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Since their inception in 1979, the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects of fuzzy sets by bringing
together researchers in fuzzy sets and established mathematicians whose work
outside the fuzzy setting can provide directions for further research. The philos-
ophy of the seminar has always been to keep it deliberately small and intimate
so that informal critical discussions remain central.

LINZ 2017 will be the 37th seminar carrying on this tradition and is devoted
to the theme “Enriched Category Theory and Related Topics”. The goal of the
seminar is to present and to discuss recent advances in enriched category theory
and its various applications in pure and applied mathematics.

A considerable amount of interesting contributions were submitted for pos-
sible presentation at LINZ 2017 and subsequently reviewed by PC members.
This volume contains the abstracts of the accepted contributions. These regular
contributions are complemented by four invited plenary talks, some of which
are intended to give new ideas and impulses from outside the traditional Linz
Seminar community.
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Applications of fundamental categorical duality theorem
to L-fuzzy sets and separated M-valued sets

Mustafa Demirci

Department of Mathematics
Akdeniz University, Antalya, Turkey
demirci@akdeniz.edu.tr

Abstract. Fundamental Categorical Duality Theorem states the duality between
the full subcategory of an abstract category C with L-spatial objects and the full
subcategory of the category of C-M-L-spaces with L-sober objects, and serves
to prove new and existing dualities under the same framework. We apply the
theorem to L-fuzzy sets and separated M -valued sets, and then obtain two new
dualities.

1 Introduction

A dual equivalence-alias duality-between categories C and D is a well-known issue in
category theory. In case C and D are concrete categories over the category of sets, it
is shown in [14] that every schizophrenic object for C and D induces a dual adjunc-
tion between C and D, and such adjunction restricts to a duality between two special
subcategories of C and D. There are many famous dualities (e.g., Stone duality [2, 12],
Priestley duality [2] and localic duality [12]) between a category of ordered algebraic
structures (e.g., Boolean algebras, distributive lattices and spatial frames) and a category
of structured topological spaces (e.g., Stone spaces, Priestley spaces and sober topolog-
ical spaces). The dualities induced by schizophrenic objects are able to describe these
famous dualities [2, 14]. However, if one takes C to be an abstract category instead of
a category of ordered algebraic structures, and if a suitable category D-viewed as an
abstraction of a category of structured topological spaces-is asked to have the property
of a dual adjunction, or of a duality, with C, then the approach in [14] does not give
an answer to this question. An alternative approach, providing a satisfactory answer to
the question, is proposed in [4]. This approach, for a given category C with set-indexed
products and an essential (E ,M)-factorization structure, formulates the asked category
D to be the category C-M-L-Top of C-M-L-spaces, and establishes a dual adjunction
between C and C-M-L-Top, i.e. an adjoint situation

(η, ε) : LΩM a LPtM : Cop → C-M-L-Top.

The unit η and co-unit ε allow us to define largest subcategories (E ,M)-L-Spat-C
of C and C-M-L-SobTop of C-M-L-Top, to which the functors LΩM and LPtM
can be restricted in order to obtain a duality. The resulting duality between (E ,M)-
L-Spat-C and C-M-L-SobTop is called Fundamental Categorical Duality Theorem
(FCDT). In addition to the applications to Q-preordered sets, augmented posets and

11



quasivarieties [4], FCDT also serves to prove famous dualities (e.g., Stone, Priestley,
Heyting and localic dualities) [5, 6]. Our aim in this study is to apply FCDT to L-fuzzy
sets and separated M -valued sets. The next section briefly explains these applications.

2 Applications to L-fuzzy sets and separated M-valued sets

2.1 Goguen’s category of L-fuzzy sets

Let (L,≤) be a poset. Recall that Goguen [8, 9] defined the category Set(L) of L-fuzzy
sets as the category with objects all pairs (X,α), where X is a set and α : X → L is
a map, and with morphisms f : (X,α) → (Y, β) such that f : X → Y is a function
satisfying α (x) ≤ β (f(x)).

Definition 1. A triple (X, τ, µ) is called an L-primal measure space if X is a set, τ is
a subset of the power set P (X) of X and µ : τ → L is a map.

Various kinds of measure spaces (e.g., the classical measure spaces, probability
spaces [13], plausibility spaces [7] and L-possibility spaces [3]) are special L-primal
measure spaces.

Proposition 1. L-primal measure spaces form a category PMEAS(L) whose morphisms
f : (X, τX , µX)→ (Y, τY , µY ) are functions f : X → Y satisfying

– f←(G) ∈ τX for all G ∈ τY ,
– µY (G) ≤ µX (f←(G)) for all G ∈ τY ,

where f←(G) is the preimage of G under f .

We say that an L-primal measure space (X, τ, µ) is sober if the map X → P (τ),
x 7→ {G ∈ τ | x ∈ G}, is a bijection.

If the poset (L,≤) has a greatest element, then we will establish, as an application
of FCDT, a duality between Set(L) and the full subcategory of PMEAS(L) consisting
of all sober L-primal measure spaces.

2.2 Höhle’s category of separated M-valued sets

LetM = (L,≤, ∗) be a GL-monoid. A separatedM -valued set is a pair (X,E) consist-
ing of a set X and a separated M -valued equality E on X , i.e., a map E : X ×X → L
provided with the following conditions [10]:

– E(x, y) ≤ E(x, x) ∧ E(y, y),
– E(x, y) = E(y, x),
– E(x, y) ∗ (E(y, y)→ E(y, z)) ≤ E(x, z),
– E(x, x) ∨ E(y, y) ≤ E(x, y) implies x = y, ∀x, y ∈ X .

SM -SET denotes the category of separated M -valued sets [11] whose morphisms
are f : (X,E) → (Y, F ) such that f : X → Y is a function preserving extent of
existence and equality, i.e.,
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– F (f(x), f(x)) ≤ E(x, x),
– E(x, y) ≤ F (f(x), f(y)).

A map µ : X → L is called a strict and extensional L-fuzzy subset of a given
separated M -valued set (X,E) [10] iff µ satisfies

– µ (x) ≤ E(x, x),
– µ (x) ∗ (E(x, x)→ E(x, y)) ≤ µ (y).

The set of all strict and extensionalL-fuzzy subsets of (X,E) is denoted by p (X,E).

Proposition 2. For a setX and c ∈ L, denote the constant mapX → L with value c by
cX . The set R(X,L) =

{
(c, µ) ∈ L× LX | µ ≤ cX

}
carries a separated M -valued

equality ER(X,L) defined by

ER(X,L) ((c1, µ1) , (c2, µ2)) =
∧

x∈X
[(c1 ∗ (µ1 (x)→ µ2 (x))) ∧ (c2 ∗ (µ2 (x)→ µ1 (x)))] .

Proposition 3. Every map f : X → Y determines a map fRL : R(Y,L) → R(X,L)
by

fRL (c, µ) = (c, µ ◦ f) .

Definition 2. Let M -SP stand for a category with objects all pairs (X,U) where X is
a set and U is a subset of R(X,L). Morphisms of the category are all f : (X,UX) →
(Y,UY ) provided that f : X → Y is a function satisfying fRL (c, µ) ∈ UX for all
(c, µ) ∈ UY .

To each M -SP-object (X,U), we associate a map ρ(X,U) : X → p (U , EU ), given
by

ρ(X,U) (x) (c, µ) = µ (x) ,

where EU is the restriction of ER(X,L) to U . Sobriety of such (X,U) is defined to be
the bijectivity of ρ(X,U). As the second application of FCDT, we will show a duality
between SM -SET and the full subcategory of M -SP with sober objects.

References
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Enriched topology and asymmetry

Jeffrey T. Denniston1, Austin Melton2, and Stephen E. Rodabaugh3

1 Department of Mathematical Sciences
Kent State University, Kent, USA

jdennist@kent.edu
2 Departments of Computer Science and Mathematical Sciences

Kent State University, Kent, USA
amelton@kent.edu

3 College of Science, Technology, Engineering, Mathematics (STEM)
Youngstown State University, Youngstown, USA

serodabaugh@ysu.edu

Mathematically modeling the question of how to satisfactorily compare, in a many-
valued setting, both bitstrings and the predicates which they might satisfy—a surpris-
ingly intricate question when the conjunction of predicates is non-commutative—involves
notions of enriched categories and enriched functors. Particularly relevant is the notion
of a set enriched by a po-groupoid, which turns out to be a many-valued preordered
set, along with enriched functors extended as to be variable-basis. This positions us to
model the above question by constructing topological systems enriched by many-valued
preorders, systems whose associated extent spaces motivate the notion of topologi-
cal spaces enriched by many-valued preorders and spaces which are non-commutative
when the underlying lattice-theoretic base has a non-commutative tensor product. Of
special interest are crisp and many-valued specialization preorders generated by many-
valued topological spaces, orders which have the following consequences for many-
valued spaces: they characterize the well-established L-T0 separation axiom, define
the L-T1(1) separation axiom—logically equivalent under appropriate lattice-theoretic
conditions to the L-T1 axiom of T. Kubiak, and define an apparently new L-T1(2) sep-
aration axiom. Along with the consequences of these ideas for many-valued spectra,
these orders show that asymmetry has a home in many-valued topology comparable in
at least some respects to its home in traditional topology.
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Non-commutativity and many-valuedness:
the topological representation of the spectrum

of C∗-algebras

Patrik Eklund1, Javier Gutiérrez García2, Ulrich Höhle3, and Jari Kortelainen4

1 Department of Computing Science
University Umeå, Sweden
peklund@cs.umu.se

2 Departemento de Matemáticas
Universidad del País Vasco UPV/EHU, Bilbao, Spain

javier.gutierrezgarcia@ehu.eus
3 Fakultät für Mathematik und Naturwissenschaften

Bergische Universität, Wuppertal, Germany
uhoehle@uni-wuppertal.de

4 Department of Electrical Engineering and Information Technology
Mikkeli University of Applied Sciences, Finland

jari.kortelainen@mamk.fi

In the past there have been made various attempts to define the spectrum of a
non-commutative C∗-algebra. But all these definitions have certain drawbacks — e.g.
C.J. Mulvey’s definition does not coincide with the standard definition of the spectrum
in the commutative case (cf. [4]). The aim of our talk is to give an alternative defini-
tion of the spectrum which does not suffer under this deficit — i.e. coincides with the
standard situation in the commutative setting. For this purpose we recall some prop-
erties of balanced and bisymmetric quantales, introduce a definition of the spectrum
of a C∗-algebra working for the general case and develop subsequently its topological
representation.

1 The category of balanced and bisymmetric quantales

A quantale (Q, ∗) is balanced if the universal upper bound is idempotent. A quantale is
bisymmetric if the following property holds for all α, β, γ ∈ Q:

(α ∗ β) ∗ (γ ∗ δ) = (α ∗ γ) ∗ (β ∗ δ).

A quantale is semi-unital if the relations α ≤ > ∗ α and α ≤ α ∗ > hold for all
α ∈ Q. Every semi-unital quantale is balanced, and the semi-unitalization of every
quantale exists. A quantale is semi-integral if the relation α ∗ > ∗ β ≤ α ∗ β holds for
all α, β ∈ Q.

Example 1. Every idempotent and left-sided (right-sided) quantale is semi-unital, bisym-
metric and semi-integral.
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Let Q and P be quantales. A strong homomorphism is a join preserving map Q
h−→

P satisfying the following conditions for all α, β ∈ Q:

h(α ∗ β) = h(α) ∗ h(β) and h(>) = >.

Balanced and bisymmetric quantales with strong homomorphisms form a category de-
noted by BSQuant.

Theorem 1. ([1]) BSQuant is complete and cocomplete.

In some important special cases the coproduct in BSQuant can be expressed by the
tensor product of quantales.

Theorem 2. ([1]) Let (X, ∗) and (Y, ∗) be bisymmetric quantales. If (X, ∗) is strictly
left-sided and (Y, ∗) is strictly right-sided, then the tensor product (X ⊗ Y, ?) with the

embeddings X
jX−−→ X ⊗ Y and Y

jY−−→ X ⊗ Y as coprojections (i.e. jX(x) = x⊗>
and jY (y) = >⊗ y) is the coproduct of (X, ∗) and (Y, ∗) in BSQuant.

Remark 1. (Permanence properties of the tensor product) The tensor product preserves
the structure of balanced quantales and semi-unital quantales. Moreover, in the case of
balanced quantales the tensor product preserves also bisymmetry and semi-integrality.

Theorem 3. ([1]) Let (X, ∗) be a strictly left-sided quantale and (Y, ∗) be a strictly

right-sided quantale. Further, letX
ϑX

ϑY
Y be a pair of join preserving anti-homomor-

phisms provided with the property ϑY ◦ϑX = 1X and ϑX ◦ϑY = 1Y . Then there exists
a unique isotone involution ι on the tensor product (X ⊗ Y, ?) such that (X ⊗ Y, ?, ι)
is an involutive quantale and the following diagram is commutative:

X ⊗ Y X ⊗ Y X ⊗ Y

X Y X

//ι //ι

OO

jX

//
ϑX

OO

jY

//
ϑY

OO

jX (I)

In the setting of Theorem 2 and Theorem 3 we consider now a further balanced and
bisymmetric quantale (Z, ∗) and strong homomorphisms Z

qX−−→ X and Z
qY−−→ Y

satisfying the following properties

ϑX ◦ qX = qY and ϑY ◦ qY = qX . (1)

Then the pushout of qX and qY in the sense of BSQuant is the coequalizer

Z
jX◦qX
jY ◦qY X ⊗ Y π−→ S.

Moreover, there exists a unique involution ′ on (S, ∗) such that (S, ∗, ′) is an involutive
quantale and π is an involutive homomorphism.
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2 Spectrum of a C∗-algebra

Let A be a C∗-algebra with unit. Then we apply Section 1 in the following setting:

– L(A) is the quantale of all closed left ideals of A.
– R(A) is the quantale of all closed right ideals of A.
– I(A) is the quantale of all closed two-sided ideals of A.

There exists a pair of anti-homomorphism L(A)X
ϑL(A)

ϑR(A)
L(A) given by the for-

mation of adjoint ideals. Finally, let I(A)
qL(A)

↪−−−→ L(A) and I(A)
qR(A)

↪−−−−→ R(A) be
the respective embeddings. Since closed two-sided ideals are self-adjoint, the strong
homomorphisms qL(A), qR(A), ϑL(A), ϑR(A) satisfy (1).

The spectrum S(A) is defined as the pushout of I(A)
qL(A)

↪−−−→ L(A) and I(A)
qR(A)

↪−−−−→
R(A) in BSQuant. Hence the following diagram is commutative:

S(A)

L(A) L(A)⊗R(A) R(A)

I(A)

::

ϕL

//
jL(A)

OO

π

oo
jR(A)

dd

ϕR

R2

dd

qL
, �

::

qR

In particular S(A) is a semi-unital, semi-integral, bisymmetric and involutive quantale
and π is a surjective and involutive homomorphism.

Since the commutative case is characterized by I(A) = L(A) = R(A), the previous
definition of the spectrum of a C∗-algebra coincides with the standard definition in the
commutative case.

3 Topological representation of C∗-algebras

We begin with the definition of prime elements for semi-unital quantales which goes
back to W. Krull in the case of integral quantales 1928 (cf. [3]).

An element p ∈ Q is called prime if and only if p 6= > and the following implication
holds for all α, β ∈ Q:

α ∗ β ≤ p =⇒ α ∗ > ≤ p or > ∗ β ≤ p.

Theorem 4. ([1]) (a) Let Q be a semi-integral quantale. Then every maximal left-sided
(right-sided) element is prime.
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(b) Let (X, ∗) be a strictly left-sided quantale and (Y, ∗) be a strictly right-sided quan-
tale. An element p ∈ X⊗Y is a prime element if and only if there exists prime elements
x in (X, ∗) and y in (Y, ∗) such that the following relation holds:

p = (x⊗>) ∨ (>⊗ y).

Now let C = {⊥, a,>} be the chain with three elements. Then C` is the non-
commutative, idempotent and left-sided 3-chain, and Cr is the non-commutative, idem-
potent and right-sided 3-chain. Obviously, the identity 1C determines a pair of anti-
homomorphisms between C` and Cr. Then we view the tensor product C` ⊗ Cr as the
quantisation of 2 = {0, 1} which can be visualized by the following Hasse diagram:

>

α

λ %

β

⊥

where





α = (a⊗>) ∨ (>⊗ a),

λ = a⊗>,

% = >⊗ a,

β = a⊗ a.

Theorem 5. ([2]) Let (X, ∗) be a semi-unital quantale. Then every prime element p ∈
X can be identified with a strong homomorphism X

h−→ C` ⊗ Cr and vice versa. In
particular, this relationship is determined by the following property:

p =
∨{x ∈ X | h(x) ≤ α}.

TOPOLOGICAL REPRESENTATION OF S(A)

Let σ(S(A)) be the set of all prime elements of S(A). Every element f ∈ S(A) induces

a map σ(S(A))
Af−−→ C` ⊗ Cr by:

Af (p) = hp(f), p ∈ S(A)

where hp is the strong homomorphism corresponding to the prime element p. Then
τA = {Af | f ∈ S(A)} is a non-commutative six-valued topology on σ(S(A)) which
coincides with the Gelfand topology in the commutative case. In this sense τA can be
regarded the non-commutative Gelfand topology of A and is obviously isomorphic to
the spatial reflection of S(A).

If A is a simple C∗-algebra — i.e. I(A) = {0, A} ∼= 2, then τA is the six-valued
product topology of the three-valued topology induced by the quantale L(A) of all
closed left ideals with three-valued topology induced by the quantaleR(A) of all closed
right ideals. In this context, if L is a maximal left ideal and R is a maximal right ideal,
then the pair (L,R) represents a typical prime element of the spectrum S(A) = L(A)⊗
R(A) of A.
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Let Sup be the monoidal closed category of complete lattices with join preserving
maps. A unital quantale (Q, ∗, e) is a monoid in Sup. A right Q-module (X,�) is a

complete lattice X with a right action X ⊗Q
�−→ X over (Q, ∗, e). Finally, let [X,X]

be the complete lattice of all join preserving self-maps of X and ([X,X], ◦, 1X) be the
corresponding unital quantale. It is well known that every right action � on X over
Q can be identified with a unital quantale homomorphism Q

h−→ [X,X] such that the
relation x� α = h(α)(x) holds for all x ∈ X and α ∈ Q.

Theorem 1. Let (Q, ∗) be a (not necessary unital) quantale and (Q̂, ?, e) be its unital-
ization. Then Q is always a right-Q̂-module w.r.t. the following right action � defined
by

(α, 1)�β = (α, 1)?(β, 0) = (α∗β)∨β, (α, 0)�β = (α, 0)?(β, 0) = α∗β, α, β ∈ Q.

Example 1. Let C3 = {⊥, a,>} be the three chain provided with the structure of a
non-unital, non-commutative, idempotent, left-sided quantale. In particular, the corre-
sponding multiplication is determined by:

a ∗ > = a, > ∗ a = >, a ∗ a = a.

Further, let Ĉ`
3 be the unitalization of (C3, ∗). Then Ĉ`

3 = C3×{0, 1} can be visualized
by the Hasse diagram and the corresponding multiplication table:

T = (>, 1)

> = (>, 0) a = (a, 1)

a = (a, 0) e = (⊥, 1)

⊥ = (⊥, 0)

? ⊥ a > e a T

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a > a a >
> ⊥ a > > > >
e ⊥ a > e a T

a ⊥ a > a a T

T ⊥ > > T T T
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If we now identify the right action � with the unital quantale homomorphism Ĉ`
3

h−→
[C3, C3], then we obtain h(T) = ϕ1 = h(>), h(a) = 1C3 = h(e), ϕ3 := h(a) and
ϕ4 := h(⊥) where

ϕ1(>) = ϕ1(a) = >, ϕ1(⊥) = ⊥, ϕ3(>) = ϕ(a) = a, ϕ3(⊥) = ⊥, ϕ4 ≡ ⊥.

Then we have four transition maps ϕ4, ϕ3, 1C3
and ϕ1 which constitute the chain C4

of four element w.r.t. the pointwisely defined order — i.e.

ϕ4 ≤ ϕ3 ≤ 1C ≤ ϕ1

and induce the structure of a non-integral, idempotent, non-commutative, unital quan-
tale on C4 where the multiplication is given by the composition of maps.

The aim of the following considerations is to show that the previous example has a
real world application in the context of medical date given by qualifications in ICD and
ICF.

1 An example patient case of functional decline accelerated by a
conglomerate of disorders

John4, 80 years old, needs support from his spouse, 77 years old. They have children,
good family connections, and a supportive social network. John suffers from multiple
diseases and uses multiple drugs. He was a smoker until he suffered from a cardiac
infarct, and was thereafter also diagnosed with diabetes type 2. His basic and instru-
mental activities in his daily life are no longer what they used to be. He has become
slower in walking, taking smaller and shuffling steps. His gait is still symmetrical, but
he has some postural control problems. He has fallen in the garden, and been close too
free falling at home. he is still driving their car, but only locally. His spouse is in a
fairly good condition. She has become more clumsy, but is still fully functional in the
household. Family members also help out. A year later, John’s walking slows down,
and car driving is more difficult. His spouse and family becomes more and more aware
and concerned about his decline. He continues to have smaller fall or near-fall incidents.
Fall and fall injury risk increases. There are now several possibilities to use scopes of
assessment of John’s functional condition. One is ICF5. An ICF profiling can now be
done independently of the scope of multiple diseases, but can also be done as related to
a selected main disease. The medical domain speaks about the distinction between co-
morbidity and multi-morbidity. Yet another year passes, and John’s spouse now brings
him to investigations. There are neurological findings in his basal ganglia which brings
attention to the family of Parkinson diseases. Differential diagnosis in that group is not
easy, in particular if it turns out not to be a typical Parkinson’s disease (ICD6 code G20),

4 This patient case is not real cases, even if it is intended as a very realistic case. Any resemblance
therefore with existing data in patient records is purely accidental.

5 WHO’s International Classification of Functioning, Disability and Health
6 WHO’s International Classification of Diseases, at this point in its ICD-10 version, with ICD-

11 expected by 2018.
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also since anti-Parkinsonian drugs had no effect. John eventually receives a diagnosis
within the group related to other degenerative diseases of basal ganglia (G23). Some
of the disorders in this group progresses faster, and leads to difficulties to manage John
in his own home. He wanders at night, and sedatives make him dizzy during the day.
Unluckily, he falls, because of a TIA (transient ischemic attack, G45.9), with a result-
ing injury, a fracture on his lower forearm (S52.5). Surgery is successful, but his ICF
profiles obviously changes because of the fall, and progrediation given his neurological
condition continues. The way his disorder (ICD) profile affects his functioning (ICF)
profile can now intuitively be viewed as a disorder profile acting upon a functioning
profile a : ICD × ICF → ICF. Clearly, this can be reflected in the ICF classifica-
tions in various ways and given different objectives. One such objective is explained
in [4], where a specific ICF profile for Parkinson’s disease is presented. Cain ICF re-
lated concern comes with involuntary movement functions (ICF code b765), muscle
tone functions (b735) and emotional functions (b152). Similar cases could be described
for seniors having dementia, a pulmonary condition, a heart condition, or other medical
conditions as their main disorder in a conglomerate of diseases.

The specification if the module transition maps can also be done in several ways,
depending on the objectives, so that it reflects and explains the particular situation of
interest. Doing all this obviously invites to generalize the situation e.g. in direction of
neuro-degenerative diseases, and as in connection more broadly with the issue of falls
and fall injury prevention, also in a broader multi-professional care scope. However,
we must underline that there is no canonic quantalization or C∗-algebraization of the
ICD terminological structure, and similarly none for ICD. Terminologies like those for
SNOMED are unstructured and simply relational, which in fact has invited IHTSDO7

to adopt description logic (DL) as the ontology logic for its health ontology. However,
it is not at all clear that this is useful, as pointed out in [5], where a many-valued and
typed generalization of DL was proposed.

2 Medical semantics of Example 1

Qualification in ICD is bivalent, even if disorder may be more or less severe, but
quantification in in ICF follows its generic scale of 5 items, with a sixth for ’unspeci-
ficed’. Similarly ICD’s bivalence could be extended with a third ’unspecificed’ or ’not
(yet) known’ value. In [1] we showed that there are many candidates for represent-
ing ICF’s generic scale as a quantale. An interpretation of ICF’s constructs in rela-
tion to diseases (ICD) suggests viewing ICF’s generic scale as a quantale in form of
ICFd = ICD` ⊗ ICDr (see [1] for detail) reflecting the situation that a valuation of
a multi-morbidity medical condition-condition interaction of ICD codes corresponds to
the way valuation of functioning is done with respect to ICF codes. Similar relations
and structure can be provided as involving several other classifications, like those in-
volving drugs (ATC/CCC), lab data (LOINC) or surgical codes (NOMESCO). A larger
and more systematic treatment of a wider range of aspects concerning relations between

7 International Health Terminology Standards Development Organisation
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nomenclatures, will be provided in a full version of this abstract. In this abstract and in
this section we therefore focus only on qualification as related to disorder, and doing so
for the three-valued structure for qualification of ICD codes.

The meaning of the elements of C = {⊥, a,>} now becomes interesting, and sev-
eral interpretations are possible. For example, using a as the ’unspecified’ or ’not (yet)
known’ value, we could then have the following:

> = not sufficient evidence in support of diagnosis
a = diagnosis suspected
⊥ = diagnosis confirmed and registered

Then, a pairing like (G20, a) would mean that presence of Parkinson’s disease is
suspected, and invoking (G20,⊥) in parallel with (G23, a) means that the Parkinson’s
disease suspicion has been rejected in favour of a suspicion for other degenerative dis-
eases of basal ganglia. Since deterioration in G23 is slower than in some of the G23
specific disorders, the transition from the combination of (G23,>), (G49.5, a) and
(S52.5,>) on the ICD side to a corresponding qualification of b152 on the ICF side,
would show a different ICF qualification for b152 e.g. in the case of (G20, a) and
(S52.5,>), i.e., with Parkinson’s disease only suspected, and TIA not registered as a
cause of the fall.

Question. What is the medical semantic of the transition maps ϕ1, ϕ3, 1C3
,

ϕ4 ≡ ⊥?

This is just a first a preliminary example, and more detail and elaborations will be
included in the extended paper related to this abstract.
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Abstract. We report on our recent paper [3] on tensor products for closure spaces
and posets and their quantales of relations.

1 Introduction

Tensor products have their place in algebra, (point-free) topology, order theory, cate-
gory theory and other mathematical disciplines. In the realm of ordered sets, they are
intimately related to the concept of Galois connections (see e.g. [1, 7]). The aim of this
talk is to show how such tensor products give rise to certain quantales whose mem-
bers are specific relations between complete lattices, partially ordered sets (posets) or
closure spaces.

Before focussing on tensor products, let us recall briefly the fundamental notions
in the theory of Galois connections. Given two posets A and B, let Ant(A,B) de-
note the pointwise ordered set of all antitone, i.e. order-reversing maps from A to B,
and Gal(A,B) the subposet of all Galois maps, i.e. maps from A to B such that the
preimage of any principal filter is a principal ideal [5, 7]. If A and B are complete lat-
tices, Ant(A,B) is a complete lattice, too, and Gal(A,B) is the complete lattice of all
f : A → B satisfying f(

∨
X) =

∧
f [X] for all X⊆A. Galois maps are closely tied to

Galois connections; these are dual adjunctions between posets A and B, that is, pairs
(f, g) of maps f : A→ B and g : B → A such that

x ≤ g(y)⇔ y ≤ f(x) for all x ∈ A and y ∈ B,

or equivalently, pairs of maps f ∈ Ant(A,B) and g ∈ Ant(B,A) with

x ≤ g(f(x)) for all x ∈ A and y ≤ f(g(y)) for all y ∈ B.

Either partner in a Galois connection determines the other by the formula

g(y) =f∗(y) = max {x ∈A : f(x) ≥ y},

and the Galois maps are nothing but the partners of Galois connections. Clearly, (f, g)
is a Galois connection iff (g, f) is one, and consequently, Gal(A,B) ' Gal(B,A).
Both composites of the partners of a Galois connection are closure operations, and their
ranges are dually isomorphic.
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We introduce three kinds of tensor products for posets A and B as follows: A⊗rB
denotes the collection of all right tensors, i.e. down-sets T in A × B such that xT =
{y ∈B : (x, y) ∈ T} is a principal ideal of B for each x ∈A. The system A `⊗B of
left tensors is defined in the opposite manner, and the tensor product A ⊗` rB consists
of all (two-sided, i.e. left and right) tensors; if A and B are complete, it is denoted by
A⊗B; in that case, a down-set in A×B is a right tensor iff {x}×Y ⊆ T implies
(x,

∨
Y ) ∈ T , a left tensor iff X ×{y} ⊆ T implies (

∨
X, y) ∈ T , and a tensor iff

X × Y ⊆ T implies (
∨
X,

∨
Y ) ∈ T (see [7] for alternative characterizations).

A bijective connection between posets of antitone maps and tensor products of
posets is provided by the assignments

f 7→ Tf = {(x, y) ∈ A×B : f(x) ≥ y} and
T 7→ fT with fT : A→ B, x 7→ max xT .

In fact, these maps are mutually inverse isomorphisms betweenA⊗rB andAnt(A,B),
and they induce isomorphisms between A `⊗rB and Gal(A,B).

If some poset B has a least element 0 = 0B , we may build the “truncated” poset
B̆ = B r {0}. Now, given complete lattices A,B,C and f ∈ Ant(A,B), g ∈
Ant(B,C), define g�f : A→ C by

g�f(x) =
∨{z ∈ C : (x, z) ∈ Ef,g},

where Ef,g denotes the tensor generated by the set

Tf,g = {(x, z) ∈ A× C : ∃ y ∈ B̆ : f(x) ≥ y and g(y) ≥ z}.

Proposition 3.1 of [6] shows that the so-defined g�f is in fact a Galois map from
A to C. This gives a way of composing antitone maps and Galois maps or connections,
so that the composed map is again antitone, which almost never would happen with
the usual composition of maps. In certain cases, the alternate composition � appears
somewhat mysterious.

Example 1. If I denotes the real unit interval [ 0, 1 ] with the usual order, the composite
g� f of f, g ∈ Ant(I, I) is always a step function! Explicitly,

Tf,g = {(x, z) : ∃ y > 0 (f(x) ≥ y, g(y) ≥ z)}
= {(x, z) : f(x) > 0, ∃ y > 0 (g(y) ≥ z)},

Ef,g = {(a, c) : a ≤ r =
∨{x : f(x) > 0}, c ≤ s =

∨ {g(y) : y > 0}} ∪ ∅,

where ∅ = ({0}× I)∪ (I×{0}). Therefore, g�f(0) = 1, g�f(a) = s if 0 < a ≤ r,
and g � f(a) = 0 otherwise.
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In particular, the new composition� of any two involutions (that is, antitone bijections)
of I yields the constant function 1.

In [6] it is also shown that�makesGal(B,B) a quantale wheneverB is a frame (lo-
cale). Hence, with any frameB, there is associated not only a quantale of (isotone, i.e.
order preserving) residuated maps [2], but also a quantale of (antitone!) Galois maps.
One of our main goals is to characterize those complete latticesB for whichGal(B,B)
or Ant(B,B), respectively, together with the multiplication � becomes a quantale.
They are precisely the pseudocomplemented lattices. Surprisingly, that quantale has a
unit element only in very special cases, namely, when the closure system is an atomic
Boolean algebra (hence isomorphic to a powerset).

In most cases, it will be technically more comfortable to work with tensor products
than with Gal(A,B) or Ant(A,B).

2 Tensor products of closure spaces and posets

We start by introducing more general kinds of tensor products for closure spaces. The
approach via closure spaces unifies and facilitates the arguments considerably. It allows
to extend the theory of tensor products for complete lattices in diverse directions, in
particular, from complete lattices to arbitrary posets. The usual trick is here to replace
joins with cuts, and then, in a more courageous step, cuts by arbitrary closed sets in
closure spaces.

A tensor between closure spaces A and B is a subset T of A×B such that all
“slices” xT and Ty are closed, and the tensor product A⊗B is the closure system
of all such tensors. Any augmented poset AX = (A,X ) (where A is a poset and X
a collection of subsets of A) may be interpreted as a closure space, by considering
the closure system of all X -ideals, i.e. down-sets I containing the cut closure ∆X
whenever X ∈ X and X ⊆ I . Then, the tensor product AX ⊗BY of two augmented
posets consist of all XY-ideals or XY-tensors, i.e. down-sets T in A×B such that for
all X ∈ X and Y ∈ Y , X ×Y ⊆ T implies ∆X ×∆Y ⊆ T (resp. (

∨
X,

∨
Y ) ∈ T

if the involved joins exist). If A and B are complete lattices then the tensor product
AX⊗B = AX⊗BPB is isomorphic to the complete lattice AntX (A,B) of maps
f : A→ B satisfying f(

∨
X)=

∧
f [X] for all X∈X .

These tensor products have the expected universal property with respect to the ap-
propriate bimorphisms. Under mild restrictions, they satisfy the expected (finite and
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infinite) associative and distributive laws, but the proofs are rather involved. The ap-
propriate ingredient for quantale constructions is here distributivity at the bottom, a
generalization of pseudocomplementedness.

3 Truncated tensor products

A considerable simplification is achieved by passing to truncated tensor products
AX ⊗̆BY , cutting off the least tensor from all tensors. Their elements are down-sets
in the direct product Ă × B̆ (with Ă = A r ∅ and B̆ = B r ∅) such that the con-
ditions in the two coordinates hold for nonempty “rectangles”. One advantage of that
reduction is that the pure tensors a ⊗ b have no longer the rather complicated form
(a, b)∪ (∅×B)∪ (A×∅) but become simply point closures, resp. principal ideals. An-
other, and more important, advantage is that now the quantale constructions are much
easier, since the tensor multiplication corresponding to � is obtained by forming the
(right) tensor closure of the usual relation product, and then the order isomorphism be-
tween A ⊗` rB and Gal(A,B), resp. between A⊗rB and Ant(A,B), also transports
the multiplication.

The main result will be that for any complete lattice B, the truncated tensor product
B ⊗̆B, resp. the isomorphic tensor product B ⊗ B ' Gal(B,B), becomes a quan-
tale iff B is pseudocomplemented, and a unital quantale iff B is an atomic boolean
complete lattice.

4 Semicategories with tensor products as hom-sets

Our constructions also provide a semicategory (missing identity morphisms) of pseudo-
complemented complete lattices together with the (truncated) tensors or antitone maps,
respectively, as morphisms. In that semicategory, the atomic boolean complete lattices
(isomorphic copies of power set lattices) form the greatest subcategory, and the latter is
equivalent to the category of sets and relations as morphisms.

Similar (more general) results are obtained for augmented posets and for closure
spaces instead of complete lattices. Crucial is here the observation that a closure system
is pseudocomplemented iff all polars x⊥ = {y : x ∩ y = ∅} are closed.

By the relevant distributive laws that follow from our results, our semicategories are
even enriched in the monoidal category of complete lattices and supremum preserving
functions. Hence, they are semiquantaloids (as considered by Stubbe [8]).

Notes. In the case of a frame, our quantale constructions via Galois connections or ten-
sor products have important applications to the point-free treatment of uniform struc-
tures [4]. The diverse relation products discussed here fit, of course, into the general
category-theoretical framework of relations and their multiplication (see [4, Section 2]
for details).
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Abstract. In this paper, we recover the concept of >-filters proposed by Höhle
and obtain a concept of >-Q-filters on a Q-category, and a closed relation be-
tween >-Q-filters and Q-filters is established. Further, we present two applica-
tions of >-Q-filters: (1) we demonstrate that a subclass of Q-topologies, namely
strong Q-topologies, can be characterized by crisp systems of its >-Q-neighbor-
hoods firstly; (2) if the underlying quantaloid is B(L), here L is a compelte
Boolean algebra, there exists a kind of crisp systems of >-B(L)-neighborhoods,
which is equivalent to strong B(L)-topologies on a discrete B(L)-categories.

1 Motivation and Preliminaries

The axioms of a crisp system of L-valued neighborhoods appears for the first time in
Höhle’s paper [2], which can characterizeL-probabilistic topologies. Note that so called
a crisp system of L-valued neighborhood is a >-filter satisfying a additional condition.
The closed relationship between >-filters and many valued filters could be found in J.
Gutiáerrez Garcı́a [1] and Höhle [3]. here the later is useful to a nontrivial convergence
theory in many valued topological spaces. Recently, in [4], Höhle studied the categorical
foundations of topology based ordered monad in one hand and at the same time, the
double presheaf monad on the category ofQ-categories is introduced. Further, In order
to capture traditional axioms of topology, the submonad ofQ-filters was established and
obtained a result that his neighborhood systems can be characterized by Q-topologies.

Following Höhle’s works of [2,4], we find it is possible to recover the concept of
>-filters on a Q-category (Cf. Stubbe [8, 9]) in a kind of quantaloid [6] setting and
obtain the the concept of >-Q-filters. Based on >-Q-filters, a crisp system of >-Q-
neighborhoods could be established and using it, a subclass of Q-topology, namely
strong Q-topology, can be characterized by its crisp systems of >-Q-neighborhoods.

At the end of the section, we agree on a quantaloid Q is integral [9] in the sense
that each identity arrow inQ is the biggest endomorphism >X,X of hom-setQ(X,X),
and the smallest endomorphism of hom-set Q(X,X) will be denoted by ⊥X,X . For a
Q-category A, AX denote the set of all objects with the type X ∈ Q0.

2 >-Q-filters.

In this section, we present the axioms of >-Q-filter and a relationship between >-Q-
filters and a kind of Q-filters [4], is showed.
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Definition 1. Let A be aQ-category, and F be a subset of (PA)X for an X ∈ Q0. The
pair (X,F), briefly F, is called a >-Q-filter on A if it satisfies the following axioms:

(QK) For each λ ∈ (PA)X ,
∨
µ∈F PA(µ, λ) = >X,X implies λ ∈ F.

(QM) For two µ,λ in (PA)X , both µ ∈ F and λ ∈ F means µ ∧ λ ∈ F.
(QN) For all µ ∈ F, (⊥X,X ↙

∨
x∈AX

µ(x)) = ⊥X,X .

The set of all >-Q-filters on A is denoted by F>(A).

Example 1. Let A be a Q-category and x ∈ A0. (1) a pair (tx, [x]), given by [x] :=
{λ ∈ (PA)tx | λ(x) = >tx,tx}, is a >-Q-filter in the sense of Definition 1.

(2) Let T be a strong Q-topology (Cf. Zhang [11], Höhle [2], Yue and Fang [10])
on a Q-category A, i.e., T is a subcategory of PA satisfying the following axioms:
(QO0) ⊥X ∈ TX for X ∈ Q0,(QO1) >X ∈ TX for X ∈ Q0, (QO2)

∨
j∈J µj ∈ TX

for any family {µj | j ∈ J} ⊆ TX , (QO3) µ ∧ λ ∈ TX for any µ, λ ∈ TX , (QOs)
α ◦ µ ∈ TX for µ ∈ T0 and α ∈ Q(tµ,X), and (QOss) α ↘ µ ∈ TX for µ ∈ T0 and
α ∈ Q(X, tµ). For an x ∈ A0, a pair (tx,UxT) can be given by

UxT :=
{
µ ∈ (PA)tx |

∨

λ∈Ttx

PA(λ, µ) ◦ λ(x) = >tx,tx
}
.

Then the pair (tx,UxT) is a >-Q-filter on A.

In quantaloid setting, there still exists a closed relation between >-Q-filters and
Q-filters, here F ∈ (P†PA)0 is said to be a Q-filter [4] if it satisfies the following
conditions: (QF0)F(λ) = ⊥tF,X for allX ∈ Q0, where λ(x) =⊥tx,X for all x ∈ AX ,
(QF1) F(>X) = >tF,X for allX ∈ Q0, where>X(x) = >tx,X for all x ∈ A0, (QF2)
F(µ∧ λ) = F(µ)∧F(λ) for any µ, λ ∈ (PA)X , and (QFs) α ◦ F(µ) ≤ F(α ◦ µ) for
all α ∈ Q(tµ,−). The relationship between >-Q-filters and Q-filters is presented in
the theorem below, which precisely say that each one could be constructed by the other
(For one object Q, see U. Höhle [3], J. Gutiáerrez Garcı́a [1]).

Theorem 1. If F is a Q-filter on a Q-category A, then the pair (tF ,FF ) given by is a
>-Q-filter on A. Conversely, if Q is a divisible Girard quantaloid [6, 9, 7], then for a
>-Q-filter (X,F), a Q-filter FF with the type X on A can be constructed as follows:

∀µ ∈ (PA)0, FF(µ) :=
∨

λ∈F
PA(λ, µ).

3 >-Q-neighborhood systems determined by strong Q-topologies.

In this section, by using >-Q-filters, we explore that there exists a kind of >-Q-neigh-
borhood systems induced by a strongQ-topology. Further, every strongQ-topology on
a Q-category could be recovered by its >-Q-neighborhood systems.

Let T be a strong Q-topology on a Q-category A. For an x ∈ A0, by Example 1
(2), a >-Q-filter (tx,UxT) could be obtained, which will be called a >-Q-neighborhood
system at x. In this way, a map UT : A0 → F>(A) is given by UT(x) = (tx,UxT), which
will be called a >-Q-neighborhood system induced by T. In order to recover a strong
Q-topology by its >-Q-neighborhood system, some lemmas below are needed.
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Lemma 1. If µ ∈ UT is a >-Q-neighborhood at x wrt. a strong Q-topology T on a
Q-category A, then µ(x) = >tx,tx. Conversely, for an x ∈ A0, if µ is in Ttx such that
µ(x) = >tx,tx, then µ is a >-Q-neighborhood at x.

Lemma 2. Let T be a strongQ-topology on aQ-category A. For a µ ∈ (PA)0 and an
x ∈ A0, λ ∈ UxT means PA(λ, µ) ≤ ∨

σ∈Ttx
PA(σ, µ) ◦ σ(x).

Lemma 3. If UT is the >-Q-neighborhood system induced by a strong Q-topology on
a Q-category A, then UT satisfies the following condition:

(TU) for each µ ∈ UxT, there exists a λ ∈ UxT such that λ ≤ µ and there is λy ∈ UyT
satisfying λ(y) ≤ PA(λy, µ) for any y ∈ A0.

Although the following lemma is trivial in classical topology, it presents the rights
of the matter in strong Q-topology.

Lemma 4. Let T be a strong Q-topology on a Q-category A and x ∈ A0. For every
σ ∈ T0, there is a σx ∈ Ttx such that σx(x) = >tx,tx, and for each µ ∈ (PA)0,

PA(σ, µ) ◦ σ(x) ≤ PA(σx, µ).

Now, by using Lemmas 1–4, we present the main result in the section, which say
that a strong Q-topology can be recovered by its >-Q-neighborhood system, indeed.

Theorem 2. Let A be aQ-category. Then for every strongQ-topology T on A, µ ∈ T0

if and only if µ(y) ≤ ∨
λ∈Uy

T
PA(λ, µ) for all y ∈ A0. Further, we have T = TUT .

4 >-Q-neighborhood systems.

Let L be a complete Boolean algebra, which is a divisible Girard quantale in the sense
of ∀α, β ∈ L, α/(β\α) = (β ∨ α) = (α/β)\α. A divisible Girard quantaloid B(L)
[5, 9, 4] can be constructed such that

– The objects of B(L) is equal to L;
– The hom-set B(L)(α, β) := {γ ∈ L | γ ≤ α ∧ β} for all objects α, β.

Throughout this section, assume the underlying quantaloid is B(L), here L is a a
complete Boolean algebra and the corresponding B(L)-category A is discrete.

Definition 2. Let U : A0 → F>(A) be a map such that x 7→ (tx,Ux), denoted by
U := {(tx,Ux)}x∈A0

briefly. U is said to be a >-B(L)-neighborhood system if it fulfils
the following axioms:

(TV) For every x ∈ A0, µ ∈ Ux implies µ(x) = >tx,tx.

If, in addition, U fulfils

(TU) For every x ∈ A0, µ ∈ Ux implies there exists a λ ∈ Ux such that λ ≤ µ, and
for every y ∈ A0, there is a λy ∈ Uy with the property of λ(y) ≤ PA(λy, µ),
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then we say the >-B(L)-neighborhood system U is strongly B(L)-topological.

Let U be a >-B(L)-neighborhood system on a B(L)-category A. Define

Theorem 3. Let U be a>-B(L)-neighborhood system on a B(L)-category A. Then TU
is a strong B(L)-topology on A.

In order to confirm if strongly B(L)-topological >-B(L)-neighborhood systems is
equivalent to strong B(L)-topologies, the following lemma is needed.

Lemma 5. If U is a>-B(L)-neighborhood system on a discrete B(L)-category A, then
UxTU ⊆ Ux for any x ∈ A0.

Lemma 6. Let U be a strongly Q-topological >-B(L)-neighborhood system on a dis-
crete B(L)-category A. Then for any x ∈ A0 and µ ∈ Ux, there exists TU-open λµ with
the type of tx such that λµ ≤ µ, here the λµ could be, concretely, constructed by

∀y ∈ A0, λµ(y) :=
∨

λ∈Uy

PA(λ, µ).

By Theorem 3, Lemmas 5, 6, we conclude that

Theorem 4. Let U be a strongly B(L)-topological B(L)-neighborhood system on a
discrete B(L)-category A. Then U = UTU holds.
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1 Introduction

In his monograph [9], Hájek established theoretical basis for a wide family of fuzzy
(thus, many-valued) logics which, since then, has been significantly developed and fur-
ther generalized, giving rise to a discipline that has been named as Mathematical Fuzzy
logic (MFL). Hájek’s approach consists in fixing the real unit interval as standard do-
main to evaluate atomic formulas, while the evaluation of compound sentences only
depends on the chosen operation which provides the semantics for the so called strong
conjunction connective. His general approach to fuzzy logics is grounded on the obser-
vation that, if strong conjunction is interpreted by a continuous t-norm [10], then any
other connective of a logic has a natural standard interpretation.

Among continuous t-norms, the so called Łukasiewicz, Gödel and product t-norms
play a fundamental role. Indeed, Mostert-Shields’ Theorem [10] shows that a t-norm is
continuous if and only if it can be built from the previous three ones by the construction
of ordinal sum. In other words, a t-norm is continuous if and only if it is an ordinal sum
of Łukasiewicz, Gödel and product t-norms. These three operations determine three
different algebraizable propositional logics (bringing the same names as their associ-
ated t-norms), whose equivalent algebraic semantics are the varieties of MV, Gödel and
Product algebras respectively.

Within the setting of MFL, states were first introduced by Mundici [11] as maps av-
eraging the truth-value in Łukasiewicz logic. In his work, states are functions mapping
any MV-algebra A in the real unit interval [0,1], satisfying a normalization condition
and the additivity law. Such functions suitably generalize the classical notion of finitely
additive probability measures on Boolean algebras, besides corresponding to convex
combinations of valuations in Łukasiewicz propositional logic. However, states and
probability measures were previously studied in [5] (see also [6, 13]) on Łukasiewicz
tribes (σ -complete MV-algebras of fuzzy sets) as well as on other t-norm based tribes
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with continuous operations. MV-algebraic states have been deeply studied in recent
years, as they enjoy several important properties and characterizations (see [8] for a
survey).

One of the most important results of MV-algebraic state theory is Kroupa-Panti
theorem [12, §10], a representation theorem showing that every state of an MV-algebra
is the Lebesgue integral with respect to a regular Borel probability measure. Moreover,
the correspondence between states and regular Borel probability measures is one-to-
one.

Many attempts of defining states in different structures have been made (see for
instance [8, §8] for a short survey). In particular, in [2], the authors provide a definition
of state for the Lindenbaum algebra of Gödel logic that results in corresponding to the
integration of the truth value functions induced by Gödel formulas, with respect to Borel
probability measures on the real unit cube [0,1]n. Moreover, such states correspond to
convex combinations of finitely many truth-value assignments.

The aim of this contribution is to introduce and study states for product logic, the
remaining fundamental many-valued logic for which such a notion is still lacking. In
particular, our axiomatization will result in characterizing Lebesgue integrals of the
functions belonging to the free n-generated product algebra, i.e. the Lindenbaum al-
gebra of product logic over n variables, with respect to Borel probability measures on
[0,1]n. In this sense, our states will correctly correspond to finitely additive probability
measures in this context, and they will interestingly represent an axiomatization of the
Lebesgue integral as an operator acting on product logic formulas. Moreover, and quite
surprisingly since in the axiomatization of states the product t-norm operation is only
indirectly involved via a condition concerning double negation, we prove that every
state belongs to the convex closure of product logic valuations.

2 States of free product algebras and their integral representation

Product algebras are BL-algebras satisfying two further equations:

x∧¬x = 0 and ¬¬x→ ((y · x→ z · x)→ (y→ z)) = 1.

They constitute a variety that is the equivalent algebraic semantics for Product logic. In
what follows, FP(n) will denote the free product algebra over n generators. We invite
the interested reader to consult [1] and [7] for more details.

The functional representation theorem for free product algebras (cf. [1, Theorem
3.2.5]), shows that, up to isomorphism, every element of FP(n) is a Product logic func-
tion, i.e. [0,1]-valued function defined on [0,1]n associated to a product logic formula
built over n propositional variables. These functions are for Product logic the equivalent
counterpart of McNaughton functions for Łukasiewicz logic.

Next we introduce the notion of state of FP(n).

Definition 1. A state of FP(n) is a map s : FP(n)→ [0,1] satisfying the following
conditions:

S1. s(1) = 1 and s(0) = 0,
S2. s( f ∧g)+ s( f ∨g) = s( f )+ s(g),
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S3. If f ≤ g, then s( f )≤ s(g),
S4. If f 6= 0, then s( f ) = 0 implies s(¬¬ f ) = 0.

By the previous definition, it follows that states of a free product algebra are lattice
valuations (axioms S1–S3) as introduced by Birkhoff in [4]. However, if we compare
Definition 1 with states of an MV-algebra, it is evident that, while for the case of MV-
algebras the monoidal operation is directly involved in the axiomatization of states, the
unique axiom that we impose and that, indirectly, involves the multiplicative connec-
tives of product logic is S4.

Product logic functions in FP(n) are not continuous, unlike the case of free MV-
algebras, and there are infinitely many, unlike the case for (finitely generated) free Gödel
algebras. However, it is always possible to consider a finite partition of their domain,
which depends on the Boolean skeleton of FP(n), upon which the restriction of each
product function is continuous. By exploiting this fact, one can show the following
integral representation theorem.

Theorem 1 (Integral representation). For a [0,1]-valued map s on FP(n), the follow-
ing are equivalent:

(i) s is a state,
(ii) there is a unique Borel probability measure µ : B([0,1]n)→ [0,1] such that, for

every f ∈FP(n),

s( f ) =
∫

[0,1]n
f dµ.

3 The state space and its extremal points

In the light of the previous Theorem 1, for n being a natural number, let us introduce
the following notation: S (n) stands for the set of all states of FP(n), while M (n)
denotes the set of all regular Borel probability measures on the Borel subsets of [0,1]n.
It is quite obvious that S (n) and M (n) are convex subsets of [0,1]FP(n) and [0,1]2

[0,1]n

respectively, whence, by Krein-Milman Theorem they coincide with the convex hull
of their extremal points. As for M (n) it is known that its extremal elements are Dirac
measures, i.e., for each x ∈ [0,1]n, those δx : 2[0,1]

n → [0,1] such that δx(B) = 1 iff x ∈ B
and δx(C) = 0 otherwise (see for instance [12, Cor. 10.6]).

Let δ : S (n)→M (n) be the map that associates to every state its corresponding
measure via Theorem 1. Thus, it is easy to prove that δ is bijective and affine. A direct
consequence is that the extremal points of S (n), i.e., extremal states are mapped into
extremal points of M (n), i.e., Dirac measures. Now, it is not hard to show that Dirac
measures correspond univocally to the homomorphisms of FP(n) into [0,1], that is to
say, to the valuations of the logic, that hence are exactly the extremal states.

Theorem 2. The following are equivalent for a state s : FP(n)→ [0,1]

1. s is extremal;
2. δ (s) is a Dirac measure;
3. s is a product homomorphism.
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Thus, via Krein-Milman Theorem, we obtain the following:

Corollary 1. For every n ∈ N, the state space S (n) is the convex closure of the set of
product homomorphisms from FP(n) into [0,1].
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Mai Gehrke

Institut de Recherche en Informatique Fondamentale
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The notion of recognition by monoids in the theory of automata and regular lan-
guages has been shown to be a special case of Stone-Jonsson-Tarski duality for Boolean
algebras with additional operations. This realisation makes it possible to consider gener-
alisations of the profinite methods of the theory of automata and regular languages that
apply to classes from complexity theory. As most of the complexity classes of interest
have been shown to be model classes of various first- and higher-order logic fragments,
we want to understand the semantic counterpart of adding a layer of quantifiers.

We concentrate on a family of quantifiers, including the classical existential quanti-
fier as well as modular quantifiers, which are given by the monad determined by a finite
commutative semiring and show that, on recognisers, the action of these quantifiers may
be described using associated codensity monads.

In this talk we will give an introduction to the subjects concerned and outline recent
results obtained in collaboration with Daniela Petrisan and Luca Reggio.
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Let Q = (Q, ∗, e) be a unital quantale. A Q-preordered set is a pair (X, p) where is
X is a set andX×X p−→ Q is a Q-preorder onX — i.e. a map satisfying the following
axioms:

(O1) e ≤ p(x, x) for each x ∈ X ,
(O2) p(x1, x2) ∗ p(x2, x3) ≤ p(x1, x3) for each x1, x2, x3 ∈ X .

Every Q-preorder p on X induces a preorder ≤p by x1 ≤p x2 iff e≤ p(x1, x2). We
call ≤p the intrinsic preorder of p. A Q-preorder p is antisymmetric if its underlying
preorder ≤p is antisymmetric.

A Q-homomorphism between two Q-preordered sets (X, p) and (Y, q) is a map
X

h−→ Y such that p(x1, x2) ≤ q(h(x1), h(x2)) for all x1, x2 ∈ X . Q-preordered
sets and Q-homomorphisms form a category denoted by Preord(Q). Q-preordered
sets (X, p) and (Y, q) are isomorphic in the sense of Preord(Q) if there exists a bijec-
tive X h−→ Y such that both h and h−1 are Q-homomorphisms. Finally, a Q-homo-
morphism (X, p)

h−→ (Y, q) is left adjoint to a Q-homomorphism (Y, q)
k−→ (X, p) if

the relation q(h(x), y) = p(x, k(y)) holds for all x ∈ X and y ∈ Y (see also [3]).

Example 1. On Q there exist two different Q-preorders πQ
1 and πQ

2 determined by the
right- and left-implication respectively —i.e. if α, β ∈ Q, then

πQ
1 (α, β) = α↘ β =

∨{γ ∈ Q | α ∗ γ ≤ β},

and

πQ
2 (α, β) = α↙ β =

∨{γ ∈ Q | γ ∗ β ≤ α}.

Since the intrinsic preorder underlying πQ
1 coincides with the order of Q and the

intrinsic preorder underlying πQ
2 is the dual order of Q, we ask the following

QUESTION (1). How can we define the concept of a dual Q-preorder pop of a
given Q-preorder p on X in such a way that in the special situation given by
the previous example

(
Q,
(
πQ
1

)op)
is isomorphic to (Q, πQ

2 ), and reciprocally,(
Q,
(
πQ
2

)op)
is isomorphic to

(
Q, πQ

1

)
?
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Further, let (X, p) be a Q-preordered set. A map X
f−→ Q is called a contravariant

Q-enriched presheaf on (X, p) if f is left-extensional — i.e. if p(x2, x1) ∗ f(x1) ≤
f(x2) for all x1, x2 ∈ X .

Obviously, f is a contravariant Q-enriched presheaf iff (X, p)
f−→
(
Q, πQ

2

)
is a

Q-homomorphism.

QUESTION (2). How can we define the concept of a dual Q-preorder pop of
a given Q-preorder p on X in such a way that each contravariant Q-enriched

presheaf f can be identified with a Q-homomorphism (X, pop)
f̃−→ (Q, πQ

1 )
and vice versa?

We finish this introduction with special case of commutative unital quantales. In this
setting Q plays the role of a symmetric monoidal closed category and the concept of a
dual Q-enriched category is already given in Kelly’s book 1982 ([3]) which suggests to

introduce the dual Q-preorder X ×X pop−−→ Q as follows:

pop(x1, x2) = p(x2, x1), x1, x2 ∈ X. (D)

Now it is easily seen that both questions have a positive answer. Hence the previous
problems only arise when the underlying quantale is non-commutative.

1 Involutive and unital quantales and right Q-modules

We do not give an ad hoc definition of a dual Q-preorder here, but motivate the approach
by Stubbe’s Theorem that the category of right Q-modules is isomorphic to the category
of join-complete Q-valued lattices ([4]). For this purpose we provide the set P(X, p) of
all contravariant Q-enriched presheaves on (X, p) with the following Q-preorder:

d(f, g) =
∧
x∈X

(
f(x)↘ g(x)

)
, f, g ∈ P(X, p).

The Q-enriched Yoneda embedding (X, p)
η(X,p)−−−−→

(
P(X, p), d

)
is given by:

η(X,p)(x) = x̃, x̃(z) = p(z, x), x, z ∈ X,

and the relation f(x) = d(x̃, f) holds for all x ∈ X and f ∈ P(X, p).
A Q-preordered set (X, p) is said to be join-complete if there exists a Q-homo-

morphism P(X, p)
ξ−→ X such that for all x ∈ X and f ∈ P(X, p) the relation

p(ξ(f), x) = d(f, x̃)

holds — i.e. ξ is left adjoint to η(X,p) and is therefore uniquely determined by η(X,p)
up to an equivalence. We denote ξ by sup(X,p). A join-complete Q-valued lattice is a
join-complete Q-valued preordered set (X, p) such that p is antisymmetric.

On the other hand, a right Q-module is a complete lattice X provided with a right
action � over Q in the sense of the category Sup of complete lattices and join preserving
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maps — i.e.X×Q
�−→ X is a map which is join preserving in each variable separately

and satisfies the following axioms for each x ∈ X and α, β ∈ Q:

x� e = x and (x� α)� β = x� (α ∗ β) where e is the unit of Q.

Let (X,�) be a right Q-module. Then there exists a Q-valued preorder p� on X deter-
mined by:

p�(x1, x2) =
∨{α ∈ Q | x1 � α ≤ x2}, x1, x2 ∈ X.

The intrinsic preorder ≤p� coincides with the partial order in X , and the map

P(X, p�)
sup(X,p�)−−−−−−→ X defined by sup(X,p�)(f) =

∨
x∈X x � f(x) is left adjoint

to the Yoneda embedding η(X,p�). Hence (X, p�) is a join-complete Q-valued lattice.
On the other hand, given a join-complete Q-valued lattice (X, p), then (X,≤p) is

a complete lattice and there exists a unique right action X ×Q
�−→ X in the sense of

Sup satisfying the following properties for each x1, x2 ∈ X and f ∈ Q:

p(x1, x2) =
∨{α ∈ Q | x1 � α ≤p x2}, sup(X,p)(f) =

∨
x∈X

x� f(x).

Finally, we assume an order preserving involution ′ on Q such (α ∗ β)′ = β′ ∗ α′
holds for each α, β ∈ Q — i.e. (Q, ∗, e, ′) is an involutive and unital quantale. Then
the category of right Q-modules is self-dual (cf. [1]) and the dual right Q-module of
(X,�) is given by the following right action �op on Xop:

x�op α =
∨{z ∈ X | z � α′ ≤ x}, x ∈ X, α ∈ Q.

If p� is the Q-preorder associated with (X,�), then the Q-preorder p�op associated
with (Xop,�op) is given by:

p�op(x1, x2) =
∨{α ∈ Q | x1 �op α ≤op x2} =

∨{α ∈ Q | x1 �op α ≥ x2}
=
∨{α ∈ Q | x2 � α′ ≤ x1} = p�(x2, x1)

′.

The previous formula motivates to define the dual Q-preorder pop for any Q-
preordered set (X, p) in the case of an involutive and unital quantale (Q, ∗, e, ′) by

pop(x1, x2) = p(x2, x1)
′, x1, x2 ∈ X. (D’)

(Note that in any unital and commutative quantale the identity map is an order preserv-
ing involution and hence the construction in (D’) extends that in (D).)

Now we return to the questions (1) and (2) and make the following observations.
Because of

(
πQ
1

)op
(α, β) = (β ↘ α)′ = α′ ↙ β′ = πQ

2 (α′, β′) the Q-preorder πQ
2 is

not the dual Q-preorder of πQ
1 , but isomorphic to

(
πQ
1

)op
and the corresponding Q-iso-

morphism is given by the involution ′. With regard to question (2) it is easily seen that
each contravariant Q-enriched presheaf f can be identified with the Q-homomorphism

(X, pop)
f ′
−−→ (Q, π1). Hence question (2) has a positive answer provided we enrich the

underlying quantale by an involution ′.
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2 Non-involutive quantales and transposed Qτ -preorders

A quantale (Q, ∗) is called non-involutive if and only if there does not exist an order
preserving involution on Q which is also an anti-homomorphism w.r.t. ∗. Hence every
non-involutive quantale is non-commutative. Simple examples of non-involutive and
unital quantales are already given by the chain with four elements.

In the non-involutive setting the map pop constructed in Section 1 is no longer a
Q-preorder. In order to overcome this obstacle we are changing the underlying quantale
and moving from the quantale (Q, ∗) to its transposed quantale Qτ = (Q, ∗τ ) —
i.e. the underlying complete lattice is the same, while its multiplication ∗τ is given by
α ∗τ β = β ∗ α for each α, β ∈ Q. Instead of pop we now construct the transposed

Qτ -preorder X ×X pτ−−→ Qτ of p and put down the following definition (cf. [2]):

pτ (x1, x2) = p(x2, x1), x1, x2 ∈ X. (T)

It is important to notice that pτ is not a Q-preorder, but a Qτ -preorder. Consequently
this does not solve the questions (1) and (2), but we can live with the definition (T)
provided we accept to deal with both types of many-valued preorders (Q-preorders and
Qτ -preorders) simultaneously.

If we now replace the quantale Q by its transposed quantale Qτ in the previous
Example, then we observe that πQτ

1 is the transposed Qτ -preorder of πQ
2 and πQτ

2 is the

transposed Qτ -preorder of πQ
1 . Further, a map X

f−→ Q is a contravariant Q-enriched

presheaf on (X, p) if and only if f is a Qτ -homomorphism (X, pτ )
f−→ (Qτ , πQτ

1 ).
Finally, if (X,�) is a right Q-module, then there exists a right action �τ on Xop in

the sense of the transposed quantale Qτ given by:

x�τ α =
∨{z ∈ X | z � α ≤ x}, α ∈ Q, x ∈ X.

Because of z ≤ x�τ α ⇐⇒ x�τ α ≤op z ⇐⇒ z �α ≤ x the relation � = (�τ )τ
follows. Hence (Xop,�τ ) is called the transposed right Qτ -module of (X,�).

If p� is the associated Q-preorder of (X,�), then the associated Qτ -preorder of
(Xop,�τ ) is given by:

p�τ (x1, x2) =
∨{α ∈ Q | x1 �τ α ≤op x2} =

∨{α ∈ Q | x1 �τ α ≥ x2}
=
∨{α ∈ Q | x2 � α ≤ x1} = p�(x2, x1) = (p�)

τ (x1, x2).

Hence p�τ coincides with the transposed Qτ -preorder of p�.

We summarize the previous results as follows. Because of the construction of trans-
posed right Qτ -modules, the concept of transposed Qτ -preorders play a remarkable
role in the setting of non-involutive and unital quantales. Obviously, this concept is a
substitute for the missing concept of dual Q-preorders.

Acknowledgement. Financial support from the Ministry of Economy and Compet-
itiveness of Spain under grant MTM2015-63608-P (MINECO/FEDER) is gratefully
acknowledged.
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Universidad del Paı́s Vasco UPV/EHU, Bilbao, Spain

javier.gutierrezgarcia@ehu.eus
2 Fakultät für Mathematik und Naturwissenschaften

Bergische Universität, Gaußstraße 20, Wuppertal, Germany
uhoehle@uni-wuppertal.de

3 Wydział Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza, Poznań, Poland
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1 Introduction

A few ways have been proposed in the literature to define tensor products for the cate-
gory of all complete lattices with their join preserving maps (e.g. [1, 9, 12]). One way
is to view the tensor product M ⊗L of complete lattices M and L as the family of join
reversing maps between M and L. This means in short that the complete lattice M ⊗L
(ordered pointwise) is the range of the universal bimorphism from M ×L into M ⊗L.
We will present this in more detail based on [2, 3].

The principal aim of this talk is to describe two examples of occurrence of tensor
products of complete lattices in many-valued topology which were announced or devel-
oped in [3–5]. They are concerned with lower semicontinuous lattice-valued maps and
with the Hutton’s unit interval [8].

2 Lower semicontinuity

Lattice-valued lower semicontinuous maps play an important role in many-valued topol-
ogy. They are tool to make link between ordinary topology and many-valued topology
via omega-functors (as e.g. in [7, 10]).

More specifically, let X be a topological space (with topology O(X)) and let L be
an arbitrary complete lattice. A map f : X → L is called lower semicontinuous if

f(x) =
∨{∧ f(U) : U is an open nbhd of x}

for each x in X (cf. [7]). The family Lsc(X,L) of all lower semicontinuous maps from
X to L is closed under arbitrary pointwise joins, and if L is, say, meet-continuous, then
Lsc(X,L) is an L-topology on the set X .

For the case in which L is a continuous lattice, we have the following remarkable
result:

The complete lattice Lsc(X,L) is the tensor product O(X)⊗ L.

For X a discrete space, Lsc(X,L) = LX becomes the tensor product of P(X) and L
with no restriction on L (this result goes back to [9]).
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3 The Hutton’s interval

Various modifications have been made to the antitone variant of Hutton’s L-interval
I(L) where I = [0, 1] (cf. [5]). With L a complete chain, Lowen [11] defined I(L) to
consist of all antitone and left-continuous maps from I into L. Zhang and Liu [13] went
from antitonicity to isotonicity and considered the set M(L) of all join preserving maps
between two completely distributive lattices M and L.

Let M be completely distributive and let L be complete. We shall keep at antitonic-
ity by defining f : M → L to be left-continuous if

f(t) =
∧{f(s) : s C t}

for all t ∈M , where C is the totally below relation (Raney). Since f is left-continuous
iff it is join reversing, the tensor product M ⊗ L becomes the right generalization of
I(L), and C successfully plays the role of the strictly less-than relation in I . For a
large class of lattices M (we mean C-separability in the sense of [6]) many results on
continuous I(L)-valued maps will continue to hold in the setting of (M ⊗ L)-valued
maps.

Acknowledgement. The authors gratefully acknowledge financial support from the
Ministry of Economy and Competitiveness of Spain under grant MTM2015-63608-P
(MINECO/FEDER).

References
1. B. Banaschewski, E. Nelson, Tensor products and bimorphisms, Canad. Math. Bull. 19

(1976) 385–402.
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7. U. Höhle, T. Kubiak, Many valued topology and lower semicontinuity, Semigroup Forum 75
(2007) 1–17.

8. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975) 74–79.
9. A. Joyal, M. Tierney, An extension of the Galois theory of Grotendieck, Mem. Amer. Math.

Soc. 51 (1984), no. 309.
10. H. Lai, D. Zhang, On the embedding of Top in the category of stratified L-topological spaces,

Chin. Ann. Math. Ser. B 26 (2005) 219–228.
11. R. Lowen, On (R(L),⊕), Fuzzy Sets Syst. 10 (1983) 203–209.
12. Z. Shmuely, The structure of Galois connections, Pacific J. Math. 54 (1974) 209–225.
13. D. Zhang, Y.-M. Liu, L-fuzzy modification of completely distributive lattices, Math. Nachr.

168 (1994) 79–95.

46



Enriched perspectives on duality theory

Dirk Hofmann

CIDMA, Department of Mathematics
University of Aveiro, Portugal

dirk@ua.pt

The principal aim of this talk is to present several perspectives on classical duality
theory (for sober spaces, Stone spaces, spectral and Priestley spaces, Esakia spaces,
stably compact spaces, . . . ) from the point of view quantale-enriched category theory.
For all of these perspectives, the starting point is the well-known equivalence

Posop ' TAL (1)

between the dual of the category of Pos of partially ordered sets and monotone maps
and the category TAL of totally algebraic lattices and sup- and inf-preserving maps.
Here a complete lattice is totally algebraic if it is completely distributive and every
element is the supremum of the subset of all totally compact elements totally below it.

To begin, we consider categories enriched in a quantale V (or even a quantaloid)
instead of partially ordered sets. Our principal motivation here is Lawvere’s ground-
breaking paper [17] presenting generalised metric spaces as enriched categories. One
amazing insight of [17] is a characterisation of the notion of Cauchy completeness
for metric spaces using adjoint distributors, which allows us to speak of Cauchy com-
plete V-categories in general. Furthermore, based on the presentation of ordered sets
via adjunction [27], the notions of “completely distributive” and “totally algebraic” are
brought into the context of quantaloid-enriched categories in [24], and from that one
obtains the equivalence

V-Catopcc ' V-TAL

between the dual category of V-Catcc of Cauchy complete V-categories and V-functors
and the category V-TAL of totally algebraic V-categories and sup- and inf-preserving
V-functors.

Next we move to the framework of a topological theory T introduced in [8], con-
sisting of a monad T, a quantale V and a T-algebra structure on V compatible with the
monad and the quantale structure. A T -category is defined as a pair (X, a) consisting
of a set X and a map

a : TX ×X → V,

subject to two axioms which resemble the axioms of a category. We write T -Cat for
the category of T -categories and (appropriately defined) T -functors. We note that the
notion of T -category embodies ordered, topological, metric and approach structures
(for the latter, see [18]); and an extensive presentation of these structures and be found
in [13]. Taking now T -Cat instead of Pos in (1), what category should be considered
now instead of TAL?

To give one possible answer, we explain the path taken in [14] and define the no-
tion of T -colimit as a particular colimit in a V-category. A complete and cocomplete

47



V-category in which limits distribute over T -colimits is to be thought of as the general-
isation of a (co-)frame to this categorical level. We construct a pair of functors

T -Catop

Ω

66

pt
vv T -Frm

between the dual category of T -Cat and the category T -Frm of T -frames and ho-
momorphisms. Moreover, there is a natural transformation Id → pt · Ω; and the T -
categories for which the comparison X → pt(Ω(X)) is surjective are precisely those
which are Cauchy complete. Looking at our examples, we see that

– for V-categories, T -frame means completely distributive V-category;
– for topological spaces, a T -frame is a frame in the usual sense, and a topological

space is Cauchy complete if and only if it is sober;
– in the case of approach spaces, our construction relates to the duality between the

categories of sober approach spaces and non-expansive maps and the category of
spatial approach frames and homomorphisms studied in [2, 25, 26].

A rather different approach was taken in [10] where, inspired by [27, 24], the notion
of completely distributive T -category is introduced. To explain this idea, we develop
enriched category theory for T -categories and introduce distributors, the contravariant
presheaf monad, weighted colimit and the Yoneda lemma for T -categories (see [4, 9]).
We then construct a dual adjunction between T -Cat and the category of completely
distributive T -categories and appropriate T -functors. On the T -categorical side, the
fixed objects of this adjunction turn out to be again the Cauchy complete objects.

The second part of this talk is inspired by the fact that the equivalence (1) can be
generalised to the category of partially ordered sets and monotone relations (see [20],
for instance); or, turning this perspective upside down, the duality result for categories
of functions is a restriction of the one for relations. Another example of this type is Hal-
mos’s duality theorem [7] which affirms that the category of Stone spaces and Boolean
relations (relations which are continuous in an appropriate sense) is dually equivalent to
the category of Boolean algebras with “hemimorphisms”, that is, maps preserving finite
suprema but not necessarily finite infima. Similar results for spectral spaces and Priest-
ley spaces are obtained in [3, 19]. We also observe that the category of Stone spaces and
continuous relations can be viewed as the Kleisli category of the Vietoris monad on the
category of Stone spaces and continuous maps, a fact which allows us to use the theory
of monads in this context.

Furthermore, our leading example (1) as well as the classical Stone-dualities for
Boolean algebras and distributive lattices (see [21–23]) are obtained using the two-
element space or the two-element lattice. Due to this fact, we can only expect dualities
for categories somehow cogenerated by 2 with an appropriate structure. Indeed, a Stone
space can be defined as a compact Hausdorff space X where the cone (f : X → 2)f
is point-separating and initial; and a similar fact holds for Priestley spaces. In order to
obtain duality results involving all compact Hausdorff spaces, we need to work with
a cogenerator of CompHaus rather than the 2-element discrete space. Of course, this
is exactly what is done in the classical Gelfand duality theorem (see [5]) or in several
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papers on lattices of the continuous functions (see [15, 16] and [1]) where functions
into the unit disc or the unit interval are considered. Keeping in mind that ordered sets
(and hence in particular lattices and Boolean algebras) can be identified as categories
enriched in the two-element quantale 2, our thesis is that the passage from the two-
element space to the compact Hausdorff space [0,∞] should be matched by a move
from ordered structures to metric structures on the other side. We will point out how
some results about lattices of real-valued continuous functions secretly talk about (ul-
tra)metric spaces. However, for technical reasons, in this talk we will consider structures
enriched in a quantale based on [0, 1] rather than in [0,∞].

To obtain enriched versions of Halmos’s duality, we restrict ourselves to topological
theories based on the ultrafilter monad and quantales with underlying lattice the unit
interval [0, 1]. Following the path of [12], we

– introduce compact Hausdorff [0, 1]-categories which should be seen as an enriched
version of Nachbin’s partially ordered compact Hausdorff spaces;

– show that the category of compact Hausdorff [0, 1]-categories and homomorphisms
is equivalent to a certain subcategory of T -Cat, similarly to the identification or
partially ordered compact Hausdorff spaces with stably compact spaces (see [6]);

– introduce the covariant presheaf monad V on T -Cat which turns out to be the lower
Vietoris monad in the case of topological spaces (see [11]);

– show that this monad restricts to the category of compact Hausdorff [0, 1]-categories
and homomorphisms;

– obtain, for certain quantale structures on [0, 1], a full embedding

(compact Hausdorff [0, 1]-categories)V
−→ (“finitely cocomplete” [0, 1]-categories)op;

– discuss how to describe the image of the functor above and its restriction to the
category of compact Hausdorff [0, 1]-categories and homomorphisms.

Parts of this talk are based on joint work with Maria Manuel Clementino, Pedro
Nora, Isar Stubbe and Walter Tholen.
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Časopis pro pěstovánı́ matematiky a fysiky, 67 (1938), pp. 1–25, eprint: http://dml.
cz/handle/10338.dmlcz/124080.

24. I. STUBBE, Towards “dynamic domains”: totally continuous cocomplete Q-categories, The-
oretical Computer Science, 373 (2007), pp. 142–160, arXiv:0501489 [math.CT].

25. C. VAN OLMEN, A study of the interaction between frame theory and approach theory, PhD
thesis, University of Antwerp, 2005.

26. C. VAN OLMEN AND S. VERWULGEN, A finite axiom scheme for approach frames, Bulletin
of the Belgian Mathematical Society - Simon Stevin, 17 (2010), pp. 899–908.

27. R. J. WOOD, Ordered Sets via Adjunction, in Categorical Foundations: Special Topics in
Order, Topology, Algebra, and Sheaf Theory, M. C. Pedicchio and W. Tholen, eds., vol. 97
of Encyclopedia Math. Appl., Cambridge University Press (CUP), Cambridge, 2004, pp. 5–
47.

50



Topology from enrichment:
the curious case of partial metrics

Dirk Hofmann1 and Isar Stubbe2

1 Departamento de Matemática
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Abstract. For any small quantaloid Q, there is a new quantaloid D(Q) of di-
agonals in Q. If Q is divisible then so is D(Q) (and vice versa), and then it is
particularly interesting to compare categories enriched in Q with categories en-
riched in D(Q). Taking Lawvere’s quantale of extended positive real numbers as
base quantale, Q-categories are generalised metric spaces, and D(Q)-categories
are generalised partial metric spaces, i.e. metric spaces in which self-distance
need not be zero and with a suitably modified triangular inequality. We show how
every small quantaloid-enriched category has a canonical closure operator on its
set of objects: this makes for a functor from quantaloid-enriched categories to
closure spaces. Under mild necessary-and-sufficient conditions on the base quan-
taloid, this functor lands in the category of topological spaces; and an involutive
quantaloid is Cauchy-bilateral (a property discovered earlier in the context of dis-
tributive laws) if and only if the closure on any enriched category is identical to
the closure on its symmetrisation. As this now applies to metric spaces and partial
metric spaces alike, we demonstrate how these general categorical constructions
produce the “correct” definitions of convergence and Cauchyness of sequences
in generalised partial metric spaces. Finally we describe the Cauchy-completion,
the Hausdorff contruction and exponentiability of a partial metric space, again by
application of general quantaloid-enriched category theory.

1 Introduction

Following Fréchet [5], a metric space (X, d) is a set X together with a real-valued
function d on X ×X such that the following axioms hold:

[M0] d(x, y) ≥ 0,
[M1] d(x, y) + d(y, z) ≥ d(x, z),
[M2] d(x, x) = 0,
[M3] if d(x, y) = 0 = d(y, x) then x = y,
[M4] d(x, y) = d(y, x),
[M5] d(x, y) 6= +∞.
The categorical content of this definition, as first observed by Lawvere [16], is that

the extended real interval [0,∞] underlies a quantale ([0,∞],
∧
,+, 0), so that a “gener-

alised metric space” (i.e. a structure as above, minus the axioms M3-M4-M5) is exactly
a category enriched in that quantale.
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More recently, see e.g. [17], the notion of a partial metric space (X, p) has been
proposed to mean a set X together with a real-valued function p on X ×X satisfying
the following axioms:

[P0] p(x, y) ≥ 0,
[P1] p(x, y) + p(y, z)− p(y, y) ≥ p(x, z),
[P2] p(x, y) ≥ p(x, x),
[P3] if p(x, y) = p(x, x) = p(y, y) = p(y, x) then x = y,
[P4] p(x, y) = p(y, x),
[P5] p(x, y) 6= +∞.
The categorical content of this definition was discovered in two steps: first, Höhle

and Kubiak [13] showed that there is a particular quantaloid of positive real numbers,
such that categories enriched in that quantaloid correspond to (“generalised”) partial
metric spaces; and second, we realised in [20] that Höhle and Kubiak’s quantaloid of
real numbers is actually a universal construction on Lawvere’s quantale of real numbers:
namely, the quantaloid D[0,∞] of diagonals in [0,∞].

It was shown in [12] that to any category enriched in a symmetric quantale one
can associate a closure operator on its collection of objects. For a metric space (X, d),
viewed as an [0,∞]-enriched category, that “categorical closure” on X coincides pre-
cisely with the metric (topological) closure defined by d. And Lawvere [16] famously
reformulated the Cauchy completeness of a metric space in terms of adjoint distribu-
tors. It is however not that complicated to extend the construction of the “categorical
closure” to general quantaloid-enriched categories, thus making it applicable to partial
metric spaces viewed as D[0,∞]-enriched categories. And then it is only natural to see
if and how Lawvere’s arguments for metric spaces go through in the case of partical
metrics. This is what we set out to do in this paper—whence its title.

2 Topology from quantaloid-enrichment

Let Q be a small quantaloid. A functor F : C→ D between Q-categories is fully faithful
when C(y, x) = D(Fy, Fx) for every x ∈ C0 and y ∈ D; equivalently, this says that
the unit of the adjunction of distributors F∗ a F ∗ (graph and cograph of F ) is an
equality (instead of a mere inequality). The complementary notion to fully faithfulness
will be of importance to us in this section:

Definition 1. A functor F : C→ D between Q-categories is fully dense if the counit of
the adjunction of distributors F∗ a F ∗ is an equality (instead of a mere inequality).

Whenever C is a Q-category, any two subsets S ⊆ T ⊆ C0 determine an inclusion
of full subcategories S ↪→ T ↪→ C. Slightly abusing terminology we shall say that S is
fully dense in T whenever the canonical inclusion S ↪→ T is fully dense.

Definition 2. Let C be a Q-category. The categorical closure of a subset S ⊆ C0 is
the largest subset S ⊆ C0 in which S is fully dense; that is to say,

S =
⋃
{T ⊆ C0 | S is fully dense in T}.
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Proposition 1. For every Q-category C, (C0, (·)) is a closure space, and for every func-
tor F : C → D, F : (C0, (·)) → (D0, (·)) is a continuous function. This makes for a
functor Cat(Q)→ Clos.

Suppose now that Q is an involutive quantaloid (and, as usual, write f 7→ fo for
the involution). When C is a Q-category and S ⊆ C0 determines the full subcate-
gory S ↪→ C, then that same set S also determines a full subcategory Ss ↪→ Cs of the
symmetrisation Cs of C. Thus we may compute two closures of S: for notational conve-
nience, let us write S for its closure in C, and Ŝ for its closure in Cs. It is straightforward
that Ŝ ⊆ S, and this inclusion can be strict—but we have that:

Proposition 2. For an involutive quantaloid Q, the following conditions are equivalent:

1. for every Q-category C and every subset S ⊆ C0, the closure of S in C coincides
with the closure of S in Cs,

2. Q is strongly Cauchy bilateral: for every family (fi : X → Yi, gi : Yi → X)i∈I of
morphisms in Q, 1X ≤

∨
i gi ◦ fi implies 1X ≤

∨
(gi ∧ fo

i ) ◦ (goi ∧ fi).

The final issue we wish to address here in full generality, concerns the topologicity
of the closure associated with a Q-category C.

Proposition 3. For any quantaloid Q, if every identity arrow is finitely join-irreducible3

then the closure associated to any Q-category C is topological. For any integral quan-
taloid Q the converse holds too.

3 Topology from partial metrics

For Lawvere’s quantale R = ([0,∞]op,+, 0), and adopting common notations, an R-
category X consists of a set X = X0 together with a function d = X(−,−) : X×X →
[0,∞] such that d(x, y) + d(y, z) ≥ d(x, z) and 0 = d(x, x). Such an (X, d) is a
generalised metric space [16]; adding symmetry (d(x, y) = d(y, x)), separatedness (if
d(x, y) = 0 = d(y, x) then x = y) and finiteness (d(x, y) < ∞) makes it a metric
space in the sense of Fréchet [5]. Upon identifying two R-categories X and Y with two
generalised metric spaces (X, dX) and (Y, dY ), it is straightforward to verify that an
R-functor F : X → Y can be identified with a 1-Lipschitz function f : X → Y , i.e.
dX(x′, x) ≥ dY (fx

′, fx). We shall write GMet for the category Cat(R).
On the other hand, a D(R)-category X is precisely a set X := X0 together with a

function p := X : X ×X → [0,∞] satisfying

p(y, x) ≥ p(x, x) ∨ p(y, y) and p(z, y)− p(y, y) + p(y, x) ≥ p(z, x).

We call such a structure (X, p) a generalised partial metric space—indeed, upon im-
posing finiteness, symmetry and separatedness, we recover exactly the partial met-
ric spaces of [17], whose definition we recalled in the Introduction. A partial functor

3 We mean here that, for any object X of Q, if 1X ≤ f1 ∨ ... ∨ fn (n ∈ N) then 1X ≤ fi for
some i ∈ {1, ..., n}. In other words, 1X 6= 0X and for any 1X ≤ f ∨ g we have 1X ≤ f or
1X ≤ g.
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f : (X, p)→ (Y, q) between such spaces is a non-expansive map f : X → Y : x 7→ fx
satisfying furthermore p(x, x) = q(fx, fx); these objects and morphisms thus form the
(locally ordered) category PMet.

Taking advantage of the categorical properties of the quantale R, and using appro-
priate base changes involving D(R), leads to:

Proposition 4. The categorical closure on a generalised partial metric space (X, p)
is topological, and is identical to the closure on the associated symmetric generalised
partial metric space (X, ps) (where ps(y, x) = p(y, x) ∨ p(x, y)). Furthermore, the
categorical topology on a generalised partial metric space (X, p) is identical to the
topology on the generalised metric space (X, p0) (where p0(y, x) := p(y, x)−p(x, x)).
Therefore we can conclude that the categorical topology on a generalised partial metric
space is always metrisable by means of a symmetric generalised metric.

One could consider this a disappointment: there are not more “partially metrisable
topologies” then there are metrisable ones. Still, one must realise that it is not always
trivial to interpret topological and/or metric phenomena in a given partial metric (X, p)
by passing to some metric (X, d) which just happens to define the same topology.

Theorem 1. In a generalised partial metric space (X, p), equipped with its categorical
topology, we have a convergent sequence (xn)n → x if and only if all three limits

lim
n→∞

p(x, xn), lim
n→∞

p(xn, xn) and lim
n→∞

p(xn, x)

(exist and) are equal to p(x, x).

We now turn to the study of Cauchy sequences in, and completion of, partial metric
spaces (for the categorical topology). With the benefit of hindsight we define:

Definition 3. A sequence (xn)n in a generalised partial metric space (X, p) is Cauchy
if (p(xn, xm))(n,m) is a Cauchy net in [0,∞].

Theorem 2. A generalised partial metric space (X, p) is sequentially Cauchy com-
plete (meaning that every Cauchy sequence in (X, p) converges) if and only if (X, p) is
categorically Cauchy complete (meaning that every Cauchy distributor on (X, p) qua
D(R)-enriched category is representable).

The above results, stated for partial metric spaces, of course apply to metric spaces
too; and note that they produce exactly the “usual” results. In the next example we see
how also the computation of the Cauchy completion of a partial metric space generalises
the usual case:

Example 1. Let (X, p) be a generalised partial metric, and view it as a D(R)-category
X. The categorical theory of generalised partial metric spaces tells us that its Cauchy
completion Xcc = (X, p)cc has as elements the equivalence classes of Cauchy se-
quences in (X, p) (equivalently, the Cauchy distibutors on X), and the partial distance
between two equivalence classes of Cauchy sequences [(xn)n] and [(yn)n] is

p([(xn)n], [(yn)n)])
(1)
=

∧

z∈X
lim
n→∞

p(xn, z)−p(z, z)+ lim
n→∞

p(z, yn)
(2)
= lim

n→∞
p(xn, yn).
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In [19] we developed a general theory of ‘Hausdorff distance’ for quantaloid-enriched
categories; applied to the quantaoid D(R) this produces the following results for partial
metrics.

Example 2. The Hausdorff space H(X, p) = (HX, pH) of a generalised partial met-
ric space (X, p) is the new generalised partial metric space with elements

HX = {S ⊆ X | ∀x, x′ ∈ S : p(x, x) = p(x′, x′)}

(i.e. the typed subsets of X) and partial distance

pH(T, S) =
∨

t∈T

∧

s∈S
p(t, s). (1)

The inclusion (X, p) → H(X, p) : x 7→ {x} is the unit for the so-called Hausdorff
doctrine H : GPMet → GPMet, and as such enjoys a universal property: it is the
universal conical cocompletion (see [19, Section 5]). (Note: the naive extension of the
formula in (1) to arbitrary subsets of (X, p) fails to produce a partial metric!)

We gave a general characterisation of exponentiable quantaloid-enriched categories
and functors in [4]; this specialises to the case of partial metric spaces as follows.

Example 3. A generalised partial metric space (X, p) is exponentiable in the (carte-
sian) category GPMet if and only if

for all x0, x2 ∈ X , u, v, w ∈ [0,∞[ and ε > 0
such that p(x0, x2) ≤ u− v + w, p(x0, x0) ∨ v ≤ u, and p(x2, x2) ∨ v ≤ w
there exists x1 ∈ X such that

p(x1, x1) = v, p(x0, x1) ≤ u+ ε, and p(x1, x2) ≤ w + ε.

(2)

This immediately implies that an exponentiable partial metric space is either empty, or
has all distances equal to∞, or has for every r ∈ [0,∞[ at least one element with self-
distance r. In particular a generalised metric space (X, d) exponentiable in GPMet if
and only if it is empty (even though a non-empty (X, d) may still be exponentiable in
GMet!). Furthermore, with the same proof as in [10, Theorem 5.3 and Corollary 5.4],
we obtain that every injective partial metric space is exponentiable; moreover, the full
subcategory of GPMet defined by all injective partial metric spaces is Cartesian closed.
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Abstract. This talk aims to establish general representation theorems for fixed
points of adjoint functors between categories enriched in a quantaloid, which set
up a common framework for representation theorems of (i) concept lattices in
formal concept analysis (FCA) and rough set theory (RST), and (ii) fixed points
of Galois correspondences between concrete categories.

1 Fixed points of Galois connections

We start the introduction from the classical case. A Galois connection s a t between
posets C, D consists of monotone maps s : C // D, t : D // C such that s(x) ≤
y ⇐⇒ x ≤ t(y) for all x ∈ C, y ∈ D. By a fixed point of s a t is meant an element
x ∈ C with x = ts(x) or, equivalently, an element y ∈ D with y = st(y), since

Fix(ts) := {x ∈ C | x = ts(x)} and Fix(st) := {y ∈ D | y = st(y)}
are isomorphic posets with the inherited order from C and D, respectively.

Theorem 1. Let s a t : D // C be a Galois connection between posets. A poset X
is isomorphic to Fix(ts) if, and only if, there exist surjective maps l : C // X and
r : D //X such that

∀c ∈ C, ∀d ∈ D : s(c) ≤ d in D ⇐⇒ l(c) ≤ r(d) in X.

It is well known that if C, D are complete lattices, then so is Fix(ts) ∼= Fix(st).
The above representation theorem can be strengthened to the following one in terms of∨

-dense and
∧

-dense maps providing the completeness of C, D:

Theorem 2. Let s a t : D // C be a Galois connection between complete lattices. A
complete lattice X is isomorphic to Fix(ts) if, and only if, there exist

∨
-dense maps

f : A //X , k : A // C and
∧

-dense maps g : B //X , h : B //D such that

∀a ∈ A,∀b ∈ B : sk(a) ≤ h(b) in D ⇐⇒ f(a) ≤ g(b) in X.

C

X

l

��

C D
s //

D

X

r

��

DC
t

oo ⊥

Theorem 1

A

C
k
;;

B

D
h

cc

A

X
f

((

B

X
g

vv

C D
s //

DC
t

oo ⊥

Theorem 2
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2 Fixed points of adjoint Q-functors

More generally, given a (possibly large) quantaloidQ, a pair ofQ-functors F : A //B,
G : B //A between (possibly large)Q-categories forms an adjunction F a G : B //A
in Q-CAT if B(F−,−) = A(−, G−). For a Q-functor F : A // A, we denote by

Fix(F ) := {x ∈ A0 | Fx ∼= x}

for the Q-subcategory of A consisting of fixed points of F .

Theorem 3. Let S a T : D // C be a pair of adjoint Q-functors. A Q-category X
is equivalent to Fix(TS) if, and only if, there exist essentially surjective Q-functors
L : C // X and R : D // X with D(S−,−) = X(L−, R−).

A Q-category A is total if the Yoneda embedding YA : A // PA admits a left
adjoint. The Q-version of Theorem 2 is stated as:

Theorem 4. Let S a T : D // C be a pair of adjoint Q-functors between total Q-
categories. A total Q-category X is equivalent to Fix(TS) if, and only if, there exist
dense Q-functors F : A // X, K : A // C and codense Q-functors G : B // X,
H : B // D with D(SK−, H−) = X(F−, G−).

C

X

L

��

C D
S // D

X

R

��

DC
T

oo ⊥

A

C
K

;;

B

D
H

cc

A

X
F

((

B

X
G

vv

C D
S // DC
T

oo ⊥

Theorem 3 Theorem 4

3 Applications

3.1 Concept lattices in FCA and RST

In this subsection we assumeQ to be a small quantaloid and consider smallQ-categories.
A small Q-category is usually called complete if it is total.

EachQ-distributor ϕ : A //◦ B induces an Isbell adjunction ϕ↑ a ϕ↓ : P†B //PA
and a Kan adjunction ϕ∗ a ϕ∗ : PA //PB, which respectively present theQ-categorical
version of the central operators in formal concept analysis (FCA) and rough set theory
(RST). Their fixed points, Mϕ and Kϕ, generalize concept lattices in FCA and RST,
respectively.

The following representation theorems in FCA and RST are consequences of The-
orems 3 and 4:
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Theorem 5. [3] For any Q-distributor ϕ : A //◦ B, a separated complete Q-category
X is isomorphic to Mϕ if, and only if, there exist a dense Q-functor F : A // X and a
codense Q-functor G : B // X with ϕ = X(F−, G−).

In particular, when Q = 2, a complete lattice X is isomorphic to Mϕ if, and only
if, there exist a

∨
-dense map f : A //X and a

∧
-dense map g : B //X such that

∀a ∈ A, ∀b ∈ B : aϕb ⇐⇒ f(a) ≤ g(b) in X.

Theorem 6. For any Q-distributor ϕ : A //◦ B, a separated complete Q-category X
is isomorphic to Kϕ if, and only if, there exist a dense Q-functor F : B // X and
a codense Q-functor G : A // X with ϕ. = X(F−, G−), where ϕ. is the relative
pseudo-complement of ϕ.

3.2 Fixed points of Galois correspondences

Given a (“base”) category B with small hom-sets, a category E that comes equipped
with a faithful functor |-| : E // B is called concrete over B. The 2-equivalence [1, 2]

CAT ⇓ cB ' QB-CAT

between concrete categories over B and categories enriched in the free quantaloid QB
generated by B allow us to exploit representation theorems for fixed points of Galois
correspondences through Theorems 3 and 4:

Theorem 7. Let S a T : E // D be a Galois correspondence between concrete cate-
gories over B. A category X over B is concretely equivalent to Fix(TS) if, and only if,
there exist essentially surjective concrete functors L : D // X and R : E // X with
E(SX, Y ) = X (LX,RY ) for all X ∈ obD, Y ∈ ob E .

Theorem 8. Let S a T : E // D be a Galois correspondence between topological
categories over B. A topological categoryX over B is concretely equivalent to Fix(TS)
if, and only if, there exist finally dense concrete functors F : D′ // X , K : D′ // D
and initially dense concrete functors G : E ′ //X , H : E ′ // E with E(SKX,HY ) =
X (FX,GY ) for all X ∈ obD′, Y ∈ ob E ′.
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Abstract. A relation ϕ between sets is regular if, and only if, Kϕ is completely
distributive, where Kϕ is the complete lattice consisting of fixed points of the Kan
adjunction induced by ϕ. For a small quantaloid Q, we investigate the Q-enriched
version of this classical result, and prove that (i) the dual of Kϕ is completely
distributive =⇒ (ii) ϕ is regular =⇒ (iii) Kϕ is completely distributive for any
Q-distributor ϕ. Although the converse implications do not hold in general, in
the case that Q is a commutative integral quantale, we show that these three
statements are equivalent for any ϕ if, and only if, Q is a Girard quantale.

A complete lattice A is constructively completely distributive (ccd for short) if
sup: PA −→ A, the monotone map sending each down set of A (here PA denotes
the set of down sets of A, ordered by inclusion) to its supremum, admits a left adjoint
in Ord. It is well known that (ccd) and complete distributivity (cd for short), are equiv-
alent if one assumes the axiom of choice [10]. Moreover, as one may describe a (ccd)
lattice precisely by the existence of a string of adjunctions

T a sup a y : A −→ PA

in Ord, where y is the (2-enriched) Yoneda embedding that sends each x ∈ A to the
principal down set ↓ x, the notion of (ccd) can be extended to any (locally small) cate-
gory; see [2–4] for discussions of such categories (called totally distributive categories
there).

The closed relationship between regular relations (i.e., regular arrows in the cate-
gory Rel of sets and relations) and (ccd) lattices was first discovered by Zareckiı̆ in the
case B = A [13] (see also [12] for related discussions), and was extended to arbitrary
relations by Xu and Liu [11]. Explicitly, each relation φ : A9 B between sets induces
a Kan adjunction [7]

φ∗ a φ∗ : 2A −→ 2B

between the powersets of A and B, with

φ∗V = {x ∈ A | ∃y ∈ V : xφy},
φ∗U = {y ∈ B | ∀x ∈ A : xφy =⇒ x ∈ U}
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for V ⊆ B, U ⊆ A, whose fixed points constitute a complete lattice

Kϕ := Fix(φ∗φ
∗) = {V ⊆ B | φ∗φ∗V = V }.

A relation φ : A9 B between sets is regular if, and only if, Kϕ is (ccd).
Since distributors [1] (also known as profunctors or bimodules) generalize relations

as functors generalize maps, it is natural to consider the relationship between regularity
of distributors and complete distributivity in the framework of category theory, with
distributors in lieu of relations. The aim of this paper is to investigate this problem in a
special case, i.e., for distributors between categories enriched in a small quantaloid Q
[6, 8].

For a small quantaloid Q, a Q-distributor φ : A 9 B between Q-categories may
be thought of as a multi-typed and multi-valued relation that respects Q-categorical
structures in its domain and codomain, and regular Q-distributors are precisely regular
arrows in the category Q-Dist of Q-categories and Q-distributors. Each φ : A 9 B
induces a Kan adjunction [7]

φ∗ a φ∗ : PA −→ PB,

with φ∗(λ) = λ ◦ φ and φ∗(µ) = µ ↙ φ for all µ ∈ PA, λ ∈ PB. The fixed points
constitute a complete Q-category

Kϕ = {λ ∈ PB|φ∗φ∗(λ) = λ}.

Furthermore, A Q-category A is (ccd) if one has a string of adjoint Q-functors

T a sup a y : A −→ PA,

where y is the (Q-enriched) Yoneda embedding. Dually, A is opccd if Aop is a (ccd)
Qop-category.

It is shown that Kϕ is (ccd) if φ is a regular Q-distributor as observed by Stubbe
[9], but unfortunately, the converse statement is not true. In fact, the regularity of φ
necessarily follows if Kϕ is opccd! Hence, the chain of logic is essentially as follows:

Kϕ is opccd =⇒ φ is regular =⇒ Kϕ is (ccd).

Moreover, when Q is a Girard quantaloid [5], it does hold that

Kϕ is opccd ⇐⇒ φ is regular ⇐⇒ Kϕ is (ccd). (1)

In particular, since 2 is a Girard quantale (i.e., a one-object Girard quantaloid), it recov-
ers that φ is a regular relation ⇐⇒ Kϕ is completely distributive.

Finally, we wish to find the minimal requirement forQ to establish the equivalences
(1). whenQ is assumed to be a commutative integral quantale, we show that the equiv-
alences (1) hold for any φ enriched in such Q if, and only if, Q is a Girard quantale.
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In 1972, Dana Scott proved a fundamental result in domain theory: continuous lat-
tices are precisely the specialization orders of injective T0 topological spaces. Given
a partially ordered set (X,≤), let Σ(X,≤) be the T0 topological space obtained by
endowing X with the Scott topology of (X,≤). Then Σ is functorial from the cate-
gory of partially ordered sets and Scott continuous maps to the category of topological
spaces. For each T0 topological space (X,O), X together with the specialization order
of (X,O) becomes a partially ordered set, denoted by Ω(X,O). The result of Scott
says that if (X,≤) is a continuous lattice, then Σ(X,≤) is an injective T0 topological
space and (X,≤) = ΩΣ(X,≤); conversely, if (X,O) is an injective T0 topologi-
cal space, then Ω(X,O) is a continuous lattice and (X,O) = ΣΩ(X,O). Thus, the
specialization-order functor Ω establishes an isomorphism between the category of in-
jective T0 topological spaces and that of continuous lattices and Scott continuous maps,
with Σ being the inverse. This result reveals a deep connection between order-theoretic
properties and topological properties.

Following Lawvere, metric spaces (not necessarily symmetric and finitary) are
[0,∞]-enriched ordered sets. In 1989, R. Lowen created approach spaces. As observed
by D. Hofmann, approach spaces are [0,∞]-enriched topological spaces. So, it is natu-
ral to ask whether there is a [0,∞]-enriched version of the result of Scott, i.e., whether
the category of “[0,∞]-enriched continuous lattices” is isomorphic to the category of
injective T0 approach spaces?

In order to answer this question, we have to make clear what is a “[0,∞]-enriched
continuous lattice” and what is an injective T0 approach space first. Since the notion of
injective T0 approach spaces is indisputable (as in any concrete categories), it remains
to postulate “[0,∞]-enriched continuous lattices”. Our idea is to treat flat weights of
metric spaces as [0,∞]-version of ideals in ordered sets, then define continuous met-
ric spaces in a “standard way”. This definition of continuous metric spaces is well in
accordance with that of Yoneda completeness of metric spaces — a [0,∞]-version of
directed completeness. Continuous metric spaces can be viewed as [0,∞]-enriched do-
mains, or, metric domains. “[0,∞]-enriched continuous lattices” are then defined to be
the complete and continuous separated metric spaces.

Next, the notion of Scott distance of metric spaces is introduced, making a metric
space (X, d) into an approach space, denoted by Σ(X, d). Scott distance of a metric
space is a [0,∞]-version of Scott topology on ordered sets.

It is proved that every injective T0 approach space is a complete and continuous
separated metric space endowed with the Scott distance. Precisely, if (X, δ) is an in-
jective T0 approach space, then Ω(X, δ), the specialization metric space of (X, δ), is
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a complete and continuous separated metric space and (X, δ) = ΣΩ(X, δ). But, there
is a complete and continuous separated metric space (X, d) such that Σ(X, d) is not
an injective approach space. So, the isomorphism between the categories continuous
lattices and injective T0 topological spaces is not valid in the [0,∞]-valued setting.
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Abstract. Let k be a commutative ring. We define a tensor product of k-linear
Grothendieck sites, and a resulting tensor product of k-linear Grothendieck cat-
egories based upon their representations as categories of k-linear sheaves. As an
example of our construction, we describe the tensor product of non-commutative
projective schemes in terms of Z-algebras, and show that for projective schemes
our tensor product corresponds to the usual product scheme. In addition, we show
that our tensor product is a special case of the tensor product of locally pre-
sentable k-linear categories. We also prove that the tensor product of locally co-
herent Grothendieck categories is again locally coherent if and only if the Deligne
tensor product of their abelian categories of finitely presented objects exists.

1 Definition of the tensor product

Consider k a fixed commutative ring. Our work sits in the context of Mod(k)-enriched
categories or, as they are usually called, k-linear categories. All the concepts mentioned
below are Mod(k)-enriched, so, for the shake of brevity, it may not appear specified
every time.

A Grothendieck category is a cocomplete abelian category with a generator and ex-
act filtered colimits. Grothendieck categories play an important role in non-commutative
algebraic geometry, where they are used as models for non-commutative spaces ([3],
[4], [31]). Our initial motivation comes from algebraic geometry, where one of the most
basic operations to be performed with schemes X and Y is taking their product scheme
X×Y . For affine schemes Spec(A) and Spec(B), this corresponds to taking the tensor
product A⊗B of the underlying rings. Our aim is to define a tensor product C �D for
arbitrary Grothendieck categories C and D, such that for the particular case of rings A
and B we have

Mod(A)�Mod(B) = Mod(A⊗B). (1)

As seen in [23], based on the original Gabriël-Popescu theorem [29], one can always
realise any k-linear Grothendieck category C as a category of k-linear sheaves on a
small k-linear category a with respect to a certain topology Ta on a, i.e. C ∼= Sh(a, Ta),
or in simpler words, we can realise C as a “k-linear Grothendieck topos”. In addition,
using this language of (k-linear) topologies on k-linear categories a, a characterization
of the k-linear functors a −→ C which induce an equivalence C ∼= Sh(a, Ta) ⊆ Mod(a)
can be found in [23].
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Our approach to the definition of a tensor product of Grothendieck categories con-
sists of the following steps:

(i) First, we define a suitable tensor product of k-linear sites (a, Ta) en (b, Tb) to be
(a⊗b, Ta�Tb) for a certain tensor product topology Ta�Tb on the standard tensor
product of k-linear categories a⊗ b.

(ii) Next, we show that the definition

Sh(a, Ta)� Sh(b, Tb) = Sh(a⊗ b, Ta � Tb) (2)

is a good definition for Grothendieck categories, as it is independent of the partic-
ular sites chosen in the sheaf category representations (up to equivalence of cate-
gories).

2 Geometrical example

We apply our tensor product to Z-algebras and schemes. In [11], Z-algebras a are en-
dowed with a certain tails topology Ttails and the category Sh(a, Ttails) is proposed
as a replacement for the category of quasicoherent modules, which exists in complete
generality. When applied to projective schemes X and Y , by looking at the Z-algebras
associated to defining graded algebras which are generated in degree 1, we obtain the
following formula:

Qch(X)� Qch(Y ) = Qch(X × Y ). (3)

Formula (3) is expected to hold in greater generality, at least for schemes and suitable
stacks.

3 Relation with other categorical tensor products

We also discuss the relation of our tensor product with other tensor products of cate-
gories in the literature. In [7], [9], [10], a tensor product of locally presentable categories
is studied, based upon [2]. It is well known that Grothendieck categories are locally
presentable. For locally α-presentable Grothendieck categories, we use canonical sheaf
representations in terms of the sites of α-presentable objects in order to calculate our
tensor product, and we show that it coincides with the tensor product as locally pre-
sentable categories. In particular, the tensor product is again locally α-presentable. As
a special case, we observe that locally finitely presentable Grothendieck categories are
preserved under tensor product. In contrast, the stronger property of local coherence,
which imposes the category of finitely presented objects to be abelian, is not preserved
under tensor product, as is already seen for rings. Hence, one can view our tensor prod-
uct of Grothendieck categories as a solution, within the framework of abelian cate-
gories, to the non-existence, in general, of the Deligne tensor product of small abelian
categories (see [21]).
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vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195.

14. D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-
Verlag, New York, 1995, With a view toward algebraic geometry.

15. Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math-
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21. I. López Franco, Tensor products of finitely cocomplete and abelian categories, J. Algebra
396 (2013), 207–219.

22. W. Lowen, Linearized topologies and deformation theory, Topology and its Applications,
doi:10.2016/j.topol.2015.12.019.

23. W. Lowen, A generalization of the Gabriel-Popescu theorem, J. Pure Appl. Algebra 190
(2004), no. 1-3, 197–211.

24. W. Lowen and M. Van den Bergh, Hochschild cohomology of abelian categories and ringed
spaces, Advances in Math. 198 (2005), no. 1, 172–221, preprint math.KT/0405227.

25. W. Lowen and M. Van den Bergh, Deformation theory of abelian categories, Trans. Amer.
Math. Soc. 358 (2006), no. 12, 5441–5483, preprint math.KT/0405227.

26. J. Lurie, Derived Algebraic Geometry II: Noncommutative Algebra,
arXiv:math/0702299v5 [math.CT].

27. A. Pitts, On product and change of base for toposes, Cahiers Topologie Géom. Différentielle
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Abstract. Based on the notion of Q-sup-lattices (a fuzzy counterpart of complete
join-semilattices valuated in a commutative quantale), we present the concept of
Q-sup-algebras – Q-sup-lattices endowed with a collection of finitary operations
compatible with the fuzzy joins. Similarly to the crisp case investigated in [10],
we present basic characteristics of their subalgebras and quotients, and following
Solovyov, we show a representation theorem for Q-sup-algebras.

1 Introduction

The topic of sets with fuzzy order relations valuated in complete lattices with additional
structure has been quite active in the recent decade, and a number of papers have been
published.

Based on a quantale-valued order relation and subset membership, counterparts to
common order-theoretic notions can be defined, like monotone mappings, adjunctions,
joins and meets, complete lattices, or join-preserving mappings, and one can consider a
category formed from the latter two concepts. An attempt for systematic study of such
categories of fuzzy complete lattices with quantale valuation (“Q-sup-lattices”) with
fuzzy join-preserving mappings has been made by the second author in his recent paper
[5].

With some theory of Q-sup-lattices available, new concepts of algebraic structures
in this category can easily be built. In this paper, we shall deal with general algebras
with finitary operations, building on existing results obtained for algebras based on crisp
sup-lattices (‘sup algebras’ as in [10]). We shall see that our fuzzy structures behave in
strong analogy to their crisp counterparts.

We also highlight an important fact: that concepts based on a fuzzy order relation
(in the sense of the quantale valuation as studied in this work) should not be treated as
generalizations of their crisp variants – they are rather standard crisp concepts of order
theory, satisfying certain additional properties. This fact also reduces the work needed
to carry out proofs. Thus, even with the additional properties imposed, the theory of
fuzzy-ordered structures develops consistently with its crisp counterpart.

The connection between fuzzy and crisp order concepts has also been justified by
I. Stubbe in a general categorial setting of modules over quantaloids [9], and in the
recent work of S. A. Solovyov in the quantale-fuzzy setting [8] where categories of
quantale-valued sup-lattices are proved to be isomorphic to well-investigated categories
of quantale modules. This isomorphism allows to directly transfer some of the funda-
mental constructions and properties known for quantale modules, to our framework.
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With this paper we hope to contribute to the theory of quantales and quantale-like
structures. It considers the notion of Q-sup-algebra and shows a representation theorem
for such structures generalizing the well-known representation theorems for quantales
and sup-algebras. In addition, we present some important properties of the category of
Q-sup-algebras.

2 Q-sup-lattices

Let a unital commutative quantale Q be fixed from now on, with the multiplicative unit
denoted 1 (which is not required to be the greatest element).

Definition 1. Let X be a set. A mapping e : X ×X → Q is called a Q-order if for any
x, y, z ∈ X the following are satisfied:

1. e(x, x) ≥ 1 (reflexivity),
2. e(x, y) · e(y, z) ≤ e(x, z) (transitivity),
3. if e(x, y) ≥ 1 and e(y, x) ≥ 1, then x = y (antisymmetry).

The pair (X, e) is then called a Q-ordered set.

GivenQ-ordered sets (X, eX), (Y, eY ), a mapping f : X → Y is calledQ-monotone
if eX(x, y) ≤ eY (f(x), f(y)) for any x, y ∈ X . A mapping f : X → X is Q-inflating
(Q-deflating) if 1 ≤ eX(x, f(x)) (1 ≤ eX(f(x), x)). An idempotent Q-monotone,
Q-inflating mapping is called a Q-order nucleus (a Q-order conucleus if Q-deflating).

A Q-subset of a set X is an element of the set QX . Let M be a Q-subset of a
Q-ordered set (X, e). An element s of X is called a Q-join of M , denoted

⊔
M if:

1. M(x) ≤ e(x, s) for all x ∈ X , and
2. for all y ∈ X ,

∧
x∈X(M(x)→ e(x, y)) ≤ e(s, y).

If
⊔
M exists for any M ∈ QX , we call (X, e)Q-join complete, or a Q-sup-lattice.

Let X and Y be sets, and f : X → Y be a mapping. Zadeh’s forward power set
operator for f maps Q-subsets of X to Q-subsets of Y by

f→Q (M)(y) =
∨

x∈f−1(y)

M(x).

Let (X, eX) and (Y, eY ) be Q-ordered sets. We say that a mapping f : X → Y
is Q-join-preserving if for any Q-subset M of X such that

⊔
M exists,

⊔
Y f
→
Q (M)

exists and
f
(⊔

X
M
)
=
⊔

Y
f→Q (M).

It is well know that the category Q-Sup of Q-sup-lattices and Q-join-preserving
mappings is isomorphic to the category Q-Mod of right Q-modules (see [8, 9]) - a
result which also holds when Q is replaced by an arbitrary quantaloid [9].

From any Q-order on a set X , an induced partial order relation can be defined by
x ≤ y ⇐⇒ e(x, y) ≥ 1. This induced partial order leads to an important character-
istics of many of the Q-fuzzy concepts (posets, joins and meets, monotone maps etc.):
rather than a generalization of ordinary notions of order theory, they should be regarded
as specific instances of them, satisfying additional properties.
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3 Q-sup-algebras

In what follows we need the notion of a Q-sup-algebra from [6] (see for motivation [4,
10]).

Definition 2. A Q-sup-algebra of type Ω (shortly, a Q-sup-algebra) is a triple A =
(A,
⊔
, Ω) where (A,

⊔
) is a Q-sup-lattice, (A,Ω) is an algebra of type Ω, and each

operation ω is Q-join-preserving in any component, that is,

ω
(
a1, . . . , aj−1,

⊔
M,aj+1, . . . , an

)

=
⊔
ω(a1, . . . , aj−1,−, aj+1, . . . , an)

→
Q (M)

for any n ∈ N, ω ∈ Ωn (the subset of operations of arity n), j ∈ {1, . . . , n},
a1, . . . , an ∈ A, and M ∈ QA.

The induced partial order relation≤e makes everyQ-sup-algebra into a sup-algebra
in the sense of [4, 10]. Like with e.g. quantales, or sup-algebras in general, quotients
and subalgebras of Q-sup-algebras can be characterized by means of Q-order nuclei
and conuclei acting on the carrier Q-sup-lattice that are also subhomomorphisms of the
induced sup-algebras, i.e. mappings f : A → A satisfying ω(f(a1), . . . , f(an)) ≤e

f(ωA(a1, . . . , an)) for any n ∈ N, ω ∈ Ωn, and a1, . . . , an ∈ A, and ω ≤e f(ω) for
any ω ∈ Ω0.

Proposition 1. [6]

1. Let (A,
⊔

A, Ω) and (B,
⊔

B , Ω) be Q-sup-algebras, and let f : A → B be a sur-
jective homomorphism. Then there exists a nucleus j on A such that B ∼= Aj .

2. Let (A,
⊔

A, Ω) and (B,
⊔

B , Ω) be Q-sup-algebras, and let f : A → B be an
injective homomorphism. Then there exists a conucleus g onB such that A ∼= Bg .

For any Q-sup-algebra A it can be shown that the set QA of all its Q-subsets is also
a Q-sup-algebra. An analogy of the representation theorem for sup-algebras [10] and
quantale algebras [7] can then be presented:

Theorem 1. If (A,
⊔

A, Ω) is a Q-sup-algebra, then there is a nucleus j on QA such
that A ∼= QA

j .

Similarly as in [7] we also have:

Theorem 2. The category of Q-sup-algebras of type Ω is a monadic construct.

Corollary 1. The category ofQ-sup-algebras of typeΩ is complete, cocomplete, wellpow-
ered, extremally co-wellpowered, and has regular factorizations. Moreover, monomor-
phisms are precisely those morphisms that are injective functions.

Acknowledgement. The research was supported by the bilateral project “New Perspec-
tives on Residuated Posets” financed by the Austrian Science Fund: project I 1923-N25
and the Czech Science Foundation: project 15-34697L.
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In [1] it has been seen that for well behaved open groupoids (coverable groupoids),
for instance Lie groupoids, there is a strong form of embedding of the quantale of a
groupoid into the quantale of an étale groupoid that covers it (quantale pairs). In this
talk I will show that an appropriate notion of action for such pairs yields an equivalence
of categories G-Loc ∼= (Q,O)-Loc where O = O(G) is the quantale of a coverable
open groupoid G. Moreover, by applying the latter equivalence I will provide an exten-
sion of the theory of quantale sheaves in such a way that coverable groupoid sheaves
can be identified with quantale sheaves as in the étale case [2].
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Quantales generalize locales and relate fruitfully to other mathematical subjects
such as C*-algebras, groupoids, inverse semigroups, toposes, and logic. The purpose
of this talk is to give an overview of what is currently known about their relation to
groupoids and inverse semigroups, and to hint at some applications. This has two parts.
The first concerns (localic) étale groupoids, which correspond, on one hand, to the class
of quantales known as inverse quantal frames, and, on the other, to pseudogroups [9]:

Inverse quantal
frames

G

||

I

""

equivalence of cats.

Étale groupoids
bisections

00

O

<<

Pseudogroups

L∨

cc

“germs”pp

The only correspondence which is an actual equivalence of categories is that between
inverse quantal frames and pseudogroups, but in fact these three kinds of structures
form bicategories and the arrows in the above diagram describe biequivalences [10].
The bicategorical structure is, for groupoids, based on biactions, and, for quantales,
on bimodules. Based on the biequivalence between étale groupoids and inverse quan-
tal frames one sees that the usual notion of homomorphism of inverse quantal frames
corresponds to the so-called algebraic morphisms of groupoids, as in [1]. Groupoid
functors do not in general yield homomorphisms of quantales (unless they are covering
functors, see [5]), but rather lead to a bimodule based construction that corresponds
to Hilsum–Skandalis maps of groupoids [3, 7]. In order to understand this, one needs
the correspondence between groupoid sheaves and quantale sheaves, as in [12], and a
quantale module description of principal bundles. The latter, along with a formulation
in terms of left adjoint one-cells in the bicategories, is joint work with J.P. Quijano [11].

Despite the importance of étale groupoids, there are situations where more gen-
eral groupoids, and more general quantales, are needed. For instance, in topos the-
ory the general representation of Grothendieck toposes [4, 6] requires étale-complete
groupoids — or Grothendieck quantales [2], which however are not directly related
to étale-complete groupoids in the same way that étale groupoids and inverse quantal
frames are. Étale-complete groupoids are still not general enough for some purposes,
either, since in particular simply connected Lie groups are not étale-complete, but in or-
der to cater for a whole realm of applications in differential geometry and physics one
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needs general Lie groupoids. The second part of my talk will describe the beginnings
of a relation between quantales and groupoids of a general kind that encompasses Lie
groupoids. Such groupoids, called coverable groupoids because they are equipped with
certain coverings by étale groupoids, correspond to pairs of quantales (Q,O) where
Q is an inverse quantal frame and O is a suitable subquantale and ideal in Q [8]. The
development of the functorial correspondence between coverable groupoids and such
quantale pairs requires looking at actions, sheaves and principal bundles for such struc-
tures, and is the subject of joint work with J.P. Quijano [13].

References

1. Mădălina Roxana Buneci. Groupoid categories. pages 27–40.
2. Hans Heymans. Sheaves on involutive quantales: Grothendieck quantales. Fuzzy Sets and

Systems, 256:117–148.
3. Michel Hilsum. Morphismes k-orientés d’espaces de feuilles et fonctorialité en théorie de
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Karl Menger [3] and Henri Poincaré introduced concept of probability in geometry
by analyzing the issue of non-transitivity. Poincaré expressed this law as “the raw re-
sult of experience”, i.e. physical equality is not a transitive relation. More formally, in
1942 Karl Menger generalised the concept of metric space to that of statistical metric
space by generalising the notion of distance from that of a non negative real number
to that of a distribution function. In Mengers notation, F(x; p,q) is the probability that
the distance of p and q is less than x. [4] discussed the topology of nervous nets, intro-
duced the concept of heterarchy and non-transitivity. This no-transitivity is very useful
in statistical learning, we can mention non-transitivity of correlation coefficient (see
[1]).

In this talk I will address non-transitivity in statistics and causal dependence. Ac-
cording to [2], causal dependence between actual events is sufficient for causation, but
not necessary: it is possible to have causation without causal dependence. Causation is
transitive, however, causal dependence is not. Several important applications of non-
transitivity to statistical learning will be given, some of them in relation to genetics
[5].
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5. M. Stehlı́k, and S. Stehlı́ková, (2016) Discussion on ”Causal inference by using invariant

prediction: identification and confidence intervals”, J. R. Statist. Soc. B (2016) 78, Part 4,
1-42

76



LM -valued equalities, LM -rough approximation
operators and LM -fuzzy ditopologies

Alexander Šostak

Institute of Mathematics and Computer Science
Department of Mathematics, University of Latvia, Riga, Latvia

aleksandrs.sostaks@lu.lv, aleksandrs.sostaks@lumii.lv

Abstract. We introduce a certain many-valued generalization of the concept of
an L-valued equality called an LM -valued equality. Properties of LM -valued
equalities are studied and a construction of an LM -valued equality from a pseudo-
metric is presented. LM -valued equalities are applied to introduce upper and
lower LM -rough approximation operators, which are essentially many-valued
generalizations of Z. Pawlak’s rough approximation operators [8] and of their
fuzzy counterparts. We study properties of these operators and their mutual in-
terrelations. In its turn, LM -rough approximation operators are used to induce
topological-type structures, called here LM -fuzzy ditopologies.

1 Prerequisites: The context of the work

In this work two objects, L and M , play the fundamental role. By L we denote an inte-
gral commutative cl-monoid (iccl-monoid for short) [6, 7] that is a tuple (L,∧L,∨L, ∗),
where (L,≤L,∧L,∨L, ) is a complete lattice, and (L, ∗, 1L) is a commutative monoid
in which ∗ distributs over arbitrary joins, that is α ∗

(∨
i∈I βi

)
=
∨
i∈I(α ∗ βi) for all

α ∈ L and for all {βi | i ∈ I} ⊆ L.1 We assume that 0L 6= 1L where 0L and 1L are
respectively the bottom and the top elements of L. By M we denote a complete frame,
that is an infinitely distributive lattice (M,∧M ,∨M ). As different from the lattice L, we
do not exclude here the trivial case, that is M can be a one-element lattice •. Although
in the larger part of this work M can be an arbitrary frame, when applying our results
for constructing LM -fuzzy ditopologies in Section 5, we additionally assume that M
is completely distributive.

2 LM -valued equalities and LM -valued sets

Applying the standard definition of a fuzzy set to our situation we say that an LM -fuzzy
subset A of a set X is just a mapping A : X → LM . However, the special form of the
range set LM allows to interpret A either as a mapping assigning to each x ∈ X the
mapping A(x) = ϕx : M → L, or as an L-fuzzy subset Ã ∈ LX×M of X ×M . This
interpretation of an LM -fuzzy set A allows to represent it as the family {Aα : α ∈M}

1 Note that an iccl-monoid can be characterized also as an integral commutative quantale in the
sense of K.I. Rosenthal.
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of L-fuzzy subsets Aα ∈ LX of X ordered by the elements of M , where the L-fuzzy
sets Aα are defined by Aα(x) = A(x, α).

Adjusting the defintion of an L-valued equuality [6] to our situation we come to the
following:

Definition 1. Given a set X , an LM -valued equality on it is a mapping E : X ×X →
LM such that

(1ELM ) E(x, x)(α) = 1L for every x ∈ X and every α ∈M ;
(2ELM ) E(x, y)(α) = E(y, x)(α) for all x, y ∈ X and every α ∈M ;
(3ELM ) E(x, y)(α) ∗ E(y, z)(α) ≤ E(x, z)(α) for all x, y, z ∈ X , α ∈M .
(4ELM ) α < β =⇒ E(x, y)(α) ≥ E(x, y)(β) for all x, y ∈ X , α, β ∈M .

Definition 2. An LM -valued equality E will be called upper semi-continuous if

(5ELM ) E(x, y)
(∨

i∈I αi
)
=
∧
i∈I E(x, y)(αi) for all x, y ∈ X , {αi | i ∈ I} ⊆

M .

An LM -valued equality E will be called lower semi-continuous if

(6ELM ) E(x, y)
(∧

i∈I αi
)
=
∨
i∈I E(x, y)(αi) for all x, y ∈ X , {αi | i ∈ I} ⊆

M .

An LM -valued equality E will be called global if it satisfies property (7ELM ):

(7ELM ) E(x, y)(0M ) = 1L∀x, y ∈ X;
E(x, y)(1M ) = 1L if x = y and E(x, y)(1M ) = 0L otherwise .

Proposition 1. A mapping E : X×X×M → L is an LM -valued equality on a set X
if and only if for every α ∈M the restriction Eα of E to X ×X × {α} is an L-valued
equality on X [6] and α ≤ β =⇒ Eα ≥ Eβ . Thus an LM - valued equality on a set X
can represented as a non-increasing family of L-valued equalities on this set ordered
by the elements of the lattice M .

Definition 3. An LM -fuzzy set B is called extensional, if B(x, α) ∗ E(x, x′)(α) ≤
B(x′, α) for every x, x′ ∈ X and for every α ∈ M . By an LM -etensioanal hull of an
L-fuzzy set A ∈ LX we call the smallest extensional LM -fuzzy set B ∈ (LM )X which
is larger or equal to A, that is A(x) ≤ B(x, α) for all x ∈ X and for all α ∈M.

It is easy to see, that an LM -fuzzy setB is extensional if and only if for each α ∈M
the L-fuzzy set Bα is extensional. Specifically, an LM -fuzzy set B is the extensional
hull of the LM -fuzzy set A if and only if for each α ∈M Bα is the extensional hull of
Aα.
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3 LM -rough approximation operators on an LM -valued set

Let E : X × X → LM be an LM -valued equality on a set X . Given an L-fuzzy set
A ∈ LX we define LM -fuzzy sets uE(A) ∈ (LM )X and lE(A) ∈ (LM )X as follows:

uE(A)(x)(α) =
∨

x′
(E(x, x′)(α) ∗A(x′)) , lE(A)(x)(α)

=
∧

x′
(E(x, x′)(α) 7→ A(x′)) .

In such a way we obtain operators uE : LX →= (LM )X and lE : LX → (LM )X that
in an obvious way can be interpreted also as operators uE : LX → LM×X , lE : LX →
LM×X . We call operators uE : LX → (LM )

X and lE : LX → (LM )
X by an upper

and lower LM -fuzzy rough approximation operator induced by the LM -valued equality
E respectively.

Such operators can be represented as families of L-fuzzy rough approximation op-
erators {uαE : LX → LX : α ∈M} defined by

uα(A)(x) = u(A)(x) ∀A ∈ LX , ∀x ∈ X, lα(A)(x) = l(A)(x) ∀A ∈ LX , ∀x ∈ X

which are ordered by elements of the latticeM in such a way that α ≤ β =⇒ uαE(A) ≥
uβE(A) ∀A ∈ LX , and α ≤ β =⇒ lαE(A) ≤ lβE(A) ∀A ∈ LX ,

In order to allow subsequent application of the LM -rough approximation operators
we define the reduced composition uE�uE : LX → (LM )X for operator uE by setting

(uE � uE)(A)(x)(α) = uE(uE(A)(x)(α))(x)(α) ∀A ∈ LX , ∀x ∈ X.

In an analogoues way reduced compositions lE � lE : LX → (LM )X , uE � lE :
LX → (LM )X and lE � uE : LX → (LM )X are defined.

Proposition 2. Let (X,E) be an LM -valued set. Then the induced upper and lower
LM -fuzzy rough approximation operators uE : LX → (LM )X , lE : LX → (LM )X

have the following properties:

(1u) uE(0X)(x, 0M ) = 0L for all x ∈ X;
(2u) uE(A)(x, α) ≥ A(x) for every x ∈ X,α ∈M.
(3u) uE(

∨
iAi) =

∨
i uE(Ai) ∀{Ai | i ∈ I} ⊆ LX

(4u) (uE � uE)(A) = uE(A) ∀A ∈ LX ;
(5u) α ≤ β ⇒ uE(A)(x, α) ≥ uE(A)(x, β) ∀x ∈ X;
(6u) If E is upper semicontinuous, then uE(A)(x,

∧
i αi) =

∨
i uE(A)(x, αi) for

every set {αi | i ∈ I} ⊆M ;
(7u) If E is global, then uE(A)(x, 0M ) =

∨
x′∈X A(x

′) and uE(A)(x, 1M ) =
A(x).

(1l) l(1X)(x, α) = 1L ∀α ∈M, ∀x ∈ X;
(2l) A(x) ≥ lE(A)(x, α) ∀A ∈ LX , ∀α ∈M ;
(3l) lE(

∧
iAi) =

∧
i lE(Ai) ∀{Ai | i ∈ I} ⊆ LX

(4l) (lE � lE)(A) = lαE(A) ∀A ∈ LX∀α ∈M ;
(5l) If E is non-increasing, then α ≤ β =⇒ lE(A)(x, α ≤ lE(A)(x, β);
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(6l) If E is upper semicontinuous, then lE(A)(x,
∨
i αi) =

∧
i lE(A)(x, αi);

(7l) If E is global, then lE(A)(x, 0M ) =
∧
x′ A(x′) and lE(A)(x, 1M ) = A(x).

Theorem 1. For every L-fuzzy set A in an LM -valued set (X,E) the upper LM -rough
approximation operator assignes to A its extensional hull uE(A) and the lower LM -
rough approximation operator lE assigns to A its extensional kernel l(AE)

Proposition 3. Given an LM -valued set (X,E) it holds uE � lE = lE and lE �uE =
uE .

4 LM -fuzzy ditopology induced by an LM -valued equality

A. Skowron [9] and A. Wiweger [10] were, probably, the first ones who noticed deep
relations between Pawlak’s rough approximation operators [8] and topological interior
and closure operators. Later the relations between fuzzy rough approximation opera-
tors [4] and (Chang-Goguen) L-topological spaces were studied by different authors,
see e.g. [5]. However, in our opinion it is more correct to use in this research the term
"L-ditopology" [1] instead of "L-topology" since the families of fuzzy open and fuzzy
sets induced by fuzzy rough approximation operators are generally independent. In
this section we use LM -fuzzy rough approximation operations to induce LM -fuzzy
ditopologies [2], that is pair of mutually independent mappings T : LX → (LM )X

and K : LX → (LM )X satisfying axioms of LM -fuzzy topology and LM -fuzzy co-
topology respectively.

The properties (1l)− (4l) of lE related to lαE can be reformulated as follows:

(1lα) lα(1X) = 1L;
(2lα) A ≥ lαE(A) ∀A ∈ LX ;
(3lα) lαE(

∧
iAi) =

∧
i lE(Ai) ∀{Ai | i ∈ I} ⊆ LX

(4lα) lαE(l
α
E(A)) = lαE(A) ∀A ∈ LX ;

However, this means that lαE : LX × LX can be interpreted as an L-fuzzy interior
operator on the set X . Hence by setting Tα = {A ∈ LX : lαE(A) = A}, we obtain the
L-fuzzy topology corresponding to this Alexandroff L-fuzzy interior operator (see e.g.
[5]): 1X ∈ Tα; {Ai : i ∈ I} ⊆ Tα =⇒ ∧

iAi ∈ Tα; {Ai : i ∈ I} ⊆ Tα =⇒ ∨
iAi ∈

Tα Taking such L-fuzzy topologies for all α ∈ M we obtain an non-increasing family
{Tα : α ∈ M}. Besides, since lαE ≤ lβE whenever α ≤ β, we conclude that that is the
family {Tα : α ∈M} is non-increasing.

Theorem 2. If M is completely distributive, then T (A) =
∨{α ∈ M : A ∈ Tα.} is

anLM -fuzzy topology on the LM -valued set (X,E), that is T : LX →M satisfies the
following axioms:

1. T (1X) = 1M ;
2. T (∧iAi) ≥

∧
i T (Ai) for every family {Ai : i ∈ I} ⊆ LX ;

3. T (∨iAi) ≥
∧
i T (Ai) for every family {Ai : i ∈ I} ⊆ LX ;
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In a similar way, using the upper LM -rough approximation operator uE , and refer-
ring to Proposition 3.1, we construct a family {Kα : α ∈M} where Kα = {A ∈ LX :
uαE(A) = A}. It is easy to notice that Kα is an Alexandroff L-co-topology [3]. This
means that for each α the family Kα has the following properties :
1X ∈ Kα; {Ai : i ∈ I} ⊆ Kα =⇒ ∨

iAi ∈ Kα; {Ai : i ∈ I} ⊆ Kα =⇒ ∧
iAi ∈

Kα

Besides, since uαE ≥ uβE whenever α ≤ β, we conclude that that the family {Kα :
α ∈ M} is non-increasing. We use this family of L-fuzzy co-topologies to define an
(Alexandroff) L-fuzzy co-topology K on the set X , by setting K(A) =

∨{α ∈ M :
A ∈ Kα.}
Theorem 3. If M is completely distributive, then K is an LM -fuzzy co-topology on
the LM -valued set (X,E). This means that the mapping K : LX → M satisfies the
following axioms:

1. K(1X) = 1M ;
2. K(∨iAi) ≥

∧
iK(Ai) for every family {Ai : i ∈ I} ⊆ LX ;

3. K(∧iAi) ≥
∧
i T (Ai) for every family {Ai : i ∈ I} ⊆ LX ;

5 Construction of an LM -valued equality from a pseudo-metric

Let L =M = [0, 1] be the unit intervals and let ∗ : L×L→ L be a continuous t-norm.
Further, let ρ : X × X → [0, 1] be a pseudo-metric on a set X . We define a mapping
Eρ : X ×X × [0, 1]→ [0, 1] by setting

Eρ(x, y)(α) =

{ 1−α
1−α+αρ(x,y) if α 6= 1 or ρ(x, y) 6= 0

1 if α = 1 and ρ(x, y) = 0.

Proposition 4. For every pseudo-metric ρ : X × X → [0, 1] the mapping Eρ : X ×
X × [0, 1]→ [0, 1] is continuous for all x, y ∈ [0, 1] and satisfies conditions (1ELM ),
(2ELM ), (4ELM ), (5ELM ), (6ELM ), (7ELM ) and (8ELM ). It satisfies condition
(3ELM ) in cases of the product t-norm ∗ = · and of the Łukasiewicz t-norm ∗ = ∗L.
If ρ is an ultra pseudo-metric, then mapping Eρ : X × X × [0, 1] → [0, 1] satisfies
condition (3ELM ) in case of the minimum t-norm ∗ = ∧.

Corollary 1. In case ∗ = · and ∗ = ∗L the mapping Eρ : X ×X → [0, 1] → [0, 1] is
a global continuous LM -equality for any pseudo-metric ρ : X ×X → [0, 1]. If ρ is an
ultra pseudo-metric, thenEρ is a global continuous LM -valued equality in case ∗ = ∧.
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Allegories and Dedekind categories, in particular, [1, 5–8] provide an adequate cat-
egorical and algebraic framework for reasoning about relations. An obvious example
for each of these categories is the category REL of sets and binary relation. A binary
relation can be represented by its characteristic function, i.e., by a function that returns
true if the pair is in the relation and false if not. The category REL is is not the only
example of an allegory, of course. Given a complete Heyting algebra L, the category
L-REL of sets and so called L-relations is also an example. L-relations differ from reg-
ular relations by assigning to each pair a degree of membership from L instead of true
or false. Certain aspects of L-relations cannot be expressed in allegories or Dedekind
categories. For example, consider the special case that an L-fuzzy relation R returns
the smallest or the greatest element of L for each pair. Such a relation corresponds in
an obvious way to a regular binary relation, and therefore they are called crisp. Even
though several abstract notions of crispness in Dedekind categories have been proposed
[2–4], it was shown that this property cannot be expressed in the language of allegories
or Dedekind categories [9, 10]. Therefore, Goguen and arrow categories [9, 11] were
introduced adding two additional operations to the theory of Dedekind categories cov-
ering the notion of crispness.

A higher-order or type-2 L-relation uses membership values from the LL, i.e., it
uses endofunctions on L as the degree of membership for each pair. Since LL forms a
complete Heyting algebra if L does, the category LL-REL also forms an arrow cate-
gory. To distinguish between L-REL and LL-REL one normally speaks about type-1
L-relations and type-2 L-relations, respectively. By iterating the process we can define
type-n L-relations for arbitrary n. In this paper we are interested in the relationship
between type-1 and type-2 L-relations and the iteration process leading to type-n L-
relations.

In [12, 13] the extension was on object was used to show that the category of type-2
L-relations can be constructed as a Kleisli category of type-1 L relations. The extension
A] of a set A is the set A×L of pairs of A elements and a lattice value. The correspond-
ing isomorphism, i.e., the bijection between A] and A × 1] with unit 1, was shown in
the abstract setting. Furthermore, it was shown that the induced product functor together
with appropriate natural transformations forms a monad so that the category of type-2
L-relations was obtained as the Kleisli category for this monad. These result were used
in [14] to apply the abstract theory of arrow categories in the development of fuzzy
controllers.

In this paper we want to show two major results. First, we want to remove the ad-
hoc notion of an extension of an object completely from the construction of higher-order
arrow categories. In [12, 13] it was already shown that A] is isomorphic to A × 1]. In
this paper we will show that 1] is isomorphic to PL(1) where PL(A) is the L-power
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of A. The L-power of A is the abstract version of the L-fuzzy powerset. Please note
that this construction is different from relational powers or the constructions given in
power allegories. As an immediate consequence we obtain the following result in the
abstract setting of arrow categories: If an arrow category has relational products and
L-powers, then the arrow category of type-2 L relations can be defined as the Kleisli
category induced by the monad above. Our second result shows that this process can be
iterated, i.e., it verifies that the arrow category of type-2 L relations again has relational
products and L-powers.
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Abstract. In this talk, according to Höhle’s Q-enriched filter monad, we intro-
duce strong Q-filer monad and study (topological) pretopological Q-ordered con-
vergence spaces. Kowalsky’s diagonal condition and Fischer’s diagonal condition
are given to characterize topological Q-ordered convergence spaces. Q-ordered
convergence spaces are also studied from the viewpoint of lax algebra on Q-Dist.

1 Introduction

Since quantaloid-enriched categories developed by Stubbe [10, 11] can give a reason-
able explanation of the theories on fuzzy sets, it draw much attention in the field of fuzzy
mathematics. Stubbe in [12] also gave an overview of this theory for the readership of
fuzzy logicians and fuzzy set theorists. Based on quantaloid-enriched categories, Höhle
in [5], Pu and Zhang in [6] and Shen in [9] studied different aspects of quantaloid-
enriched topology, preordered set and quantaloid-enriched closure space, etc.

In [5], Höhle studied the categorical foundations of topology based on ordered
monad and used appropriate submonads of the double presheaf monad to introduce
quantaloid-enriched topology. When Höhle studied Q-enriched filter monad as a sub-
monad of the double presheaf monad on Q-Cat, he enriched the underlying quan-
taloid Q by an extra local binary operation–premultiplication satisfying certain con-
ditions. As a special case, we use the meet in Q to replace the premultiplication,
and slightly modify the definition of Q-enriched filter to give strong Q-filer monad.
From this strong Q-filter monad, there is a natural way to obtain strong quantaloid-
enriched topology—-the Zhang’s strong topology under the quantaloid setting. In this
talk, we introduce quantaloid-enriched convergence spaces(we call Q-ordered conver-
gence space), and give some characterizations of topological Q-ordered convergence
structures by Kowalsky’s diagonal condition and Fischer’s diagonal condition. Follow-
ing the idea of Clementino, Hofmann and Tholen in [1, 2], we will show thatQ-ordered
convergence spaces can also be studied by lax algebra on Q-Dist.

2 Strong Q-filer monad

Definition 1. Let A be a Q-category and F ∈ P†(PA)0. F is called a strongly strati-
fied Q-filter if it satisfies the following conditions:
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(QF0) F(⊥X) = ⊥t(F),X for all X ∈ Q0, where ⊥X(x) =⊥t(x),X for all x ∈
A0;

(QF1) F(>X) = >t(F),X for all X ∈ Q0, where >X(x) = >t(x),X for all
x ∈ A0;

(QF2) F(µ ∧ λ) = F(µ) ∧ F(λ) for any µ, λ ∈ PA0 with the same type;
(QFS) f ◦ F(µ) ≤ F(f ◦ µ) for all f ∈ Q(t(µ),−);
(QFSS) F(f ↘ µ) = f ↘ F(µ) for µ ∈ PA0 and f ∈ Q(−, t(µ)).
The set of all strongly stratified Q-filters on A forms a underlying set of a subcate-

gory of P†(PA), denoted by FQS(A).

Example 1. (1) Let x ∈ A0. Define [x] : PA0 → Q by [x](µ) = µ(x). Then [x] is a
strongly stratified Q-filter on A (the type of [x] is t(x)).

(2) Let F : A → B be a Q-functor and F be a strongly stratified Q-filter on A.
Define F⇒(F)(µ) = F(µ ◦ F]) for µ ∈ PB0. Then F⇒(F) is a strongly stratified
Q-filter on B.

In order to give the Q-neighborhood system, we fix the strong Q-filter monad T =
(FQS , η, ι) in the sense of [5] as follows: The functor FQS : Q-Cat→ Q-Cat is given
by sending A to FQS(A) and F to F⇒; the two natural transformations η : 1Q-Cat →
FQS and ι : FQS ◦ FQS → FQS are given by ηA(x) = [x] and ιA(=)(µ) = =(eµ),
respectively. For R : A → FQS(B) and S : B → FQS(C), the Kleisli composition
function • with respect to the strong Q-filter monad T as follows is

S •R = ιC ◦ FQS(S) ◦R = ιC ◦ S⇒ ◦R.
From [5], a Q-functor N : A → FQS(A) is called a Q-neighborhood system of

A if N fulfills the conditon (QN1) N ≤ ηA. A Q-neighborhood system N is called
topological it further satisfies the following (QN2):

(QT) N •N = N , i.e., ιA(N⇒(Nx)) = Nx for all x ∈ A0.
Let Q-Nei denote the category of Q-neighborhood spaces and Q-TNei denote the

category of topological Q-neighborhood spaces, where Q-functor F : (A,N ) →
(B,R) is called continuous ifR ◦ F ≤ F⇒ ◦ N holds.

There are natural ways to show the relationship between (topological) Q-neighbor-
hood space, (topological) Q-interior operator and Q-topology. For example from topo-
logicalQ-neighborhood space, we can obtain the strong topology in the sense of Zhang
under the quantaloid setting.

Lemma 1. Let (A,N ) be a (topological)Q-neighborhood space and define a full sub-
category T of PA by T0 = {µ ∈ PA0| ∀x ∈ A0, N

x(µ) = µ(x)}. Then T satisfies
the following axioms:

(QT1) ∀Φ ∈ PT0, supPA i
→(Φ) ∈ T0;

(QT2) For each Ψ ∈ P†C0 with C0 is finite subset of T0, then infPA i9(Ψ) ∈ T0.

3 Q-ordered convergence space

Definition 2. Let A be a Q-category. A Q-functor lim : FQS(A) → P†A is called a
Q-ordered convergence structure on A if it satisfies:

(QC1) lim[x](x) ≥ 1t(x) for all x ∈ A0.
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A Q-functor F : (A, limA)→ (B, limB) between Q-ordered convergence spaces is
called continuous if F9 ◦ limA ≤ limB ◦F⇒. The category of Q-ordered convergence
spaces is denoted by Q-Conv. Q-Conv is topological on Q-Cat.

Define functor Γ : Q-Conv → Q-Nei by Γ ((A, lim)) = (A,Nlim), where
Nlim(x) = supFQS(A) lim(−)(x). Define Ω : Q-Nei → Q-Conv by Ω((A,N )) =
(A, limN ), where limN F(x) = FQS(A)(F , Nx).

Lemma 2. Γ is the left adjoint functor of Ω.

Definition 3. A Q-ordered convergence structure lim on A is called pretopological if
there exists a Q-neighborhood system N such that lim = limN . A Q-ordered conver-
gence structure lim on A is called topological if there exists a topologicalQ-neighbor-
hood system N such that lim = limN .

(A, lim) is pretopological if and only if it satisfies the (QP) condition as follows:

(QP) ∀F ∈ FQS(A)0,∀x ∈ A0, limF(x) = FQS(A)(F , Nx
lim).

A pretopological Q-ordered convergence structure lim on A is topological if and
only if Nlim is topological Q-neighborhood system, i.e., it satisfies the (QT) condition
as follows:

(QT) Nlim ≤ Nlim • Nlim.

It is routine to check that Q-PConv–the category of pretopological Q-ordered con-
vergence spaces—is isomorphic toQ-Nei andQ-TPConv—the category of topological
pretopological Q-ordered convergence spaces—is isomorphic to Q-TNei; Q-PConv is
a bireflective subcategory of Q-Conv and Q-TPConv is a bireflective subcategory of
Q-PConv.

Lemma 3. If a Q-ordered convergence structure lim : FQS(A) → P†A has a right
adjoint, then lim must be pretopological.

In fact, we have the following results:

Theorem 1. Let lim be a Q-ordered convergence structure on A. Then the following
statements are equivalent.

(QP) ∀F ∈ FQS(A)0,∀x ∈ A0, limF(x) = FQS(A)(F , Nx
lim);

(QP∗) For each non-empty Θ ∈ P(FQS(A))0, lim(supFQS(A)Θ) =
supP†A lim→Θ;

(QP�) ∀x ∈ A0, limNx
lim(x) ≥ 1t(x).

Theorem 1 gives us some characterizations of pretopological Q-ordered conver-
gence structure. Especially, the condition (QP∗) says lim is pretopological if and only
if lim is sup-preserving for non-empty presheaf of FQS(A). Hence Lemma 3 is valid.
In the following, we give two characterizations of topological Q-ordered convergence
spaces by two famous diagonal condition—Kowalsky’s diagonal condition and Fis-
cher’s diagonal condition.

First, we give an extension of Kowalsky’s diagonal condition to Q-ordered conver-
gence space in the following way:

(K-QT) For each Q-functor Υ : A → FQS(A) with limΥ (y)(y) ≥ 1t(y) for all
y ∈ A0, it holds lim ≤ lim ◦ιA ◦ Υ⇒.
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Theorem 2. If lim is a pretopological Q-ordered convergence space, then (QT) and
(K-QT) are equivalent.

Then, the Fischer’s diagonal condition can be given toQ-ordered convergence space
as follows:

(F-QT): For allQ-functorsΛ : J→ A and Υ : J→ FQS(A) with limΥ (j)(Λ(j)) ≥
1t(j) for all j ∈ J0, it holds FQS(Λ⇒(F), Nx

lim) ≤ limKΥF(x) for all F ∈ FQS(J)0.

Theorem 3. If lim is a Q-ordered convergence space, then lim is topological if and
only if lim satisfies (F-QT).

4 Q-ordered convergence space as lax algebra on Q-Dist

Following the idea of Clementino, Hofmann and Tholen in [1, 2], the strong Q-filter
monad T = (FQS , η, ι) can be lax extended toQ-Dist. From [10], there is a one-to-one
correspondence betweenQ-Cat(FQS(A),P†A) andQ-Dist(FQS(A),A). Hence, for
Q-ordered convergence space (A, lim) and reflexive lax algebra (A, α), αlim defined
by αlim(F , x) = limF(x) is a reflexive lax algebra, and limα defined by limα F(x) =
α(F , x) is a Q-ordered convergence structure.

Theorem 4. Q-Alg(T, η)—the category of reflexive lax algebras on T— is isomorphic
to Q-Conv.

Theorem 5. Let (A, lim) beQ-ordered convergence space. Then (A, lim) is a pretopo-
logical Q-ordered convergence space if and only if (Nlim)

] ≤ αlim.

Theorem 6. Let (A, lim) be pretopologicalQ-ordered convergence space. Then (A, lim)

is topological if and only if αlim ◦ N⇒lim ◦ ι]A ≤ αlim.
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Since the introduction of the language of categories, functors, and natural transfor-
mations by Eilenberg and Mac Lane in 1945, category theory has penetrated deeply
in our understanding of mathematics. Enriched categories generalize the idea of a lo-
cally small category by replacing hom-sets with objects from a fixed monoidal closed
category.

A monoidal closed category consists of

– a category V;
– a functor ⊗ : V × V −→ V , called the tensor, such that for each object A both
(−)⊗A : V −→ V and A⊗ (−) : V −→ V have a right adjoint;

– an object k in V;
– for every triple A,B,C of objects, an “associativity” isomorphism αABC : (A ⊗
B)⊗ C −→ A⊗ (B ⊗ C);

– for every object A, an isomorphism lA : k ⊗ A −→ A and an isomorphism rA :
A⊗ k −→ A.

These data must satisfy certain coherence axioms.
Following Lawvere, we interpret the object k as true, the tensor product ⊗ as

the logic connective conjunction, and the right adjoints of − ⊗ A : V −→ V and
A ⊗ − : V −→ V as implications. Then, no matter whatever the objects may be, a
monoidal closed category looks like a table of truth-values for a (many-valued) logic.
In his pioneering paper [18], Lawvere has displayed “many general results about metric
spaces (which are categories enriched over the quantale ([0,∞]op,+)) as consequences
of a generalized pure logic whose truth-values are taken in an arbitrary monoidal closed
category.”

While a quantale is a “fixed” table of truth-values, a quantaloid can be thought of
as a“dynamic” table of truth-values for a fuzzy logic. So, fuzzy set theory is inevitably
related to enriched categories in a close way. In particular, for a quantaloidQ, a category
enriched over Q can be thought of as a fuzzy set (or, a partially defined set) endowed
with an order relation valued in Q.

Given a quantale (or, more general, a quantaloid) Q, theories of orders and topolo-
gies valued in Q have been established in the literature. In this talk, we are concerned
with how the “logic features” ofQwill affect the behaviors ofQ-orders andQ-topologies.
This interaction is what we mean by “the role of fuzzy logic” in the title. A number of
examples related to fuzzy orders and fuzzy topologies in this regard will be surveyed.
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Let Q = (Q,&) be a commutative quantale. A Q-topology on a set X is a subset
τ ⊆ QX such that

(O1) for all p ∈ Q, the constant fuzzy set pX belongs to τ ;
(O2) λ ∧ µ ∈ τ for all λ, µ ∈ τ ;
(O3)

∨
j∈J λj ∈ τ for each subfamily {λj}j∈J of τ .

Let Q = (Q,&) be a commutative quantale and τ be a Q-topology on X . We say
that

(1) τ is stratified if p&λ ∈ τ for all p ∈ Q and λ ∈ τ .
(2) τ is co-stratified if p→ λ ∈ τ for all p ∈ Q and λ ∈ τ .
(3) τ is strong if it is both stratified and co-stratified.
(4) τ is Alexandroff if

∧
j∈J λj ∈ τ for all {λj : j ∈ J} ⊆ τ .

Example 1. [21, 35, 14] If the underlying lattice of Q is meet continuous, then the cat-
egory of topological spaces can be embedded in that of Q-topological spaces as a both
bireflective and coreflective full subcategory if and only if Q is continuous.

It is trivial that a finite topological space is always Alexandroff, but, this is not
always true in the many-valued setting.

Example 2. [4] Let Q = ([0, 1],&) with & being a continuous t-norm. Then every
finite strong Q-topological space is Alexandroff if and only if & is an ordinal sum of
the Łukasiewicz t-norm and the set of idempotent elements of & is a well-ordered subset
of [0, 1] with respect to the usual order.

A neighborhood of x is a fuzzy set λ ∈ QX such that λ◦(x) = 1. The neighbor-
hoods of x form a prefilter Nx on X , called the neighborhood prefilter of x. A CNS
space is a Q-topological space X such that

λ◦(x) =
∨

ν∈Nx

S(ν, λ) =
∨

ν∈Nx

∧

x∈X
(ν(x)→ λ(x))

for all λ ∈ QX and x ∈ X .

Example 3. [16, 24] Let Q = (Q,&) be a continuous, commutative and integral quan-
tale. Then the category of CNS spaces is simultaneously reflective and coreflective in
the category of stratified Q-topological spaces if and only if if for each p ∈ Q, the map

Q −→ Q, x 7→
∨

q∈ �p
(q → x)

is Scott continuous.

Example 4. [13, 15] Let Q = (Q,&) be a commutative and integral quantale. The
following are equivalent:

(1) The bottom element inQ is a dualizing element ofQ, henceQ is a Girard quantale.
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(2) Every completeQ-lattice can be written as the concept lattice of some fuzzy context
based on rough set theory.

(3) The opposite of a completely distributive Q-lattice is completely distributive.
(4) The opposite of (Q,→) is completely distributive.

Example 5. [17] Let Q = ([0, 1],&) with & being a left continuous t-norm on [0, 1].
Then the category of Yoneda completeQ-ordered sets is monoidal closed if and only if
& is continuous.

Example 6. [17] Let Q = ([0, 1],&) with & being a continuous t-norm. The following
are equivalent:

(1) & = min.
(2) The category of Q-ordered sets is Cartesian closed.
(3) The category of Yoneda complete Q-ordered sets is Cartesian closed.

Given a quantale Q, let D(Q) be the quantaloid of diagonals in Q. Then D(Q)-
categories can be thought of ordered fuzzy sets (valued in Q). The last example is
concerned with the behavior of “directed complete” ordered fuzzy sets.

Example 7. [19] Let Q be the interval [0, 1] coupled with a continuous t-norm &. The
following are equivalent:

(1) & is either isomorphic to the Łukasiewicz t-norm or to the product t-norm.
(2) Each Yoneda complete D(Q)-category with an isolated element is flat complete.
(3) Each bicomplete D(Q)-category with an isolated element is Cauchy complete.
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