<B
A set X equipped with an L-fuzzy neighborhood system{Ny, | x, € J(L*)}, denoted
by (X,N), is called an L-fuzzy neighborhood space. A mapping<f— Y between
two L-fuzzy neighborhood spac€s,Nx) and (Y,Ny) is called continuous iff’x, €
I(LX), VB LY, (Nx)x, (F(B)) = (Nv)t(x), (B)-
The category ol-fuzzy neighborhood spaces with their continuous mappisgs

denoted by -FN.

Definition 6. An L-fuzzy quasi-coincident neighborhood system on X inet&fo be a
set Q= {Q, | x, € J(LX)} of mappings Q : L* — L satisfying the following condi-
tions:

(QN2) Q, (A) # L = x\ L A

(QN3) A< B = Qy (A) < Qy(B);

(QN4) Q(A) = 'V A Qu(B).

N EB2A Y LB

A set X equipped with an L-fuzzy quasi-coincident neighbodisystem @ {Qy, | X\ €
J(LX)}, denoted byX, Q), is called an L-fuzzy quasi-coincident neighborhood spAce.
mapping f: X — Y between two L-fuzzy quasi-coincident neighborhood sc€x )
and(Y,Qy) is called continuous ifx, € J(L*), YBe LY, (Qx)x, (f~(B)) = (Qv)tx), (B).

The category of -fuzzy quasi-coincident neighborhood spaces with themtioo-
ous mappings is denoted byFQN.

Theorem 9. L-FCS, L-FPTOP, L-FC, L-FI, L-FN and L+QN are all isomorphic.
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1 Introduction and motivation

In our paper [14] the concept of &fi-approximate system whekld is a fixed complete
lattice was introduced and basic properties of the categbMi-approximate systems
were studied. We regard the concept ofNirapproximate system and the correspond-
ing category as the framework for a unified approach to varwategories related to
(fuzzy) (bi)toplogical spaces ([2], [5], [3], [4], [13], [8[11], [12], etc) and to (fuzzy)
rough sets ([10], [1], etc). Although the attempts to study telations between fuzzy
topological space and fuzzy rough sets and to introduce texballowing to give a
unified view on these notions were undertaken also by oth#ioas; see e.g. [6], [7],
[15], [16], the approach presented in [14] is essentialffedént. In this work we con-
tinue the research dfl-approximate systems. However, as different from our joevi
work here we consider the caseafariable rangeM, that is allow to change lattice
M. In particular this alllows to include also the category M-topological spaces with
varied latticeM in the scope of our research. In our work two lattices willyplae fun-
damental role. The first one is an infinitely distributiveilz, that is a complete lattice
L = (L, <, A, V), satisfying the infinite distributivity laws A (V¢ bi) = Vie (@A by)
andaV (Aig bi) = Aiei (@Vvhby) forallae L, {bj |i €} C L. Its top and bottom ele-
ments are @ and Q, respectively. Sometimes we assume that the laticeequipped
with an order reversing involutioh: I. — L. In particular, ifL is enriched with a bi-
nary operatiorL « L — IL such thatl = (IL, <, A, V, *), is Girard monoid, in particular
an MV-algebra then involution is naturally defined &= (a+— 0) — 0. The second
lattice belonging to the context of our worki4. At the moment we assume only its
completeness, however in applicationd td-fuzzy topology we need to assume that
it is complete distributive. Its bottom and top elementsGgeand % resp., @ # 1y.
that isM contains at least two elements. For the categories of cam|aittices, com-
plete infinitely distributive lattices and of complete irifely distributive lattices with
an order reversing involution will be denot€dL AT, IDL andIDLC respectively.

2 Basic definitions

Definition 1. An uppeM-approximate operator oh is a mappingulL x M — IL s.t.

(1u) u(0Op,a) =0p, Vo € M;
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(2u) a<u(a,0) YaeL, Va € M;

(3u) u(avb,a)=u(a,a)vu(b,a) va,b e L, Va € M;
(4u) u(u(a,0),0) =u(a,0) Vae L, Va € M;

(5u) a <B,a,peM = u(a,a) <u(ap)vael.

Definition 2. A lowerM-approximate operator ofv is a mapping t L x M — L s. t.

ah 1(1p,a) =1, Vo € M;

(2l) a>I(a,0) Vac L, Ya € M;

3l) I(anb,a) =I(a,a) Al(b,a) Va,b e L, Va € M
4 1(l(a,0),0) =I(a,a) Vac L, Va € M

(B a<B,a,peM=I(a,a) >I(a,p) vacL.

Definition 3. A quadraple(L,M,u,l), where u L xM — Land|: L xM — L are
upper and loweM-approximate operators oh, is called anM-approximate system
onL or just an approximate system. An approximate system iscall

(T) tight, if u(a,0y) =1(a,0p) =aVaeL;
(SA) semicontinuous from above if
u(a, Niel aj) = Niel u(a,ai),l(a, Niel aj) = Vierl (a,ai);
(WA) weakly semicontinuous from above if
u(a,ai)=aVviel=u(a,A\ic;ai)=aandl(a,aij)=aviel =I(a Vi 0i) =a

If X is a set,L is a lattice,I. = L* and (I.,M,u,l) is an approximate system, the
tuple (X,L,M,u,l) is called an approximate space.

3 Lattice of M-approximate systems on a fixed latticéd.

Let 45™(LL) stand for the family of allM-approximate system@., M, u,|) wherelL
andM are fixed. Further, let Bs™ (L), D-25™ (L), SA-25™ (L), WA-25M (L) stand
on the subfamilies af1.$™(IL) consisting respectively of tight, self-dual, semicontinu
ous from above, and weakly semicontinuous from alddvapproximate systems dry
respectively. We introduce a partial orderon the family.4.5™ (L) by setting

(L,U1,|1) = (L,U2,|2) iff uy > up andly <ls.

Theorem 1. (45 (L), <) is a complete lattice. Its top element (&, ur,l+) where
ur(a,a) =Ir(a,a) = a for every ac L and everya € M and its bottom element is

(L,ug,l ) where
UL (a,0) :{ 1y, ifa+#0L

OL, ifa=0g
o ifatl,
ll(a7a){l]]4, ifa:lL
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Theorem 2. (T-leSM(]L), <) is a complete lattice whose top element is the same as in
(as™(L), =), thatis(IL, M, ut, 1), and whose bottom elementis, M, u' , I ), where

t

u, (a,a)=«¢ 0, ifa=0g

1, ifa#0p anda # Oy
a, if a =0y

1z, ifa= 1L

Oy ifa= 1, anda # Oy
I (a,0) =
a, if a=0y

Theorem 3. The family(WA-45" (L), <) of weakly semicontinuous from abdvie
approximate systems is a complete sublattice of the latticg” (L), <).

Theorem 4. LetD € Ob(IDLC ). Then the familypp-45"(IL), <) of self-dual approx-
imate systems is a complete sublattice of the lattizs" (L), <).

4 Category AS of approximate systems

Let AS be the family of all approximate syster(is, M, u,l). To considelAS as a cat-
egory whose class of objects are Mlapproximate system@L,M,u,l) wherelL €
Ob(IDL ) andM € Ob(CLAT ) we have to specify its morphisms. Given two approxi-
mate systeméLi, My, us,l1), (L2, M2, up,12) € Ob(AS) by a morphism

F o (La, My, ug, 1) — (g, M2, U, 12)
we call a paifF = (f,0) such that

(Am) f :L; — Ly is a morphism in the categotpL °F;
(2m) ¢ : M; — M is a morphism in the categoGLAT °P;
(3m) u1(f(b),d(B)) < f(uz(b,B)) Vb€ Lo, VB € Mpy;
(4m) f(I2(b,B)) <11(f(b),9(B)) Vb € L2,V € My

Remark 1.The categonAS™, whereM is a fixed lattice, which was studied in [14]
can be identified with a subcategory of the catedb#S havingM-approximate sys-
tems(IL, M, u,1) as objects and paifs = (f,idy) : (L1,Mz,us,11) — (L2, M, up,l2) as
morphisms.ify; : M — M stands for an identity mapping.) In particular, in case when
M is a two-point lattice we obtain the categdk$?.

Theorem 5. Every source  (L1,M31) — (Li,Mj,u;,li), i €1 in AS has a unique
initial lift F; : (L1, My, ug,l1) — (Li, M, u, 1), i 1.

Theorem 6. Every sink F: (Li, Mj, ui,li) — (L1,M1), i € | in AS has a unique final
lift Fi: (]Li,Mi,Ui,h) — (]Ll,Ml,UlJl), iel

Corollary 1. CategoryAS is topological over the categotpL °P x CLAT °P with re-
spect to the forgetful funct@ : AS — IDL °P x CLAT °P.
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We study also the categorical properties of the full sulyzaies ofAS whose ob-
jects are tight, self-dual, and (weakly) semicontinuoasfabove approximate systems
as well as some other classes of approximate systems. loyartwe show that

Theorem 7. CategoryD-AS of self-dual approximate systems is topological over the
categoniDLC °P x CLAT °Pwith respect to the forgetful funct@r: D-AS — IDLC °P x
CLAT °P.

Some subcategories &S determined by restricted classes of morphisms will be
also in the scope of our interest. Finally we will discusdedi#nt concrete categories
related to fuzzy (bi)topology and fuzzy rough sets regaaesubcategories @fS.
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David Corfield was asked recently by someone for his opiniorthe possibility
that category theory might prove useful in machine learniiggt of all, he would not
want to give the impression that there are signs of any imntibeeakthrough. For
other areas of computer science the task would be easieaffays!). Category theory
features prominently in theoretical computer science asriteed in books such as [2].

And what about statistics? One direct help may be a prolaltfileory. In a cou-
ple of web posts Corfield discussed a construction of prdibabieory in terms of a
monad. He pointed out a natural inclination of the Bayesighink about distributions
over distributions fits this construction well.

Moreover, Graphical models, which include directed gratdgether with Bayesian
networks, may sometimes form a symmetric monoidal category

Another dimension to spaces of probability distributiosnghiat they can be studied
by differential geometry in a field known as information gesirg. For an insightful
treatment in the context of nonlinear models see [5], gétrea@ment may be found in
(1].

Beside the above mentioned issues, one practical applic&ir empirical statis-
tics, the“categorization” of inference function will be discussed. In [3] we have real-
ized (by empirical research) a need of non-crisp monotgnfor Fisher information
of experiments under heteroscedasticity. The classicderiinformation is based on
the “classical” score function, used by the pioneers of modgtistics (Karl Pearson,
Francis Y. Edgeworth and Sir Ronald A. Fisher) have beendhiced as a local change
of log-likelihood w.r.t. to a parameter of interest, moredéen case to case studies.
However, an alternative score can be defined ([4]) and provérxave some desirable
properties ([6] and [7]) in classical statistical inferen¢én nonparametrics, a similar
inference function, so called influence function is used.racfical discussion of this
aspects in a context of ttfeategorization” of inference function will be given.
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In this lecture | shall aim to give an overview of the basic agpts in the theory of
quantaloid-enriched categories, giving as many examleisree permits. First | shall
recall what quantales and quantaloids are, and how one demputensions and lift-
ings inthem. Then | shall define categories, functors artdligors enriched in a quan-
taloid, saying something about the universal property afngaloid-enrichment too. |
shall explain how every functor between quantaloid-emitbategories determines a
left adjoint distributor, and that this very fact is at theahteof quantaloid-enriched cat-
egory theory. By way of illustration | shall show how to defadjunctions, presheaves,
(co)limits, (co)completions, and so on. Further | shall aayord about the symmetri-
sation of quantaloid-enriched categories. And finally llsimaicate the link between
quantaloid-enriched categories on the one hand, and modul& quantaloid on the
other. This lecture should provide (more than) the backgdadiat is needed for H.
Heymans’ lecture on sheaf theory via quantaloid-enrichtmen

58



On the characterisation of
regular left-continuous t-norms

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems
Johannes Kepler University, Linz, Austria
Thomas.Vetterlein@jku.at

1 Introduction

Quantales are complete lattices endowed with an assaidithary operatiom dis-
tributing from both sides over arbitrary joins [Ros]. A quale is called strictly two-
sided if there is a top element that is neutral want.and it is called commutative if
© is commutative. In the special case that the complete dattiche real unit interval
endowed with the natural order, a strictly two-sided, cortative quantale is an algebra
well-known in fuzzy logic: a left-continous (I.-c.) t-noradgebra [KMP].

We consider this type of structure from a constructive poiview, being interested
in its complete description. Our viewpoint is algebraic asalassify I.-c. t-norm alge-
bras up to isomorphism only. However, we also make use of mastfrom analysis, in
particular from the theory of functional algebras. _

Let ([0,1];<,3,0,1) be a |.-c. t-norm algebra. We denote by ; <,0,0,id) the
associated translation tomonoid. That/is, consists of all (inner right) translations

2S00, —[0,1]): x> x®a

by somea € [0, 1]; < is the pointwise ordeg; is the function composition; arfdlis the
zero constant function, id the identical function. The isophisma — A§ of the semi-
group([0,1]; ®) and its translation semigrop; o) [CIPr] extends to an isomorphism
between([0,1]; <,®,0,1) and(As; <,0,0,id). We have [Vet]:

Theorem 1. Let® be a |.-c. t-norm. Thei\ is a set of functions frorf0, 1] to [0, 1]
with the following properties:

(T1) Every f is increasing.

(T2) Every f and g commute.

(T3) Foreveryte [0,1], there is exactly one f such thatlf) =t.

(T4) Every f is left-continuous.

Conversely, lef\ be a set of functions froff, 1] to [0, 1] fulfilling (T1)—(T4). Then there
is a unique l.-c. t-norn® such that\ = Ag.

The following heuristic argument may illustrate how the qmet work was moti-
vated. Consider the following depictions of the translatemonoids of the three basic
continuous t-norms:
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tukasiewicz t-norm Product t-norm Godel algebra

1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
0 02040608 1 0 02040608 1 0 02040608 1

Observe that, in each of these cases, if the picture was aoowpletely covered
and we were able to inspect an arbitrarily narrow stripewéhe identity line only, we
would be able to reconstruct the whole functional algelmdactt, the functions in a
neighborhood of the identity either generate the wholelakeor it can be concluded
that all functions are idempotent and thus uniquely deteechiby the intersection of
their graphs with the identity line.

2 Regular |.-c. t-norms: the simple case

The exact facts have been examined in the paper [Vet], ofiwthie present work is
the continuation. As might be expected, the above obsensto not apply for all I.-c.
t-norm algebras. We restrict our attention to the followsodpclass.

Definition 1. A l.-c. t-norm® is called regular if the following conditions hold:

(1) Thereis an nk wsuch that each £ Ag has at most n discontinuity points.

(2) Forte0,1], pute&t) = inf{s: sot=t}. Thentherear@=vo<vi <...<w=1
such that for each + 0,...,k— 1, the map gy, is continuous and one of the
following possibilities holds:

(@) €lv,v,,) is constantr, and we havest =t for allt € (vi,Vii1);
(b) €l(viu,4) is strictly monotonous.

Vit1)

Even if this condition looks special, the class of t-normedlgas based on regular
l.-c. t-norm is not neglible — in the sense that it generateswthole variety of MTL-
algebras.

Regular I.-c. t-norm algebras can be decomposed in a spegfic Namely, let
(Ae; <,0,0,id) be the translation tomonoid of the regular I.-c. t-napmiThen we may
determine a characteristic sequence of pdiws. . ., vk) — cf. the definition of regular-
ity —, called aframefor . For eachbasicinterval (vi,vit1], we consider the induced
translation tomonoid:

N = fuwaa s FENo}
where f, v 0 (Vi,Vida] = (Vi Vi) s am f(@) vvi. We call (Ay, v,,1:<,0,0,id) a
basic tomonoiaf ©.

Theorem 2. Any basic tomonoid associated to some |.-c. t-norm belamgs¢ out of
six isomorphism classes.
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3 Regular |.-c. t-norms: the general case

Knowing the basic tomonoids associated to a I.-c. t-ngrimmeans to know how the

translations by the elements of each basic interval actisrséime interval. This knowl-

edge alone may or may not determine the whole t-norm algébthe former case, a

l.-c. t-norm is fully characterised by (1) the sizef a frame, (2) the type of each of the
k basic tomonoids, and (3) the intervals parametrising tisecliamonoids.

The question how the translations by the elements of one rasirval act on the
remaining intervals has not yet been addressed; this i@fhie of the present work.

Let (Ag; <,0,0,id) be the translation tomonoid of the regular |.-c. t-narmLet
(Vo, ..., Vk) be a frame foro. For each pair of distinct intervals;, vi1] and(vj,Vvj11],
put

V A% 1 VJ VH’l
H o = cfeN:
(Vi,Vig1] { (ViViq] Q}’

(Vj !Vj+l]
(ViVis1]

where f(&)?,(){fl]ﬂ: (Vi,Vig1] = (Vj,Vj41]: am (f(a) VVj) Avjp1. We callH

lower tomonoidf ©.

a

It turns out that the lower tomonoids are largely determimgthe basic tomonoids:

for eachi, j, the algebra-l(v" ‘*]1] is determined as follows. There is a totally ordered

set of functiondH, uniquely determined by, v, ;] and/\(vj,vjﬂ] such thaH((\\/'J\;'”ﬂl]
is an interval ofH. As a consequence, for the description of a general reguar,
we need in addition to (1), (2), and (3) above to specify (é)riflevant intervals of the

lower tomonoids, and (5) the intervals parametrising theeldcomonoids.

The three-part Hajek t-norm
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As an example, we consider a t-norm that was proposed in afieddorm by P.
Hajek [Haj]:

a(3b—2) if a< 1 andb> 2,

3ab—2a-b+1 ifi<a<Zandb> 2,
a®b=<{3ab-2a-2b+2 ifab> 2,

0 ifa<?andb< 2,

3ab—a-b+3 ifl<ab<?

for a,b € [0,1]. We have the following characteristic data. (1) Size of fea (2) Type
of basic tomonoids: product; product; product. (3) Paraisiag intervals:[%, 1); [%, 1);
[%, 1). (4) Intervals of the lower algebras: full; full; full. (Sptervals parametrising the

lower algebras{3, 2); [3.2); [0, 3).

4 Conclusion

We have shown that any left-continous t-norm fulfilling thendition of regularity al-
lows a particular type of decomposition into finitely manynstituents. Namely, the
real unit interval may be divided into finitely many subinals and the tomonoids of
translations by the elements of one interval restrictedhtutlzer interval may be indi-
cated by means of six isomorphism classes. In short, we nsagiase to a regular |.-c.
t-norm its characteristic data, describing how the t-naradmposed from a finite set
of specific constituents.

Conversely, it is not difficult to check if given data to canst a I.-c. t-norm is
actually the characteristic data of a l.-c. t-norm. An ea#igdon to decide this question
is, however, not known to us.
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1 Introduction

The algebra of truth values for fuzzy sets of type-2 consitadl mappings from the unit
interval into itself, with operations certain convolut®aof these mappings with respect
to pointwise max and min. This algebra has been studied sixtdy as indicated in the
references below. The basic theory depends on the faciQ}iatis a complete chain,
so lends itself to various generalizations and considmnadf special cases. This paper
develops the theory where each copy of the unit intervalptared by a finite chain.
Most of the theory goes through, but there are several dpsiamstances of interest.

2 The Algebra M(m")

For a positive integen, let n be the sef1,2,...,n}. This set has its usual linear order
which we denote by<, max and min operations denotedand A, negation given by
-k =n—k+ 1, and the obvious constants 1 amd/Vith these operations,becomes a
De Morgan algebra, in fact a Kleene algebra since it alssfgega A —a < bV —b.

We denote bym" the set{f : n — m} of all mappings from the set into the set
m. The algebravi (m") consists of the sanh" with operations given in the following
definition.

Definition 1. Onm", let

(fug @M=V (f()rgk)

V=i
(fng)(i)= "\ (f(i)rg(k)
i Ak=i
) = V1) = 1)
j=-i
= mifi=m —~ . mifi=1
1('):{1 ifi £ m a”do('):{l ifi 1

Thus we have the algebra

M (m") = (m", 1,1, -,0,1)
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There are two other operations on the functionsilh namely pointwise max and
min. We also denote these hyand A, respectively. Just as in the cag[0,1]%Y),
these operations help in determining the properties oflgebaaM (m") via the auxil-
iary operations-(i) = vj<if(j) and fR(i) = vj=i f ().

The operationsl andr in M(m"™) can be expressed in terms of the pointwise max
and min of functions in two different ways, as follows.

Theorem 1. The following hold for all fg € M(m").
fug=(fAg) v (f-ag)=(fva)a(f-agh)
frg= (fAg®) Vv (fRAg) = (fvg) A (FRAGR)

Using these auxiliary operations, it is fairly routine taifethe following properties
of the algebra (m"). The details of the proofs are almost exactly the same a&éor t
algebrav ([0,1](%)), which are given for example in [9].

Corollary 1. Let f, g, he M(m"). Some basic equations follow.

1 fuf=ffnf=f

2. fug=guf; frng=gnf

3. fu(guhy=(fug)uh; fri(gnh)=(frg)rh
4. fu(fng)=fn(fuo)

5. 1nf=f;0uf="f

6. ~—f=f

7.

ﬁ(fug):ﬁfl_lﬁg; ﬁ(fﬂg):ﬁfl_lﬁg

The elements oM (m") may be deonoted by-tuples(as,a, ..., an) of elements
of m. Note that with this notation, im" the elementl is (1,1,...,1,m) and O is
(m,1,1,...,1). Further note that the algebra has an absorbing eleftieht .., 1). Fi-
nally, —(az,az,...,an) = (&n,an-1,...,81)-

3 The Main Results

Each ofLI andr, being idempotent, commutative and associative, givedoisa partial
order. These partial orders are definedfby, gif fug=gandf < gif frg= f.

Theorem 2. The partial orders<;, and <p are lattice orders.

The equations listed above do not form an equational basigl f{m"). We do not
know an equational basis fd# (m") nor even if a finite one exists. However, similar to

the case oM ([0, 1] [0’1]) [4], we do get the following.

Theorem 3. For m> 2, the algebrasv (m") andM (2") generate the same variety and
thus satisfy the same equations.

Theorem 4. Letn > 5. ThenM (2") and M (2°) generate the same variety and thus
satisfy the same equations.
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One main objective of this paper was to show that the autohiempgroup of the
retract(m",L1,1) of M (m") is trivial, that is, has only one element. To effect this, the
irreducible elements ofm", LI, 1) were determined.

Theorem 5. Let mn > 2. The irreducible elements ¢i",11,M) are these.

1. The absorbing elemefi,1,...,1).

2. The n-tuple with frin the i-th place and. elsewhere.

3. The element m/ m,.

4. If n= 2, n-tuples that contain m, and the absorbing element.

Using the theorem above and long sequence of lemmas, weggketlibwing.

Theorem 6. The automorphism group @Mm",Li,1) has only one element.

4 Comments

One principal result of this paper is that the partial ordeeiy by the operation! is a
lattice, and analogously for. For the operationl, the sup of two elementsandg is

f LIg, but the inf of the two elements is the sup of the set of all elets below botH
andg. The element$ andg aren-tuples of elements ah, and the inf is given by some
formula in the elements in these twetuples.

Problem 1. Find a formula for the inf of two elements in the lattice detered byL.
And similarly, do the same for the lattice determined by

Problem 2. In the case of the algebt#0, 1]%¥, i), determine whether or not the partial
order determined by is a lattice.

In the case o3, the lattices determined by and byr are both distributive, but
this is not true for alm".

Problem 3. For whichm" are the lattices determined hyandr distributive? We con-
jecture none fomandn > 3.

The proof thatAut(m",J,M) consists of only the identity automorphism was ef-
fected by a long sequence of lemmas, etc. Hopefully, thesenisich shorter and less
computational proof.

Problem 4.Find a proof thaut(m", LI,M) is trivial that is more conceptual, less com-
putational, and shorter.

In showing that the automorphism group(ai",LJ,M) consists of only the identity
automorphism, we used in the proof that an automorphismepred bothil andm.
But small examples show that the automorphism groumdf, L)) is just the identity
automorphism, and we suspect that this is true in generghawe no proof.

Problem 5. Find the automorphism group ¢i",L1). (Since(m", 1) and(m", ) are
isomorphic, their automorphism groups will be isomorphic.
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Finally, there are many ways to specialize and to genertiizé¢ruth-value algebra
([0, 1][0’1],|_|,|—|,ﬁ,0, 1) of type-2 fuzzy sets. We have just taken a finite chain for each
interval[0, 1]. For example, one could take any two complete lattices auster substi-
tute one finite chain for one of the intervd®; 1], and so on. Such investigations may
be of interest.
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Abstract. As Hohle observed in [9] the fact that the topology assedab a
probabilistic metric space is metrizable means that,frbis topological point
of view, probabilistic metric spaces are always equivakenbrdinary metric
spaces,and the problem of topologization of probabilisiigtric spaces is not
satisfactorily solved. He proposed many-valued topokogie suitable tools for
this purpose. Hence in [15], we endowed George and Veerarianky metric
(which has close relation to probabilistic metric) with nparalued structures-
fuzzifying topology and fuzzifying uniformity. The aim ofiis paper is to go on
studying the properties of George and Veeramani’s fuzzyiméat/e will give the
concept of convergence degree and generalize the coneerged compactness
theories in metric spaces to Veeramani's fuzzy metric space

1 Introduction

Metric space plays an important role in the research andagtigins of topology. Con-
vergence theory is an another important part in metric spaoel is the key tool in
studying completeness. Probabilistic metric space, argénation of the ordinary met-
ric space, was first studied by Menger [12] and further dexedioby Schweizer and
Sklar [14]. Inspired by the notion of probabilistic metrfzases, Kramosil and Michalek
[10]in 1975 introduced the notion of fuzzy metric, a fuzzyisethe Cartesian product
X x X x [0 satisfying certain conditions (see Definition 2.12 for aifanform). George
and Veeramani [1-3] slightly modified the definition of Krasil@nd Michalek’s fuzzy
metric space and associated each fuzzy metric space to adtéuspology.

Till now many topological structures and related theoriagehbeen defined and
studied on the probabilistic metric space and George andaxfemi’s fuzzy metric
space. For example, Hohle [7, 8] studied the associataddgjes and the fuzzy unifor-
mities in the probabilistic metric space, J. Gutiérrezdgaand M.A. de Prada Vicente
[6] studied the Hutton [0,1]-quasi-uniformities generhtey the George and Veera-
mani'’s fuzzy metric. Gregori,etc,in [4, 5] studied the cergence and completeness in
George and Veeramani's fuzzy metric spaces. Recall thatlueM(x,y,t) in the def-
inition of George and Veeramani’s fuzzy metric can be thawghthe degree of the
nearness betweenandy with respect ta. Hence in this paper, we want to give the
degree convergence theory of sequence in fuzzy metric spacd generalize the cor-
responding theory of convergence and compactness in cssetric spaces to fuzzy
metric spaces.
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2 Convergence in fuzzy metric spaces

Since the valud(x,y,t) can be thought as the degree of the nearness betnerahy
with respect td, in this section, we will give the definitions of degree camence and
study the relationship between them.

Definition 1. Let (X,M) be a fuzzy metric space,&X and{x,} be sequence. The
degree to whicH{x,} converges to x is defined by

Con({x},x)= A\ \V /\ M(xn.x.€).

e>0Nea >N

The degree to whickix,} accumulates to x is defined by

Ad({xat. )= A A V M, xe).

e>0Nea n>N

The degree to whickix,} is a Cauchy sequence is defined by

Cauchy{x})= A\ A\ V M(,Xmn,e)

e>0Nea’ n,m>N

Lemma 1. Let (X, M) be a fuzzy metric spaceexX and{x,} be sequence. Then we
have the following results:

(1) Con({x},x) = Ad({x},x) = Cauchy{x}) = 1, where{x} is the constant se-
quence of x;

(2) Con({xn},x) < Ad({xn},%);

(3) Con{xn},x) < Cauchy{xn}) for all x € X;

(4) Ad({Xn},X) =V (x,, y CON({Xn },X);

(3) Ad({Xn},X) <V (x,, } CON({Xn },X)-

(6) Ad({xn},x) ACauchy{xn}) < Con({xn},X).

Example 1.Let d be an ordinary metric oiX andM? be the induced fuzzy metric.
In the following, we know that the convergence(X, M%) is coincident with that in
(X,d).

€ _ 1; Xn — Xa
Con({xn},x) /\ \/ /\ s+d (Xn, X) £/>\OE+/\N69\[\/n>Nd(Xn7X) {O, others

e>0Nea’ n>N

€
CaUCh){{Xn} X /\ \/ /\ 8+d Xn7Xm) B /\ E+/\N69\[ \/n,m>Nd(Xn7Xm)

e>0Nea’ n,m>N e>0

1, {xn}is Cauchy
10, others

€ 1, XpooX
X X
AW i DAY {o, others
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Example 2.Let X = {x,y} andd : X x X x (0,+) — [0,1] be defined by

1, a=b=x
1, a=b=y,
M@bt=9 1 atptsi

1
§+ta a#bvt S 25

Thend is a fuzzy metric orX andCon({x},y) = Ad({x},y) = 3. If we take{x} =
{X,¥,% Y, X...}, thenCon({x,},x) = 0 andAd({xn},Xx) = 1.

3 Compactness in fuzzy metric spaces

In this section, we want to generalized the compactnessinmspaces to fuzzy setting
according to the above convergence theory.

Definition 2. Let (X,M) be a fuzzy metric space. The degree to wiiXM) is com-
pact is defined by
CompgM) = A \/ Ad({xn},x).
{Xn} XX

The degree to whicfiX, M) is sequently compact is defined by
ScompM) = A \/ \/ Con({x}.%).

{¥n} {xn, } x€X

Definition 3. Let (X,M) be a fuzzy metric space anddF2*. The degree to which F is
ane-net of(X, M) is defined by

e—net(F)= A\ \/ M(xy,e).

xeXyeF

The degree to whictiX, M) is totally bounded is defined by
TotallbM) = A \/ &—net(F).

e>0F c2(X)

The degree to whicfiX, M) is complete is defined by
CompletéM) = A\ (Cauchy{x}) — \/ Con({xn},x))

{*n} xeX
Theorem 1. Let (X, M) be a fuzzy metric space. Then Cap = ScomgM).

Theorem 2. Let (X, M) be a fuzzy metric space. Then

Totallb(M) = A \/ Cauchy{x,}).
{xn} {6 }

Theorem 3. Let (X,M) be a fuzzy metric space. Then Cap = CompletéM) A
Totallb(M).
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