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Since their inception in 1979 the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects of fuzzy sets by bringing
together researchers in fuzzy sets and established mathematicians whose work
outside the fuzzy setting can provide direction for further research. The philos-
ophy of the seminar has always been to keep it deliberately small and intimate
so that informal critical discussions remain central.

LINZ 2019 will be the 38th seminar carrying on this tradition and is devoted
to the theme “Set Functions in Games and Decisions”. The goal of the seminar
is to present and to discuss recent advances in set functions and non-classical
measure theory, and their applications in operations research, coalitional game
theory and decision theory.

A large amount of interesting contributions were submitted for possible pre-
sentation at LINZ 2019 and subsequently reviewed by PC members. This vol-
ume contains the abstracts of the accepted contributions. These regular contri-
butions are complemented by four invited plenary talks, some of which are in-
tended to give new ideas and impulses from outside the traditional Linz Seminar
community.
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Harsanyi power solutions
for cooperative games on voting structures
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Abstract. This paper deals with Harsanyi power solutions for cooperative games
in which partial cooperation is based on specific union stable systems given by
the winning coalitions derived from a voting game. This framework allows for
analyzing new and real situations in which there exists a feedback between the
economic influence of each coalition of agents and its political power. We provide
an axiomatic characterization of the Harsanyi power solutions on the subclass of
union stable systems arisen from the winning coalitions from a voting game when
the influence is determined by a power index. In particular, we establish compara-
ble axiomatizations, in this context, when considering the Shapley-Shubik power
index, the Banzhaf index and the equal division value which reduces to the My-
erson value on union stable systems.

1 Introduction

For a firm, it is one thing to have the ability to produce, but it is useless unless the firm
is allowed to produce. In other words, the economic power of a firm emerges only if it is
accompanied by political or legal power. As an example, Google has a huge worldwide
economic power, but cannot exert it in China where its government currently prevents
Google’s search service to operate without censure. As a more counterexample, let us
consider the social cost problems first suggested by [7] in which are involved a set of
victims and a set of polluters. The activity of the latter create damage that affect the
victims. In order to iron those conflicts and to solve the problem of social cost, a nego-
tiation will take place within a coalition of polluters and victims with the objective to
sign a binding agreement about how much activity the polluter will be able to under-
take. Now, the permission granted to each coalition which wants to sign such binding
agreements about the level of activity of the polluter is interpreted as the ability for the
coalition to control the decision of a committee that assigns these rights (see [13] for
details).

In this article, we provide a model based on cooperative game theory in order to
apprehend such situations. We enrich the classical model of a (economic) cooperative
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game — a set of agents and a characteristic function specifying the economic power of
each coalition of agents — with a voting game on the same set of agents. This voting
game is modeled by a nonempty set of winning coalitions with the usual monotonicity
property: each superset of a winning coalition is also a winning coalition. In this frame-
work, an allocation rule specifies a utility for each agent for participating in each pair of
economic and voting games. The latter two structures are likely to influence each other
in the design of an allocation rule. On the one hand, as suggested above, the sharing of
economic resources can depend on the political power of coalitions of agents. On the
other hand, the measure of political power might be impacted by the economic power
of coalitions, for example because of their ability to incur lobbying expenses.

Here, we explore the first of the two types of influence. For classical cooperative
games a class of well-known allocation rules is the class of Harsanyi solutions intro-
duced by [22] and then studied by [9], among others. Each Harsanyi solution distributes
the Harsanyi dividend of each coalition among its members in proportion to exoge-
nously given weights. For voting games, two well-known power indices are provided
by [19] and [5]. The Shapley-Shubik index measures the likelihood that an agent is
decisive if the agents are called upon to vote one by one in favor of a decision. The
Banzhaf index measures the proportion of coalitions for which a given agent is pivotal
(i.e. a winning coalition that is not winning anymore without this agent). We combine
both types of allocation rules in order to study a specific class of Harsanyi (power)
solutions in which the Harsanyi dividend of each winning coalition is shared among
its members in proportion to their relative political power as measured by an arbitrary
power index σ in the voting subgame induced by the coalition. The idea to combine
economic and political power also appears in [16] where the weights on an asymmetric
Nash bargaining solution are specified by the Shapley-Shubik index of a voting game.

We characterize the Harsanyi power solution induced by the power index σ. In
addition to the classical axioms of Efficiency and Additivity, we introduce three other
axioms. The first one is a variant of the Null agent out axiom [8], which requires that an
allocation rule is not sensitive to the removal of a null agent in the economic game. The
second one requires that if all winning coalitions enjoy a null worth in the economic
game, then all agents should be treated equally. The third one is inspired by the axioms
of σ-point unanimity [3] and Communication ability [6]. If only the grand coalition has
a non null worth in the economic game, the axiom imposes that the agents are paid in
proportion to the power index σ.

Our contribution possesses some similarities with the literature on games played on
combinatorial structures. The closest article is perhaps [3], where the exogenous struc-
ture is a union stable system, i.e. a set of feasible coalitions such that the union of two
intersecting coalitions is also feasible. The authors provide a similar characterization
of a class of Harsanyi power solutions. There are, however, two major differences with
our work. Firstly, while the set of winning coalitions in a voting game is a union stable
system, the converse is not true. As a consequence, some of the axioms invoked by [3]
cannot be reused in our case as, for instance, the Inessential support property. Secondly,
any set of connected coalitions on a graph is a union stable system, which implies that
games played on union stable systems can be seen as a generalization of communication
graph games introduced in [18]. To the contrary, the voting structure that we consider
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cannot be assimilated to a graph structure. In fact, the set of winning coalitions of a vot-
ing game does not always correspond to the set of connected coalitions of a graph on
the player set as pointed by [20]. This allows us to replace the classical power indices
on graph (such as the degree of each node) by voting power indices.

Another advantage of our contribution is that our characterization is still valid on
the larger class of games played on union stable systems subject to a minor adaptation
of the axiom of Efficiency. We also single out the relevant Harsanyi power solutions ob-
tained by using, in the voting game, the Shapley-Shubik power index, the Banzhaf index
and the Equal division index, respectively. The latter one coincides with the Myerson
value for games played on union stable systems introduced by [2]. Our characterization
provides a comparable axiomatization of these three Harsanyi power solutions.

Acknowledgement. This work was partially supported by “In-depth UDL 2018”, and
“Mathématiques de la décision pour l’ingénierie physique et sociale” (MODMAD).
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What to learn and what not to learn –
a mathematical view on ethical learning

Endre Boros

MSIS Department and RUTCOR
Rutgers University, New Jersey, USA
endre.boros@rutgers.edu

Many learning algorithms are struggling with large data sets, and miss information
present in the data simply for computational reasons. A larger and mostly hidden prob-
lem is that many algorithms learn (unintentionally and unnoticed) triggering patterns
that are not supported by the data. Using such classifiers, we may jump to conclusions
that are unjustifiable based on our existing data sets. Both errors imply potential prob-
lems: missing important triggers and/or using unsupported ones. This brings up both
ethical and legal questions. In this talk we demonstrate these issues with an example.
We propose a mathematically sound notion of a “justifiable” classifier AND learning
algorithm. Furthermore, on the positive side, we show some results about the existence
of learning algorithms that always produce a “justifiable” classifier.
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Winning coalitions in plurality voting democracies

René van den Brink1, Dinko Dimitrov2, and Agnieszka Rusinowska3
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The crucial and immediate question after parliamentary elections have taken place
concerns the winner(s) of the election. Sometimes, even more than one party can call
itself a winner of the election. In the present paper we study if it is possible to assign
weights to political parties that indicates who is the winner of an election.

We define a cooperative game that assigns the value one to coalitions of parties if it
is a winning coalition, and zero to a coalition of parties that is not winning (i.e., losing).
Typically, whether a coalition is winning depends on the way how players outside the
coalition are organized. A coalition that is negotiating to form a government might be
winning if the other parties are not organized. For instance, if some other parties form
a coalition, it might be attractive for one of the negotiating parties to stop negotiations
and start negotiating the formation of a government with the ‘new coalition’.

We model situations with such externalities in two different ways. The first way
of modeling uses standard simple games (defined on a fixed and finite player set N )
in which whether a coalition is winning does not depend on the coalition formation
of players outside the coalition. Nevertheless, when being paired with coalition struc-
tures, these games provide some information on the extent to which a winning coalition
is ‘stronger’ than the rest of the players. We define rudimentary plurality games (rp-
games) by requiring at least one coalition in each coalition structure to be winning in the
standard simple game. This extension of the model of a standard simple game allows us
to examine if such games single-support or block-support plurality voting democracies
in the sense of assignment of weights to players such that the win of a coalition S ⊆ N
in the simple game implies the sum of its players’ weights to exceed the weight of every
single player in N \ S or the sum of players’ weights in N \ S, respectively. We show
that every rp-game is single-supportive and every decisive rp-game is block-supportive.

The second way in which externalities can be modeled is by a direct consideration of
simple games in partition function form. In other words, we assign a worth of either one
or zero to each pair of a coalition and a partition containing that coalition. We call such
games plurality games if there is at least one coalition which wins in a partition. In this
case, winning does not necessarily mean that the coalition has a majority and can pass a
bill, but simply that it is the strongest in a given coalitional configuration as represented
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by a partition. So, a party that does not have the majority, but is considered as the winner
of the election before any negotiation to form a government has taken place, has worth
one in the discrete partition (i.e., the partition into singletons). It simply means that the
party, or coalition of parties, can do something (for instance, take the initiative to form
a government), but this does not necessarily mean that it can pass a bill.

Within the framework of plurality games, we study the notion of a game precisely
supporting a plurality voting democracy. Is it possible to assign weights to the players
such that a coalition being winning in a partition implies that the sum of its players’
weights is maximal over all coalitions in the partition? We show that this is always
possible for small decisive games, that is, for games with at most four players and where
for each partition there is exactly one winning coalition in it. Games with more than
five players turn out also to be precisely supportive when it is always a largest coalition
which wins in a partition (majority games). Allowing in a minimal way for players
in a plurality game to be non-symmetric results in the definition of almost symmetric
games. We show that decisive and almost symmetric plurality games are also precisely
supportive.
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Measure systems and measure spaces

Jeffrey T. Denniston1, Austin Melton2, and Stephen E. Rodabaugh3
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Kent State University, USA
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A “flat” system (X,A,�) is well known. It posits a system comprising a set X of
objects, a family A of “predicates”, and a “satisfaction” relation � which documents
which objects satisfy which predicates. A system is flat if there is no structure on A
or there are no conditions on � respecting the structure(s) on A. Morphisms between
systems track the changes both of objects and predicates consistent with a distinctive
adjointness condition involving the satisfaction relations. A “first” example: any set
of objects X , together with its powerset ℘ (X) and the associated membership rela-
tion ∈, comprises a flat system (X,℘ (X) ,∈) . Given a system (X,A,�) , a predicate
a ∈ A determines the set of all objects which satisfy a, called its “extent” and denoted
ext (a) . It is the case that the set X, together with family Ext (A) of all the extents,
forms an extent space which is also “flat”. The category FlatSys of all flat systems,
with morphisms as described above, is an essentially algebraic category, and its asso-
ciated category FlatSp, of all flat spaces and appropriate morphisms, is a topological
construct.

It is natural in the setting of computer science to have and use non-flat systems
(X,A,�) in which certain structural properties are assumed for the predicates and cor-
responding structural properties are also assumed of the satisfaction relation. Two ex-
amples of such types of systems are the following:

1. The familyA of predicates is assumed a frame—a complete lattice in which the first
infinite distributive law holds—and the satisfaction relation � possesses arbitrary
join and finite meet “interchange” laws. These types of systems (X,A,�) are called
“topological” systems, and the associated extent spaces are topological spaces. As
in the flat case, the category TopSys is an essentially algebraic category, and, of
course, its associated category Top is a topological construct.

2. The family M of predicates is assumed a σ-algebra and the satisfaction relation �
possesses countable join and negation “interchange” laws. These systems (X,M,�)
are called “measure” systems, and the associated extent spaces are measure spaces.
Again, as in the flat case, the category MeasSys is an essentially algebraic category,
and its associated category Meas is a topological construct.
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Topological systems and various related notions of many-valued topological sys-
tems have had deep and extensive developments over the past 10 years; for example,
topological systems are fundamentally related to “variable-basis” many-valued topo-
logical spaces. However, there has been no development of measure systems. This talk
presents research which attempts to fill that gap and explores related topics such as
probabilistic systems.
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Characterizations of idempotent n-ary uninorms
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Abstract. In this paper we provide a characterization of the class of idempotent
n-ary uninorms on a given chain. When the chain is finite, we also provide an
axiomatic characterization of the latter class by means of four conditions only:
associativity, quasitriviality, symmetry, and nondecreasing monotonicity. In par-
ticular, we show that associativity can be replaced with bisymmetry in this ax-
iomatization.

1 Introduction

LetX be a nonempty set and let n ≥ 2 be an integer. Binary aggregation functions have
been extensively investigated since the last decades due to their usefulness in merging
data (see, e.g. [5] and the references therein). Among these functions, uninorms play an
important role in fuzzy logic. Meanwhile, the study of n-ary uninorms also raised some
interest (see, e.g. [6]).

In this paper, which is a shorter version of [4], we investigate the class of idempotent
n-ary uninorms F : Xn → X on a chain (X,≤) (Definition 3). We provide in Section 2
a characterization of these operations and show that they are nothing other than idempo-
tent binary uninorms (Proposition 1). We also provide a description of these operations
as well as an alternative axiomatization when the chain is finite (Theorem 1). In Sec-
tion 3 we investigate some subclasses of bisymmetric n-ary operations and derive an
equivalence involving associativity and bisymmetry. More precisely, we show that if an
n-ary operation is quasitrivial and symmetric, then it is associative if and only if it is
bisymmetric (Proposition 3). This observation enables us to replace associativity with
bisymmetry in our axiomatization (Corollary 1).

We use the following notation throughout. A chain (X,≤) will simply be denoted
by X if no confusion may arise. For any chain X and any x, y ∈ X we use the symbols
x ∧ y and x ∨ y to represent min{x, y} and max{x, y}, respectively. For any integer
k ≥ 0, we set [k] = {1, . . . , k}. Finally, for any integer k ≥ 0 and any x ∈ X , we set
k ·x = x, . . . , x (k times). For instance, we have F (3 ·x, 2 · y, 0 · z) = F (x, x, x, y, y).

Definition 1. An operation F : Xn → X is said to be

– idempotent if F (n · x) = x for all x ∈ X;
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– quasitrivial (or conservative) if F (x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈
X;

– symmetric if F (x1, . . . , xn) is invariant under any permutation of x1, . . . , xn;
– associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all i ∈ [n− 1];
– bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))

for all n× n matrices [c1 · · · cn] = [r1 · · · rn]T ∈ Xn×n.

If (X,≤) is a chain, then F : Xn → X is said to be

– nondecreasing (for ≤) if F (x1, . . . , xn) ≤ F (x′1, . . . , x
′
n) whenever xi ≤ x′i for

all i ∈ [n].

Definition 2. Let F : Xn → X be an operation. An element e ∈ X is said to be a
neutral element of F if

F ((i− 1) · e, x, (n− i) · e) = x

for all x ∈ X and all i ∈ [n].

2 First characterization

In this section we provide a characterization of the n-ary operations on the chainX that
are associative, quasitrivial, symmetric, and nondecreasing. We will also show that in
the case where the chain is finite these operations are nothing other than n-ary idempo-
tent uninorms.

Recall that a uninorm on a chain X is a binary operation U : X2 → X that is
associative, symmetric, nondecreasing, and has a neutral element (see [3, 7]). It is not
difficult to see that any idempotent uninorm is quasitrivial.

The concept of uninorm can be easily extended to n-ary operations as follows.

Definition 3 (see [6]).
An n-ary uninorm is an operation F : Xn → X that is associative, symmetric,

nondecreasing, and has a neutral element.

The next proposition provides a characterization of idempotent n-ary uninorms.

Proposition 1. Let X be a chain and let F : Xn → X be an operation. Then F is an
idempotent n-ary uninorm if and only if there exists an idempotent uninorm U : X2 →
X such that

F (x1, . . . , xn) = U(
∧n

i=1 xi ,
∨n

i=1 xi), x1, . . . , xn ∈ X.

In this case, the uninorm U is uniquely defined as U(x, y) = F ((n− 1) · x, y).
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We now introduce the concept of single-peaked linear ordering which first appeared
for finite chains in social choice theory (see Black [1, 2]).

Definition 4. Let (X,≤) and (X,�) be chains. We say that the linear ordering � is
single-peaked for ≤ if for any a, b, c ∈ X such that a < b < c we have b ≺ a or b ≺ c.

The following theorem provides a characterization of the class of associative, qu-
asitrivial, symmetric, and nondecreasing operations F : Xn → X . We observe that it
generalizes Proposition 1 since the latter class does not require the existence of a neu-
tral element. In particular, it provides a new axiomatization as well as a description of
idempotent n-ary uninorms when the chain X is finite.

Theorem 1. Let F : Xn → X be an operation. The following assertions are equiva-
lent.

(i) F is associative, quasitrivial, symmetric, and nondecreasing.
(ii) There exists a quasitrivial, symmetric, and nondecreasing operation G : X2 → X

such that

F (x1, . . . , xn) = G(
∧n

i=1 xi ,
∨n

i=1 xi), x1, . . . , xn ∈ X.

(iii) There exists a linear ordering � on X that is single-peaked for ≤ and such that F
is the maximum operation on (X,�), i.e.,

F (x1, . . . , xn) = x1 g · · ·g xn , x1, . . . , xn ∈ X.

IfX = [k] for some integer k ≥ 1, then any of the assertions (i)–(iii) above is equivalent
to the following one.

(iv) F is an idempotent n-ary uninorm.

3 Second characterization

In this section we investigate bisymmetric n-ary operations and derive an equivalence
involving associativity and bisymmetry. More precisely, if an n-ary operation is qua-
sitrivial and symmetric, then it is associative if and only if it is bisymmetric. In par-
ticular this latter observation enables us to replace associativity with bisymmetry in
Theorem 1.

Definition 5. We say that a function F : Xn → X is ultrabisymmetric if

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r
′
n))

for all n × n matrices [r1 · · · rn]T , [r′1 · · · r′n]T ∈ Xn×n, where [r′1 · · · r′n]T is
obtained from [r1 · · · rn]T by exchanging two entries.

Proposition 2. Let F : Xn → X be an operation. If F is ultrabisymmetric, then it is
bisymmetric. The converse holds whenever F is symmetric.
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Proposition 3. Let F : Xn → X be an operation. Then the following assertions hold.

(a) If F is quasitrivial and ultrabisymmetric, then it is associative and symmetric.
(b) If F is associative and symmetric, then it is ultrabisymmetric.
(c) If F is quasitrivial and symmetric, then it is associative if and only if it is bisym-

metric.

From Proposition 3(c) we immediately derive the following corollary, which is an
important but surprising result.

Corollary 1. In Theorem 1 we can replace associativity with bisymmetry.

References

1. D. Black. On the rationale of group decision-making. J Polit Economy, 56(1):23–34, 1948
2. D. Black. The theory of committees and elections. Kluwer Academic Publishers, Dordrecht,

1987.
3. B. De Baets. Idempotent uninorms. Eur. J. Oper. Res., 118:631–642, 1999.
4. J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nonde-

creasing associative operations. Semigroup Forum. In press. arXiv: 1705.00719.
5. M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation functions. Encyclopedia of

Mathematics and its Applications 127. Cambridge University Press, Cambridge, UK, 2009.
6. G. Kiss and G. Somlai. A characterization of n-associative, monotone, idempotent functions

on an interval that have neutral elements. Semigroup Forum, 96(3):438–451, 2018.
7. R. R. Yager and A. Rybalov. Uninorm aggregation operators. Fuzzy Sets and Systems,

80:111–120, 1996.

25



The ν-additive measure as an alternative to the
λ-additive measure
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Abstract. In this study, the λ-additive measure (Sugeno λ-measure) is revisited
and put into a new light by introducing the so-called ν-additive measure, which
may be viewed as an alternatively parameterized λ-additive measure. The moti-
vation for introducing the ν-additive measure lies in the fact that its parameter
ν ∈ (0, 1) has an important semantic meaning as it is the fix point of the comple-
ment operation. Here, by utilizing the ν-additive measure, some well-known re-
sults concerning the λ-additive measure are put into a new light and rephrased in
more advantageous forms. Next, novel proofs are presented in which the so-called
basic probability assignment (mass function) is not utilized to demonstrate how
the ν-additive (λ-additive) measure is connected with the belief-, probability- and
plausibility measures. Here, it is also demonstrated how a ν-additive measure (or
a λ-additive measure) can be transformed to a probability measure and vice versa.
Moreover, it is pointed out how the ν-additive measures are connected with rough
sets, multi-attribute utility functions and with certain operators of fuzzy logic.

1 The λ-additive measure and the ν-additive measure

Relaxing the additivity property of the probability measure, the λ-additive measures
were proposed by Sugeno in 1974 [5].

Definition 1. The function Qλ : P(X) → [0, 1] is a λ-additive measure (Sugeno λ-
measure) on the finite set X , iff Qλ satisfies the following requirements:

(1) Qλ(X) = 1
(2) for any A,B ∈ P(X) and A ∩B = ∅,

Qλ(A ∪B) = Qλ(A) +Qλ(B) + λQλ(A)Qλ(B),

where λ ∈ (−1,∞).

1.1 The λ-additive complement and the Dombi form of negation

The following proposition concerning the λ-additive measure of a complement set can
be proven.
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Proposition 1. If X is a finite set and Qλ is a λ-additive measure on X , then for any
A ∈ P(X) the Qλ measure of the complement set A = X \A is

Qλ(A) =
1−Qλ(A)
1 + λQλ(A)

. (1)

Now, let us assume that 0 ≤ Q(A) < 1. Then, Eq. (1) can be written as

Qλ(A) =
1−Qλ(A)
1 + λQλ(A)

=
1

1 + (1 + λ) Qλ(A)
1−Qλ(A)

. (2)

In continuous-valued logic, the Dombi form of negation with the neutral value ν ∈
(0, 1) is given by the operator nν : [0, 1]→ [0, 1] as follows:

nν(x) =





1

1+( 1−ν
ν )

2 x
1−x

if x ∈ [0, 1)

0 if x = 1,
(3)

where x ∈ [0, 1] is a continuous-valued logic variable [1]. Note that the Dombi form
of negation is the unique Sugeno’s negation [6] with the fix point ν ∈ (0, 1). Also,
for Qλ(A) ∈ [0, 1), the formula of λ-additive measure of Qλ(A) in Eq. (2) is the
same as the formula of the Dombi form of negation in Eq. (3) with x = Qλ(A) and(
1−ν
ν

)2
= 1+ λ. Following this line of thinking, here, we will introduce the ν-additive

measure and state some of its properties.

Definition 2. The function Qν : P(X) → [0, 1] is a ν-additive measure on the finite
set X , iff Qν satisfies the following requirements:

(1) Qν(X) = 1
(2) for any A,B ∈ P(X) and A ∩B = ∅,

Qν(A ∪B) = Qν(A) +Qν(B) +

((
1− ν
ν

)2

− 1

)
Qν(A)Qν(B),

where ν ∈ (0, 1).

Note that if X is an infinite set, then the continuity of function Qν is also required.
We will utilize the concept of dual pair of ν-additive measures.

Definition 3. Let Qν1 and Qν2 be two ν-additive measures on the finite set X . Then,
Qν1 andQν2 are said to be a dual pair of ν-additive measures iffQν1(A)+Qν2(A) = 1
holds for any A ∈ P(X).

We have proven the following properties of the ν-additive measure.

Proposition 2. Let Qν1 and Qν2 be two ν-additive measures on the finite set X . Then,
Qν1 and Qν2 are a dual pair of ν-additive measures if and only if ν1 + ν2 = 1.

Corollary 1. Let Qν1 and Qν2 be a dual pair of ν-additive measures on the finite set
X . Then, ν1 ∈ [1/2, 1) if and only if ν2 ∈ (0, 1/2].

It should be mentioned here that one of the λ parameters of a dual pair of λ-additive
measures is always in the unbounded interval [0,∞). At the same time, the ν parameters
of a dual pair of ν-additive measures are both in a bounded interval; namely, one of them
is in the interval (0, 1/2] and the other one is in the interval [1/2, 1).
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2 Connections with belief, probability, plausibility, rough sets,
multiattribute utility functions and fuzzy operators

2.1 Connections with belief, probability and plausibility

Here, we will discuss how the ν-additive (λ-additive) measure is connected with the
belief-, probability- and plausibility measures. It should be added that these connections
are demonstrated via novel proofs in which the so-called basic probability assignment
(mass function) is not utilized.

Proposition 3. Let X be a finite set and let Qλ be a λ-additive measure on X . Then,
on set X , Qλ is a

(1) plausibility measure if and only if −1 < λ ≤ 0
(2) probability measure if and only if λ = 0
(3) belief measure if and only if λ ≥ 0.

Proposition 4. Let Qν1 and Qν2 be two ν-additive measures on the finite set X . Then
Qν1 and Qν2 are a dual pair of belief- and plausibility measures on X if and only if
ν1 + ν2 = 1.

Proposition 5. Let Σ be a σ-algebra over the set X and let Qν and Pν be two contin-
uous functions on the space (X,Σ) such that

Pν(A) =
1

2

ln
(
1 +

((
1−ν
ν

)2 − 1
)
Qν(A)

)

ln
(
1−ν
ν

)

holds for anyA ∈ Σ, ν ∈ (0, 1), ν 6= 1/2. Then, Pν is a probability measure on (X,Σ)
if and only if Qν is a ν-additive measure on (X,Σ).

2.2 Connections with rough sets

Dual pairs of ν-additive measures are strongly associated with the lower- and upper
approximation pairs of rough sets. Utilizing the results of Skowron [3, 4] and Yao and
Lingras [7], we have proven the following properties of the ν-additive measure.

Proposition 6. Let Qν1 and Qν2 be two ν-additive measures on the finite set X , and
letR ⊆ X×X be a binary equivalence relation onX . Furthermore, let (R(A), R(A))
be the rough set of A ∈ P(X) with respect to the approximation space (X,R) and
let the functions q, q : P(X) → [0, 1] be given by q(A) = |R(A)|

|X| , q(A) = |R(A)|
|X| ,

where R(A) and R(A) are the lower- and upper approximations of A, respectively, for
any A ∈ P(X). Then, if the equations Qν1(A) = q(A), Qν2(A) = q(A) hold for
any A ∈ P(X), then Qν1 and Qν2 are a dual pair of ν-additive measures on X with
ν1 ∈ (0, 1/2], ν2 ∈ [1/2, 1).

Proposition 7. If Qν1 and Qν2 are a dual pair of ν-additive measures on the finite
set X with ν1 ∈ (0, 1/2], ν2 ∈ [1/2, 1) and m is a basic probability assignment that
satisfies the conditions:
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(1) the set of focal elements of m is a partition of X
(2) m(A∗) = |A∗|/|X| for every focal element A∗ of m
(3) m(A∗) =

∑
B⊆A∗

(−1)|A∗\B|Qν1(B) for any A∗ ∈ P(X),

then there exists an equivalence relation R on the set X , such that the equations

Qν1(A) = q(A), Qν2(A) = q(A)

hold for any A ∈ P(X), where (R(A), R(A)) is the rough set of A with respect to the
approximation space (X,R), q, q : P(X)→ [0, 1] are given as

q(A) =
|R(A)|
|X| , q(A) =

|R(A)|
|X| ,

and R(A) and R(A) are the lower- and upper approximations of A, respectively.

2.3 Connections with multi-attribute utility functions and with fuzzy operators

(1) There are interesting formal connections between the λ-additive measures and the
multi-attribute utility functions. Namely,
(a) if λ = 0, then the λ-additive measure of the union of n pairwise disjoint sets is

computed in the same way as the multi-attribute utility of n additive indepen-
dent attributes

(b) if λ > −1 and λ 6= 0, then the λ-additive measure of the union of n pairwise
disjoint sets is computed in the same way as the multi-attribute utility of n
mutually utility independent attributes.

(2) There is an interesting formal connection between the λ-additive measure and cer-
tain operators of continuous-valued logic. Namely, if λ > −1 and λ 6= 0, then the
computation method of λ-additive measure of union of n pairwise disjoint sets is
identical with that of the generator function of the Dombi operator [2] at the value
of the generalized Dombi operation [1] over n continuous-valued logic variables.
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Abstract. Sufficient conditions are given to assure that different integral repre-
sentations of a coherent upper conditional prevision with respect to its associated
Hausdorff outer measure coincide. The given coherent conditional prevision is
proven to be linear on the class of continuous random variables.

1 Instroduction

Let Ω be a non empty set and let B be a partition of Ω. In the subjective probabilistic
approach coherent probability is defined on an arbitrary class of sets and any coherent
probability can be extended to a larger domain. So in this framework no measurability
condition is required for random variables. In the sequel a bounded random variable
is a function X : Ω → < such that |X| ≤ M for some real constant M and L(Ω)
is the class of all bounded random variables defined on Ω; for every B ∈ B denote by
X|B the restriction ofX toB and by sup(X|B) the supremum of valus thatX assumes
on B. Let L(B) be the class of all bounded random variables X|B. Denote by IA the
indicator function of any event A ∈ ℘(B), i.e. IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if
ω ∈ Ac. For every B ∈ B coherent upper conditional previsions P (·|B) are functionals
defined on L(B) [20].

Definition 1. Coherent upper conditional previsions are functionals P (·|B) defined on
L(B), such that the following axioms of coherence hold for every X and Y in L(B)
and every strictly positive constant λ:

1) P (X|B) ≤ sup(X|B);
2) P (λX|B) = λP (X|B) (positive homogeneity);
3) P (X + Y |B) ≤ P (X|B) + P (Y |B) (subadditivity);
4) P (IB |B) = 1.

Suppose that P (X|B) is a coherent upper conditional prevision on L(B). Then its
conjugate coherent lower conditional prevision is defined by P (X|B) = −P (−X|B).
Let K be a linear space contained in L(B); if for every X belonging to K we have
P (X|B) = P (X|B) = P (X|B) then P (X|B) is called a coherent linear conditional
prevision [3],[13],[18] and it is a linear, positive and positively homogenous functional
on K [20, Corollary 2.8.5].
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The unconditional coherent upper prevision P = P (·|Ω) is obtained as a particular
case when the conditioning event is Ω. Coherent upper conditional probabilities are
obtained when only 0-1 valued random variables are considered.

Definition 2. Given a partition B and a random variable X ∈ L(Ω), a coherent upper
conditional prevision P (X|B) is a random variable on Ω equal to P (X|B) if ω ∈ B.

Definition 3. A random variable X ∈ L(Ω) is B-measurable or measurable with re-
spect to the partition B it it is constant on the sets of the partition.

The necessity to propose a new tool to define coherent upper conditional previsions
arises because they cannot be obtained as extensions of linear expectations defined, by
the Radon-Nikodym derivative, in the axiomatic approach [1]; it occurs because one of
the defining properties of the Radon-Nikodym derivative, that is to be measurable with
respect to the σ-field of the conditioning events, contradicts the necessary condition for
the coherence [9, Theorem 1] P (X|B) = X for every B-measurable random variable.

2 Coherent upper conditional prevision defiend by its associated
Haussdorff outer measure

A model of coherent upper conditional prevision and probability, based on Hausdorff
outer measures has been introduced in a metric space (Ω, d) [5], [6], [7], [8], [9], [10],
[12] and its applications have been investigated [11].

For the definition of Hausdorff outer measure and its basic properties see [19] and
[15]. Let (Ω, d) be a metric space and let B be partition of Ω.

Let δ > 0 and let s be a non-negative number. The diameter of a non empty set U
of Ω is defined as |U | = sup {d(x, y) : x, y ∈ U} and if a subset A of Ω is such that
A ⊆ ⋃i Ui and 0 < |Ui| ≤ δ for each i, the class {Ui} is called a δ-cover of A.

The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined on
℘(Ω), the class of all subsets of Ω, as

hs(A) = limδ→0 inf
∑+∞
i=1 |Ui|

s

.

where the infimum is over all δ-covers {Ui}.
A subset A of Ω is called measurable with respect to the outer measure hs if it

decomposes every subset of Ω additively, that is if hs(E) = hs(A ∩ E) + hs(E − A)
for all sets E ⊆ Ω.

Hausdorff s-dimensional outer measures are submodular, continuous from below
and their restriction on the Borel σ-field is countably additive.

The Hausdorff dimension of a set A, dimH(A), is defined as the unique value, such
that

hs(A) = +∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < +∞.
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For every B ∈ B denote by s the Hausdorff dimension of B and let hs be the Haus-
dorff s-dimensional Hausdorff outer measure associated to the coherent upper condi-
tional prevision. For every bounded random variable X a coherent upper conditional
prevision P (X|B) is defined by the Choquet integral with respect to its associated
Hausdorff outer measure if the conditioning event has positive and finite Hausdorff
outer measure in its Hausdorff dimension. Otherwise if the conditioning event has Haus-
dorff outer measure in its Hausdorff dimension equal to zero or infinity it is defined by
a 0-1 valued finitely, but not countably, additive probability.

Theorem 1. Let (Ω, d) be a metric space and let B be a partition of Ω. For every
B ∈ B denote by s the Hausdorff dimension of the conditioning event B and by hs the
Hausdorff s-dimensional outer measure. Let m be a 0-1 valued finitely additive, but not
countably additive, probability on ℘(B). Then for each B ∈ B the functional P (X|B)
defined on L(B) by

P (X|B) = 1
hs(B)

∫
B
Xdhs if 0 < hs(B) < +∞

and by

P (X|B) = mB if hs(B) ∈ {0,+∞}
is a coherent upper conditional prevision.

If B ∈ B is a set with positive and finite Hausdorff outer measure in its Hausdorff
dimension s and X is the indicator function of a set A by Theorem 1 we obtain that
the fuzzy measure µ∗B defined for every A ∈ ℘(B) by µ∗B(A) =

hs(AB)
hs(B) is a coherent

upper conditional probability, which is submodular, continuous from below and such
that its restriction to the σ-field of all µ∗B measurable sets is a Borel regular countably
additive probability. The coherent upper unconditional probability P = µ∗Ω defined on
℘(Ω) is obtained for B equal to Ω.

3 Integral representations

The following results give sufficient conditions which assure that different integral rep-
resentations of a coherent upper conditional previsions coincide and conditions such
that a coherent conditional prevision defined with respect to its associated Hausdorff
outer measure is linear. The Choquet integral [4], the concave integral [16] and the pan
integral agree with the Lebesgue integral in the case where the monotone set function
is countably additive.

In the next theorem it is proven that, if B is a set with positive and finite Hausdorff
outer measure in its Hausdorff dimension s, the Choquet integral, the concave inte-
gral and the pan-integral with respect to the coherent upper conditional probability µ∗B
coincide with the Lebesgue integral on the class of all S-measurable random variables.

Theorem 2. LetB be a set with positive and finite Hausdorff outer measure in its Haus-
dorff dimension s and let µ∗B(A) =

hs(A∩B)
hs(B) . Let S be the class of all hs-measurable

sets. Then the Choquet integral, the concave integral and the pan-integral with respect
to µ∗B are equal to the Lebesgue integral on the class of all S-measurable random
variables.
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In the next theorem it is proven that on the class of continuous random variables the
coherent upper conditional prevision defined in Theorem 1 is linear.

Theorem 3. Let B be a set with positive and finite Hausdorff outer measure in its
Hausdorff dimension s and let K ⊂ L(B) be the class of continuous random variables.
Then P (X|B) = P (X|B) for every X ∈ K.
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In decision problems involving two dimensions (like several agents and several cri-
teria) the properties of expected utility ensure that the result of a multicriteria multiper-
son evaluation does not depend on the order with which the aggregations of local evalu-
ations are performed (agents first, criteria next, or the converse). We say that the aggre-
gations on each dimension commute. Ben Amor, Essghaier and Fargier have shown [2]
that this property holds when using pessimistic possibilistic integrals on each dimen-
sion, or optimistic ones, while it fails when using a pessimistic possibilistic integral on
one dimension and an optimistic one on the other. This paper studies and completely
solves this problem when Sugeno integrals are used in place of possibilistic integrals,
indicating that there are capacities other than possibility and necessity measures that
ensure commutation of Sugeno integrals. In connection with this problem, we study
two-dimensional capacities that can be reconstructed from their projections, and their
link to the commutation problem.
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Abstract. In this paper we describe relations between objects in a gen-
eral system-of-systems model based on powers of attributed expressions
and values described qualitatively and spatially.

1 Introduction

Industrial applications in particular in production and production plants are
generally described as hierarchical systems-of-systems with objects being “part-
of” and in “contact to” to each other. These objects roughly build upon elements
divided, respectively, into types components, people and activities, like typically
seen in the DSM model [4]. Relational models involved can be equipped with var-
ious information structure enrichments so as to enable monitoring of subsystem
conditions as alternatives to fault trees [5].

In the finite case, Boolean algebras (BAs) are powerset algebras, so in the in-
finite case BAs are intuitively ‘generalized power algebras’ rather than algebras
of structured elements. However, powers are obviously more than just embrac-
ing subsets of points, in particular if we deal with sets of values and expressions
defined by underlying signatures. Such ‘sets of terms’ are elements in objects
provided by set functors in form of monad compositions of general powerset
functors ϕ (extendable to monads ϕϕϕ) and the term monad TΣ over some signa-
ture Σ [3]. In this case, a system-of-systems is not just to be seen as based on
sets-of-sets, or sets-of-sets-of-sets, etc., so as to deal with functor composition
ϕ ◦ϕ ◦ . . . , but more as based on compositions of compositions of powersets and
terms ϕϕϕTΣ ◦ ϕϕϕTΣ ◦ . . . , where swapper transformation σ : TΣ ◦ ϕ → ϕ ◦ TΣ
come into play.

In the presentation we will provide concrete examples showing how these
structures can be used to model systems, their physical layout, and the influence
of subsystems on each other. In particular, we will demonstrate how failure resp.
wear and tear propagates and influences the overall behavior of the system and
its subsystems.
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2 Mathematical Structures

We will be using a fixed complete Heyting algebra L = 〈L,+, ·, 0, 1〉 as the
domain of membership values for L-fuzzy sets and relations. The induced order
on L will be denoted by ≤. An L-fuzzy subset M of a set A is a function
M : A→ L, and a binary L-fuzzy relation R on A is an L-fuzzy subset of A×A,
i.e., a function R : A×A→ L.

2.1 L-Fuzzy Contact Relations

Qualitative spatial reasoning (QSR) is an alternative approach for reasoning
about spatial entities by dealing only with qualitative features of those entities.
In particular, mereotopology is a mathematical theory that combines the two
aspects of being “part-of” and being in “contact to”. The first aspect is usually
modeled by a Boolean algebra B, and the second aspect by a binary contact
relation among regions resulting in the well-established theory of Boolean contact
algebras. For further information we refer to [1, 2, 6]. We will be using a fuzzy
version of BCAs by replacing the contact relation with an L-fuzzy relation. From
application point of view as related to a system-of-systems, such a B can be of
the form P ◦ TΣX, where P is the powerset functor, and Σ contains operators
typically representing measurement devices [4].

Definition 1. Let B = 〈B,+, ·,∗ , 0, 1〉 be a Boolean algebra. A binary L-fuzzy
relation C on B is called a contact relation if it satisfies

(C0) C(a, b) 6= 0 implies a, b 6= 0.
(C1) a 6= 0 implies C(a, a) = 1.
(C2) C(a, b) = C(b, a), i.e., C is symmetric.
(C3) b ≤ c implies C(a, b) ≤ C(a, c).
(C4) C(a, b+ c) ≤ C(a, b) + C(a, c).

The pair 〈B,C〉 is called an L-fuzzy Boolean contact algebra (FBCA). The
first axiom requires that the empty region is not contact (degree 6= 0) to any
region. The second axiom states that contact is reflexive for non-empty regions.
(C2) requires C to be symmetric. (C3) states that the degree of being in contact
increases if we enlarge one of the two regions, and, finally, the last axiom requires
that if a region a is in contact with a certain degree d to a region made out of
two parts b and c, then the join of the degrees of a being in contact to b resp. c
must be at least as big as d.

The proof of the following lemma is an easy exercise and, therefore, omitted.

Lemma 1. Let 〈B,C〉 be a FBCA. Then we have:

1. C(a, 0) = C(0, a) = 0.
2. 0 6= a ≤ b implies C(a, b) = 1.
3. a 6= 0 implies C(a, 1) = C(1, a) = 1.
4. C(a, b+ c) = C(a, b) + C(a, c).
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Occasionally, an additional axiom might be useful

(C7) C(a, a∗) = 1.

Please note that we kept the number of the axiom above consistent with the
numbering in the classical case. This axiom requires that every region is in full
contact (degree = 1) with its complement.

2.2 L-Fuzzy Influence Relations

In addition to the topological aspect of being in contact we are interested in the
influence of a defect in one part of a system on another part. We model this
aspect again by a binary L-fuzzy relation I. The intuition behind this relation
is as follows. If we have I(a, b) = d, then a defect in a influences the function of
b by the degree d.

Definition 2. Let B be a Boolean algebra. A binary L-fuzzy relation I on B is
called an influence relation if it satisfies

(I0) I(a, b) 6= 0 implies a, b 6= 0.
(I1) a 6= 0 implies I(a, a) = 1.
(I2) I(a, b) · I(b, c) ≤ I(a, c),
(I3) I(a, b+ c) ≤ I(a, b) + I(a, c).
(I4) I(b, a) + I(c, a) ≤ I(b+ c, a).

The pair 〈B, I〉 is called an L-fuzzy Boolean influence algebra (FBIA). As
above the first two axiom require that the empty region does not influence or
is influenced by any other region and that every non-empty region influence
itself fully. (I3) states that influence is a transitive relation in the L-fuzzy sense.
Please note that influence is not necessarily symmetric. For example, a defect in
a wheel bearing might influence the tire but not necessarily vice versa. (I3) is
similar to (C4). In particular, (I3) says that if a influences a region b + c by a
certain degree d, then d is smaller or equal the combined degree of a influencing
b resp. c. However, the situation becomes different if we consider the influence of
a region b+ c on any other region. (I4) requires that the influence that b+ c has
on a is at least as big as the sum of the individual influence. Please note that we
do not have a counterpart of (C3), i.e., monotonicity, in the second parameter
of the influence relation. For example, we may obtain a larger region or system
by duplicating the functionality of a subsystem, i.e., we consider region a and
a + a′ where a and a′ provide the same services. Obviously a ≤ a + a′ but a
total failure in a does not imply a total failure in a + a′, i.e., we do not have
I(a, a+ a′) = 1.

Besides some derived properties the following lemma shows that we do have
monotonicity in the first parameter of I.

Lemma 2. Let 〈B, I〉 be a FBIA. Then we have:

1. I(a, 0) = I(0, a) = 0.
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2. b ≤ c implies I(b, a) ≤ I(c, a).
3. 0 6= a ≤ b implies I(b, a) = 1.
4. a 6= 0 implies I(1, a) = 1.

The final structure of this section combines contact and influence.

Definition 3. Let B be a Boolean algebra, C be an L-fuzzy contact relation on
B, and I be an L-fuzzy influence relation on B. Then the structure 〈B,C, I〉 is
called an L-fuzzy Boolean contact influence algebra (FBCIA) iff

(IC) I(a, b) ≤ ∑
c∈B

C(a, c) · I(a, c) · C(c, b) · I(c, b).

The axiom (IC) says that the influence of a on b can be computed by tracking
the passage of influence along regions that are in contact with a and b.

The following lemma shows that the transitivity of I implies equality in (IC).

Lemma 3. Let 〈B,C, I〉 be a FBCIA. Then we have:

I(a, b) =
∑

c∈B
C(a, c) · I(a, c) · C(c, b) · I(c, b).
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Abstract. In this communication we study the polytope of 2-additive measures.
We obtain its combinatorial structure, namely the adjacency structure and the
structure of 2-dimensional faces, 3-dimensional faces and so on. From this infor-
mation, we build a triangulation of this polytope satisfying that all simplices in
the triangulation have the same volume. This allows a very simple and appealing
way to generate points in a random way in this polytope. Moreover, it permits us
to find the centroid of this polytope.

1 Introduction and main results

Consider a finite set X of n elements, X = {x1, ..., xn}. Elements of X are criteria in
the field of Multicriteria Decision Making, players in Cooperative Game Theory, and
so on. We will denote subsets of X by A,B, .... In order to simplify notation, we will
often use i1i2 · · · in for denoting the set {i1, i2, · · · , in} specially for singletons and
pairs. We also define

(
X
k

)
to be the set of all k-element subsets of X. Remember that

a fuzzy measure [3], [1], [7] is a set function µ : P(X) → [0, 1] satisfying µ(∅) =
0, µ(X) = 1 and µ(A) ≤ µ(B) whenever A ⊆ B. Fuzzy measures, together with
Choquet integral [1], have been proved to be a powerful tool applying to many different
fields, as Decision Making, Game Theory and Imprecise Probabilities among many
others (see e.g. [5] and the references therein). The reason of this success relies on the
fact that fuzzy measures are able to model situations that probability measures can not.

On the other hand, this wealth in terms of interpretation is paid with an increment
of the complexity needed to define a fuzzy measure. To cope with this problem, several
alternatives have arisen; one of them is to add additional constraints to the definition,
thus defining several subfamilies. Among the many subfamilies appearing in the litera-
ture, perhaps the most successful subfamily is the subfamily of k-additive measures [4],
and inside this subfamily, the most appealing case is the case of 2-additive measures.

The concept of k-additivity is based on the Möbius transform, an alternative rep-
resentation of fuzzy measures. The Möbius transform of µ is defined by m(A) :=∑

B⊆A(−1)|A\B|µ(B), ∀A ⊆ X. The Möbius transform gives a measure of the im-
portance of a coalition by itself, without taking account of its different parts. In this
sense, note that it could be difficult for an expert to assess values to interactions of
many palyers and interpret what these interactions mean. Then, it makes sense to re-
strict the range of meaningful interactions to coalitions of a reduced number of criteria.
This translates in the condition m(A) = 0 if |A| > k.
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Definition 1. [4] A fuzzy measure µ is said to be k-additive if its Möbius transform
vanishes for any A ⊆ X such that |A| > k and there exists at least one subset A of
exactly k elements such that m(A) 6= 0.

Specially appealing is the 2-additive case, that allows to model interactions between
two criteria, that are the most important interactions, while keeping a reduced complex-
ity. We will denote by FM2(X) the set of all fuzzy measures being at most 2-additive.

2 Combinatorial structure of FM2(X)

It can be easily seen that FM2(X) is a convex polyhedron, i.e. a polytope [2]. In this
section we tackle the problem of obtaining its combinatorial structure. First, the vertices
of FM2(X) have been obtained in [6] and are given in next proposition.

Proposition 1. The set of vertices of FM2(X) are given by the {0, 1}-valued fuzzy
measures in FM2(X), i.e. ui, uij , µij , that are defined by

uA(B) :=

{
1 if A ⊆ B
0 otherwise

, µij(B) :=

{
1 if i ∈ B or j ∈ B
0 otherwise

Then, FM2(X) has n2 vertices.

Next theorem gives a complete description of the combinatorial structure of
FM2(X). For this, we use the fact that a face can be characterized by the family of
vertices inside the face, because the face is given by the convex hull of these vertices.
Then, it suffices to characterize whether a collection of vertices determine a face.

Theorem 1. Combinatorial structure of FM2(X).
Let C be a collection of vertices of FM2(X). Then, the following are equivalent:

i) Conv(C) is a face of FM2(X).
ii) ui, uj ∈ C ⇔ uij , µij ∈ C.

From this theorem, the adjacency structure of FM2(X) can be derived in an easy
and fast way. For this, it suffices to remark that two vertices are adjacent if and only if
its convex hull if a 1-dimensional face (an edge) of the polytope.

Corollary 1. Let µ1 and µ2 be two different vertices of FM2(X). Then, µ1 and µ2

are adjacent vertices in FM2(X) except if µ1 = ui, µ2 = uj or µ1 = uij , µ2 = µij .

Let us denote by FC the face whose vertices are C. Now, we can describe any k-
dimensional face of this polytope. For this, we have to define consecutive pyramids.

For a convex polytope P and a non-collinear point x, called apex, we define a
pyramid with base P and apex x, denoted by pyr(P,x), to be the polytope which has as
vertices the vertices ofP and x. For a pyramid, observe that the apex is adjacent to every
vertex in P . Now, if we consider y 6∈ aff(pyr(P,x)), then y is an apex for pyr(P,x),
and we can define a new pyramid pyr(pyr(P,x),y), denoted cpyr(P, {x,y}). Iterating
this process, we can define a consecutive pyramid with apexes A = {x1, . . . ,xr},
denoted by cpyr(P,A).
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Theorem 2. Let FC be a face of FM2(X) and let us consider the following sets

U := {i ∈ X : ui ∈ C}, V := {ij ∈
(
X

2

)
: |{uij , µij} ∩ C| = 1}.

Then, the following holds:

i) If |U| ≤ 1, then FC is a simplicial face of dimension |C| − 1.

ii) If |U| > 1, then FC is a non-simplicial face of dimension
(|U|

2

)
+ |U|+ |V| − 1. If

V = ∅, then FC = FM2(U). Otherwise, FC = cpyr(FM2(U),V).

3 A random procedure for generating points in FM2(X)

The results developed before can be applied to derive a procedure for generating ran-
dom points uniformly distributed in FM2(X) based on triangulation methods. The
triangulation method is based on the decomposition of the polytope into simplices such
that any pair of simplices intersects in a (possibly empty) common face. Once the de-
composition is obtained, we assign to each simplex a probability proportional to its
volume. These probabilities are used for selecting one of the simplices. Finally, for the
chosen simplex, a random point in it is generated. The subjacent idea behind the tri-
angulation method is that generating points in a simplex is very easy and fast, as it is
enough to sample a point in the simplex X1 ≤ X2 ≤ · · · ≤ X(n2)+n and then do the
affine transformation Y = C · X + c0 that sends X1 ≤ X2 ≤ · · · ≤ X(n2)+n to the
desired simplex.

The difficult step in the triangulation method is to split the polytope in a suitable
way into simplices. For obtaining a triangulation in our case, we will apply that

1

2
ui +

1

2
uj =

1

2
uij +

1

2
µij .

Then, the following can be shown.

Lemma 1. Given µ ∈ FM2(X), it is possible to write µ as a unique convex com-
bination of vertices of FM2(X) in a way such that either uij or either µij has null
coefficient, for all pairs ij ∈

(
X
2

)
.

Hence, we obtain the following algorithm.

SAMPLING ALGORITHM FOR 2-ADDITIVE MEASURES FM2(X)

1. Choose randomly between uij and µij for any pair of elements ij ∈
(
X
2

)
.

2. Select a random point in the selected simplex.

Let us consider a partition {A−,A+} of
(
X
2

)
. SetA− denotes the pairs where uij is

selected andA+ the set of pairs where µij is chosen. There are 2(
n
2) possible choices for

{A−,A+}.By Lemma 1, this produces a partition of FM2(X). Next theorem shows
that indeed each element of this partition is a simplex.
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Theorem 3. Let ∆ be the collection of all the polytopes FM2
A−,A+(X) where

{A−,A+} is any possible partition of
(
X
2

)
. Then, ∆ is a triangulation of FM2(X).

Next step to show that the algorithm works is to prove that all these simplices
share the same volume. Thus, all of them have the same probability in the triangula-
tion method and it suffices to select one of them.

Proposition 2. Given {A−,A+}, then each simplex FM2
A−,A+(X) has the same vol-

ume in R(
n
2)+n−1.

As a corollary, we obtain the centroid of this polytope. For finding the centroid, we
use that the centroid of a simplex is the arithmetic mean of the vertices. Thus, as all
the simplices obtained in the triangulation share the same volume, it suffices to find the
centroids of all of them and compute the arithmetic mean. The following can be shown.

Proposition 3. The centroid of FM2(X) is given by µ given by

µ(B) =
|B|
n
.
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Stéphane Gonzalez1 and Aymeric Lardon2

1 GATE Lyon Saint-Etienne
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Abstract. We provide an axiomatic characterization of the core of games in ef-
fectiveness form. We point out that the core, whenever it applies to appropriate
classes of these games, coincides with a wide variety of prominent stability con-
cepts in social choice and game theory, such as the Condorcet winner, the Nash
equilibrium, pairwise stability, and stable matchings, among others. Our charac-
terization of the core invokes the axioms of restricted non-emptiness, coalitional
unanimity, and Maskin invariance together with a principle of independence of
irrelevant states, and uses in its proof a holdover property echoing the conven-
tional ancestor property. Taking special cases of this general characterization of
the core, we derive new characterizations of the previously mentioned stability
concepts.

1 Introduction

Many theorists in economics and political science have been occupied in studying a
wide variety of stability concepts in social choice and game theory for a century or
more. Generally speaking, these stability concepts are mainly founded on the idea that
given some prevailing state, individuals possess some blocking power to oppose that
state and exercise it when they have an interest to do so. A stable state is understood
to be a state for which no individual or group of individuals has the power to change
the status quo by choosing a more desirable situation. This arises, for example, in a
general equilibrium of markets where economic agents on both the demand and supply
sides do not have any incentive to alter their consumption or production decisions at the
given market price. In the same vein, elections in political systems rely on voting rules
(quorum, majority, etc.) that allow some coalitions of voters to impose their chosen can-
didate on the entire society. In like manner, equilibrium concepts for non-cooperative
games (Nash equilibrium, subgame perfect equilibrium, etc.) recommend a state robust
to deviations in strategy in both static and dynamic settings. Likewise, many solution
concepts for coalitional games (core, stable set, etc.) stress cooperative agreements on
utility allocation that no coalition would contest.

In this article, we consider the general framework of games in effectiveness form
(henceforth e-form games), first introduced by [11], which encompasses a vast range
of contexts, including voting problems, normal form games, network problems, and
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matching models, among others. The canonical e-form game has the following fea-
tures. A set N of players is equipped with preferences over a set A of states. Players
are mutually aware of each other’s preferences, can form coalitions, and sign binding
agreements to oppose a given state. In addition, the blocking power distribution among
coalitions is described by an “effectiveness function”; given a prevailing state a in A,
coalition S is effective if it can force all players to move from state a to some state in
B. Such a function specifies for every coalition S of players and subsetB ⊆ A of states
whether or not S is effective for B. Without going into details, this way of defining
the effectivity of coalitions is similar to the “inducement correspondence” introduced
by [5] and is more general than the notions of “effectivity function” and “effectiveness
relation” respectively proposed by [7] and [4]. The effectiveness function also corre-
sponds to a special case of the “local effectivity function” suggested by [1].

Since players can behave cooperatively to oppose a given state, the solution concept
we consider here is a version of the core of e-form games [11]. A state a is core-stable
if there are no coalition S of players and a subset B of states for which S is effective
for B at a and in which every player in S strictly prefers every state in B to a. The
most remarkable feature of the core is the fact that a wide variety of prominent stabil-
ity concepts in social choice and game theory, such as the Condorcet winner, the Nash
equilibrium, pairwise stability, and stable matchings, among others, coincide with the
core applied to some classes of e-form games by means of an appropriate effectiveness
function. More precisely, by fixing what constitutes the blocking power of coalitions,
we can express these stability concepts in terms of the core for a suitable class of e-form
games.

Despite the diversity of existing stability concepts such as those just mentioned,
very little is known about the properties that unify them. To address this issue, we pro-
pose to axiomatically characterize the core on a vast range of classes of e-form games.
Formally, the core is a correspondence that associates each e-form game with a (possi-
bly empty) subset of core-stable states. Perhaps unexpectedly, the core is characterized
on a wide range of classes of e-form games by a set of four axioms which are rea-
sonably weak and intuitive. “Restricted non-emptiness” requires that when the core is
non-empty, a solution to contain at least one state. “Coalitional unanimity” establishes
that if a state a is selected for an e-form game, then a must belong to any unanimously
best set of states B for players in some coalition S effective for B at a. If a state a is
selected for an e-form game, then “Maskin invariance” asserts that it is also selected in
an e-form game where a has (weakly) improved in the preference rankings of all play-
ers. “Independence of irrelevant states” specifies that if a state is selected for an e-form
game, then it is still selected when non-selected states are removed from the game. This
latter axiom is in line with other principles of independence widely used in character-
izations of game-theoretic solutions [8, 2, 3, 12, 13]. For some classes of e-form games
such as, for example, those derived from network problems, states cannot be removed
without withdrawing players associated with them. Our principle of independence per-
mits withdrawing such players when necessary.

We first show that if a solution is coalitionally unanimous and Maskin invariant,
then it is a subsolution of the core. Then, we prove that if a subsolution of the core is
non-empty and satisfies independence of irrelevant states, then it is the core, provided
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the class of e-form games satisfies a new property, called the holdover property, which
plays a key role in the proof of this statement. This property echoes the conventional
“ancestor property” and specifies that, given a state a in the core of an e-form game, it
is always possible to introduce additional states (and their associated players when nec-
essary) in such a way that the core of the new augmented e-form game only contains
state a. This methodology constitutes an alternative to the use of the so-called bracing
lemma, which is a typical consistency result for many game-theoretic models [14]. The
complementarity of these two approaches is highlighted in the paper.

Using the building blocks leading up to our axiomatic characterization of the core,
we provide new axiomatic characterizations of the Condorcet winner correspondence,
the Nash equilibrium correspondence, and the pairwise stability correspondence. This
mainly consists in reformulating our general axioms for specific classes of e-form
games underlying these stability concepts and showing that these classes satisfy the
holdover property. The Condorcet winner has recently been characterized by [6] with
axioms different from ours. As far as we know, the pairwise stability correspondence
has never been characterized axiomatically before. Our characterization of the Nash
equilibrium correspondence is compared with the existing ones proposed by [9] and
[10], allowing two other axiomatic characterizations to be established. By invoking
a consistency principle instead of an independence principle and applying a bracing
lemma in the framework of e-form games, we provide a second axiomatic characteriza-
tion of the core and apply it in the context of the stable matchings.
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Institute of Mathematics
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Abstract. In the contribution we concentrate on horizontal approach to
integration with level measures as a crucial point in the definitions of such
family of integrals. We discuss more general concept of level measures
based on sizes, recently introduced in [1] and we present its relation to
standard level measures. The potential application of this concept lies
for instance in decision making processes.

Many well-known integrals are defined through the so-called (super) level
measures µ({x ∈ X : f(x) > α}), which is shortly abbreviated by µ(f > α).
Y. Do and C. Thiele [1] introduced a new generalized concept of level measure
µ(s(f)〈E〉 > α) based on the notion of a size s that provides a new generalization
of level measure concept and integrals, as well. From another point of view the
subadditivity property of size was the motivation for a generalization of sublinear
means, see [3, Definition 3], and led to disscussion about the subadditiveness of
aggregation functions, nonadditive measures and integrals.

Let X be a topological space, EB the σ-algebra of Borel subsets of X and
B(X) the set of all complex-valued Borel-measurable functions on X. Couple
(X,EB) will be called Borel space.

Definition 1. Let (X,EB) be a Borel space. A size is a map

s : B(X)→ [0,+∞]EB

such that for any f, g ∈ B(X) and E ∈ EB it holds

(i) if |f | ≤ |g|, then s(f)(E) ≤ s(g)(E);
(ii) s(λf)(E) = |λ| s(f)(E) for each λ ∈ C;
(iii) s(f + g)(E) ≤ Cs

(
s(f)(E) + s(g)(E)

)
for some fixed Cs ≥ 1 depending only

on s.

Modifying the standard super level sets {x ∈ X : f(x) > α} for a function
f , Y. Do and C. Thiele [1] get a new quantity called super level measure. In the
following we present its definition. We are considering a subcollection E ⊂ EB

and suppose µ is a monotone set function on EB, i.e. µ : EB → [0,+∞] with
the condition m(∅) = 0 and µ(A) ≤ µ(B) for all A,B ∈ EB, A ⊆ B. The triple
(X,E, s) will be called a sub-Borel size space.
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Definition 2. Let (X,E, s) be a sub-Borel size space. The quantity

µ(s(f)〈E〉 > α) := inf

{
µ(a) : a ∈ EB, sup

b∈E
s(f1X\a)(b) ≤ α

}
, α > 0,

is called a super level measure of f ∈ B(X) with respect to monotone measure
µ on X, size s and subcollection E.

In [2], there is an example of a sub-Borel size space (X,E, s) and a monotone
measure µ onX with corresponding super level measure µ(s(f)〈E〉 > α) different
from any standard super level measure ν({x ∈ X : g(x) > α}). However, we shall
show that this is not the case when one may consider measures on a new space
Y . In fact, a hyperspace EB takes the role of a new space Y . Thus, a monotone
measure µ on X is transformed to a monotone measure mµ on EB, which is
defined for any F ⊆ EB by

mµ(F ) := inf{µ(a) : a ∈ EB \ F}.

Furthermore, a transformation of a size s and a function f ∈ B(X) with respect
to a collection E is a function tf : EB → [0,+∞] defined for any a ∈ EB by

tf (a) := sup
b∈E

s(f1X\a)(b).

Theorem 1 (Representation theorem). Let (X,E, s) be a sub-Borel size
space, µ being a monotone measure on X. Then for every f ∈ B(X) we have

µ(s(f)〈E〉 > α) = mµ({a ∈ EB : tf (a) > α}).

Following our previous work [2] we will study non-additive integrals based on
super level measures that were introduced recently in [1]. Especially, we focus
on the Choquet integral based on super level measures given by the formula

ICh(µ, s,E, f) :=

∫ ∞

0

µ(s(f)〈E〉 > α) dα.

Under some conditions (see [2, Proposition 5.4]), the previous formula can be
rewritten as the clasical Choquet integral with respect to standard level measure.
As the classical Choquet integral on discrete set (together with others well-known
integrals) it is useful in decision making processes, one can find the interpretation
of our more general concept in this area. The benefit of size-based integrals lies
in the fact that they take into account more interactions between elements on
basic set. This is related to the fact that while level measure may achieve at
most card(X) different values, super level measure can achieve up to 2card(X)

values.

Infimum is computed with respect to the set {µ(a) : a ∈ EB}, i.e., inf ∅ = max{µ(a) :
a ∈ EB} if it exists, otherwise inf ∅ = +∞. In discrete space, minimum of empty set
is infimum.
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Let X be the set of decision variables, X
f−→ [0, 1] be a map called fuzzy subset of

X , and let X z−→ [0,+∞] be an object function. We ask the following

Question. Find the supremum of the restriction of z to f — i.e. the join of the image
of f under z.

Problems of this type arise in stochastic linear programming where f is given by the
probability distribution of a random set determined by stochastic restrictions (e.g. un-
certainty in agriculture expressed by weather conditions).

A solution can be obtained provided we understand the nonnegative extended real
line [0,+∞] as a right Q-module w.r.t. a unital quantale on [0, 1] — i.e. Q = ([0, 1], ∗, e)
(cf. [1]).

Let [0, 1]op be the real unit interval provided with the dual order. Since

[0,+∞]
exp(− )−−−−−−→ [0, 1]op

is an order isomorphism, on [0, 1]op we consider the right action given by the right
implication ↘ on [0, 1]. Then [0,+∞] is a right Q-module w.r.t. the right action �
defined by:

x� α = − ln
(
α↘ exp(−x)

)
, x ∈ [0,+∞], α ∈ [0, 1].

Hence the supremum of z restricted to f has the form:

sup
x∈X

z(x)� f(x)

and is attained at some decision variable x0 under certain continuity assumptions.

Special Cases (a) If we consider the Łukasiewicz arithmetic conjunction ∗ on [0, 1],
then the supremum has the form:

sup
x∈X
− ln

(
min

(
1− f(x) + exp(−z(x)), 1

))
.

(b) If we consider ∗ = min on [0, 1], then the supremum has the form

sup{z(x) | x ∈ X and − ln(f(x)) < z(x)}.
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P. J. Šafárik University in Košice, Slovakia

ondrej.hutnik@upjs.sk
anton.hovana@student.upjs.sk

Abstract. We describe new functionals which deserve to be called an integral
and relate them with the measuring of scientific productivity and impact. The
first one is based on an iteration of Sugeno integral and provides a generalization
of upper and lower 2-h-index introduced in [8]. The second integral is a variant of
Sugeno integral with respect to super level measure – a recent concept introduced
and studied in [4].

1 Introduction

The idea of applying citation analysis in scientific quality control is quite old (in fact,
going back to 1920’s). Citations reflect the intensiveness of information use and may
be conceived as manifestations of papers’ recognition among the scientific community.
The need for assessment, ranking, or just indication of prominent individual authors
appear in many contexts, e.g. in research policy, funding, and scientometrics. Such a
process classically bases on a proper aggregation of the citations number received by
author’s publications. Thus, it uses some kind of combination of citations to obtain a
single numeric value which is representative (in some sense) for the whole input.

The most popular citation index is the Hirsch index [5] taking into account the qual-
ity of individual papers as well as their number. The resulting h-index is a symmetric,
integer-valued function monotonic with respect to each aggregated variable, and also
with respect to the length of the input vector. More precisely, let

S = {(x1, . . . , xn); n ∈ N, xi ∈ N0, x1 ≥ x2 ≥ . . . xn}.

In scientometrics, the value xi usually represents the number of citations of the ith
most cited paper of a scientist represented by the citation sequence x. The h-index is a
function H : S → R such that

H(x1, . . . , xn) =

{
max{h = 1, . . . , n;xh ≥ h}, x1 ≥ 1,

0, otherwise.

Equivalently, H(x1, . . . , xn) = max{min{x1, 1}, . . . ,min{xn, n}}. Many properties
of such aggregation function is already known. Torra and Narukawa in [9] showed that
the h-index is a special case of the discrete Sugeno integral with respect to the counting
measure µ#.
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Despite the great success of h-index in various contexts where there is a need to
combine quality and quantity of agents represented by non-negative numeric lists into
a single number, h-index has some unpleasant defects. For instance, it does not dif-
ferentiate between papers with no citations and non-existing papers, also h-index is
insensitive to a large number of papers with relatively small number of citations, etc.,
see e.g. [8]. Several approaches towards how to compensate some of the defects of the
h-index without neglecting its “spirit” are known in the literature.

In this contribution we aim to describe the following two new approaches based on
the integral representation of h-index (as the discrete Sugeno integral):

(i) motivated by the work [8] (as well as other works on indices) we extend the upper 2-
h-index and lower 2-h-index defined therein to the general case of upper n-Sugeno
integral and lower n-Sugeno integral, respectively;

(ii) motivated by the research started in [4] we discuss the size-based Sugeno integral
defined via the super level measure concept.

Both approaches are briefly described in what follows. First, we introduce some nota-
tion: (Ω,A) is a measurable space with A being a σ-algebra of subsets of a non-empty
set Ω. The class of all A-measurable functions f : Ω → Y, where Y = [0, ȳ] for
0 < ȳ 6 +∞, is denoted by F(Ω,Y ). Usually, we take ȳ = 1 or ȳ = +∞. A monotone
measure on A is a nondecreasing set function µ : A → [0,+∞], i.e., µ(A) 6 µ(B)
whenever A ⊂ B with µ(∅) = 0 and µ(Ω) > 0. The range of µ we write as µ(A).
and the class of all monotone measures on (Ω,A) we denote by M(Ω,A). Hereafter,
a ∧ b = min(a, b) and a ∨ b = max(a, b).

2 Iterated Sugeno integrals

We say that ◦ : Y × Y → Y is an admissible fusion map if it is nondecreasing in each
variable and 0 ◦ a 6 a for all a ∈ Y. The most important examples are: the addition,
multiplication, conjunctive and disjunctive averaging aggregation, semicopula, copula,
t-norm, t-semiconorm and fuzzy conjunction. The iteration process is then defined as
follows.

Definition 1. Let ◦ be an admissible fusion map, (µ, f) ∈ M(Ω,A) × F(Ω,Y ), and
n > 1. The upper n-Sugeno integral is defined using the recurrence

Su◦n+1(µ, f) := sup
t∈Y

{
(t ◦ Su◦n(µ, f)) ∧ µ({f > t})

}
,

with the initial condition Su◦1(µ, f) := Su(µ, f), the standard Sugeno integral of f wrt
µ.

One can show that the upper n-Sugeno integral has several properties of the Sugeno
integral. We study the basic properties and provide sufficient and necessary conditions
for validity of some of them (e.g. minitive/maxitive comonotonicity, subadditivity, etc.).

A natural counterpart is the lower n-Sugeno integral defined as follows. We say that
? : [0,+∞] × Y → [0,+∞] is a link map if it is nondecreasing in each variable and
0 ? a 6 a for all a ∈ Y .
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Definition 2. Let ? be a link map and (µ, f) ∈ (M(Ω,A),F(Ω,Y )) and n > 1. The
lower n-Sugeno integral is defined by

Sun? (µ, f) := sup
t∈Y

{
t ∧
(
µ({f > t}) ? Sun−1? (µ, f)

)}
,

where Su1
?(µ, f) := Su(µ, f).

Again, the lower n-Sugeno integral possesses some basic properties of the Sugeno
integral. Interestingly, we can use them to compute certain pseudo-decomposition in-
tegrals, however, we do not include these results here. We demonstrate that the up-
per/lower 2-Sugeno integrals generalize some known scientometric indices:

(i) Evidently, Su+
2 (·) is the upper 2-h-index

Hu2 = max
k

{
(k + H) ∧ xk

}
,

if Y = [0,+∞] and µ = µ# is the counting measure. Here, H is the h-index of the
citation sequence x ∈ S. Clearly, Su2

?(f) is equal to the lower 2-h-index, cf. [8],

Hl2 = max
k

{
k ∧ (xk + H)

}
.

(ii) We assume a ◦ b = λa, where Y = [0,+∞] and λ > 0 is a fixed constant. Then
the upper 2-Sugeno integral is equal to hλ-index introduced by Van Eck [10].

(iii) The map a ◦γ b = aγ for Y = [0, 1] or Y = [0,+∞] leads to the index proposed
by Lehmann et al [7] for γ > 0 and provide the h(2)-index defined by Kosmulski
[6] for γ = 2 in the form

Su
◦γ
2 (a1A) = ap ∧ µ(A).

(iv) Functional defined Su∞+ (f) := supn Sun+(f) gives the number of publications with
at least one citation.

3 Super level measure-based Sugeno integrals

Further extension of scientometric indices can be done using the concept of integrals
based on super level measures. In this concept the integrated function is modified by a
certain mapping called a size. For that reason we consider the Borel algebra EB of sets
of Ω, the set B(Ω) of all real-valued Borel-measurable functions on Ω and a collection
E of subsets of X .

Definition 3. A size is a map s : B(Ω) → [0,+∞]EB such that for any f, g ∈ B(Ω)
and E ∈ EB it holds

(i) if |f | ≤ |g|, then s(f)(E) ≤ s(g)(E);
(ii) s(λf)(E) = |λ| s(f)(E) for each λ ∈ R;

(iii) s(f + g)(E) ≤ Cs

(
s(f)(E) + s(g)(E)

)
for some Cs ≥ 1 depending only on s.
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Thus, the size may be viewed as a kind of an aggregation operator. The most com-
monly used sizes are the supremum size s∞(f)(E) = supx∈E |f(x)| and Lp-based
size

s
(L)
Λ,p(f)(E) :=

(
1

Λ(E)

∫

E

|f(x)|p dΛ(x)

) 1
p

, p > 0,

with Λ being the Lebesgue measure. However, non-additive integrals can also be used
as sizes, see [4]. The main ingredient of the theory is the super level measure concept
(as a generalization of level measure).

Definition 4. The quantity

µ(s(f)〈E〉 > α) := inf

{
µ(F ) : F ∈ EB, sup

E∈E
s(f1Ω\F )(E) ≤ α

}
, α > 0,

is called a super level measure of f ∈ B(Ω) with respect to a monotone measure
µ : EB → [0,+∞], a size s and a collection E.

Super level measure can coincide with the measure of the upper level set. For in-
stance, this is the situation of s∞ as well as s(L)Λ,p. In general, they differ, e.g. for the size
generated by non-additive integrals of Shilkret and Choquet. The size-based Sugeno
integral is then defined in a standard way, i.e.,

ISu(µ, s, f,E) := sup
α>0

α ∧ µ(s(f)〈E〉 > α).

Considering various sizes and collections we can get interesting functionals. We study
certain concrete cases and their interpretation.

A computation of super level measure (the most important part in integral computa-
tion) is a challenging problem. However, it seems possible to provide a simple algorithm
for super level measure computation in some specific situations, for instance on a dis-
crete universe X , see the recent paper [2]. Since scientometric indices are exactly this
case, we mention a modification of the above approach.

Example 1. Let Ω = {1, . . . , n} with the counting measure µ#. For a vector x =
(x1, . . . , xn) consider a size-transform X of x of the form Xi = s(x1Ei)(Ω) with
i = 1, 2, . . . , n and collection E = {Ei; i = 1, 2, . . . , n} with Ei = {1, 2, . . . , i}.
Then the size-based Sugeno integral takes the form

ISu(µ#, s,x,E) = sup
α>0

α ∧ µ#({i ∈ X;Xi ≥ α}),

which corresponds to the standard Sugeno integral of X wrt µ#. Regarding a scien-
tometric interpretation, size and collection can bring a new information (requirement),
e.g. weighting the citation input by quality of journals in which the corresponding cita-
tion appears, etc. We discuss these issues in our presentation.

Acknowledgement. This work was supported by the Slovak Research and Develop-
ment Agency under the contract No. APVV-16-0337. The first part (iterated Sugeno
integral) is a joint project with M. Boczek and M. Kaluszka, see [1].
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P. J. Šafárik University in Košice, Slovakia
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Abstrakt We focus on the specific class of universal integrals based on copu-
las, which resembles mean value of continuous random variable. We point out
the important property of copulas, which has essential effect on integration. We
illustrate it on examples.

1 Introduction

Copulas are mathematical objects that fully capture the dependence structure among
random variables. For comprehensive summary see [1]. They can be helpful in the filed
of multicriterial decision making. Therefore, from current constructions of universal
integrals based on copulas3, see [3,4], we will focus on the following specific class,
the form of which resembles mean value of continuous random variable ξ with support
[0, 1]

E[X] =

∫ 1

0

tfξ(t) dt =

∫ 1

0

P (ξ ≥ t) dt.

Similarly, the mean value of an integrable function g : [0, 1]→ [0, 1] is given by

E[g] =

∫ 1

0

λ(g ≥ t) dt =
∫ 1

0

g(t) dλ(t),

where λ(g ≥ t) := λ({x ∈ [0, 1] : g(x) ≥ t}) and λ denotes Lebesgue measure.
In further, we assume that X 6= ∅ is a set (a universe), A is a σ-algebra in X

and m : A → [0, 1] is a monotone measure (non-additive, in general) such that

3 Original definition of a bivariate copula in probabilistic terms is stated as follows: C :
[0, 1]2 → [0, 1] is a 2-dimensional copula if C is a joint cdf of a 2-dimensional random vector
on [0, 1]2 with uniform marginals. Notice that in analytic terms it can be equivalently defined
by

(i) C(0, x) = C(x, 0) = 0, (groundedness);
(ii) C(1, x) = C(x, 1) = x, (normalized marginals - neutral element);

(iii) (∀a, b, c, d ∈ [0, 1])(a ≤ b, c ≤ d) C(b, d) − C(a, d) − C(b, c) + C(a, c) ≥ 0, (2-
increasingness or rectangle inequality).
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m(∅) = 0, m(X) = 1, and f : X → [0, 1], representing the input to be aggrega-
ted, is A-measurable function. Previous ideas force us to define distribution function
hm,f : [0, 1] → [0, 1] of a A-measurable function f , as hm,f (t) := m({x ∈ X :
f(x) ≥ t}). Obviously, hm,f is non-increasing (therefore Borel measurable) and satis-
fies hm,f (0) = 1. We define also sets

∆−hm,f := {(t, y) ∈ [0, 1]2; y < hm,f (t)}
and

∆+
hm,f

:= {(t, y) ∈ [0, 1]2; y ≤ hm,f (t)}.
Very important fact for our purposes is a bijection4 between the space of copulas

and space of specific5 probability measures. Its immediate consequence is that the two
probability measures are different (and, therefore, incomparable) whenever associated
copulas are different.

Since independence copula Π(x, y) = xy generates two-dimensional Lebesgue
measure PΠ = λ2, one has

E[g] = PΠ

(
∆+
hλ,g

)
= λ2

(
∆+
hλ,g

)
=

∫∫

∆+
hλ,g

dλ2,

i.e., the Lebesgue measure of the hypograph of the map hλ,g . Motivated by this obser-

vation we may consider EC,m[f ] = PC

(
∆+
hm,f

)
with arbitrary copula C and measure

m, whereas clearly ∆+
hm,f

is Borel measurable for all m and f .

Definition 1. Let C be a bivariate copula. Mappings K−C ,K
+
C given by

K−C(m, f) := PC

(
∆−hm,f

)
,

K+
C(m, f) := PC

(
∆+
hm,f

)
,

are called a strict and weak C-universal integral on [0, 1].

This approach was already given by [2] as generalized fuzzy integral. Notice that by
choosing adequate copulas C, we obtain some well-known types of integrals. Here E is
arbitrary Borel subset of [0, 1]2. For copulaΠ one obtains Choquet integral

∫ 1

0
hm,f (t) dt.

Moreover, for minimum copula M(x, y) = min(x, y) we have PM (E) = λ({x ∈
[0, 1] : (x, x) ∈ E}), which thanks to monotonicity of hm,f implies Sugeno integral
supt∈[0,1] min(t, hm,f (t)). IfC equals the Lukasiewicz copulaW (x, y) = max(x+y−
1, 0) it reduces to opposite-Sugeno integral with PW (E) = λ({x ∈ [0, 1] : (x, 1−x) ∈
E}).

4 Every bivariate copula C induces a doubly stochastic measure PC on the measurable space
([0, 1]2,B([0, 1]2)) defined on the rectangles R :=]u1, v1[×]u2, v2[ contained in [0, 1]2, by
PC(R) := VC(R) = C(v1, v2)−C(u1, v2)−C(v1, u2) +C(u1, u2). Conversely, to every
doubly stochastic measure µ on ([0, 1]2,B([0, 1]2)) there corresponds a unique bivariate co-
pula C defined by C(u, v) := µ(]0, u[×]0, v[).

5 A measure µ on ([0, 1]2,B([0, 1]2)) is said to be doubly stochastic if µ([0, 1]×A) = µ(A×
[0, 1]) = λ(A) for each A ∈ B([0, 1]). In other words, the image measure of µ under any
projection equals the Lebesgue measure on the Borel sets of [0, 1].
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2 Basic properties

Clearly we have K−C(m, f) =
∫∫
∆−
hm,f

dC and also K+
C(m, f) =

∫∫
∆+
hm,f

dC. Howe-

ver, this formulas can not be used for direct computation very often. This is because not
all copulas are absolutely continuous6. If a copulaC : [0, 1]2 → [0, 1] is absolutely con-
tinuous, then there exists a density function (suitable integrable function) c : [0, 1]2 →
[0,+∞) such that C(x, y) =

∫ x
0

∫ y
0
c(u, v) dudv, where c(u, v) = ∂2

∂u∂vC(u, v) holds
for almost all (u, v) ∈ [0, 1]2. One can conclude that for absolutely continuous copulas
K±C(m, f) equals ∫ 1

0

∂C

∂t
(t, y)|y=hm,f (t) dt, (1)

i.e. equals conditional probability Pr(Y ≤ hm,f (X)|X = x). We see that for absolu-
tely continuous copula (1) is uniquely defined. Natural question is, when the integrals
K±C(m, f) equals (1), i.e. equals integral over conditional probability? It can not be
true in general. Notice that for Borel measurable function h it can happen that func-
tion ∂C

∂t (·, hm,f (·)), (as a function of one variable ·) changes on the set which is not
of measure zero in [0, 1]. This means that (1) can return more than one value. Partial
answer was given by [4, Proposition 4], where sufficient and necessary condition says
that the support of singular part of copula consists only graphs of monotone increasing
functions.

Example 1. For Lukasiewicz copula W and fixed f(x) = 1 − x, x ∈ [0, 1] it is not
possible to use formula (1) directly. One can show that K+

C(m, f)1 6= 0 = K−C(m, f).

The key role in previous example is that the support7 of the singular part contributes
considerably to the integration because of the intersection with the graph of distribution
function hm,f . Another example, see [1], is copula Ci(u, v) = min

(
u, v, u

2+v2

2

)
is

singular and its support consists of the two quarter circles in [0, 1]2 (each with radius 1,
centered at (1, 0) and (0, 1)), see Figure 1.

Naturally if this is not true, then one can expect that both integrals coincide. This
illustrates next example.

Example 2. For copula Ci we have

K+
Ci(m, f) = K−Ci(m, f) =

∫

Ω

1 dt+

∫

V

tdt = λ(Ω) + λ2(V2),

where
Ω =

{
t ∈ [0, 1] : hm,f (t) >

√
t(2− t)

}
,

V =
{
t ∈ [0, 1] :

√
t(2− t) < hm,f (t) < 1−

√
1− t2

}

6 A copula C will be called absolutely continuous (respectively, singular) if so is the measure
PC induced by C with respect to λ2, i.e., if PC = µac

C (respectively, PC = µs
C).

7 The support of copula C is the support (or spectrum)of the doubly stochastic measure PC

induced by C on ([0, 1]2,B([0, 1]2)), i.e., the largest (closed) subset of [0, 1]2 for which every
open neighbourhood of every point of the set has positive measure.
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Obr. 1. Copula Ci with singular support.

and V2 =
{
(t, u) ∈ [0, 1]2 : t ∈ V, 0 ≤ u ≤ t

}
. E.g. for f(t) = 1 − t and m = λ

we have K+
Ci(λ, 1 − t) =

(
1−

√
2
2

)
+
(√

2
2 − 1

2

)
= 1

2 and the same result holds for

K+
Ci(λ, 1− t).
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copulas. Preprint (2013).

60



Asymmetry of copulas arising from shock models
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Abstract. We study the asymmetry (or nonexchangeability) of copulas with em-
phasis on copulas arising from shock models. The main contribution is the max-
imal asymmetry function for a family of copulas. We compute this function for
the major families of shock-based copulas, i.e. Marshall, maxmin and reflected
maxmin (RMM for short) copulas and also for some other important families.
We also give the statistical interpretation of shocks in a given model at which the
maximal asymmetry measure bound is attained.

A very important class of (bivariate) copulas for applications are those arising from
shock models: Marshall copulas, maxmin copulas, and reflected maxmin copulas (RMM
for short). These copulas have a long history starting with [24] and [23] and going up
to [17], say, where an extensive overview of these methods is given together with an
appropriate bibliography. A comprehensive list of references of concrete applications
of shock-based copulas would be too long to present here, so let us limit ourselves to
four of them, relatively recent ones and in quite different fields: [20, 1, 7, 13]. Note that
our investigations are not only of a theoretical interest, but also of a practical impact
in the construction of statistical models (in a parametric as well as non-parametric con-
text). When choosing the right copula for the data at hand a key point is to distinguish
the family that describes the phenomenon behind the data at the best. In this respect,
a better choice of the copulas could be obtained when the information about the non-
symmetry of the data (measured, for instance, in a nonparametric way by means of the
empirical copula) is also taken into account (cf. [6, Section 5] where this point is further
discussed).

One of our main contributions is a systematic application of the maximal asymmetry
function on a given family of copulas. This function is computable for all the families
that we are considering and it is helpful not only in determining the sharp bound of
measures of asymmetry for a given family, but also in the detailed analysis of shocks
in a given model at which the bound is attained. This brings us to another important
contribution of ours, the statistical interpretation of shocks in these models. We believe
this approach is helpful to practitioners in search of the copulas that will fit their data
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the best and simultaneously the models they are hoping for. So, when one has measured
the asymmetry of the data at hand and established a statistical hypothesis on the studied
phenomenon, one can compare using our approach whether the pattern of occurrences
of the shocks given the asymmetry allows for the desired conclusion.

Exchangeability is an important concept in probability theory extending the notion
of independence. Investigations in this direction were initiated in the 1930’s simultane-
ously with the search for a general axiomatic approach to probability and started with a
famous result of de Finetti (cf. [3, 4, 15]) later extended by Hewitt and Savage [12]. A
recent result in this area in connection with copulas is given by Mai and Scherer [21],
where an interested reader may also find an excellent overview of the subject together
with extensive bibliography.

However, our aim is not so much to study exchangeability as the lack of it, a subject
that had attracted little attention up to the point when Klement and Mesiar [16] and
Nelsen [26] noticed it only a dozen of years ago.

Many classical copulas are symmetric, (sometimes also called exchangeable due
to reasons given above): Archimedean and meta-elliptical copulas are prime examples.
Observe that two of the most important copulas, the Fréchet-Hoeffding lower bound,
respectively upper bound, W (u, v) = max{0, u + v − 1}, respectively M(u, v) =
min{u, v} (being so called due to the fact that W (u, v) ≤ C(u, v) ≤ M(u, v) for ev-
ery copulaC and all u, v ∈ [0, 1]) are symmetric. Also, the independence of two random
variables is being modeled via the product copulaΠ(u, v) = uv which is also symmet-
ric. So, in view of the classical exchangeability results one might vaguely think of more
asymmetric copulas as modeling more dependent relations among random variables.

Copula C(u, v) is called positive quadrant dependent (PQD for short) ifΠ(u, v) ≤
C(u, v) for all u, v ∈ [0, 1], and it is negative quadrant dependent (NQD for short) if
C(u, v) ≤ Π(u, v) for all u, v ∈ [0, 1]. We denote by C, respectively P , respectively
N , the set of all copulas, respectively PQD copulas, respectively NQD copulas. For any
C ∈ C we denote by Ct the copula defined by Ct(u, v) = C(v, u) for all u, v ∈ [0, 1]
(so that C is symmetric if and only if C = Ct). The maximal asymmetry function for
any particular family of copulas is defined as the point-wise supremum of all possible
differences of |C − Ct| when C runs through the given family. Klement and Mesiar
[16] were using this notion only on the family C. We refer to monographs [10, 14, 22,
25] for further details on copulas.

In practice dependence is often asymmetric, as data collected from the real world
may exhibit. This necessitates developing asymmetric copulas that can model such data
and it also urges the study of various measures of asymmetry that may help the practi-
tioners to decide about which copulas to choose in their models according to the data.
This line of study of copulas was started by Klement and Mesiar [16] and Nelson [26],
as already mentioned. These papers started a vivid interest in the subject. De Baets,
De Meyer, and Mesiar [2] present an asymmetric version of semilinear copulas as an
asymmetric version of the previously introduced symmetric version of this family. Du-
rante, Klement, Sempi, and Úbeda-Flores [5] introduce a measure of asymmetry µ in
general and µp for p ∈ [1,∞] in particular. It is shown in [16, 26, 11] that µ∞(C) ≤ 1

3
for C ∈ C and that the bound is attained so that 1

3 is the sharp bound of asymmetry
measure µ∞ of the set C. Similarly, the sharp bound of asymmetry measure µ∞ for the
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set P was given in [2] and the sharp bound of asymmetry measure µ∞ for the set N
was given in [9].

One of our important contributions is the actual computation of the sharp bounds
of asymmetry measure µ∞ for the classes of copulas arising from shock models. Our
results show that the maxmin copulas do not seem to be more asymmetric than the
Marshall copulas since their maximal asymmetry is equal and equals 4

27 (≈ 0.148).
This is (slightly) less than the maximal asymmetry 3 − 2

√
2 (≈ 0.172) of the family

PQD copulas to which they both belong. The maximal asymmetry of the RMM copulas
equals 3 − 2

√
2. This is slightly less than

√
5 − 2 (≈ 0.236), the maximal asymmetry

of the family of NQD copulas to which it belongs.
We follow Klement and Mesiar [16] and define function d∗F : [0, 1]×[0, 1]→ [0,∞)

that we call the maximal asymmetry function of the family of copulas F . Its value at a
fixed point (x, y) ∈ [0, 1]× [0, 1] is given by

d∗F (x, y) = sup
C∈F
{|C(x, y)− C(y, x)|} .

Klement and Mesiar showed that d∗C(x, y) = min{x, y, 1 − x, 1 − y, |x − y|}. We
show that the maximal asymmetry function of the family P of PQD copulas is equal to
d∗P(x, y) = min{x(1− y), (1− x)y, |x− y|}.

Furthermore, the family of copulas Pλ(x, y) = max{M(x, y − λ), xy} for λ ∈
[0, 1] is such that

d∗P(x, y) = |Pλ(x, y)− Pλ(y, x)|
for all x, y ∈ [0, 1] with |x− y| = λ.

Maximal asymmetry function of the familyN of NQD copulas is equal to d∗N (x, y) =
min{xy, (1 − x)(1 − y), |x − y|}. Furthermore, the family of copulas Nλ(x, y) =
max{W (x, y),min{y − λ, xy}} for λ ∈

[
0, 12

(
3−
√
5
)]

is such that

d∗N (x, y) = |Nλ(x, y)−Nλ(y, x)|

for all x, y ∈ [0, 1] with |x+ y − 1| = µ, where µ = 1−3λ+λ2

1−λ and µ ∈ [0, 1].
We give similar results also for the three families of copulas that appear in shock

models.
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1 Introduction

Typically a (cooperative) game measures the ‘worth’ of any subgroup of individuals.
This value can be interpreted as the productivity of the subgroup under consideration
when investing time and effort in a particular enterprise, its social or political power,
etc. Often times though there are multiple enterprises that could be invested in while
the resources, say time, are constrained. In such scenarios there are many different
time allocations to each of the different projects, each of which resulting in a different
outcome. It seems that if one wishes to model such tradeoffs without pre-committing to
a specific time allocation, and thereby to a specific level of production in each project,
one needs to consider a more general notion of a game than the classical ones.

In this paper we introduce and study the concept of set-valued games: each subgroup
of individuals is associated with a set of real valued vectors. The set of vectors associ-
ated with a subgroup is all production possibilities across the different enterprises. Note
that this approach does not take a stand on the aggregation of (or preferences over) pay-
offs across the different agendas as in existing work on multi-agenda disputes. We seek
to study the primitive, as opposed to the reduced form, and wish to consider a model
that is robust to the aggregation process. As in the classical theory, we address the issue
of allocation. The appropriate notion of the core of a set-valued game is defined and
analyzed.

For the sake of clarity of our results, consider a grand group of N individuals that
have to invest in k enterprises. A set-valued game (henceforth SVG) is a function v that
associates a subset v(S) ⊆ Rk

+ for every subgroup (or coalition) S of individuals out of
N . Under the classical notion of a game, k = 1 and v(S) is a singleton. The interpreta-
tion behind an SVG v is the following. Every x ∈ Rk

+ is a vector of production levels
for each of the k projects. A coalition can produce the bundle x = (x1, ..., xk) if by
distributing their limited resources (say one unit of time) across the different projects,
they can accomplish x` of project `, for every ` = 1, ..., k. If x ∈ Rk

+ is indeed pro-
duceable by coalition S (in one time unit), then x ∈ v(S). A member of the core of an
SVG is a payoff for each player for each of the k enterprises, that is feasible (that is, in
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v(N)), and such that no coalition can deviate and do better by itself in every one of the
k enterprises.3

We start by paying specific attention to a special class of SVGs called multi-game
based. An SVG in this class is a convex span of k (classical) games. Formally, letting
v` be the `th game in the base of the SVG v, the value of a coalition S is all vectors for
which the `th production component is α`v`(S) (where the α`’s are non-negative and
sum to 1). This corresponds to production output being linear in effort. For this class of
games, it is interesting to see the relation between our solution concept and the cores of
the individual games (which are the base of the SVG), and between our notion of a core
and existing approaches to allocation in multi-agenda disputes, in which the payoffs
across agendas are aggregated uniformly.

We provide the following results. First, we show that it is possible that while the
cores of all base games, and of the sum of these games, are all empty, the core of the
SVG itself is not empty. We further show that if the cores of all base games are non
empty, then the convex span of these cores are a subset of the core of the SVG. In ad-
dition, this containment could be strict. In particular, we prove that whenever the cores
of the base games all consist of a single allocation, then there is always a possibility
of logrolling (e.g., the trading of favors such as vote trading by legislative members)
among several individuals that is not possible when resorting to previous approaches
These results indicate that the approach and solution concept presented here are con-
ceptually different than the existing approaches, and allow for more cooperation.

We then provide a non Bondareva-Shapley result: an appropriate definition of bal-
ancedness, that serves as a characterization of core non-emptiness in the classical coop-
erative games setup, is a sufficient condition for the core of an SVG being non-empty,
but it is not necessary. An example is provided in which an SVG has a non-empty core
while it is not balanced. We point to the fact that a characterization in the current setup
can not rely on convexity and duality considerations as in Bondareva-Shapley. A char-
acterization where duality technique can be applied is provided at the end.

2 Set-Valued Games

2.1 The definition

A set-valued game is a generalization of the notion of a game. For some k ∈ N, a
set-valued game associates to each coalition a subset of vectors in Rk

+.

Definition 1. A set-valued game (SVG) over a collection N of players, is a function
v : 2N → 2R

k
+ defined over all subsets of N , and satisfies:

1. v(∅) = {0};
2. Closedness. For every S ⊆ N , v(S) is a closed set;
3. Comprehensiveness. If x ∈ v(S) and y ∈ Rk

+ is such that4 y ≤ x, then y ∈ v(S).
3 Note that this is consistent with the approach that no particular aggregation of the payoffs

across games is considered.
4 y ≤ x means that yj ≤ xj for every j = 1, ..., k.
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2.2 Set-valued and classical games

The values that an SVG takes are subsets of Rk
+. A (classical) game, on the other hand,

is defined, like an SVG on subsets of N , but takes numbers as values. However, there is
a natural connection between the two notions. A game v is related to SVG v that takes
values in R+, that is, k = 1. In this case the values that v takes are closed intervals
whose left side in 0. The game associated with such v is defined as v(S) = maxv(S)
for every S ⊆ N . And vise versa: if v is a game then the SVG associated with it is the
one defined as v(S) = [0, v(S)] for every S ⊆ N .

3 The Core of an SVG

Let (xi)i∈N , where xi ∈ Rk, i ∈ N and let S ⊆ N Define, x(S) =
∑

i∈S x
i.

Definition 2. The core of an SVG v is defined as,

CORE(v) :=

{
(xi)i∈N ; (a) for every i ∈ N, xi ∈ Rk

+;

(b)
∑

i∈N
xi ∈ v(N); and

(c)∀S ⊆ N, x(S) ∈ if y ∈ v(S) and y ≥ x(S), then y = x(S)

}
.

When (xi)i∈N is in the core of v, member i of N would get the share xi, which is
a vector in Rk. That is, a core member is a “payoff” to each player for each of the k
agendas. The total share of all the members of N is a feasible vector, namely in v(N).
Finally, it maintains stability in the sense that there is no coalition S that could find a
better y ∈ v(S). That is, there is no y ∈ v(S) that dominates (Pareto) the total share of
the S-members,

∑
i∈S x

i.

4 The Concave and Choquet Integrals w.r.t. SVCs

Definition 3. Let v be an SVC and5 X ∈ Rn
+. The concave integral of X w.r.t. v is

∫ cav

Xdv =

{∑̀

j=1

αjyj ;
∑̀

j=1

αj1Aj
≤ X, yj ∈ v(Aj), αj ≥ 0, Aj ⊆ N, j = 1, ..., `

}
.

The concave integral has a natural interpretation in the context of production. In-
deed, an SVC, v, reflects the different production possibilities of every coalition (given
one unit of time). Then, if each individual i ∈ N is time constrained by Xi, then

5 From here on and without explicitly specifying it, X stands for a non-negative vector in Rn.
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∫ cav
Xdv reflects all production possibilities given the time constraints profile X . In

particular, the concave integral takes into account all the tradeoffs between how much
time different coalitions invest in the different projects, when the overall time constraint
for individual i (regardless of which coalitions she partakes in) is Xi.

A list A1, A2, ..., A` of subsets of N is a chain if it is increasing w.r.t. inclusion,
that is A1 ⊆ A2 ⊆ ... ⊆ A`.

Definition 4. Let X ∈ Rn
+. The Choquet integral w.r.t. v is defines as follows:

∫ Ch

Xdv =

{∑̀

i=1

αiyi;
∑̀

i=1

αi1Ai
≤ X,

yi ∈ v(Ai), αi ≥ 0, i = 1, ..., ` and A1, A2, ..., A` is a chain

}
.

5 SVCs and Decision Making

For any two time-constraint profiles X,Y ∈ Rn
+ define a partial order � as follows:

X � Y if and only if
∫
Xdv ⊇

∫
Y dv.

The interpretation is that a time-constraint profileX is preferred to a time-constraint
profile Y if and only if the production possibilities given the SVC v under the profileX
include all the production possibilities under the profile Y . Under comprehensiveness,
the condition in Eq. 5 is also equivalent to the Pareto frontier of

∫
Xdv dominating that

of
∫
Y dv.

The preference relation� given in Eq. (5) is typically partial, that is, there might be
two time-constraint profiles X and Y such that neither X � Y nor Y � X . This brings
us to the issue of selection out of

∫
Xdv and the completion of �.

As discussed in the introduction, unlike the classical theory of capacities, v and
its extension to

∫
Xdv explicitly model the tradeoffs of investing in different projects

conditional on the time investment profile X . Nevertheless, it is quite intuitive to con-
sider how the preferences(over elements in Rk

+) of a third party, say a manager who is
responsible to the overall production conditional on market demand, prices, etc., shape
the selection out of

∫
Xdv for every time-constraint profileX . More formally, consider

a utility function U : Rk
+ → R aggregating the different values across the k different

agendas. Given a time-constraint profile X , the selection out of
∫
Xdv given the utility

function U will be argmaxx∈
∫
XdvU(x).

Now, define a preference relation�∗ over Rn
+ as follows: for any two time-constraint

profiles X,Y ∈ Rn
+,

X �∗ Y if and only if max
x∈

∫
Xdv

U(x) ≥ max
y∈

∫
Y dv

U(y).

Notice, �∗ is a complete preference relation and is a completion of �. That is,

X � Y ⇒ X �∗ Y.
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Matjaž Omladič1 and Matija Vidmar2

1 Institute of Mathematics, Physics and Mechanics
University of Ljubljana, Slovenia

matjaz@omladic.net
2 Department of Mathematics

University of Ljubljana, Slovenia
matija.vidmar@fmf.uni-lj.si

One of the objectives of this talk will be to extend the work of M. O. and N. Ružić
[2], and of F. Durante et al. [1]. In these papers a new line of investigation was started in-
troducing maxmin copulas, closely related to Marshall copulas, but allowing for asym-
metric linkages. In joint work in progress with M. Vidmar we go beyond the bivariate
case or even the usual multivariate case.

Let (Ω,F ,P) be a probability space, X = (Xi) a random vector in Rn, for some
integer n, and C a copula thereof. For any nonempty M ⊆ [n] we denote

∨MX := max{Xi ; i ∈M} and ∧M X := min{Xi ; i ∈M}.
We choose a nonempty set C of nonempty sets M ⊆ [n] for which we compute ∨MX
and a nonempty setD of nonempty setsM ⊆ [n] for which we compute∧MX . Here we
denoted the set of the first n positive integers by [n]. We call the (|C|+|D|)-dimensional
random vector

X∨∧ := ((∨MX)M∈C , (∧MX)M∈D)

a maxmin system. Under certain technical conditions we provide an expression (in
terms of C and the marginals {Fi}i∈[n]) for the copula of this random vector.

Besides the obvious applications to shock models there is an important application
of this approach to order statistics. If X = (X1, . . . , Xn) is a n-dimensional random
vector, then its random vector of order statistics

XOS = (X1:n, . . . , Xn:n)

is defined (in our notation) by

Xi:n = ∧{∨MX ; M ∈ 2[n], |M | = i}
for i ∈ [n]. The i-th component of XOS means the i-th smallest value of compo-

nents of X . So, XOS corresponds to the permutation of the components of X in the
non-decreasing order.

Another important application is through the approach to reliability theory as stud-
ied by the group gathered around J.-L. Marichal.
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There are quite a lot of papers investigating injective hulls for algebras. Here we
only mention some of them which our current work is related to. Injective hulls for
posets were studied by Banaschewski and Bruns ([2], 1967) where they got that the
injective hull of a poset is its MacNeille completion. After that, Bruns and Lakser, and
independently Horn and Kimura constructed injective hulls of semilattices ([3], 1970
and [5], 1971), and their results were soon applied into S-systems over a semilattice
by Johnson, Jr., and McMorris ([6], 1972). By the conclusion of Schein ([11], 1974)
that there are no non-trivial injectives in the category of semigroups, it took a long
time to make further development for the theory of injective hulls on both discrete
and ordered (general) semigroups. In 2012, Lambek, Barr, Kennison and Raphael ([9])
studied a kind of category of pomonoids in which the usual category of pomonoids is its
subcategory, and found that injective hulls for pomonoids are exactly unital quantales
[10, 8]. Later on, Zhang and Laan generalized their results first to the posemigroup case
([14], 2014), and later to S-posets ([15], 2015) and ordered Ω-algebras ([16], 2016).
In 2017, Xia, Zhao, and Han ([13]) obtained almost same constructions as in [14], but
they described it in a different way.

In what follows we explain how some of preceding results admit far-reaching gener-
alizations in the framework of semicategories. We put the results on S-posets from [15]
into that wider perspective. We consider here the “multi-signature” version of modules
over posemigroups which turns out to be modules over ordered semicategories.

Our approach sheds a new light on applications of a new kind of fuzzy-like structure.
We hope that these results will provide further evidence of what should be considered
a good notion of injectivity.

It is well known that the category Pos of posets and order-preserving mappings and
the category Sup of sup-lattices and sup-preserving mappings are symmetric monoidal
closed categories [7] and we have a so-called down-set functor P : Pos → Sup with
X 7→ P(X) and f : X → Y 7→ P(f) : P(X) → P(Y ), here P(f)(Z) = f(Z)↓ for
all Z ∈ P(X) (see [4]). Of course, we have an inclusion functor I : Sup → Pos with
X 7→ X and f : X → Y 7→ f : X → Y , for all X,Y ∈ obSup, f : X → Y in Sup. An
ordered semicategory (category) is a locally small semicategory (category) such that
hom-sets are partially ordered and composition on both sides is order-preserving.

A lax semifunctor F : C → D of ordered categories is given by functions

F : ob C → obD and FX,Y : C(X,Y )→ D(FX,FY )

for all X ∈ ob C (with FX,Y usually written only as F ), such that

(1) FX,Y is monotone;
(2) Fg ◦ Ff 6 F (g ◦ f),
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for all X,Y, Z ∈ ob C, f : X → Y , g : Y → Z in C. A lax semifunctor F : C → D is a
semifunctor if

(2=) Fg ◦ Ff = F (g ◦ f),

for all X,Y, Z ∈ ob C, f : X → Y , g : Y → Z in C. A semifunctor F : C → D is a
2-functor if C and D are categories, and F : C → D is a functor.

Notice that the categories Pos of posets and Sup of sup-lattices are ordered cat-
egories, with Pos(X,Y ) and Sup(X,Y ) carrying the point-wise order. A quantaloid
[12] is a locally small category such that hom-sets are sup-lattices and composition on
both sides is sup-preserving.

Let S be a (small) ordered semicategory (to avoid set-theoretic problems, we assume
S to be small, that is, to have a set of objects).

An S-module is a semifunctor A : S → Pos of ordered semicategories.
An S-morphism is a lax natural map between S-modules A and B, that is, a family

α = {αX ∈ Pos(AX,BX) | X ∈ S} of order-preserving mappings such that for
every f : X → Y in S, we have B(f) ◦ αX 6 αY ◦A(f).

Clearly, idA = {idAX ∈ Pos(AX,AX) | X ∈ S} = {idAX ∈ Pos(AX,AX) |
X ∈ S} is an S-morphism.

An S-Q-module is an S-module A such that for every two objects X,Y ∈ S and
for every f : X → Y we have that AX and AY are sup-lattices and A(f) is a sup-
preserving mapping, i.e., A yields a semifunctor of ordered semicategories into Sup.

Let us fix the following notation: for every S-module A, every arrow f : X → Y in
S, and every element x ∈ AX ,

f ∗A x = A(f)(x).

Then the lax naturality property for an S-morphism α : A → B can be expressed as
follows: for every arrow f : X → Y in S and every element x ∈ AX ,

f ∗B αX(x) 6 αY (f ∗A x).

The category S−Mod of S-modules has S-modules as objects and lax natural maps
as morphisms. Clearly, S −Mod is an ordered category. Hence, for every S-module A
and every X,Y ∈ S, we can consider ∗A as a mapping

∗A : S(X,Y )×AX → AY,

which is order-preserving in each variable.
An S-morphism γ : A → A of an S-module A is an S-nucleus provided that γ is

idempotent (γ ◦ γ = γ) and expanding (idA 6 γ).
An order embedding ε between S-modules A and B is an S-morphism ε : A → B

such that εX : AX → BX is an order embedding in posets for all X ∈ S. We denote
by ES the class of order embeddings between S-modules.

Let E6S be the class of order embeddings ε : A −→ B in the category S −Mod
which satisfy the following conditions:

f ∗B εX(a) 6 εY (b) =⇒ f ∗A a 6 b,
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for all a ∈ A(X), b ∈ A(Y ) and all f : X → Y in S.
Let C be a category and letM be a class of morphisms in C. We recall that an object

S from C isM-injective in C provided that for any morphism h : A −→ B inM and
any morphism f : A −→ S in C there exists a morphism g : B −→ S such that gh = f.

A morphism η : A −→ B inM is calledM-essential (cf. [1]) if every morphism
ψ : B −→ C in C, for which the composite ψη is inM, is itself inM. An objectH ∈ C
is called anM-injective hull of an object S if H isM-injective and there exists anM-
essential morphism η : S −→ H .M-injective hulls are unique up to isomorphism (cf.
[1, Remark 9.23 and Proposition 9.19]).

One of our main results is the following.

Theorem 1. Every S-Q-module is E6S -injective and thus ES -injective in the category
S −Mod of S-modules.

Let A be an S-module, and let P(A)S = I ◦ P ◦ A be the composition of lax
semifunctor A, and lax functors P and I. Then P(A)S is clearly an S-Q-module.
From Theorem 1 we obtain that P(A)S is E6S -injective in the category S − Mod
of S-modules.

Similarly as in [15, Proposition 5] we obtain the following.

Proposition 1. Every retract of an S-Q-module in the category S−Mod of S-modules
is an S-Q-module.

An immediate consequence of Proposition 1 is the following.

Theorem 2. Let A be an S-module. Then A is E6S -injective in the category S −Mod
of S-modules if and only if A is an S-Q-module.

Let A be an S-module and γ : A → A an S-nucleus on A. Notice that γX is a
closure operator on AX for all X ∈ obS. Hence we obtain a function Aγ from S to
Pos such that AγX = (AX)γX . Moreover, for any X,Y ∈ obS and for any morphism
f : X → Y in S we obtain an order-preserving mapping (Af)γ : AγX → AγY given
by (Af)γ(a) = γY (Af(a)) ∈ AγY for all a ∈ AγY (since (Af)γ is a composition of
order-preserving mappings). We put Aγ(f) = (Af)γ .

We then have the following.

Proposition 2. Let A be an S-module and γ : A → A an S-nucleus on A. Then
Aγ : S → Pos is an S-module.

Notice that the action on Aγ is defined as follows:

f ∗Aγ a = Aγ(f)(a) = γY (Af(a))

for all a ∈ AγX = (AX)γX and all morphisms f : X → Y in S.
In what follows, we will construct an E6S -injective hull for any S-module A in

the category S − Mod of S-modules. The E6S -injective hull of A will be obtained
as a quotient of P(A)S with a natural embedding ηA from A into the hull such that
ηAX(a) = a↓ for each X ∈ S and a ∈ AX .
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Let X ∈ obS and let D be a down-set of AX . We then define its closure clX(D)
by

clX(D) := {z ∈ AX | (∀f : X → Y, a ∈ AX, b ∈ AY ) D ⊆ a↓ =⇒ z 6 a,

f ∗A D ⊆ b↓ =⇒ f ∗A z 6 b}.
Notice that clX(D) ∈ P(A)S(X) and cl = {clX ∈ Pos(P(A)SX,P(A)SX) | X ∈
S} is an S-nucleus on P(A)S .

Now we are ready to obtain the main result of our paper.

Theorem 3. For every S-module A, P(A)S cl is the E6S -injective hull of A in the cat-
egory S −Mod of S-modules.

Acknowledgement. The research was supported by the project New approaches to
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Agency (GAČR).
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Finitely many agents have preferences over finitely many alternatives, where these
alternatives are the vertices of an undirected connected graph. It is assumed that each
preference is single-peaked with respect to some spanning tree of this graph: it has a
top-ranked vertex and preference decreases along paths away from this vertex in the
spanning tree. Given a profile of individual preferences a probabilistic social choice
function (PSCF) assigns a probability distribution over the vertices in the graph. A
PSCF is unanimous if it assigns probability one to a vertex if this is every agent’s most
preferred alternative. It is strategy-proof if each agent, by reporting an insincere pref-
erence, can only bring about a probability distribution that is stochastically dominated
by the one obtained by reporting sincerely. A PSCF is a random dictatorship if each
vertex is assigned the sum of fixed probabilities of agents who have that vertex as their
most preferred alternative. We show that each unanimous and strategy-proof PSCF is a
random dictatorship if and only if the graph has no leaf. We also characterize all unan-
imous and strategy-proof PSCF for the case where the graph has a leaf, including the
case where the graph is a tree.
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Abstract. By a discrete pseudo-t-norm, we mean an associative binary operation
on a finite chain that is monotone in both arguments and such that the top element
is an identity. We present a framework within which the in a successive manner
all these operations can be represented.

1 Introduction

Fuzzy logic deals with graded truth values. Usually, the set of truth degrees is assumed
to be a chain, whose smallest element represents “clearly false” and whose top ele-
ment represents “clearly true”. Furthermore, the conjunction is interpreted by a binary
operation on this chain. It is commonly assumed that this operation is associative, com-
mutative, monotone in both arguments, and such that the top element is an identity. If
the logic is based on the real unit interval, we are led to what is called a t-norm [KMP].
If the logic is based on a finite chain, we deal with what is sometimes called a discrete
t-norm [BaMe]. If, finally, the assumption of commutativity is dropped, we have what
we could call in accordance with [FGI] a pseudo-t-norm.

The present contribution deals with operations of the latter type. We will stick in the
sequel, however, to the terminology common in algebra: the structures under considera-
tion are negative totally ordered monoids, or negative tomonoids for short [EKMMW].

The following observation gives rise to a method of generating all finite structures of
this type. Let T be a finite, negative tomonoid and let 0, α be the smallest two elements.
Then the equivalence relation θ identifying 0 and α and nothing else is a congruence.
Indeed, by the negativity of T , {0, α} is a (semigroup) ideal, hence θ is a Rees congru-
ence [How], and it is easy to see that the induced total order makes the quotient T/θ
into a negative tomonoid again. Repeating the same procedure, we eventually end up
with the trivial (i.e., the one-element) tomonoid.

In [PeVe1], we have described how to proceed in the opposite direction. Namely,
given a tomonoid S, we have determined all those tomonoids that are by one element
larger than S and lead by an identification of the smallest two elements back to S. We

76



call these tomonoids the one-element Rees coextensions of S. Starting with the trivial
tomonoid, we obviously get in this way all finite, negative tomonoids.

In our present contribution, we reconsider the problem from a different perspective.
We do not really care about algorithmic aspects. Instead, we wonder how the procedure
can reasonably described on the algebraic side [PeVe2]. Given S as above, we define the
free one-element Rees coextension of S, denoted by R(S), and we show that any one-
element Rees coextension is a quotient ofR(S). This is not yet particularly interesting
becauseR(S) is usually infinite and difficult to describe. However, we show that there is
a finite family of finite quotients of R(S). From each of these quotients, coextensions
arise in a straightforward manner, and each of the desired coextensions arises in this
way.

2 The free one-element Rees coextension

We recall that a pomonoid (where “po” stands for “partially ordered”) is a structure
(S;6, ·, 1) such that (S; ·, 1) is a monoid, (S;6) is a poset, and, for any a, b, c, d ∈ S,
a 6 b and c 6 d imply a·c 6 b·d. Moreover, S is called negative if 1 is the top element.
If S is totally ordered, we call S a totally ordered monoid, or simply a tomonoid.

Our aim is to describe all finite, negative tomonoids. We shall use the following fact.

Lemma 1. Let (S; ·,6, 1) be a pomonoid and let I be a (semigroup) ideal as well as a
downset. For a, b ∈ S, let a ρI b if a = b or a, b ∈ I . Then ρI is a congruence.

In particular, let T be a finite, negative tomonoid, let 0 be the smallest element
and let α be the unique atom of T . Then {0, α} is an ideal and a downset. Hence, by
Lemma 1, S = T/ρ{0,α} is a negative tomonoid, which has one element less than T .

Let us now adopt the opposite viewpoint. Let (S; ·,6, 1) be a finite, negative tomon-
oid. We assume that S has at least two elements. Let S̄ arise from S by removing its
smallest element 0̇ and adding instead two new elements 0 and α. We make S̄ into a
chain by requiring 0 6 α 6 a for any a ∈ S r {0̇}.

Our intention is to make S̄ into a tomonoid such that S is isomorphic to S̄/ρ{0,α}.
We call S̄ in this case a one-element Rees coextension or simply a one-element coexten-
sion of S. Obviously, a good part of the structure of S̄ is already determined: the total
order as well as the product of all pairs a, b ∈ S r {0̇} such that, in S, ab 6= 0̇.

Example 1. For instance, let us define

a • b =





ab if a, b ∈ S r {0̇} and ab 6= 0̇ in S,
α if a = α and b = 1, or a = 1 and b = α,
0 otherwise,

where a, b ∈ S̄. Note that the products in S̄ are either predetermined or else defined to
be 0. We may check that (S̄; •,6, 1) is a one-element coextension of (S; ·,6, 1).

In what follows, we will make use of the fact that pomonoids can be specified by
means of “generators and defining relations”. The theory behind is slightly more in-
volved than in case of ordinary algebras, because we have to take into account the
partial order relation.
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Let (G;6) be a poset. Then there exists a free pomonoid F(G) over G [Sub]. This
is the monoid of words a1 . . . an, where n > 0 and a1, . . . , an ∈ G. The product is
defined by concatenation; the identity is given by the empty word; and the partial order
on F(G) is given by

a1 . . . am 6 b1 . . . bn if n = m and a1 6 b1, . . . , an 6 bn.

Identifying G with the words of length 1, we then have that any order-preserving map
from G to some pomonoid T extends to a homomorphism from F(G) to T .

Furthermore, let P be any binary relation on F(G). Then there is a smallest congru-
ence Θ(P) on F(G) and a smallest partial order on F(G)/Θ(P) such that a/Θ(P) 6
b/Θ(P) whenever aPb. This means that any homomorphism f from F(G) to a further
pomonoid T such that, for any a, b ∈ F(G), a P b implies f(a) 6 f(b), factorises
through the quotient F(G)/Θ(P).

We conclude that we may define a pomonoid as generated by a poset G and subject
to certain inequalities between elements of the free monoid generated by G.

Definition 1. LetR(S) be the free pomonoid over the chain S̄, subject to the following
conditions:

(a) a b = c for any a, b, c ∈ S̄ r {0, α} fulfilling this equation in S,
(b) ε = 1,
(c) a b 6 α if (a, b) ∈ N ,
(d) 0 a = 0 for any a ∈ S̄,

We call R(S) the free one-element Rees coextension, or simply the free one-element
coextension of S.

Here, we have put N = {(a, b) ∈ S̄2 : a 6 α or b 6 α or else ab = 0̇ in S}.

Proposition 1. Let T be a one-element coextension of S. Then there is a congruence θ
onR(S) such thatR(S)/θ is isomorphic to T .

We conclude that there is a single pomonoidR(S) among whose quotients we find
all one-element Rees coextensions.

Unfortunately, the pomonoid R(S) is infinite and not yet the suitable tool to de-
scribe systematically all the one-element coextensions of S.

3 One-element coextensions for given borders

Again, let (S; ·,6, 1) be a non-trivial finite, negative tomonoid. Let (S̄; •,6, 1) be a
one-element coextension of S. Then the left border of the coextension is the smallest
element εl ∈ S̄ r {0} such that, in S̄, εl • α = α. Similarly, the right border is the
smallest element εr ∈ S̄ r {0} such that α • εr = α.

It turns out that the left and right border are idempotent elements of S̄ r {0} and
can thus be identified with a pair of idempotent elements of S. We may hence roughly
classify the one-element coextensions by means of their borders.
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Accordingly, we revise our procedure as follows. We make an assumption from the
outset which pair of idempotents of S will play the role of the borders of the coexten-
sions. Then we require further equations to hold in addition to (a)–(d) from Definition
1. Let us fix a pair εl, εr of idempotent elements of S.

Definition 2. LetRεl,εr (S) be the free pomonoid over the chain S̄, subject to the con-
ditions (a)–(d) of Definition 1 as well as the following ones, for any a, b, c ∈ S̄:

(e) a b c = b c for any (b, c) ∈ N and a > εl.
a b c = a b for any (a, b) ∈ N and c > εr.

(f) a b c = 0 for any (b, c) ∈ N and a < εl.
a b c = 0 for any (a, b) ∈ N and c < εr.

We callRεl,εr (S) the free one-element (εl, εr)-coextension of S.

Proposition 2. Let T be a one-element (εl, εr)-coextension of S. Then there is a con-
gruence θ onR(S) such thatR(S)/θ is isomorphic to T .

The crucial facts are the following. Most important,Rεl,εr (S) is a finite pomonoid.
Moreover, the multiplication in Rεl,εr (S) is uniquely determined by the products of
pairs of elements of S̄. This facilitates the representation ofRεl,εr (S). Finally, our main
result shows that we can determine all coextensions fromRεl,εr (S) in a straightforward
way.

Theorem 1. Assume that 0 6= α and let ∅ ⊂ Z ⊂ [0, α] be a downset of Rεl,εr (S).
For a, b ∈ Rεl,εr (S), let

a θZ b if and only if a = b or a, b ∈ Z or a, b ∈ [0, α] r Z.

Then θZ is a congruence on Rεl,εr (S) and Rεl,εr (S)/θZ is a one-element (εl, εr)-
coextension of S.

Up to isomorphism, every one-element (εl, εr)-coextension of S arises in this way
from a unique downset Z ofRεl,εr (S).
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When the characteristics of agents are observed only in coarse manner, a population
of observationally identical decision makers might take distinct actions. From the ana-
lyst’s perspective, choice appears to be random. Random Utility Models (RUM)—a set
of utility functions and a probability measure thereover—are a powerful and tractable
tool in the analysis of such a scenario. The probability of observing x from the decision
problem D is the probability of a utility function u such that x = argmaxz∈D u(z).
Properly dealing with indifference has beleaguered the literature on RUMs. Consider
the case where with positive probability u(x) = u(y); the probability x is chosen from
D = {x, y} is undefined by the RUM.

In this paper, we put forth a model of random choice in which precise choice fre-
quencies are identified only up to the frequency they are chosen by strict maximization
and discuss how it could be used in different economic environments. We show that
such a model (over a linear space) is always representable by a unique random (linear)
utility model without any restrictions on the measure over utility functions. In other
words, the set of random expected utility models and the set of choice rules considered
in this paper are in bijection.

The primitive is a choice capacity over a linear space (such as von-Neumann-
Morgenstern lotteries): Let D be the set of finite non-empty subsets of this space, and
D ∈ D. A choice capacity is a family of set functions {ρD : 2D → [0, 1]}D∈D, that
need not be additive. The interpretation is that ρD(A) reflects maximal frequency with
which elements of A ⊆ D are chosen when the decision problem is D; because of this,
ρ need not be additive.

Example 1 Let {a, b} be a set of prizes, with P the set of lotteries thereon. The set of
expected utility indices that are realized with positive probability are given by

u1 = [1, 0], u2 = [−1, 0], and u3 = [0, 0].

Let ξ be the uniform measure over these utility indices. Consider the decision problem
D = {a, b, c = 1

2a + 1
2b} ⊂ P (where we identify outcomes with the degenerate

lotteries thereon). Let ρ◦D(a) be the modelers best estimate of the probability that a is
chosen from D. Notice, if u1 is realized then a is definitely chosen, so any reasonable
estimate must satisfy ρ◦D(a) ≥ 1

3 ; if u2 then a is definitively not chosen, so ρ◦D(a) ≤ 2
3 .
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When u3 is realized, the probability a is chosen depends on the tie breaking rule; it
is not identified by ξ. If a single tie breaking rule is not consistently employed (if it
changes across time or the population, etc), ρ◦D(a) will not be point identified. It will
be, however, set identified: we know that ρ◦D(a) ∈ [ 13 ,

2
3 ]. Similar reasoning shows that

ρ◦D(b) ∈ [ 13 ,
2
3 ] and ρ◦D(c) ∈ [0, 13 ]. Further consider ρ◦D({a, b, c}), the probability that

a or b or c is chosen. Of course, ρ◦D({a, b, c}) can be point identified as 1, as it does not
depend on how ties are treated.

As the upper bound of ρ◦D, we have ρD(c) = 1
3 , ρD({a, b}) = ρD({a, b, c}) = 1

and all other subsets have a value of 2
3 . Since ρD({a, b, c}) = 1 < ρD(a) + ρD(b) =

2
3 + 2

3 , ρD is not additive. ut

Our main representation result provides the conditions on a choice capacity to en-
sure it maximizes a probability distribution over utilities. That is, to ensure the existence
of a probability over utilities, ξ, such that

ρD(A) = ξ
(
{u | argmax

z∈D
u(z) ∩A 6= ∅}

)
.

ρD(A) reflects the maximal probability that an element of A is chosen when the choice
problem is D and preferences are realized according to ξ. When ξ realizes ties with
probability 0, ρ is a measure, and all of the [Gul and Pesendorfer(2006)] axioms hold.
Thus, our innovation concerns dealing directly with how the non-additivity can enter ρ.

The key axiom, Convex-Modularity, limits how non-additive ρ can be. Recall D
and ξ from Example 1. We had ρD(a) = ξ(u1) + ξ(u3) and ρD(b) = ξ(u2) + ξ(u3).
Therefore, ρD(a) + ρD(b) 6= ρD({a, b}) = 1 exactly because we have double counted
ξ(u3). This last term—the probability of indifference between a and b—is identified by
ρD(c). The convex combination of two lotteries is chosen exactly when the two lotteries
yield the same utility.

Simple accounting reveals the following modularity relation:

ρD(αa+ (1− α)b) = ρD(a) + ρD(b)− ρD({a, b}).

Our Convex-Modularity axiom states that ρmust satisfy a generalized form of the above
relation: the probability of the convex combination of two sets is the sum of the proba-
bility of the sets, minus the probability of their union.

Theorem 1. The following are equivalent:

1. The CC ρ maximizes a finitely additive RLR ξ.
2. The CC ρ satisfies

(a) Let D ⊂ D′, and let A ⊂ D. Then ρD(A) ≥ ρD′(A), with equality whenever
the extreme points of D and D′ coincide.

(b) Let A,B ⊆ D be such that αA + (1 − α)B ⊆ D for α ∈ (0, 1). Then
ρD(αA+ (1− α)B) = ρD(A) + ρD(B)− ρD(A ∪B).

(c) Let A ⊆ D. Then ρλD+z(λA+ z) = ρD(A). for all λ > 0 and z ∈ Rn.
(d) For D,D′ ∈ D, ρλD+λ′D′ is continuous in λ, λ′ for λ, λ′ ≥ 0.

Moreover, every RLR has a unique maximizer and every ρ maximizes at most one RLR.
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We now describe several different data generating processes that lead to (the identi-
fication of) a choice capacity:

Set Valued Choice. In some environments, a modeler might directly observe the entire
set of maximizers associated with a decision problem. In other words, the data available
to the modeler is the frequency with which each subset of D is chosen—a measure
mD over 2D. Taking the observed measures {mD}D∈D as our primitive, we say that
{mD}D∈D maximizes a RLR, ξ, if for all (D,A),

mD(A) = ξ
(
{u | argmax

z∈D
u(z) = A}

)
.

Understanding when {mD}D∈D maximizes a RLR, and when it does, identify-
ing the RLR, seems like an entirely new problem. But worry not, by simply filtering
through the world of choice capacities, both questions become simple ones. Construct
{ρmD}D∈D as follows:

ρmD(A) =
∑

B∈2D,
B∩A 6=∅

mD(B). (1)

Theorem 2. Let {ρD}D∈D maximize ξ, then {mD}D∈D maximizes ξ if and only if

ρD = ρmD ,

for all D ∈ D, where ρm is defined by (1).

Status Quo. Often there is an exogenous default implemented in the case of indiffer-
ence. For example, if the set of acceptable options includes the status quo, then the
status quo is implemented. If our primitive observable data is a choice rule defined over
a set and an observed status quo alternative, then variation in the default can identify
a random choice capacity. Assume that these observable data are being generated by
a RUM, such that for each x ∈ X , and each choice problem D we observe an (addi-
tive) random choice rule, ρxD, representing choice from D under status quo x, such that
ρxD(y) ≤ ρyD(y) for all x, y ∈ Rn, and D ∈ D. Given a choice problem D, y is chosen
more often when it is the status quo then when any other element is.

Say that {ρxD}x∈Rn,D∈D maximizes ξ if

ρxD(x) = ξ
(
{u | x ∈ argmax

z∈D
u(z)}

)
,

for all x ∈ D, and D ∈ D. In conjunction with the assumption that ρxD(y) ≤ ρyD(y),
it is straightforward to see this characterizes the following class of models: utilities are
dawn according to ξ, and in the event of indifference, ties are broken arbitrarily unless
one of the maximal elements is the status quo, in which case it is chosen.

Then we can recover a choice capacity as follows:

ρsqD ({x}) = ρxD({x}), (2)

Although (2) defines ρsqD only when the choice is a singleton, it is sufficient to iden-
tify a unique choice capacity that satisfies our axioms. This result is formally captured
by Lemma 4.

82



Theorem 3. Let {ρD}D∈D maximize ξ, then {ρxD}x∈Rn,D∈D maximizes ξ for each x,
if and only if

ρD = ρsqD

where ρsqD is as given by (2).

Sets of Random Choice Rules. Say a modeler collects data from distinct populations.
She may want to know if the data arise from differences in preferences or from (more
superficial) differences in tie breaking procedures. In particular, the modeler might ob-
serve a collection of (additive) random choice rules {ρiD}D∈D,i∈I where I is the set of
populations. The modeler wants to ascertain if there is a common ξ such that each ρiD
maximizes ξ, up to differences in tie breaking.

We can construct a choice capacity by taking the upper-bound across the measures.
When will this choice capacity satisfy our axiomatic restrictions? This is the case ex-
actly when (i) the set of random choice rules arise entirely from differential tie breaking
procedures with respect to a common RUM and (ii) every possible tie breaking rule is
contained in the convex hull of those employed by some population.

Towards making this definite, for any RLR, ξ, define the set of measures

M(ξ,D) =

{∫

Rn

τu(A)ξ(du) : τu ∈ D(Rn), supp(τu) = argmax
y∈D

u(y)

}
,

where supp(τ) is the support of the measure τ . The set M(ξ,D) represents the set of
all possible choice rules constructed by first choosing a utility u according to ξ, and
subsequently choosing among the maximizers in D according to some tie breaking
procedure. An alternative characterization of CCs which maximize RLRs is as follows,
using results from work done on belief functions [Wasserman(1990)].

Theorem 4. The CC ρ maximizes ξ if and only if ρD = maxm∈M(ξ,D)m for all D.

Consider again the modeler who observed {ρiD}D∈D,i∈I . Theorem 4 tells us when
the choice capacity given by

ρID(A) = sup
i∈I

ρiD(A),

will maximize a RLR. But this was not exactly the modelers question. It is possible that
some, but not all, tie breaking rules were employed, so that each ρiD maximizes ξ (with
respect to some tie breaking rule) but ρID does not. This state of affairs can be easily
captured:

Theorem 5. For all D ∈ D, {ρiD | i ∈ I} ⊆ M(ξ,D) if and only if ρID(A) ≤ ρD(A)
for all D ∈ D and A ⊆ D, where ρ is the unique CC that maximizes ξ.
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LetN = {1, . . . , n} be a finite set of n discrete attributes (or criteria). Each attribute
i ∈ N is represented by a set Xi. The alternatives are characterized by a value on
each attribute, and are thus represented by an element of the Cartesian product X =
X1 × . . .×Xn .

In Multiattribute utility theory [6], the additive utility model is one of the best-
known representative of preferences in decision making: the overall score can be written
as a sum of single-attribute subutility functions:

U(x) =
∑

i∈N

ui(xi), x ∈ X.

Note that this model only requires eliciting ui(xi). However, such a model cannot be
applied in many practical situations (no interaction is possible among attributes). A
natural generalization of the additive utility model is to allow some interaction among
criteria [3, 1]:

U(x) =
∑

S∈S
uS(xS), x ∈ X,

where S is a collection of subsets of N , xS ∈ ×i∈SXi is the restriction of x over
attributes in coalition S and uS : XS → R. This model is called the Generalized
Additive Independence (GAI) model. The additive utility model is a particular case of
the GAI model where S is composed of only singletons. There are two major difficulties
related to this model. First, its expression is far from being unique. The second difficulty
is that the number of monotonicity constraints on the parameters of the model grows
exponentially fast in the number of attributes [5]. A GAI model is equivalent to a k-
ary capacity [4], i.e., a function v : {0, 1, . . . , k}N → R satisfying the monotonicity
conditions and the normalization conditions (k-ary capacity is a generalization of the
notion of capacity [2]). In this paper, we are interested in the GAI models where the
collection S is made only of singletons and pairs. This particular class is called 2-
additive GAI models [5]. The aim of this paper is to provide a fundamental result on
decomposition of 2-additive GAI model. We show that for such model, it is always
possible to obtain a decomposition into nonnegative monotone nondecreasing terms,
and we give an explicit decompsition for 2-additive 2-ary capacities.

84



References

1. F. Bacchus and A. Grove. Graphical models for preference and utility. In Proceedings of the
Eleventh conference on Uncertainty in artificial intelligence, pages 3–10. Morgan Kaufmann
Publishers Inc., 1995.

2. G. Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pages 131–295,
1954.

3. P. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility
theory. International Economic Review, 8(3):335–342, 1967.

4. M. Grabisch and C. Labreuche. Capacities on lattices and k-ary capacities. In EUSFLAT
Conf., pages 304–307, 2003.

5. M. Grabisch and C. Labreuche. Monotone decomposition of 2-additive generalized additive
independence models. Mathematical Social Sciences, 92:64–73, 2018.

6. R. L. Keeney and H. Raiffa. Decision with Multiple Objectives. Wiley, New York, 1976.

85



Convexity conditions for the characterization
of some copula construction

Susanne Saminger-Platz1, Anna Kolesárová2,
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Given a binary copula C : [0, 1]2 → [0, 1] (i.e., a supermodular binary aggregation
function with neutral element 1 [4, 3, 10]), its dual C∗ : [0, 1]2 → [0, 1] is defined by
C∗(x, y) = x+ y − C(x, y).

Denoting the product copula by Π , it has been shown by several authors [2, 7] that,
for each binary copula C, the function Π(C,C∗) : [0, 1]2 → [0, 1] given by

Π(C,C∗)(x, y) = Π(C(x, y), C∗(x, y))

is always a binary copula.
This result has been generalized into two ways: first of all, in [5] it was shown that,

for a binary outer copula D, the function D(C,C∗) : [0, 1]2 → [0, 1] given by

D(C,C∗)(x, y) = D(C(x, y), C∗(x, y))

is a binary copula for each binary inner copula C if and only if the outer copula D is
ultramodular and Schur concave on the upper left triangle

∆ = {(x, y) ∈ [0, 1]2 | x ≤ y} ⊆ [0, 1]2.

Recall that a binary copula D is ultramodular [9] on ∆ if and only if all horizontal
and vertical sections of D in ∆ are convex, and it is Schur concave [11] on ∆ if and
only if all sections in ∆ with a constant sum of arguments are concave.

Secondly, in [8] all functions g : [0, 1] → [0, 1] were characterized such that, for
each binary copula C, the function Π(C, g(1− C∗)) given by

Π(C, g(1− C∗))(x, y) = Π(C(x, y), g(1− C∗(x, y)))

is a binary copula. Denoting f(x) = g(1 − x) one easily can rewrite their results for
functions of the form Π(C, f(C∗)).
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In this contribution we study, for binary copulas D and C and some transformation
function f : [0, 1] → [0, 1], functions of the form D(C, f(C∗)) : [0, 1]2 → [0, 1] given
by

D(C, f(C∗))(x, y) = D(C(x, y), f(C∗(x, y))). (1)

Denote by F
(
[0, 1][0,1]

)
the set of all functions f : [0, 1]→ [0, 1] which are monotone

non-decreasing, 1-Lipschitz, convex and satisfy f(1) = 1.

Theorem 1. Let f : [0, 1] → [0, 1] be a function and D : [0, 1]2 → [0, 1] be a binary
copula. The following are equivalent:

(i) f ∈ F
(
[0, 1][0,1]

)
andD is both ultramodular and Schur concave on the upper left

triangle ∆ of the unit square;
(ii) for each binary copula C the function D(C, f(C∗)) : [0, 1]2 → [0, 1] given by (1)

is a binary copula.

Examples of binary copulas which are ultramodular and Schur concave on∆ are the
Fréchet-Hoeffding lower bound W , the product Π (which is the greatest ultramodular
copula) and the Fréchet-Hoeffding upper bound M (although the latter is not ultramod-
ular on [0, 1]2) as well as the Clayton copulas [10] with parameter λ ∈ [−1, 0]. Also
the construction of ordinal sums [6] preserves the ultramodularity and Schur concavity
on ∆ of the components.

For an affine function fa : [0, 1] → [0, 1] given by fa(x) = a + (1 − a)x we
have fa ∈ F

(
[0, 1][0,1]

)
if and only if a ∈ [0, 1]. Similarly, for a quadratic func-

tion fa,c : [0, 1] → [0, 1] given by fa,c(x) = a + (1 − a − c)x + cx2 we have
fa,c ∈ F

(
[0, 1][0,1]

)
if and only if a ∈ [0, 1] and 0 ≤ c ≤ min(a, 1− a).

Example 1. If we consider the caseD = C = Π then for each λ ∈ [−1, 0] the function
Π(Π, f1+λ(Π

∗)) given by

Π(Π, f1+λ(Π
∗))(x, y) = xy + λxy(1− x)(1− y) (2)

is a Farlie-Gumbel-Morgenstern copula CFGM
λ (see [10]).

Note that the family of Farlie-Gumbel-Morgenstern copulas is defined by (2) for all
λ ∈ [−1, 1]. For λ > 0 they can be expressed as Π · f1+λ(Π∗), but in such a case we
have f1+λ(0) > 1, i.e., Theorem 1 does not apply.

But the Farlie-Gumbel-Morgenstern copulas for λ ∈ ]0, 1] can be obtained from
those with parameters in [−1, 0[ using the flipping (see [1]) C− : [0, 1]2 → [0, 1] of a
binary copula C given by C−(x, y) = x − C(x, 1 − y), i.e.,

(
CFGM
λ

)−
= CFGM

−λ . A
similar approach can be considered for other parametric families of copulas constructed
by means of Theorem 1.

Example 2. If we consider the case D = W and C = Π then for each λ ∈ [−1, 0] the
function W (Π, f1+λ(Π

∗)) given by

W (Π, f1+λ(Π
∗))(x, y) = max((1 + λ)xy − λ(x+ y − 1), 0)

is a Sugeno-Weber copula [6]. Putting Kλ = W (Π, f1+λ(Π
∗)) for λ ∈ [−1, 0] and

defining, for λ ∈ ]0, 1], Kλ =
(
K−λ

)−
, the family of copulas

(
Kλ

)
λ∈[−1,1] is a com-

prehensive family (i.e., containing the basic copulasW ,Π andM ) which is continuous
and increasing with respect to the parameter λ.
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We concentrate attention on single-attribute decision problems where the space C
of possible consequences coincides with R, where consequences can be interpreted as
monetary amounts, and the prospects or lotteries Xα (α ∈ A) are real-valued random
variables on a given probability space. In this framework, we will first review briefly
theTarget-Based approach ([1]; see also [4]) and the substantial equivalence of it with
the standard setting of decisions under uncertainty, with a bounded and right-continuous
utility function u. In practice, a target is a random variable T , stochastically independent
of each prospect Xα, and with (normalized) distribution function corresponding to an
affine transformation of the function u. Such an approach reveals to be useful in giving
direct probabilistic interpretations of some economic properties.

It can be interesting, however, to consider the more general setting which is obtained
by allowing some form of stochastic dependence for the pairs (T,Xa). This extension
gives rise to a more general framework where one cannot invoke the principle of max-
imization of expected utility. We will, first of all, point out some relevant implications
of conditions of stochastic dependence. In the second part of the talk, some connections
will be investigated with different approaches to decisions without utility and with the
analysis of belief functions. We will refer in particular to the papers [2, 3].
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Abstract. In this contribution we will consider a special subclass of decomposi-
tion integrals namely the collection integral. This integral is characterized by de-
composition systems consisting of only one collections. Some examples of such
integrals are presented. Also a condition on the underlying collection is given
to ensure that given collection integral extends the Lebesgue integral. We also
consider a decomposition integrals for interval-valued functions constructed by
two different methods – firstly by Aumann’s principle and secondly by interval
algebra. Interestingly, both constructions lead to the same integral.

1 Introduction

Integrals play an important role throughout all mathematics and its applications. De-
composition integrals are a common framework for the Lebesgue and nonlinear inte-
grals, including the Choquet [2], PAN [7], Shilkret [6], and concave [4] integrals.

2 Preliminaries

In this contribution we will be interested in non-negative functions f : X → [0,∞[
defined on a fixed finite space X = {1, 2, . . . , n} ( N. The class of such functions will
be denoted by F .

Also interval-valued functions will be considered. Let L([0,∞[) denote the class of
all closed sub-intervals of [0,∞[, i.e.,

e ∈ L([0,∞[) ⇐⇒ e = [a, b], a, b ∈ R, 0 ≤ a ≤ b.

An interval-valued function on 2X is any function v : X → L([0,∞[). A class of
interval-valued functions will be denoted by V . We say that f ∈ F is a selector of
v ∈ V if and only if f(x) ∈ v(x) for all x ∈ X . If f is a selector of v we will write
f ∈ v.

A set function onX is any function µ : 2X → [0,∞[. If a set function µ is grounded,
i.e., µ(∅) = 0, and increasing with respect to set inclusion, i.e., A ⊆ B ⊆ X implies
µ(A) ≤ µ(B), then µ is called a capacity. A class of all capacities is denoted byM.
The class of measures, i.e., additive capacities, is denoted byM+ andM+ (M.

A collection D is any non-empty subset of the power set with excluded empty set,
i.e., ∅ 6= D ⊆ 2X \ {∅}. A decomposition system is a non-empty set of collections.

90



Definition 1. A decomposition integral [3, 5] with respect to a decomposition system
H is an operator IH : F ×M→ [0,∞[ given by

IH(f, µ) =
∨

D∈H

∨{∑

A∈D
aAµ(A) :

∑

A∈D
aA1A ≤ f, aA ≥ 0

}
.

Based on the choice ofHwe get different (in general) non-linear integrals. A special
choice of H = {{{1}, {2}, . . . , {n}}} with restriction to the space F ×M+ leads to
the Lebesgue integral denoted by Leb.

Definition 2. An Aumann integral [1] (based on the Lebesgue integral) is an operator
Aum: V ×M+ → [0,∞[ given by

Aum(v, µ) = {Leb(f, µ) : f ∈ v} .

In other words, the Aumann integral is the envelope of all possible Lebesgue inte-
grals of functions lying in the interval-valued function, i.e., of selectors. Note that the
definition can be further extended to any set-valued function.

3 Collection integral

In the first part of this contribution we will introduce a collection integral, i.e., a decom-
position integral based on a decomposition system consisting of only one collection.

Definition 3. A collection integral with respect to a collection D is an operator ID
given by

ID : F ×M→ [0,∞[ : (f, µ) 7→
∨{∑

A∈D
aAµ(A) :

∑

A∈D
aA1A ≤ f

}
.

We now present some examples of collection integrals.

Example 1. – Let D = {Ai}ki=1 be a chain on X . Then

ID(f, µ) = µ(Ak)min f(Ak) +
k−1∑

i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)

is a collection integral.
– As a special case of the previous example, we can take a chain D = {X} and we

obtain
ID(f, µ) = µ(X)min f(X).

It is interesting to know when the collection integral extends the Lebesgue integral.
In other words, we would like to know what conditions must a collection D satisfy to
ensure that

ID�F×M+
= Leb.

We show that the necessary and sufficient condition for the above coincidence is that
{x} ∈ D for all x ∈ X .
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4 Decomposition integrals for interval-valued functions

There are two natural extensions of decomposition integrals for interval-valued func-
tions. One is based on the Aumann integral and the second one is based on the algebra
of intervals.

Definition 4. A decomposition integral of Aumann type with respect to a decomposition
systemH is an operator

AH : V ×M→ [0,∞[ : (v, µ) 7→ {IH(f, µ) : f ∈ v} .

Note that we define addition and (non-negative) scalar multiplication of elements of
L([0,∞[) in the following standard way:

[a, b] + [c, d] = [a+ c, b+ d], α[a, b] = [αa, αb],

and the supremum is given by

[a, b] ∨ [c, d] = [a ∨ c, b ∨ d].

Definition 5. An interval-valued decomposition integral with respect to a decomposi-
tion systemH is an operator ÃH : V ×M→ [0,∞[ such that

ÃH(v, µ) =
∨

D∈H

∨{∑

A∈D
[aA, bA]µ(A) :

∑

A∈D
[aA, bA]1A ≤ f, 0 ≤ aA ≤ bA

}
.

Interestingly, both of these constructions lead to the same integral.

Acknowledgement This work was supported by the grants APVV-14-0013 and APVV-
17-0066.
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In a group our choices are strictly related to our ability to duly express and compare
alternatives according to different criteria, e.g. price, utility, feelings, life goals, social
conventions, personal values, etc.

Usually preferences are expressed by yes-no answer or by numbers to encode the
intensity of preference. These representation are a research field in mathematical logic,
in which a yes-no answer is a true-false sentence (classical logic) and intensity is a truth
degree of a formula (many-valued logic).

We propose logics and algebraic structures to deal preferences in decision making
field.
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and Theories in Social Systems. Studies in Systems, Decision and Control, vol 179. Springer,
Cham (2019)

3. Vitale G. Risk Analysis via Łukasiewicz Logic (submitted)

93



New mathematical concepts
for nonadditive set functions coming for

empirical decision theory under ambiguity

Peter Wakker

Erasmus School of Economics
Erasmus University Rotterdam, Rotterdam, The Netherlands

wakker@ese.eur.nl

Nonadditive set functions, also known as fuzzy measures, capacities, or weighting
functions, have been used in many domains (Grabisch 2016). This lecture focuses on
their applications to decision under uncertainty, where they model ambiguity (unknown
probabilities). First a general introduction is given on the history of ambiguity (Keynes
1921, Knight 1921, Savage 1954, Ellsberg 1961), explaining why Gilboa & Schmei-
dler (1989) was such a breakthrough. Nonclassical measure theory employing Choquet
integrals is, unsurprisingly, used in Choquet expected utility theory for ambiguity, but,
surprisingly, can also be used in many ambiguity theories that do not directly seem to
involve capacities.

Many new questions arise concerning psychological interpretations, economic rel-
evance, and empirical performance. But, also, many theoretical concepts present them-
selves, calling for the development of new mathematics. For example, under classical
expected utility for risk, the well-known Pratt-Arrow (1964) index of utility, −U ′′/U ′,
comes out as a natural index of risk aversion. Mathematically, it measures the degree of
concavity/convexity, and was known before (de Finetti 1952). We need a similar quanti-
tative index of concavity/convexity of capacities. This lecture presents and axiomatizes
one.

A second mathematical question is imposed upon us by empirical data–such unfore-
seen things can happen if mathematical theories are confronted with reality. Although
theoretical studies have as yet focused almost exclusively on ambiguity aversion, ea-
gerly applying our familiar and beloved tools of convex analysis and linear functional
analysis (in the so-called Anscombe-Aumann model), data put forward another phe-
nomenon: insensitivity. It reflects the degree to which people/capacities do not suf-
ficiently discriminate between different events and take them too much as one blur,
moving all their weights in the direction of 0.5 (I assume a 0 − 1 normalized scale). It
is a sort of regression to the mean, reflected in everyday life by the overuse of the un-
certainty assessment fifty-fifty. We formalize this property of capacities, introduce an
index for it, and axiomatize it. One implication is that Dempster-Shafer belief functions
do not fit ambiguity attitudes well.

94



References

[de Finetti 1952] B. de Finetti, Sulla preferibilità, Giornale degli Economisti e annali di econo-
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A general approach to fuzziness is based on so-called L-fuzzy sets or relations. Such
sets or relations assign to each element or pair of elements a certain degree up to which
the element or the pair is in the set or relation. These membership values are taken from
a complete Heyting algebra L. Formally, an L-fuzzy relation R (or L-relation for short)
between a set A and a set B is a function R : A×B→ L. These relations generalize fuzzy
relations by replacing the unit interval by an arbitrary complete Heyting algebra and
allow, therefore, for incomparable degrees of membership. A suitable abstract theory
covering these relations is given by arrow or Goguen categories. These theories have
been studied intensively [4–8, 10] including investigations into higher-order fuzziness
[11, 12]. In addition to the theoretical studies, these categories have been used to model
and specify type-1 and type-2 L-fuzzy controllers [9, 13] as well as L-fuzzy databases
[1–3, 15].

First, we define Dedekind categories as suitable categorical framework for relations.

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A, B] is a complete Heyting algebra. Meet,
join, the induced ordering, the least and the greatest element are denoted by u,t,v
,yAB,xAB, respectively.

2. There is a monotone operation ` (called converse) mapping a relation Q : A → B
to Q` : B→ A such that for all relations Q : A → B and R : B→ C the following
holds: (Q ; R)` = R` ; Q` and (Q`)` = Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q ; R) u S v Q ; (R u (Q` ; S )) holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B
(called the left residual of S and R) such that for all X : A → B the following
holds: X ; R v S ⇐⇒ X v S/R.

Intuitively, u and t are the meet and join operations on relations, v the induced
order on relations,andyAB andxAB the empty and universal relation. Q` is the converse
of the relation Q and IA and ; are the identity relation and composition of relations.

An arrow category adds two operations to a Dedekind category allowing to talk
about crispness. A crisp relation is a relation in which each pair is either with full
degree 1 or not at all (degree 0). Intuitively, the operations .↓ and .↑ map every relation
to greatest crisp relation it contains resp. to the least crisp relation it is included in. The
abstract definition is a follows.
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Definition 2. An arrow category A is a Dedekind category with xAB , yAB for all A,
B and two operations ↑ and ↓ satisfying:

1. R↑, R↓ : A→ B for all R : A→ B
2. (↑,↓ ) is a Galois correspondence, i.e., we have Q↑ v R iff Q v R↓ for all Q,R :

A→ B.
3. (R` ; S ↓)↑ = R↑` ; S ↓ for all R : B→ A and S : B→ C
4. (Q u R↓)↑ = Q↑ u R↓ for all Q,R : A→ B
5. If αA , yAA is a non-zero scalar then α↑A = IA.

Even though arrow categories are abstract categories it is possible to identify the
underlying Heyting algebra of membership values. This algebra is given by the set of
scalar relations on object A, i.e., the relations α : A→ A that satisfy α v IA and α;xAA =

xAA;α. In the case of concrete finite L-relations a scalar can be seen as a square matrix
with a fixed element from L on the diagonal and 0 everywhere else. A fundamental
theorem of arrow categories shows that the Heyting algebras of scalar relation for two
different objects A and B of the same arrow category are always isomorphic. We will
identity these algebras and denote them by Sc(R). In addition, we use α, β, . . . to denote
elements from Sc(R) and αA to denote the corresponding scalar on the object A, i.e.,
αA : A → A. All of this shows that arrow categories emphasize the so-called fixed-
base approach to L-fuzziness, i.e., all relations of a given arrow category use the same
Heyting algebra L as membership values.

It can easily be verified that the substructure of crisp relations, i.e., all relations
R with R↓ = R (or equivalently R↑ = R), is a Dedekind category satisfying the so-
called Tarski rule, i.e., the equivalence R , yAB iff xCA; R;xBD = xCD. We denote this
Dedekind category by A↓. Please note that we have Sc(A↓) = {y, I} verifying that A↓
is based on the Boolean values as membership degrees.

In this paper we are interested in the process of changing the base, i.e., an operation
that allows to switch from an L1-relation to an L2 relation that preserves the relational
content but exchanging the membership values from L1 to L2. Please note that this
is done in setting of abstract arrow categories and not for concrete L-relations where
component-wise reasoning can be performed.

Definition 3. Let A1 and A2 be arrow categories. An functor F : A1 → A2 is called
an arrow functor iff F preserves all operations of an arrow category except (./.), i.e.,
we have

1. F(yAB) = yAB, and F(xAB) = xAB,
2. F(Q u R) = F(Q) u F(R), and F(Q t R) = F(Q) t F(R),
3. F(Q`) = F(Q)`,
4. F(R↑) = F(R)↑, and F(R↓) = F(R)↓.

A change of base is an arrow functor between arrow categories with the same crisp
relations that is the identity on those crisp relations, i.e., preserves the purely relational
structure.

Definition 4. Let A1 and A2 be arrow categories so that A↓1 = A↓2. An arrow functor
F : A1 → A2 is called a change of base iff
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1. F is faithful,
2. F restricted toA↓1 is the identity.

Please note that we could relax the condition A↓1 = A↓2 by requiring that the two
categories are only isomorphic. For simplicity we will require the stronger version in
this paper.

Any change of base induces a Heyting algebra homomorphism between the mem-
bership values of the two categories in question.

Theorem 1. Let A1 and A2 be arrow categories and F : A1 → A2 be a change of
base. Then the function hF : Sc(A1) → Sc(A2) defined by hF(α) = F(αA) for some
object A is a homomorphism from Sc(A1) to Sc(A2).

In the presentation we will show that the opposite implication of the previous theo-
rem is also true. Given a homomorphism h : Sc(A1) → Sc(A2), then there is a change
of base Fh : A1 → A2 so that hFh = h. Furthermore, we also show that FhF = F for
every change of base F. Consequently, there is a one-one correspondence between the
homomorphisms between the membership values and the class of change of bases.

Acknowledgement. The author gratefully acknowledges support from the Natural Sci-
ences and Engineering Research Council of Canada.
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Abstract. In my last paper in “Fuzzy Sets Syst.” [6], I proposed a new approach
to specificity of comparative possibility distributions based on the idea that the
specificity relation definition has to be consistent with the possibilistic decision
making (DM): the more specific an underlying possibilistic model is, the nar-
rower a set of the optimal decisions has to be. Let’s call such an approach the
“DM-driven” one. The DM problem considered in my paper cited above was
similar to the statistical problems of point estimation and hypotheses testing. In
this work, I study the DM-driven approach to specificity in a more conventional
Savage-style setting of the DM problem.

1 Defining the DM-driven specificity relation

In my paper [6] I investigated specificity of comparative possibility distributions [4,
2]. Despite the fact that I considered those distributions as real-valued functions π :
S → [0, 1] such that maxs∈S π(s) = 1, where S is a set of states of the world, the
obtained results remain suitable in the purely ordinal setting as well. The reason is that
the unit interval [0, 1] was actually considered in [6] as an ordinal scale with the order-
preserving algebraic operations “max” and “min”.

Beside the representation of comparative possibility distribution in terms of a real-
valued function π, I use a mathematically equivalent representation in terms of a well-
ordered partition WOP(π) =

(
Sπ1 , . . . , S

π
n ; Z

π
)

of S [1] in this paper:

π(s) = 0⇔ s ∈ Zπ, π(s1) > π(s2) > 0⇔ s1 ∈ Sπi , s2 ∈ Sπj , i < j. (1)

The main result of [6] was a new specificity relation “�” of comparative possibility
distributions. In terms of well-ordered partitions, π1 � π2 can be defined as follows:

SpRel-1. Zπ2 ⊂ Zπ1 :
the π2-impossible states of the world are π1-impossible as well,

SpRel-2. ∃r such that Sπ2
i ∩ Zπ1 = ∅, ∀i < r, and Sπ2

j ⊂ Zπ1 , ∀j > r:
according to π2, the π1-impossible states are not more likely than all the others,

SpRel-3. ∀p, ∃q such that
⋃p
i=1 S

π2
i \ Zπ1 =

⋃q
j=1 S

π1
j :

on the set S \ Zπ1 of π1-possible states, the preference ordering induced by π1
refines the one induced by π2, that is, ∀s1, s2 ∈ S \ Zπ1 , if π1(s1) 6 π1(s2), then
π2(s1) 6 π2(s2).
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2 Formulating the DM problem in the Savage-style setting

In [6], the role of the specificity relation “�” in decision making was studied. The
decision-making problem formulated in [6] was to estimate an unknown value ξ(s) of
a latent (unobservable) function ξ in the current state of the world s ∈ S using a value
η(s) (known to a decision maker) taken by an observable function η in the same state.
The decision maker did not know what was the current state of the world s ∈ S in
a precise way, and that was modeled on the qualitative possibilistic basis. That is, the
decision maker knew a joint possibility distribution of ξ and η

πξ,η(x, y) = Π
(
{ξ(s) = x and η(s) = y simultaneously}

)
,

where Π : 2S → [0, 1] was a maxitive possibility measure expressing a priori qualita-
tive imprecise information about the world. Mathematically, the decision-making prob-
lem was formulated in [6] as the following optimization problem:

Π
(
{s : δ(η(s)) 6= ξ(s)}

)
= max

{
πξ,η(x, y)

∣∣ δ(y) 6= x
}
∼ min

δ
. (2)

That was a problem of finding estimators δ (the mappings from the range of η to the
range of ξ) minimizing possibility of incorrect estimation.

However, a more conventional mathematical model of decision-making is the Savage-
style one [5]. According to Savage, the decision maker must to choose optimal act(s)
from a set F of all feasible acts. Each act f ∈ F is a mapping from the set of states
S to a set X of potential consequences of decisions that are ranked according to their
utility. That is, a real-valued utility function u and the corresponding complete preorder
6u are defined on X: x1 6u x2 ⇔ u(x1) 6 u(x2).

Therefore, if the decision maker knows for sure that the current state of the world is
s ∈ S, then it knows the consequence f(s) of any act f ∈ F and its utility u(f(s)) as
well. In this case, a set of optimal acts Fs is as follows:

Fs =
{
f ∈ F : u(f(s)) = umax(s)

}
, where umax(s) , max

g∈F
u(g(s)). (3)

Under qualitative possibilistic uncertainty, i. e., if the current state of the world is
not known precisely, and it is modeled on the qualitative possibilitic basis as described
above, a mathematical problem of choosing acts can be formulated in three ways. One
of them is to maximize possibility of optimality:

P ∗(f | π) , max
{
π(s)

∣∣ f ∈ Fs
}
∼ max

f∈F
, (4)

another is to minimize possibility of nonoptimality:

L∗(f | π) , max
{
π(s)

∣∣ f /∈ Fs
}
∼ min

f∈F
. (5)

Let F ∗(π) and F∗(π) be the sets of all solutions of (4) and (5) respectively. Note that

if min
f∈F

L∗(f | π) 6= 1, then F∗(π) ⊂ F ∗(π). (6)
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Indeed, max
{
L∗(f | π), P ∗(f | π)

}
= 1. Therefore, if f ∈ F∗(π) and L∗(f | π) 6= 1,

then P ∗(f | π) = 1 = maxg∈F P ∗(g | π), i. e., f ∈ F ∗(π).
The last formulation of the DM problem is based on the likely dominance rule

(LDR) which establishes the preference between acts as follows [3]:

f >π g ⇔ max
{
π(s)

∣∣u(f(s)) > u(g(s))
}
> max

{
π(s)

∣∣u(g(s)) > u(f(s))
}
,

f >π g ⇔ not g >π f.

Let FLDR(π) be a set of the most preferable acts according to the LDR:

FLDR(π) = {f ∈ F : ∀g ∈ F, f >π g}. (7)

The theorem below states that those acts are the most preferable according to (5) too:

Theorem 1. FLDR(π) ⊂ F∗(π).

Proof. Assume that f ∈ FLDR(π) but f /∈ F∗(π). Then ∃g ∈ F such that max
{
π(s)

∣∣
u(g(s)) 6= umax(s)

}
< max

{
π(s)

∣∣u(f(s)) 6= umax(s)
}

, see (5) and (3). Therefore,
there exists integer i s. t. u(g(s)) = umax(s), ∀s ∈ Sπ1 ∪ . . . ∪ Sπi , while u(f(s0)) <
umax(s0) = u(g(s0)) for some s0 ∈ Sπi . Thus, g >π f which contradicts to the initial
assumption. ut

3 The DM-driven specificity relation in the Savage-style setting

Above, I formulated the problem of decision making in the Savage-style setting in three
different ways, see (4), (5), (7). In this section I study the role of the DM-driven speci-
ficity relation “�” defined by SpRel-1 – SpRel-3 in those DM problems. Firstly,

Theorem 2. If π1 � π2, then F ∗(π1) ⊂ F ∗(π2).

Proof. Obviously, F ∗(π) = {f ∈ F : u(f(s)) = umax(s) for some s ∈ Sπ1 }, where
Sπ1 is a set of the most likely states, see (1). According to SpRel-3, Sπ1

1 ⊂ Sπ2
1 . Hence,

F ∗(π1) ⊂ F ∗(π2). ut

The meaning of theorem 2 is exactly as stated in the abstract: the more specific an
underlying possibilistic model is, the narrower a set of the optimal decisions has to be.
However, criteria (4) is not very decisive (see (6) and theorem 1), so it is not of much
interest. Let us study the role of “�” with respect to the LDR.

Theorem 3. If π1 � π2, then f ∈ FLDR(π1) implies either f ∈ FLDR(π2) or u(f(s)) =
u(g(s)) for any g >π2

f and all π1-possible states of the world s ∈ S.

Proof. ∀g >π2
f , max

{
π2(s)

∣∣u(f(s)) > u(g(s))
}
< max

{
π2(s)

∣∣u(g(s)) >

u(f(s))
}

. f ∈ FLDR(π2) ⇒ max
{
π1(s)

∣∣u(f(s)) > u(g(s))
}

> max
{
π1(s)

∣∣
u(g(s)) > u(f(s))

}
. These two inequalities can be met simultaneously if and only

if max
{
π1(s)

∣∣u(f(s)) > u(g(s))
}

= max
{
π1(s)

∣∣u(g(s)) > u(f(s))
}

= 0, see
SpRel-1 – SpRel-3. That is, max

{
π1(s)

∣∣u(f(s)) 6= u(g(s))
}
= 0. ut
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Fig. 1. A graphical representation of
possibility distributions π1 � π2 and
acts f, g such that: (a) according to
π2, g is preferred to f , (b) according to
π1, the consequences of f and g are of
equal utility in any possible state of the
world s ∈ S.

Compared with theorem 2, the meaning
of theorem 3 is more complicated. It does not
guaranty that π1 � π2 implies FLDR(π1) ⊂
FLDR(π2). I. e., if f ∈ FLDR(π1), there can
exist g satisfying the condition g >π2

f .
However, for any such an act g, there is
no difference in utility between the conse-
quences f(s) and g(s) of the acts f and g in
any π1-possible state of the world s, see fig. 1.

Let us consider the following situation as
an example. Andrew and Barbara are plan-
ning a weekend trip to Vienna by car. Andrew
is sure that there will be clear weather in Vi-
enna on the weekend, so there is no difference
between acts f = “to put an umbrella in the
car trunk” and g = “to put waterproof jack-
ets”, i. e., f and g are in FLDR(Andrew). Bar-
bara is less specific and thinks that clear weather will be the most likely, rain with
strong wind will be less likely, and, finally, rain without wind will be the least likely.
Therefore, the act g is more preferable than f (cause an umbrella is not useful in the
case of strong wind): g >Barbara f . However, this is a fallacious preference caused by
Barbara’s poor knowledge about weather.

As seen from this example, the fact that conditions f ∈ FLDR(π1) and g >π2
f

are met together does not contradict to the common idea of specificity of incomplete
knowledge represented by π1 and π2 if the conclusion of theorem 3 is true. Therefore,
theorem 3 does allow us to connect the formal definition SpRel-1 – SpRel-2 of the
relation “�” with the human-understandable idea of specificity.

This is similar to the result obtained in [6] w. r. t. problem (2). This fact emphasizes
the universal role of the DM-driven specificity in DM under qualitative possibilistic
uncertainty, and it does not matter what setting of the DM problem is in question.
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