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Since their inception in 1979, the Linz Seminars on Fuzzy Set Theory have

emphasized the development of mathematical aspects of fuzzy sets by bringing

together researchers in fuzzy sets and established mathematicians whose work

outside the fuzzy setting can provide directions for further research. The philos-

ophy of the seminar has always been to keep it deliberately small and intimate

so that informal critical discussions remain central.

LINZ 2014 will be the 35th seminar carrying on this tradition and is devoted

to the theme “Graded logical approaches and their applications”. The goal of

the seminar is to present and to discuss recent advances of graded logical ap-

proaches and their various applications.

A large number of highly interesting contributions were submitted for pos-

sible presentation at LINZ 2014. In order to maintain the traditional spirit of

the Linz Seminars — no parallel sessions and enough room for discussions —

we selected those thirty-one submissions which, in our opinion, fitted best to

the focus of this seminar. This volume contains the abstracts of this impressive

selection. These regular contributions are complemented by six invited plenary

talks, some of which are intended to give new ideas and impulses from outside

the traditional Linz Seminar community.

Tommaso Flaminio

Lluís Godo

Siegfried Gottwald

Erich Peter Klement
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Duality semantics for many-valued logics

Stefano Aguzzoli

Dipartimento di Informatica

Università degli Studi di Milano, Milano, Italy

aguzzoli@di.unimi.it

Boolean algebras form the algebraic semantics of Classical Propositional Logic.

The celebrated Stone’s Representation Theorem states that Boolean algebras and their

homomorphisms form a category that is dually equivalent to the category of Stone

spaces, that is, compact totally disconnected Hausdorff spaces. The finite slice of the

category of Stone spaces is just the category of finite sets and maps between them. A

natural understanding of the semantics of Classical Propositional Logic then arises just

studying finite sets and their maps. This approach to semantics via categories dually

equivalent to the varieties constituting the usual algebraic semantics can be fruitfully

applied to several many-valued logics. In this talk we shall focus on the category of fi-

nite forests and open maps to show how this category yields a dual semantics for a few

different many-valued logics. We shall clarify in which sense those different systems

have the same duality semantics, stressing the role of the objects dual to the free singly

generated algebras in the primal varieties. We shall exhibit several applications of the

duality semantics approach, ranging from construction of free algebras to classification

of subvarieties. If time allows we shall propose a notion of many-valued automaton

arising naturally from the corresponding duality semantics of a given logic.

Acknowledgement. The content of this talk is based on a set of various jointly au-

thored works, published, submitted or in preparation, with Denisa Diaconescu, Tom-

maso Flaminio, Brunella Gerla, Enrico Marchioni, and Vincenzo Marra.
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Standard completeness:

proof-theoretical and algebraic approaches

Paolo Baldi1, Agata Ciabattoni1, Kazushige Terui2, and Rostislav Horčı́k3

1 Institute of Computer Languages, Theory and Logic Group

Vienna University of Technology, Vienna, Austria

{baldi,agata}@logic.at
2 Research Institute for Mathematical Sciences

Kyoto University, Kyoto, Japan

terui@kurims.kyoto-u.ac.jp
3 Institute of Computer Science

Academy of Sciences of the Czech Republic, Prague, Czech Republic

horcik@cs.cas.cz

In mathematical fuzzy logic, the intended or standard semantics is based on al-

gebraic structures over the real interval [0,1] (see [12]). Thus, showing that a logic is

standard complete, i.e. complete with respect to the standard semantics, is of crucial im-

portance to the field. The usual approach to the problem is algebraic ( see, e.g., [5, 8, 11,

2, 13]) and consists of the following steps. Let L be a logic presented as a Hilbert-style

system.

1. The completeness of the logic w.r.t. a general class of linearly ordered algebras is

established (completeness w.r.t. L-chains).
2. It is shown that any countable L-chain can be embedded into a countable dense

L-chain by adding countably many new elements to the algebra and extending the

operations appropriately. This establishes rational completeness: a formula is deriv-

able in L iff it is valid in all countable dense L-chains.
3. Finally, a countable dense L-chain is embedded into a standard L-algebra, that is an

L-algebra with lattice reduct [0,1], using a Dedekind-MacNeille-style completion.

The crucial step 2. above (rational completeness) is often the most difficult to estab-

lish, as it relies on finding the right embedding, if any. A different method to approach

the step 2 was introduced in [15] and is based on proof-theoretic techniques. The main

idea is to show the admissibility in a logic L of a particular syntactic rule, called density.

The admissibility of the density rule immediately gives the rational completeness of the

logic L.

The density rule was first introduced by Takeuti and Titani [18] and it has the fol-

lowing form in a Hilbert-style system:

(A → p)∨ (p → B)∨C

(A → B)∨C

where p is a propositional variable not occurring in A, B, or C. Ignoring C, this can be

read contrapositively as saying “if A > B, then A > p and p > B for some p”; hence the

name “density” and the intuitive connection with rational completeness.
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Density-admissibility, or better, density-elimination, has been first shown in [15]

within the proof-theoretic framework of hypersequents ( see [1, 16, 14] for an overview).

The proof of density elimination in [15] is developed in close analogy to Gentzen-style

methods for cut-elimination. A more elegant approach to density elimination, by sub-

stitutions, has been then introduced in [4]. Our contribution will extend the results in

[4], proving density elimination, by substitutions, for a wider class of hypersequent cal-

culi. In particular, we will show density elimination, hence standard completeness for

classes of axiomatic extensions of: uninorm logic UL, monoidal t-norm logic MT L and

its noncommutative variant psMT Lr (see, e.g., [7]). We will also show how to trans-

late the procedure of density elimination by substitutions in an algebraic setting. We

will define indeed a method for constructing an embedding from an arbitrary chain to

a dense one (see step 2 above), which is closely related to the substitution procedure in

the proof of density elimination.

This will be based on residuated frames [10], a common abstraction from both the

notion of residuated lattices (algebraic) and sequent calculi (proof-theoretic).
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A ground many-valued type theory and its extensions

Libor Běhounek1,2

1 Institute for Research and Applications of Fuzzy Modeling

NSC IT4Innovations, Division University of Ostrava, Ostrava, Czech Republic

libor.behounek@osu.cz
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Academy of Sciences of the Czech Republic, Prague, Czech Republic

behounek@cs.cas.cz

Several variants of Fuzzy Type Theory (FTT) over different background logics (in

particular, IMTL△, Ł△, BL△, ŁΠ, and EQ) have been defined by Novák [6–8]. These

theories follow the syntax of Church–Henkin classical type theory (CTT) of [4, 5], dif-

fering from the latter only in the choice of logical constants and axioms. Semantically,

FTT generalizes CTT by admitting many-valued models over the appropriate algebras

of truth degrees and by including fuzzy equality as a primitive logical constant.

In order to facilitate generalizations of FTT (e.g., to partial functions or further back-

ground logics), we introduce a minimalistic many-valued theory of types (or higher-

order logic), designed by way of isolating a type-theoretical core of FTT, with many-

valued equality as the only logical constant. The resulting theory TT0 is largely inde-

pendent of the background logic and can be extended in a modular way to FTT as well

as other higher-order logics (including, e.g., intuitionistic, relevant, linear, modal, etc.).

The strong soundness and completeness theorems for TT0 with respect to many-valued

Henkin models are presented, and some basic extensions of TT0 with analogous re-

sults are introduced. The results presented in this abstract are elaborated in the author’s

manuscript [2].

1 The Syntax of the Many-Valued Type Theory TT0

The type theory TT0 shares the syntax with both CTT and FTT, differing from them

only by the choice of the logical vocabulary and the axiomatic system. Thus, TT0 uses

the usual type hierarchy over the primitive types ε (for elements) and o (for truth values);

complex types (for functions between the type domains) are obtained by this recursive

rule: if α,β are types, then (αβ) is a type. The set of all types will be denoted by Types.

As in CTT and FTT, the primitive symbols of TT0 are the variables xα,yα, . . . (form-

ing disjoint infinite countable sets Varα for each type α) and constants cα, . . . (arbitrarily

many for each type α). The list of constants (or the language L) is assumed to contain

the constant =(oα)α for each type α. Formulae (or λ-terms) in a given language L are

defined recursively by the usual constructions of λ-abstraction and application:

– Each variable xα and each constant cα is a formula of type α
– If Aα is a formula of type α and xβ a variable, then λxβAα is a formula of type αβ
– If Aαβ and Bβ are formulae of types αβ and β, then (AαβBβ) is a formula of type α
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The set of all formulae in the language L will be denoted by Form(L). Formulae of type

o are called propositions. We may use infix notation for =(oα)α and omit type subscripts

if they are known from the context or arbitrary (modulo well-typedness).

The notions of subformula, free and bound (by λ-abstraction) occurrence of a vari-

able, closed formula, and substitutability are defined as usual. The derivation rule “from

A1
o, . . . ,A

n
o derive Bo” will be written as A1

o, . . . ,A
n
o /Bo; derivation rules with no premises

will be called axioms.

The axiomatic system of TT0 consists of the following rules and axioms, for all

propositions A, formulae B,B′ of any type β and C of any type γ, variables x of type β,

and formulae F,G of type αβ not containing free x:

A / A[B/x] substitution

A, B = B′ / A[B′//B] equality

/ (λxC)B =C[B/x] λ-abstraction

Fx = Gx / F = G extensionality

where A[B/x] denotes the result of substituting the formula B for all free occurrences of

x in A and A[B′//B] the result of substituting B′ for a single occurrence of the subformula

B in A (assuming substitutability in both cases).

The axioms and rules of TT0 represent some of the most fundamental principles

of type theory. In particular, the substitution rule ensures substitution-invariance for

variables; the rule of equality embodies Leibniz’s principle of indiscernibility of identi-

cals; the axiom of λ-abstraction corresponds to the rule known as β-conversion in type

theory; and extensionality is equivalent to the type-theoretic axiom of η-conversion,

/ λx(Bx) = B if x is not free in B. The axioms and rules of TT0 also parallel the higher-

order machinery of Russell-style fuzzy type theory FCT [3] (namely, the substitution

invariance and equality axioms of the background fuzzy logic and the FCT axioms of

comprehension and extensionality).

The notions of proof, theorem, and provability (⊢) in TT0 are defined as usual in

finitary axiomatic systems. A theory is any set of propositions in a given language L . A

theory is inconsistent if it proves all propositions in L , and consistent otherwise.

Despite its parsimoniousness, the theory TT0 proves various type-theoretic prin-

ciples of CTT. For instance, all λ-conversion steps are derived rules of TT0; and T -

provable equality is (for any theory T over TT0) a congruence relation on formulae.

2 The Semantics of TT0

The (Henkin-style) semantics of TT0 is similar to that of CTT and FTT. Like in FTT, the

models of TT0 admit more than two values of type o. While FTT has only been devel-

oped over logics with a single designated truth value, TT0 admits any (non-exhaustive)

set of designated truth values (in order to accommodate extensions to weakening-free

logics, including uninorm fuzzy logics, linear, and relevance logics).

Let X ,A be non-empty sets and L a language. Then we define:

– A basic frame over (X ,A) is a system M = {Mα}α∈Types of sets such that Mε = X ,

Mo = A, and /0 6= Mβα ⊆ M
Mα

β
, for all α,β ∈ Types.
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– A frame M = (M,D,Eq) is a basic frame M equipped with (i) a subset D  Mo

of designated truth values and (ii) functions Eqα : M2
α → Mo such that m = m′ iff

Eqα(m,m′) ∈ D, for all m,m′ ∈ Mα.

– A valuation in a frame M is a mapping v =
⋃

α∈Types vα, where vα : Varα → Mα.

– An interpretation in a frame M is an assignment I : L → M such that I(cα) ∈ Mα

for all cα ∈ L and I(=(oα)α) = Eqα for all α ∈ Types.

– The semantic value assignment under an interpretation I and a valuation v in a

frame M is a function MI
v : Form(L)→ M satisfying the Tarski conditions:

• MI
v(xα) = v(xα)

• MI
v(cα) = I(cα)

• MI
v(BβαAα) = MI

v(Bβα)
(

MI
v(Aα)

)

• MI
v(λxαBβ) = F : Mα → Mβ such that F(m) = MI

vxα :m
(Bβ) for all m ∈ Mα

where vxα:m(yα) = m if yα is the variable xα and vxα:m(yα) = v(yα) otherwise.

– A model is a pair MI = (M, I) of a frame M and an interpretation I in M such that

for all valuations v in M there exists a semantic value assignment MI
v.

– A proposition Ao is valid in a model MI if MI
v(Ao) ∈ D for all valuations v in M.

– A model MI is a model of a theory T if all Ao ∈ T are valid in MI .

– A theory T entails Ao, written T |= Ao, if all models of T are also models of Ao.

Theorem 1 (Strong Completeness). Let T be a theory and Ao a proposition. Then:

1. T |= Ao iff T ⊢ Ao

2. T is consistent iff T has a model

3. T |= Ao iff T ′ |= Ao for a finite T ′ ⊆ T (compactness)

The proof of the Strong Completeness Theorem is obtained by the standard method

of constructing the canonical (closed-term) model for each consistent Henkin theory.

The proof requires several modifications to the known completeness proofs for CTT

and FTT [5, 1, 6] at such places where they rely on the properties of logical constants

absent from TT0 (e.g., the deduction theorem or the universal closure). For instance, it

is the following notion of Henkin completeness which turns out to be suitable for TT0

(while a weaker notion of extensional completeness is sufficient for CTT and FTT, see

[1, 6]):

– A theory T is Henkin complete if for every closed formula λx1 . . .λxnAo there are

closed formulae B1, . . . ,Bn such that if T ⊢
(

λx1 . . .λxnAo

)

B1 . . .Bn then T ⊢ Ao.

Lemma 1 (Henkin completion). Every consistent theory can be conservatively ex-

tended to a consistent Henkin complete theory.

3 Basic Extensions of TT0

By the Strong Completeness Theorem for TT0, the completeness proofs for axiomatic

extensions of TT0 reduce to the characterization of their models among those of TT0.

However, many important extensions of TT0, including FTT and CTT, cannot be cast as

axiomatic extensions of TT0, as they contain additional rules (such as modus ponens,

generalization, or △-necessitation). Nevertheless, it turns out that these rules can be
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easily added to TT0 and the strong completeness proofs for the resulting theories be

obtained by just minor modifications of the proof for TT0. Here we give three sample

extensions of TT0 by derivation rules:

1. The type theory TT→ extends the logical language of TT0 by an additional constant

→ of type (oo)o, governed by the derivation rule of modus ponens: A, A → B / A.

The frames for TT→ expand those for TT0 by an additional function Imp : M2
o →Mo

such that for all m,m′ ∈ Mo, if m ∈ D and Imp(m,m′) ∈ D then m′ ∈ D.
2. The type theory TT△ extends the logical language of TT0 by an additional constant

△ of type oo, governed by the derivation rule of necessitation: A /△A. The frames

for TT→ expand those for TT0 by an additional function De : Mo → Mo such that

De(m) ∈ D whenever m ∈ D.
3. The type theory TT∀ extends the logical language of TT0 by additional constants

∀o(oα) of type o(oα) for all types α. The following two rules are added to TT0:

A / ∀xA (generalization) and ∀xA / A (specification), where ∀xA abbreviates the

formula ∀o(oα)λxα Ao. The frames for TT→ expand those for TT0 by functions

Allα : Moα → Mo, for all types α, such that for every F ∈ Moα: Allα(F) ∈ D iff

F(m) ∈ D for each m ∈ Mα.

Theorem 2. TT→, TT△, and TT∀ enjoy the Strong Completeness Theorem (in the same

forms as in Theorem 1, w.r.t. models over frames expanded as described above).

The type theories TT→, TT∀, and TT△ (and combinations thereof) can be used for

defining non-classical type theories over a broad class of propositional or first-order

logics (whose equivalence connectives satisfy the equality axioms of TT0), by adding

the appropriate logical constants and the translations of their logical axioms for type o.

These extensions include intermediary, substructural (incl. relevant, linear, and fuzzy),

and modal logics of order ω. A detailed exploration of the landscape of extensions of

TT0 is left for future work.
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We consider the following problem: for a given formal fuzzy context 〈X ,Y, I〉, i.e.

I is a binary fuzzy relation between a finite set X (of objects) and a finite set Y (of

attributes), find a formal fuzzy context 〈X ′
,Y ′

, I′〉, minimal w.r.t. cardinality of X ′ and

Y ′, such that the concept lattice of 〈X ′
,Y ′

, I′〉 is isomorphic to that of 〈X ,Y, I〉.
In the classical, Boolean case, the problem has a well-known solution. Even though

this is not explicitly mentioned in the literature, the essence of the problem in the

Boolean case may be rephrased as the following problem. Given a system S of sub-

sets of a set U , find a base of the closure system [S ] generated by S . Such base is unique

and consists of intersection-irreducible elements of S . Via the well-known duality be-

tween classical closure and interior operator, the problem is equivalent to the problem

of finding a base of a Boolean matrix which is known to be unique in Boolean matrix

theory [4].

In a fuzzy setting (with complete residuated lattices used as the structures of truth

degrees), the problem is more complex, basically because there are two generating op-

erations involved (see [2]): It is well-known that the set Ext(X ,Y, I) of extents of formal

fuzzy context forms an L-closure system in X , i.e. it is closed under →-shifts and
∧

-

intersections. A reduction, i.e. finding a base, in a fuzzy case has therefore take both of

these operations into account. Conversely, every L-closure system in X is in the form

Ext(X ,Y, I) [1]; these claims hold for the set Int(X ,Y, I) of intents as well. As a result,

the problem behaves differently from the one in the Boolean case, even though it is

conceptually of the same character.

In fact, if we consider the fuzzy relation I as a binary matrix in which the entry at

row x and column y contains the degree I(x,y), then Ext(X ,Y, I) and Int(X ,Y, I) are just

the L-closure systems in X and Y generated by the columns and rows of this matrix, i.e.

the least L-closure system [S ] containing the columns and rows, respectively. Thus, the

essence of the considered problem may be rephrased as the problem of finding bases

of fuzzy closure systems: Given a system S of L-sets in U , i.e. S ⊆ LU , find a [ ]-base

of the L-closure system [S ] generated by S , where a [ ]-base of an L-closure system T

in U is a set S of L-sets in U such that [S ] = T (base generates T ), [P ] 6= T for every

P ⊂ S (base is non-redundant). Since L-closure systems often occur in fuzzy set theory

and fuzzy logic, the ramifications are broad.

We provide a useful description of [S ]: we show that [ ] may be seen as a composition

of two other, simpler closure operators as follows. Let for S ⊆ LU ,

[S ]∧ = {
∧

T |T ⊆ S},

[S ]→ = {a → A |a ∈ L, A ∈ S},
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where a → A is an L-set in U , called the →-shift of A by a, defined by (a → A)(u) =
a → A(u). Then we obtain.

Theorem 1. For any S ⊆ LU , we have [S ] = [[S ]→]∧.

Furthermore, bases of [ ]∧ and [ ]→ are uniquely given by sets of irreducible elements.

Namely, define for V ⊆ LU ,

irr∧(V ) = {B ∈ V | B 6∈ [V −{B}]∧},

irr→(V ) = {B ∈ V | B′
⊳B implies B′ = B for any B′ ∈ V },

where ⊳ denotes the binary relation in LU defined by B1 ⊳B2 if and only if B2 = a → B1

for some a ∈ L. Then for every finite set S , irr∧(S) is a unique [ ]∧-base of S and

irr→(V ) is a unique [ ]→-base of S .

Given the descriptions of the unique [ ]∧- and [ ]→-bases, we propose two simple

methods that enable us to obtain for a given finite set S ⊆ LU a finite set of generators

of [S ]:

Theorem 2. For every S ⊆ LU , irr∧(irr→(S)) is a [ ]∧-non-redundant and [ ]→-non-

redundant set of generators of [S ] and irr→(irr∧(S)) is a [ ]∧-non-redundant and [ ]→-

non-redundant set of generators of [S ]. Moreover, if S is closed under→-multiplications,

irr→(irr∧(S)) is a [ ]-base of [S ].

Figure 1 shows that irr→(irr∧(S)) and irr∧(irr→(S)) may indeed be different.

•
〈1, 1〉

•
〈 1
3
, 1〉

•〈0, 1〉 •
〈 1
3
,
2

3
〉

• 〈1, 0〉•
〈0, 2

3
〉

•
〈0, 1

3
〉

•
〈 1
3
, 0〉

•
〈0, 0〉

•

•

Fig. 1. Hasse diagram of an L-closure system S in a two-element universe U with L being

the four-element Gödel chain. Circled nodes represent irr∧(irr→(S)). Squared nodes represent

irr→(irr∧(S)).

Contrary to the classical case, an L-closure system may have different bases. With

linearly ordered residuated lattice the bases of the L-closure system always equicardi-

nal. For non-linearly ordered residuated lattice, the bases may have different number
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of elements. For example, consider the residuated lattice in Fig. 2. Then {〈a〉,〈b〉} and

{〈0〉} are bases of S = {〈0〉,〈a〉,〈b〉,〈1〉} (an L-closure system in a singleton universe).

This shows that bases of the same L-closure system can have different size and that two

disjoint sets can generate the same L-closure system.

In our talk, we present the above results as well as further ones that lead to an

algorithm for computing bases of L-closure systems which will also be presented.

•
1

•a •b

•
0

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Fig. 2. Residuated lattice L = 〈L,∨,∧,⊗,→,0,1〉 (left) and its residuum → (right); ⊗ is equal to

∧.
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In this talk we will discuss relationships between fuzzy autoepistemic logic and

fuzzy modal logics, generalizing well-known links beween autoepistemic logic and sev-

eral classical modal logic systems. In particular we will generalize Levesque’s logic of

only knowing [1] and show that when generalizing to the many-valued case the cor-

respondence to autoepistemic logic remains valid. Moreover we provide a sound and

complete axiomatization for this many-valued logic of only knowing using the axiom-

atization we previously proposed for many-valued K45 [2].

Since its introduction in the 1980s, autoepistemic logic [3–5] has been one of the

main formalisms for nonmonotonic reasoning. It extends propositional logic by offering

the ability to reason about an agent’s (lack of) beliefs. More precisely, these beliefs are

represented by sets of sentences in a propositional language augmented by a modal

operator B. If ϕ is a formula, then Bϕ, which has to be interpreted as “ϕ is believed”,

is a formula as well. Originally, autoepistemic logic was intended to model the beliefs

of an ideally rational agent reflecting upon his own beliefs [3]. Given a set of initial

premises, the (closed) set of beliefs an agent should adopt is given by the so called stable

expansions. In particular, given a set of autoepistemic formulas A, a set of autoepistemic

formulas EA is a stable expansion of A if

EA = {ϕ | A∪{Bψ | ψ ∈ EA}∪{¬Bψ | ψ /∈ EA} ⊢ ϕ} ,

where ⊢ denotes derivability in classical propositional logic and each formula Bϕ is

considered as a new propositional variable (e.g. B(a∧Bb) is a variable but Ba∧ b is

the conjunction of the variables Ba and b). In [1], autoepistemic logic is extended such

that expressions of the form “ϕ is all that is believed” (i.e. there are no other relevant
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beliefs about ϕ) can be formulated. To do this, the language is augmented with another

modal operator O, where Oϕ has to be read as “α is all that is believed” or “only α is

believed”. In [1] it is then shown that stable expansions correspond to “only knowing”

sentences in this logic.

Recently, a fuzzy generalization of autoepistemic logic has been defined in [6]. In

particular, given a set of autoepistemic formulas A, a stable fuzzy expansion of A is a

fuzzy set of formulas EA satisfying the following fixpoint condition:

EA(ϕ) = inf{v(ϕ) | v ∈ Ωk such that v(α) = 1 for all α ∈ A, and

v(Bφ) = EA(φ) for any formula φ},

where Ωk is the set of all propositional many-valued evaluations treating every formula

Bϕ as a new propositional variable.

In this talk, we will first recall some generalizations of the main classical propo-

sitional modal logics of belief (K45, KD45, S5) based on finitely-valued Łukasiewicz

logic with semantics based on Kripke models with crisp accessibility relations from [2].

The approach in [2] is based on the minimal modal logic [7] and generalizes the well

known classical modal logics K45, KD45 and S5 [8]. Using these fuzzy modal logics, a

graded notion of belief on propositions, in the sense of admitting partial degrees of truth

between 0 (fully false) and 1 (fully true), can be modeled. For practical and technical

reasons we will consider truth degrees belonging to a finite scale Sk = {0, 1
k
, . . . , k−1

k
,1}.

Then we show how fuzzy autoepistemic logic can be approached using these many-

valued modal logics in the following sense. We define a generalization of Levesque’s

logic of only knowing based on finitely-valued Łukasiewicz logic. As in the clas-

sical case we provide a sound and complete axiomatisation for this finitely-valued

Łukasiewicz logic of “only knowing” based on finitely-valued Łukasiewicz K45 and

show that stable fuzzy expansions correspond to “only knowing” valid sentences.
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Università degli Studi di Salerno, Fisciano (SA), Italy

anrusso@unisa.it

This talk is based on [3]. In this paper, we generalize to a topos-theoretic context

the well-known equivalence established by Mundici in 1986 [5] between the category

of MV-algebras and the category of lattice ordered abelian groups with strong unit.

The key of this generalization is the fact that we can interpret these categories as the

categories of set-based models of appropriate theories, namely the theory MV of MV-

algebras and the theoryLu of abelian ℓ-groups with strong unit. We show that this equiv-

alence generalizes over an arbitrary Grothendieck topos, yielding a Morita-equivalence

between the theories MV and Lu. This allows us to transfer properties and results across

the two theories by using the methods of topos theory. Our main applications are:

– a bijective correspondence between the geometric extensions of the two theories;

– a form of compactness and completeness for the theory Lu;

– a logical characterization of the finitely presentable ℓ-groups with strong unit;

– a sheaf-theoretic version of Mundici’s equivalence.

A (Grothendieck) topos E can be considered as a mathematical universe in which

one can consider models of any kind of first-order theory. In particular, one can consider

models of geometric theories, i.e. theories over a first-order signature Σ whose axioms

can be presented in the form (φ ⊢x ψ), where φ and ψ are geometric formulae, that is

formulae with finite number of free variables in the context x built up from atomic for-

mulae over Σ by only using finitary conjunctions, infinitary disjunctions and existential

quantifications.

We observe that the theories MV and Lu are geometric theories; MV is finitary

algebraic, whereas Lu is strictly geometric as we need an infinitary disjunction (over

the natural numbers) to describe the property of the strong unit.

Every geometric theory T has a classifying topos (cf. [4]), that is a Grothen-

dieck topos satisfying the universal property that the models of T in any topos E are

classified by the morphisms from E to the classifying topos, naturally in E . The classi-

fying topos of a theory is unique (up to categorical equivalence), and it can be seen as

a sort of ‘semantical core’ of the theory, embodying its essential features and providing

a ‘natural environment’ in which the theory can be investigated, both in itself and in

relationship with other theories.
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Two theories are said to be Morita-equivalent if they have the same classifying topos

(up to categorical equivalence), that is if the categories of models of the two theories in

any topos E are equivalent, naturally in E .

For every topos E , we build a categorical equivalence

MV-mod(E )≃ Lu-mod(E )

between the categories of models, respectively, of MV and Lu in E . The two functors

LE : MV-mod(E )→ Lu-mod(E ) ΓE : Lu-mod(E )→MV-mod(E )

of the equivalence generalize the classical functors of Mundici’s equivalence.

Further, we observe that this equivalence is natural in E , obtaining the following

Theorem 1. The functors LE and ΓE yield a Morita-equivalence between the theories

MV and Lu. In particular, the respective classifying toposes are categorically equiva-

lent.

This Morita-equivalence is interesting because the theories MV and Lu are not bi-

interpretable. Indeed, the former is interpretable in the latter, in the sense that we can

‘translate’ every geometric sequent σ in the language of MV in a geometric sequent σ′

in the language of Lu in such a way that, in particular, if σ is provable in MV then σ′

is provable in Lu. The opposite does not hold, i.e. the theory Lu is not interpretable in

MV. Nonetheless, the fact that these two theories have equivalent classifying toposes

- rather than merely equivalent categories of set-based models - allows us to discover

non-trivial connections between the two theories by using appropriate topos-theoretic

invariants.

For instance, we can use the invariant notion of subtopos to establish a relationship

between the quotients (i.e. geometric extensions over the same signature, c.f. [1]) of the

two theories. The duality theorem of [1], by giving a bijective correspondence between

the quotients of a geometric theory and the subtoposes of its classifying topos, provides

the appropriate characterizations of the notion of subtopos in terms of the syntax of the

two theories. This yields at once the following

Theorem 2. Every quotient of the theory MV is Morita-equivalent to a quotient of the

theory Lu, and conversely. These Morita-equivalences are the restrictions of the one

between MV and Lu.

By using a different invariant concept, namely the property of compactness of a

terminal object in the topos, we obtain that the theory Lu enjoy a form of compactness,

while the fact that its classifying topos is a presheaf topos implies that Lu satisfies a

classical completeness theorem. Thus the Morita-equivalence between the geometric

theory Lu and the finitary algebraic theory MV also implies a form of compactness

and completeness for Lu, properties which are a priori not expected as the theory Lu is

infinitary:

Theorem 3. (i) For any geometric sequent σ in the signature of Lu, σ is valid in all

abelian ℓ-groups with strong unit in the topos of sets if and only if it is provable in

the theory Lu;
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(ii) For any geometric sentences φi in the signature of Lu, ⊤ ⊢
∨

i∈I

φi is provable in

Lu (equivalently by (i), every abelian ℓ-group with strong unit in the topos of sets

satisfies at least one of the φi) if and only if there exists a finite subset J ⊆ I such that

the sequent ⊤ ⊢
∨

i∈J

φi is provable in Lu (equivalently by (i), every abelian ℓ-group

with strong unit in the topos of sets satisfies at least one of the φi for i ∈ J).

For any geometric theory T over Σ we can consider its syntactic category CT, whose

objects are geometric formulae-in-context over Σ and arrows are the T-provable classes

of geometric formulae which is T-provably functional from the domain formula to the

codomain formula (c.f. [4] for more details). We can equip this category with its canon-

ical coverage. If a formula-in-context admits only the trivial covering, we call it an

T-irreducibile formula.

Let C irr
Lu

be the full subcategory of the syntactic category CLu on the Lu-irreducible

formulae. Further, let C
alg
MV

be the algebraic syntactic category of MV, whose objects

are the finite conjunctions of atomic formulae over the signature of MV and whose

arrows {x.φ} → {y.ψ} are sequences of terms t1(x), . . . , tm(x) such that the sequent

(φ ⊢x ψ(t1(x)), . . . , tn(x)) is provable in MV, modulo the equivalence relation which

identifies two such sequences t and t ′ precisely when the sequent (φ ⊢x t(x) = t ′(x)) is

provable in MV.

Theorem 4. With the above notation, we have an equivalence of categories C
alg
MV ≃

C irr
Lu

representing the syntactic counterpart of the equivalence of categories MV f .p. ≃
f.p.Lu-mod(Set), where MV f .p. is the category of finitely presented MV-algebras and

homomorphisms between them and f.p.Lu -mod(Set) is the category of finitely pre-

sentable models of the theory Lu.

In particular, the finitely presentable abelian ℓ-groups with strong unit are precisely

the finitely presented abelian ℓ-groups with unit which are presented by a Lu-irreducible

formula; the ℓ-group presented by such a formula {x.φ} has as underlying set the set

of Lu-provably functional geometric formulae from {x.φ} to {z.⊤} and as order and

operations the obvious ones.

We have defined, for every Grothendieck topos E , a categorical equivalence be-

tween the category of models of Lu in E and the category of models of MV in E , which

is natural in E . By specializing this result to toposes Sh(X) of sheaves on a topological

space X , we shall obtain a sheaf-theoretic generalization of Mundici’s equivalence. The

two functors ΓSh(X) and LSh(X) defining the equivalence can be described as follows:

ΓSh(X) sends any sheaf F in ShLu(X) to the sheaf ΓSh(X)(F) on X sending every open

set U of X to the MV-algebra given by the unit interval in the ℓ-group F(U), and it acts

on arrows in the obvious way. In the converse direction, LSh(X) assigns to any sheaf G

in ShMV(X) the sheaf LSh(X)(G) on X whose stalk at any point x ∈ X is equal to the

ℓ-group corresponding via Mundici’s equivalence to the MV-algebra Gx.

The naturality in E of our Morita-equivalence implies in particular that the resulting

equivalence

τX : ShMV(X)≃ ShLu(X)

is natural in X . In particular, by taking X to be the one-point space, we obtain that, at

the level of stalks, τX acts as the classical Mundici’s equivalence.
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Summarizing, we have the following result.

Corollary 1. Let X be a topological space. Then, with the above notation, we have a

categorical equivalence

τX : ShMV(X)≃ ShLu(X)

sending any sheaf F in ShLu(X) to the sheaf ΓSh(X)(F) on X sending every open set U

of X to the MV-algebra given by the unit interval in the ℓ-group F(U), and any sheaf

G in ShMV(X) to the sheaf LSh(X)(G) in ShLu(X) whose stalk at any point x of X is the

ℓ-group corresponding to the MV-algebra Gx under Mundici’s equivalence.

The equivalence τX is natural in X, in the sense that for any continuous map f :

X → Y of topological spaces, the diagram

ShMV(Y )

j f

��

τY
// ShLu(Y )

i f

��

ShMV(X)
τX

// ShLu(X)

commutes, where i f : ShMV(Y )→ ShMV(X) and j f : ShLu(Y )→ ShLu(X) are the mor-

phisms induced on sheaves by f .

Moreover, τX acts, at the level of stalks, as the classical Mundici’s equivalence.

This work represents a contribution to the research programme ‘toposes as bridges’

introduced in [2], which aims at developing the unifying potential of the notion of

Grothendieck topos as a means for relating different mathematical theories to each other

through topos-theoretic invariants.
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1 Introduction

The aim of the research reported here is to provide Herbrand and Skolemization the-

orems for first-order fuzzy logics (see, e.g., [1–3]). Such logics are often undecidable,

but their (decidable) fragments provide the foundations for knowledge representation

and reasoning methods such as non-classical logic programming and description log-

ics (see, e.g., [4, 5]). Our goal is to avoid a duplication of research effort by providing a

general approach to the development of automated reasoning techniques for first-order

fuzzy logics. Herbrand and Skolemization theorems play a pivotal role in this devel-

opment, reducing first-order problems to propositional problems. These theorems are

also helpful for addressing theoretical problems in particular cases such as first-order

Łukasiewicz logic.

In classical first-order logic, questions of validity and semantic consequence reduce

to the satisfiability of a set of sentences; Skolemization and Herbrand theorems then

reduce these questions further to the satisfiability of a set of propositional formulas

(see, e.g., [6]). In first-order fuzzy logics, semantic consequence does not (typically)

reduce to satisfiability and in the absence of quantifier shifts and a deduction theorem,

non-prenex formulas should be considered on both sides of the consequence relation.

The general Skolemization and Herbrand theorems obtained here therefore take various

forms, applying either to the left or right of the consequence relation, and to restricted

sets of formulas. The logics investigated in this paper are defined based on arbitrary

classes of complete UL-chains. Herbrand and Skolemization theorems may often be

established for such logics proof-theoretically (see [2]) via mid(hyper)sequent theorems

proved using permutations of rules tailored to the case at hand. By contrast, the our

proposed uniform approach is purely algebraic and applies also to many cases where

no calculus has yet been defined.3

3 This work is based on the paper [7], some of our results have also been independently obtained

by Terui [8]. However, his approach is narrower and more algebraic in scope (e.g., Skolem-

ization is not really considered); his main result shows rather that algebras for a broad class of

logics admit suitable completions and that therefore these logics have a Herbrand theorem.
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2 Preliminaries

Algebras Let us recall that a residuated uninorm ∗ is an associative and commutative

binary function ∗ on [0,1] that is increasing in both arguments and has a unit e∗ and

residuum→∗. Fixing an arbitrary element d ∈ [0,1], any residuated uninorm determines

the so-called standard UL-chain 〈[0,1],∗,→∗,min,max,d,e∗〉. In this work we will

study logics given by classes of linearly ordered algebras from the variety generated by

standard UL-chains.4

Definition 1. A UL-algebra is an algebra A = 〈A,&,→,∧,∨,0,1〉 such that:

(a) 〈A,∧,∨〉 is a lattice with an order defined by x ≤ y iff x∧ y = x.

(b) 〈A,&,1〉 is a commutative monoid.

(c) → is the residuum of &; i.e., for all x,y,z ∈ A: x & y ≤ z iff x ≤ y → z.

(d) ((x → y)∧1)∨ ((y → x)∧1) = 1.

The algebra A is complete if for all X ⊆ A, both
∨

X and
∧

X exists in A, and A is an

UL-chain if for all x,y ∈ A, either x ≤ y or y ≤ x.

Logics We assume the reader to be familiar with first order fuzzy logic as described e.g.

in [1–3]. Thus in the short preliminary section we concentrate on setting the framework

and recalling some denotation. A (countable) predicate language P is defined as usual;

for convenience, we call nularry predicate symbols, propositional atoms, and a language

P containing only propositional atoms, propositional. By model P -K-model of T we

understand any predicate structure for the language P over an algebra from the class K

of UL-chains in which all formulas of T are true.

Definition 2. Let K be a class of complete UL-chain. A P -formula ϕ is a semantic

consequence of a P -theory T in K, written T |=P

K
ϕ, if for each P -K-model M of T , is

also model of ϕ.

A description of propositional fuzzy logics is implicit in our definitions. Let P0 be

a propositional language consisting of countably infinitely many propositional atoms.

Then we can identify |=
P0
K

with the propositional logic of K. In particular, the propo-

sitional logic of all complete UL-algebras is the finitely axiomatizable logic UL and

other well-known propositional fuzzy logics are axiomatized by adding finitely many

additional (propositional) axioms [9].

To obtain Herbrand theorems, we require a further crucial ingredient. Let us say that

K is finitary if each P0-theory T ∪{ϕ}:

T |=P0
K

ϕ iff there is a finite T ′ ⊆ T such that T ′ |=P0
K

ϕ.

The prototypical examples of finitary classes of UL-chains are any finite class of finite

chains or the class of complete chains of a variety whose class of chains admits the

regular completions; which is the case whenever the variety is axiomatized relative to

all UL-algebras by so-called P3 identities (see [10]), particular examples being e.g. the

class of MTL-, UL-, IMTL-, and G-chains.

4 Broadening the scope to non-commutative (or even non-associative) algebras or algebras with

different operation symbols would lead to similar results, but complicate the presentation with-

out adding greatly to our stock of useful examples.
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3 Skolemization

Unlike first-order classical logic, we cannot assume the existence of equivalent prenex

formulas or reductions of semantic consequence to satisfiability. We therefore obtain

separate Skolemization theorems for formulas of a restricted form on the right and left

of the consequence relation, where the latter is established only for certain cases.

Theorem 1 (Skolemization Right). For each P -theory T ∪{ϕ(x,y),ψ} and function

symbols fϕ 6∈ P of the same arity as y:

T |=K ψ → (∃y)(∀x)ϕ(x,y) iff T |=K ψ → (∃y)ϕ( fϕ(y),y)

T |=K (∀y)(∃x)ϕ(x,y)→ ψ iff T |=K (∀y)ϕ( fϕ(y),y)→ ψ.

Theorem 2 (Skolemization Left). Suppose that one of the following holds:

(a) K is the class of complete chains of a variety of FLe-algebras whose class of chains

admits regular completions.

(b) max{V ∈ A |V < 1
A
} exists for all A ∈K (e.g., if each A ∈K is finite).

(c) K consists of the standard Łukasiewicz algebra [0,1]
�

.

Then for each P -theory T ∪{ϕ(x,y),ψ} and any function symbol fϕ 6∈ P of the same

arity as y:

T ∪{(∀y)(∃x)ϕ(x,y)} |=K ψ iff T ∪{(∀y)ϕ( fϕ(y),y)} |=K ψ.

4 Herbrand Theorems

In first-order classical logic, it can be assumed (using Skolemization and quantifier

shifts) that only universal formulas appear on the left and existential formulas on the

right of the consequence relation. Indeed we may even consider, using the deduction

theorem, only existential formulas on the right, or, using also the double negation law,

only universal formulas on the left. In general, for first-order fuzzy logics, formulas

are not equivalent to prenex formulas and the deduction theorem and double negation

law fail. Nevertheless, we can establish Herbrand theorems of the same scope using

formulas that are classically equivalent to universal and existential formulas. Such for-

mulas are defined using BNF as follows, denoting quantifier-free formulas (for a given

language) by ∆0:

g-universal formulas P ::= ∆0 | P∧P | P∨P | P & P | (∀x)P | N → P

g-existential formulas N ::= ∆0 | N ∧N | N ∨N | N & N | (∃x)N | P → N.

We refer to theories containing only (g-)universal and (g-)existential formulas as (g-)-

universal and (g-)existential theories, respectively.

For any predicate language P , the Herbrand universe U(P ) is the set of closed

P -terms (assuming, for simplicity, that every predicate language contains at least one

object constant and hence U(P ) 6= /0). The P -Herbrand expansion E(ϕ) of a P -formula

ϕ consists of all formulas obtained by applying the following two steps repeatedly,

starting with ϕ, until no quantifiers remain:
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I Replace ψ[(∀x)χ(x,y)] where χ is quantifier-free with ψ[
∧

t∈H χ(t,y)]
for some finite H ⊆ U(P ).

II Replace ψ[(∃x)χ(x,y)] where χ is quantifier-free with ψ[
∨

t∈H χ(t,y)]
for some finite H ⊆ U(P ).

Notice that if ϕ is a sentence, then so are all formulas in E(ϕ). We are now able

to establish Herbrand theorems for the left and right sides of the consequence relation,

obtaining an equivalence for the left side.

Theorem 3 (Herbrand Left). The following are equivalent:

(1) K is finitary.

(2) For every g-universal theory T ∪{ϕ} and g-existential P -formula χ:

T ∪{ϕ} |=K χ iff there exists ϕ′ ∈ E(ϕ) such that T ∪{ϕ′} |=K χ.

Theorem 4 (Herbrand Right). If K is finitary, then for every g-universal P -theory T

and g-existential P -formula ψ:

T |=K ψ iff there exists ψ′ ∈ E(ψ) such that T |=K ψ′
.

We show finally that finitarity and the Herbrand theorems fail for any logic ad-

mitting quantifier shifts that is defined by a class K with arbitrarily large chains; thus

disproving e.g. for K consisting of the standard Łukasiewicz algebra [0,1]
�

.

Proposition 1. Suppose that:

(a) {(∀x)ϕ → ψ} |=K (∃x)(ϕ → ψ) where x is not free in ψ.

(b) For each n ∈ N, there is A ∈K such that |A| ≥ n.

Then K is not finitary and |=K does not admit the left or right Herbrand theorem.
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Quantum computational logics are new forms of quantum logic, suggested by the

theory of quantum computation. In these logics sentences are supposed to denote pieces

of quantum information: quregisters or mixtures of quregisters that may by stored by

quantum objects, while the logical connectives are interpreted as quantum operations

that transform pieces of quantum information in a reversible way. In this paper we inves-

tigate the possibility of extending the semantic characterizations of sentential quantum

computational logics to the case of first-order languages, discussing in particular the

following questions:

1) How to interpret the logical quantifiers as special examples of quantum operations?

2) What might be the role of universes of discourse in the quantum case, where the

concept of individual is highly problematic?

1 The mathematical environment

Any piece of quantum information is supposed to live in a Hilbert space H (n) = ⊗nC2

(the n-fold tensor product of the space C2). Quregisters (representing possible pure

states of quantum objects) are unit vectors |ψ〉 of a space H (n), while mixtures of qureg-

isters (briefly called qumixes) are density operators ρ of a space H (n). Of course, any

quregister |ψ〉 corresponds to a special case of a density operator (represented by the

projection operator over the subspace determined by |ψ〉). In any space H (n) the el-

ements |x1, . . . ,xn〉 (with xi ∈ {0,1}) of the canonical orthonormal basis represent the

classical registers. A register |x1, . . . ,xn〉 is called true (false) iff xn = 1 (xn = 0). The

truth-property (the falsity-property) of H (n) is identified with the projection operator

P
(n)
1 (P

(n)
0 ) that projects over the closed subspace spanned by the set of all true registers

(false registers) of H (n). Recalling the Born rule, one can define, for any qumix ρ of

H (n), the probability that the information stored by ρ is true: p(ρ) := Tr(P
(n)
1 ρ) (where
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Tr is the trace-functional). On this basis, the set D of all qumixes can be pre-ordered by

the following relation:

ρ � σ iff p(ρ)≤ p(σ).

Quantum information is processed by quantum logical gates: unitary operators defined

on a space H (n). We consider three gates that have a special logical interest: the nega-

tion, the Toffoli-gate and the Hadamard-gate.

In any space H (n) the negation NOT(n) is the unitary operator such that:

NOT(n)(|x1, . . . ,xn〉) := |x1, . . . ,xn−1,1− xn〉.

The Hadamard-gate
√
I
(n)

is the unitary operator such that:

√
I
(n)
(|x1, . . . ,xn〉) := |x1, . . . ,xn−1〉⊗

1√
2
((−1)xn |xn〉+ |1− xn〉).

In any space H (m+n+p) the Toffoli-gate T(m,n,p) is the unitary operator such that:

T(m,n,p)(|x1, . . . ,xm,y1, . . . ,yn,z1, . . . zp〉) :=

|x1, . . . ,xm,y1, . . . ,yn,xm,z1, . . .z(p−1),xm · yn ⊕ zp〉

(where ⊕ is the sum modulo 2).

Any gate G(n) defined on H (n) can be canonically extended to a unitary quantum

operation DG(n) defined on the set D(H (n)) of all qumixes of H (n):

DG(n)(ρ) := G(n)ρG(n)†
,

where G(n)† is the adjoint of G(n).

The Toffoli-gate allows us to define a holistic reversible conjunction AND(m,n):

AND(m,n)(ρ) := DT(m,n,1)(ρ⊗P
(1)
0 ),

for any qumix ρ of H (m+n).

2 A first-order quantum computational language L

The alphabet of L contains:

1) sentential constants, including two privileged sentences t and f that represent the

truth-values Truth and Falsity, respectively;

2) individual names and individual variables;

3) m-ary predicates;

4) the following quantum computational connectives: the negation ¬ (which corre-

sponds to the gate Negation), the square root of the identity
√

id (which corre-

sponds to the Hadamard-gate), a ternary connective ⊺ (which corresponds to the

Toffoli-gate);

5) the universal quantifier ∀.
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Recalling the definition of AND(m,n) in terms of the Toffoli-gate, a binary conjunction ∧
can be metalinguistically defined as follows: α∧β := ⊺(α,β, f) (where f plays the role

of an ancilla). The inclusive disjunction ∨ and the existential quantifier ∃ are supposed

to be defined via de Morgan-law.

Any formula α can be naturally decomposed into its parts, giving rise to a special

configuration called the syntactical tree of α (indicated by STreeα). Roughly, STreeα

can be represented as a finite sequence of levels, where:

1) each Levelα
i is a sequence of subformulas of α;

2) the bottom level Levelα
1 is (α);

3) the top level Levelα
h is the sequence of the atomic subformulas occurring in α;

4) for any i (with 1 ≤ i < h), Levelα
i+1 is the sequence obtained by dropping the prin-

cipal connective and the principal quantifier in all molecular formulas occurring at

Levelα
i , and by repeating all the atomic formulas that occur at Levelα

i . For instance,

the syntactical tree of the sentence α = P1a∧¬P2ba = ⊺(P1a,¬P2ba, f) is:

(⊺(P1a,¬P2ba, f)), (P1a,¬P2ba, f), (P1a,P2ba, f).

3 A first-order holistic quantum computational semantics

The characteristic holistic features of the quantum-theoretic formalism (arising, for in-

stance, in the case of entanglement phenomena) can be used as a “semantic resource”.

The basic intuitive idea can be sketched as follows. Any model Hol of L assigns to any

formula α a global informational meaning Hol(α), represented by a qumix ρ living in a

Hilbert space H α (called the semantic space of α) that depends on the linguistic com-

plexity of α. This meaning determines the contextual meanings of the subexpressions

of α, and cannot be generally reconstructed as a function of the contextual meanings of

the parts of α. Furthermore, a model Hol may assign different contextual meanings to

different occurrences of α in different formulas.

Let us first refer to the quantifier-free sublanguage L− of L . Consider again the

sentence α = ⊺(P1a,¬P2ba, f). The choice of the semantic space H α depends on the

non-logical constants of α. We assume that in order to store the information expressed

by P1a we need three qumixes of C2, representing respectively the meaning of P1, the

meaning of a and the truth-degree according to which the individual concept corre-

sponding to a satisfies the property corresponding to P1. In a similar way, in the case

of P2ba, we need four qumixes, while for the sentential constant f one qumix will be

sufficient. The number-sequence (3,4,1) represents the atomic complexity of α. Ac-

cordingly H α is identified with the space H (3)⊗H (4)⊗H (1).

The syntactical tree of any formula α uniquely determines a sequence of gates

(all defined on H α), called the qumix tree of α. For instance, in the case of α =
⊺(P1a,¬P2ba, f), the qumix tree of α is the gate-sequence

(I(3)⊗ DNOT(4)⊗I(1), DT(8))

(where I(3) is the identity operator of H (3)).
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By holistic map of L− we mean a map that assigns to each level of the syntactical

tree of any formula α a global meaning represented by a qumix of H α. On this ba-

sis, any occurrence βi j
of a subformula β (at the j-th position of the i-th level of the

syntactical tree of α) receives a contextual meaning, indicated by Holα(βi j
). We put:

Hol(α) := Hol(Levelα
1 ) = Holα(α).

A holistic model of L− is a holistic map that satisfies the following conditions:

1) for any α and for each Levelα
i , different from the top level:

Hol(Levelα
i ) =

DGi(Hol(Levelα
i+1)),

where DGi is the i-th element of the qumix tree of α;

2) the contextual meanings of the sentences t and f are always the truth P
(1)
1 and the

falsity P
(1)
0 , respectively;

3) different occurrences of a subformula β in the syntactical tree of α receive the same

contextual meaning (in the context Hol(α)).

The concepts of truth with respect to a model and of logical consequence are defined

as follows:

�Hol α iff p(Hol(α)) = 1.

α � β iff for any formula γ such that α and β are subformulas of γ and for any model

Hol, Holγ(α) � Holγ(β).
The logic characterized by � is a weak form of holistic quantum computational logic

where conjunction and disjunction violate idempotency, commutativity, associativity

and distributivity.

How to extend this semantics to the full first-order language L? Can ∀ correspond to

a unitary quantum operation ∀Q? A reasonable condition that should be required seems

to be the following: ∀Qρ � ρ. One is dealing with a condition that also characterizes

knowledge operations K in a Hilbert-space environment, where Kρ is interpreted as

“the information ρ is known”. For convenient ρ (which belong to the so called epis-

temic domain of K) we have: Kρ � ρ (in other words, knowing ρ implies ρ). One can

prove that non-trivial knowledge operations cannot be represented as unitary quantum

operations. At the same time, they can be described as quantum channels, representing

particular cases of quantum operations that are generally irreversible. It seems reason-

able to assume that also the universal quantifier ∀ can be interpreted as a special example

of a quantum channel. In fact, the use of ∀ seems to imply an irreversible step (a kind

of theoretic “jump”), as happens in the case of quantum measurements. On this basis

one can define a suitable notion of holistic model both for L and for an epistemic first-

order language LE p, whose alphabet contains epistemic operators (like understanding

and knowing).

Unlike most first-order semantic approaches, the models of L and of LE p do not

refer to any domain of individuals dealt with as a closed set (in a classical sense). The

interpretation of a universal formula does not require “ideal tests” that should be per-

formed on all elements of a hypothetical domain (which might be infinite). This way
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of thinking seems to be in agreement with a number of concrete semantic phenomena,

where the individual-domain appears highly indeterminate and somehow evanescent;

such situations, however, do not generally prevent a correct use of the universal quanti-

fier.
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In 1982, Pawlak [1] introduced rough set theory, where uncertain objects are ap-

proximated with respect to an equivalence relation representing indiscernibility. More

formally, given a Pawlak approximation space (U,R), where U is a non-empty set (do-

main) and R is an equivalence relation, the rough approximation of a crisp subset A of

U by R is the pair of sets (R ↓ A,R ↑ A) in U defined by:

x ∈ R ↓ A ⇔ (∀y ∈U)((y,x) ∈ R ⇒ y ∈ A), (1)

x ∈ R ↑ A ⇔ (∃y ∈U)((y,x) ∈ R∧ y ∈ A). (2)

A pair (A1,A2) of sets in U is called a rough set in (U,R) if there is a set A in U such

that A1 = R ↓ A and A2 = R ↑ A. The connection between rough sets and modal logic

was already stated in [2].

In this talk, we discuss a general fuzzy rough set model, based on implicators and

conjunctors. We show that this model covers many fuzzy rough set models studied in

literature. Furthermore, we discuss an axiomatic approach to the model and explain how

it is related to fuzzy modal logic.

The basic idea is to extend the rough set theory of Pawlak to the fuzzy setting,

where we want to approximate a fuzzy set A with respect to a binary fuzzy relation R.

This can be done by replacing the universal and existential quantifiers by the infimum

and supremum operators and by using fuzzy implicators and conjunctors instead of the

Boolean implication and conjunction. Namely, a fuzzy approximation space is just a

pair (U,R) where U is a non-empty set as before but now R is a binary fuzzy relation

R. Furthermore, let I be an implicator and C a conjunctor.

Definition 1. The (I ,C )-fuzzy rough approximation of a fuzzy set A in U by R is the

pair of fuzzy sets (R ↓I A,R ↑C A) defined by, for x in U,

(R ↓I A)(x) = inf
y∈U

I (R(y,x),A(y)), (3)

(R ↑C A)(x) = sup
y∈U

C (R(y,x),A(y)). (4)
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A pair (A1,A2) of fuzzy sets in U is called a fuzzy rough set in (U,R) if there is a fuzzy

set A in U such that A1 = R ↓I A and A2 = R ↑C A.

If the couple (I ,C ) consists of a left-continuous t-norm and its R-implicator, this

definition coincides with the T -modal operators [R]T and 〈R〉T defined in [3].

Table 1 succinctly describes the most important fuzzy rough set models proposed in

the literature that can be seen as special cases of the above general model.

Model Conjunctor Implicator Relation

[4, 5] Dubois & Prade, 1990 min Kleene-Dienes min-similarity

[6] Morsi & Yakout, 1998 left-cont. t-norm R-implicator T -similarity

[7] Boixander et al., 2000 cont. t-norm R-implicator T -similarity

[8] Radzikowska & Kerre, 2002 t-norm border implicator min-similarity

[9, 10] Wu et al., 2003 min S-implicator general

[11] Mi & Zhang, 2004 conjunctor R-implicator general

[12] Pei, 2005 and [13] Liu, 2008 min S-implicator general

[14] Wu et al., 2005 cont. t-norm implicator general

[15] Yeung et al., 2005 left-cont. t-norm S-implicator general

[15] Yeung et al., 2005 conjunctor R-implicator general

[16] De Cock et al., 2007 t-norm border implicator general

[17] Mi et al., 2008 cont. t-norm S-implicator general

[18, 19] Hu et al., 2010 left-cont. t-norm S-implicator Tcos-similarity

[18, 19] Hu et al., 2010 conjunctor R-implicator Tcos-similarity

Table 1. Overview of fuzzy rough set models in the literature.

A very interesting problem is to study these fuzzy rough set models from an ax-

iomatic point of view, so as to get more insight in their logical structure. We will be

working with unary operators on the set F (U) of fuzzy subsets of U . We use axioms

on the operators to obtain a fuzzy relation R such that the operators behave as approxi-

mation operators with respect to R.

Our starting point is the axiomatic approach developed by Wu et al. [14]. Other

papers that describe an axiomatic approach are [6, 9–12, 15, 13, 20].

In the following we denote by α̂ the constant fuzzy set of the value α ∈ [0,1], i.e.,

∀x ∈U , α̂(x) = α.

Definition 2. Let H,L : F (U) → F (U), C a conjunctor and I an implicator. We call

H a C -upper approximation if it satisfies, for all A,A j ∈ F (U), α ∈ [0,1],

(H1) ∀A ∈ F (U),∀α ∈ I : H(α̂∩C A) = α̂∩C H(A),

(H2) ∀A j ∈ F (U), j ∈ J : H

(

⋃

j∈J

A j

)

=
⋃

j∈J

H(A j).
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We call L an I -lower approximation if it satisfies, for all A,A j ∈ F (U), α ∈ [0,1],

(L1) ∀A ∈ F (U),∀α ∈ I : L(α̂ ⇒I A) = α̂ ⇒I L(A),

(L2) ∀A j ∈ F (U), j ∈ J : L

(

⋂

j∈J

A j

)

=
⋂

j∈J

L(A j).

Wu et al. [14] required C and I to be a continuous t-norm and implicator, resp., but

these conditions can be slightly weakened. For this, we can use e.g. results from [3]

obtained in the framework of fuzzy modal logics that can be easily adapted to approxi-

mation operators. For instance, one can show the following characterizations:

Proposition 1. Let H : F (U) → F (U) and T a left-continuous t-norm. H is a T -

upper approximation if and only if for all A ∈ F (U), H(A) = R ↑T A, where R(x,y) =
H({x})(y), for x,y in U. We denote H by HR

T .

Recall that I is a EP implicator if it satisfies the exchange principle

∀a,b,c ∈ [0,1] : I (a,I (b,c)) = I (b,I (a,c)).

Proposition 2. Let L : F (U) → F (U) and I an EP implicator that is left-continuous

in its first argument such that NI is continuous. L is an I -lower approximation if and

only if for all A ∈ F (U), L(A) = R ↓I A, where R(x,y) = L(U \ {x})(y), for x,y in U.

We denote L by LR
I .

Adding more axioms to Definition 2, it will be shown that one can characterize

specific properties of the fuzzy relation R (e.g. seriality, reflexivity, T -transitivity, etc.),

similarly as has been done in the realm of (fuzzy) modal logics.

The above propositions characterize lower and upper approximations separately. If

these operators are dual, we can link them together.

Proposition 3. Let T be a left-continuous t-norm, I an EP implicator that is left-

continuous in its first argument such that NI is involutive, H a T -upper approximation

and L an I -lower approximation. If H and L satisfy duality w.r.t. NI , then there exists

a binary fuzzy relation R in U such that H = HR
T and L = LR

I .

A drawback of the above approach is that it excludes some important operators. For

instance, it can be verified that the R-implicator Imin does not satisfy the conditions of

Proposition 2, because NImin
is not involutive. For this reason, below we introduce and

characterize the alternative notion of a T -coupled pair of approximations.

Definition 3. Let T be a left-continuous t-norm, H,L : F (U)→ F (U). We call (H,L)
a T -coupled pair of upper and lower approximations if the following conditions hold:

(H1,H2) H is a T -upper fuzzy approximation operator,

(L2) L

(

⋂
j∈J

A j

)

=
⋂
j∈J

L(A j),

(HL) L(A ⇒IT
α̂) = H(A)⇒IT

α̂.

41



One can show that these properties actually characterize the fuzzy rough set model

determined by a left-continuous t-norm and its residuum.

Proposition 4. Let T be a left-continuous t-norm, H,L : F (U) → F (U). (H,L) is a

T -coupled pair of upper and lower approximations if and only if there exists a binary

fuzzy relation R in U such that H = HR
T and L = LR

IT
.

Future work will include studying possible variations of the implicator-conjunctor

model. For example, the model proposed in [21] by Inuiguchi: for x in U , the lower

approximation of A by R is given by

(R ↓I A)(x) = min(A(x), inf
y∈U

I (R(y,x),A(y)))

and the upper approximation of A by R is given by

(R ↑C A)(x) = max(A(x),sup
y∈U

C (R(y,x),A(y))).
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1 Institutions: Introduction and Definition

Institutions as such were introduced by J. A. Goguen and R. M. Burstall in [1]; they

had already introduced similar ideas in [2] under the term “language”. As noted in [1],

there were in the late 1970s and early 1980s many logical systems being introduced in

computer science. In most cases, each system was designed, developed, and used in-

dependently of the others. Institutions were introduced so that these systems could be

uniformly studied and so that results and applications of one system could, if appropri-

ate, be used for or by other systems.

We show that the category of topological systems (more exactly, the dual category)

may be interpreted as an institution. We define lattice-valued institutions and show that

the category of lattice-valued topological systems, for a fixed L, may be interpreted as

a lattice-valued institution.

Definition 1. An institution is an 4-tuple (Sign,sen,Mod, |=), where

– Sign is a category;

– sen is a functor sen : Sign → Set;

– Mod is a functor Mod : Signop →CAT, where CAT is the quasicategory of “large”

categories; and

– for each Σ ∈ |Sign|, |= determines a relation |=Σ ⊆ |Mod(Σ)|× sen(Σ);

such that the following “adjointness condition” is satisfied: for all σ : Σ → Σ′ in Sign,

and for each M′ ∈ |Mod(Σ′)| and ϕ ∈ sen(Σ):

M′ |=Σ′ sen(σ)(ϕ) iff Mod(σ)(M′) |=Σ ϕ.

Terminology 2 With notation in Definition 1,

– Sign is the category of signatures with signature morphisms;
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– sen(Σ) is the set of sentences for Σ, and sen(σ) translates the sentences from sen(Σ)
to sen(Σ′);

– Mod(Σ) is the category of models with signature Σ;
– Mod(σ) : Mod(Σ′)→ Mod(Σ) is a reduct functor; and
– for each Σ, |=Σ is a satisfaction relation.

Given Goguen and Burstall’s motivation, it is not surprising that first-order logic is

an institution. However, the setting is sufficiently general to allow the construction of

an institution based on the category TopSys of topological systems.

2 TopSys as an Institution

Example 1. We construct an institution based on TopSys [5] as follows:

– Sign = TopSysop;
– sen(X ,A, |=) = A;
– Given σop = f : (X ,A, |=)→ (X ′

,A′
, |=); sen(σ) = Ω f , where f = (pt f ,Ω f ) with

pt f : X → X ′ a set function and Ω f : A′ → A a frame morphism;
– Mod(X ,A, |=) = X (considered as a discrete category);
– Given σop = f in Signop = TopSys, Mod(σ) = pt f ; and
– x |= a in the institution iff x |= a in the appropriate topological system.

Since composition and identities in TopSys are taken componentwise, then sen and

Mod are functors. That “everything goes in the right direction” requires only routine,

but careful, checking.

The only thing left to check is the adjointness condition, which follows from the

adjointness condition in the definition of a continuous function between topological

systems. This is as follows:

x |=Σ sen(σ)(a′)

iff x |= Ω f (a′) in the domain topological system

iff pt f (x) |= a′ in the codomain topological system

iff Mod(σ)(x) |=Σ′ a′.

3 Lattice-valued Institutions – Fixed-basis Case

We introduce lattice-valued institutions. Let L be a fixed complete lattice.

Definition 3. An L-institution is an 4-tuple (Sign,sen,Mod, |=), where

– Sign is a category;
– sen is a functor sen : Sign → Set;
– Mod is a functor Mod : Signop →CAT, where CAT is the quasicategory of “large”

categories; and
– for each Σ∈ |Sign|, |= determines an L-valued relation |=Σ: |Mod(Σ)|×sen(Σ)→ L

such that the following “adjointness condition” is satisfied: for all σ : Σ → Σ′ in Sign,

and for each M′ ∈ |Mod(Σ′)| and ϕ ∈ sen(Σ):

|=Σ′ (M′
,sen(σ)(ϕ)) = |=Σ (Mod(σ)(M′),ϕ).

45



4 L-TopSys as an L-institution

In this section, we assume that L is a fixed frame. For the definition of an L-TopSys and

examples thereof, please see [3, 4].

Example 2. We construct an L-institution based on L-TopSys as follows:

– Sign = (L-TopSys)op

– sen(X ,A, |=) = A

– Given σop = f : (X ,A, |=)→ (X ′
,A′

, |=), sen(σ) = Ω f

– Mod(X ,A, |=) = X (considered as a discrete category)

– Given σop = f in Signop = TopSys, Mod(σ) = pt f

– |=Σ(x,a) in the institution is equal to |=(x,a) in the appropriate L-topological sys-

tem.

As in the crisp TopSys example, sen and Mod are functors since composition and

identities in L-TopSys are taken componentwise. That “everything goes in the right

direction” is essentially the same as for the crisp case.

Again, the “adjointness condition” follows from the definition of continuous func-

tion between L-topological systems. The proof is given by the following chain of equal-

ities:

|=Σ (x,sen(σ)(a′))

= |=(x,Ω f (a′)) (evaluated in the domain L-topological system)

= |=(pt f (x),a′) (evaluated in the codomain L-topological system)

= |=Σ′ (Mod(σ)(x),a′).
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1 Nilpotent operator systems

Here, we show that a consistent logical system (the DeMorgan identity, the law of con-

tradiction and the law of excluded middle all hold) represented by nilpotent operators

is not necessarily isomorphic to Łukasiewicz-logic, which means that nilpotent logi-

cal systems are broader than we have thought earlier. Using more than one generator

function, we examine three naturally derived negation operators in these systems. It is

shown that the coincidence of the three negation operators leads back to a system that

is isomorphic to Łukasiewicz-logic (which will be referred as a Łukasiewicz-system).

Consistent nilpotent logical structures with three different negation operators are also

provided (which will be referred as a bounded system). We will describe the structure

of the bounded system and its properties, then give some examples.

2 Implications in Bounded Systems

Both R- and S-implications with respect to the three naturally derived negation op-

erators of the bounded system are studied. It is shown that these implications never

coincide in a bounded system. The condition of coincidence is equivalent to the three

negation operators coinciding, which would lead to a Łukasiewicz system. The formu-

lae and the basic properties of implications are given, where two of them fulfil all the

basic properties generally required for implications.
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We consider a simplified epistemic logic MEL, whose syntax is a fragment of the

modal logic KD where an agent can express both beliefs and ignorance statements

about propositional formulas. It is in fact a standard propositional language embedded

into another one, whose role is to express beliefs about propositions of the former. Its

semantics can be expressed in terms of subsets of interpretations of the inner proposi-

tional language, and does not explicitly use accessibility relations. A fragment of MEL

is enough to capture three-valued logics of Łukasiewicz and Kleene as well as three-

valued paraconsistent logics such as the Logic of Paradox by Priest, and also RM3. We

also consider two extensions of MEL:

– The graded version of this epistemic logic generalizes possibilistic logic, and its se-

mantics is in terms of sets of possibility distributions. It is a minimal logical setting

for reasoning with Boolean formulas annotated with lower bounds of necessity or

possibility degrees. We show the completeness of this logic w.r.t. this possibilistic

semantics. This approach is general enough to capture answer-set programming.

– We may consider dropping axioms K and D and move to the MEL fragment of non-

regular modal logics. This is the natural setting for encoding more general logics

based on qualitative capacities viewed as imprecise possibilities, whereby the epis-

temic states of several agents are simultaneously handled. It has close connections

to paraconsistent logics and to Belnap four-valued logics.

References

1. M. Banerjee and D. Dubois. A simple modal logic for reasoning about revealed beliefs. In

C. Sossai, G. Chemello (eds.), Symbolic and Quantitative Approaches to Reasoning with

Uncertainty (ECSQARU 2009), LNAI 5590, Springer, pp. 805–816, 2009 (long version: A

simple logic for reasoning about incomplete knowledge, to appear in Int. J. Approximate

Reasoning, 2014)

2. D. Ciucci and D. Dubois. Three-valued logics for incomplete information and epistemic

logic. In Proc. 13th European Conference on Logics in Artificial Intelligence (JELIA), LNAI

7519, Springer, pp. 147–159, 2012 (long version: A modal theorem-preserving translation

of a class of three-valued logics of incomplete information, to appear in J. Applied Non-

Classical Logics).

3. D. Ciucci and D. Dubois: From paraconsistent three-valued logics to multiple-source epis-

temic logic. In EUSFLAT Conf. 2013, Milano.

49



4. D. Dubois. Reasoning about ignorance and contradiction: many-valued logics versus epis-

temic logic. Soft Computing 16 (2012) 1817–1831.

5. D. Dubois and H. Prade. Generalized possibilistic logic. In Proceedings of the Fifth Inter-

national Conference on Scalable Uncertainty Management, LNCS 6929, Springer, pp. 428–

432, 2011.

6. D. Dubois, H. Prade, and A. Rico. Qualitative Capacities as Imprecise Possibilities. In Proc.

ECSQARU 2013, pp. 169–180.

7. D. Dubois, H. Prade, and S. Schockaert. Stable models in generalized possibilistic logic. In

Proceedings of the 13th Inter. Conf. on Principles of Knowledge Representation and Rea-

soning, Rome, 2012.

50



Logics of graded consequence and a connection with

decision support system

Soma Dutta

The Institute of Mathematical Sciences

Chennai, India

somadutta9@gmail.com

1 Introduction

What do we understand by ‘graded logical approaches’? Is it a logical system which en-

dorses the idea that grades, other than the top and the least of a typical lattice structure,

to be assigned to its sets of formulae, or to the formulae and the reasoning mechanism

as well? The approaches, dealing with the former point of view, are usually known

as many-valued logics, and/or fuzzy logics. There are some subtle distinctions between

these two kinds of logics. Zadeh has differentiated fuzzy logic from many-valued logics

in the following sense [10]. “. . . fuzzy logic, FLn, is a logical system which aims at a for-

malization of approximate reasoning. In this sense, FLn is an extension of multivalued

logic” With the publication of the paper viz., ‘The logic of inexact concepts’ of Goguen

[8] in the year 1968-69, fuzzy logic emerged as a discipline in logic. In 1975 based on

the theory of fuzzy sets Zadeh proposed the idea of approximate reasoning [16] as a

prototype of human reasoning. The word ‘Fuzzy logic’, then, was being used in a broad

sense. Gradually, with the work in [6, 9–11, 13] the idea of fuzzy logic started to get a

shape in a more strict sense where the use of fuzzy set theory alone does not determine

the realm of fuzzy logic. Later, this branch of mathematical logic based on fuzzy set

theory became familiar in the name of FLn, fuzzy logic in the narrow sense [10]. In

Hájek’s [10] term fuzzy logic is a system, endowed with the ability of deriving par-

tially true (graded) conclusion from partially true (graded) premises. It is to be noted

that derivation is not a graded concept here. So, what do fuzzy logicians mean by the

term approximate reasoning or fuzzy/many-valued rule of inference? As pointed out by

Pelta [14], there is no notion of multivalence in the concept of ‘inferencing’:“Until now

the construction of superficial many-valued logics, that is, logics with an arbitrary num-

ber (bigger than two) of truth values but always incorporating a binary consequence

relation, has prevailed in investigations of logical many-valuedness.”

It seems human brain does not always derive conclusions, certain to some degree,

from a set of information, which are also certain to some degree, with full certainty. The

prevalent prescriptions of logics do not handle that uncertainty of ‘deriving’ properly.

The same concern was echoed in the lines of Parikh [12], where he mentioned “. . . we

seem to have come no closer to observationality by moving from two valued logic to

real valued, fuzzy logic. A possible solution . . . is to use continuous valued logic not

only for the object language but also for the metalanguage.” And, perhaps, Zadeh’s
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extended fuzzy logic [17] also could be counted as an account of the same concern. Let

us present the formal theory of graded consequence (GCT), which is in existence from

1987 [1], as a general framework for the metatheory of a logic where deriving partially

true conclusion from a set of partially true premises is also a matter of grade.

2 Theory of graded consequence

The idea behind the notion of GCT is, given a set X of premises, whose truth/credibility

are of matter of grade, and a prospective conclusion α, which is also true/believable to

some extent, the process of deriving α from X , denoted by X |∼α, could also be a matter

of grade. That is, the derivation itself may have some strength. A graded consequence

relation [2] is thus, a fuzzy relation (|∼) from a set of all sets of formulae (P(F)) to the

set of all formulae (F), satisfying the following basic conditions.

(GC1) If α ∈ X then gr(X |∼ α) = 1 (reflexivity/overlap),

(GC2) if X ⊆ Y then gr(X |∼ α) ≤ gr(Y |∼ α) (monotonicity/dilution),

(GC3) infβ∈Y gr(X |∼ β) ∗m gr(X ∪Y |∼ α) ≤ gr(X |∼ α) (cut),

where gr(X |∼ α), the degree to which α follows from X , is an element of a complete

residuated lattice (L,∧,∨,∗m,→m,0,1). The semantic counterpart of the notion starts

with a collection of fuzzy sets of formulae, say {Ti}i∈I , which may be regarded as the

initial context formed by a set of experts assigning values to the object level formulae.

So, the value of the metalinguistic sentence ‘α is a semantic consequence of X’, is

obtained by literally computing the value of ∀Ti
{(X ⊆ Ti)→ α∈ Ti}. That is, computing

the metalinguistic connective → by the operator →m, and quantifier ∀ by the operator

for lattice ‘infimum’ of L, we have gr(X |≈{Ti}i∈I
α) = infi∈I{infγ∈X Ti(γ)→m Ti(α)}.

Then in [2] it has been shown that (i) given any {Ti}i∈I , |≈{Ti}i∈I
is a graded conse-

quence relation (i.e. satisfies (GC1) to (GC3)), and (ii) given any graded consequence

relation |∼, there is a collection {Ti}i∈I such that |≈{Ti}i∈I
= |∼. These two theorems are

known as the representation theorems, which basically bridge a connection between the

syntactic and semantic notion of graded consequence. The axiomatic notion of graded

consequence also has been developed in [3]. Apart from the notion of consequence, the

notion of inconsistency, consistency, and other metalogical notions also are introduced,

and their interrelations are studied in [5, 3].

The discussion above gives an idea about the metatheory of GCT. Let us now con-

centrate on the logic building part based on the metatheory of GCT. As usually a logic

does have, a logic of graded consequence too has a language, called object language,

containing some or all of the connectives ¬, ⊃, &, ∨, and, perhaps, a few more. For

the time being the focus is only on the propositional fragment of a language. Once

the object language is specified, correspondingly the object level algebraic structure is

formed; the set L endowed with the respective operators ¬o, →o, ∗o, ⊕o for the connec-

tives forms the object level algebraic structure. The availability of rules (of inference)

corresponding to each connective is determined by the interrelation between the ob-

ject and metalevel algebraic structures, may be called Lo and Lm respectively. Thus the

scheme for generating different logics with graded notion of consequence is as follows.

A collection {Ti}i∈I , may be called a set of experts assigning values to the atomic

formulae, is considered. Depending on user’s choice of object language, presence of
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different connectives in the object level are assumed. Hence based on the meanings of

the connectives, according to the users, the object level algebraic structure Lo is formed.

A metalevel algebra (L,∗m,→m,0,1) is fixed so that for any set of formulae X and for-

mula α, gr(X |≈{Ti}i∈I
α) can be calculated. The properties of the object level algebraic

structure as well as the metalevel algebraic structure along with their interrelations give

shape to a particular logic with graded notion of consequence. This leads towards gen-

erating logics based on GCT, and the following table is an initial outcome of this study.

DT MP Tran &-I &-E ∨-I ∨-E ¬-I GCM5 GC4

DTc &-R &-L ∨-R ∨-L ¬-R

(OGödel, MŁukasiewicz) × √ √ √ √ √ √ × − √
(k = 1)

(OŁukasiewicz, MGödel)
√ × × × √ √ × √ √

(c = 1
2 in [0, 1]) ×

(OGoguen, MGödel)
√ × × × √ √ × √ − √

(k = 1)

(OGödel, MGoguen) × √ √ √ √ √ √ × − √
(k = 1)

For any connective #, #-I, #-E, #-R, #-L respectively denote the graded counterparts of

the introduction, elimination, right and left rule of the connective. DT, DTc, MP, Trans

are the abbreviations for the graded version of the deduction theorem, its converse,

modus ponens and transitivity respectively. It is to be noted that in graded context a

general structure of a classical rule, like X ,α ⊢ β implies Y ⊢ γ would be translated as

gr(X ∪{α} |∼ β)≤ gr(Y |∼ γ). GC4 and GCM5 [4, 7] are the graded counterpart of the

law of explosion and reasoning by cases respectively. GC4 ensures, there is a k(> 0)∈ L

such that infα,β gr({α,¬α} |∼ β) = k, and GCM5 states, there is a c(> 0) ∈ L such that

gr(X ∪{α} |∼ β)∗m gr(X ∪{¬α} |∼ β)∗m c ≤ gr(X |∼ β). The pair of structures, given

by (OS,MS′ ), indicates that the logical base of the object language is the system S,

whereas that of the metalevel is S′. It can be shown that the t-norm based many-valued

logics can be obtained as a special case of this scheme.

3 Key ideas of GCT vis-à-vis that of a decision support system

In order to give an overview of the suitability of this approach pertaining to real life

decision making, let us start with an example. It is often observed that in order to come

to a decision in a complex real life situation, the decision maker needs to rely on an ini-

tial set of data gathered from a set of experts/users/daily-stake-holders of the subject of

concern. These information may be of imprecise, conflicting nature. These experts may

put forward their opinion based on their everyday experiences and reasoning. While

taking decision, based on this data, the decision maker may incorporate her subjective

knowledge and reasoning in a particular context. So, these two levels’ of reasoning may

not be the same; rather they need to have a meaningful coordination and interaction in

between so that both the real life factors, i.e. the users’ data, and subjective knowledge

base are taken into account while taking decision. Theory of graded consequence (GCT)

takes care of these two levels’, may be called object and metalevel, of reasoning in its

mathematical formalism. This seems to be lacking in most of the existing approaches,

including many-valued/fuzzy logics, for dealing with uncertainty [7].
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In this presentation we first present the idea of generating different logics of graded

consequence, and show that the many-valued logics can be rediscovered following this

scheme. Then we would try to exploit this general framework of GCT, which allows to

have the flexibility of choosing different logical bases for different layers of decision

making, in order to show a good connection with the key ideas of a decision support

system [15], typically an interactive system between two agents, an human user and a

decision making machine.
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Antonı́n Dvořák and Michal Holčapek
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We wrote a series of papers [3–5] investigating fuzzy quantifiers of type 〈1,1〉 (that

is, with two arguments) based on fuzzy measures and integrals analyzed in [2]. These

fuzzy quantifiers are intended as models of natural language quantifiers which involve

vagueness, such as many, few, almost all, etc. We investigated various semantic prop-

erties of these fuzzy quantifiers, for example permutation invariance, conservativity,

property of extension, etc. These properties are analyzed in detail for the classical case

in [10]. Semantic properties of (general) fuzzy quantifiers were studied in [6, 7].

We previously studied fuzzy quantifiers of type 〈1〉 (with one argument) [1],1 which

denote important noun phrases of natural language such as something in “Something

is broken”, everyone in “Everyone likes Bob”, and nobody in “Nobody knows every-

thing”. Classical logical quantifiers such as “for all” and “there exists” also belong

to this type. A natural extension of this research is to study quantifiers of type 〈1,1〉
(e.g. every in “Every book has leaves”, most in “Most birds fly”) that take two argu-

ments. It has been suggested that these type 〈1,1〉 quantifiers are the most important

from the point of view of natural language semantics [10]. The reason is that two-

argument quantifiers are most common in natural language usage. Moreover, they can

often be used to express or decompose quantifiers of other types.

In the case of quantifiers with two arguments, it is advantageous to work with a

slightly different definition of fuzzy measures and integrals. The first argument of a

〈1,1〉 quantifier is called restriction and the second is scope; for example, in “Every

book has leaves”, to be a book is the restriction and to have leaves is the scope. It is

natural to think of the restriction as a new universe for the quantifier (in our example, to

determine the truth value, only objects fulfilling the restriction condition are important,

i.e., books). Because we are working with fuzzy subsets of some universe M, we should

be able to define quantifiers on fuzzy universes. Therefore, we introduced a new type of

fuzzy measure space defined on algebras of subsets of a fuzzy set A and a corresponding

fuzzy integral, the so-called ⊙-fuzzy integral [2].

Why do we think that our ⊙-fuzzy integral is an appropriate tool for modeling of

natural language quantifiers? We previously argued that a possible logical analysis of

a sentence such as “Many sportsmen are tall” is as follows [2]: we search for a fuzzy

subset of the fuzzy set of sportsmen that is large (i.e., its measure is as great as possible)

1 The notation type 〈1〉 and type 〈1,1〉 originated in [9], where quantifiers are understood to

be classes of relational structures of a certain type (representing a number of arguments and

variable binding). It is widely used in the literature on generalized quantifiers [8, 10].
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and for all elements x from its support it holds that if x is a sportsman, then x is tall.

This leads to the second-order formula

many(Sp,Ta) := (∃Y ∈ F −
Sp)(∀x ∈ Supp(Y )(µ(Y )&(Sp(x)⇒ Ta(x)))), (1)

where Sp and Ta denote fuzzy sets of sportsmen and tall people, respectively, F −
Sp is the

set of all non-empty fuzzy subsets of fuzzy set Sp, Supp(Y ) is the support of fuzzy set Y ,

and µ denotes a fuzzy measure. The semantic counterpart of this formula is exactly the

⊙-integral of the fuzzy set Sp → Ta, where → is the operation of residuum that models

the implication. Based on this idea, fuzzy quantifiers are represented using functionals

assigning fuzzy measure spaces to crisp universal sets and their fuzzy subsets. Using

these fuzzy measure spaces, the truth value is assigned (using the ⊙-fuzzy integral) to

a pair of fuzzy sets.

To introduce fuzzy quantifiers of type 〈1,1〉 for modeling of various natural lan-

guage quantifiers, we need a general means for combining arguments of a fuzzy quan-

tifier. Therefore, we define residuated lattice operations. These operations allow us to

establish induced operations on fuzzy sets from operations {∧,∨,⊗,→} of a given

residuated lattice. Then we define a fuzzy quantifier of type 〈1,1〉 as a fuzzy integral of

combinations of the restriction and scope arguments using a residuated lattice operation

(e.g., the residuum → in the previous paragraph).

Semantic properties under consideration are:

– Permutation and isomorphism invariances - these properties hold if quantifiers are

invariant with respect to permutations (bijective mappings) on the universe of dis-

course (permutation invariance) and with respect to bijections between different

universes of discourse (isomorphism invariance).

– Property of extension - this property expresses the invariance of quantifier values

with respect to possible extensions of the universe of discourse.

– Conservativity says that quantifiers are in their second argument sensitive only to

these objects which lie in the intersection of their arguments.

– Extensionality represents a form of smoothness of fuzzy quantifiers.

In the investigation of semantic properties discussed above for fuzzy quantifiers de-

termined by fuzzy measures and integrals, we adhere to the following strategy. Fuzzy

quantifiers are defined by means of the pair of functionals (S ,ϕ) assigning a fuzzy mea-

sure space and an rl-operation for a combination of quantifier arguments, respectively,

to any universe M. Hence, we provide a characterization of a semantic property using a

corresponding characterization of these functionals. For example, the property of con-

servativity of fuzzy quantifiers is characterized by the property of cons-closedness of

the functional and the conservativity of ϕ.

In this contribution we overview and summarize our results and point out these

which can be of interest from the point of view of fuzzy logic and/or theory of general-

ized quantifiers.
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6. I. Glöckner. Fuzzy Quantifiers: A Computational Theory. Springer-Verlag, Berlin, 2006.
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Abstract. In modelling reasoning, network approaches are quite common, the

best known probably being Bayesian networks in probabilistics. These networks

have been transferred to the qualitative framework of ranking functions, result-

ing in so-called OCF-networks. Also in decision making, network approaches

are used. Ceteris parius (CP) networks model a preference between instances of

single variables, assuming that all other variables are kept equal. Here, we dis-

cuss under which conditions OCF-networks can be used to model the information

of CP-networks and vice versa, and whether and how one representation can be

transferred to the other.

1 Preliminaries

Let V = {V1, . . . ,Vn} be a set of propositional atoms and a literal a positive or negative

atom representing variables in their positive resp. negated form; for a specific, neverthe-

less undetermined, outcome of Vi, we write v̇i ∈ {vi,vi}. The set of formulas L over V

joined with the symbols for tautology (⊤) and contradiction (⊥), with the connectives

∧ (and), ∨ (or) and ¬ (not) shall be defined in the usual way. For A,B ∈ L, we usually

omit the connective ∧ and write AB instead of A∧B as well as indicate negation by

overlining, that is, A means ¬A. Interpretations, or possible worlds, a syntactical rep-

resentation of interpretations, are also defined in the usual way; the set of all possible

worlds is denoted by Ω. For A ⊆ V we denote the assignments or instantiations of this

subset in Asst(A) and interpret their elements as complete conjunctions over A.

Let Γ = 〈V ,E〉 be a directed, acyclic graph (DAG) with the propositional variables

V as set of vertices and a set of edges E ⊆ V ×V . We define the parents of a vertex

V , pa(V ), as the direct predecessors of V , the descendants of V , desc(V ), as the set

of vertices for which there is a path in Γ from V to this vertex, and the set of non-

descendants of V is the set of all vertices that are neither the parents nor the descendants

of V , nor V itself. For each ω ∈ Ω, we indicate by V (ω) respectively pa(V )(ω) the

outcome v̇ of V with ω |= v̇ resp. the configuration ṗ of the variables in pa(V ) with

ω |= ṗ.

2 Ranking functions and OCF-networks

An ordinal conditional function (OCF), also known as ranking function is a function

that assigns to each world a rank of disbelief or implausibility, that is, the higher the

rank of a world is, the less plausible this world is.
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Definition 1 (Ranking function (OCF, [5])). A ranking function κ is a function κ :

Ω → N
∞
0 such that the set {ω |κ(ω) = 0} is not empty, that is, there have to be worlds

that are maximally plausible. The rank of a formula A ∈ L is defined to be the minimal

rank of all worlds that satisfy A, κ(A) = min{κ(ω) |ω |= A}, which implies κ(⊥) = ∞

and κ(⊤) = 0. The rank of a conditional (B|A) ∈ (L|L) is the rank of the conjunction

of the conditional’s premise and conclusion reduced by the rank of the conditional’s

premise, formally κ(B|A) = κ(AB)−κ(A).

There is a notion of independence for ranking functions that resembles probabilistic

independence and is defined as follows:

Definition 2 (Conditional κ-independence [5]). Let A,B,C ⊆ V be disjoint subsets of

variables. A is (conditionally) κ-independent of B given C, written A |= κ B | C if and

only if κ(ȧḃ|ċ) = κ(ȧ|ċ)+κ(ḃ|ċ) for all ȧ ∈ Asst(A), ḃ ∈ Asst(B) and ċ ∈ Asst(C).

κ-independence can be characterized equivalently as in the probabilistic case, that

is, for all disjoint sets of variables A,B,C ⊆ V , A is κ-independent of B given C

(A |= κ B | C) if and only if κ(ȧ|ḃċ) = κ(ȧ|ċ) for all ȧ,ḃ,ċ in Asst(A), Asst(B), Asst(C),
respectively [4].

OCF-networks, a network approach that resembles Bayesian networks using local

conditional ranks instead of local conditional probabilites at the vertices, have been

proposed in [2] and recalled in [3].

Definition 3 (OCF-network). A DAG Γ = 〈V ,E〉 over a set of propositional atoms V

is an OCF-network if each vertex V ∈ V is annotated with a table of local rankings

κV (V |pa(V )) with (local) ranking values specified for every configuration of V and

pa(V ). The local rankings must be normalised, i.e., minv̇{κ(v̇|pa(V ))} = 0 for every

configuration of pa(V ).

The local ranking information in Γ can be used to define a global ranking function

κ over V by applying the idea of stratification [2]: A function κ is stratified relative to

an OCF-network Γ if and only if

κ(ω) = ∑κV (V (ω)|pa(V )(ω)) (1)

for every world ω. It has been shown that (1) is indeed an OCF [4].

Conversely, given a DAG Γ with vertices V and an OCF κ over V such that each

vertex V ∈ V is κ-independent of its non-descendants given its parents, we obtain a

stratification of κ relative to Γ.

It has been shown that for an OCF-network Γ = 〈V ,E ,{κV}V∈V 〉, for the gobal

ranking function κ we have κ(V1, . . . ,Vn) = ∑
n
i=1 κ(Vi|pa(Vi)) [4].

3 CP-networks

Most of our everyday preferences seem to be of the type ceteris paribus, that is, our

preferences are represented keeping “everything else equal”, meaning that if, for exam-

ple, asked whether we prefer one thing to another we answer in the context of the actual

situation, mentally keeping all other variables constant.
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A preference ranking ≺ over a set of assignments Asst(A), A ⊆ V , is a transitive,

irreflexive, asymmetric and total relation with meaning: ȧ1 ≺ ȧ2 iff ȧ1 is strictly more

preferred than ȧ2.

For CP-Networks, we determine for each variable V ∈ V the set of parent variables

pa(V )⊆ V , which can affect the preference of V irrespectively of all further variables.

Definition 4 (CP-network [1]). A DAG Γ = (V ,E ,{CPT(V )}V∈V ) is a CP-network,

if its nodes are annotated with conditional preference tables CPT(V ), which associates

a preference ranking ≺ ṗ over {V} for every instantiation ṗ of pa(V ).

While CP-networks define a preference on variables given their parents it has to

be examined whether this preference can be transferred to the set of possible worlds,

which is done by the notion of satisfiability.

Definition 5 (Satisfiability of CP-networks [1]). Let V ∈ V and v̇1, v̇2 ∈ Asst(V ), let

ṗ ∈ Asst(pa(V )), let X ∈ V \ (pa(V )∪{V}). A CP-network is satisfiable if and only if

there is a preference relation <cp⊆ Ω×Ω such that for every ṗ and every ẋ ∈ Asst(X)
with ω |= v̇1 ṗẋ and ω |= v̇2 ṗẋ we have v̇1 ≺ ṗ v̇2 if and only if ω <cp ω′.

[1] show that every CP-network is satisfiable. In a CP-network, each V ∈ V is con-

ditionally preferentially independent of V \ (pa(V )∪{V}) given pa(V ) [1], formally

defined as follows:

Definition 6 (Conditionally preferential independence [1]). Let A, B, C ⊆ V be

nonempty partitions of V such that V = A∪· B∪· C. A is conditionally preferentially

independent from B given C, written A |= ≺ B | C, iff, for all ȧ1, ȧ2 ∈ Asst(A), ḃ1, ḃ2 ∈
Asst(B) and ċ ∈ Asst(C), we have

ȧ1ḃ1ċ ≺ ȧ2ḃ1ċ iff ȧ1ḃ2ċ ≺ ȧ2ḃ2ċ.

4 Comparison of both approaches

Ranking function induce a preference relation <κ on worlds, and CP-networks are di-

rectly connected with a preference relation <cp by the networks satisfiability. So both

OCF- and CP-networks are techniques of expressing a global preference relation on the

set of possible worlds on DAGs, what brings up the question whether the approaches

are related, or could be used to express similar information, respectively, if they could

be tranferred into another.

In this work we show that each CP-network can be transferred into an OCF network

and that this OCF-network expresses the same preferences and independences as the

CP-network: Let 〈V ,E ,{CPT(V )}V∈V 〉 be a CP-network and let 〈V ,E ,{κV}V∈V 〉 be

an OCF-network such that {CPT(V )}V∈V induces {κV}V∈V , then ω <cp ω′ implies

ω <κ ω′ for all ω ∈ Ω. Additionally the resulting OCF-network can be retransfered into

the CP-network used to set it up.

This does not hold for ranking functions in general: The ceteris paribus preference

relation ≺ is a strict relation which does not allow for two instances of a variable being
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equally preferred, whereas for ranking functions κ(A) = κ(A) = 0, A ∈ L, is possi-

ble. Therefore there are ranking functions and hereby local ranking tables in an OCF-

network that cannot be represented by a ceteris paribus preference relation, which di-

rectly implies that not all OCF-networks can be transferred to CP-networks.

An additional challenge is the rank itself. In OCF-networks, the value of a literal

given its parents can be any natural number (with respect to the normalisation condi-

tion), implying a strength or firmness of the rejection of this option, which cannot be

found in CP-networks. We show that for OCF-networks with an extended normalisa-

tion condition, namely κ(V |pa(V )) = 0 for exactly one v̇ for each ṗ ∈ Asst(pa(V )),
CP-networks expressing the same local preference can be constructed, with the draw-

back that the exact firmness is lost in this process.

Additionally we present an approach that allows to generate an OCF-network from a

CP-network that inherits the CP-network’s stronger indepence condition by bottom-up

setting firmness values combining the ranks of a vertex’s childrens.
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Abstract. Network approaches for probabilistic environments are well known

and have proven to be slim, lightweight and efficient, just to mention Bayesian

networks. For qualitative environments, ranking functions prove to be a proper

alternative of probabilities, although network approaches to reduce storage space

and boost the calculation are still few. Here, we recall a recent transferal of OCFs

to LEG networks (called OCF-LEG networks) and show how the inductive rea-

soning approach System Z can be used to generate the ranking component of an

OCF-LEG network. We demonstrate for an exemplary knowledge base that the

global ranking function obtained for the System Z generated OCF-LEG network

does not coincide with a global OCF calculated by System Z on the knowledge

base, directly, and that this is a structural challenge for System Z.

1 Preliminaries

Let L be a propositional language with an underlying finite alphabet of variables Σ =
{V1, . . . ,Vn}, logical connectives ∧ (and), ∨ (or) and ¬ (negation) and the symbols ⊤
and ⊥ for tautology respectively contradiction. Let φ,ψ be formulas in L. We abbrevi-

ate conjunction by juxtaposition (that is, φ∧ψ is abbreviated as φψ) and negation by

overlining (that is, ¬φ is abbreviated as φ).

A literal is a variable interpreted to true or false; we write vi to denote the interpre-

tation of Vi to true, vi to denote the interpretation of Vi to false and v̇i to denote a fixed

interpretation of Vi. We write Vi⊏−φ if v̇i appears in φ.

The set of possible worlds Ω is defined as the set of all complete conjunctions of

literals in Σ. For a set Σi ⊆Σ we denote by Ωi the local possible worlds of Σi. With Σi(ω)
we indicate the configuration ωi ∈ Ωi with ω |= ωi. We denote by JφKω the evaluation

of φ under ω with respect to the junctors, as usual.

A conditional (ψ|φ) represents the defeasible rule “if φ then usually / normally ψ”

with the trivalent evaluation J(ψ|φ)Kω = true if and only if ω |= φψ (verification / accep-

tance), J(ψ|φ)Kω = false if and only if ω |= φψ (falsification/refutation) and J(ψ|φ)Kω =
undefined iff ω |= φ (non-applicability) [1, 3].

The language of all conditionals over L is denoted by (L | L). A finite set of condi-

tionals ∆ = {(ψ1|φ1), . . . ,(ψn|φn)} ⊆ (L | L) is called a knowledge base. A conditional

(ψ|φ) is tolerated by ∆ if and only if there is a world ω ∈ Ω such that ω |= φψ and

ω |= φi ⇒ ψi for every 1 ≤ i ≤ n.
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2 OCF and System Z

An ordinal conditional function (OCF) is a function that assigns to each world a rank

of disbelief or implausibility, that is, the higher the rank of a world is, the less plausible

this world is.

Definition 1 (Ordinal conditional function (OCF, [8])). An ordinal conditional func-

tion (OCF, also called ranking function) κ is a function κ : Ω→N∞
0 such that the set

{ω |κ(ω) = 0} is not empty, that is, there have to be worlds that are maximally plau-

sible. The rank of a formula φ ∈ L is defined to be the minimal rank of all worlds

that satisfy φ, κ(φ) = min{κ(ω)|ω |= φ}, which implies κ(⊥) = ∞ and κ(⊤) = 0. The

rank of a conditional (ψ|φ) ∈ (L|L) is the rank of the conjunction of the conditional’s

premise and conclusion reduced by the rank of the conditional’s premise, formally

κ(ψ|φ) = κ(φψ)−κ(φ).

A ranking function κ accepts a conditional (ψ|φ), written κ |= (ψ|φ) if and only if

κ(φψ)< κ(φψ). κ accepts/is admissible to a conditional knowledge base

∆ = {(ψ1|φ1), . . . ,(ψn|φn)} ⊆ (L | L)

(written κ |= ∆) if and only if κ accepts all conditionals in ∆.

System Z [7] is an approach to generate a ranking function κZ
∆ which is admissi-

ble to a consistent knowledge base ∆ = {(ψ1|φ1), . . . ,(ψn|φn)} ⊆ (L | L), realising the

most plausible rankings among all such ranking functions. This system is set up by

an algorithm which partitions the knowledge base ∆ in maximal disjoint sets of tol-

erated conditionals ∆ = ∆0 ⊎ . . .⊎∆k, starting with ∆0 containing all conditionals that

are tolerated by all other conditionals in ∆ and applying this recursively. The function

Z : ∆ → N0 is defined to be Z(B|A) = z iff (B|A) ∈ ∆z, and by this the ranking function

κZ
∆ is given as

κZ
∆(ω) =

{

0 iff ω |= (Ai ⇒ Bi) for all 1 ≤ i ≤ n

max
1≤i≤n

{Z(ω)|ω |= AiBi}+ 1 otherwise. (1)

3 OCF-LEG networks

An OCF-LEG network, a qualitative variant of the probabilistic LEG networks [4], is

a hypergraph on the alphabet Σ with a local ranking function κi on each hyperedge Σi

which is the marginal of a global OCF.

Definition 2 (OCF-LEG network [2]). Let Σ be a propositional alphabet and let Σ1,
. . . ,Σm be a set of covering subsets such that Σi ⊆ Σ, 1 ≤ i ≤ m and Σ =

⋃m
i=1 Σi. Let

κ1, . . . ,κm be ranking functions κi : Ωi → N∞
0 , 1 ≤ i ≤ m. The system 〈(Σ1,κ1), . . . ,

(Σm,κm)〉, abbreviated as 〈(Σi,κi)〉
m
i=1, is a ranking network of local event groups

(OCF-LEG network) iff there is a global OCF κ on Ω with the property that κ(ωi) =
κi(ω

i) for all ωi ∈ Ωi and all 1 ≤ i ≤ n.
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For a system 〈(Σi,κi)〉
m
i=1 to have a global ranking function as defined above the

following consistency condition has to be fulfilled.

(Consistency condition) There is a global ranking function κ : Ω → N
∞
0 to the system

〈(Σi,κi)〉
m
i=1 only if κi((Σi ∩Σ j)(ω)) = κ j((Σi ∩Σ j)(ω)) for all pairs 1 ≤ i, j ≤ m and

all worlds ω ∈ Ω.

We define by Si = Σi ∩
(⋃i−1

j=1 Σ j

)

the separators of Σi (cf. [6]). It has been shown

that if Σ1, . . . ,Σm is a hypertree with local OCFs κ1, . . . ,κm that satisfy the consistency

condition, a global OCF of the system 〈(Σi,κi)〉
m
i=1 can be computed as

κ(ω) =
m

∑
i=1

κi(Σi(ω))−
m

∑
i=1

κi(Si(ω)) (2)

and henceforth, 〈(Σi,κi)〉
m
i=1 is an OCF-LEG network [2].

4 Inductively generating OCF-LEG networks

We recall an algorithm to set up an OCF-LEG network from a finite conditional knowl-

edge base ∆ = {(ψ1|φ1), . . . ,(ψn|φn)} ⊆ (L | L): The hypergraph-component is gener-

ated by assigning to each conditional (ψi|φi) ∈ ∆ a set Σi = {V |V⊏−ψφ} ⊆ Σ and joining

up these sets to hypercliques C = {C1, . . . ,Cm} such that C is a hypertree [5, 6]. This

partitions ∆ into sets ∆ j such that ∆ j = {(ψi|φi)|Σi ⊆ C j}, on which we compute an

admissible ranking function κ j using methods of inductive reasoning (cf. [2]), namely

System Z. It has been shown that the global OCF κ calculated with Equation (2) is

admissible to ∆ [2]. We demonstrate the generation of an OCF-LEG network using

System Z with a more complex example than in [2]. Thereby, we show that even if

κi |= ∆i for all 1 ≤ i ≤ m and κ |= ∆ holds, the global ranking function κ is usually

not a System Z-representation of ∆. It is confirmed formally that this is a structural

incompatibility between System Z and the OCF-LEG approach in general.
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Patrik Eklund1, Ulrich Höhle2, and Jari Kortelainen3

1 Umeå University, Umeå, Sweden

peklund@cs.umu.se
2 Bergische Universität Wuppertal, Germany

Ulrich.Hoehle@math.uni-wuppertal.de
3 Mikkeli University of Applied Sciences, Mikkeli, Finland

jari.kortelainen@mamk.fi

Traditional logic is informal about the production of terms and sentences, and even

worse, often avoids to clearly describe how terms latively4 appear in sentences, i.e.,

how sentences proceed from terms, and are in fact constructed using terms. Continu-

ing that lativity towards entailment and provability, it is clear that sentences appear in

provability, but provability as a statement should not be seen as a sentence. This creates

self-referentiality which often leads to peculiar situations.

Existential quantification ‘∃x’ in expressions like ∃x.P(x) is obviously not an oper-

ator, as little as ‘λx’ would be an operator producing the lambda expression λx.ω(x).
In [2] we showed how we can use levels of signatures to provide a precise term functor

based definition of λ-terms. The key point is that ‘λ’ should not be seen as a universal

abstractor, as already pointed out in [1], but indeed that “ω owns its abstraction”. For

existential quantification, the expression ∃x.P(x) must be seen as sentence, not a term,

but P is then an operator symbol in some underlying signature, so that P(x) is a term.

A negation operator ¬ can be applied to the term P(x) so that ¬P(x) and P(x) are of

the same sort, as terms. However, as ∃x.P(x) is not a term, but a sentence, and it is

very questionable whether ¬ in ¬∃x.P(x) and ∃x.¬P(x) really is the same symbol. In

∃x.¬P(x), it acts an operator, changing a term to term, but in ¬∃x.P(x) it changes a

sentence to a sentence, so it is strictly speaking not an ‘operator’.

Gödel’s incompleteness is seen as a theorem, but could also be seen as a paradox

arising from inlative logic. Gödel’s numbering [5] creates sentences based on provabil-

ity. This is clearly seen using notations in [6], where a predicate symbol A and a predi-

cate A(x) is used when speaking about “A(x) is provable”, using the notation “⊢ A(x)”.

Then, a “metamathematical proposition” R(x,Y ) is created to represent “Y is a proof of

A(x)”, followed by (∃Y )R(x,Y )≡ ⊢ A(x). Kleene [6] then wonders “What is the nature

of the predicate R(x,Y )?”, and continues to say that requires an “effectively decidable”

metamathematical predicate, and that “there must be a decision procedure or algorithm

for the question whether R(x,Y ) holds”. Mathematical propositions and metamathe-

matical propositions are thus allowed to be in the same bag, and in [5] there is frequent

4 ‘Lative’ is ”motion”, motion ‘to’ and ‘from’, so when terms appear in sentences, terms ‘move

into’ sentence, and sentences ‘move away from’ terms. In comparison, ‘ablative’ is ”motion

away”, and nominative is static. The lative locative case (casus) indeed represents ”motion”,

whereas e.g. a vocative case is identification with address.
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use of that degree of freedom to mix bags, not just between term and sentence, but

indeed between truth and provability.

A further subtlety concerns the underlying signature which is a basis for producing

terms. Type constructors such as the one producing function types are frequently treated

as if they are outside signatures, i.e., that they are not operators in some signature. In

order to see it more precisely, let s1 and s2 be two sorts in some set of sorts S. The

function sort involving s1 and s2 can be denoted s1 ⇛ s2. Even if we want to view

s1 ⇛ s2 as a (constructed) sort, it is not part of S. This creates an awkward meta-level

of constructors, and the formalism for treating these constructors is rather lose. This is

also the reason why the definition of λ-terms is correspondingly lose, even if it is seen

as compact and elegant. However, the traditional so called ’set’ of λ-terms is not well-

defined even if it is ‘well understood’. In other words, there hasn’t been any strict term

functor, or term monad for that matter, for producing λ-terms. This situation has been

made more clear in [2], once type constructors are accommodate properly into suitable

signatures. The main question is how to expand a signature Σ = (S,Ω), often called the

basic signature, to a signature Σ′ = (S′,Ω′) so that s1 ⇛ s2 ∈ S′ whenever s1,s2 ∈ S,

and where Σ′ is the underlying signature for the λ-terms. Such an arrangement also

enables to keep λ-abstractions, as members of Ω′, clearly apart from λ-terms, residing

in the set of λ-terms as defined by the λ-term functor.

The three-level arrangement of signatures starts from the basic signature Σ on level

one. On level two we have the (Σ-)superseding type signature as a one-sorted signature

SΣ = ({type},Q), where Q is a set of type constructors satisfying

(i) s :→ type is in Q for all s ∈ S

(ii) there is a ⇛: type×type→ type in Q

If Q does not contain any other type constructors, apart from those given by (i) and

(ii), we say that SΣ is a (Σ-)superseding simple type signature.

The term monad construction can then obviously be used also for any Σ-superseding

type signature SΣ. We may write s⇛ t for the type term ⇛ (s,t).
The signature Σ′ = (S′,Ω′) on level three then is based on S′ = TSΣ

∅, i.e., the sorts

on level three are those from level one together with the constructed sorts, on level two

appearing as terms (the type terms), added to those basic sorts coming from level one.

For the operators in Ω′ it may sound natural to include all operators from Ω into

Ω′ so that Ω ⊆ Ω′, but it is not always desirable. If we consider the NAT signature5

on level one we obviously may have both 0 :→ nat and succ : nat → nat included

in the operators for NAT′. However, the unary operator succ, i.e., unary both on level

one and level three, can alternatively be (λ-)abstracted to be become a constant (0-ary)

operator λsucc

1 :→ (nat⇛ nat) on level three. Clearly, the constant 0 :→ nat converts

to λ0

0 :→ nat, i.e., a constant on level one remains as a constant on level three. Note

also that nat on level one is not the same as nat on level three. If we need to be strict,

we should use e.g. nat′ for the corresponding sort on level three.

Church’s type constructor [1] is in effect our ⇛, so that (β ⇛ α) is Church’s (βα).
An interpretation of Church’s ι to be our type is clearly less controversial, but for the

5 The signature for natural numbers is usually given by NAT=({nat},{0 :→ nat,succ : nat→
nat}).
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interpretation of o there are a number of alternative intuitions, a formalism for which

modern type theory has been incapable of producing.

In summary, the three signature levels underlying the production of λ-terms are then

following.

1. the level of primitive underlying operations, with a usual many-sorted signature

Σ = (S,Ω)
2. the level of type constructors, with a single-sorted signature

SΣ = ({type},{s :→ type | s ∈ S}∪{⇛ : type×type→ type})
3. the level including λ-terms based on the signature Σ′ = (S′,Ω′) where S′ = TSΣ

∅,

Ω′ = {λω
i1,...,in

:→ (si1 ⇛ · · ·⇛ (sin−1
⇛ (sin ⇛ s)) | ω : s1 × . . .×sn → s ∈ Ω}∪

{app
s,t

: (s⇛ t)×s→ t}

Here (i1, . . . , in) is a permutation of (1, . . . ,n). Note also that level one operators

are always transformed to constants on level three. In traditional notation in λ-calculus,

substituting x by succ(y) in λy.succ(x) requires a renaming of the bound variable y,

e.g., λz.succ(succ(y)). In our approach we avoid the need for renaming. On level

one, and in the case of NAT, we have the substitution (Kleisli morphism) σnat : Xnat →
TNAT,nat(Xt)t∈{nat}, where σnat(x) = succ(y), x being a variable on level one, and the

extension of σnat is

µXnat
◦TNAT,nat (σt)t∈{nat} : TNAT,nat(Xt)t∈{nat} → TNAT,nat(Xt)t∈{nat}.

On level three we have

σnat′ : Xnat′ → TNAT′,nat′(Xt)t∈S′ ,

with σnat′(x)= app
nat′,nat′(λ

succ

1 ,x), x a variable on level three, and no renaming needed

in µnat′ ◦TNAT′,nat′ σnat′(appnat′,nat′(λ
succ

1 ,x)).
At this point we have the crisp set of λ-terms, given the term functor TΣ′ : SetS′ →

SetS′ . The sets of λ-terms with respect to each end sort s′ ∈ S′ are then represented by

respective sets TΣ′
,s′(Xs)s∈S′ .

Note indeed that the λ-term monad may be considered to be over other monoidal

biclosed categories [2, 4], and recent constructions show more clearly how monoidal

closed categories come into play [4].

Semantically, we come to an interesting question concerning ASΣ
(type). Obvi-

ously, we could use free algebras, but this would, in the case of natural numbers,

make ASΣ
(nat) into a point at level two, given that here nat is a 0-ary operator. We

would rather prefer to have ASΣ
(nat) as a set, and this then means we would have

ASΣ
(nat⇛ nat) as a homset, i.e., we then need ASΣ

(type) to be Ob(Set). Obviously,

other categories can be considered for these purposes, and the use of monoidal biclosed

categories would enable to use internal homsets as semantics for function types.

Concerning sentences, a fundamental difference as compared with terms is that term

functors are extendable to term monads, so that substitutions are composable (compo-

sition of Kleisli morphisms), whereas sentence functors are not necessarily monads,

in fact should not be monads, since we do not substitute with sentences. If a sentence

functor is a monad, then sentences produced by such a sentence functor are in fact
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terms. Lambda calculus is a special case where lambda terms appear simultaneously as

sentences, so that rewriting is a proof sequence given β-reduction as an inference rule.

Informally, the lativity between terms and sentence, i.e., that terms appear “inside” sen-

tences, is a situation where a sentence functor ‘Sen’ is composed with a ‘T’ to produce

the “set of sentences” ‘(Sen◦T)X’ over some (many-sorted) “set” X of variables. In the

case of lambda calculus, Sen= id, and in the case of equational logic, Sen= id× id. For

Horn clause logic, i.e., without existential quantification, we produced a many-sorted

sentence functor [3], where implication is not seen as an operator using terms to pro-

duce terms, but rather as a pair, not in form of a “sentential equation” but a “sentential

implication”.
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Abstract. A prequantale is pair (X ,∗) where X is a complete lattice and ∗ is a

binary operation on X preserving arbitrary joins in each variable separately.

Question. Does there exist a free prequantale for every complete lattice?

We make the previous question categorically precise. For this purpose let Sup be the

category of complete lattices and join preserving maps. It is well kown that there ex-

ists a tensor product on Sup turning Sup into a monoidal closed category (cf. [3]). In

particular, for any bimorphism (cf. [1]) —- i.e. for any map X ×Y Z//
b

which

preserves arbitrary joins in each variable separately — there exists a unique join pre-

serving map X ⊗Y Z//
pbq

making the following diagram commutative:

X ×X X ⊗Y

Z
$$
❏

❏

❏

❏

❏

❏

❏

❏

b

//
⊗

��

pbq

Hence prequantales and magmas in Sup are the same thing. Therefore we can reformu-

late the question as follows:

Question. Does the forgetful functor from the category of magmas in Sup to Sup

have a left adjoint?

In the category Set of sets the previous question means the construction of free

groupoids and has a positive answer. It is well known that this construction is based on

the term construction w.r.t. a signature consisting of a single binary operator symbol.

Therefore we are motivated to ask the more general question:

Question. Does there exist a term construction in Sup?

In this talk I prove the following result:

Theorem. The term monad exists in any monoidal biclosed category.

Comment. In this context a one-sorted signature Ω is a sequence (Ωn)n∈IN0
of objects

Ωn of the underlying category.

This theorem has various consequences. First of all our previous question has a

positive answer. Further, the term monad exists also in Goguen’s category. Viewing

Goguen’s category as a category for fuzzy set theory we have therefore fuzzy terms (cf.

[2]) — a concept which sems to be completely new in fuzzy logic.
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1 Introduction

An algebraic structure A is locally finite iff each of its finite subsets G generates a finite

subalgebra 〈G〉A only.

An element a ∈A has order n iff 〈{a}〉A has n elements; it has finite order iff it has

order n for some n ∈ N, and it has infinite order otherwise.

Continuous t-norms can be represented as ordinal sums of isomorphic copies of TL
and TP.

An ordinal sum representation for a t-norm T is based upon a disjoint family (]li,ri[)i∈I

of open subintervals of [0,1], and a family (Ti)i∈I of t-norms, written as

T =
⊕

i∈I

([li,ri],Ti) . (1)

By the summand domain for the k-th summand of such an ordinal sum we will

understand the closed interval [lk,rk] as well as its square [lk,rk]
2, depending on the

context.

2 The t-norm bimonoids

Now we are interested in the t-norm based bimonoids ([0,1],T,ST ,1,0). In general, a

bimonoid is an algebraic structure A = (A,∗1,∗2,e1,e2) such that both (A,∗1,e1) and

(A,∗2,e2) are monoids.

Theorem 1. Suppose that the continuous t-norm T has an ordinal sum representation

with only Łukasiewicz isomorphic summands, let for those summands their determining

order automorphisms of [0,1] be rational based, and let all T -idempotents be rationals.

Then the t-norm bimonoid AT which is determined by T is rationally locally finite.

3 T-S-overlap

The problem will now be to discuss what happens for bimonoids with T-S-overlap. Then

the domains of a T-summand and an S-summand have an interval in common.
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Only this type of binary overlap is possible. It is impossible that three summand-

domains have a common overlap because no two T-summand and no two S-summands

can overlap. It is, however, possible that a T-summand overlaps with more than one

S-summand, and vice versa.

Distinction shall be made between partial and total overlap. One has four possibil-

ities for {Ti,Sk}-overlap with the following characterizations:

partial 〈Ti,Sk〉-overlap: li < 1− rk < ri < 1− lk ,

total 〈Ti,Sk〉-overlap: li ≤ 1− rk < 1− lk ≤ ri ,

partial 〈Sk,Ti〉-overlap: 1− rk < li < 1− lk < ri ,

total 〈Sk,Ti〉-overlap: 1− rk ≤ li < ri ≤ 1− lk .

Corollary 1. Both types of total overlap coincide in the sense that total 〈Ti,Sk〉-overlap

is equivalent to total 〈Si,Tk〉-overlap.

4 Local finiteness: negative results

The considerations on self-overlap offer immediately a negative result on local finite-

ness which is a straightforward generalization of the fact that the Łukasiewicz bimonoid

is not locally finite.

Proposition 1. If in a t-norm bimonoid A its t-norm T has a summand ([li,ri],TL,hi)
with a rational-based order automorphism hi and with full self-overlap, then A is not

locally finite.

Example 1. For each 0 < a <
1
2

the t-norm T = ([a,1− a],TL, id) has full self-overlap

and determines, thus, a bimonoid which is not locally finite.

Corollary 2. Suppose to have partial 〈Ti,Sk〉-overlap.

(i) If some A-iteration of a c ∈ [a,b] reaches a then it reaches li after finitely many

further steps and stops there, provided there is no overlap of [li,a] with some other

S j-domain, j 6= k.

(ii) If some A-iteration of a c ∈ [a,b] reaches b then it reaches 1− lk after finitely

many further steps and stops there, provided there is no overlap of [b,1− lk] with some

other Tj-domain, j 6= i.

Proposition 2. Suppose to have partial 〈Ti,Sk〉-overlap with rational borders of the

overlap interval [a,b], and that Ti,Tk are zoomed versions of TL. Then each irrational

c ∈ [a,b] is of infinite A-order.

5 Local finiteness: partly positive results

Proposition 3. Suppose to have partial 〈Sk,Ti〉-overlap in the t-norm bimonoid A to-

gether with Ti(b,b)≤ a, then each c ∈ [a,b] is of finite A-order.

Proposition 4. Suppose to have total 〈Ti,Sk〉-overlap in the t-norm bimonoid A. If

Ti(b,b) ≤ a and the Ti-domain does not overlap with another S j-domain, j 6= k, then

each c ∈ [a,b] is of finite A-order.
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Proposition 5. Suppose to have total 〈Ti,Sk〉-overlap in the t-norm bimonoid A. Let

the Ti-range totally overlap with just the S j-ranges for j ∈ J, and let be b the supremum

of all 1− l j for j ∈ J. If each one of these S j-ranges is covered by one of the intervals

[Ti(b,b),b], [Ti(b,b,b),Ti(b,b)], . . . , then each c ∈ [li,ri] is of finite A-order.

Example 2. The assumptions of this Proposition 5 are satisfied by the following t-norm

T = ([
1

6
,

2

6
],TL, id)⊕ ([

2

6
,

1

2
],TL, id)⊕ ([

1

2
1],TL, id) .

Proposition 6. Suppose to have total 〈Sk,Ti〉-overlap in the t-norm bimonoid A. If

Sk(a,a) ≥ b and the Sk-domain does not overlap with another Tj-domain, j 6= i, then

each c ∈ [a,b] is of finite A-order.
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Institute for Research and Applications of Fuzzy Modeling

University of Ostrava, NSC IT4Innovations, Ostrava, Czech Republic

michal.holcapek@osu.cz

1 Introduction

In the classical set theory, we can recognize two approaches to the cardinality of sets.

One of them is a functional approach that uses one-to-one correspondences between

sets to compare their sizes. More precisely, we say that two sets a and b are equipol-

lent (equipotent, equivalent, bijective or have the same cardinality) and write a ∼ b if

there exists a one-to-one mapping of a onto b. The relation “being equipollent” is an

equivalence on the class of all sets and is called equipollence (or equipotence, equinu-

merosity etc.). The equipollence of (finite) fuzzy sets has been investigated primarily by

S. Gottwald [1, 2] and M. Wygralak [6–9] (see also [5]). S. Gottwald proposed a graded

approach to the equipollence of fuzzy sets defined using the uniqueness of fuzzy map-

pings in his set theory for fuzzy sets of higher level. Additionally, a graded generaliza-

tion of equipollence suggesting that fuzzy sets have approximately the same number of

elements has been noted by M. Wygralak in [7], but substantial development of cardinal

theory based on this type of equipollence has not been realized yet.

In this contribution, we propose the concept of graded equipollence of finite fuzzy

sets which in a special case can collapse to the equipollence noted by M. Wygralak. We

provide a functional approach to the cardinality of finite fuzzy sets based on this type

of equipollence.

2 Preliminaries

We assume that the truth values are interpreted in a residuated - dually residuated lattice

(rdr-lattice for short), i.e., in an algebra L = 〈L,∧,∨,⊗,→,⊕,⊖,⊥,⊤〉 with six binary

operations and two constants satisfying the following conditions:

(i) 〈L,∧,∨,⊥,⊤〉 is a bounded lattice, where ⊥ is the least element and ⊤ is the great-

est element of L,

(ii) 〈L,⊗,⊥〉 and 〈L,⊕,⊤〉 are commutative monoids,

(iii) the pairs 〈⊗,→〉 and 〈⊕,⊖〉 form adjoint pairs, i.e.,

α ≤ β → γ if and only if α⊗β ≤ γ,

α ≤ β⊕ γ if and only if α⊖β ≤ γ

hold for each α,β,γ ∈ L (≤ denotes the corresponding lattice ordering).
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In order to integrate some alternative constructions based on the operations of ∧ and ⊗,

in the sequel, we will use the common symbol ⊙.

To express the cardinality of finite fuzzy set, one may imagine something like fuzzy

sets defined on the set N of natural numbers (with 0) as suitable candidates for this

purpose. Because N is denumerable, it is advantageous to use the proper class Count of

all countable sets as a framework of our theory.

Definition 1. A mapping A : x → L is called a fuzzy set in Count if x is a set in Count.

Let us denote by FCount the class of all countable fuzzy sets and by Supp(A) the

support of fuzzy set A. We say that two fuzzy sets are the same if they coincide as

mappings. An essential predicate in our theory is a binary relation that extends the

concept of being the same fuzzy sets and states that two fuzzy sets are the same except

for elements having the zero membership degree.

Definition 2. We say that fuzzy sets A and B are equivalent (symbolically, A ≡ B) if

Supp(A) = Supp(B) and A(x) = B(x) for any x ∈ Supp(A). The class of all equivalent

fuzzy sets with A is denoted by cls(A).

Bellow we demonstrate on the definition of the union and difference the principle

how to introduce operations on fuzzy sets. Similarly, one may introduce the intersection

(∩), product (×) or disjoint union (⊔) of fuzzy sets.

Definition 3. Let A,B ∈ FCount, x = Dom(A)∪Dom(B) and A′ ≡ A, B′ ≡ B such that

Dom(A′) = Dom(B′) = x. Then,

• the union of A and B is a mapping A∪B : x → L defined by

(A∪B)(a) = A′(a)∨B′(a)

• the difference of A and B is a mapping A\B : x → L defined by

A\B(a) = A′(a)⊗ (B′(a)→⊤)

for any a ∈ x.

Further, we propose the following definitions of fuzzy power set and exponentiation.

Definition 4. Let A ∈ FCount and x = {y | y ⊆ Dom(A)}. A fuzzy set P(A) : x → L

defined by

P(A)(y) =
∧

z∈Dom(A)

(χy(z)→ A(z))

is called a fuzzy power set of A.

Definition 5. Let A,B ∈ FCount and put x = Dom(A) and y = Dom(B). A fuzzy set

BA : yx → L defined by

BA( f ) =
∧

z∈x

(A(z)→ B( f (z)))

is called an exponentiation of A to B.

Definition 6. We say that a fuzzy set A from FCount is finite if there exists A′ ∈ cls(A)
such that Dom(A′) is a finite set. The class of all finite fuzzy sets in Count is denoted by

Ffin.
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3 Graded equipollence

Let us start with the concept of one-to-one mapping between fuzzy sets in a degree.

Definition 7. Let A,B ∈ Ffin, x,y ∈ Count and f : x → y be a one-to-one mapping of x

onto y in Count. We shall say that f is a one-to-one mapping of A onto B in the degree

α with respect to ⊙ if Supp(A)⊆ x ⊆ Dom(A) and Supp(B)⊆ y ⊆ Dom(B) and

α =
⊙

z∈x

(A(z)↔ B( f (z))).

We write [A ∼⊙

f B] = α if f is a one-to-one mapping of A onto B in the degree α with

respect to ⊙.

As could be seen above not all one-to-one mappings are considered to specify the de-

gree in which a mapping is a one-to-one mappings between fuzzy sets. The following

establishes the set of all important one-to-one mappings between fuzzy sets.

Definition 8. Let A,B ∈ Ffin. A mapping f : x → y belongs to the set Bij(A,B) if f is a

one-to-one mapping of x onto y, Supp(A)⊆ x ⊆ Dom(A), and Supp(B)⊆ y ⊆ Dom(B).

Now we can proceed to the definition of graded equipollence.

Definition 9. Let A,B ∈ Ffin. We shall say that A is equipollent with B (or A has the

same cardinality as B) in the degree α with respect to ⊙ if there exist fuzzy sets C ∈
cls(A) and D ∈ cls(B) such that

α =
∨

f∈Bij(C,D)

[C ∼⊙

f D]

and, for each A′ ∈ cls(A), B′ ∈ cls(B) and f ∈ Bij(A′
,B′), there is [A′ ∼ f B′]≤ α.

Similarly to the equipollence of sets (or fuzzy sets), the graded equipolence of fuzzy

set is a ⊗-similarity relation (i.e., reflexive, symmetric and ⊗-transitive) on the class of

all finite fuzzy sets as the following theorem shows.

Theorem 1. The fuzzy class relation ∼⊙: Ffin2 → L is a ⊗-similarity relation on Ffin.

4 Graded versions of selected fundamental results in set theory

The most familiar theorems in set theory is the Cantor-Bernstein theorem (CBT). One

of its forms states that if a,b,c,d are sets such that b ⊆ a and d ⊆ b and a ∼ d and

b ∼ c, then a ∼ c. Unfortunately, we cannot prove its graded form in a full generality.

However, restricting to the case of ⊙ = ∧ and the linearity of rdr-lattice, we obtain the

following theorem - a graded version of CBT.

Theorem 2. Let L be a linearly ordered rdr-lattice and A,B,C ∈ Ffin such that A ⊆
B ⊆C. Then,

[A ∼∧ C]≤ [A ∼∧ B]∧ [B ∼∧ C].
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Let a,b,c,d be sets such that a ∼ c and b ∼ d. Then, it is well-known that a∪b ∼ c∪d,

whenever a∩b = /0 and c∩d = /0, a× b ∼ c× d, a⊔b ∼ c⊔d. The following theorem

shows the graded versions of these and two further statements.

Theorem 3. Let A,B,C,D ∈ Ffin. Then,

(i) [A ∼⊙ B]≤ [A ∼⊙ B]
(ii) [A ∼⊙ B]⊗ [C ∼⊙ D]≤ [A⊗C ∼⊙ B⊗D],
(iii) [A ∼⊙ B]⊗ [C ∼⊙ D]≤ [A×C ∼⊙ B×D],
(iv) if Supp(A)∩Supp(B) = Supp(C)∩Supp(D) = /0, then

[A ∼⊙ C]⊗ [B ∼⊙ D]≤ [A∪B ∼⊙ C∪D],

(v) [A ∼⊙ B]⊗ [C ∼⊙ D]≤ [A⊔C ∼⊙ B⊔D].

If a,b are sets and a ∼ b, then P(a) ∼ P(b) and a 6∼ P(a). The following theorem

provides a graded version of these two classical statements (with a restriction on the

operation ∧ in the first case).

Theorem 4. Let A,B ∈ Ffin. Then, [A ∼⊙ B]≤ [P(A)∼∧ P(B)] and [A ∼⊙ P(A)]<⊤.

If a,b,c,d are sets such that a ∼ c and b ∼ d, then ba ∼ dc. The following theorem

is a graded version of this statement.

Theorem 5. Let A,B,C,D∈Ffin such that |Dom(A)|= |Dom(C)|=m and |Dom(B)|=
|Dom(D)|= n. Then, [A ∼⊙ C]⊗ [B ∼⊙ D]≤ [BA ∼∧ CD].

Theorem 6. Let A,B,C ∈ Ffin such that their universes are finite. Then,

[CA⊗B ∼⊙ (CB)A] =⊤.
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1 Prologue or The uncertain reasoner’s nightmare

As economist G.L.S. Shackle once put it, decision is the human predicament. For when

it really matters, we just don’t know. We don’t know what to do because we don’t know

what to believe and sometimes we don’t even know what we want, or aspire to. And

yet, in spite of all this, we must decide.

Classical decision theorists, a set to whom Shackle did not belong, have nurtured

over the last five decades or so a consensus on the recommendation that we should

weigh probabilistically our beliefs before making decisions. This suggests that the first

step in order to tackle the practical aspects of the human predicament involves answer-

ing the following problem

how should we choose our probabilities?

Probabilists disagree. Some insist that the theory of probability should not give us

probability values for the events we are interested in. Rather, probability theory can and

should only guard us against having incoherent beliefs for our relevant uncertainties,

thereby leaving to “practice” the choice of specific values. Others agree that rational

beliefs should not be incoherent, but contend that not all coherent beliefs are born equal.

Some versions of this line of reasoning ends with the mathematically most rewarding

answer, namely one (unique) probability value. Many take issues with the appeal to

symmetry which these arguments use.

Whilst subjective and objective Bayesians argue about the meaning of probability

and how this may or may not justify further logical constraints on the choice of proba-

bility functions, non-Bayesians take the opportunity to ask

why probability in the first place?

Some believe that probability is in fact far from being a good model of our uncer-

tainty, in things that matter. A recurrent case in point is the unsuitability of additive

measures –of which probability is an example– to represent ignorance. Likewise, for

the unreasonable demand that rational agents should have a complete representation

of their uncertainty, i.e. that a probability should be available to quantify one’s uncer-

tainty for every event of interest. Alternative models are put forward in reaction to that.

Whilst supporters of probability argue with its detractors about how should we measure

all uncertainty, epistemologists cannot help but asking
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do we really need to measure uncertainty?

Objectivists –those who see uncertainty as a property or feature of the “world”– are

likely to answer that the quantitative approach to uncertainty is necessary to let statis-

tical analysis bear on complex decision problems. Subjectivists about uncertainty, i.e.

those who focus primarily on the epistemic aspect of uncertainty, see the measurement

of uncertainty as necessary to communicate their individual appraisal of uncertainty

Those favouring the probabilistic representation of epistemic uncertainty also add that

under suitable conditions, probability guarantees that individuals have no interest in

communicating degrees of belief which depart from their own epistemic state Sup-

pose, however, that there was no real need to quantify uncertainty after all. Then, one

could gather all the above discussants and suggest them to re-orientate their efforts

towards practically relevant models of uncertainty. The provisions of the Maastricht

Treaty (1992) did not contemplate the event that any of the member States might cease

to fulfil the conditions that allowed them in the Euro. Back then, exiting the Euro was

not considered a possibility at all. Things changed dramatically, in 2011 when GREXIT

did become a serious possibility. In (partial) hindsight, all that really seemed to have

mattered about GREXIT was the policy-makers’ ability to distinguish between logical

and practically-relevant possibility. For when GREXIT became a serious possibility, the

CEB did “whatever it took” to not make it happen.1

The qualitative approach to uncertain reasoning in artificial intelligence is one promi-

nent research area which has largely been motivated by this similar sort of considera-

tions. Qualitative uncertain reasoning naturally raises the question as to whether all

uncertainties are born equal or:

are there many kinds of uncertainty?

Much recent work in uncertain reasoning and decision theory aims at unfolding the

consequences of assuming that uncertainty does come in various forms. Keynes and

Knight were among the first to put forward suggestions to this effect, albeit from rather

distinct points of view. Knight, in particular, argued for a basic distinction between

uncertainty which is quantifiable, and uncertainty which is not. Some contemporary

decision theorists pay homage to the economist by referring to the latter as Knightian

uncertainty. Bayesians (of all sorts) have ever since challenged the well-foundedness

of this distinction. Ongoing work in economic theory shows that the debate is far from

begin settled.

What this leaves us with is the rather discomforting feeling that our grasp of the very

concept of uncertainty is a lot less firm than we like to think. The purpose of this paper

is to put forward some preliminary suggestions as to how the uncertain reasoner’s night-

mare can be turned into a basis for a robust framework for uncertainty quantification

and decision-making.

1 A position which awarded the head of the CBE the Financial Time’s person of the Year 2012

(FT, 13 December 2012).
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Belief revision has been shaped predominantly by the so-called AGM theory, named

after a seminal paper by Alchourron, Gärdenfors, and Makinson in 1985 that set up a

framework of rationality postulates for reasonable belief change when the prior knowl-

edge is a deductively closed set of propositions, and the new information comes in also

as a proposition. This theory prepared the grounds on which the field of modern belief

revision grew. However, limitations of the AGM theory became apparent soon. First,

AGM theory deals with just one step of revision, not caring about further revisions in

the future. So, the need for an extended framework also dealing with “iterated revision”

became apparent soon and has been a topic of intense research since the nineties of the

last century. Further problems which are caused not by the AGM approach itself but

by the chosen framework of classical propositional logic have been discussed in the

broad community only quite recently: How to change beliefs rationally if both prior

knowledge and new information need richer semantical frameworks than propositional

logic? What to do if multiple pieces of new information (“multiple revision”) have to be

integrated? In particular, this last problem has been ignored for a long time because in

propositional logic, a set of propositions is equivalent to the conjunction of the propo-

sitions, i.e., in classical logic, one proposition can replace a set of propositions, so this

case seemed to have been covered by AGM theory as well. However, counterintuitive

examples showed that unsatisfactory belief sets result from this simplification.

In this talk, I will present an approach to belief revision from a broader point of

view that offers quite natural methods for iterated revision and tackles the problem of

multiple revision right from the beginning. This approach also takes the ideas of AGM

as a starting point but investigates belief revision in richer epistemic structures like

probabilities, or qualitative rankings. Therefore, it is compatible to AGM theory (and

proposed extensions for iterated revision) in propositional logic but is not trapped by its

limitations that are caused by the classical propositional view. I will explain how this

approach unifies belief revision in different semantical frameworks and offers powerful

approaches for belief revision even for very advanced scenarios, i.e., when an epistemic

state has to be revised by a set of conditional beliefs. For the framework of Spohn’s

ranking functions, the talk will present a constructive and concise schema for multiple

iterated revision that is evaluated with respect to well-known and also recently pro-

posed postulates. Furthermore, some novel postulates for multiple iterated revision are

proposed and discussed.
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Quasi-copulas [2, 7] and copulas [17, 16] are special binary aggregation functions.

They play a significant role in probability theory [10, 14], generalized integration the-

ory [13], preference modeling [3], but also in fuzzy logics and the theory of fuzzy

sets [4, 9, 15].

Recall that a (binary) quasi-copula Q : [0,1]2 → [0,1] is a binary aggregation func-

tion on the unit interval [0,1] which is 1-Lipschitz and has neutral element 1.

A (binary) copula C : [0,1]2 → [0,1] is a supermodular quasi-copula, i.e., for all

x,y[0,1]2

C(x∨y)+C(x∧y)≥C(x)+C(y).

Given a binary 1-Lipschitz aggregation function A : [0,1]2 → [0,1], its dual A∗ : [0,1]2 →
[0,1] is defined [8] by

A∗(x,y) = x+ y−A(x,y).

Observe that, for each quasi-copula Q, 1 is not a neutral element od Q∗, so the dual of a

quasi-copula is never a quasi-copula (nor is the dual of a copula a copula). For a copula

C, also the co-copula [1, 16] C : [0,1]2 → [0,1] given by

C(x,y) = 1−C(1− x,1− y)

is considered. Note that C is never a copula.

A copulaC is said to be ultramodular [11, 12] on the upper left triangle ∆= {(x,y)∈
[0,1]2 | x ≤ y} if for all x,y,α,β,γ,δ ∈ [0,1] which satisfy {(x,y),(x +α,y+ γ),(x+
β,y+ δ} ⊆ ∆ and (x+α+β,y+ γ+ δ)∈ [0,1]2:

C(x+α+β,y+ γ+ δ)−C(x+α,y+ γ)≥C(x+β,y+ δ)−C(x,y).
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We also will consider copulas C which are Schur concave [18, 5] on the upper left

triangle ∆, i.e., for each x ]0,1[ and for all (α,β) ∈ ∆∩
[

0,min(x,1− x2)
]

we have

C(x−α,x+α)≤C(x−β,x+β).

The well-known Frank functional equation [6] can be formulated as follows: find

all associative copulas F and G such that F = (G)∗.

We are interested in functional equations of the type

S = R(Q,Q∗),

i.e., S(x,y) = R(Q(x,y),Q∗(x,y)) for all (x,y) ∈ [0,1]2, where Q, R and S are (quasi-)

copulas.

Proposition 1. Let Q and R be two binary quasi-copulas. Then R(Q,Q∗) is a quasi-

copula.

Looking at the lower and upper Fréchet-Hoeffding bounds W and M, and at the

product copula Π given by, respectively

W (x,y) = max(x+ y− 1,0), M(x,y) = min(x,y), Π(x,y) = x · y,

it is not difficult to show:

Proposition 2. For all binary quasi-copulas Q,R and for all binary copulas C,D we

have:

(i) R(Q,Q∗)≤ Q and D(C,C∗)≤C;

(ii) M(Q,Q∗) = Q;

(iii) R(W,W ∗) =W;

(iv) if D is a symmetric copula then D(M,M∗) = D;

(v) Π(Q,Q∗) is a quasi-copula and Π(C,C∗) is a copula;

(vi) if we put Q1 = Π(Q,Q∗) and Qn+1 = Π(Qn,Q
∗
n) for each n ∈N then

lim
n→∞

Qn =W.

Proposition 3. Let C be a binary copula and let D be a binary copula which is ultra-

modular and Schur concave on the upper left triangle ∆. Then D(C,C∗) is a copula.

We also provide examples which illustrate the importance of the hypotheses in

Proposition 2(iv) and in Proposition 3:

(a) an asymmetric copula D and a copula C such that D(C,C∗) is not a copula;

(b) a copula D which is ultramodular on ∆ (but not Schur concave on ∆) and a copula

C such that D(C,C∗) is not a copula;

(c) a copula D which is Schur concave on ∆ (but not ultramodular on ∆) and a copula

C such that D(C,C∗) is not a copula.
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The history of many-valued logics begins with the 3-valued system defined by

Łukasiewicz, which was extended to a ∞-valued system L∞ by Łukasiewicz and Tarski

in 1930 [11]. The evolution of Łukasiewicz logic is strongly connected with its alge-

braic counterpart: the theory of MV-algebras.

MV-algebras were defined by Chang [2] and we refer to [3] for a comprehensive

study of their general theory. One can see [17] for advanced topics. MV-algebras are

structures (A,⊕,¬,0) of type (2,1,0) and they stand to Łukasiewicz propositional logic

as boolean algebras stand to classical logic. The standard MV-algebra is the real unit

interval [0,1] equipped with the following operations: ¬x = 1−x and x⊕y = (x+y)∧1

for any x, y ∈ [0,1]. Chang’s completeness theorem states that an equation is satisfied in

all MV-algebras if and only if it is satisfied in the MV-algebra [0,1]. The theory of MV-

algebras was highlighted by Mundici’s categorical equivalence between MV-algebras

and abelian lattice-ordered groups with strong unit [13].

MV-algebras are twofold structures, generalizations of boolean algebras and unit

intervals of lattice-ordered groups with strong unit. The theory of states is the MV-

algebraic correspondent of the boolean probability theory, being also intimately related

with the theory of states defined on lattice-ordered groups.

If A is an MV-algebra, a state [14] is a function s : A → [0,1] such that s(¬0) = 1

and s(x⊕ y) = s(x) + s(y) whenever x ≤ ¬y for any x, y ∈ A. When A is a free alge-

bra, this notion captures the average truth-degree of a formula in Łukasiewicz logic.

A probability MV-algebra is a pair (A,s), where A is a σ-complete MV-algebra and s

is a σ-continuous faithful state. Probability MV-algebras were introduced and studied

by Mundici and Riečan in [19]. Further major results on states are the Kroupa-Panti

representation theorem [9, 18] and the generalization of de Finetti’s coherence criterion

[15].

We present an overview of the MV-algebraic theory of states, focusing on the fol-

lowing issues.

– The notion of conditional probability.

We are aiming to summarize the present approaches of the conditional probabil-

ities in Łukasiewicz logic [1, 8, 6, 16, 12] and to explore the notion of conditional

expectation. An open problem raised by Mundici and Riečan [19] was to generalize

the theory of ”stochastically independent” algebras to probability MV-algebras. We

proposed a solution to this problem using a categorical duality between a subclass

of MV-algebras and a particular class of topological measure spaces [10]. The con-
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cept of stochastic independence is closely related to the definition of conditional

probability and we intend to further analyze the consequences of this approach.

– The study of hyperreal states.

Any MV-algebra is, up to isomorphism, the Lindenbaum algebra L(Θ) determined

by a theory Θ of L∞. As a consequence of Di Nola’s representation theorem [5],

L(Θ) is an algebra of ∗[0,1]-valued functions, where ∗[0,1] is the non-standard real

unit interval. If Θ satisfies the strong completeness theorem, then L(Θ) is an alge-

bra of [0,1]-valued functions, so it contains no infinitesimals. For arbitrary Θ, if s is

a state on L(Θ), then s(τ) = 0 whenever τ is an infinitesimal. Hence, states on MV-

algebras ”ignore” the infinitesimals. In order to overcome this problem a notion of

hyperreal state is proposed in [7]. An important class of non-semisimple structures

are the lexicographic MV-algebras, i.e. those MV-algebras that correspond to lexi-

cographic products H ⊗lex G, where (H,u) is an abelian totally-ordered group with

strong unit and G is an arbitrary abelian lattice-ordered group. These structures are

introduced in [4], where an appropriate notion of ∗[0,1]-valued state is also pro-

posed under the name of lexicographic state. We present the main representation

theorems, both for lexicographic MV-algebras and lexicographic states.

References

1. B. Gerla. Conditioning a State by a ukasiewicz Event: A Probabilistic Approach to Ulam

Games. Theor. Comput. Sci. 230(1-2):149-166, 2000.

2. C.C.Chang. Algebraic analysis of many valued logics. Transactions of the American Mathe-

matical Society, 88:467-490, 1958.

3. R. Cignoli, I.M.L. D’Ottaviano, D. Mundici. Algebraic Foundations of Many-Valued Rea-

soning. Trends in Logic, vol. 7, Kluwer, Dordrecht, 2000.
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The subject of our investigation is the powering of binary fuzzy relations and their

relationship with fuzzy power algebras. In this paper, we assume that the structure of

truth values is a complete residuated lattice.

The notion of a fuzzy power algebra (see [3, 4]) can be defined using the Zadeh’s

extension principle ([6]) in two ways. If the induced operations are defined by the carte-

sian product, we get fuzzy power algebras F +(A), studied in [4]. If the definition of a

fuzzy power algebra rely on the tensor product, we obtain fuzzy power algebras F ∗(A),
investigated in [5]. In [3] it is demonstrated that these two kinds of power algebras be-

have differently with respect to homomorphisms and direct products.

In [4] fuzzy power algebras F +(A) are studied in the framework of fuzzy set theory

based on a continuous t-norm. Three ways of lifting binary fuzzy relations from a set

X to the set F (X) of all fuzzy subsets of X are defined and the properties of these

constructions are studied. The notions of good, Smyth good, Hoare good and very good

fuzzy relations are introduced and some connections between them are established,

generalizing some results from [1, 2]. In [5] these fuzzy power constructions are studied

in the case when the structure of truth values is a complete residuated lattice and the

fuzzy power algebras are defined by the tensor product.

The main aim of the present paper is to answer some questions posed in [4] and to

clarify the difference between the two kinds of fuzzy power algebras. For example we

prove the following:

Theorem 1. Let L be a complete residuated lattice. The following conditions are equiv-

alent:

(a) L is a Heyting algebra.

(b) (R◦Q)+ = R+
◦Q+ for all binary L-relations R and Q.

Theorem 2. Let L be a complete residuated lattice. The following conditions are equiv-

alent:

(a) L is a Heyting algebra.

(b) For any algebra A and any L-relation R on A, if R is a congruence on A , then R+

is a congruence on the fuzzy power algebra F +(A).

Theorem 3. Let L be a complete residuated lattice, A an algebra and R a binary L-

relation on A.
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(a) If R is a fuzzy preorder and R→ is a good relation on F +(A), then R is compatible

on A .

(b) If R is a fuzzy preorder and R← is a good relation on F +(A), then R is compatible

on A .

Theorem 4. Let L be a complete residuated lattice. The following conditions are equiv-

alent:

(a) L is a Heyting algebra.

(b) For any algebra A , every ∧-compatible fuzzy preorder on A is ∧-Hoare good.

(c) For any algebra A , every ∧-compatible fuzzy preorder on A is ∧-Smyth good.

References
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3. Bošnjak, I., Madarász, R.: Vojvodić, G.: Algebras of fuzzy sets, Fuzzy Sets Syst. 160, 2979–

2988 (2009)

4. Georgescu, G.: Fuzzy power structures, Arch. Math. Logic 47, 233–261 (2008)

5. Lai, H., Zhang, D.: Good fuzzy preorders on fuzzy power structures, Arch. Math. Logic 49,

469–489 (2010)

6. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reason-

ing, I,II,III, Inf. Sci. 8 (3), 199-251, 301-357, 9, 43–80 (1975)

90



On the roots of fuzzy logic with evaluated syntax

Vilém Novák

Institute for Research and Applications of Fuzzy Modeling

University of Ostrava, Czech Republic

Vilem.Novak@osu.cz

In this contribution, we will return to the roots of fuzzy logic with evaluated syntax

(EvŁ). We will remember the foundational role of Jan Pavelka ([7]). First we recall the

main concepts in the metamathematics of this logic. The basic results in the proposi-

tional EvŁ including the completeness theorem were obtained by J. Pavelka. Its exten-

sion to the predicate version was done by V. Novák in [4] and the whole theory was

elaborated in detail in the book [6].

The starting point for the development of EvŁ is to accept that axioms need not be

fully convincing that is, we cannot take them as fully true. The canonical example are

axioms of the sorites theory (cf. [2, 6]) where we cannot take as fully true that, for any n,

“if n stones do not form a heap then n+1 stones do not form it as well”. This naturally

leads to the concept of evaluated formula a
/

A where A is a formula and a ∈ L is its

evaluation and L is the set of truth values. Let us emphasize that the evaluation is given

from outside and does not belong to the syntax.

An important principle applied in EvŁ is the principle of maximality. Namely, we

always want to obtain as high evaluation of formulas as possible. Hence, if we find a

formula A evaluated by more values, i.e., we have more evaluated formulas ai
/

A, i ∈ J

at disposal, then we consider only the highest evaluation of A which means that the

resulting evaluated formula is (
∨

i∈J ai)
/

A.

Further step is to introduce special many-valued inference rules that manipulate

with evaluated formulas. An n-ary many-valued inference rule r is a scheme

r :
a1
/

A1, . . . ,an
/

An

revl(a1, . . . ,an)
/

rsyn(A1, . . . ,An)
, (1)

where rsyn is a syntactic and revl an evaluation part of the rule r. Finally, we consider

the concept of fuzzy theory — a fuzzy set of formulas obtained from the fuzzy set of

axioms using many-valued inference rules.

A fuzzy set V ⊂
∼

FJ (FJ is the set of all formulas of the language J) is closed with

respect to r if

V (rsyn(A1, . . . ,An))≥ revl(V (A1), . . . ,V (An)) (2)

holds for all formulas A1, . . . ,An ∈ dom(rsyn).
Let R be a set of inference rules. Then the fuzzy set of syntactic consequences of a

fuzzy set X of formulas is a fuzzy set of formulas with the membership function

C
syn(X)(A) =

∧
{V(A) |V ⊂

∼
FJ,X ≤V

and V is closed w.r.t. to all r ∈ R}. (3)

91



An evaluated formal proof of a formula A from the fuzzy set X ⊂
∼

FJ is a finite

sequence of evaluated formulas

w := a0
/

A0, a1
/

A1, . . . , an
/

An (4)

such that An := A and for each i ≤ n, ai
/

Ai is either an axiom or it was derived from

some previous formulas using an inference rule. The evaluation an is value of the proof

w and is denoted by Val(w).

Theorem 1 (J. Pavelka).

C
syn(X)(A) =

∨
{Val(wA) | wA is a proof of A from X}. (5)

The proof of this theorem uses the principle of maximality. With respect to this theorem,

the degree (3) is called the provability degree of the formula A in a fuzzy theory T

determined by the fuzzy set of axioms X . In correspondence with the classical notation,

we write T ⊢a A where a = C syn(X)(A).
Semantics of EvŁ is many-valued and defined in a standard way. The fuzzy set of

semantic consequences of X ⊂
∼

FJ is given by the membership function

C
sem(X)(A) =

∧
{M (A) | for all truth valuations M : FJ −→ L,X ≤ M }. (6)

In correspondence with the classical notation, we write T |=a A where a = C sem(X)(A)
and call a the truth degree of A in T .

The EvŁ is complete if C syn(X) = C sem(X) for all X ⊂
∼

FJ . The following theorem

holds true for any formal logical system with evaluated syntax based on a complete

residuated lattice.

Theorem 2 (J. Pavelka). If interpretation → of the logical implication⇒⇒⇒∈ J does not

fulfil the equations

∨

b∈I

(a → b) = a → (
∨

b∈I

b), a ∈ L, (7)

∨

a∈I

(a → b) = (
∧

a∈I

a)→ b b ∈ L, (8)

∧

b∈I

(a → b) = a → (
∧

b∈I

b) a ∈ L, (9)

∧

a∈I

(a → b) = (
∨

a∈I

a)→ b b ∈ L, (10)

for arbitrary subset of I ⊆ L then such a system cannot be complete.

It follows from this theorem that EvŁ based on L = [0,1] is limited to Łukasiewicz

implication (or its isomorphs) and so, the Łukasiewicz logic lays in the core of EvŁ.

Namely, it can be represented inside EvŁand by [3], EvŁ is a conservative extension of

the Łukasiewicz logic.

The following two theorems written as generalization of the Gödel completeness

theorems for classical first-order logic have algebraic proof extending the original Pavelka’s
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completeness proof for the propositional EvŁ given by Novák and also two syntactical

proofs given by Hájek and independently by Novák.

A fuzzy theory T is contradictory if there is a formula A and proofs wA of A and

w¬A of ¬¬¬A such that

Val(wA)⊗Val(w¬A)> 0.

Otherwise it is consistent.

Theorem 3 (Completeness theorem II). A fuzzy theory T is consistent iff it has a

model.

Theorem 4 (Completeness theorem I).

T ⊢a A iff T |=a A

holds for every formula A ∈ FJ and every consistent fuzzy theory T .

Besides completeness, we will in this contribution overview the main results ob-

tained in EvŁ. Among them, we will also address one of the discussed problems of EvŁ,

namely the necessity to introduce in the language J truth constants (i.e. constants rep-

resenting truth values) for all elements of L. This means that in case of L = [0,1], the

language J is uncountable. Novák and also Hájek showed that this is unnecessary and

that only countable number of logical constants is sufficient (cf. [1, 5, 6]).

Acknowledgement. The research was supported by the European Regional Develop-

ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).
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Identification of basic geometric features, such as lines and other objects (triangles,
circles), from digital raster image is one of fundamental processes in image analysis.
Motivated with this problem we have introduced the notion of linear fuzzy space [5–7]
based on the model of fuzzy imprecise point, see also [1, 8, 9].

Definition 1. Fuzzy point P ∈ R
2, denoted by P̃ is defined by its membership function

µP̃ ∈ F 2, where the set F 2 contains all membership functions µ : R2 → [0,1] satisfying
following conditions:

(i) (∀µ ∈ F 2)(∃1P ∈ R
2) µ(P) = 1,

(ii) (∀X1,X2 ∈ R
2)(λ ∈ [0,1]) µ(λX1 +(1−λ)X2)> min(µ(X1),µ(X2)),

(iii) function µ is upper semi continuous,
(iv) [µ]α = {X | X ∈ R

2
,µ(X)> α} α -cut of function µ is convex.

A point from R
2
, with membership function µP̃(P) = 1, will be denoted by P (P is the

core of the fuzzy point P̃ ), and the membership function of the point P̃ will be denoted
by µP̃. By [P]α we denote the α-cut of the fuzzy point.

Definition 2. Linear fuzzy space is the set H 2 ⊂ F 2 of all functions which, in addition
to the properties given in Definition 1, are:

(i) Symmetric with respect to the core S ∈R
2 (µ(S) = 1),

µ(V ) = µ(M)∧µ(M) 6= 0 ⇒ d(S,V ) = d(S,M),

where d(S,M) is the distance in R
2.

(ii) Inverse-linear decreasing w.r.t. pointsÂŠ distance from the core according to:

µS̃(V ) = max(0,1−
d(S,V )

|r|
), if r 6= 0,

µS̃(V ) =

{
1 if S =V

0 if S 6=V,
if r = 0,
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where d(S,V ) is the distance between the point V and the core S ( V,S ∈R
2) and r ∈R

is a constant.

Elements of that space are represented as ordered pairs S̃ = (S,rS) where S ∈ R
2 is the

core of S̃, and rS ∈R is the distance from the core for which the function value becomes
0; in the sequel parameter rS will be denoted as fuzzy support radius.

We have introduced basic operations over linear fuzzy space H 2 defined on R
2, and

we proved their properties which are used in definitions of basic fuzzy plane geometry
objects, see [5, 6]. Based on our results [5] we have introduced a mathematical model
of fuzzy line, fuzzy triangle and fuzzy circle. We give here only the definition of the
fuzzy line.

Definition 3. Let H 2 be a linear fuzzy space and function f : H 2 ×H 2 × [0,1]→ H 2

is a linear combination of the fuzzy points Ã and B̃, i.e.,

f (Ã, B̃,u) = Ã+ u · (B̃− Ã),

where u ∈ [0,1] . Then a fuzzy set ÃB given by

ÃB =
⋃

u∈[0,1]

f (Ã, B̃,u)

is called fuzzy line.

We have defined basic spatial relations: coincidence, between and collinear, see [6].

Definition 4. Let λ be the Lebesgue measure on the set [0,1] and H 2 is a linear fuzzy
space. A fuzzy relation coin : H 2 ×H 2 → [0,1] is called fuzzy coincidence represented
by the following membership function

µcoin(Ã, B̃) = λ({α | [Ã]α ∩ [B̃]α 6= /0}).

Since the lowest α is 0, a membership function of the fuzzy coincidence is given by

µcoin(Ã, B̃) = max{α | [Ã]α ∩ [B̃]α 6= /0}.

Theorem 1. The membership function of the fuzzy relation fuzzy coincidence is deter-
mined according to the following formula

µcoin(Ã, B̃) =





0 if |rA|+ |rB|= 0∧d(A,B) 6= 0,

max(0,1− d(A,B)
|rA|+|rB|

) if |rA|+ |rB| 6= 0,

1 if |rA|+ |rB|= 0∧d(A,B) = 0.

Definition 5. Let λ be Lebesgue measure on the set [0,1], H 2 linear fuzzy space and L2

be set of all fuzzy lines defined on H 2. Then fuzzy relation contain : H 2 ×L2 → [0,1]
is fuzzy contain represented by following membership function

µcontain(Ã, B̃C) = λ({α | [Ã]α ∩ [B̃C]α 6= /0}).
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Definition 6. Let Ã, B̃ ∈ H 2 and Ã 6= B̃. Then a point TAB ∈ R
2 is called internal ho-

mothetic center if the following holds

TAB = A+
rA

rA + rB
(B−A),

where Ã = (A,rA) and B̃ = (B,rB).

Theorem 2. Let Ã, B̃,C̃ ∈ H 2, u ∈ [0,1] and Ã′ be fuzzy image of point A on fuzzy line
B̃C. If points TAB and TAC are internal homothetic center fuzzy points for fuzzy points
Ã and B̃ and Ã and C̃ respectively. Then the membership function of the fuzzy relation
fuzzy contain is determined according to the following formula

µcontain(Ã, B̃C) =

{
µcoin(Ã, Ã

′
) if u ∈ {0,1}

µÃ(A
∗) if u ∈ (0,1),

where point A∗ is a projection of the core of Ã on the line passing through the points
TAB and TAC.

Fuzzy points are used to describe the position of a real object when there is some
uncertainty to the measured position. Most often this uncertainty in practical applica-
tions is ignored. If the points that represent the path are imprecise, then the whole line
should be described in way similar to imprecise points description. Real-world objects
are mapped to the digital raster image through a variety of sensors, making the image
only an approximation to the real-world object. Due to imperfections in either the im-
age data or the edge detector, there may be missing points or pixels on lines as well as
spatial deviations between ideal line and the set of imprecise points obtained from the
edge detector. The overall effect is an image that has some distortion in its geometry.
The proposed models of imprecise line objects could be used in various applications,
such as image analysis (imprecise feature extraction), GIS (imprecise spatial object
modeling) [4, 10] and robotics (environment models). In [6] we have used fuzzy line
as model of the road lane. The algorithm for lane detection is primarily based on fuzzy
spatial relations introduced by this work, and it is characterized by reduced computa-
tional complexity versus the standard Hough transformation [3]. Further applications
are obtained in medicine in the interpretation of DICOM medical images [2].

Acknowledgement. This paper was supported by the project MPNRS 174009 and
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2. Jocić, M., Obradović, Dj., Konjović, Z., Pap, E.: Fuzzy spatial relations and their applications
on DICOM medical images, in IEEE 11th International Symposium on Intelligent Systems
and Informatics, Subotica, 23–28 (2013)

96



3. Galambos, C., Matas, J., Kittler, J.: Progressive probabilistic Hough transform for line detec-
tion,in Computer Vision and Pattern Recognition, IEEE Computer Society Conference on.,
vol. 1. (1999)
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6. Obradović, Dj., Konjović, Z., Pap, E., Rudas, I. J.: Linear Fuzzy Space Based Road Lane
Model and Detection, Knowledge-Based Systems 38 , 37–47 (2013)
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Abstract. For effect algebras, the so-called tense operators were already intro-

duced by Chajda and Paseka. They presented also a canonical construction of

them using the notion of a frame.

Tense operators express the quantifiers “it is always going to be the case that” and

“it has always been the case that” and hence enable us to express the dimension

of time in the logic of quantum mechanics.

A crucial problem concerning tense operators is their representation. Having an

effect algebra with tense operators, we can ask if there exists a frame such that

each of these operators can be obtained by the canonical construction. Introducing

the notion of a q-effect algebra we solve this problem for E-tense operators on E-

representable E-Jauch-Piron q-effect algebras.

1 Preliminaries and basic facts

Effect algebras were introduced by Foulis and Bennett [7] as an abstraction of the

Hilbert space effects which play an important role in the logic of quantum mechan-

ics. However, this notion does not corporate the dimension of time.

This means that effect algebras can serve to describe the states of effects in a given

time but they cannot reveal what these effects expressed in the past or what they will

reveal in the next time.

By an effect algebra is meant a structure E = (E;+,0,1) where 0 and 1 are distin-

guished elements of E , 0 6= 1, and + is a partial binary operation on E satisfying the

following axioms for x,y,z ∈ E:

(E1) if x+ y is defined then y+ x is defined and x+ y = y+ x

(E2) if y+ z is defined and x+(y+ z) is defined then x+ y and (x+ y)+ z are defined

and (x+ y)+ z = x+(y+ z)
(E3) for each x ∈ E there exists a unique x′ ∈ E such that x + x′ = 1; x′ is called a

supplement of x

(E4) if x+ 1 is defined then x = 0.

Having an effect algebra E = (E;+,0,1), we can introduce the induced order ≤ on E

and the partial operatin − as follows

x ≤ y if for some z ∈ E x+ z = y,

and in this case z = y− x

(see e.g. [5] for details). Then (E;≤) is an ordered set and 0 ≤ x ≤ 1 for each x ∈ E .
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It is worth noticing that a+ b exists in an effect algebra E if and only if a ≤ b′ (or

equivalently, b ≤ a′). This condition is usually expressed by the notation a⊥b (we say

that a,b are orthogonal). Dually, we have a partial operation · on E such that a ·b exists

in an effect algebra E if and only if a′ ≤ b in which case a ·b = (a′+ b′)′. This allows

us to equip E with a dual effect algebraic operation such that Eop = (E; ·,1,0) is again

an effect algebra, ′E
op
=′E=′ and ≤Eop=≤op.

Let d,q : E → E be maps such that, for all x,y,z ∈ E ,

(Q1) d(x′) = q(x)′,
(Q2) d(0) = 0 = q(0),
(Q3) d is order-preserving,

(Q4) x′ ≤ x implies x · x = d(x),
(Q5) z ≤ x,z ≤ y ≤ x′ imply d(z)≤ x · y,

(Q6) d(x)≤ x.

We then say that E = (E;+,q,d,0,1) is a q-effect algebra. Note that a dual of E =
(E;+,q,d,0,1) is a q-effect algebra Eop = (E; ·,d,q,1,0).

A morphism of effect algebras (morphism of q-effect algebras) is a map between

them such that it preserves the partial operation +, (and the unary operations q and

d),the bottom and the top elements. In particular, ′ : E → Eop is a morphism of effect

algebras (morphism of q-effect algebras).

A map s : E → [0,1] is called a state (an E-state) on E if s(0) = 0, s(1) = 1,

(s(q(x)) = s(x)+min(s(x′),s(x), s(d(x)) = 1− s(x′)−min(s(x′),s(x)) and s(x+ y) =
s(x)+ s(y) whenever x+ y exists in E .

A morphism f : P1 → P2 of bounded posets is an order, top element and bottom el-

ement preserving map. Any morphism of effect algebras is a morphism of correspond-

ing bounded posets. A morphism f : P1 → P2 of bounded posets is order reflecting if

( f (a)≤ f (b) if and only if a ≤ b) for all a,b ∈ P1.

If, moreover (E;≤) is a lattice (with respect to the induced order), then E is called a

lattice effect algebra. On any lattice effect algebra E we may introduce total operations

⊕ and ⊙ as follows: x⊕ y = x+(y∧ x′) and x⊙ y = (x′⊕ y′)′. Note that a lattice effect

algebra E is an MV-algebra (see [3]) with respect to the operations ⊕ and ′ if and

only if x∧ y = 0 implies x ≤ y′. In this case the unary operations q(x) = x⊕ x and

d(x) = x⊙ x satisfy the conditions (Q1)-(Q5) and E = (E;+,q,d,0,1) is a q-effect

algebra. Moreover, any morhism of MV-algebras is a morphism of q-effect algebras.

In what follows, motivated by the above situation, we will always use for q-effect

algebras the notation E = (E;+,⊕,⊙,0,1) such that ⊕(x) = x⊕ x and ⊙(x) = x⊙ x.

Tense operators on q-effect algebras

Let E = (E;+,0,1) be an effect algebra. Unary operators G and H on E are called

partial tense operators if they are are partial mappings of E into itself satisfying the

following axioms:

(T1) G(0) = H(0) = 0, G(1) = H(1) = 1,

(T2) x ≤ y implies G(x) ≤ G(y) whenever G(x),G(y) exist and H(x) ≤ H(y) whenever

H(x),H(y) exist
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(T3) if x+ y and G(x),G(y),G(x+ y) exist then G(x)+G(y) exists and G(x)+G(y)≤
G(x+ y) and if x+ y and H(x),H(y),H(x+ y) exist then H(x)+H(y) exists and

H(x)+H(y)≤ H(x+ y)
(T4) x ≤ GP(x) if H(x′) exists, P(x) = H(x′)′ and GP(x) exists, x ≤ HF(x) if G(x′)

exists, F(x) = G(x′)′ and HF(x) exists.

If both G and H are total (i.e., G and H are mappings of E into itself defined for each

x ∈ E) then G and H are called tense operators and P (or F) is a left adjoint to G (or H,

respectively) (see [2]).

It is quite natural to ask that our (total) tense operators on q-effect algebras preserve

unary operations ⊕ and ⊙ (see [4]). This can be accomplished by the following axioms:

(T5)
G(x⊕ x) = G(x)⊕G(x),
H(x⊕ x) = H(x)⊕H(x),

(T6)
G(x⊙ x) = G(x)⊙G(x),
H(x⊙ x) = H(x)⊙H(x).

We call such tense operators G and H tense E-operators. The main aim of our paper

is to establish a representation theorem for tense E-operators.

E-semi-states on q-effect algebras

Definition 1. Let E = (E;+,⊕,⊙,0,1) be a q-effect algebra. A map s : E → [0,1] is

called

1. an E-semi-state on E if

(i) s(0) = 0,s(1) = 1,

(ii) s(x)+ s(y)≤ s(x+ y) whenever x+ y is defined,

(iii) s(x)⊙ s(x) = s(x⊙ x),
(iv) s(x)⊕ s(x) = s(x⊕ x),

2. a Jauch-Piron E-semi-state on E if s is an E-semi-state and

(v) s(x) = 1 = s(y) implies s(x∧ y) = 1;

Definition 2. Let E = (E;+,⊕,⊙,0,1) be a q-effect algebra.

(a) If S is an order reflecting set of E-states on E then E is said to be E-representable.

(b) If S is an order reflecting set of Jauch-Piron E-states on E then E is said to be

E-Jauch-Piron representable.

(c) If any E-state is E-Jauch-Piron then E is called an E-Jauch-Piron q-effect algebra.

2 The representation of E-tense operators

In this section we outline the problem of a representation of E-tense operators H and

H and we solve it for E-representable E-Jauch-Piron q-effect algebras. This means that

we get a procedure how to construct a corresponding time frame (it will be the set of

all Jauch-Piron E-states equipped with an induced relation ρG) to be in accordance with

the canonical construction from [2].
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By a frame is meant a couple (S,R) where S is a non-void sets and R⊆ S×S. For our

sake, we will assume that for all x ∈ S there are y,z ∈ S such that xRy and zRx. Having a

q-effect algebra E = (E;+,⊕,⊙,0,1) and a non-void set T , we can produce the direct

power ET = (ET ;+,⊕,⊙,o, j) where the operation + and the induced operations ∨, ∧,

⊕, ⊙ are defined and evaluated on p,q ∈ ET componentwise. Moreover, o, j are such

elements of ET that o(t) = 0 and j(t) = 1 for all t ∈ T . The direct power ET is again a

q-effect algebra.

The notion of frame allows us to construct E-tense operators on q-effect algebras.

Theorem 1. Let M be a linearly ordered complete MV-algebra, (S,R) be a frame, G∗

and H∗ be maps from MS into MS defined by

G∗(p)(s) =
∧
{p(t) | t ∈ S,sRt},

H∗(p)(s) =
∧
{p(t) | t ∈ S, tRs}

for all p ∈ MS and s ∈ S. Then G∗ (H∗) is an E-tense operator on MS which has a left

adjoint P∗ (F∗). In this case, for all q ∈ MS and t ∈ S,

P∗(q)(t) =
∨
{q(s) | s ∈ S,sRt}

F∗(q)(t) =
∨
{q(s) | s ∈ S, tRs}.

Now we are able to establish our main result which is a generalization of the main

results from [1, 8].

Theorem 2. Let E be an E-representable E-Jauch-Piron q-effect algebra with an order

reflecting set S of E-states and with tense E-operators G and H. Then (E ,G,H) can

be embedded into the tense MV-algebra ([0,1]S,G∗
,H∗) induced by the frame (S,ρG),

where S is the set of all Jauch-Piron E-states from E to [0,1] and the relation ρG is

defined by

sρGt if and only if s(G(x)) ≤ t(x) for any x ∈ E.
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Description logics (DLs) are a family of well-studied knowledge representation for-

malisms designed to express and reason with the conceptual knowledge of application

domains in a clear and well-understood manner. They have been successfully applied

for representing large application domains, most prominently from the biological and

medical fields. In their classical form, DLs are not adequate for handling vague or im-

precise knowledge, which is a common staple in bio-medical knowlege. To alleviate this

problem, fuzzy extensions of DLs have been introduced. As a prototypical example, we

consider here the smallest propositionally closed fuzzy DL, which we call ⊗-ALC .1

The fuzzy DL ⊗-ALC is based on concepts and roles, which are interpreted as

(fuzzy) unary and binary relations, respectively. Given the disjoint sets NR, and NC of

role, and concept names, respectively, ⊗-ALC concepts are built through the grammar

rule

C ::= A | ⊥ | C⊓C | C →C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. The concept ⊤ is often used as an abbreviation of ⊥→⊥.

The terminological knowledge of a domain is represented through a TBox: a finite set of

general concept inclusions (GCIs) of the form 〈C ⊑ D ≥ q〉, where C,D are ⊗-ALC -

concepts, and q ∈ [0,1].
The semantics of this logic is given through interpretations, which are pairs I =

(∆I , ·I ) where ∆I is a non-empty set called the domain, and ·I is a function that maps

every A ∈ NC to a function AI : ∆I → [0,1], and every r ∈ NR to a function rI : ∆I ×
∆I → [0,1]. Intuitively, for every domain element x ∈ ∆I the value AI (x) represents

the degree to which x is a member of A. The interpretation function is extended to

arbitrary concepts using the continuous t-norm ⊗ and its (unique) residuum ⇒. In the

case of G-ALC , where the semantics is based on the Gödel t-norm, complex concepts

are interpreted as shown in Table 1.

The interpretation I is a model of the TBox T if for every GCI of the form 〈C ⊑D≥
q〉 ∈ T and every x ∈ ∆I , CI (x)⇒ DI (x) ≥ q holds. Reasoning tasks in fuzzy DLs are

based on the class of models of a TBox. However, it is customary to further restrict this

class allow only so-called witnessed models, where the suprema and infima stated by

the semantics of the existential and value restrictions, respectively, are in fact maxima

and minima. We keep this restriction, and for the rest of this paper call witnessed models

simply models for brevity.

1 Unfortunately, there is no agreed naming for fuzzy DLs. We use this name to emphasize the

relationship with ALC , the smallest propositionally closed classical DL.
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Table 1: Semantics of G-ALC

constructor syntax semantics

bottom concept ⊥ 0

conjunction C⊓D min(CI (x),DI (x))
implication C → D CI (x)⇒ DI (x)
existential restriction ∃r.C supy∈∆I min(rI (x,y),CI (y))

value restriction ∀r.C infy∈∆I rI (x,y)⇒CI (y)

Most reasoning tasks in fuzzy DLs can be reduced to deciding the existence of a

model that satisfies an additional set of restrictions, or restricted consistency. A restric-

tion is an expression of the form 〈C ⊲ q〉, where C is a concept, q∈ [0,1], and ⊲∈ {≤,≥}.

A finite set of restrictions R is consistent w.r.t. the TBox T if there is a model I of T

and an element x ∈ ∆I such that CI (x)⊲ q holds for every restriction 〈C ⊲ q〉 ∈ R .

Restricted consistency and other associated reasoning tasks have been recently shown

to be hard (even undecidable) for non-idempotent t-norms; i.e., any continuous t-norm

that is not Gödel [5]. One culprit for this hardness is the fact that, for those t-norms,

⊗-ALC does not have the finite model property nor the finitely-valued model property.

That is, there exist consistent restrictions that are only satisfied by infinite models that

use infinitely many different membership degrees [3]. This fact is used to prove that the

existence of such a model cannot be decided in finite time. Given the simplicity of the

operators associated to the Gödel t-norm, it was generally believed that G-ALC has the

finite model property. Moreover, it is often claimed that all reasoning tasks in this logic

can be restricted to only a finite set of truth degrees, which can be computed a priori,

depending only on the values explicitly provided in the input. This belief seems to arise

from the results in [6] which, however, depend on different semantics.

Consider the set of restrictions R = {〈A ≤ 0.6〉} and the TBox

T = {〈∀r.A ⊑ A ≥ 1〉 , 〈∃r.⊤⊑ A ≥ 1〉}.

It is easy to see that R is consistent w.r.t. T . For any model I of T that satisfies R

there must exist an element x1 ∈ ∆I such that AI (x1) < 0.6. As I is witnessed, there

exists a x2 ∈ ∆I with (∀r.A)I (x1) = rI (x1,x2) ⇒ AI (x2). The first axiom of T entails

rI (x1,x2) ⇒ AI (x2) ≤ AI (x1) < 1, and in particular rI (x1,x2) > AI (x2). The second

axiom of the TBox T implies that

rI (x1,x2) = min(rI (x1,x2),1)≤ (∃r.⊤)I (x1)≤ AI (x1),

and thus AI (x1) > AI (x2). Repeating the same argument, there must exist elements

x3,x4, . . . ∈ ∆I such that AI (xi) > AI (xi+1) for all i ≥ 1. This means that any model of

T satisfying the restriction R must have infinitely many elements that belong to the

concept A to a different degree.

While it is not possible to explicitly construct a model that uses infinitely many

membership degrees in finite time, we can still decide its existence by considering the
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x1 x2 x3 x4

0 < A < 0.6

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

Fig. 1: An abstract description of models of T satisfying R

local ordering relations between the membership degrees of all relevant concepts, at

every node and its parents. As seen in the example above, it is possible to provide an

abstract description of the models of interest through a preorder over all subconcepts

and membership degrees explicitly appearing in the input TBox and set of restrictions.

Figure 1 provides an abstract representation of all models of T that satisfy the restriction

R . In the figure, A↑ represents the membership degree of the parent node to A. As it can

be seen, although the models of this TBox satisfying the restriction can be arbitrarily

complex, they can all be represented using a very simple recurrent structure. In general,

the existence of a model satisfying a set of restrictions can be characterised through

Hintikka trees.

Consider the set U := VT ,R ∪ sub(T ,R )∪ sub↑(T ,R )∪{λ}, where VT ,R repre-

sents the set of all constants appearing in the input extended with 0,1, sub(T ,R ) is

the set of all subconcepts from T ,R , and λ is an arbitrary new symbol. A Hintikka

order is a total preorder . over U that preserves the standard ordering of real numbers

over VT ,R and is consistent with the semantics of the propositional constructors. For

example, if X ,C⊓D ∈ U and X .C⊓D, then it must also hold that X .C and X . D.

All other cases can be treated similarly. Intuitively, a Hintikka ordering represents the

relation between the membership degrees at a specific element of the domain of an in-

terpretation. To ensure that it is a model, this ordering must also be compatible with the

GCIs in the TBox; that is, for every 〈C ⊑ D ≥ q〉 ∈ T , either C . D or q . D.

Existential and value restrictions are verified producing a sequence of successors

that witness them. For each existential restriction E = ∃r.C in the input, every node

in the Hintikka tree has a distinguished successor φ(E). The Hintikka ordering associ-

ated with this node is required to satisfy (∃r.C)↑ ≡ min(λ,C), thus serving as a witness

for the concept at the parent node. Moreover, for all other successors associated to a

concept quantified over the same role r, the ordering must satisfy min(λ,C). (∃r.C)↑.

These conditions ensure that the semantics of existential restrictions are satisfied. Sim-

ilar conditions guarantee the satisfaction of value restrictions ∀r.C.

A Hintikka tree for T ,R is an infinite tree of constant arity where every node is

labelled with a Hintikka ordering compatible with the TBox T , the successors satisfy

the transition conditions, and the root node satisfies the restrictions in R . It can be

shown that R is consistent w.r.t. T if and only if there is a Hintikka tree for T ,R .

Notice moreover that there are only finitely many partial orderings over the set U, and

hence also finitely many Hintikka orderings. In fact, the number of Hintikka orderings

is bounded exponentially by the size of the input.

To decide the existence of a Hintikka tree, we construct a simple looping automaton

on (unlabeled) infinite trees. The set of Hintikka orderings defines the states of the au-

tomaton; the transition relation is determined by the transition conditions for quantified
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concepts; and the initial states are those that satisfy the input restrictions. Essentially,

the successful runs of this automaton correspond to the Hintikka trees sought. Thus, the

automaton has a successful run iff a Hintikka tree for T ,R exists iff R is consistent

w.r.t. T . For further details see [4].

This automata-based decision procedure not only provides a tight complexity bound

for reasoning in the fuzzy DL G-ALC . It also opens the door to the application of other

automata-based techniques, originally developed for classical DLs (e.g. [1, 2]), to this

and other fuzzy DLs based on the Gödel t-norm.
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One of general schemes of approximate reasoning can be expressed in the following

form:

given a set of IF-THEN rules: IF X = Ai THEN Y = Bi,

and the fact X is A, (1)

infer a conclusion Y is B,

on the basis of the meta-inference rule

the closer the input A is to Ai, the closer the output B is to Bi. (2)

If A,B,Ai,Bi, i= 1, . . . ,n, are fuzzy predicates/sets then scheme (1) is widely known

as the Generalized Modus Ponens [3, 9]. If in addition, it is assumed that in the case

A = Ai, the conclusion is equal to Bi, then scheme (1) characterizes the problem of

fuzzy interpolation. The latter was intensively investigated in e.g., [5, 1, 4, 6–8].

It is important to stress that two different closeness relations, say closeX on F (X)
(set of fuzzy subsets of X) and closeY on F (Y ), are involved into interpretation of (2).

This meta-rule can be schematically expressed as

closeX (A,A j)≤ closeY (B,B j), j = 1, . . . ,n. (3)

Assuming that scheme (1) is interpolating, i.e. valid for facts Ai and conclusions

Bi, the meta-rule (3) should be valid for all pairs (Ai,Bi), i = 1, . . . ,n. This means that

relations closeX and closeY should be chosen in such a way that

closeX (Ai,A j)≤ closeY (Bi,B j), i, j = 1, . . . ,n. (4)

Summarizing, we can formulate the Problem of interpolative approximate reason-

ing with fuzzy sets as follows:

given fuzzy sets A,A1, . . . ,An on X and B1, . . . ,Bn on Y and two closeness re-

lations: closeX on F (X) and closeY on F (Y ) such that (4) is fulfilled, find a

fuzzy set B on Y such that (3) is fulfilled.
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In fuzzy literature, a closeness between fuzzy sets is used to be specified with the

help of a similarity, where the latter is any binary fuzzy relation that fulfills three ax-

ioms: reflexivity, symmetry and transitivity. If this is accepted and moreover, A,A1, . . . ,An

and B,B1, . . . ,Bn are expressions of a formal language, and B is a result of an approxi-

mate entailment, then the above formulated problem is known [4, 6] as fuzzy similarity-

based reasoning.

In the proposed contribution, we will be looking at the above formulated Problem

from the functional point of view. Our purpose is to show that if

– a complete residuated lattice L = 〈L,∨,∧,∗,→,0,1〉 is chosen as an underlying

algebraic structure,

– similarities S on X and Q on Y are ∗-transitive,

– closeness relation closeX on LX (similarly, closeY on LY ) is chosen (see [1, 8]) in

accordance with

closeX(E,D) = (E . S ◦D), or

closeX(E,D) = min(E . S ◦D,D . S ◦E),

then a natural interpretation of (3) leads to the conclusion that a solution B of the Prob-

lem of interpolative approximate reasoning is the value of a certain fuzzy function whose

argument is A. This fuzzy function is represented by the following fuzzy relation

R̂ =
n∧

i=1

(S ◦Ai → Q◦Bi), (5)

and B is computed on the basis of (3) as follows:

B =
∧

x∈X

(S ◦A)→ R̂. (6)

We will be discussing whether fuzzy relation R̂ in (5) is a representation of a fuzzy

function in the sense of [2]1. We will show that the latter can be represented by any of

two specially constructed fuzzy relations. Each representation uses an ordinary (core)

function that is extensional with respect to given similarities. On the other side, if we are

given two similarities S on X and Q on Y and a correspondence, say g, between some

classes, then we can easily construct two fuzzy relations that represent two fuzzy func-

tions in the sense of [2], provided that a corresponding to g core function is extensional

with respect to S and Q.

Therefore, from the semantical point of view, fuzzy similarity based reasoning, that

is expressed by scheme (1) and rule (2), produces conclusions that are values of a cer-

tain fuzzy function. In the contribution, the issue of computational complexity will be

discussed as well.

1 It is a fuzzy relation on X ×Y that is double extensional with respect to chosen similarities on

X and Y and that fulfills a generalized property of uniqueness
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Abstract. Following an idea due to the first author and P. Sarkoci, we propose the

representation of finite negative, commutative totally ordered monoids by means

of level sets. For the Archimedean case, we show that the elementary extensions

of such totally ordered monoids can be constructed in a quite efficient way.

1 Introduction

Triangular norms, or t-norms for short, are binary operations on the real unit interval

used in fuzzy logic for the interpretation of the conjunction. Just as should reasonably

be expected about a conjunction, these operations are defined to be associative, com-

mutative, neutral w.r.t. 1, and in each argument isotone.

Quite a number of algebraic approaches exists to examine t-norms. Under the as-

sumption of left continuity, a t-norm gives alternatively rise to an MTL-algebra, to a

quantale, or simply to a totally ordered monoid. We choose in this contribution the

presumably simplest framework, the last mentioned one.

Definition 1. A structure (L;≤,⊙,1) is called a totally ordered monoid, or tomonoid

for short, if (i) (L;≤) is a totally ordered set, (ii) (L;⊙,1) is a monoid, and (iii) ≤
is compatible with ⊙, that is, for any a,b,c ∈ L, a ≤ b implies a ⊙ c ≤ b⊙ c and

c⊙ a ≤ c⊙ b.

L is called commutative if ⊙ is commutative. L is called negative if 1 is the top

element.

The real unit interval endowed with the natural order, a t-norm, and the constant 1

is a negative, commutative tomonoid. The general aim that we follow in our work is to

classify this type of algebras. A classification is difficult for the general case, and the

restriction imposed in this contribution – finiteness – hardly makes the situation easier.

The crucial property that we have to cope with is associativity. This property is

fundamental in mathematics and numerous approach exist to shed light on it. Let us

enumerate some ideas that are in our context applicable.
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– We can lead back the associativity of a commutative monoid to the probably most

common situation where this property arises: the addition of natural numbers. In

fact, any commutative monoid, provided it is finitely generated, is a quotient of an

N
n, where n is the number of generators. How to deal in this framework with a

compatible total order is, e.g., the topic of [5].

– There is another situation in which associativity arises naturally: the composition

of functions. In fact, we may represent any monoid as a monoid of mappings under

composition. This is the regular representation; see, e.g., [1]. To include a com-

patible total order poses no difficulty; we are then led to a monoid of pairwise

commuting, order-preserving mappings [4]. Here, the fact that any two mappings

commute corresponds to both associativity and commutativity.

– A third and totally different approach, which is inspired by the field of web geome-

try, is due to the first author and Peter Sarkoci [3]. Here, a tomonoid is represented

by its contour lines. Associativity corresponds to the so-called Reidemeister condi-

tion.

Each of these three approaches has its benefits and drawbacks. However, when it

comes to the systematic construction of finite tomonoids, it seems to us that the last

approach, to which we devote this contribution, is particularly useful.

2 Tomonoids as partitions

Let us first review how tomonoids are represented by means of their contour lines. The

idea is developed in [3] for the case of t-norms, but can be adapted to the present setting

without any difficulty.

Definition 2. Let (L;≤,⊙,1) be a negative, commutative tomonoid. For two pairs (a,b),
(c,d) ∈ L×L, we define

(a,b)∼ (c,d) if a⊙ b = c⊙ d,

and we say in this case that (a,b) and (c,d) are level equivalent. We call ∼ itself the

level equivalence associated with L.

In this way, each negative, commutative tomonoid L induces a partition of L× L,

which is clearly characteristic for L. The following theorem is easily proved.

Theorem 1. Let ∼ be the level equivalence associated with the negative, commutative

tomonoid (L;≤,⊙,1). Then the following properties hold:

(L1) For any a,b ∈ L, there is exactly one c ∈ L such that (a,b)∼ (c,1).
(L2) For any a,b,c,d,e ∈ L, (a,b)∼ (d,1) and (b,c)∼ (1,e) implies (d,c)∼ (a,e).
(L3) For any a,b ∈ L, we have (b,a)∼ (a,b).
(L4) For any a,a′,b,c,c′ ∈ L, a≤ a′, (a,b)∼ (c,1), and (a′,b)∼ (c′,1) implies c≤ c′.

Conversely, let (L;≤,1) a totally ordered set with the top element 1. Let ∼ be an equiv-

alence relation on L × L such that (L1)–(L4) hold. Then ∼ is the level equivalence

associated with the negative, commutative tomonoid (L;≤,⊙,1), where, for a,b ∈ L,

a⊙ b = the unique c such that (a,b)∼ (c,1).
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The crucial property – the one corresponding to associativity – is evidently (L2). In

web geometry it is referred to as the Reidemeister condition and has a quite appealing

geometric interpretation. Namely, given two rectangles hitting the upper respectively

right edge of the square L× L, the equivalence of all corresponding vertices but the

lower left ones implies the equivalence of the lower left vertices as well. See Fig. 1.

It is furthermore clear that (L3) corresponds to the commutativity of the monoid and

(L4) ensures the compatibility of the total order.

Fig. 1. The condition (L2). The two axes depict a negative, commutative tomonoid L, and the level

equivalence of two elements of L×L is indicated by a connecting line. By (L2), the equivalences

of the pairs connected by a solid line implies the equivalence of the two points connected by a

broken line.

3 Rees quotients and elementary extensions

It seems appropriate to say that a negative, commutative tomonoid has many quotients.

In fact, we can associate a quotient with each of its elements. Let (L;≤,⊙,1) be a

negative, commutative tomonoid and let q ∈ L. For a,b ∈ L, let a ≈q b if a = b or

a,b ≤ q. Then ≈q is a tomonoid congruence; see, e.g., [2]. The quotient, which we

denote by L/q, is called the Rees quotient of L w.r.t. q. In the sequel, we will identify

L/q with the subset [q,1] = {a ∈ L : q ≥ a} of L. Clearly, the Rees quotient is again

negative and commutative.

Given a finite negative, commutative tomonoid L, let e be the atom of L, that is,

the smallest element distinct from the bottom element of L. Let us then call L/e the

elementary quotient of L and, taking the opposite viewpoint, let us call L an elementary

extension of L/e. Assuming that L consists of the elements 1 = a0 > a1 > .. . > an, we

have a chain

L/a0, . . . , L/an;
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here, L/a0 is the trivial (one-element) tomonoid; for each i = 0, ...,n− 1, L/ai+1 is an

elementary extension of L/ai; and L/an = L.

The construction of finite negative, commutative tomonoids can thus be understood

as the problem of determining all the elementary extensions of a given such tomonoid.

We shall demonstrate how the latter problem can be solved in the present framework.

In the level-set picture, the formation of Rees quotients is straightforward.

Proposition 1. Let (L;≤,⊙,1) be a negative, commutative tomomoid, and let ∼ be its

level equivalence. Let q ∈ L and let ∼q be the equivalence relation on [q,1]× [q,1] de-

fined as follows: (i) for each a > q, the ∼q-class of (a,1) coincides with its ∼-class; (ii)

the ∼q-class of (q,1) comprises all remaining elements. Then ∼q is the level equiva-

lence associated with the Rees quotient of L w.r.t. q.

In other words, a Rees quotient arises from the partition on L×L by “cutting off” all

columns and rows indexed by elements < q, and pairs belonging to equivalence classes

of elements (a,1) such that a < q are joined to the class of (q,1). In the special case that

q is the atom of a finite negative, commutative tomonoid, we “cut off” just one column

and row, and we join pairs belonging to the class of the former bottom element to the

class of the new bottom element q.

We now turn to the reverse procedure: How can we determine the elementary ex-

tensions of a negative, commutative tomonoid?

We restrict to the Archimedean case. Recall that a negative, commutative tomonoid

L is called Archimedean if, for any a < b < 1, there is an n ≥ 1 such that bn ≤ a, where

bn is the n-fold product of b with itself.

Theorem 2. Let (L;≤,⊙,1) be a negative, commutative tomonoid, and let ∼ be its

level equivalence. Assume that L is finite and Archimedean. Let the totally ordered set

(L̄,≤) arise from the totally ordered set (L;≤) by replacing the bottom element 0 of L

by two new elements 0̄ and e and by requiring 0̄ < e < a for any a ∈ L\{0}. We shall

construct an equivalence relation ∼̄ on L̄× L̄ in two steps.

As our first step, let ∼̄0 be the smallest equivalence relation on L̄ × L̄ such that

conditions (L2)–(L4) are fulfilled as well as the following ones:

(E1) Let Q be the subset of L̄× L̄ consisting of those pairs (a,b) such that a,b ∈ L\{0}
and (a,b)∼ ( f ,1) for some f ∈ L\{0}. For any (a,b),(c,d) ∈ Q, let then (a,b) ∼̄0

(c,d) if (a,b)∼ (c,d).

(E2) For all a ∈ L̄, let (0,a) ∼̄0 (0,1). For all a ∈ L̄\{1}, let (e,a) ∼̄0 (0,1).

(E3) For any (a,b) /∈ Q, let (a,b) ∼̄0 (0,1) if there are c > a and d < 1 such that

(c,b) /∈ Q and (c,d)∼ (a,1).

As our second step, let ∼̄ be an equivalence relation extending ∼̄0 and fulfilling (L1)

and (L4). Then ∼̄ is a level equivalence on L̄ and the corresponding tomonoid is an

Archimedean elementary extension of L.

Moreover, all Archimedean elementary extensions of L arise in this way.
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4 Conclusion

The structure of finite MTL-algebras, or with reference to the present framework: of

finite negative, commutative tomonoids, has been a research issue for quite a time.

In the present contribution, we have explored ways of constructing such algebras in

an efficient way. Namely, starting from the one-element tomonoid, we construct those

Archimedean tomonoids whose Rees quotient w.r.t. its atom is the given one. The tool

that we have employed is the level-set representation of tomonoids, as proposed in [3].

A further aim will be the formulation of the procedure for any, not only Archimedean

tomonoids. Furthermore, for the sake of a classification of finite negative, commutative

tomonoids it would certainly be desirable to understand the construction process as a

whole rather than only step by step.
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1 Introduction

Incidence of various cancer diseases increased more than 6 times since 1900. Our civi-

lization will face to several dilemmas induced by cancer. Cancer is not a simple disease

(especially for a Western genom), e.g. [11] surprisingly pointed out that stochasticity of

the mutation process is incapable of explaining the spread of times at diagnosis of acute

myeloid leukemia in this case; it is necessary to additionally assume a wide spread of

proliferative parameters among disease cases. This finding was unexpected but gener-

ally consistent with the wide heterogeneity of characteristics of human cancers.

During the talk we will present several examples from clinical practice where need

for proper algebraical, topological ([24, 3]) probabilistic ([23, 12]) and fuzzy modelling

is needed. The problem with probabilistic modelling are not known forms of anoma-

lous diffusion and in several ways a convenient approximation to the problem could be

introducing of bornology, and lattice valued bornological systems, see [21].

Another unsolved problem, touching clinical practice in a drastic way, is unknown

relationship between 2dimensional fractal dimension of 2d slices and 3d fractal dimen-

sion of original tissue, from which these slices are taken. Such problem is formulated

e.g. in [13]. Here bornological approach could be of, at least proxy, usage. These issues

can bring a potential to better understand relationship between blasthoma and tumor,

e.g. in Wilms cancer of small children. Moreover, the developed theory of bornologi-

cal systems could find its applications in cancer research. To be more precise, tumors

in humans can be conveniently modeled by fractals, the “dimension” of which is non-

integer [3]. One of the ways how to get these non-integers in metric spaces is to employ

Hausdorff dimension [7], the value of which could tell the level of carcinogenicity of

a given tumor. In practical applications, however, one often encounters a bornological

space instead of a metric one, which motivated J. Almeida and L. Barreira [2] to in-

troduce the concept of Hausdorff dimension for convex bornological spaces. Having a

place for both geometric and algebraic information, bornological systems though seem

to be more suitable in many cases.

In 1989, S. Vickers [25] has introduced the notion of topological system as a com-

mon setting for both topological spaces, and their underlying algebraic structures –

locales. Later on, J. T. Denniston, A. Melton, and S. E. Rodabaugh [4] provided the
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concept of lattice-valued topological system as an extension of lattice-valued topolog-

ical spaces. Lattice-valued analogues of the main system-related procedures, i.e., spa-

tialization (a space from a system) and localification (a locale from a system) were

soon considered in [16, 17, 19], thereby providing a complete fuzzification of the orig-

inal setting of S. Vickers. At present, the theory of lattice-valued topological systems

has already found numerous applications in many fields of mathematics (see, e.g., [5, 6,

8, 18, 20]).

In 2011, M. Abel and A. Šostak [1] came out with a fuzzification of the well-known

concept of bornological space of functional analysis [9], and considered the category

of such structures. The main meta-mathematical difference between topological and

bornological spaces is that the former provide a convenient tool to study “continuity”,

and the latter do the same job for “boundedness”. As a result, while both notions are

defined through a collection of subsets of a set, the respective axiomatics are different.

Motivated by the theory of topological systems, this talk introduces the notion

of bornological system and shows its possible fuzzification. In particular, we provide

bornological (and, partially, lattice-valued) analogues of system spatialization and lo-

calification procedures. The latter procedure though needs the concept of point-free

bornology. While the theory of point-free topology is well-developed [10], point-free

bornology (up to our knowledge) is still non-existent. To fill the gap, we introduce an

approach to point-free bornology, e.g., describe the algebraic structure, which underlies

bornologies, and show its respective homomorphism. Similar to topological systems,

we aim at providing a common setting for both point-set and point-free bornologies.

2 Lattice-valued bornological spaces and systems

This section provides a brief extract from the already obtained theory (cf. [21]).

2.1 Lattice-valued bornological spaces

We recall first the definition of L-bornological space of M. Abel and A. Šostak [1].

Definition 1. Let L be a complete lattice. An L-bornological space is a pair (X ,B),
where X is a set, and B (an L-bornology on X) is a subfamily of LX (the elements of

which are called bounded L-sets), which satisfies the following axioms:

1. for every x ∈ X,
∨

B∈B B(x) =⊤L (the top element of L);

2. given B ∈ B and D ∈ LX such that D 6 B, it follows that D ∈ B;

3. if S ⊆ B is finite, then
∨

S ∈ B .

Given L-bornological spaces (X1,B1) and (X2,B2), a map X1
f
−→X2 is called L-bounded

provided that f→L (B1) ∈ B2 for every B1 ∈ B1. L-Born stands for the construct of L-

bornological spaces and L-bounded maps.

In the next step, we introduce a variable-basis approach (in the sense of S. E. Rod-

abaugh [14]) over the category Sup of
∨

-semilattices and
∨

-preserving maps. Given a

subcategory L of Sup, there exists a functor Set×L
(−)→

−−−→ Sup, which is defined by

((X1,L1)
( f ,ψ)
−−−→ (X2,L2))

→ = L
X1
1

( f ,ψ)→

−−−−→ L
X2
2 , (( f ,ψ)→(B))(x2) =

∨
f (x1)=x2

ψ◦B(x1).
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Definition 2. Given a subcategory L of Sup, L-Born is the category, concrete over

the product category Set×L, whose objects are triples (X ,L,B), where L is an L-

object, and (X ,B) is an L-bornological space; and whose morphisms (X1,L1,B1)
( f ,ψ)
−−−→

(X2,L2,B2) (called L-bounded maps) consist of a map X1
f
−→ X2 and an L-morphism

L1
ψ
−→ L2 such that ( f ,ψ)→(B) ∈ B2 for every B ∈ B1.

2.2 Lattice-valued bornological systems

We begin again with the fixed-basis approach over a complete lattice L.

Definition 3. A be-lattice is a poset C, which has finite
∨

and non-empty
∧

. Given be-

lattices C1 and C2, a be-lattice homomorphism is a map C1
ϕ
−→C2, which preserves finite

∨
. be-Lat stands for the construct of be-lattices and be-lattice homomorphisms.

The category be-Lat provides a possible approach to point-free bornology. Addi-

tional conditions on be-lattices (off this abstract) make them almost dual to frames [10].

Definition 4. Given a complete lattice L, an L-bornological system is a triple (X ,C, |=),

where X is a set, C is a be-lattice, and X ×C
|=
−→ L is a map (L-satisfaction relation on

(X ,C)), which fulfills the following axioms:

1. for every x ∈ X,
∨

c∈C |=(x,c) =⊤L;

2. if c ∈ C and D ∈ LX are such that D 6 |=(−,c), then there exists c′ ∈ C such that

D = |=(−,c′);

3. for every x ∈ X, the map C
|=(x,−)
−−−−→ L preserves finite

∨
.

Given L-bornological systems (X1,C1, |=1) and (X2,C2, |=2), an L-bornological system

morphism (also called L-bounded map) (X1,C1, |=1)
( f ,ϕ)
−−−→ (X2,C2, |=2) consists of a

map X1
f
−→ X2 and a be-lattice homomorphism C1

ϕ
−→ C2 such that for every x2 ∈ X2

and every c1 ∈C1, |=2(x2,ϕ(c1)) =
∨

f (x1)=x2
|=1(x1,c1). L-BornSys is the category of

L-bornological systems and L-bounded maps, concrete over the category Set×be-Lat.

In the next step, we introduce a variable-basis approach over the category Sup.

Definition 5. Given a subcategory L of Sup, L-BornSys is the category, concrete

over the product category Set × L × be-Lat, whose objects are tuples (X ,L,C, |=),
where L is an L-object, and (X ,C, |=) is an L-bornological system; and whose mor-

phisms (X1,L1,C1, |=1)
( f ,ψ,ϕ)
−−−−→ (X2,L2,C2, |=2) (called L-bounded maps) consist of a

map X1
f
−→ X2, an L-morphism L1

ψ
−→ L2, and a be-lattice homomorphism C1

ϕ
−→C2 such

that for every x2 ∈ X2 and every c1 ∈C1, |=2(x2,ϕ(c1)) =
∨

f (x1)=x2
ψ◦ |=1(x1,c1).

We notice an important difference between continuous (topology) and bounded

(bornology) maps, namely, while the former depend on the backward powerset oper-

ator, the latter employ the forward one [15]. This difference is reflected in the under-

lying algebraic structure of point-free topology (the category Loc of locales, which is,

moreover, a dual category) and bornology (the category be-Lat of be-lattices).
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2.3 Spaces versus systems

In this subsection, we provide a spatialization procedure for bornological systems.

Theorem 1.

1. There exists a full embedding L-Born
�

� E
// L-BornSys, which is defined by

E((X1,L1,B1)
( f ,ψ)
−−−→ (X2,L2,B2)) = (X1,L1,B1, |=1)

( f ,ψ,( f ,ψ)
→
)

−−−−−−−−→ (X2,L2,B2, |=2),

where |=i(x,B) = B(x), and ( f ,ψ)
→

is the restriction of ( f ,ψ)→ to B1 and B2.

2. There exists a functor L-BornSys
Spat
−−→ L-Born, which is defined by the formula

Spat((X1,L1,C1, |=1)
( f ,ψ,ϕ)
−−−−→ (X2,L2,C2, |=2)) = (X1,L1,{Ext1(c) |c ∈ C1})

( f ,ψ)
−−−→

(X2,L2,{Ext2(c) |c ∈C2}), where (Exti(c))(x) = |=i(x,c).
3. The functor Spat is a left-adjoint-left-inverse to the embedding E.

Corollary 1. The category L-Born is isomorphic to a full reflective subcategory of the

category L-BornSys.

The above embedding is not concrete, since the concrete categories L-Born and

L-BornSys have different ground categories (Set×L and Set×L×be-Lat, respectively).
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1.—Following Fréchet [1], a metric space (X ,d) is a set X together with a real-

valued function d on X ×X such that the following axioms hold:

[M0] d(x,y)≥ 0,

[M1] d(x,y)+ d(y,z)≥ d(x,z),

[M2] d(x,x) = 0,

[M3] if d(x,y) = 0 = d(y,x) then x = y,

[M4] d(x,y) = d(y,x),

[M5] d(x,y) 6=+∞.

The categorical content of this definition, as first observed by Lawvere [3], is that (i)

the extended real interval [0,+∞] underlies a quantale ([0,+∞]op,+,0), so that (ii) a

“generalised metric space” (i.e. a structure as above, minus the axioms M3-M4-M5) is

exactly a category enriched in that quantale.

For clarity’s sake, let us expand a bit on this.

2.—Generally speaking, a quantale Q is an ordered set (Q,≤) admitting all suprema,

combined with a monoid structure (Q, ·,1), in such a way that multiplication distributes

on both sides over suprema. Lawvere’s quantale of extended positive real numbers is

formed by the opposite of the natural order on [0,+∞], together with addition as “mul-

tiplication”.

In general, a category C enriched in a quantale Q consists of a set C0 together with

a Q-valued binary predicate C(−,−) on C0 ×C0, in such a way that the axioms

[C1] C(x,y) ·C(y,z)≤ C(x,z),

[C2] 1 ≤ C(x,x)
hold. Such a Q-category C is said to be separated (or skeletal) if moreover

[C3] if 1 ≤ C(x,y) and 1 ≤ C(y,x) then x = y

holds, and symmetric if we have

[C4] C(x,y) =C(y,x).
Finiteness of C(x,y) can be formulated for general Q-enriched categories too, insofar

as the quantale itself sports a notion of finiteness: if Fin(Q) is a suitable subset of Q of

“finite elements”, then one can require

[C5] C(x,y) ∈ Fin(Q).
Reckoning with the particularities of Lawvere’s quantale ([0,+∞]op,+,0), it is now

easy to check the correspondence between the axioms for metric spaces and those for

enriched categories.
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3.—More recently, see e.g. [4], the notion of a partial metric space (X , p) has been

proposed to mean a set X together with a real-valued function p on X ×X satisfying the

following axioms:

[P0] p(x,y)≥ 0,

[P1] p(x,y)+ p(y,z)− p(y,y)≥ p(x,z),
[P2] p(x,y)≥ p(x,x),
[P3] if p(x,y) = p(x,x) = p(y,y) = p(y,x) then x = y,

[P4] p(x,y) = p(y,x),
[P5] p(x,y) 6=+∞.

The categorical content of this definition was discovered by Höhle and Kubiak [2],

who showed that (i) there is a particular quantaloid of positive real numbers, such that

(ii) categories enriched in that quantaloid correspond to (“generalised”) partial metric

spaces. We realised in [5] that (iii) Höhle and Kubiak’s quantaloid of real numbers is

actually a universal construction on Lawvere’s quantale of real numbers.

Let us give some detail.

4.—A quantaloid Q is a category in which all hom-sets are complete lattices and

such that composition distributes on both sides over arbitrary suprema. (In other words,

a quantaloid Q is precisely a category enriched in the category of complete lattices and

supremum-preserving functions.) As per usual, we shall write Q0 for the collection of

objects of Q , and Q1 for the collection of morphisms. Note how a quantaloid with one

object is the same thing as a quantale!

The definition of a category C enriched in a quantaloid Q now goes as follows: it

consists of a set C0 together with a Q0-valued unary predicate t on C0 and a Q1-valued

binary precidate C(−,−) on C0 ×C0, such that the following conditions hold:

[C̃0] C(x,y) : ty → tx,

[C̃1] C(x,y)◦C(y,z)≤ C(x,z),
[C̃2] 1tx ≤ C(x,x).

Such a Q-category C is said to be separated (or skeletal) if moreover

[C̃3] if tx = ty and 1tx ≤ C(x,y) and 1tx ≤ C(y,x) then x = y,

and symmetric if we have

[C̃4] C(x,y) =C(y,x).
As before, if the quantaloid Q itself comes with a multiplicative subset Fin(Q1) of

distinguished “finite morphisms”, then it makes sense to say that C is locally finite if

[C̃5] C(x,y) ∈ Fin(Q ).

5.—It often happens in practice that quantaloids arise from quantales by one or

another universal construction. We shall describe one such case, which will turn out to

be crucial to describe the categorical content of partial metric spaces.

Fixing two morphisms f : A → B and g : C → D in a quantaloid Q , we say that a

third morphism d : A → D in Q is a diagonal from f to g if any (and thus both) of the

following equivalent conditions holds:

[D1] there exist x : A →C and y : B → D in Q such that y◦ f = d = g ◦ x,

[D2] g ◦ (g ց d) = d = (d ւ f )◦ f .

In the second condition, we made use of the right adjoints to pre- and post-composition
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with d (technically speaking, “lifting” and “extension” through d) in the quantaloid Q .

It now so happens that a new quantaloid D(Q ) of diagonals in Q can be built:

- the composition of two diagonals d : f → g and e : g → h is defined to be

e◦g d := (e ւ g)◦ g ◦ (gց d);

- the identity on f is f : f → f itself;

- and the supremum of a set of diagonals (di : f → g)i∈I is computed “as in Q ”.

6.—Combining the above, we may now consider categories enriched in D([0,+∞]),
the quantaloid of diagonals in Lawvere’s quantale ([0,+∞]op,+,0). Carefully checking

all conditions, and weeding out redundancies (due to the particularity of Lawvere’s

quantale!), it turns out that partial metric spaces are exactly the separated, symmetric,

locally finite D([0,+∞])-enriched categories.

7.—The aim of my talk is not only to explain in detail all the above, but also (i)

to indicate some advantages of this categorical approach to partial metrics, more pre-

cisely when considering “completions”; (ii) to give other examples of the phenomena

described here, notably in sheaf theory; and (iii) to comment on the construction of

the quantaloid of diagonals, showing in particular the relation with divisible quantales,

BL-algebras and t-norms.
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1 Introduction and overview

Propositional modal logic is often advertised as being a way to talk about relational

structures and conversely. One can indeed consider two types of problems depending

on what one wants to focus is attention on.

On the one hand, if one is interested in the deductive aspects of the modal language,

then one can study relational semantics in order to build completeness results. On the

other hand, if one is interested in the descriptive power of the modal language, then one

can try to characterize classes of relational structures that are modally definable.

We are interested in languages L that are modal extensions of the language of

ŁUKASIEWICZ logic (it means that connectives ¬ and → are intended to be interpreted

in a ŁUKASIEWICZ way). Several authors have considered the deductive aspects of such

languages ([1–4]). Among the crisp structures, it turned out that there are two classes

of relational structures that are relevant to interpret these languages. The first one is the

class of L-frames and the second one is the class of Ln-valued L-frames. The latter are

KRIPKE frames in which the set of allowed truth values is specified in each world of

the frame. These two classes of structures give rise to two different notions of KRIPKE

completeness ([4]).

In this talk, we study the descriptive power of such languages L with regards to these

two types of relational structures. More precisely, we give many-valued generalizations

of the celebrated GOLDBLATT – THOMASON characterization of modally definable

classes of KRIPKE frames that are closed under ultrapowers ([5]).

Hence, our two main results are the following. They involve new notions that are

introduced in the remainder of the paper.

Theorem 1. Assume that C is a class of Łn-valued L-frames that contains ultrapowers

of its elements. Then C is definable if and only if the following two conditions are

satisfied.

1. The class C contains Łn-valued generated subframes, disjoint unions and Łn-valued

bounded morphic images of its members.

2. For any Łn-valued L-frame F, if Ce(F) ∈ C then F ∈ C .

Theorem 2. Assume that C is a class of L-frames that contains ultrapowers of its ele-

ments. Then C is Łn-definable if and only if the following two conditions are satisfied.
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1. The class C contains generated subframes, disjoint union and bounded morphic

images of its members.

2. For any L-frame F, if Ce(F) ∈ C then F ∈ C .

2 Language and notations

Let L = {¬,→,0}∪ {∇i | i ∈ I} be a language, where ¬ is unary, → is binary, 0 is

constant and ∇i is ni-ary for any i∈ I. The set FormL of formulas is defined by induction

from a countably infinite set of propositional variables Prop using the grammar

φ ::= p ∈ Prop | 0 | ¬φ | φ → φ | ∇i(φ, . . . ,φ).

Elements of {∇i | i ∈ I} are called a modalities (our modalities are universal ones). We

sometimes write φ(p1, . . . , pk) to stress that φ is a formula whose propositional variables

are among p1, . . . , pk.

We use bold letters to denote tuples (arity is given by the context). Hence, we denote

by φ,ψ, . . . tuples of formulas and by φi the ith component of φ. If R ⊆ W n, we write

u ∈ R for (u1, . . . ,un) ∈ R and w ∈ Ru for (u,w1, . . . ,wn−1) ∈ R.

We use standard abbreviations: φ⊕ψ stands for ¬φ → ψ, φ⊙ψ stands for ¬(¬φ⊕
¬ψ), φ∨ψ stands for (ψ⊙¬φ)⊕φ, φ∧ψ stands for (ψ⊕¬φ)⊙φ, if k is an nonnegative

integer then φk stands for φ⊙·· ·⊙φ (with k factors φ).

We use n to denote a positive integer and Łn to denote the sub-MV-algebra {0, 1
n
, . . . ,

n−1
n
,1} of the standard MV-algebra [0,1].

3 L-frames and Łn-valued L-frames

Definition 1 (L-frame, Łn-model). An L-frame, is a tuple (W,(Ri)i∈I) where W is a

nonempty set and Ri is an ni + 1-ary relation for any i ∈ I. Elements of the set W are

called worlds. We denote by F R L the class of L-frames.

An Łn-model is a couple M = (F,Val) where F = (W,(Ri)i∈I) is an L-frame and

Val : W ×Prop→ Łn. We say that M = (F,Val) is based on F.

In an Łn-model M , the valuation map Val is extended inductively to FormL us-

ing ŁUKASIEWICZ interpretation of the connectors ¬ and → in [0,1] and the rules

Val(u,∇i(φ)) =
∧
{
∨

1≤k≤ni
Val(wk,φk) | w ∈ Ru} for any i ∈ I.

Definition 2 (True, Łn-valid). If M = (F,Val) is an Ln-model and if φ ∈ FormL , we

note M |=n φ if Val(u,φ) = 1 for any world u of F. We say that φ is true in M .

If Φ is a set of L-formulas that are true in any Łn-model based on a frame F, we

write F |=n Φ and say that Φ is Ln-valid in F. We write F |=n φ instead of F |=n {φ}.

Definition 3 (Łn-definable). A class C of L-frames is Łn-definable if there is a Φ ⊆
FormL such that C = {F ∈ F R L | F |=n Φ}. In that case, we write C = Modn(Φ).
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We denote by PFormn
L the fragment of FormL defined by the grammar

φ ::= pn | 0 | ¬φ |φ → φ | ∇i(φ, . . . ,φ)

where p ∈ Prop and i ∈ I.

Let trn be the map trn : FormL → PFormn
L : φ(p1, . . . , pk) 7→ φ(pn

1, . . . , pn
k).

Lemma 1. Let C be a class of L-frames and Φ ⊆ FormL . The following conditions are

equivalent.

1. C = Mod1(Φ).
2. There is an n > 0 such that C = Modn(trn(Φ)).
3. For any n > 0, C = Modn(trn(Φ)).

Moreover Modn(Φ)⊆ Mod1(Φ) for any n > 0.

Next example illustrates that Modn(Φ) may differ from Mod1(Φ).

Example 1. Let L� be the modal language with a single unary modality � and n > 1.

Then Mod1(�(p∨¬p)) = F R L�
while Modn(�(p∨¬p)) = {(W,R) ∈ F R L�

| R =
∅}.

For any positive integer n, we denote by div(n) the set of its positive divisors.

Definition 4 (Łn-valued L-frame). An Łn-valued L-frame is a tuple (W,{rm | m ∈
div(n)},(Ri)i∈I) where

1. (X ,(Ri)i∈I) is an L-frame,

2. rm ⊆W for any m ∈ div(n),
3. rn =W and rm ∩ rq = rgcd(m,q) for any m,q ∈ div(n),
4. Riu ⊆ r

ni
m for any i ∈ I, any m ∈ div(n) and any u ∈ rm.

We denote by F♯ the underlying L-frame of the Łn-valued L-frame F and by F R n
L

the class of the Łn-valued L-frames.

The trivial Łn-valued L-frame Fn
b associated to an L-frame F is obtained by enrich-

ing F with {rm | m ∈ div(n)} where rm =∅ if m 6= n and rn =W.

As explained in the next definition, the structure given by the sets rm (where m ∈
div(n)) is used to weaken the validity relation.

Definition 5 (Validity in Łn-valued L-frames). An Łn-model M = (F′,Val) is based

on the Łn-valued L-frameF=(W,{rm |m∈ div(n)},(Ri)i∈I) ifF′ =F♯ and Val(u,Prop)⊆
Łm for any m ∈ div(n) and any u ∈ rm.

If Φ is a set of L-formulas that are true in any Łn-model based on a Łn-valued

L-frame F, we write F |= Φ and say that Φ is valid in F. We write F |= φ instead of

F |= {φ}.

Definition 6 (Definability). A class C of Łn-valued L-frames is definable if there is a

Φ ⊆ FormL such that C = {F ∈ F R n
L | F |= Φ}. In that case, we write C = Mod(Φ).

Example 2. One can check that Mod(�(p∨¬p)) = {F ∈ F R n
L�

| ∀uRu ⊆ r1}. More-

over {F ∈ F R n
L�

| ∀uu 6∈ rm} is not definable if m is a strict divisor of n.
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4 Łn-valued L-frame constructions

L-frame constructions used in the statement of Theorem 2 are classical in modal logic

(see [6] for example). We define the Łn-valued L-frame constructions needed to under-

stand statement of Theorem 1.

Definition 7 (Łn-valued bounded morphism). A map f : F → F′ between two Łn-

valued L-frame F = (W,{rm | m ∈ div(n)},(Ri)i∈I) and F′ = (W ′,{r′m | m ∈ div(n)},
(R′

i)i∈I) is an Łn-valued bounded morphism if f is a bounded morphism between F♯ and

F′
♯ and if f (rm)⊆ r′m for any m ∈ div(n).

Definition 8 (Łn-valued generated subframe). An L-substructure F′ of an Łn-valued

L-frame F is called an Łn-valued generated subframe of F if the inclusion map ι : F′ →
F is an Łn-valued bounded morphism.

If u is a world of an Łn-valued L-frame F, we denote by su the integer gcd{m ∈
div(n) | u ∈ rm}.

Definition 9 (Canonical extension). Let F= (W,{rm | m ∈ div(n)},(Ri)i∈I) be an Łn-

valued L-frame. We denote by F× the L-algebra whose universe is ∏u∈W Łsu with op-

erations 0, ¬ and → defined pointwise and ∇i defined by

∇i(α)(u) =
∧

w∈Riu

∨

1≤k≤ni

αk(wk),

for any i ∈ I.

The canonical extension of F, in notation Ce(F) is the structure (W e,{re
m | m ∈

div(n)},(Re
i )i∈I) defined by:

– W e = M V (F×,Łn) is the set of MV-homomorphisms from F× to Łn,

– u ∈ re
m if u(F×)⊆ Łm,

– (u,w) ∈ Re
i if

∨
1≤k≤ni

wk(αk) = 1 for any α ∈ F
ni
× such that u(∇iα) = 1.

If F is an L-frame, the canonical extension of F, in notation Ce(F), is the L-frame

(Ce(F1
b))♯.

References

1. Ostermann, P.: Many-valued modal propositional calculi. Z. Math. Logik Grundlag. Math.

34(4) (1988) 343–354

2. Bou, F., Esteva, F., Godo, L., Rodríguez, R.O.: On the minimum many-valued modal logic

over a finite residuated lattice. J. Logic Comput. 21(5) (2011) 739–790

3. Hansoul, G., Teheux, B.: Completeness results for many-valued Łukasiewicz modal systems

and relational semantics. arXiv preprint math/0612542 (2006)

4. Hansoul, G., Teheux, B.: Extending Łukasiewicz Logics with a Modality: Algebraic Ap-

proach to Relational Semantics. Studia Logica 101(3) (2013) 505–545

5. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic. In: Algebra

and logic. Springer, Berlin (1975) 163–173.

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Volume 53 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge (2001)

126



A product modal logic

Amanda Vidal, Francesc Esteva, and Lluı́s Godo

Artificial Intelligence Research Institute (IIIA)

Spanish National Research Council (CSIC), Bellaterra, Spain

{amanda,esteva,godo}@iiia.csic.es

Fuzzy modal logics are a family of logics that are still under research for their under-

standing. Several papers have been published on this issue, treating different problems

about the fuzzy modal logics (see for instance [CR10], [CR11], [BEGR11], [HT06],

[HT13], or [CMRR13]). However, the study of the product modal logics, which we

understand as logics that arise from Kripke structures whose relation and universes are

evaluated over the product standard algebra, has remained undone. We present here

some results to partially fill that gap for Kripke semantics with crisp accessibility re-

lations, together with a characterization of a strongly complete infinitary product logic

with truth-constants. We consider that the characterization and understanding of the

product modal logics could open the possibility of studying the more general case of

BL modal logics.

1 Propositional strong completeness

Propositional Product logic is finite strong complete but not strong complete with re-

spect to the standard product chain over the real unit interval as proved in [Háj98]. In

[Mon06], Montagna defined a logical system, an axiomatic extension of the BL logic

with storage operator ∗ and an infinitary rule

(RM)
χ∨ (ϕ → ψk), for all k

χ∨ (ϕ → ψ∗)
,

that is proved to be strong complete (for infinite theories) with respect to the standard

BL chains over the real unit interval. In particular, the expansion of Product Logic with

the infinitary rule and Monteiro-Baaz Delta operator is complete with respect to the

standard Product algebra over the real unit interval with Delta.

On the other hand, in [SCE+06], the addition of rational truth constants to prod-

uct logic was studied, and it was proven that the extension of product logic with the

∆ axioms from before and natural axiomatization for the constants is finitely strong

standard complete with respect to the canonical standard product algebra (where the

rational constants are interpreted by its name, in [0,1)]Q).

We let Π∗ be the logic defined by the following axioms and rules:

– Axioms of Π (product propositional logic) (see for instance [Háj98])

– Axioms referring to rational constants over product logic [SCE+06]
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– Axioms of the ∆ operator ([Háj98]) plus

∆c ↔ δ(c), for each c ∈ [0,1]Q
with δ(1) = 1 and δ(x) = 0 for x < 1.

– Rules of modus ponens and necessitation for ∆: from ϕ derive ∆ϕ
– The infinitary rules

(R1)
c → ϕ, for all c ∈ (0,1)Q

ϕ
(R2)

ϕ → c, for all c ∈ (0,1)Q
¬ϕ

Considering that these two last rules imply the archimedeanicity of the algebras

associated to a logic closed by them, if we follow the usual precourse of extending a

theory to another one complete and we let it be closed under R1 and R2, we obtain

that its Lindembaum sentence algebra is an archimedean product chain (with canonical

constants). Following some ideas from [Mon06] and the results about product algebras

available at [CT00], we can equally prove the strong completeness of Π∗ with respect

to the canonical standard product algebra,

Γ ⊢Π∗ ϕ iff Γ |=[0,1]Π
ϕ.

It is interesting that this logic has a natural behaviour, in the sense that the Deduction

Theorem (with ∆) is still valid, i.e. Γ∪{α} ⊢Π∗ ϕ iff Γ ⊢Π∗ ∆α → ϕ.

2 A modal product logic

Our aim is to define a modal logic over the standard product algebra with canonical ra-

tional truth-constants and the ∆ operator, by introducing the two usual modalities � and

♦, and with Kripke semantics defined by structures with crisp accessibility relations.

Definition 1. A Crisp Product Kripke model (PK-model) is a structure M = 〈W,R,e〉
where:

– W a non-empty set of objects (worlds);

– R ⊆W ×W (a crisp accessibility relation);

– e : W ×V → [0,1] a truth-evalution of propositional variables V in each world

[0,1]Π.

The evaluation e is extended to all modal formula in Fm� (with constants) by defining

inductively at each world w, the evaluation of propositional connectives by their cor-

responding operation in the algebra (over the evaluated terms), and the evaluation of

modal formulas as follows:

e(w,�ϕ) := inf{e(v,ϕ) : Rwv = 1}; e(w,♦ϕ) := sup{e(v,ϕ) : Rwv = 1}

We can consider different notions of truth, depending on the locality. We say ϕ is true

in M at w, and write M |=w ϕ iff e(w,ϕ) = 1. ϕ is valid in M (M |= ϕ) iff M |=w ϕ for

any w ∈W , and finally, ϕ is PK-valid iff M |= ϕ for any PK-model M.

Then, at a semantic level we will study the local (product crisp) modal logic PKl ,

defined by letting for all sets Γ∪{ϕ} of modal formulas without canonical constants

Γ |=PKl
ϕ iff for every CPK-model M and for any world w∈W , if M |=w Γ then M |=w ϕ.

To provide an axiomatization for PKl , we will consider the following logic KΠ:
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– Axioms and rules from Π∗.

– (K) : �(ϕ → ψ)→ (�ϕ →�ψ);
(A�1) : (c →�ϕ)↔�(c → ϕ);
(A�2) : ∆�ϕ ↔�∆ϕ;

(A♦1) : �(ϕ → c)↔ (♦ϕ → c);
(A♦2) : ♦∆ϕ → ∆♦ϕ;

(NR�) :
ϕ
�ϕ , applied only over theorems

The notion of proof in KΠ, denoted ⊢KΠ
is defined as follows: for any set of formulas

Γ∪{ϕ}, Γ ⊢KΠ
ϕ iff there is a (possibly infinite) proof from Γ to ϕ using axioms and

rules from KΠ.

In the logic KΠ, the Deduction Theorem keeps holding because the new modal rule

only affects theorems, but having an infinitary logic, to proceed towards a completeness

theorem it is necessary to prove that if Γ ⊢KΠ
ϕ holds, then �Γ ⊢KΠ

�ϕ holds as well,

where �Γ is a shorthand for {�ψ | ψ ∈ Γ}.

Since we only added as modal rule one just affects theorems, we can move from

modal derivations to propositional ones, just adding a new set of premises (modal theo-

rems): Γ ⊢KΠ
ϕ iff Γ∪T hKΠ

⊢Π∗ ϕ where T hKΠ
:= {θ : /0 ⊢KΠ

θ}. This result is crucial

for being able to use a canonical model to prove completeness.

The canonical model can be defined as usual, fixing as universes all the Π∗-eval-

uations into the canonical standard product algebra (of variables and modal formulae)

that satisfy the modal theorems, and defining the relation by Rcvw = 1 if and only if

– v(�θ) = 1 ⇒ w(θ) = 1 for all θ ∈ Fm; and

– v(♦θ) < 1 ⇒ w(θ) < 1 for all θ ∈ Fm;

It can be proven that the extension of the evaluation to modal formulae keeps sat-

isfying the condition e(v,ϕ) = v(ϕ) for every ϕ, i.e., that in particular both v(�ϕ) =
inf{w(ϕ) : Rcvw = 1} and v(♦ϕ) = sup{w(ϕ) : Rcvw = 1}, and so, the model we define

works properly for the completeness proof.

With this, we obtain that KΠ is a modal logic with truth-constants, complete with

respect to the class of crisp Kripke models whose worlds evaluate formulas over the

canonical standard product algebra.
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Abstract. Arrow categories as a suitable categorical and algebraic description

of L-fuzzy relations have been used to specify and describe fuzzy controllers

in an abstract manner. The theory of arrow categories has also been extended to

include higher-order fuzziness. In this paper we want to use this theory in order to

develop an appropriate description of type-2 fuzzy controllers. An overview of the

relational representation of a type-1 fuzzy controller is given before discussing

the extension to a type-2 controller. We discuss how to model type reduction, an

essential component of any type-2 controller. In addition, we provide a number

of examples of general type reducers.

1 Introduction

Allegories and Dedekind categories provide a suitable abstract framework to reason

about binary relations. In addition to the standard model of binary relations, i.e., the

category Rel of sets and binary relations, these categories are also suitable for L-fuzzy

relations. In such a relation every pair of elements is related up to a certain degree

indicated by a membership value from the complete Heyting algebra L . Formally, an

L-fuzzy relation R (or L-relation for short) between a set A and a set B is a function

R : A×B → L . However, the theory of those categories is too weak to express certain

notions important in the case of L-fuzzy relations. For example, the notion of crispness

cannot be expressed in the language of Dedekind categories. A crisp relation is a relation

that assigns either 0 (least element of L) or 1 (greatest element of L) to each pair as a

membership value. In order to overcome this deficiency the theory of arrow and Goguen

categories has been established as an algebraic and categorical framework to reason

about these L-fuzzy relations [9].

The theory of arrow and Goguen categories has been studied intensively [3, 9–12,

14]. This includes investigations into higher-order fuzziness [15, 16], i.e., fuzzy relation

that are based on fuzzy membership values. A fuzzy membership value is a function f :

L →L indicating for every x∈L up to which degree f (x) the value x is the membership

value in question. In addition to the theoretical studies, the theory has been used to

model and specify type-1 and type-2 L-fuzzy controllers [13, 17].

Scalar relations and/or ideal relations can be used to identify the underlying lattice L

of membership values even in the case of abstract arrow or Goguen categories. However,

these categories are uniform - a properties that implies that all relations of the category

are based on the same lattice L . This means that the theory models the fixed-base case.
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Indeed, higher-order fuzziness is modeled via multiple arrow categories. It is based on

an abstract definition of a type-2 arrow category over a ground arrow category.

In this paper we are interested in the variable-base case, i.e., the case where rela-

tions between different objects may use different membership values. Such a theory is

interesting for multiple reasons. First of all, it will provide more inside into the relation-

ship between the fixed- and variable-base case. Second, it can also serve as foundation

for an internal version of higher-order fuzziness rather than an approach involving mul-

tiple categories. Last but not least, this theory may motivate fuzzy controllers that use

different membership values within different components.

In this paper we will introduce the notion of a membership basis L, which mainly

consists of a collection of complete Heyting algebras. We will show that every mem-

bership basis gives rise to a Dedekind category of fuzzy relations using membership

values from the lattices of L. On the other hand, the collection of the lattices of scalar

relations of a Dedekind category forms a membership basis. In addition, we will inves-

tigate membership bases that originate from a single lattice.

2 Mathematical Preliminaries

In this section we want to recall some basic notions from lattice, category and allegory

theory. For further details we refer to [1, 2].

We will write R : A → B to indicate that a morphism R of a category R has source

A and target B. We will use ; to denote composition in a category, which has to be read

from left to right, i.e., R;S means R first, and then S. The collection of all morphisms

R : A → B is denoted by R [A,B]. The identity morphism on A is written as IA.

A distributive lattice L is called a complete Heyting algebra (or frame) iff L is

complete and x⊓
⊔

M =
⊔

y∈M

(x⊓ y) holds for all x ∈ L and M ⊆ L .

We will use the framework of Dedekind categories [7, 8] throughout this paper as

a basic theory of relations. Categories of this type are called locally complete division

allegories in [2].

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R [A,B] is a complete Heyting algebra. Meet,

join, the induced ordering, the least and the greatest element are denoted by ⊓,⊔,⊑
,⊥⊥AB,⊤⊤AB, respectively.

2. There is a monotone operation ` (called converse) mapping a relation Q : A → B

to Q` : B → A such that for all relations Q : A → B and R : B → C the following

holds: (Q;R)` = R`;Q` and (Q`)
`
= Q.

3. For all relations Q : A → B,R : B →C and S : A →C the modular law (Q;R)⊓S ⊑
Q;(R⊓ (Q`;S)) holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B (called

the left residual of S and R) such that for all X : A → B the following holds: X ;R ⊑
S ⇐⇒ X ⊑ S/R.
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As mentioned in the introduction the collection of binary relations between sets as

well as the collection of L-relations between sets form a Dedekind category normally

called L-Rel.

The relational version of a terminal object is a unit. A unit 1 is an object of a

Dedekind category so that I1 = ⊤⊤11 and ⊤⊤A1 is total for all objects A. Notice that a

unit is a terminal object in the subcategory of mappings.

In a Dedekind category one can identify the underlying lattice L of membership

values by the scalar relations on an object.

Definition 2. A relation α : A→A is called a scalar on A iff α⊑ IA and⊤⊤AA;α=α;⊤⊤AA.

The notion of scalars was introduced by Furusawa and Kawahara [5] and is equiva-

lent to the notion of ideals, i.e., relations R : A → B that satisfy ⊤⊤AA;R;⊤⊤BB = R, which

were introduced by Jónsson and Tarski [4]. We denote the complete Heyting algebra of

scalar relations on A by Sc(A).

3 The Category L-Rel

Let L be a collection of complete Heyting algebras with mappings fLM : L → M for

all L and M in L. Then we call L a membership basis iff we have for all L,M and P

from L:

1. fLL is the identity, i.e., fLL (x) = x for all x ∈ L ,

2. fLM is a dense mapping, i.e., if z ⊑ fLM (x) for some x ∈ L , then there is a y ∈ L

with fLM (y) = z,

3. fLM preserves all suprema, i.e., fLM (
⊔

M) =
⊔

x∈M

fLM (x) for all M ⊆ L ,

4. fLM preserves all non-empty infima, i.e., fLM ( M) =
x∈M

fLM (x) for all /0 6=

M ⊆ L ,

5. fLM ; fM L ; fLM = fLM , i.e., fLM ( fM L ( fLM (x))) = fLM (x) for all x ∈ L ,

6. fM P ( fLM (x))⊓ fM P (y) = fLP (x)⊓ fM P (y) for all x ∈ L and y ∈ M .

Notice that 6. from above implies fLM ; fM P ⊑ fLP , i.e., fM P ( fLM (x)) ⊑ fLP (x)
for all x ∈ L . Furthermore, we have the following lemma.

Lemma 1. Suppose L is a membership basis. Then the complete Heyting algebras

fLM (L) ⊆ M and fM L(M )⊆ L are isomorphic (via fM L and fLM ).

Suppose L is a membership basis. Then we define the category L-Rel by

1. The objects of L-Rel are pairs (A,L) where A is a set and L is from L.

2. A relation R from (A,L) to (B,M ) is a function R : A × B → fLM (L), i.e., a

fLM (L)-fuzzy relation.

3. The identity relation I : A×A → L on (A,L) is defined as usual.

4. Composition of two relations Q : (A,L) → (B,M ) and R : (B,M ) → (C,P ) is

defined by

(Q;R)(x,z) =
⊔

y∈B

fM P (Q(x,y))⊓R(y,z).
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We obtain the following theorem.

Theorem 1. L-Rel is a Dedekind category.

A special case of the theorem above is obtained when L is generated by a single

lattice. Any element a ∈ L induces a complete Heyting algebra on its down-set a⇂=
{x ∈ L | x ≤ a}. Furthermore, we define mappings fa⇂b⇂ : a⇂→ b⇂ by fa⇂b⇂(x) = x⊓b.

Lemma 2. Let L be a complete Heyting algebra. Then the down-sets of L together

with the mappings fa⇂b⇂ form a membership basis.

We call the structure above the membership basis induced by L . The next theorem

shows that a lot of membership bases are actually induced by a single lattice.

Theorem 2. Let L be a membership basis. If L is small, i.e., the collection of lattices is

a set, then there is a complete Heyting algebra L so that L is a subset of the membership

basis induced by L .

4 The Membership Basis of Scalar Relations

In this section we want to study the lattices of scalar elements in an arbitrary Dedekind

category.

Theorem 3. Let R be a Dedekind category. Then the collection of all lattices Sc(A)
of scalars on A together with the mappings fSc(A)Sc(B) : Sc(A) → Sc(B) defined by

fSc(A)Sc(B)(α) =⊤⊤BA;α;⊤⊤AB ⊓ IB forms a membership basis.

We call the structure above the membership basis of R .

The final theorem of this paper shows that whether a membership basis is generated

by a single lattice is tightly connected to the existence of a unit.

Theorem 4. If R has a unit, then the membership basis of R is induced by the complete

Heyting algebra Sc(1).
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Inconsistency handling in constrained databases is a primary issue in the context

of consistent query answering, data integration, and data exchange. The standard ap-

proaches to this issue are usually based on the principle of minimal change, aspiring

to achieve consistency via a minimal amount of data modifications (see, e.g., [2, 6, 7]).

A key question in this respect is how to choose among the different possibilities of

restoring the consistency of (‘repairing’) a database.

Earlier approaches to inconsistency management were based on the assumption that

there should be some fixed, pre-determined way of repairing a database. Recently, there

has been a paradigm shift towards user-controlled inconsistency management policies.

Works taking this approach provide a possibility for the user to express some preference

over all possible database repairs, preferring certain repairs to others4 (see [12] for a sur-

vey and further references). While such approaches provide the user with flexibility and

control over inconsistency management, in reality they entail a considerable technical

burden on the user’s shoulders of calibrating, updating and maintaining preferences or

policies. Moreover, in many cases these preferences may be dynamic, changing quickly

on the go (e.g., depending on the user’s geographical location). In the era of ubiqui-

tous computing, users want easy – and sometimes even fully automatic – inconsistency

management solutions with little cognitive load, while still expecting them to be person-

alized to their particular needs. This leads to the idea of introducing context-awareness

into inconsistency management. In recent years there is a dramatic increase in the in-

terest in context-aware systems. Context is usually defined as “any information that can

be used to characterize the situation of an entity, where an entity can be a person, place,

or physical or computational object” (see [1]); context-awareness means thus making

use of this context. We believe that the idea of context-awareness can be very naturally

extended to the context of inconsistency management.

4 Some notable examples are [8–10, 14].
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In this talk we will report on a work in progress, in which we aim at developing a

general theoretical framework for capturing context-aware inconsistency management.

To this end we incorporate notions and techniques from context-aware systems and

database repair by combining the following two ingredients:

– Distance-based semantics ( [3–5]) for restoring the consistency inconsistent databa-

ses according to the principle of minimal change, and

– Context-awareness considerations ( [11, 13]), captured by real-valued relevance de-

grees for incorporating user context and preferences.
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