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Since their inception in 1979, the Linz Seminars on Fuzzy SetTheory have
emphasized the development of mathematical aspects of fuzzy sets by bring-
ing together researchers in fuzzy sets and established mathematicians whose
work outside of fuzzy set theory can provide directions for further research. The
philosophy of the seminar has always been to keep it deliberately small and
intimate so that informal critical discussions remain central. There are no paral-
lel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2012 will be the 33rd seminar carrying on this traditionand is devoted
to the theme “Enriched Category Theory and Related Topics”.The goal of the
seminar is to present and to discuss recent advances in enriched category theory
and its various applications in pure and applied mathematics.

A large number of highly interesting contributions were submitted for pre-
sentation at LINZ 2012. This volume contains the abstracts of this impressive
collection. The regular contributions are complemented byfour invited talks
which are intended to give new ideas and impulses from outside the traditional
Linz Seminar community.

Ulrich Höhle
Lawrence N. Stout

Erich Peter Klement
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On the nature of correspondence between
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1 Introduction

The correspondence between partial metrics and fuzzy equalities was discovered in
2006 [1]. It was immediately apparent that there was a duality between metric and
logical viewpoints, and so the question about the nature of correspondence between
partial metrics and fuzzy equalities arose.

Initially, the authors of [1] suggested that we should talk about equivalence between
partial metrics and fuzzy equalities up to the choice of dualnotation. This suggestion
was based on the notion that the duality between metric and logical viewpoints belonged
to the metalevel and was a part of the mindset of the practitioners in the respective fields,
but did not affect the mathematical structures involved. Werefer to this suggestion as
theequivalence approach.

The equivalence approach remains a legitimate way of viewing this correspondence.
In particular, while there is a varierty of possible choicesof allowed spaces and mor-
phisms, in all cases studied so far there are (covariant) isomorphisms of the correspond-
ing categories of partial metric spaces and spaces equippedwith fuzzy equalities. The
induced specialization orders on a partial metric space andthe corresponding space
equipped with a fuzzy equality also coincide. So, in this sense there seems to be no
duality between partial metrics and fuzzy equalities themselves.

Later Mustafa Demirci suggested that the duality between metric and logical view-
points should nevertheless be brought into formalization of this correspondence by ex-
plictly requiring that logical values and distances were respresented by dual structures.
We refer to this suggestion as theduality approach.

It turns out that the duality approach to understanding thissituation is preferrable.
It allows to formally express a larger chunk of existing informal mathematical practice,
and it allows to do so without explicitly considering the metalevel. Even more impor-
tantly, being closer to the respective intuitions of the practitioners in the related fields
the duality approach makes it easier to develop applications.
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Another aspect of the duality between logical values and distances is that the mul-
tiplicative notation is used on the logical side and the additive notation is used on the
metric side. This suggests that it might be possible to bringsome kind ofexponentia-
tion into play as well, potentially resulting in a more complicated correspondence and,
perhaps, a genuine duality between partial metrics and fuzzy equalities. To the best of
our knowledge, this has not been done so far and should be considered an open prob-
lem. (It should be noted here that it is not uncommon to start with a metricd(x,y), to
express the degree of similarity ofx andy as f (x,y) = e−d(x,y), and to call the resulting
f (x,y) a fuzzy metric with the appropriate transformation of the axioms of a metric.)

2 Definitions

We provide informal sketches of definitions of quantale-valued partial metrics [3] and
quantale-valued sets (sets equipped with quantale-valuedfuzzy equalities) [2].

2.1 Quantale-valued Partial Metrics

The quantaleV is a complete lattice with an associative and commutative operation+,
distributed with respect to the arbitrary infima. The unit element is the bottom element
0. The right adjoint to the mapb 7→ a+ b is defined as the mapb 7→ b−̇a =

∧
{c ∈

V|a+ c≥ b}. Certain additional conditions are imposed.

Definition 1. A V-partialpseudometric space is a set X equipped with a map p: X×
X →V (partial pseudometric) subject to the axioms

• p(x,x)≤ p(x,y)
• p(x,y) = p(y,x)
• p(x,z)≤ p(x,y)+ (p(y,z)−̇ p(y,y))

2.2 Quantale-valued Sets

The quantaleM is a complete lattice with an associative and commutative operation∗,
distributed with respect to the arbitrary suprema. The unitelement is the top element
1. The right adjoint to the mapb 7→ a∗b is defined as the mapb 7→ a ⇒ b =

∨
{c ∈

V|a∗ c⊑ b}. Certain additional conditions are imposed.

Definition 2. An M-valued set is a set X equipped with a map E: X×X → M (fuzzy
equality) subject to the axioms

• E(x,y)⊑ E(x,x)
• E(x,y) = E(y,x)
• E(x,y)∗ (E(y,y)⇒ E(y,z)) ⊑ E(x,z)
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3 Equivalence approach

Whenever we have a quantale in the sense of section 2.1, we canequip it with a dual
order,⊑=≥, and it becomes a quantale in the sense of section 2.2 (and vice versa in the
opposite direction).

Define∗ as+, a⇒ b asb−̇a, 1 as 0 (and vice versa in the opposite direction).
Then partial pseudometrics and fuzzy equalities coincide as sets of functions. This

justifies the equivalence approach.

4 Duality approach

However we found it convenient to press the duality approachas far as possible.

4.1 Partial Ultrametrics Valued in Browerian algebras

For example, considerΩ-sets valued in Heyting algebras. Following the duality ap-
proach, on the metric side of things we will talk about partial ultrametrics valued in
dual Heyting algebras, but really pressing this approach asfar as possible, we’ll use the
terminology ”partial ultrametrics valued in Browerian algebras”, and whenΩ is actually
the algebra of open sets of a topological spaceX, we will consider partial ultrametrics
valued in the algebra of closed sets of the same space.

This helps to understand and establish the following result.

4.2 Sheaves of Sets as Co-sheaves ofα-ultrametrics and Non-expansive Maps

Consider a complete Heyting algebraΩ. Consider a corresponding complete Browerian
algebraα.

Then every separated pre-sheaf of sets overΩ can be thought of as a separated
co-pre-sheaf ofα-ultrametrics and non-expansive maps overα.

To develop the necessary intuition one should first considerthe case whenΩ andα
are the algebras of, respectively, open and closed sets of a given topological space.

4.3 Partial Metrics into Non-negative Reals

In the logical situations (arising in domains for denotational semantics, and, in general,
in connection with the specialization order on the space of distances) we typically have
to flip the ray of non-negative reals, making 0 the top element.

If we press the duality approach as far as possible, the logical counter-part of the
partial metrics into non-negative reals ought to befuzzy equalities valued in non-
positive reals. So instead of flipping the ray of non-negative reals we replace it with the
symmetric ray of non-positive reals.

Partial ultrametrics correspond to idempotent logic (usually, to the ordinary intu-
itionistic logic). Partial metrics should typically correspond to linear logic, and we think
about linear logic as the resource-sensitive logic. So, from the linear logic point of view,
it is natural to think about the weight (self-distance) of anelement as the work which
still needs to be done to make it fully defined. This is the workto be done, something
owed, hence negative.
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4.4 Intuition Related to Relaxed Metrics

Relaxed metrics typically map(x,y) into an interval number[l(x,y),u(x,y)], whereu is
usually a partial metric, andl is usually a symmetric function, such thatl(x,y)≤ u(x,y).

Functionu yields an upper bound for the inequality between “true, underlying x
andy”; essentially, “x andy differ no more thatu(x,y)”, while l yields a lower bound
for that, essentially, “x andy differ at least byl(x,y)”. There is an intimate relationship
betweenl and negative information, and also betweenl and tolerances.

From the earlier logical considerations of relaxed metricswe know thatu dualizes,
but l does not. This means that on the logical side,U becames negative (non-positive,
actually), butL remains non-negative.

So, whileU represents a work still owed (a work to estimate distance better, actu-
ally), and hence negative,L represents a work done, and hence positive (on the logical
side). Interestingly enough, the conditionl(x,y) ≤ u(x,y) on the metric side becomes
L(x,y)+U(x,y)≤ 0 on the logical side.

If the distance between elements,x andy, is precesely defined (often the case for
maximal elementsx andy), thenl(x,y) = u(x,y), or equivalentlyL(x,y)+U(x,y) = 0,
expressing the fact that no further computations are owed.

In general the amount which expresses debt here is notU(x,y), butL(x,y)+U(x,y)=
l(x,y)−u(x,y). (Note thatl(x,x) is always 0, so the self-distance is always fully owed.)

5 Conclusion

The correspondence between partial metrics and fuzzy equalities allows for the transfer
of results and methods between these field, and helps in considering non-trivial inter-
play between metric and logical situations.

There is a long list of situations where this correspondenceshould be useful. We
only name a few of them here.

It is particularly important to study metric counterparts of the logical research gener-
alizing the fuzzy equalities to the non-commutative case and to categories, in particular
results for sets valued in non-commutative quantales (Höhle and Kubiak) and results
for sets valued in Grothendieck topologies (Higgs).

Weighted quasi-metrics are a remarkably effective instrument on the metric side,
and their logical counterparts would probably be as useful as the global quantale-valued
sets which are the logical counterparts of weighted metrics.
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A Stone-type adjunction for fixed-basis fuzzy topological
spaces in abstract categories and its applications

Mustafa Demirci

Department of Mathematics
Akdeniz University, Antalya, Turkey

demirci@akdeniz.edu.tr

Abstract. In this study, fixed-basis fuzzy topological spaces are formulated on
the basis of a certain object of an abstract category, and a Stone-type adjunction
for them is established. Applications and consequences of this adjunction is dis-
cussed. As its particular consequence, it is shown that the category ofB-categories
(and so the category of quantale preordered sets) is dually adjoint to the category
of base spaces.

1 Introduction and motivation

Since the inception of the fuzzy topological spaces (calledthe lattice-valued topological
spaces or the many valued topological spaces in more recent terminology), their truth
value structures (or their bases in the terminology of [8, 5,12, 13]) have been extensively
studied in the literature. The selection of bases varies from author to author and from pa-
per to paper. Completely distributive complete lattices with order-reversing involutions
[16], semiframes [11], frames [6], cl∞-monoids [10], GL-monoids with square roots
[7], complete groupoids [5], complete quasi-monoidal lattices [8, 12], semi-quantales
[2, 13] and algebras in varieties [14] are known examples of such bases. The diversity
of bases naturally brings the question of how the notion of fixed-basis fuzzy topological
space can be defined on the basis of an objectL of an abstract categoryC. Although
a similar categorical question is also valid for other approaches to the notion of fuzzy
topological spaces such as variable-basis fuzzy topological spaces [11–13] and general-
ized lattice-valued topological spaces [2], we focus on only the fixed-basis case in this
study. Apart from fuzzy topologies, Stone-type adjunctions form an important theme
of the order-theory (see [3] and the references therein). Among others, the adjunction
between the categoryLoc of locales and the categoryTop of topological spaces is a
well-known example of these adjunctions. The studies on Stone-type adjunctions give
rise to a fundamental question: Is it possible to extend the adjunction betweenLoc and
Top to an adjunction between an abstract categoryC and a category of spaces in some
generalized sense? This question is tantamount to the formulation of Stone-type ad-
junctions for abstract categories. Its solution relies on the fixed-basis fuzzy topological
spaces asked in the former question. The main aim of this study is to introduce the
notion ofC-M -L-space as a categorical generalization of fixed-basis fuzzytopological
space being an answer to the former question, and is to construct a dual adjunction be-
tweenC and the category ofC-M -L-spaces providing an answer to the latter question.
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2 C-M -L-spaces and their dual adjunction with C

Let the categoryC have products, and letM be a class of monomorphisms inC. Fur-
thermore, let us fix aC-objectL.

Definition 1. For a set X, we call the pair
(

X,τ m
→ LX

)

a C-M -L-space, andτ m
→ LX

a C-M -L-topology on X iffτ m
→ LX is anM -morphism.

Proposition 1. Each function f: X→Y determines a uniqueC-morphism f←L : LY→

LX (called backwardC-L-power operator of f ) such thatπx◦ f←L = πf (x) for all x ∈ X.

Definition 2. GivenC-M -L-spaces
(

X,τ m1
→ LX

)

and
(

Y,ν m2
→ LY

)

, a function f: X→

Y isC-M -L-continuous iff there exists aC-morphism rf : ν→ τ filling out the following
commuting diagram:

LY f←L
−→ LX

m2 ↑ ↑ m1

ν
r f
−→ τ

C-M -L-spaces andC-M -L-continuous maps constitute a category that we denote
by C-M -L-SPC. By supplying examples, it will be justified thatC-M -L-SPC is a cat-
egorical unification of many familiar categories of fixed-basis fuzzy topological spaces.
As the central result of this study, we will establish a categorical generalization of the
adjunction betweenLoc andTop in the following manner:

Theorem 1. For E ⊆ Mor (C) andM ⊆ Mon(C), let C have(E ,M )-factorizations
and the unique(E ,M )-diagonalization property in the sense of [1]. ThenC is dually
adjoint toC-M -L-SPC.

Referring to the unit and co-unit of the adjunctionCop ⊣ C-M -L-SPC, we define
L-spatialC-objects andL-soberC-M -L-spaces, and then point out in this study that the
restriction of the adjunction in Theorem 1 to the full subcategory ofC of all L-spatial
objects and the full subcategory ofC-M -L-SPC of all L-sober objects gives a dual
equivalence between these subcategories. The adjunctionCop ⊣ C-M -L-SPC covers
many known and new dual adjunctions between various kinds ofordered-structures and
various kinds of generalized topological spaces. Because of practical purposes, we pay
a special attention to the explicit determination ofC-M -L-SPCfor a concrete category
C. In particular, it will be proven in this talk to be an application of Theorem 1 that the
categoryCat(B) of B-categories [9, 15] (and so the categoryp-Q-Setof pre-Q-sets [9])
is dually adjoint to the categoryBS of base spaces [4].
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This work is motivated in part by a question arising from programming: if bitstream
x corresponds to bitstreamy to some degreeα, and if bitstreamy satisfies predicatea
to some degreeβ, then would it not be appropriate to model the possibility that bit-
streamx satisfies predicatea to at least some degree related to bothα and β? The
current multi-valued literature on topological and other systems, e.g., [1, 2, 4, 5, 9, 10],
ultimately rooted from [11], does not address this question. Notions from enriched cat-
egories help us address this question and its consequences.

An enriched categoryC [7] over a monoidal category(M ,⊗, I ,α,λ,ρ) [8] is a class
of objects with the following data (C1, C2, C3) subject to thefollowing axioms (D1,
D2, D3), where in the latter the last applied compositions are fromM and the other
compositions come from (C3):

C1 ∀a,b∈ C , ∃ !C (a,b) ∈
∣

∣M
∣

∣ (existence of hom-objects).
C2 ∀a∈ C , ∃ ida : I → C (a,a) (identities).
C3 ∀a,b,c∈ C , ∃ ! ◦abc : C (b,c)⊗C (a,b)→ C (a,c) (composition of hom-objects).
D1 ∀a,b,c,d ∈ C ,

(◦abd) ◦ (◦bcd⊗1) = (◦acd) ◦ (1⊗◦abc) ◦ α.

D2 ∀a,b∈ C ,
λ = (◦abb) ◦ (idb⊗1) .

D3 ∀a,b∈ C ,
ρ = (◦aab) ◦ (1⊗ ida) .

It is also said thatC is anM -enriched category.

It is well-known that a meet semilatticeL (a poset closed under finite meets), taken
as a preordered category, is a (strict) monoidal category inwhich⊗ is the binary meet,I
is the top element⊤, and the associatorα and the unitorsλ,ρ are all identities. Further,
it can be shown:
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Proposition 1. A set X, replacingC above, is an L-enriched category if and only if
there is anequality relationE on X such that:

E1 E : X×X→ L is a mapping (degrees of correspondence).
E2 ∀x∈ X, E (x,x) =⊤ (total existence).
E3 ∀x,y,z∈ X, E (x,y)∧E (y,z)≤ E (x,z) (transitivity).

It should be noted that each (Ci) corresponds precisely to each (Ei).
The consequent of the proposition is taken as the definition of (X,E) as anL-

enriched set.
If (E2) were to be replaced by a symmetry condition (∀x,y∈ X, E (x,y) = E (y,x)),

then the Fourman-Scott definition [3] of anL-valued setwould result as cited by Höhle
in [6].

For L-enriched set(X,E) , E (x,y) is interpreted as the degree to which bitstreamx
corresponds to bitstreamy.

Finally, with an eye to variable-basis notions later,(X,E,L) is called anenriched
set.

Example 1.Examples of enriched sets include the following:

1. LetX be a set andL be a meet semilatticeL with |L| ≥ 2. Choosea∈ L−{⊤} and
putE : X×X→ L by

E (x,y) =

{

a, x 6= y
⊤, x= y

.

Then(X,E,L) is an enriched set.
2. Let(X,d) be an ultrametric space bounded by 1, and putE : X×X→ L by

E (x,y) = 1−d (x,y) .

Then(X,E,L) is an enriched set.

GivenM -enriched categoriesC andD, thenF : C →D is anM -enriched functor
[7] if the following hold:

F1 ∀a∈ C , ∃ ! F (a) ∈D.

F2 ∀a,b∈ C , ∃ ! Fab∈M (C (a,b) ,D (F (a) ,F (b))) .
F3 ∀a∈ C , Faa◦ ida = idF(a) (in M ).
F4 ∀a,b,c∈ C , in M it is the case that

Fac ◦ (◦abc) =
(

◦F(a)F(b)F(c)
)

◦ (Fbc⊗Fab) .

Proposition 2. Given L-enriched sets(X,E) and(Y,F), where L is a meet semilattice,
it is the case that f: (X,E)→ (Y,F) is an L-enriched functor if and only f: X→Y is
a mapping such that∀x,y∈ X,

E (x,y)≤ F ( f (x) , f (y)) .
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The variable-basis extension ofL-enriched functors makes use of monoidal functors
as defined in [8]. LetM ,N be monoidal categories and letC be anM -enriched cate-
gory andD be anN -enriched category. Then(F,Ψ) : C →D is a(n) (variable-basis)
enriched functorif the following hold:

V0 Ψop : M ←N is a monoidal functor as defined in [8].
V1 ∀a∈ C , ∃ ! F (a) ∈D.

V2 ∀a,b∈ C , ∃ ! Fab∈M (C (a,b) ,Ψop[D (F (a) ,F (b))]) .
V3 ∀a∈ C , Faa◦ ida = Ψop

(

idF(a)
)

(in M ).
V4 ∀a,b,c∈ C , in M it is the case that

Fac ◦ (◦abc) = Ψop (◦F(a)F(b)F(c)
)

◦ (Fbc⊗Fab) .

The backward direction of, and notation for,Ψop are both motivated by topological
systems and variable-basis topology and, in particular, enriched topological systems
taken up below.

Proposition 3. Given enriched sets(X,E,L) and(Y,F,M), where L,M are meet semi-
lattices, it is the case that( f ,ψ) : (X,E,L)→ (Y,F,M) is an enriched functor if and
only f : X→Y is a mapping andψop : L←M is a meet-semilattice morphism such that
∀x,y∈ X,

E (x,y)≤ ψop[F ( f (x) , f (y))] .

The proposition justifies the following definition:

Definition 1. The categoryEnrSet comprises enriched sets(X,E,L) as objects and
enriched functors( f ,ψ) as morphisms; and in this setting, the latter are calledenriched
mappings. The full subcategory in which each L is a frame and eachψ is a localic
morphism is denotedEnrSetFrm .

It is straightforward thatEnrSet andEnrSetFrm are categories using the composi-
tions and identities ofSetandSLat(∧) , the latter denoting the category of (finite) meet
semilattices and (finite) meet preserving mappings.

Enriched topological systems, namely topological systemsbased upon enriched
sets, can now be defined.

Definition 2. EnrTopSys has ground categoryEnrSetFrm × Loc and comprises the
following data satisfying the following axioms:

1. Objects: ((X,L,E) ,A,�) , calledenriched topological systems.
(a) (X,L,E) is an enriched set, A is a locale (ground conditions).
(b) � is an L-satisfaction relation on(X,A) , i.e.,� satisfies both arbitrary

∨
and

finite∧ interchange laws (topological system consition).
(c) E and� are compatible, i.e.,∀x,y∈ X, ∀a∈ A, E (x,y)∧ � (y,a) ≤ � (x,a)

(compatibility condition).
2. Morphisms: ( f ,ψ,ϕ) : ((X,L,E) ,A,�)→ ((Y,M,F) ,B,�) , calledenriched con-

tinuous functions.
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(a) ( f ,ψ) : (X,E,L)→ (Y,F,M) is an enriched mapping,ϕ : A→ B is a localic
morphism (ground conditions).

(b) ∀x∈ X,∀b∈ B, � (x,ϕop(b)) ≤ ψop(� ( f (x) ,b)) (partial adjointness).
3. Composition and identities: those of the groundEnrSetFrm ×Loc.

Both enriched topological systems and enriched continuousfunctions are in plenti-
ful supply, with a number of example classes at hand, including the following example
class.

Example 2.Each enriched set(X,L,E) with L a frame generates an enriched topologi-
cal system. Given(X,L,E) , put

τ =
{

u∈ LX : ∀x,y∈ X, E (x,y)∧u(y)≤ u(x)
}

.

1. ∀y∈ X, Ey : X→ L by Ey(x) = E (x,y) . It follows that{Ey : y∈ X} ⊂ τ. It is im-
portant to note that the proof makes explicit use of the transitivity condition (E3)
above.

2. The collectionτ contains all constantL-subsets ofX.
3. It follows from the infinite distributive law ofL that τ is anL-topology onX and

hence a stratifiedL-topology onX.

SinceL is a frame,τ is a locale. Now put� : X× τ→ L by

� (x,u) = u(x) .

It can be checked that� satisfies the arbitrary
∨

and finite∧ interchange laws and that
E and� are compatible. Hence((X,E,L) ,τ,�) is an enriched topological system.

Returning to the definition of an enriched topological system, certain comments
should be made. First, the compatibility condition addresses the question posed at the
beginning of this abstract. Second, it should be noted that partial adjointness is a signif-
icant weakening of the adjointness condition of Vickers [11] and the associated systems
literature, but it should also be noted that the inequality retained above from Vickers’
adjointness is a natural and important one from the standpoint of programming. These
considerations motivate weakening the adjointness condition for the morphisms of the
important categoryLoc-TopSys[2, 9, 10] to partial adjointness as formally stated in the
above definition, thereby forming the categoryLoc-TopSys(≤) .

Theorem 1. EnrTopSysmaps functorially intoLoc-TopSys(≤) .

This theorem (with its proof) indicates that with respect toobjects, traditional topo-
logical systems in the sense ofLoc-TopSysalready accommodate enriched topologi-
cal systems; but with respect to morphisms,Loc-TopSysmust be generalized toLoc-
TopSys(≤) to accommodate enriched continuous functions between enriched topolog-
ical systems.

Finally, enriched topological systems afford new links to lattice-valued topology
andL-topological spaces in particular. For example, let((X,L,E) ,A,�) be an enriched
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topological system. In addition to the already known frame mapextL : A→ LX and the
attendantL-topological space(X,ext→L (A)) , there is the frame map

ext(E,L) : A→ LX×X by ext(E,L) (a)(x,y) = E (x,y)∧ � (y,a)

as well as, for fixedy∈Y, the frame map

ext(E,L,y) : A→ LX by ext(E,L,y) (a)(x) = E (x,y)∧ � (y,a) .

Theorem 2. Let ((X,L,E) ,A,�) be an enriched topological system. The following
hold:

1. ∀y∈ Y, ext→(E,L,y) (A) ≺ ext→L (A), i.e., the former L-topology is a refinement of the

latter L-topology with respect to the ordering of LX
.

2. Within L(LX)
, it is the case that

ext→L (A)⊂
∨

y∈X

ext→(E,L,y) (A)≡

〈〈

⋃

y∈X

ext→(E,L,y) (A)

〉〉

.

3. (X,ext→L (A)) L-homeomorphically embeds into
(

X×X,ext→(E,L) (A)
)

, namely the

former is L-homeomorphic to the subspace

(

∆(X×X) ,
[

ext→(E,L) (A)
]

|∆(X×X)

)

.
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An equivalent formulation of the title question is “Are terms important?” Yet an-
other isomorphic formulation is “Is concept (of) a type?”

Quantales are nice. Rosenthal [19] defined a (unital) quantale (Q,•,1,∨) to be a
monoid(Q,•,1) and a complete semilattice(Q,∨), so that• distributes over∨. This
abstract was partly inspired by the LINZ2012 call for paperstext “quantales and its ap-
plications to theoretical computer science”, yet, this is not an abstract about “quantales
and its applications to theoretical computer science”. What is this abstract then about?
It is about logic, it is about fuzzy and uncertainty representation, but in particular it is
also, but not only, and very much in particular not only, about truth values.

We are bold enough to say, that this abstract is not given justice, until the reader is
eventually at a saturated understanding about the main claim of this abstract (not saying
the reader has to agree with the authors on the claim), in factbeing one important
main claims of our work during the past decade, ever since theunderlying ideas behind
compositions involving the term monad [4] was presented at LINZ2000.

This main claim is stated in the following

Theorem 1. Yes, terms are important!

Initially we want to say something informally also about theother questions. It will be
clear that

Proposition 1. “Ontology< Logic” iff “Concept is a type”, and “Ontology = Logic”
iff “Concept is of a type”.

Corollary 1. “Being of a type” and “Being a type” is mutually exclusive.

1 Logic and fuzzy logic

Logic is not only computing with truth values. For propositional calculus, yes, but as
soon as we involve sentences with content as provided by terms, in turn building upon
an underlying signature, logic computation involves much more than mere manipulation
of truth values.
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Fuzzy logic is in a simple view extensions of whatever is crisp. Traditionally, fuzzy
logic is extending crisp truth values to fuzzy truth values.Most of the fuzzy logic litera-
ture indeed does not go beyond fuzzification of anything elsebut truth values. Moreover,
approach like Hajek’s BL [14] do go on into predicates, but terms inside predicates are
left as crisp objects so that e.g. substitution still is the very traditional and crisp one.

The situation ‘Ontology< Logic’ appears typically in description logic, which as-
sumes concepts to be atomic, i.e. description logic appearsmore like a propositional
calculus than a predicate calculus. In fact, the underlyingassumption seems very much
like having one single typeconcept, and having often a huge number of atomic con-
cepts, like e.g. seen in the medical vocabulary SNOMED CT, that like OWL/RDF has
adopted EL++ as a variant of description logic for its ontological purposes. The sim-
plicity of description logic is certainly intentional, as the motivation of using such a
‘partial logic’ is given the need to capture vocabulary, terminology and thesauri more
than explicitely reasoning with these concepts and structures.

However, were we to become interested in fuzzy ontology there is a risk that fuzzy
ontology in this narrow sense takes routes that even moves away from logical thinking.
Such fuzzy ontologies may later appear in fuzzy reasoning, and then it is not clear that
fuzzy approaches in fuzzyfying ontologies correlates withfuzzification of the logical
machineries.

This calls for using terms, and indeed assigning an important role to terms and their
semantics. Clearly, we also strongly speak in favour of terms in the wider sense, in
particular concerning uncertainty modelling of terms and and not just involving terms.

2 Terms in the wider sense

Terms are not interesting as such. Terms are interesting as part of sentences, and not to
forget, terms are interesting as part of other terms, the latter interest obviously leading
to substitution.

Terms are defined by a corresponding term monad, means that substitutions are
morphisms in the Kleisli category related to that particular term monad.

In [5, 6] we pointed a number of paradigms capturing different ways of modelling
uncertainty in these respects. These paradigms make a cleardistinction between ‘op-
erating with fuzzy’ and ‘fuzzy operation’. The underlying term monad for the former
is the composition of the fuzzy powerset monad with the traditional term monad, and
doing all this overSet. The underlying term monad for the latter builds upon an endo-
functor overSet(Q), where in principleQ could be a quantale, or could be something
else, yet appropriate. This gives us the basis for the “fullyfuzzy” situation which has
it’s starting point in considerations for terms and substituting with terms. Note that truth
values of sentences have not yet entered the scene at all. Notably, one might even allow
oneself to have a crisp logic with “fully fuzzy” terms. In fact, in real life applications,
this is indeed what happens mostly, i.e. observations and assessments of data and infor-
mation are fuzzy, but decision-making, like in health care for interventions, must in the
end be crisp.
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It should also be remarked that a shift from one-sorted to many-sorted is far from
trivial, even if folklore literature claims otherwise. Algebraic considerations need also
be precisely handled, as pointed out in [6].

Such terms then as included in sentences provides leads again to question and no-
tions about fuzzy sentences, and so on and so forth. The entire logic machinery all
the way down to inference calculi can be nicely described e.g. in the framework of
Meseguer’s general logic [16]. Moreover, general logic canbe further generalized from
the viewpoint of Theorem 1, namely, that a substitution oriented generalized general
logic indeed is more than feasible, not to say very desirable[7, 8].

3 Type theory

Whereas for terms, informal definitions of the term set mostly correspond to the formal
definitions of terms, so that ambiguities are avoided. Concerningλ-terms, the situation
with informal definitions about what is and isn’tλ-terms is less obvious, in particular
in the typed case. In [8] we make this situation explicit by considering levels of signa-
tures, i.e. being very observant about where particular types and related operators reside
especially before and afterλ-abstraction. Type constructors also need to be handled for-
mally, and their respective algebras must be identified withutmost care.

In this abstract we will not provide detail. However, we may say that starting from
a usual signatureΣ = (S,Ω), identifying the underlying primitive operations, we have
the term monadTΣ, overSet, or fully fuzzy overSet(Q). This situation issignatures,
terms and algebras at level one.

Then we may create a new signatureSΣ = ({type},Ω′), on signature level two,
with type as the only sort, and operators inΩ′ to be understood as type constructors.
Interesting on level two is the algebra oftype, namely,A(type) is the underlying
category of your choice.

Now we can makeTSΣ∅ the sort set forsignature level three, and the interesting
part is defining some operators into this signature.

In this separation of levels it is very transparent how e.g. operators at level one are
shifted over to level three. The most important observationat this stage is thatλ is not
a ‘term transformer’ but an ‘operator mover’ between level one and level three.

All this notions can be made precise, and we are able to show e.g. how problems
with variable renaming can be avoided. This is fully developed in [8].

Acknowledgements.This abstract and all our work on invoking uncertainty modeling
using suitable underlying categories is truly inspired by Lawrence Neff Stout. Thanks,
Larry!
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Motivated by the study of the sentential logics andπ-institutions, we introduce
the notion of closure operator on modules over quantaloids,and always driven by the
search of the solution of the Isomorphism Problem, as we explain below, we intro-
duce the notions of interpretability and representabilitybetween closure operators. This
yields a very rich theory with many nice properties: We provethat there exists a dual-
ity in the categories of modules over quantaloids, that theyare strongly complete and
strongly cocomplete, that they are (Epi, Mono)-structuredregular categories, that they
have enough injectives and projectives, and that they satisfy the strong amalgamation
property, among others. Some of these results are generalizations of the same results
obtained by Solovyov for categories of modules over quantales (see [10]). We charac-
terize monos and epis in the categories of modules over quantaloids, and furthermore
prove that every epi is induced by a closure operator on its domain.

We also study the notions of closure system on a module over a quantaloid, and
prove that they are exactly the submodules of the dual module, and that the standard
correspondence between closure operators and closure systems on a set extends to a
natural isomorphism. We prove that the set of closure operators that are interpretable
by a given morphismτ is a principal filter of the lattice of closure operators on its
domain. As a consequence, we obtain that every extension of an interpretable closure
operator is also interpretable by the same morphism. One instantiation of this result is
the well-known fact (see Theorem 2.15 of [4]) that if a sentential logic has an algebraic
semantics, then every extension of it also has an algebraic semantics and with the same
defining equations.

The Problem of the Isomorphism has its origin in the work of Blok and Jónsson,
who in order to study the property of algebraizability for sentential logics, and the
equivalence between deductive systems in general, introduced the notion ofequivalence
betweenstructural closure operatorson a setX acted on by a monoidM, or anM-set
(see [1]). As usual, given a monoid(M, ·,1), anM-set consists of a setX and a monoid
action⋆ : M×X → X, where 1⋆ x= x anda⋆ (b⋆ x) = (a ·b) ⋆ x, for all a,b∈ M and
x ∈ X. While the use of closure operators to encode entailment relations is very well
known, the action of the monoid is introduced to formalize the notion of structurality,
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that is, “entailments are preserved by uniform substitutions,” a property usually required
for logics.

Given anM-set〈X, ·〉, a closure operatorC onX is structuralon 〈X, ·〉 if and only if
it satisfies the following property: for everyσ ∈ M, and everyΓ ⊆ X, σ ·CΓ ⊆C(σ ·Γ),
whereσ ·Γ = {σ ·ϕ : ϕ ∈ Γ}. This can be shortly written as follows:

∀σ ∈ M, σC6Cσ. (Str)

This is known as thestructurality propertyfor C, since it takes the following form, when
expressed in terms of⊢C, the closure relation onX associated with the closure operator
C (defined byϕ ∈CΓ iff Γ ⊢C ϕ): for everyΓ ⊆ X, everyϕ ∈ X, and everyσ ∈ M,

Γ ⊢C ϕ ⇒ σ ·Γ ⊢C σ ·ϕ.

For everyσ ∈ M, a unary operationCσ on Cl(C) = 〈Cl(C),⊆〉, the lattice ofthe-
ories or closed setsof C, is defined in the following way:Cσ(Γ) = C(σ · Γ). Theex-
panded lattice of theoriesof a structural closure operatorC is defined as the structure
〈Cl(C),(Cσ)σ∈M〉.

In their approximation, Blok and Jónsson define two structural closure operators on
two M-sets to be equivalent if their expanded lattices of theories are isomorphic. Later,
they prove that under certain hypotheses (the existence of basis), this is equivalent to
the existence of conservative and mutually inverse interpretations, which is the original
idea of equivalence between deductive systems emerging from the work of Blok and
Pigozzi. This equivalence between the lattice-theoretic property of having isomorphic
expanded lattices of theories, and the semantic property ofbeing mutually interpretable
is known by the name of theIsomorphism Theorem. And the problem of determining
in which situations there exists an Isomorphism Theorem is called theIsomorphism
Problem.

The first Isomorphism Theorem was proved by Blok and Pigozzi in [2] for alge-
braizable sentential logics, and later it was obtained fork-dimensional deductive sys-
tems by them in [3] and for Gentzen systems by Rebagliato and Verd in [9]. But there is
not a general Isomorphism Theorem for structural closure operators onM-sets, as there
are counterexamples for that (see [8]).

In turn, Voutsadakis studied in [11] the notion of equivalence of π-institutions at
different levels (quasi-equivalence and deductive equivalence) and identified termπ-
institutions, for which a certain kind of Isomorphism Theorem also holds. The notion
of π-institution was introduced by Fiadeiro and Sernadas in their article [5] and can be
viewed as a generalization of deductive systems allowing multiple sorts. They constitute
a very wide categorical framework embracing sentential logics, Gentzen systems, etc.,
as they include structural closure operators onM-sets as a particular case. Therefore, a
general Isomorphism Theorem forπ-institutions is not possible (see [7]).

Sufficient conditions for the existence of an Isomorphism Theorem were provided
in [8] and [7] for structural closure operators onM-sets (and graduatedM-sets), andπ-
institutions that encompass all the previous known cases. The first complete solution of
the Isomorphism Problem was found for closure operators on modules over residuated
complete lattices, orquantales(see [6]). In this article, the modules providing an Iso-
morphism Theorem are identified as the projective modules. In particular, cyclic projec-
tive modules are characterized in several ways, from which the Isomorphism Theorem
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for k-deductive systems follows, and also for Gentzen systems, using that coproducts of
projectives are projective. The Isomorphism Problem forπ-institutions remained open.

One of our main results, as an application of the theory of closure operators on
modules over quantaloids to Algebraic Logic, is the following:

Theorem 1. If Q is a quantaloid, then aQ -module P is projective if and only if every
representation of a closure operator on P into another closure operator is induced.

This is the key result to establish that every equivalence between two closure op-
erators on projective modules is induced by mutually inverse interpretations. That is
the general solution for the Isomorphism Problem in the setting of modules over quan-
taloids.

We also explain how everyπ-institution induces a closure operator on a module
over a quantaloid, and every translation betweenπ-institutions induces a morphism in
the fibered category of all modules over quantaloids. Thus, we show how the theory
of closure operators on modules over quantaloids is a generalization of the theory of
interpretations and representations ofπ-institutions.

Acknowledgment. The second author was supported by grant P202/10/1826 of the
Czech Science Foundation.
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Categories of fuzzy sets and relations
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We define a category whose objects are fuzzy sets and whose maps are relations
subject to certain natural conditions. We enrich this category with additional structure
coming from t-norms and negations on the unit interval. We develop the basic properties
of this category and consider its relation to other familiarcategories.
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1 Introduction

It is well known that sheaves on a topological space(X,O) give rise to a category called
a Grothendieck topos [7], which can be seen as a constructiveuniverse of sets. The local
sections of a sheafF exist locally at opens ofX, such that the subobjects ofF form a
complete Heyting algebra (or frame), not necessarily a Boolean algebra. This sketches
a rough idea of the link between logic and geometry, which is so fruitfully exploited in
topos theory.

Another important field is non-commutative geometry [2], inwhich geometry is
dealt with implicitly through the study of non-commutativealgebras, likeC∗-algebras.
Attempts to make the hidden non-commutative topology more explicit have led to sev-
eral formalisms, including the theory of (involutive) quantales [8, 11]. Frames, like the
lattice of opens of a topological space, are commutative idempotent quantales (with
a trivial involution). It is not a surprise that people started thinking about sheaves on
quantales.

This idea sounds very natural, but there is a certain risk involved: are quantales
really good candidates for non-commutative topology and can we find a definition of
sheaves on a quantale that encapsulatesC∗-algebras? Unfortunately, this is still a matter
of discussion, after almost thirty years of research.

Although older definitions of sheaves on quantales (e.g., [9]) may diverge, more
recent versions are based on the observation that sheaves ona locale (frame)O can be
presented in the form idempotent symmetric matrices with values inO [3]. The indices
of the matrix represent the local sections and the values of the matrix give the regions
in which pairs of local sections agree. By replacing the frame by an involutive quantale
Q, we obtainQ-valued sets. Many more references can be found in the recentpaper of
Resende [10].

2 Enrichment over involutive quantaloids

The matrix approach is elegant, but problems emerge when onetries to conceptualize
the sheafification ofQ-valued sets. By consideringQ-valued sets as enriched categories
[1], we obtain more insight in these matters. They resemble metric spaces, which can be
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considered as categories enriched over the quantale of positive real numbers (extended
with infinity). Some caution is in order:Q-valued sets are not categories enriched over
Q, but rather over an involutive quantaloidQE, obtained by splitting a certain classE
of idempotents ofQ. Alternatively phrased,Q-valued sets are ratherreflexive, transitive
and symmetric matrices with values inQE (i.e., symmetric monads or equivalence re-
lations). Having settled this, the sheafification ofQ-valued sets may be defined as the
Cauchy completion ofQE-categories ([14] is an early example). Many elements of en-
riched category theory contribute to sheaf theory (distributors [12], limits, etc.). On the
other hand, sheaves on an involutive quantaleQ can be cast in the form of modules over
Q [13, 6, 5]. The more lattice theoretic oriented module theory has several advantages.

3 Grothendieck quantales

The sheaves on a locale give a localic Grothendieck topos. What about non-localic
Grothendieck toposes? We will show that every Grothendiecktopos can be seen as the
category (allegory [4]) of sheaves on what we call aGrothendieck quantale. A plausible
definition of a Grothendieck quantale might be: an involutive quantale such that the
category of sheaves on it is a topos (this definition is slightly simplified). The main
result of the talk is a simple axiomatization of Grothendieck quantales [5]. If there is
time left, I would like to address some of the questions raised in the introduction.
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Abstract. The purpose of this talk is to explain that topological spaces can be
formulated in any framework of premultiplicative quantaloid. In particular, the
following results are obtained in a cooperation with TomaszKubiak (Poznań,
Poland) during summer 2011.

Let Q be a quantaloid ([2]). First we recall the cocompletion ofQ -enriched cate-
gories (so-calledQ -categories (cf. [3])) and specify the powerQ -category monadTP

which is hidden behind the concept of cocompletion. Then we have the following the-
orems.

Theorem 1. Let P(X) Xwξ
be aQ -functor. Then the following assertions are

equivalent:

(i) (X,ξ) satisfies the first algebra axiom — i.e.ξ ·ηX = 1X.
(ii) (X,ξ) is aTP-algebra.

Theorem 2. LetX be a skeletalQ -category andP(X) be the powerQ -category. Then
the following assertions are equivalent:

(i) X is cocomplete.

(ii) There exists aQ -functor P(X) Xwξ
satisfying the first algebra axiom w.r.t.

the powerQ -category monad.

After these preparations we introduce the concept of premultiplicative quantaloids.

Definition 1. A quantaloid Q is called premultiplicative if every hom-set
Q (a,b) has an binary operation⊙ satisfying the following conditions:

(pm1) ⊙ is distributive overnon emptyjoins in both variables,
(pm2) ⊙ is subdistributiveover thecompositionin both variables — i.e. for all

a,b,c∈ obj(Q ) andα,β ∈ Q (a,b) the subsequent relations are valid:

γ· (α⊙β) ≤ (γ·α)⊙ (γ·β), γ∈ Q (b,c)

(α⊙β) ·γ ≤ (α ·γ)⊙ (β ·γ), γ∈ Q (c,a).
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In this context⊙ is a called apremultiplication. ⊓⊔

Example 1.Let [0,1] be the real unit interval equipped with the usual ordering and with
Łukasiewicz’ arithmetic conjunction∗ — i.e.

α ∗β = max(α+β−1,0), α,β ∈ [0,1].

Obviously,([0,1],∗) is a unital quantale. Further, letQ be the quantaloid with one ob-
ject determined by([0,1],∗). ThenQ is a premultiplicative quantaloid w.r.t. thebinary
minimumas well as w.r.t. thebinary arithmetic mean. ⊓⊔

Example 2.Let (L, ′) be a complete De Morgan algebra — this means thatL is a com-
plete (not necessarily distributive) lattice provided with an order reversing involution′.
In particular, the universal upper (resp. lower) bound inL is denoted by⊤ (resp.⊥).
Then we construct a quantaloidQ as follows. The set of objects ofQ is given byL
enlarged by a further elementω — i.e.

obj(Q ) = L∪{ω}.

The hom-sets ofQ with their respective partial orderings are given by:

– Q (a,a) is the two-point lattice for alla∈ L∪{ω}.
– Q (a,b) is a singleton, ifa,b∈ L with a 6= b.
– Q (ω,b) = {λ ∈ L | λ ≤ b} with the ordering fromL, if ω 6= b.
– Q (a,ω) = {λ ∈ L | a′ ≤ λ} with the ordering fromLop, if a 6= ω.

Then there exists a unique composition law satisfying the following properties:

– The composition preserves arbitrary joins in each variable separately.
– OnQ (a,a) the composition is the meet of the two-point lattice.
– If a 6= b andb 6= c, then the composition attaches the universal lower bound of
Q (a,c) to all (λ1,λ2) ∈ Q (a,b)×Q (b,c).

Finally, the multiplicative structure onQ is determined as follows: OnQ (a,a) we
use again the meet, while on hom-sets consisting of a unique morphism the binary
operation is evident. In order to complete the situation we have only to define binary
operations onQ (ω,b) andQ (a,ω) with a,b∈ L:

λ1⊙
b
ωλ2 =

{

λ1, λ2 6=⊥,

⊥, λ2 =⊥.

λ1⊙
ω
a λ2 =

{

λ2, λ1 6=⊤,

⊤, λ2 =⊤.

All this shows thatQ is a premultiplicative quantaloid. ⊓⊔

Let Q be a premultiplicative quantaloid with the local premultiplication ⊙ and
Cat(Q be the category ofQ -categories andQ -functors. We fix aQ -categoryX =
(X,e,d) and consider theQ -functor⊡ : P(X)×P(X)→ P(X) induced by⊙. Further,

let 1 P(X)w⊤X be aQ -functor defined by:

⊤X(a) = (a, f⊤a ), f⊤a (x) =
∨

Q (a,e(x)), x∈ X, a∈ obj(Q ).
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An extremal subobjectU P(X)wι of P(X) is called atopologyon X iff ι
satisfies the following axioms:

(T1) ⊤X factors throughι .
(T2) ⊡ · (ι × ι) factors throughι .
(T3) µX ·P(ι) factors throughι .

The axiom (T1) means that ‘the whole space is open. (T2) is theintersection axiom and
(T3) means thatι is closed under internal joins — i.e.ι is cocontinuous.

If X is provided with a topologyι , then(X, ι) is called atopological space in the
sense of the quantaloidQ .

Topological spaces in the sense ofQ form a category which is topological over
Cat(Q ).

In the case of Example 1 topological spaces are many valued topological spaces (cf.
[1]), while in the case of Example 2 we obtain non-commutative topological spaces pro-
vided the underlying De Morgan algebra is given by the lattice of all closed subspaces
of an arbitrary Hilbert space.
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Abstract. We present two very recent Mostert-Shields style classification the-
orems on residuatedl -monoids along with some related results in substructural
logics.

1 Introduction

Residuated lattices have been introduced in the 30s of the last century by Ward and
Dilworth [30] to investigate ideal theory of commutative rings with unit. Examples of
residuated lattices include Boolean algebras, Heyting algebras [6], MV-algebras [3],
basic logic algebras, [8] and lattice-ordered groups; a variety of other algebraic struc-
tures can be rendered as residuated lattices. The topic did not become a leading trend
on its own right back then. Nowadays the investigation of residuated lattices (that is,
residuated monoids on lattices) has got a new impetus and hasbeen staying in the fo-
cus of strong international attention. The reason is that residuated lattices turned out to
be algebraic counterparts of substructural logics [27, 26]. Applications of substructural
logics and residuated lattices span across proof theory, algebra, and computer science.
An extensive monograph discussing residuated lattices went to print in 2007 [7]. Sub-
structural logics encompass among many others, classical logic, intuitionistic logic,
relevance logics, many-valued logics, t-norm-based logics, linear logic and their non-
commutative versions. These logics had different motivations, different methodology,
and have mainly been investigated by isolated groups of researchers. The theory of
substructural logics has put all these logics, along with many others, under the same
motivational and methodological umbrella. Residuated lattices themselves have been
the key component in this remarkable unification.

Residuated lattices on the real unit interval[0,1] are of particular interest. On[0,1],
FLe-monoids (see Definition 1) are referred to as uninorms, integral FLe-monoids are
referred to as t-norms. Because they are residuated, those uninorms and t-norms∗
are left-continuous, as two-place functions. The residuum→ is given by x → y =
sup{z : z∗ x≤ y}. They determine both a substructural logic (obtained by interpreting
conjunction as∗ and implication as→) and a variety of commutative, integral and
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bounded residuated lattices, see [7]. It follows that left-continuous uninorms originate
a substructural logic, which may lack not only contraction,but also weakening.

Both for left-continuous t-norms and for left-continuous uninorms, those with an
involutive negation are of special interest. (Note that fort-norms negation is defined
by ¬x = x → 0, while for uninorms negation is defined as¬x = x → f , where f is
a fixed, but arbitrary element of[0,1], and stands for falsum just like 0 does in case
of a t-norm). Involutive t-norms and uninorms have very interesting symmetry proper-
ties [11, 14, 10, 24] and, as a consequence, for involutive t-norms and uninorms we have
beautiful geometric constructions which are lacking for general left-continuous t-norms
and uninorms [12, 20, 23]. Furthermore, not only involutivet-norms and uninorms have
very interesting symmetry properties, but their logical calculi have important symmetry
properties too: Both sides of a sequent may contain more thanone formula, while (hy-
per)sequent calculi for their non-involutive counterparts admit at most one formula on
the right.

A particularly interesting question is whether the varietyof algebras of a certain
logic are generated by only the algebras on[0,1] which are calledstandard algebras. If
the answer is yes, we say that the logic in question admits standard completeness. For
the logicsBL andMTL this problem has been solved in [2] and [17], respectively.

As for theclassification problemof residuated lattices, this task seems to be possible
only by posing additional conditions. The first result in this direction is due to Mostert
and Shields who investigated certain topological semigroups on compact manifolds
with connected, regular boundary in [28]. Being topological means that the monoid
operation of the residuated lattice is continuous with respect to the underlying topol-
ogy. They proved that such semigroups are ordinal sums in thesense of Clifford [4] of
product, Boolean, and Łukasieticz summands.

Next, the dropping of the topologically connected propertyof the underlying chain
can successfully be compensated by assuming the divisibility condition (which is, in
fact, the dual notion of the well-known naturally ordered property). The divisibility
condition is the algebraic analogue of the Intermediate Value Theorem in real analysis,
and it can be considered a stronger version of continuity of the monoidal operation:
Indeed, on a finite chain the order topology is the discrete one, so every operation is
continuous and hence does not necessarily obey the divisibility condition. Under the
assumption of divisibility, residuated chains, that is BL-chains, have been classified,
again, as ordinal sums with product, Boolean, and Łukasieticz summands. The divisi-
bility condition proved to be strong enough for the classification of residuated lattices
over arbitrary lattices too [22]. Fodor has classified thoseuninorms which have continu-
ous underlying t-norm and t-conorm [5]. But divisibility aside, no classification seemed
to be likely to exist due to the richness of residuated structures.

In this paper a first step is made in this direction: In one of the two classification
theorems of ours we do not assume divisibility nor even the slightest version of conti-
nuity.

First of all, we classify strongly involutive uninorms algebras (SIU-algebras), that is
bounded, representable, sharp, involutive FLe-monoids over arbitrary lattices for which
their cone operations are dually isomorphic. Let us remark that assuming the duality
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condition proved to be equivalent to assuming the divisibility condition only for the
positive and negative cones of such algebras.

Second, we classify sharp involutive FLe-monoids on complete, order-dense, semi-
separable chains. Here neither divisibility nor even the weakest form of continuity is
assumed. Surprisingly, the restriction of those monoids totheir negative cone is neces-
sarily continuous with respect to the order topology of their underlying chain. The result
seems only to hold under the conditiont = f , and hence a classification for involutive
FLe-monoids is still lacking, but in any case the result is very surprising, as involutive
integralmonoids may have discontinuities even below the fixed point of their negation.
While for involutive integral monoids (and even for involutive t-norms) a classifica-
tion is still lacking, for sharp involutive FLe-monoids on complete, order-dense, semi-
separable chains we can present a classification. Since[0,1] is a complete, order-dense,
semi-separable chain, our result provides with the classification of sharp, involutive
uninorms too. Remarkably, the adding of the involution condition to residuatedintegral
monoids does not bring usany closerto the solution of the related classification prob-
lem: As revealed by the rotation construction [12], every residuated integral monoid can
arise as a subsemigroup of an involutive residuated integral monoid.

Third, from the logical point of view, we want to solve some standard completeness
problems. Since uninorm logics are algebraizable in the sense of Blok and Pigozzi [1],
we can state the standard completeness problem in an algebraic way, recalling that valid
equations correspond to theorems of the associated logic and valid quasiequations cor-
respond to provable consequence relations. Now the question is if there is an equation
(resp., a quasiequation) of sharp, involutive, representable4 FLe-monoids which is valid
in all sharp, involutive FLe-monoids on[0,1] but not in all sharp, representable invo-
lutive FLe-monoids? When such an equation (resp., quasiequation) does not exist, the
corresponding logic is standard complete (resp., finitely strongly standard complete).
In [25], it is shown that the logic of uninorm algebras is standard complete, and the
problem has been left open for the logic of involutive uninorm algebras (aka. bounded,
representable, sharp, involutive FLe-algebras). We prove that the logic of sharp, involu-
tive uninorm algebras is not standard complete and that the logic of involutive uninorm
algebras is not finitely strongly standard complete. In addition, we axiomatize the logic
of SIU-algebras and prove that it is finitely strongly complete with respect to the class
of standard SIU-algebras, it is not strongly complete with respect to the class of all
standard SIU-algebras, and that tautologicity and consequence relation in it are co-NP
complete.

2 Preliminaries

As said in the introduction, uninorms are commutative, isotone monoids on[0,1]. On
general universe, however, we shall refer to them as FLe-monoids:

Definition 1. Call U = 〈X,∗◦,≤, t, f 〉 and as well its monoidal operation∗◦ an FLe-
monoidif C = 〈X,≤〉 is a poset and∗◦ is a commutative, residuated monoid overC

with neutral elementt. Define the positive and the negative cone ofU by X+ = {x ∈

4 An FLe-monoid is representable if it is subdirect product of chains.
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X | x ≥ t} and X− = {x ∈ X | x ≤ t}, respectively. Call an FLe-monoidU involu-
tive, if for x ∈ X, (x′)′ = x holds, wherex′ = x→∗◦ f . Call an involutive FLe-monoid
U sharp, if t = f . Call a sharp, involutive FLe-monoid a SIU-algebra, if forx,y∈ X−,
x′ ∗◦y′ = (x∗◦y)′ holds.

Standing notation: For an FLe-monoid〈X,∗◦,≤, t, f 〉, throughout the paper we de-
note the negative and the positive cone operation of∗◦, by⊗ and⊕, respectively.

Let U be an FLe-monoid. The algebraU, and as well∗◦ is calledconic if every
element ofX is comparable witht, that is, ifX = X+∪X−. U is calledfinite if X is a
finite set,U is calledboundedif X has top⊤ and bottom⊥ element. IfX is linearly
ordered, we speak about FLe-chains. Since∗◦ is residuated, it is as well partially-ordered
(isotone), and therefore,′ : X → X is an order-reversing involution. A partially-ordered
monoid is called integral (resp. dually integral) if the underlying poset has its greatest
(resp. least) element and it coincides with the neutral element of the monoid. It is not
difficult to see that∗◦ restricted toX− (resp.X+) is integral (resp. dually integral).

3 Two new Mostert-Shields type classification theorems

In [20] the authors give a structural description of conic, involutive FLe-monoids by
proving that the cone operations of any involutive, conic FLe-monoid uniquely deter-
mine the FLe-monoid via, what is called twin rotation:

Theorem 1. [20] (Conic Representation Theorem)For any conic, involutive FLe-
monoid it holds true that

x∗◦y=































x⊕ y if x,y∈ X+

x⊗ y if x,y∈ X−

(x→⊕ y′)′ if x ∈ X+, y∈ X−, and x≤ y′

(y→⊗ x′)′ if x ∈ X+, y∈ X−, and x6≤ y′

(y→⊕ x′)′ if x ∈ X−, y∈ X+, and x≤ y′

(x→⊗ y′)′ if x ∈ X−, y∈ X+, and x6≤ y′

. (1)

In [15] SIU-algebras on[0,1] have been classified. This result has been generalized in
[18], where we classify SIU-algebras over arbitrary lattices:

Theorem 2. ([18]) U = 〈X,∗◦,≤, t, f 〉 is a SIU-algebra if and only if its negative cone
is a BL-algebra with components which are either product or minimum components,⊕
is the dual of⊗, and∗◦ is given by (1).

Then, in [19] the authors can even weaken the quite usual continuity condition,
which was posed for the cone operators in SIU-algebras, and classify a subclass of
sharp, involutive FLe-monoids on[0,1] as follows:

Definition 2. ([19])A chain〈X,≤〉 is called semi-separable if there existsY ⊂ X such
thatY is dense inX and the cardinality ofY is smaller than the cardinality ofX.
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Definition 3. For an involutive FLe-monoidU = 〈X,∗◦,≤, t, f 〉 on a complete poset let

Sk(x) =

{

max{u∈ X+ | u⊕ x= x}, if x∈ X+

(inf{u∈ X− | u⊗ x= x})′, if x∈ X−

and call it the skeleton of∗◦ (c.f. [21]).

Theorem 3. ([19]) On a complete, order-dense, semi-separable chain,U is a sharp,
involutive FLe-monoid satisfying

for x∈ X−, Sk(x)′ ∗◦x= x (2)

if and only if the negative cone ofU is a BL-chain without Łukasievicz components, its
positive cone is the dual of its negative cone with respect to′, and∗◦ is given by (1).

We remark that due to the well-known Mostert–Shields classification theorem, a BL-
chain without Łukasievicz components is exactly an ordinalsum of Boolean and prod-
uct summands in the sense of Clifford [4].

4 Applications in Substructural Logic

4.1 The logic of SIU-algebras: axiomatization and standardcompleteness

Substructural fuzzy logics on a countable propositional language with formulas built
inductively as usual from a set of propositional variables,binary connectives

⊙
, →, ∧,

∨, and constants⊥, ⊤, f, t, with defined connectives:

¬A =de f A→ f
A
⊕

B =de f ¬(¬A
⊙

¬B)
A↔ B =de f (A→ B)∧ (B→ A)

Definition 4. MAILL (which is equivalent toFLe with ⊥ and⊤) is the substructural
logic consisting of the following axioms and rules:

(L1) A→ A
(L2) (A→ B)→ ((B→C)→ (A→C))
(L3) (A→ (B→C))→ (B→ (A→C))
(L4) ((A

⊙
B)→C)↔ (A→ (B→C))

(L5) (A∧B)→ A
(L6) (A∧B)→ B
(L7) ((A→ B)∧ (A→C))→ (A→ (B∧C))
(L8) A→ (A∨B)
(L9) B→ (A∨B)

(L10) ((A→C)∧ (B→C))→ ((A∨B)→C)
(L11) A↔ (t → A)
(L12) ⊥→ A
(L13) A→⊤

A A→ B
B

(mp)
A B
A∧B

(ad j)
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Definition 5. Uninorm logicUL and involutive uninorm logicIUL areMAILL plus
(PRL)(A→B)∧ t)∨((B→A)∧ t) andUL plus (INV)¬¬A→A, respectively. Strongly
involutive uninorm logicSIUL is IUL plus f → e and(φ

⊙
ψ)′ → (φ′

⊙
ψ′).

It turns out thatSIUL is algebraizable in the sense of [1], and its equivalent algebraic
semantics is constituted by the variety of SIU-algebras.

Theorem 4. ([18]) (1) SIUL is finitely strongly complete with respect to the class of
standard SIU-algebras. (2)SIUL is not strongly complete with respect to the class of
all standard SIU-algebras. (3) Tautologicity and consequence relation inSIUL are co-
NP complete.
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Level dependent capacities have been proposed in [1] duringthe 28th Linz Seminar
in 2007 (see also [2, 4]). An axiomatic approach to universalintegral based on standard
capacities was given in [3]. We discuss the axiomatization of universal integrals based
on level dependent capacities.

Given a measurable space(X,A), the set of all measurable functions fromX to

[0,1] is denoted byF (X,A)
[0,1] , and the set of all capacities on(X,A) by M (X,A)

1 . A level

dependent capacity on(X,A) is a family (mt)t∈]0,1] of set functionsmt : A → [0,1],
where eachmt is a capacity on(X,A), and for the set of all level dependent capacities

on (X,A) we writeM
(X,A)
1 . If M1 = (mt,1)t∈]0,1] andM2 = (mt,2)t∈]0,1] are two level

dependent capacities then we say thatM1 is smaller thanM2 (in symbolsM1 ≤ M2)

if M1,M2 ∈ M
(X,A)
1 for some measurable space(X,A), andmt,1(A) ≤ mt,2(A) for all

t ∈ ]0,1] andA ∈ A . For a fixedM ∈ M
(X,A)
1 , a function f ∈ F

(X,A)
[0,1] is calledM-A-

measurableif the functionhM, f : ]0,1]→ [0,1] given by

hM, f (t) = mt({ f ≥ t})

is Borel measurable. The set of allM-A-measurable functions inF (X,A)
[0,1] will be denoted

byF (X,A ,M)
[0,1] . Moreover, we put

L[0,1] =
⋃

(X,A)∈S







⋃

M∈M
(X,A)
1

(

M×F
(X,A ,M)
[0,1]

)






,

whereS is the class of all measurable spaces. Similarly, we put

D[0,1] =
⋃

(X,A)∈S

(

M
(X,A)

1 ×F
(X,A)
[0,1]

)

.
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Definition 1. A function L : L[0,1] → [0,1] is called alevel dependent capacity-based
universal integralif the following axioms hold:

(L1) L is nondecreasing in each component, i.e., for each measurable space(X,A), for

all level dependent capacitiesM1,M2 ∈ M
(X,A)
1 satisfyingM1 ≤ M2, and for all

functions f1 ∈ F
(X,A ,M1)
[0,1] , f2 ∈ F

(X,A ,M2)
[0,1] with f1 ≤ f2 we have

L(M1, f1)≤ L(M2, f2),

(L2) there is a universal integralI : D[0,1] → [0,1] such that for each measurable space

(X,A), for each capacitym∈M
(X,A)
1 , for eachf ∈F

(X,A ,M)
[0,1] , and for each level de-

pendent capacityM =(mt)t∈]0,1] ∈M
(X,A)
1 satisfyingmt =mfor all t ∈ [inf f ,supf ]∩

]0,1] we have
L(M, f ) = I(m, f ),

(L3) for all pairs(M1, f1),(M2, f2) ∈ L[0,1] with hM1, f1 = hM2, f2 we have

L(M1, f1) = L(M2, f2).

Observe that, because of axiom (L2), each level dependent capacity-based universal
integralL is an extension of some universal integralI .

Remark 1. (i) The Choquet integral with respect to level dependent capacities (intro-
duced in [2], see also [1]) is a special case of Definition 1 in the sense that the
universal integralI in axiom (L2) is the classical Choquet integral.

(ii) The Sugeno integral based on level dependent capacities (studied in [4]) is another
special case of Definition 1: here the universal integralI in axiom (L2) is the clas-
sical Sugeno integral.

Because of axiom (L3), for each level dependent capacity-based universal integral
L and for each pair(M, f ) ∈L[0,1], the valueL(M, f ) depends only on the functionhM, f

which is Borel measurable. Denote byV the set of all Borel measurable functions from
]0,1] to [0,1].

Theorem 1. A functionL : L[0,1] → [0,1] is a level dependent capacity-based universal
integral if and only if there is a semicopula⊗ : [0,1]2 → [0,1] and a function V: V →
[0,1] satisfying the following conditions:

(V1) V is nondecreasing,
(V2) V(d ·1]0,c]) = c⊗d for all c,d ∈ [0,1],
(V3) L(M, f ) =V (hM, f ) for all (M, f ) ∈ L[0,1].

Acknowledgements.The second author was supported by the grant VEGA 1/0983/12,
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A unital quantale(Q,&) is divisible if whenevera ≤ b in Q, there arec1,c2 ∈ Q
such thata = c1&b= b&c2. Given a divisible unital quantale(Q,&), it is possible to
construct different quantaloids from it. In this note, for each divisible quantale(Q,&)
we consider two special quantaloids,Q andQ . Q has only one object which is identified
with the top element 1∈ Q, andQ(1,1) = Q with composition given byα ◦β = α&β.
The quantaloidQ is constructed as in [3],

– objects: elementsa∈ Q.
– morphisms:Q (a,b) = {α ∈ Q : α ≤ a∧b}.
– composition:β◦α = (β ւ b)&α = β&(bց α) for all α ∈ Q (a,b),β ∈ Q (b,c).
– the unit 1a of Q (a,a) is a.
– the partial order onQ (a,b) is inherited fromQ.

A Q-categoryA is a setA equipped with a mapA : A×A−→ Q such that

(1) ∀x∈ A,A(x,x) = 1;
(2) ∀x,y,z∈ A,A(y,z)&A(x,y)≤ A(x,z).

Q-categories are a special case of categories enriched in a monoidal closed category
[2], and have been studied both as quantitative domains [9] and as sets endowed with
fuzzy orders [1].

A Q -categoryA is a setA equipped with a mapA : A×A−→ Q satisfying:

(1) A(x,y)≤ A(x,x)∧A(y,y) for all x,y∈ X;
(2) A(y,z)&(A(y,y)ց A(x,y))≤ A(x,z) for all x,y,z∈ A.

Q -categories are examples of categories enriched in a bicategory [8, 10], and can be
studied asQ-subsets with quantale-valued preorders [7].

We are concerned with the relationship between theQ-categories andQ -categories.
This problem belongs to the change-base issue in the theory of enriched categories [4].
We consider three lax functorsGb,Gf andG from Q to Q, given byGbα = b ց α,
Gfα = aւ α andGα = (bց α)∧(α ւ a) for all α ∈Q (a,b). These lax functors give
rise to three functors:

– Gb : Q -Cat −→ Q-Cat, the backward globalization functor;
– Gf : Q -Cat −→ Q-Cat, the forward globalization functor;
– G : Q -Cat −→ Q-Cat, the globalization functor.
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Theorem 1. SupposeA is a Cauchy completeQ -category. Then both the forward glob-
alizationGfA and the backward globalizationGbA are Cauchy completeQ-categories.

But, whether the functorG preserves Cauchy completeness remains open.
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A partial metric space is a generalisation of a metric space introducing non zero self
distance. Originally motivated by the need to model computable partially defined infor-
mation such as the asymmetric topological spaces of Scott domain theory in Computer
Science, it now falls short in an important respect. Thepresent costof computing infor-
mation, such as processor time or memory used, is rarely expressible in domain theory.
In contrast contemporary algorithms incorporate tight control over the cost of com-
puting resources. Complexity theory in Computer Science has dramatically advanced
through the understanding of algorithms over discrete totally defined data structures
such as directed graphs, and without the need of partially defined information. And so
we have an unfortunate longstanding separation of partial metric spaces for modelling
partially defined computable information from the highly advanced complexity theory
of algorithms for costing totally defined computable information. It is thus reasonable
to propose that a theory of cost for partial metric spaces must be possible to help bridge
the separation of domain theory and complexity theory. Today’s talk will present our
research into understanding and resolving the issues of introducing a complexity the-
ory style notion of cost to partial metric spaces. As workingexamples we consider the
cost of computing a double negation¬¬p in two-valued propositional logic, the cost
of computingnegation as failurein logic programming, and a cost model for thehia-
ton time delay proposed by Wadge. The importance of our researchis to keep pushing
forward from an earlier world of classical domain theory modelling computability of
partially defined information to the contemporary reality of Computer Science being
a world of dynamic, adaptive, intelligent, & biocomputing systems. ”Building better
minds together ... No challenge today is more important thancreating beneficial arti-
ficial general intelligence (AGI), with broad capabilitiesat the human level and ulti-
mately beyond”4. Given then a fuzzy set(A,m : A→ [0,1]) so useful in modelling such
sophisticated systems it is necessary to ask what is the costof computingm(x) for any
x∈A ? More precisely, how can the definition ofmbe constrained to always incorporate
an appropriate notion of cost? While we are a long way from being able to answer this
fascinating question there is a relevant role model for how category theory has already
enriched computation. The introduction ofmonadsby Moggi5 to computation and later

4 Open Cog Foundation opencog.org
5 Notions of computation and monads, Eugenio Moggi, Information and Computation 93(1)
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functional programming in Haskell6 is being used to formalise our understanding of
how to introduce cost to partial metric spaces. Why? Functional programming offers a
λ-calculus based model of what can be defined in a logic of computation, which can
then be enriched with monads to provide a behavioural model of how efficiently a func-
tional program is being used. From this programming experience of the complexity
of computation we work to extrapolate a theory & practice ofdiscrete partial metric
spaces.

6 www.haskell.org
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1 Introduction and preliminaries

One purpose of this paper is to propose a new kind ofL-fuzzy closure operators which is
equivalent toL-fuzzy closure systems. Besides, some other characterizations ofL-fuzzy
closure systems will be presented.

Throughout this paper,(L,∨,∧,′ ) denotes a completely distributive De Morgan al-
gebra. The smallest element and the largest element inL are denoted by⊥ and⊤,
respectively. The set of nonzero coprimes inL is denoted byJ(L). Fora, b∈ L, we say
“a is wedge belowb” in symbola≺ b if for every subsetD⊆ L,

∨
D > b impliesa6 d

for somed ∈ D.
For a nonempty setX, LX denotes the set of allL-fuzzy subsets onX. The set of

nonzero coprimes inLX is denoted byJ(LX). It is easy to see thatJ(LX) is exactly the
set of all fuzzy pointsxλ (λ ∈ J(L)). The smallest element and the largest element in
LX are denoted by⊥ and⊤, respectively.

Definition 1 ([7]). A mappingϕ : LX → L is called an L-fuzzy closure system on X if it
satisfies the following conditions:

(S1) ϕ(⊥) =⊤; (S2) ϕ(
∧
i∈I

Ai)>
∧
i∈I

ϕ(Ai).

The pair (X,ϕ) is called an L-fuzzy closure system space ifϕ is an L-fuzzy closure
system on X.
A mapping f: X→Y between two L-fuzzy closure system spaces(X,ϕX) and(Y,ϕY) is
called continuous if∀A∈ LY

, ϕX( f←(A))> ϕY(A),where f← is defined by f←(A)(x) =
A( f (x)) [18].

It is easy to check thatL-fuzzy closure system spaces and their continuous mappings
form a category, denoted byL-FCS.

Definition 2 ([8]). A mappingτ : LX → L is called an L-fuzzy pretopology on X if it
satisfies the following conditions:

(LFPT1) τ(⊤) =⊤; (LFPT2) τ(
∨
i∈I

Ai)>
∧
i∈I

τ(Ai).

The pair(X,τ) is called an L-fuzzy pretopological space ifτ is an L-fuzzy pretopology
on X. A mapping f: X → Y between two L-fuzzy pretopological spaces(X,τX) and
(Y,τY) is called continuous if∀A∈ LY

, τX( f←(A))> τY(A).

It is easy to check thatL-fuzzy pretopological spaces and their continuous mappings
form a category, denoted byL-FPTOP.

Theorem 1. L-FCS is isomorphic to L-FPTOP.
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2 L-fuzzy closure systems characterized byL-fuzzy closure
operators

Definition 3. An L-fuzzy closure operator on X is a mappingC : LX→ LJ(LX ) satisfying
the following conditions:

(C1) C (⊥)(xλ) =⊥ for any xλ ∈ J(LX);
(C2) C (A)(xλ) =⊤ for any xλ 6 A;
(C3) A6 B⇒ C (A)6 C (B);
(C4) C (A)(xλ) =

∧

xλ
B>A

∨

yµ
B
C (B)(yµ).

A set X equipped with an L-fuzzy closure operatorC , denoted by(X,C ), is called an
L-fuzzy closure space. A mapping f: X→Y between two L-fuzzy closure spaces(X,CX)
and(Y,CY) is called continuous if∀xλ ∈ J(LX), ∀A∈LX

, CX(A)(xλ)6CY( f→(A))( f (x)λ).

It is easy to check thatL-fuzzy closure spaces and their continuous mappings form
a category, denoted byL-FC.

Theorem 2. A mapping f: X → Y between two L-fuzzy closure spaces(X,CX) and
(Y,CY) is continuous if and only if∀xλ ∈ J(LX), ∀B∈LY

, CX( f←(B))(xλ)6CY(B)( f (x)λ).

Theorem 3. If ϕ is an L-fuzzy closure system on X, defineCϕ : LX→ LJ(LX ) as follows,

∀xλ ∈ J(LX), ∀A∈ LX
, Cϕ(A)(xλ) =

∧

xλ
B>A

ϕ(B)′,

thenCϕ is an L-fuzzy closure operator on X.

Theorem 4. If f : (X,ϕX)→ (Y,ϕY) is continuous with respect to L-fuzzy closure sys-
temsϕX and ϕY, then f : (X,CϕX )→ (Y,CϕY) is continuous with respect to L-fuzzy
closure operatorsCϕX andCϕY .

Theorem 5. LetC be an L-fuzzy closure operator on X. DefineϕC : LX → L by

∀A∈ LX
, ϕC (A) =

∧

xλ
A

(C (A)(xλ))
′
.

ThenϕC is an L-fuzzy closure system on X.

Theorem 6. If f : (X,CX)→ (Y,CY) is continuous with respect to L-fuzzy closure op-
eratorsCX andCY, then f : (X,ϕCX )→ (Y,ϕCY) is continuous with respect to L-fuzzy
closure systemsϕCX andϕCY .

Theorem 7. (1) If C is an L-fuzzy closure operator, thenCϕC = C .

(2) If ϕ is an L-fuzzy closure system, thenϕCϕ = ϕ.

Theorem 8. L-FCS is isomorphic to L-FC.

49



3 The other characterizations ofL-fuzzy closure systems

Definition 4. An L-fuzzy interior operator on X is a mappingI : LX→ LJ(LX ) satisfying
the following conditions:

(I1) I (⊤)(xλ) =⊤ for any xλ ∈ J(LX);
(I2) I (A)(xλ) =⊥ for any xλ 
 A;
(I3) A6 B⇒ I (A)6 I (B);
(I4) I (A)(xλ) =

∨

xλ6B6A

∧
yµ≺B

I (B)(yµ).

A set X equipped with an L-fuzzy interior operatorI , denoted by(X,I ), is called
an L-fuzzy interior space. A mapping f: X → Y between two L-fuzzy interior spaces
(X,IX) and (Y,IY) is called continuous if∀xλ ∈ J(LX), ∀B ∈ LY

, IX( f←(B))(xλ) >
IY(B)( f (x)λ).

It is easy to check thatL-fuzzy interior spaces and their continuous mappings form
a category, denoted byL-FI .

Definition 5. An L-fuzzy neighborhood system on X is defined to be a set N= {Nxλ | xλ ∈
J(LX)} of mappings Nxλ : LX → L satisfying the following conditions:

(LN1) Nxλ (⊤) =⊤, Nxλ (⊥) =⊥;
(LN2) Nxλ (A) =⊥ for any xλ 
 A;
(LN3) A6 B⇒Nxλ (A)6 Nxλ (B);
(LN4) Nxλ (A) =

∨

xλ6B6A

∧
yµ≺B

Nyµ(B).

A set X equipped with an L-fuzzy neighborhood system N= {Nxλ | xλ ∈ J(LX)}, denoted
by (X,N), is called an L-fuzzy neighborhood space. A mapping f: X → Y between
two L-fuzzy neighborhood spaces(X,NX) and (Y,NY) is called continuous if∀xλ ∈
J(LX), ∀B∈ LY

, (NX)xλ ( f←(B))> (NY) f (x)λ (B).

The category ofL-fuzzy neighborhood spaces with their continuous mappingsis
denoted byL-FN.

Definition 6. An L-fuzzy quasi-coincident neighborhood system on X is defined to be a
set Q= {Qxλ | xλ ∈ J(LX)} of mappings Qxλ : LX → L satisfying the following condi-
tions:

(QN1) Qxλ (⊥) =⊥, Qxλ (⊤) =⊤;
(QN2) Qxλ (A) 6=⊥⇒ xλ 
 A′;
(QN3) A6 B⇒Qxλ (A)6 Qxλ (B);
(QN4) Qxλ (A) =

∨

xλ
B>A′

∧

yµ
B
Qyµ(B

′).

A set X equipped with an L-fuzzy quasi-coincident neighborhoodsystem Q= {Qxλ | xλ ∈
J(LX)}, denoted by(X,Q), is called an L-fuzzy quasi-coincident neighborhood space.A
mapping f: X→Y between two L-fuzzy quasi-coincident neighborhood spaces(X,QX)
and(Y,QY) is called continuous if∀xλ ∈ J(LX), ∀B∈LY

, (QX)xλ ( f←(B))> (QY) f (x)λ (B).

The category ofL-fuzzy quasi-coincident neighborhood spaces with their continu-
ous mappings is denoted byL-FQN.

Theorem 9. L-FCS, L-FPTOP, L-FC, L-FI , L-FN and L-FQN are all isomorphic.
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1 Introduction and motivation

In our paper [14] the concept of anM-approximate system whereM is a fixed complete
lattice was introduced and basic properties of the categoryof M-approximate systems
were studied. We regard the concept of anM-approximate system and the correspond-
ing category as the framework for a unified approach to various categories related to
(fuzzy) (bi)toplogical spaces ([2], [5], [3], [4], [13], [8], [11], [12], etc) and to (fuzzy)
rough sets ([10], [1], etc). Although the attempts to study the relations between fuzzy
topological space and fuzzy rough sets and to introduce a context allowing to give a
unified view on these notions were undertaken also by other authors, see e.g. [6], [7],
[15], [16], the approach presented in [14] is essentially different. In this work we con-
tinue the research ofM-approximate systems. However, as different from our previous
work here we consider the case ofa variable rangeM, that is allow to change lattice
M. In particular this alllows to include also the category ofLM-topological spaces with
varied latticeM in the scope of our research. In our work two lattices will play the fun-
damental role. The first one is an infinitely distributive lattice, that is a complete lattice
L = (L,≤,∧,∨), satisfying the infinite distributivity lawsa∧ (

∨
i∈I bi) =

∨
i∈I (a∧bi)

anda∨ (
∧

i∈I bi) =
∧

i∈I (a∨bi) for all a∈ L, {bi | i ∈ I} ⊆ L. Its top and bottom ele-
ments are 1L and 0L respectively. Sometimes we assume that the latticeL is equipped
with an order reversing involutionc : L → L. In particular, ifL is enriched with a bi-
nary operationL∗L→ L such thatL = (L,≤,∧,∨,∗), is Girard monoid, in particular
an MV-algebra then involution is naturally defined byac = (a 7→ 0) 7→ 0. The second
lattice belonging to the context of our work isM. At the moment we assume only its
completeness, however in applications toLM-fuzzy topology we need to assume that
it is complete distributive. Its bottom and top elements are0M and 1M resp., 0M 6= 1M.
that isM contains at least two elements. For the categories of complete lattices, com-
plete infinitely distributive lattices and of complete infinitely distributive lattices with
an order reversing involution will be denotedCLAT, IDL andIDLC respectively.

2 Basic definitions

Definition 1. An upperM-approximate operator onL is a mapping u: L×M→ L s.t.

(1u) u(0L,α) = 0L ∀α ∈M;
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(2u) a≤ u(a,α) ∀a∈ L, ∀α ∈M;
(3u) u(a∨b,α) = u(a,α)∨u(b,α) ∀a,b∈ L, ∀α ∈M;
(4u) u(u(a,α),α) = u(a,α) ∀a∈ L, ∀α ∈M;
(5u) α ≤ β,α,β ∈M=⇒ u(a,α)≤ u(a,β) ∀a∈ L.

Definition 2. A lowerM-approximate operator onL is a mapping l: L×M→ L s. t.

(1l) l(1L,α) = 1L ∀α ∈M;
(2l) a≥ l(a,α) ∀a∈ L, ∀α ∈M;
(3l) l(a∧b,α) = l(a,α)∧ l(b,α) ∀a,b∈ L, ∀α ∈M;
(4l) l(l(a,α),α) = l(a,α) ∀a∈ L, ∀α ∈M;
(5l) α ≤ β,α,β ∈M=⇒ l(a,α)≥ l(a,β) ∀a∈ L.

Definition 3. A quadraple(L,M,u, l), where u: L×M → L and l : L×M → L are
upper and lowerM-approximate operators onL, is called anM-approximate system
onL or just an approximate system. An approximate system is called

(T) tight, if u(a,0M) = l(a,0M) = a ∀a∈ L;
(SA) semicontinuous from above if

u(a,
∧

i∈I αi) =
∧

i∈I u(a,αi), l(a,
∧

i∈I αi) =
∨

i∈I l(a,αi);
(WA) weakly semicontinuous from above if

u(a,αi) =a∀i ∈ I =⇒ u(a,
∧

i∈I αi)= a and l(a,αi) =a∀i ∈ I =⇒ l(a,
∨

i∈I αi) =a.

If X is a set,L is a lattice,L = LX and (L,M,u, l) is an approximate system, the
tuple(X,L,M,u, l) is called an approximate space.

3 Lattice of M-approximate systems on a fixed latticeL

Let ASM(L) stand for the family of allM-approximate systems(L,M,u, l) whereL
andM are fixed. Further, let T-ASM(L), D-ASM(L), SA-ASM(L), WA-ASM(L) stand
on the subfamilies ofASM(L) consisting respectively of tight, self-dual, semicontinu-
ous from above, and weakly semicontinuous from aboveM-approximate systems onL,
respectively. We introduce a partial order� on the familyASM(L) by setting

(L,u1, l1)� (L,u2, l2) iff u1 ≥ u2 andl1 ≤ l2.

Theorem 1. (ASM(L),�) is a complete lattice. Its top element is(L,u⊤, l⊤) where
u⊤(a,α) = l⊤(a,α) = a for every a∈ L and everyα ∈ M and its bottom element is
(L,u⊥, l⊥) where

u⊥(a,α) =
{

1L if a 6= 0L
0L, if a = 0L

l⊥(a,α) =
{

0L if a 6= 1L
1L, if a = 1L
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Theorem 2. (T-ASM(L),�) is a complete lattice whose top element is the same as in
(ASM(L),�), that is(L,M,u⊤, l⊤), and whose bottom element is(L,M,ut

⊥, l
t
⊥), where

ut
⊥(a,α) =







1L if a 6= 0L andα 6= 0M
0L, if a = 0L
a, if α = 0M

l t⊥(a,α) =







0L if a 6= 1L andα 6= 0M
1L, if a = 1L
a, if α = 0M

Theorem 3. The family(WA-ASM(L),�) of weakly semicontinuous from aboveM-
approximate systems is a complete sublattice of the lattice(ASM(L),�).

Theorem 4. Let D ∈ Ob(IDLC ). Then the familyD-ASM(L),�) of self-dual approx-
imate systems is a complete sublattice of the lattice(ASM(L),�).

4 Category AS of approximate systems

Let AS be the family of all approximate systems(L,M,u, l). To considerAS as a cat-
egory whose class of objects are allM-approximate systems(L,M,u, l) whereL ∈
Ob(IDL ) andM ∈ Ob(CLAT ) we have to specify its morphisms. Given two approxi-
mate systems(L1,M1,u1, l1),(L2,M2,u2, l2) ∈ Ob(AS) by a morphism

F : (L1,M1,u1, l1)→ (L2,M2,u2, l2)

we call a pairF = ( f ,ϕ) such that

(1m) f : L1 → L2 is a morphism in the categoryIDL op;
(2m) ϕ : M1 →M2 is a morphism in the categoryCLAT op;
(3m) u1( f (b),ϕ(β))≤ f (u2(b,β)) ∀b∈ L2, ∀β ∈M2;
(4m) f (l2(b,β))≤ l1( f (b),ϕ(β)) ∀b∈ L2,∀β ∈M2

Remark 1.The categoryASM, whereM is a fixed lattice, which was studied in [14]
can be identified with a subcategory of the categoryT-AS havingM-approximate sys-
tems(L,M,u, l) as objects and pairsF = ( f , idM) : (L1,M1,u1, l1)→ (L2,M,u2, l2) as
morphisms. (idM : M→M stands for an identity mapping.) In particular, in case when
M is a two-point lattice we obtain the categoryAS2.

Theorem 5. Every source Fi : (L1,M1) → (Li ,Mi ,ui , l i), i ∈ I in AS has a unique
initial lift F i : (L1,M1,u1, l1)→ (Li ,Mi ,ui , l i), i ∈ I.

Theorem 6. Every sink Fi : (Li ,Mi ,ui , l i) → (L1,M1), i ∈ I in AS has a unique final
lift Fi : (Li ,Mi ,ui , l i)→ (L1,M1,u1, l1), i ∈ I

Corollary 1. CategoryAS is topological over the categoryIDL op×CLAT op with re-
spect to the forgetful functorF : AS−→ IDL op×CLAT op

.
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We study also the categorical properties of the full subcategories ofAS whose ob-
jects are tight, self-dual, and (weakly) semicontinuous from above approximate systems
as well as some other classes of approximate systems. In particular, we show that

Theorem 7. CategoryD-AS of self-dual approximate systems is topological over the
categoryIDLC op×CLAT op with respect to the forgetful functorF : D-AS→ IDLC op×
CLAT op

.

Some subcategories ofAS determined by restricted classes of morphisms will be
also in the scope of our interest. Finally we will discuss different concrete categories
related to fuzzy (bi)topology and fuzzy rough sets regardedas subcategories ofAS.

Acknowledgments. The author gratefully acknowledges a partial financial support by
the LZP (Latvian Science Council) research project 09.1570, as well as a partial finan-
cial support by the ESF research project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.
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David Corfield was asked recently by someone for his opinion on the possibility
that category theory might prove useful in machine learning. First of all, he would not
want to give the impression that there are signs of any imminent breakthrough. For
other areas of computer science the task would be easier (nowadays!). Category theory
features prominently in theoretical computer science as described in books such as [2].

And what about statistics? One direct help may be a probability theory. In a cou-
ple of web posts Corfield discussed a construction of probability theory in terms of a
monad. He pointed out a natural inclination of the Bayesian to think about distributions
over distributions fits this construction well.

Moreover, Graphical models, which include directed graphs, together with Bayesian
networks, may sometimes form a symmetric monoidal category.

Another dimension to spaces of probability distributions is that they can be studied
by differential geometry in a field known as information geometry. For an insightful
treatment in the context of nonlinear models see [5], general treatment may be found in
[1].

Beside the above mentioned issues, one practical application for empirical statis-
tics, the“categorization” of inference function will be discussed. In [3] we have real-
ized (by empirical research) a need of non-crisp monotonicity for Fisher information
of experiments under heteroscedasticity. The classical Fisher information is based on
the “classical” score function, used by the pioneers of modern statistics (Karl Pearson,
Francis Y. Edgeworth and Sir Ronald A. Fisher) have been introduced as a local change
of log-likelihood w.r.t. to a parameter of interest, more less in case to case studies.
However, an alternative score can be defined ([4]) and provento have some desirable
properties ([6] and [7]) in classical statistical inference. In nonparametrics, a similar
inference function, so called influence function is used. A practical discussion of this
aspects in a context of the“categorization” of inference function will be given.
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6. Stehlı́k M., Potocký R., Waldl H. and Fabián Z. (2010). On the favorable estimation for
fitting heavy tailed data, Computational Statistics, 25:485-503.
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In this lecture I shall aim to give an overview of the basic concepts in the theory of
quantaloid-enriched categories, giving as many examples as time permits. First I shall
recall what quantales and quantaloids are, and how one computes extensions and lift-
ings in them. Then I shall define categories, functors and distributors enriched in a quan-
taloid, saying something about the universal property of quantaloid-enrichment too. I
shall explain how every functor between quantaloid-enriched categories determines a
left adjoint distributor, and that this very fact is at the heart of quantaloid-enriched cat-
egory theory. By way of illustration I shall show how to defineadjunctions, presheaves,
(co)limits, (co)completions, and so on. Further I shall saya word about the symmetri-
sation of quantaloid-enriched categories. And finally I shall indicate the link between
quantaloid-enriched categories on the one hand, and modules on a quantaloid on the
other. This lecture should provide (more than) the background that is needed for H.
Heymans’ lecture on sheaf theory via quantaloid-enrichment.
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1 Introduction

Quantales are complete lattices endowed with an associative binary operation⊙ dis-
tributing from both sides over arbitrary joins [Ros]. A quantale is called strictly two-
sided if there is a top element that is neutral w.r.t.⊙, and it is called commutative if
⊙ is commutative. In the special case that the complete lattice is the real unit interval
endowed with the natural order, a strictly two-sided, commutative quantale is an algebra
well-known in fuzzy logic: a left-continous (l.-c.) t-normalgebra [KMP].

We consider this type of structure from a constructive pointof view, being interested
in its complete description. Our viewpoint is algebraic as we classify l.-c. t-norm alge-
bras up to isomorphism only. However, we also make use of methods from analysis, in
particular from the theory of functional algebras.

Let ([0,1];≤,⊙,0,1) be a l.-c. t-norm algebra. We denote by(Λ⊙;≤,◦, 0̄, id) the
associated translation tomonoid. That is,Λ⊙ consists of all (inner right) translations

λ⊙
a : [0,1]→ [0,1] : x 7→ x⊙a

by somea∈ [0,1]; ≤ is the pointwise order;◦ is the function composition; and̄0 is the
zero constant function, id the identical function. The isomorphisma 7→ λ⊙

a of the semi-
group([0,1];⊙) and its translation semigroup(Λ⊙;◦) [ClPr] extends to an isomorphism
between([0,1];≤,⊙,0,1) and(Λ⊙;≤,◦, 0̄, id). We have [Vet]:

Theorem 1. Let⊙ be a l.-c. t-norm. ThenΛ⊙ is a set of functions from[0,1] to [0,1]
with the following properties:

(T1) Every f is increasing.

(T2) Every f and g commute.

(T3) For every t∈ [0,1], there is exactly one f such that f(1) = t.

(T4) Every f is left-continuous.

Conversely, letΛ be a set of functions from[0,1] to [0,1] fulfilling (T1)–(T4). Then there
is a unique l.-c. t-norm⊙ such thatΛ = Λ⊙.

The following heuristic argument may illustrate how the present work was moti-
vated. Consider the following depictions of the translation tomonoids of the three basic
continuous t-norms:
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Observe that, in each of these cases, if the picture was almost completely covered
and we were able to inspect an arbitrarily narrow stripe below the identity line only, we
would be able to reconstruct the whole functional algebra. In fact, the functions in a
neighborhood of the identity either generate the whole algebra, or it can be concluded
that all functions are idempotent and thus uniquely determined by the intersection of
their graphs with the identity line.

2 Regular l.-c. t-norms: the simple case

The exact facts have been examined in the paper [Vet], of which the present work is
the continuation. As might be expected, the above observations do not apply for all l.-c.
t-norm algebras. We restrict our attention to the followingsubclass.

Definition 1. A l.-c. t-norm⊙ is called regular if the following conditions hold:

(1) There is an n< ω such that each f∈ Λ⊙ has at most n discontinuity points.
(2) For t ∈ [0,1], put e(t) = inf {s: s⊙t = t}. Then there are0= v0 < v1 < .. . < vk = 1

such that for each i= 0, ...,k− 1, the map e|(vi ,vi+1) is continuous and one of the
following possibilities holds:
(a) e|(vi ,vi+1) is constant r, and we have r⊙ t = t for all t ∈ (vi ,vi+1);
(b) e|(vi ,vi+1) is strictly monotonous.

Even if this condition looks special, the class of t-norm algebras based on regular
l.-c. t-norm is not neglible – in the sense that it generates the whole variety of MTL-
algebras.

Regular l.-c. t-norm algebras can be decomposed in a specificway. Namely, let
(Λ⊙;≤,◦,0, id) be the translation tomonoid of the regular l.-c. t-norm⊙. Then we may
determine a characteristic sequence of points(v0, . . . ,vk) – cf. the definition of regular-
ity –, called aframefor ⊙. For eachbasic interval (vi ,vi+1], we consider the induced
translation tomonoid:

Λ(vi ,vi+1] = { f(vi ,vi+1] : f ∈ Λ⊙},

where f(vi ,vi+1] : (vi ,vi+1] → (vi ,vi+1] : a 7→ f (a)∨ vi . We call (Λ(vi ,vi+1];≤,◦,0, id) a
basic tomonoidof ⊙.

Theorem 2. Any basic tomonoid associated to some l.-c. t-norm belongs to one out of
six isomorphism classes.
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3 Regular l.-c. t-norms: the general case

Knowing the basic tomonoids associated to a l.-c. t-norm⊙ means to know how the
translations by the elements of each basic interval act on this same interval. This knowl-
edge alone may or may not determine the whole t-norm algebra.In the former case, a
l.-c. t-norm is fully characterised by (1) the sizek of a frame, (2) the type of each of the
k basic tomonoids, and (3) the intervals parametrising the basic tomonoids.

The question how the translations by the elements of one basic interval act on the
remaining intervals has not yet been addressed; this is the topic of the present work.

Let (Λ⊙;≤,◦,0, id) be the translation tomonoid of the regular l.-c. t-norm⊙. Let
(v0, . . . ,vk) be a frame for⊙. For each pair of distinct intervals(vi ,vi+1] and(v j ,v j+1],
put

H
(vj ,vj+1]

(vi ,vi+1]
= { f

(vj ,vj+1]

(vi ,vi+1]
: f ∈ Λ⊙},

where f
(vj ,vj+1]

(vi ,vi+1]
: (vi ,vi+1] → (v j ,v j+1] : a 7→ ( f (a) ∨ v j) ∧ v j+1. We call H

(vj ,vj+1]

(vi ,vi+1]
a

lower tomonoidof ⊙.

It turns out that the lower tomonoids are largely determinedby the basic tomonoids:

for eachi, j, the algebraH
(vj ,vj+1]

(vi ,vi+1]
is determined as follows. There is a totally ordered

set of functionsH, uniquely determined byΛ(vi ,vi+1] andΛ(vj ,vj+1], such thatH
(vj ,vj+1]

(vi ,vi+1]

is an interval ofH. As a consequence, for the description of a general regular t-norm,
we need in addition to (1), (2), and (3) above to specify (4) the relevant intervals of the
lower tomonoids, and (5) the intervals parametrising the lower tomonoids.
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As an example, we consider a t-norm that was proposed in a modified form by P.
Hájek [Haj]:

a⊙b=































a(3b−2) if a≤ 1
3 andb>

2
3,

3ab−2a−b+1 if 1
3 < a≤ 2

3 andb>
2
3,

3ab−2a−2b+2 if a,b>
2
3,

0 if a≤ 1
3 andb≤ 2

3,

3ab−a−b+ 1
3 if 1

3 < a,b≤ 2
3

for a,b∈ [0,1]. We have the following characteristic data. (1) Size of frame: 3. (2) Type
of basic tomonoids: product; product; product. (3) Parametrising intervals:[2

3,1); [
2
3,1);

[2
3,1). (4) Intervals of the lower algebras: full; full; full. (5) Intervals parametrising the

lower algebras:[1
3,

2
3); [

1
3,

2
3); [0,

1
3).

4 Conclusion

We have shown that any left-continous t-norm fulfilling the condition of regularity al-
lows a particular type of decomposition into finitely many constituents. Namely, the
real unit interval may be divided into finitely many subintervals and the tomonoids of
translations by the elements of one interval restricted to another interval may be indi-
cated by means of six isomorphism classes. In short, we may associate to a regular l.-c.
t-norm its characteristic data, describing how the t-norm is composed from a finite set
of specific constituents.

Conversely, it is not difficult to check if given data to construct a l.-c. t-norm is
actually the characteristic data of a l.-c. t-norm. An easy criterion to decide this question
is, however, not known to us.
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1 Introduction

The algebra of truth values for fuzzy sets of type-2 consistsof all mappings from the unit
interval into itself, with operations certain convolutions of these mappings with respect
to pointwise max and min. This algebra has been studied extensively as indicated in the
references below. The basic theory depends on the fact that[0,1] is a complete chain,
so lends itself to various generalizations and consideration of special cases. This paper
develops the theory where each copy of the unit interval is replaced by a finite chain.
Most of the theory goes through, but there are several special circumstances of interest.

2 The Algebra M(mn)

For a positive integern, let n be the set{1,2, . . . ,n}. This set has its usual linear order
which we denote by≤, max and min operations denoted∨ and∧, negation given by
¬k= n− k+1, and the obvious constants 1 andn. With these operations,n becomes a
De Morgan algebra, in fact a Kleene algebra since it also satisfiesa∧¬a≤ b∨¬b.

We denote bymn the set{ f : n → m} of all mappings from the setn into the set
m. The algebraM(mn) consists of the setmn with operations given in the following
definition.

Definition 1. Onmn, let

( f ⊔g)(i) =
∨

j∨k=i

( f ( j)∧g(k))

( f ⊓g)(i) =
∨

j∧k=i

( f ( j)∧g(k))

¬ f (i) =
∨

j=¬i

f ( j) = f (¬i)

1̄(i) =

{

m if i = m
1 if i 6= m

and0̄(i) =

{

m if i = 1
1 if i 6= 1

Thus we have the algebra

M(mn) = (mn
,⊔,⊓,¬,0̄, 1̄)
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There are two other operations on the functions inmn, namely pointwise max and
min. We also denote these by∨ and∧, respectively. Just as in the caseM([0,1][0,1]),
these operations help in determining the properties of the algebraM(mn) via the auxil-
iary operationsf L(i) = ∨ j≤i f ( j) and f R(i) = ∨ j≥i f ( j).

The operations⊔ and⊓ in M(mn) can be expressed in terms of the pointwise max
and min of functions in two different ways, as follows.

Theorem 1. The following hold for all f,g∈ M(mn).

f ⊔g=
(

f ∧gL)∨
(

f L ∧g
)

= ( f ∨g)∧
(

f L ∧gL)

f ⊓g=
(

f ∧gR)∨
(

f R∧g
)

= ( f ∨g)∧
(

f R∧gR)

Using these auxiliary operations, it is fairly routine to verify the following properties
of the algebraM(mn). The details of the proofs are almost exactly the same as for the
algebraM([0,1][0,1]), which are given for example in [9].

Corollary 1. Let f , g, h∈ M(mn). Some basic equations follow.

1. f ⊔ f = f ; f ⊓ f = f
2. f ⊔g= g⊔ f ; f ⊓g= g⊓ f
3. f ⊔ (g⊔h) = ( f ⊔g)⊔h; f ⊓ (g⊓h) = ( f ⊓g)⊓h
4. f ⊔ ( f ⊓g) = f ⊓ ( f ⊔g)
5. 1̄⊓ f = f ; 0̄⊔ f = f
6. ¬¬ f = f
7. ¬( f ⊔g) = ¬ f ⊓¬g; ¬( f ⊓g) = ¬ f ⊔¬g

The elements ofM(mn) may be deonoted byn-tuples(a1,a2, . . . ,an) of elements
of m. Note that with this notation, inmn the element̄1 is (1,1, . . . ,1,m) and 0̄ is
(m,1,1, . . . ,1). Further note that the algebra has an absorbing element(1,1, . . . ,1). Fi-
nally,¬(a1,a2, . . . ,an) = (an,an−1, . . . ,a1).

3 The Main Results

Each of⊔ and⊓, being idempotent, commutative and associative, gives rise to a partial
order. These partial orders are defined byf ≤⊔ g if f ⊔g= g and f ≤⊓ g if f ⊓g= f .

Theorem 2. The partial orders≤⊔ and≤⊓ are lattice orders.

The equations listed above do not form an equational basis for M(mn). We do not
know an equational basis forM(mn) nor even if a finite one exists. However, similar to
the case ofM([0,1][0,1]) [4], we do get the following.

Theorem 3. For m≥ 2, the algebrasM(mn) andM(2n) generate the same variety and
thus satisfy the same equations.

Theorem 4. Let n ≥ 5. ThenM(2n) and M(25) generate the same variety and thus
satisfy the same equations.
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One main objective of this paper was to show that the automorphism group of the
retract(mn

,⊔,⊓) of M(mn) is trivial, that is, has only one element. To effect this, the
irreducible elements of(mn

,⊔,⊓) were determined.

Theorem 5. Let m,n≥ 2. The irreducible elements of(mn
,⊔,⊓) are these.

1. The absorbing element(1,1, . . . ,1).
2. The n-tuple with mi in the i-th place and1 elsewhere.
3. The element m1∨mn.
4. If n= 2, n-tuples that contain m, and the absorbing element.

Using the theorem above and long sequence of lemmas, we get the following.

Theorem 6. The automorphism group of(mn
,⊔,⊓) has only one element.

4 Comments

One principal result of this paper is that the partial order given by the operation⊔ is a
lattice, and analogously for⊓. For the operation⊔, the sup of two elementsf andg is
f ⊔g, but the inf of the two elements is the sup of the set of all elements below bothf
andg. The elementsf andg aren-tuples of elements ofm, and the inf is given by some
formula in the elements in these twon-tuples.

Problem 1.Find a formula for the inf of two elements in the lattice determined by⊔.
And similarly, do the same for the lattice determined by⊓.

Problem 2. In the case of the algebra([0,1][0,1],⊔), determine whether or not the partial
order determined by⊔ is a lattice.

In the case of23, the lattices determined by⊔ and by⊓ are both distributive, but
this is not true for allmn.

Problem 3.For whichmn are the lattices determined by⊔ and⊓ distributive? We con-
jecture none form andn≥ 3.

The proof thatAut(mn
,⊔,⊓) consists of only the identity automorphism was ef-

fected by a long sequence of lemmas, etc. Hopefully, there isa much shorter and less
computational proof.

Problem 4.Find a proof thatAut(mn
,⊔,⊓) is trivial that is more conceptual, less com-

putational, and shorter.

In showing that the automorphism group of(mn
,⊔,⊓) consists of only the identity

automorphism, we used in the proof that an automorphism preserved both⊔ and⊓.
But small examples show that the automorphism group of(mn

,⊔) is just the identity
automorphism, and we suspect that this is true in general, but have no proof.

Problem 5.Find the automorphism group of(mn
,⊔). (Since(mn

,⊔) and(mn
,⊓) are

isomorphic, their automorphism groups will be isomorphic.)
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Finally, there are many ways to specialize and to generalizethe truth-value algebra
([0,1][0,1],⊔,⊓,¬,0̄, 1̄) of type-2 fuzzy sets. We have just taken a finite chain for each
interval[0,1]. For example, one could take any two complete lattices instead, or substi-
tute one finite chain for one of the intervals[0,1], and so on. Such investigations may
be of interest.
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Abstract. As Höhle observed in [9] the fact that the topology associated to a
probabilistic metric space is metrizable means that,from this topological point
of view, probabilistic metric spaces are always equivalentto ordinary metric
spaces,and the problem of topologization of probabilisticmetric spaces is not
satisfactorily solved. He proposed many-valued topologies as suitable tools for
this purpose. Hence in [15], we endowed George and Veeramani’s fuzzy metric
(which has close relation to probabilistic metric) with many-valued structures-
fuzzifying topology and fuzzifying uniformity. The aim of this paper is to go on
studying the properties of George and Veeramani’s fuzzy metric. We will give the
concept of convergence degree and generalize the convergence and compactness
theories in metric spaces to Veeramani’s fuzzy metric spaces.

1 Introduction

Metric space plays an important role in the research and applications of topology. Con-
vergence theory is an another important part in metric spaces and is the key tool in
studying completeness. Probabilistic metric space, a generalization of the ordinary met-
ric space, was first studied by Menger [12] and further developed by Schweizer and
Sklar [14]. Inspired by the notion of probabilistic metric spaces, Kramosil and Michalek
[10] in 1975 introduced the notion of fuzzy metric, a fuzzy set in the Cartesian product
X×X× ℜ satisfying certain conditions (see Definition 2.12 for a similar form). George
and Veeramani [1–3] slightly modified the definition of Kramosil and Michalek’s fuzzy
metric space and associated each fuzzy metric space to a Hausdorff topology.

Till now many topological structures and related theories have been defined and
studied on the probabilistic metric space and George and Veeramani’s fuzzy metric
space. For example, Höhle [7, 8] studied the associated topologies and the fuzzy unifor-
mities in the probabilistic metric space, J. Gutiérrez Garcı́a and M.A. de Prada Vicente
[6] studied the Hutton [0,1]-quasi-uniformities generated by the George and Veera-
mani’s fuzzy metric. Gregori,etc,in [4, 5] studied the convergence and completeness in
George and Veeramani’s fuzzy metric spaces. Recall that thevalueM(x,y, t) in the def-
inition of George and Veeramani’s fuzzy metric can be thought as the degree of the
nearness betweenx andy with respect tot. Hence in this paper, we want to give the
degree convergence theory of sequence in fuzzy metric spaces, and generalize the cor-
responding theory of convergence and compactness in classical metric spaces to fuzzy
metric spaces.
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2 Convergence in fuzzy metric spaces

Since the valueM(x,y, t) can be thought as the degree of the nearness betweenx andy
with respect tot, in this section, we will give the definitions of degree convergence and
study the relationship between them.

Definition 1. Let (X,M) be a fuzzy metric space, x∈ X and{xn} be sequence. The
degree to which{xn} converges to x is defined by

Con({xn},x) =
∧

ε>0

∨

N∈N

∧

n>N

M(xn,x,ε).

The degree to which{xn} accumulates to x is defined by

Ad({xn},x) =
∧

ε>0

∧

N∈N

∨

n>N

M(xn,x,ε).

The degree to which{xn} is a Cauchy sequence is defined by

Cauchy({xn}) =
∧

ε>0

∧

N∈N

∨

n,m>N

M(xn,xm,ε).

Lemma 1. Let (X,M) be a fuzzy metric space, x∈ X and{xn} be sequence. Then we
have the following results:

(1) Con({x},x) = Ad({x},x) = Cauchy({x}) = 1, where{x} is the constant se-
quence of x;

(2) Con({xn},x)≤ Ad({xn},x);
(3) Con({xn},x)≤Cauchy({xn}) for all x ∈ X;
(4) Ad({xn},x) =

∨
{xnk}

Con({xnk},x);

(5) Ad({xn},x)≤
∨

{xnk}
Con({xnk},x).

(6) Ad({xn},x)∧Cauchy({xn})≤Con({xn},x).

Example 1.Let d be an ordinary metric onX andMd be the induced fuzzy metric.
In the following, we know that the convergence in(X,Md) is coincident with that in
(X,d).

Con({xn},x) =
∧

ε>0

∨

N∈N

∧

n>N

ε
ε+d(xn,x)

=
∧

ε>0

ε
ε+

∧
N∈N

∨
n>N d(xn,x)

=

{

1, xn → x,
0, others,

Cauchy({xn},x) =
∧

ε>0

∨

N∈N

∧

n,m>N

ε
ε+d(xn,xm)

=
∧

ε>0

ε
ε+

∧
N∈N

∨
n,m>N d(xn,xm)

=

{

1, {xn}is Cauchy,
0, others,

Ad({xn},x) =
∧

ε>0

∧

N∈N

∨

n>N

ε
ε+d(xn,x)

=
∧

ε>0

ε
ε+

∨
N∈N

∧
n>N d(xn,x)

=

{

1, xn∞x,
0, others,
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Example 2.Let X = {x,y} andd : X×X× (0,+∞)→ [0,1] be defined by

M(a,b, t) =















1, a= b= x,
1, a= b= y,
1, a 6= b, t > 1

2,
1
2 + t, a 6= b, t ≤ 1

2,

Thend is a fuzzy metric onX andCon({x},y) = Ad({x},y) = 1
2. If we take{xn} =

{x,y,x,y,x...}, thenCon({xn},x) = 0 andAd({xn},x) = 1.

3 Compactness in fuzzy metric spaces

In this section, we want to generalized the compactness in metric spaces to fuzzy setting
according to the above convergence theory.

Definition 2. Let (X,M) be a fuzzy metric space. The degree to which(X,M) is com-
pact is defined by

Comp(M) =
∧

{xn}

∨

x∈X

Ad({xn},x).

The degree to which(X,M) is sequently compact is defined by

Scomp(M) =
∧

{xn}

∨

{xnk}

∨

x∈X

Con({xnk},x).

Definition 3. Let (X,M) be a fuzzy metric space and F∈ 2X. The degree to which F is
an ε-net of(X,M) is defined by

ε−net(F) =
∧

x∈X

∨

y∈F

M(x,y,ε).

The degree to which(X,M) is totally bounded is defined by

Totallb(M) =
∧

ε>0

∨

F∈2(X)

ε−net(F).

The degree to which(X,M) is complete is defined by

Complete(M) =
∧

{xn}

(Cauchy({xn})→
∨

x∈X

Con({xn},x))

Theorem 1. Let (X,M) be a fuzzy metric space. Then Comp(M) = Scomp(M).

Theorem 2. Let (X,M) be a fuzzy metric space. Then

Totallb(M) =
∧

{xn}

∨

{xnk}

Cauchy({xnk}).

Theorem 3. Let (X,M) be a fuzzy metric space. Then Comp(M) = Complete(M)∧
Totallb(M).
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