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Since their inception in 1979 the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects of fuzzy sets by bringing
together researchers in fuzzy sets and established mathematicians whose work
outside the fuzzy setting can provide direction for further research. The philos-
ophy of the seminar has always been to keep it deliberately small and intimate
so that informal critical discussions remain central.

LINZ 2022 will be the 39th seminar carrying on this tradition and is de-
voted to the theme “Many-Valued Logics: Theory and Applications”. The goal
of the seminar is to present and to discuss recent advances of many-valued and
mathematical fuzzy logics and their applications in pure and applied fields.

This volume contains the abstracts of the contributions accepted for presen-
tation at LINZ 2022. The regular contributions are complemented by six invited
plenary talks, some of which are intended to give new ideas and impulses from
outside the traditional Linz Seminar community.
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Libor Běhounek
Some non-mainstream uses of fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Petr Cintula, Carles Noguera
The general algebraic framework for Mathematical Fuzzy Logic . . . . . . . . 16

Martina Daňková
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New foundations of reasoning
via real-valued first-order logics

Guillermo Badia1, Ronald Fagin2, and Carles Noguera2

1 School of Historical and Philosophical Inquiry
University of Queensland, Brisbane, Queensland, Australia

g.badia@uq.edu.au
2 IBM Research - Almaden

IBM, San José, California, USA
fagin@us.ibm.com

3 Department of Information Engineering and Mathematics
University of Siena, Siena, Italy
carles.noguera@unisi.it

Typically the study of inference in many-valued logic answers the following ques-
tion: given that all premises in a given set Γ are fully true (i.e. take value 1), what other
formulas can we see to be fully true as a consequence? The approach followed by [1]
goes further and asks: what information can we infer on the assumption that the formu-
las in are partially true (i.e. take truth values other than 1)? What other formulas could
be seen to be partially true or completely false? The goal is to axiomatize inference
genuinely involving many truth-values.

In fact, the work in [1] poses the above questions not just for single formulas but
for sequences of formulas taking certain combinations of values considered as a single
expression called a multidimensional sentence (in short, an MD-sentence). More pre-
cisely, an MD-sentence is a syntactic object of the form 〈σ1, . . . , σn, S〉 where S is a
set of n-tuples of truth-values for the sequence of formulas σ1, . . . , σn. The semantic
intuition is that 〈σ1, . . . , σn, S〉 should be true in an interpretation if the sequence of
truth-values that σ1, . . . , σn take in that interpretation is one of the n-tuples in S. As
it happens, MD-sentences of the form 〈σ, S〉 where S is a union of a finite number of
closed (and where the connectives have been given the Łukasiewicz semantics) inter-
vals can be expressed in the extension of Łukasiewicz logic known as Rational Pavelka
logic. However, if, for example, S is a left open interval, (0.5, 1], Rational Pavelka logic
is unable to deal with this.

In this talk, we will generalize the work from [1] to the first-order and modal con-
texts. We will study the first-order (as well as modal) logic of multidimensional sen-
tences (generalizing the definition of [1]) when the models considered all have the same
fixed domain (which may be of any fixed cardinality, either finite or infinite). The key
result is a completeness result that follows the strategy of Fagin et al for the propo-
sitional case. We will show how our approach leads to parameterized axiomatizations
of the validities of many prominent first-order real-valued logics (since this includes
several logics that are not recursively enumerable for validity, our system in general
does not yield a recursive enumeration of theorems). Also we will obtain a 0-1 law
for finitely-valued versions of these logics. Finally, we will remove the restriction of a
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fixed domain and provide a completeness theorem for the first-order logic of multidi-
mensional sentences on arbitrary domains.

Acknowledgement. Guillermo Badia is supported by the Australian Research Council
grant DE220100544.

References

1. Ronald Fagin, Ryan Riegel, and Alexander Gray. Foundations of Reasoning with Uncertainty
via Real-valued Logics, arXiv:2008.02429v2 (2021).
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Classical and Fuzzy Two-Layered Modal Logics for
Uncertainty:

Translations and Proof-Theory

Paolo Baldi1, Petr Cintula2, and Carles Noguera3

1 Department of Philosophy
University of Milan, Italy

paolo.baldi@unimi.it
2 Institute of Computer Science

Czech Academy of Sciences, Czechia
cintula@cs.cas.cz

3 Department of Information Engineering and Mathematics
University of Siena, Italy

carles.noguera@unisi.it

Numerous logical systems have been proposed, and intensively studied in recent
years, to cope with reasoning about uncertain events. Among them, two of the most
prominent examples are the systems introduced by Fagin, Halpern, and Megiddo [3],
which we denote here as Prlin and Prpol.4

These systems have since played a crucial role in the logic-based representation of
uncertainty in AI; see also the monograph by Halpern [7] and references therein. Prlin
and Prpol employ a rather sophisticated two-layered modal syntax: in their first layer
they express classical events (that is, propositions that can only be true or false) by
means of the syntax of propositional classical logic; then, they define the atomic state-
ments of the second syntactical layer as linear inequalities (for Prlin), or polynomial
inequalities (for Prpol), of probabilities of these classical events. Each of these inequal-
ities can be seen as the application of a multimodal operator on classical formulas.
Finally, such atomic statements may be combined using classical connectives again.

The consequence relation of both logics Prlin and Prpol is then introduced seman-
tically by means of Kripke frames enriched by a probability measure. Atomic formulas
are then interpreted as true when the corresponding inequalities involving the probabil-
ity of the classcial events, seen as suitable sets of world, hold. This is then extended
truth-functionally to complex formulas, by the usual semantics of classical logic.

Despite dealing with the intrinsically graded notion of probability, the semantics of
these logics remains essentially bivalent. An alternative approach to reasoning about
uncertain events uses the framework of mathematical fuzzy logic and takes sentences
like “φ is probable” at face value, that is, identifying its truth degree with the probability
of φ. Then, one combines such formulas using connectives of a suitable fuzzy logic.
Hence, this approach also uses a two-layered modal syntax which is, however, radically
simplified. Indeed, it employs only one monadic modality (for “is probable”), instead of

4 These logics (or more precisely their axiomatic systems) are usually denoted by AXprob and
AXprob,× and, the fuzzy ones introduce below (PrŁ, PrŁ△ , and PrPŁ△ ) are traditionally
denoted as FP(Ł), FP(Ł△), FP(PŁ), respectively. We have opted here for a uniform but
neutral terminology, for ease of reference.
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infinitely-many polyadic modalities, as it shifts the syntactical complexity of the atomic
statements to the many-valued semantics of the fuzzy logic in question.

The original rendering of this approach in [6, 5] used Łukasiewicz logic Ł to govern
modal formulas. The resulting logic, which we denote here as PrŁ, was given by us-
ing Kripke frames enriched by a probability measures, analogously to Prlin and Prpol.
Later, several authors studied numerous similar logical systems by altering not only
the upper logic but also the lower one (to speak about probability of fuzzy events) and
even their interlinking modalities (to speak about other measures of uncertainty such as
necessity, possibility, or belief functions).5

In this work, we focus on the logic PrŁ and two of its expansions, PrŁ△ and PrPŁ△ ,
which use stronger fuzzy logics to govern the behavior of modal formulas in the upper
syntactical layer, namely the logic Ł△ expanding Ł with the Baaz–Monteiro projection
operator △, and its further expansion PŁ△ with the product conjunction.

Our first contribution is to show that Prlin and Prpol can be translated into the two-
layered modal fuzzy logics PrŁ△ and PrPŁ△ , and hence, casted into a syntactically
simpler framework without losing expressivity. We also provide inverse translations,
thus showing that both approaches are indeed much more closely related than it might
have seemed at first sight.

Our second contribution is the introduction of Gentzen-style calculus, which we
use to provide an alternative proof, arguably simpler, proof of completeness of the logic
Prlin. Unlike classical Gentzen calculi, which work with sequents, this system is based
on more complex syntactical structures, known as hypersequents of relations [1].

References
1. Agata Ciabattoni, Christian G. Fermüller, and George Metcalfe. Uniform rules and dialogue

games for fuzzy logics. In Proceedings of LPAR 2004, volume 3452 of Lecture Notes in
Artificial Intelligence, pages 496–510. Springer, 2005.

2. Petr Cintula and Carles Noguera. Modal logics of uncertainty with two-layer syntax: A general
completeness theorem. In Ulrich Kohlenbach, Pablo Barceló, and Ruy de Queiroz, editors,
Logic, Language, Information, and Computation, pages 124–136, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

3. Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about proba-
bilities. Information and Computation, 87(1–2):78–128, 1990.

4. Tommaso Flaminio, Lluı́s Godo, and Enrico Marchioni. Reasoning about uncertainty of fuzzy
events: An overview. In Petr Cintula, Chris Fermüller, and Lluı́s Godo, editors, Understand-
ing Vagueness: Logical, Philosophical, and Linguistic Perspectives, volume 36 of Studies in
Logic, pages 367–400. College Publications, London, 2011.

5. Petr Hájek, Lluı́s Godo, and Francesc Esteva. Fuzzy logic and probability. In Proceedings of
the 11th Annual Conference on Uncertainty in Artificial Intelligence UAI ’95, pages 237–244,
Montreal, 1995.

6. Petr Hájek and Dagmar Harmancová. Medical fuzzy expert systems and reasoning about
beliefs. In Pedro Barahona, Mario Stefanelli, and Jeremy Wyatt, editors, Artificial Intelligence
in Medicine, pages 403–404, Berlin, 1995. Springer.

7. Joseph Y. Halpern. Reasoning About Uncertainty. MIT Press, 2005.

5 We refer the reader to the survey work [4] and references therein and to the abstract unifying
framework for these logics [2]
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Some non-mainstream uses of fuzzy logic

Libor Běhounek

Institute for Research and Applications of Fuzzy Modeling
University of Ostrava, NSC IT4Innovations, Ostrava, Czech Republic

libor.behounek@osu.cz

The mainstream applications of fuzzy logic are found in such areas as approximate
reasoning, fuzzy control, classification and decision making, expert systems, and nat-
ural language modeling. In this talk I aim to give an overview of several less common
uses for fuzzy logic, some of which are well known, while others are connected to re-
cent work by my co-authors and myself. These less typical uses of fuzzy logic fall into
several broad classes. The first includes cases where fuzzy logic admits constructions
that are inconsistent in classical mathematics, such as arithmetic with an unrestricted
truth predicate, a naive conception of infinitesimals, and possibly a set theory with unre-
stricted comprehension axioms. A further kind is the use of fuzzy logic in the semantics
of other non-classical logics, aimed at ridding them of certain problematic issues such
as the Limit Assumption in the semantics of counterfactuals and the paradox of logi-
cal omniscience in epistemic logic. Another is the use of fuzzy logic to eliminate real
numbers from a formalism that is thereby simplified, e.g., in probability logic or in the
axiomatization of physics. Fuzzy logics can also be used to describe the transmission
of qualities other than degrees of truth, such as resources or penalties, insofar as they
exhibit the structure of a semilinear residual lattice; in this way, suitable fuzzy logics
can be employed to model deontic or resource-aware reasoning. I will briefly survey
these non-mainstream use cases for fuzzy logic, and for some of them will describe the
state of the art and open problems in more detail.
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The general algebraic framework for
Mathematical Fuzzy Logic

Petr Cintular1 and Carles Noguera2

1 Institute of Computer Science
Czech Academy of Sciencest, Prague, Czech Republic

cintula@cs.cas.cz
2 Department of Information Engineering and Mathematics

University of Siena, Siena, Italy
carles.noguera@unisi.it

Originating as an attempt to provide solid logical foundations for fuzzy set the-
ory [19], and motivated also by philosophical and computational problems of vague-
ness and imprecision [16] , Mathematical Fuzzy Logic (MFL) has become a significant
subfield of mathematical logic [17]. Throughout the years many particular many-valued
logics and families of logics have been proposed and investigated by MFL and numer-
ous deep mathematical results have been proven about them (see the three volumes of
handbook of MFL [5]). In the early years, there was, however, a great deal of repetition
in the papers published on this topic; it was common to encounter articles that studied
slightly different logics by repeating the same definitions and essentially obtaining the
same results by means of analogous proofs. This unnecessary ballast was delaying the
development of MFL while obscuring the reasons behind the main results. Therefore,
MFL was an area of science screaming for systematization through the development
and application of uniform, general, and abstract methods.

Abstract algebraic logic presented itself as the ideal toolbox to rely on; indeed, this
general theory is applicable to all non-classical logics and provides an abstract insight
into the fundamental (meta)logical properties at play. However, the existing works in
that area (summarized in excellent monographs [2, 14, 15]) did not readily give the
desired answers. Despite their many merits, these texts live at a level of abstraction a
little too far detached from the intended field of application in MFL. They are indeed
great sources of knowledge and inspiration, but there is still a lot of work to be done in
order to bring the theory closer to the characteristic particularities of MFL, in particular
in first-order logics.

These considerations led us, the authors of this contribution, to writing an extensive
series of papers (e.g., [1,3,4,6–8,10–12,18] to name the most important ones) in which
we have developed various aspects of the general theory of MFL at different levels of
generality and abstraction.

Our first attempt at systematizing this bulk of research was a chapter published in
2011 in the Handbook of Mathematical Fuzzy Logic [9] where we provided rudiments
of a well rounded theory constituting solid foundations sufficient (and necessary!) for a
rapid development of new particular fuzzy logics demanded by emerging applications.
The goal of this talk is to summarize the subsequent 10 years of development and re-
finements of this theory and present its now matured state of the art as described in our
recent monograph [13].
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Weighted Fuzzy Rules for a Relational Data Model

Martina Daňková

University of Ostrava, CE IT4Innovations,
30. dubna 22, 701 03 Ostrava, Czech Republic

Martina.Dankova@osu.cz

Abstract. In this contribution, we propose a novel approach to automated fuzzy
rule base creation based on underlying observational data. The core of this method
lies in adding information to particular fuzzy rule in the form of attached weight
given as a value extracted from a relational data model.

1 Sample-based Fuzzy Rules

There is a vast amount of methods for fuzzy rules generation. Usually, they split to
those that stems from an expert knowledge or those computed from observed data. A
method stemming from observed data formalized in [2] generates one particular fuzzy
rule using fuzzy similarity relations for each input data. We summarize it below:

– Consider a (many-sorted) basic many-valued predicate logic (BL∀) with the con-
nectives &,→,∧,∨ and quantifiers ∀,∃.

– Let T be a theory with a binary predicate F of a type (t1, t2), let ≈j be a similarity
predicate in T for the sort tj , j = 1, 2. Moreover, let ci, di be constants of the sorts
t1, t2, respectively, for i = 1, 2, . . . , n.

– The following formulas are the axioms of T :
• Similarity axioms for ≈1,≈2.
• Extensionality of F : ((x ≈1 x

′) & (y ≈2 y
′) & F (x, y)) → F (x′, y′).

• Functionality of F : ((x ≈1 x
′) & F (x, y) & F (x′, y′)) → (y ≈2 y

′).
• Examples of F :

∧
i F (ci, di).

– Define:

MamdF (x, y) ≡df

∨

i

(
(x ≈1 ci) & (c ≈2 di)

)
,

RulesF (x, y) ≡df

∧

i

(
(x ≈1 ci) → (c ≈2 di)

)
.

We call MamdF and RulesF relational data models.

In the theory T , we prove many interesting properties, e.g.,

MamdF (x, y) → F (x, y), F (x, y) → RulesF (x, y),
∨

i

(x ≈1 ci)
2 → (MamdF (x, y) ↔ RulesF (x, y)).
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Unfortunately, this approach without any further fuzzy rules reduction method is
suitable only for a small number of data samples. One of the possible solutions is to fix
the number of rules and use quantifiers of Fuzzy General Unary Hypotheses Automa-
ton (FGUHA) methods [4, 6] (a generalization of GUHA methods [3]) to confirm/reject
each particular designed fuzzy rule. Examples of successful solutions to real-world
problems from various fields having a vague nature can be found in [7].

2 Weighted Fuzzy Rules from the Mamd Model

Another solution to the above-described problem can be given by adding to each fuzzy
rule a special weight based on the given sample data. We do it using the so-called normal
forms for fuzzy logic formulas introduced in [5] and the relational data model Mamd
as follows:

– Let S be a theory over BL∀ with binary predicates F,G of a type (t1, t2), let ≈j be
a similarity predicate in S for the sort tj , j = 1, 2. moreover, let ci, di be constants
of the sorts t1, t2, respectively, for i = 1, 2, . . . , n, and pj , qj be constants of the
sorts t1, t2, respectively, for j = 1, 2. . . . , k.

– Define:

DNFG(x, y) ≡df

∨

j

(
(x ≈1 pj) & (y ≈2 qj) &G(pj , qj)

)
,

CNFG(x, y) ≡df

∧

j

(
((x ≈1 pj) & (y ≈2 qj)) → G(pj , qj)

)
.

– The following formulas are the axioms of S:
• Similarity axioms for ≈1,≈2.
• G(x, y) ↔ MamdF (x, y).

In the theory S, we consider a relational data model in the form of Mamd; then we
can prove the extensionality of Mamd, i.e.,

S ⊢ ((x ≈1 x
′) & (y ≈2 y

′) & MamdF (x, y)) → MamdF (x′, y′).

Consequently, S proves:

DNFG(x, y) → G(x, y), G(x, y) → CNFG(x, y),
∨

j

(x ≈1 pj)
2 → (DNFG(x, y) ↔ CNFG(x, y)).

Note that functionality of DNF(CNF)MamdF
is not provable. Many more interesting

results on approximate inference with DNFMamdF
and CNFMamdF

are directly ob-
tained from the results on normal forms published in [1].

Acknowledgement. This research was supported by Czech Science Foundation through
the grant 20-07851S.
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Are finite affine topological spaces worthy of study?
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Abstract. Motivated by the theorem of S. A. Morris stating that every topo-
logical space is homeomorphic to a subspace of a product of a finite (3-element)
topological space, we show that this result is no longer valid for affine topological
spaces (inspired by affine sets of Y. Diers), including, e.g., many-valued topology.

1 Introduction

A well-known result of S. A. Morris [8] states that every topological space is home-
omorphic to a subspace of a product of copies of the Davey topological space (or
just Davey space), i.e., the space D = (D, τD) with a 3-element underlying set D =
{0, 1, 2} equipped with a topology τD = {∅, {1}, {0, 1, 2}}. Stating differently, D
is an extremal coseparator in the category Top of topological spaces and continuous
maps [1]. In view of this result and also to answer the criticism of some of the re-
searchers claiming that “finite topological spaces are not in the slightest bit interesting”,
it is stated in [8] that “perhaps there is something of interest in finite spaces after all”.

There is another point supporting a general interest in finite topological spaces, i.e.,
the well-known concept of Sierpinski space S = ({0, 1}, {∅, {1}, {0, 1}}). This space
plays an important role in general topology, e.g., a topological space is T0 iff it can
be embedded into some power of S. Stating differently, S is an M-coseparator in the
category Top0 of T0 topological spaces, where M stands for the class of all topological
embeddings (initial injective maps) in Top0. Motivated by the importance of the notion
of Sierpinski space, E. G. Manes [7] introduced its analogue for concrete categories
under the name of Sierpinski object. An object S of a concrete category C is a Sierpinski
object provided that for every C-object C, the hom-set C(C, S) is an initial source.

To find a way of interaction between different approaches to lattice-valued topology,
S. Solovjovs [10] introduced an affine approach to lattice-valued topology, originating
in the notion of affine set of Y. Diers [4]. Observe that a classical topological space
(X, τ) consists of a set X and a topology τ , where τ is a subset of the powerset PX
and has the algebraic structure of frame [6]. The affine approach replaces the standard
contravariant powerset functor Set P−→ CBAlgop (where Set is the category of sets, and

21



CBAlg is the category of complete Boolean algebras) with a functor X T−→ Aop (where
X is a category, and A is a variety of algebras), and requires τ to be a subalgebra of TX .
Suitable variety A and functor T provide not only the classical topological spaces, but
also the closure spaces of, e.g., [2] and numerous lattice-valued topological frameworks.

This talk tries to investigate the role of finite spaces in affine topology. There ex-
ists an affine analogue of the Sierpinski space in terms of the Sierpinski object of
E. G. Manes [3, 5], which (in general) is no longer finite. This talk provides an affine
analogue of the Davey space and shows its simple relation to the affine Sierpinski space.
Since the affine Davey space is (in general) no longer finite as well, a simple message
we want to convey is that finite spaces play a (probably) less important role in affine
topology (for example, in lattice-valued topology) than they do in the classical topology.

2 Affine topology

This section recalls from, e.g., [3] the main preliminaries on affine topological spaces.

Definition 1. LetΩ = (nλ)λ∈Λ be a family of cardinal numbers indexed by a (possibly,
proper or empty) class Λ. An Ω-algebra is a pair (A, (ωA

λ )λ∈Λ) made of a set A and a

family of maps Anλ
ωA

λ−−→ A. An Ω-homomorphism (A, (ωA
λ )λ∈Λ)

φ−→ (B, (ωB
λ )λ∈Λ) is

a map A
φ−→ B such that φ ◦ ωA

λ = ωB
λ ◦ φnλ for every λ ∈ Λ. Alg(Ω) is the category

of Ω-algebras, concrete over the category Set (with the forgetful functor | − |).

Definition 2. Let M (resp. E) be the class of Ω-homomorphisms with injective (resp.
surjective) underlying maps. A variety of Ω-algebras is a full subcategory of Alg(Ω)
closed under the formation of products, M-subobjects, and E-quotients. The objects
(resp. morphisms) of a variety are called algebras (resp. homomorphisms).

We fix a variety A (one can think of the variety Frm of frames, which provides an
example for all the results in the talk) and let Aop denote the dual of the category A.

Definition 3. Given a functor X T−→ Aop, Af Spc(T ) is the concrete category over X,
whose objects (T -affine spaces) are pairs (X, τ), whereX is an X-object and τ is an A-

subalgebra of TX; and whose morphisms (T -affine morphisms) (X1, τ1)
f−→ (X2, τ2)

are X-morphisms X1
f−→ X2 such that (Tf)

op
(α) ∈ τ1 for every α ∈ τ2.

In this talk we restrict ourselves to a particular form of the functor T shown below.

Proposition 1. Every A-algebra A gives rise to a functor Set PA−−→ Aop defined by

PA(X1
f−→ X2) = AX1

PAf−−−→ AX2 where (PAf)
op

(α) = α ◦ f .

The case A = CBAlg,A = 2 gives the contravariant powerset functor Set P−→ CBAlgop

defined on a map X
f−→ Y by PY (Pf)op

−−−−→ PX , (Pf)
op

(S) = {x ∈ X | f(x) ∈ S}.
Observe that Af Spc(PA) is the category ASet(Ω) of affine sets of [5] based in

the notion of affine set of Y. Diers. For A = Frm, Af Spc(P2) is the category Top of
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topological spaces. For A = Frm or A = UQuant (unital quantales), Af Spc(PA) is the
categoryA-Top of fixed-basis lattice-valued topological spaces of S. E. Rodabaugh [9].

From now on, we fix an A-algebraL and consider the category Af Spc(PL), denoted
Af Spc(L), whose objects will be called affine spaces. We also assume thatL has at least
two elements, excluding thus possible trivial cases of the empty and a singleton algebra.
The category Af Spc(L) is topological over Set and therefore is (co)complete.

Definition 4. An affine space (X, τ) is said to be

1. indiscrete provided that τ is the algebra generated by the empty set;
2. T0 provided that for every distinct x, y ∈ X , there is α ∈ τ such that α(x) ̸= α(y).

The case A = Frm and L = 2 gives the classical properties of topological spaces.

3 Affine Sierpinski and Davey spaces

This section outlines briefly the main results on affine Sierpinski and Davey spaces.

Definition 5. Affine Sierpinski space S is the pair (|L|, ⟨1L⟩), where ⟨1L⟩ is the subal-
gebra of L|L| generated by the identity map 1L.

A = Frm and L = 2 give the classical Sierpinski space S = ({0, 1}, {∅, {1}, {0, 1}}).

Theorem 1. An affine space (X, τ) is T0 iff it can be embedded into some power of S.

Corollary 1. S is an M-coseparator in the category Af Spc0(L) of T0 affine spaces,
where M stands for the class of all embeddings in Af Spc0(L).

The classical Sierpinski space can be embedded into the Davey space. Moreover, a
topological space is an extremal coseparator in Top iff it contains an indiscrete subspace
with two elements and a Sierpinski subspace [1]. To preserve these classical relation-
ships between topological spaces, we introduce a particular assumption on the variety
A underlying the category Af Spc(L). The variety A should have at least one nullary
operation ω0 (a constant, which is then an element of every algebra of the variety A).

Definition 6. Affine Davey space D is the pair (D, τD), where D = |L|∐{∗} and
τD = ⟨p⟩, in which the map D

p−→ L is given by the following commutative diagram:

L
µL //

1L ��

D

p

��

{∗}
µ{∗}oo

ωL
0~~

L,

where µL, µ{∗} are coproduct injections, and ωL
0 is the constant map with value ωL

0 .

Theorem 2. Every affine space can be embedded into some power of D.

Corollary 2. The space D is an extremal coseparator in the category Af Spc(L).
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The classical case A = Frm and L = {⊥,⊤} gives the next topological spaces D.

1. Taking ωL
0 = ⊥, one obtains the 3-element set D = {0, 1, 2} (we use notation “2”

instead of “∗”) and the topology τD = {∅, {1}, {0, 1, 2}}, namely, D is precisely
the classical Davey space D of S. A. Morris [8].

2. Taking ωL
0 = ⊤, one obtains the same 3-element set D = {0, 1, 2}, but the topol-

ogy τD has now the form of {∅, {1, 2}, {0, 1, 2}}, namely, D is the second possible
form of the Davey space D of S. A. Morris [8].

The cardinality of the underlying set of the affine spaces S and D depends on the
cardinality of the algebra L and can be arbitrarily large. For example, in case of the vari-
ety of frames, as soon as we substitute the two-element frame 2 underlying the classical
topology with an infinite frame, we obtain infinite affine Sierpinski and Davey spaces.
The setting of affine topology shows that it is not the underlying set of a topological
space, which plays the main role, but the algebra underlying the respective powersets.

Theorem 3. The affine Davey space D contains an indiscrete 2-element space and the
affine Sierpinski space S as a subspace.

Despite the fact that the cardinality of the affine Davey space D can be arbitrarily
large, its contained non-trivial indiscrete space has exactly two elements.

We observe that all the obtained results can be restated in terms of an affine analogue
of topological systems of S. Vickers [11] considered in, e.g., [3].

Acknowledgement. Jan Paseka was supported by the Austrian Science Fund (FWF),
project I 4579-N, and the Czech Science Foundation (GAČR), project 20-09869L, en-
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Abstract. We introduce a novel approach to fuzzy quantification based on fuzzy
domains. We present its motivation and show new results on operations of restric-
tion and freezing.

Fuzzy quantification is an interesting research field that connects ideas from logic, lin-
guistics, fuzzy set theory, and other areas. Our approach is based on notions from the
theory of generalized quantifiers (see [6, 5]). Fuzzy quantifiers over crisp domains [4]
generalizing the bivalent generalized quantifiers in the sense of [6] allow one to better
model natural language quantifiers such as many, a few, etc.

In [3], we proposed a novel approach to fuzzy quantification based on the notion of
fuzzy domain. We were mainly motivated by the impossibility to define the important
operation of relativization for fuzzy quantifiers over crisp domains in a natural and
satisfactory way. Similar considerations hold also for further important operations of
restriction and freezing, and also for the so-called living-on property [2].

Relativization. Basically, this operation transforms a quantifier with one argument into
a closely related quantifier with two arguments. Let us denote a truth value of a quanti-
fier Q applied to arguments A1, . . . , An over a domain D by QD(A1, . . . , An), where
A1, . . . , An are either subsets of D (bivalent quantification) or fuzzy subsets of D
(fuzzy quantification). In case of relativization of bivalent quantifiers, a new quantifier
Qrel with two arguments arises from a quantifier Q with one argument as

(Qrel)M (A,B) := QA(A ∩B). (1)

However, in the case of fuzzy quantification, there is a problem: a type mismatch in
the expression on the right side of (1): in a position for the domain of Q, a classical
set is expected, not a fuzzy set A. In [3, Theorem 5.1], we proved that for fuzzy quan-
tifiers over crisp domains, relativization cannot be defined in a satisfactory way. But
relativization plays a prominent rôle in characterizing the important class of quantifiers
with two arguments that are models of natural language quantifiers [6, Chapter 4.5].
This motivated us to seek a way how to successfully define this operation for fuzzy
quantifiers.

Fuzzy domains. As a solution to the problem explained above, we came up with the idea
of defining a fuzzy domain as a pair (M,C), where M is a set and C is a fuzzy subset
of M . It allows us (leaving technical details aside) to define relativization of fuzzy
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quantifiers over fuzzy domains in a way that resembles the definition (1) for bivalent
quantifiers:

(Qrel)(M,C)(A,B) := Q(M,C∩A)(A ∩B). (2)

Notice that, using fuzzy domains, we are able to “move” the fuzzy set A to the position
for a domain ofQ. Relativization defined by (2) permits us to show properties analogous
to those valid for bivalent quantifiers. We also defined operations with fuzzy domains
(union, intersection, and difference) and binary relations of equality and the so-called
equality up to negligible elements that does not take into account elements with zero
membership degree. It can be shown that this relation is a congruence with respect to
union, intersection, and difference of fuzzy domains.

Freezing. This operation can be seen as an opposite to relativization, transforming
quantifiers with two arguments into related one-argument quantifiers. For bivalent quan-
tifiers, the quantifier Q with its first argument frozen to A (denoted QA) is defined as

(QA)M (B) := Q(M∪A)(A,B).

Again, for the definition of freezing, it is necessary to “move”A to the domain position.
We will discuss various possibilities on how to define freezing for fuzzy quantifiers over
fuzzy domains and show their properties. We will also define a related operation of
restriction (transforming a one-argument quantifier to another one-argument quantifier
restricted to a fixed set) and show the result that demonstrates a way how these three
notions (relativization, restriction, and freezing) are interrelated. Finally, we will define
and discuss an important property of a quantifier living on a set [1] in the framework of
fuzzy quantifiers over fuzzy domains.
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3. A. Dvořák and M. Holčapek. Fuzzy quantifiers defined over fuzzy domains. Fuzzy Sets and
Systems, 431:39–69, 2022.
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Abstract

Let Sup be the symmetric and monoidal closed catgeory of complete lattices and join-
preserving maps. A quantale is a semigroup in Sup and a unital quantale (i.e. a quantale
Q = (Q, ∗) with unit e) is a monoid in Sup.

Let L be a complete lattice. Then the set [L,L] of all join-preserving self-maps

L
f−→ L of L is a complete lattice w.r.t. the pointwise order and a unital quantale w.r.t.

the composition of maps.

Theorem 1. Every unital quantale Q = (Q, ∗, e) is a unital subquantale of of the
unital quantale [Q,Q] of all join-preserving self-maps of Q.

Proof. Since Q is unital, every element α ∈ Q can be identified with a join-preserving
map Q

gα−−→ Q defined by:

gα(β) = α ∗ β, β ∈ Q.

Then we obtain:

ge = idQ and gα1∗α2 = gα1 ◦ gα2 , α1, α2 ∈ Q.

We conclude from Theorem 1 that every quantale multiplication ∗ can be understood
as a composition of maps. Hence from a logical point of view we interpret the product
α ∗ β as β and then α.

Further, we recall the following terminology. An element δ of a quantale Q is cyclic,
if for all α, β ∈ Q the equivalence α ∗ β ≤ δ ⇔ β ∗ α ≤ δ holds. The right (resp. left)
implication of Q is given by:

α↘ β =
∨{γ ∈ Q | α ∗ γ ≤ β} and α↙ β = {γ ∈ Q | γ ∗ β ≤ α}.

An element δ of a quantale Q is dualizing, if for all α ∈ Q the following condition
holds:

δ ↙ (α↘ δ) = α = (δ ↙ α)↘ δ.

Every quantale with a dualizing element is unital. A quantale Q is a Girard quantale if
Q has a cyclic and dualizing element.
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Theorem 2. If L is a completely distributive lattice, then the quantale [L,L] of all join-

preserving self-maps of L is a Girard quantale and the join-preserving map L d−→ L
defined by

d(z) =
∨{x ∈ L | z 6≤ x}, z ∈ L

is a cyclic and dualizing element of [L,L].

For the proof of Theorem 2 we refer to [1, Example 2.6.16].
With regard to finite quantales we now consider a simple finite set consisting of

three elements only. This is the first step to many-valuedness.

Example 1. Let C be the set consisting of three elements. Then on C there exists a
unique lattice structure given by the 3-chain C3 = {⊥, a,>} with ⊥ < a < >. Then
the quantale [C3, C3] of all join-preserving self-maps (i.e. of all isotone self-maps) of
C3 has the following Hasse diagram, multiplication table and table of right implication
(cf. [3, Subsec. 5.1]):

>
e

a c

b

⊥

∗ ⊥ b a c e >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ b ⊥ b c

a ⊥ ⊥ a ⊥ a >
c ⊥ b b c c c

e ⊥ b a c e >
> ⊥ a a > > >

↘ ⊥ b a c e >
⊥ > > > > > >
b c e e > > >
a c c e c e >
c ⊥ a a e e >
e ⊥ b a c e >
> ⊥ ⊥ a ⊥ a >

Obviously b is the (unique) cyclic and dualizing element of [C3, C3]. Further, the three
unital quantales on C3 are the following unital subquantales of [C3, C3]:

{⊥, a, e}, {⊥, b, e} and {⊥, e,>}.

Since the previous subquantales are commutative, it is interesting to see that [C3, C3]
contains also the following four non-commutative and unital subquantales:

— Two of them are idempotent and non-integral: Q`
4 = {⊥, a, e,>} and Qr

4{⊥, c, e,>}.
— Two of them are non-idempotent, but integral: {⊥, b, a, e} and {⊥, b, c, e}.

Finally, we show how we can apply finite quantales to health care problems. Our
first example is related to WHO-FIC’s ICD (International Statistical Classification of
Diseases and Related Health Problems). Even though diseases are ICD coded as two-
valued in the sense that either a disease is diagnosed, and a disease code is registered in
the patient record, or the disease is not seen to be present, we may view the diagnosing
process using three stages, including the final stage either confirming a diagnosis or
rejecting it, together with a ‘diagnosis in progress’ stage as the «intermediate state». A
similar approach appears in [2]. Let us make the situation more precise.

The rejection of a diagnose means that there does not exist sufficient support for
a confirmation of the diagnose. The ‘diagnosis in progress’ means that there seems
to exist sufficient support for a confirmation, but the diagnosing process has not been
completed. Finally we have the state of a confirmation of the diagnose. In this sense their
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exist an order between these stages, and all three stages form a 3-chain C3 = {⊥, a,>}
with ⊥ < a < >, where the rejection is the bottom element ⊥, the confirmation of the
diagnose is the top element >, and the ‘diagnosis in progress’ is in between ⊥ and >,
and is denoted by a.

In a simplified scenario, the care situation can be viewed as involving four persons
P1, P2, P3, P4, where

— P1 is an optimistic medical expert.
— P2 is a medical expert hesitating to make drastic decisions.
— P3 is a pessimistic medical expert.
— P4 is not a medical expert.

All four persons leave the rejection unchanged. The optimistic expert changes the
state of ‘diagnosis in progress’ already into a confirmation of the diagnose and conse-
quently leaves the confirmation of the diagnose unchanged. In this sense her/his deci-
sion is coherent, and so P1 can be identified with the following join-preserving self-map
f1 of C3:

f1(⊥) = ⊥, f1(a) = >, f1(>) = >.
The hesitatintg expert does not change anything and can consequently be identified
with the identity map 1C3

of C3. The pessimistic expert keeps the confirmation of the
diagnose, but changes the state ‘diagnosis in progress’ into rejection. Hence her/his
decision is also coherent, and so P3 can be identified with the following join-preserving
self-map of C3:

f3(⊥) = ⊥, f3(a) = ⊥, f3(>) = >.
Finally the non-medical expert is changing anything into a rejection and is identified
with the constant map f4 taking always the value ⊥.

We now assume that the diagnosing process is controlled by the optimistic and pes-
simistic expert only. Then a diagnose of the disease by P1 and P2 can be expressed
by the composition of the respective control maps f1 and f3. It is remarkable to see
that the result of the final diagnose is always 2-valued, but depends on the order of
the observations, because f1 ◦ f3 = f3 and f3 ◦ f1 = f1. Moreover, since f1 and f3
are elements of the unital quantale [C3, C3] of all join-preserving self-maps of the 3-
chain, we can consider the subquantale of [C3, C3] generated by {f1, f3}. It is easily
seen that this quantale corresponding to the optimistic and pessimistic expert has the
form {f1, f3, f4} and coincides with the subquantale L([C3, C3]) of all left-sided ele-
ments of [C3, C3], which is isomorphic to the unique non-commutative, left-sided and
idempotent quantale Q`

3 on C3 = {⊥, a,>}.
If we now consider the right action � on C3 w.r.t. the unital subquantale Qr

4 (cf.
Example 1) determined by

� ⊥ c e >
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a >
> ⊥ > > >

then we can rediscover the control maps of the optimistic and pessimistic expert as
follows. The right action by > corresponds to f1 — i.e. a � > = > = f1(a) and
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>�> = > = f1(>). The right action by c coincides with f3 — i.e. a�c = ⊥ = f3(a)
and > � c = > = f3(>). Further, the right action by the unit e is exactly the control
map f2 of the hesitating expert. Hence the algebraic model of the diagnosing process is
given by right module (C3,�) over the finite, non-commutative, unital quantale Qr

4 in
the sense of Sup. In particular, the interaction between the optimistic and the pessimistic
medical expert is expressed by the quantale Qr

4.
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We revisit some essential examples and features of judgment aggregation and ex-
plore various routes for generalizing the classical setting to fuzzy logic. While classical
impossibility results carry over to the many-valued setting, also possibilities for circum-
venting well-known forms of impossibilities in social choice theory arise. Fuzzy logic
may actually appear on different levels and in various forms in judgment aggregation.
In the simplest scenario, judgments remain bivalent, but the aggregation may deliver
fuzzy outputs. On another level, also the individual judgments that are to be aggregated
may be fuzzy. Finally, we will consider intervals of truth values (or rather: attitude val-
ues), both as inputs and outputs of the aggregation function. We will also clarify the
relation between fuzzy and probabilistic opinion pooling. A further observation is the
connection between fuzzy judgment aggregation and fuzzy quantifiers that remains to
be exploited in future work.

Rather than reporting on technical results, the presentation is intended as an invi-
tation to join the ongoing discovery of the varied landscape of many-valued judgment
aggregation that largely remains unexplored so far.
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Extending modal logics to a non-classical propositional ground has been,
and still is, a fruitful research line that encompasses several approaches, ideas
and methods. In the last years, this topic has significantly impacted on the
community of many-valued and mathematical fuzzy logic that have proposed
ways to expand fuzzy logics (t-norm based fuzzy logics, in the terminology of
Hájek [8]) by modal operators so as to capture modes of truth that can be
faithfully described as “graded”.

In this line, one of the fuzzy logics that has been an object of major in-
terest without any doubt is the so called Gödel logic, i.e., the axiomatic ex-
tension of intuitionistic propositional calculus given by the prelinearity axiom:
(ϕ → ψ) ∨ (ψ → ϕ). As first observed by Horn in [9], prelinearity implies com-
pleteness of Gödel logic with respect to totally ordered Heyting algebras, i.e.,
Gödel chains. Indeed, prelinear Heyting algebras form a proper subvariety of that
of Heyting algebras, usually called the variety of Gödel algebras and denoted G
whose subdirectly irreducible elements are totally ordered. Furthermore, in con-
trast with the intuitionistic case, G is locally finite, whence the finitely generated
free Gödel algebras are finite.

Modal extensions of Gödel logic have been intensively discussed in the liter-
ature [2, 3, 10]. Following the usual methodological and philosophical approach
to fuzzy logic, they have been mainly approached semantically by generalizing
the classical definition of Kripke model 〈W,R, e〉 by allowing both the evalua-
tion of (modal) formulas and the accessibility relation R to range over a Gödel
algebra, rather than the classical two-valued set {0, 1} (see [1] for a general ap-
proach). More precisely, a model of this kind, besides evaluating formulas in a
more general structure than the classical two-element boolean algebra, regards
the accessibility relation R as a function from the cartesian product W ×W to
a Gödel algebra A so that, for all w,w′ ∈W , R(w,w′) = a ∈ A means that a is
the degree of accessibility of w′ from w.

Here, we put forward a novel approach to Gödel modal logic that leverages on
the duality between finite Gödel algebras and finite forests. This line, that was
previously presented in [7], is deepened and extended by the present approach.
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In particular, we ground our investigation on finite Gödel modal algebras and
their dual structures, that is, the prime spectra of finite Gödel algebras ordered
by reverse-inclusion. These ordered structures can be regarded as the prelinear
version of posets and they are known in the literature as finite forests: finite
posets whose principal downsets are totally ordered. In general, Gödel algebras
with modal operators form a variety denoted by GAO for Gödel algebras with
operators. Hence, the algebras we are concerned with are those belonging to the
finite slice of GAO. The associated relational structures based on forests, as we
briefly recalled above, might hence be regarded as the prelinear version of the
usual relational semantics of intuitionistic modal logic. Accessibility relations
R� and R♦ on finite forests are defined, in our frames, by ad hoc properties that
we express in terms of (anti)monotonicity on the first argument of the relations
themselves. These relational frames will be called forest frames.

Furthermore, we put forward a comparison between our approach to the
ones that have been proposed for intuitionistic modal logic and, in particular,
those developed by Palmigiano in [12] and Or lowska and Rewitzky in [11]. By
analyzing the role that these different relational frames (namely, those presented
by Palmigiano, Or lowska and Rewitzky, and ours) have in proving a Jónsson-
Tarski like representation theorem for Gödel algebras with modal operators, we
realized that forest frames situate in a middle level of generality between those
of Palmigiano and those of Or lowska and Rewitzky. The former being the less
and the latter being the more general ones.

More in detail, we observe that, if we start from any Gödel algebra with op-
erators (A,�,♦), its associated forest frame (FA, R�, R♦) allows to construct
another algebraic structure (SFA

, β�, δ♦) isomorphic to the starting one. In-
terestingly, the forest frame (FA, R�, R♦) is not the unique one that recon-
structs (A,�,♦) up to isomorphisms. Indeed, for every Gödel algebra with op-
erators (A,�,♦), there are non-isomorphic forest frames, Palmigiano-like, and
Or lowska and Rewitzky-like frames, that determine the same original modal
algebra (A,�,♦) up to isomorphism.

We start by considering the most general way to define the operators � and
♦ on Gödel algebras, and by investigating the relational structures correspond-
ing to the resulting algebraic structures. Later on, we focus on particular and
well-known extensions. Precisely, we consider two main extensions of Gödel alge-
bras with operators: (1) the one obtained by adding the Dunn axioms, typically
studied in the fragment of positive classical (and intuitionistic) logic [5, 4]; (2)
the one determined by adding the Fischer-Servi axioms [6]. From the algebraic
perspective, adding these two sets of identities to Gödel algebras with opera-
tors identifies two proper subvarieties of GAO, that we respectively denoted by
DGAO and FSGAO.

In contrast with the case of general Gödel algebras with operators, whose re-
lational structures need two independent relations to treat the modal operators,
the structures belonging to DGAO and FSGAO only need, for their Jónnson-
Tarski like representation, frames with only one accessibility relation. In addi-
tion, we study in detail the relational structures corresponding to two further
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subvarieties of GAO. The first one is the variety obtained as the intersection
DGAO ∩ FSGAO. The algebras belonging to such variety have been called bi-
modal Gödel algebras in [3] and a modal algebra (A,�,♦) ∈ DGAO ∩ FSGAO
is characterized by the property stating that, for every boolean element b ∈ A,
both �b and ♦b are boolean as well. The second subvariety that we consider
refines DGAO. Indeed, any algebra (A,�,♦) belongs to this class iff it satisfies
Dunn axioms plus the requirement that �a and ♦a are boolean for all a ∈ A.
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Institute of Computer Science of the Czech Academy of Sciences
182 07 Prague, Czech Republic
hanikova@cs.cas.cz

This talk will offer a bird’s eye view of research in the area of fuzzy logic with ra-
tional constants, Rational Pavelka logic RPL (i.e., an expansion of Łukasiewicz logic Ł
with rational constants) being a prime example, and a few other systems—particularly
product logic P expanded with rational constants—providing a context. Fuzzy logic
with rational constants responds to a preference for greater expressivity of the proposi-
tional language, allowing for indicating degrees of truth in formulas and for estimating
the validity of derivations of such formulas. This was a desideratum already in the pa-
pers [7, 19], now considered classics in the area and (along with the seminal papers of
Zadeh, esp. [22]) the origin of an important route to mathematical fuzzy logic in its
current advanced state of development.

In Goguen’s papers—[6] and particularly [7]—the introduction of semantics into
the syntax (Goguen’s blueprint for propositional constants) is just one important idea
among many. Another one is his axiomatic approach to algebras of truth values (leading
to subvarieties of residuated lattices), as well as the discussion he provides on capturing
axiomatically the properties of particular vague predicates (essentially yielding theories
over specific fuzzy logics). Goguen in fact introduced the product connectives, but his
approach was in accordance with the line of research represented by Łukasiewicz, Rose
and Rosser, or Chang. Much later, these ideas echo in the debates that philosophers
promoting fuzzy plurivaluationism held with logicians attempting to read it as axiomatic
theories over fuzzy logic and classes of models thereof [20, 2, 21].

I will discuss some relatively well known topics in the area of RPL: implicit defin-
ability of rational elements of the MV-algebra on the real unit interval [9, 13] and Beth
property [16], that contribute to the impression that Ł and RPL are very closely related
systems (cf. also [11]) or Pavelka completeness [19, 8, 9, 3], a result that singles out Ł
for expansion with constants.

Complexity results for logics of continuous t-norms with rational constants [10]
include, i.a., a direct proof that expansion of Ł with rational constants does not affect
complexity classification (while for P this problem seems still to be open); [13] remarks
that the result for RPL follows from that for Ł, using implicit definability of the ratio-
nals. In a many-valued logic, arguably a natural generalization of classical satisfiability,
tautologousness, or finite consequence problems are provided by optimization prob-
lems: finding the maximal value for a given term or determining the validity/provability
degree of a given term under a given (finite, possibly empty) theory [14]. In the standard
MV-algebra, these problems turn out to be hard to solve even approximately [15], with
or without rational constants in the language.

The metalogical property of structural completeness is an example of an attribute
where Ł and RPL differ profoundly. Łukasiewicz logic is known to be structurally
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incomplete [4] and the lattice of its extensions is dually isomorphic to the lattice of
quasivarieties of MV-algebras, known to be Q-universal [1]. RPL is hereditarily struc-
turally complete, there being no consistent extensions [5]. For the sake of a comparison,
product logic P is hereditarily structurally complete and the lattice of extensions is a
three-element chain; but the lattice of extensions of product logic with rational constants
(RP) is dually isomorphic to the lattice of quasivarieties of rational product algebras,
which turns out to be Q-universal [5], and the only structurally complete extensions
are the logic of the RP-algebra on the rationals in [0, 1] and the three proper axiomatic
extensions of RP term-equivalent to the extensions of P.

The talk will conclude by summing up the viewpoint where RPL is a viable system
from both a philosophical and an application-oriented perspective; thus nodding to the
tenets of Goguen’s essay [7]. The framework of RPL may also subsume logics with
graded syntax over Łukasiewicz logic (with rational constants), following esp. the work
of Hájek [8] and Novák [17, 18], given that the latter can be viewed as a syntactic
fragment of RPL [12].
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Abstract.

Let Sup be the catgeory of complete lattices and join-preserving maps. The tensor prod-
uct of complete lattices has been constructed by Mowat in his Ph.D thesis 1968. Since
the mid 1970s it is known that Sup is a symmetric, monoidal closed category w.r.t.
Mowat’s tensor product (cf. [2, 10], [3, Sect. 2.1.2]). Hence algebra is available in Sup
— e.g. semigroups in Sup are quantales. Due to the universal property of the tensor
product (cf. [3, Def. 2.1.7]) quantales can be characterized as complete lattices pro-
vided with a semigroup operation X × X

∗−→ X , which is join-preserving in each
variable separately — i.e.

α ∗
(∨

A
)

=
∨
β∈A

(α ∗ β),
(∨

A
)
∗ β =

∨
α∈A

(α ∗ β), α, β ∈ Q, A ⊆ Q.

A monoid in Sup is a unital quantale.
Semigroups/monoids in Sup play a significant role for many-valued logics — e.g.

on the 3-chain C3 = {⊥, a,>} with ⊥ < a < > there exist 12 quantales, 4 of them are
non-commutative and 3 of them are unital. All these 3 unital quantales are commutative:

— The integral and idempotent quantale is the restriction of the Gödel quantale to C3

(cf. [1]).
— The integral quantale with a dualizing element is the set of truth values of Łukasie-

wicz three-valued logic.
— The idempotent quantale with a dualizing element has Peirce’s Ψ -operator as mul-

tiplication and is the set of truth values for the triadic logic (cf.[4, 6]).

On the set consisting with 4 elements there exist 4 non-commutative and unital quan-
tales having necessarily the 4-chain as underlying lattice:

— two of them are idempotent and non-integral,
— two of them are integral, but not idempotent.

The second important algebraic structure in Sup are modules. Let Q = (Q, ∗, e)
be a unital quantale (i.e. a monoid in Sup). A right Q-module in Sup is a complete
lattice M provided with a right action M ⊗ Q

�−→ M (cf. [7, p. 174]). Again due to
the universal property of the tensor product a right action � can be characterized as a
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binary map M × Q
�−→ M , which is join-preserving in each variable separately and

satisfies the following conditions:

t� e = t and (t� α) � β = t� (α ∗ β), t ∈M, α, β ∈ Q.

The simplest mainstream example of a right Q-module is the unital quantale Q itself
provided with the right quantale multiplication as right action. Further, the right impli-
cation of Q determined by α↘ β =

∨{γ ∈ Q | α ∗ γ ≤ β} for all α, β ∈ Q induces
a right action � on the dual lattice Q† of Q as follows:

β � α = α↘ β, β ∈ Q†, α ∈ Q.

In this context the associativity law of � is equivalent to the exportation and importa-
tion law of monoidal logic.

Further, the subquantale L(Q) of all left-sided elements of Q is always a right
Q-module. Hence there exists a large variety of right modules in Sup.

A right Q-module homomorphism (i.e. morphism of right actions ([7, p. 174])
(M,�)

h−→ (N,�) is a join-preserving map M h−→ N , which also preserves the re-
spective right actions — i.e. h(t � α) = h(t) � α for all t ∈ M and α ∈ Q. Right
Q-modules with right Q-module homomorphisms form a category Modr(Q).

It is not difficult to see that the forgetful functor Modr(Q)
G−→ Set has a left ad-

joint functor Sup F−→ Modr(Q) sending a set X to the right Q-module QX with the
pointwise right quantale multiplication as right action — i.e.

(f ∗ α)(x) = f(x) ∗ α, x ∈ X,α ∈ Q, f ∈ QX .

On maps X
ϕ−→ Y the functor F acts as follows:

QX ϕ→
−−−→ QX , ϕ→(f)(y) =

∨{f(x) | ϕ(x) = y}, f ∈ QX , y ∈ Y.

It is important to note that here ϕ→ is not simply Zadeh’s forward operator (cf. [9,
(2.9.2) on p. 103]), but has the fundamental algebraic property of a right Q-module
homomorphism.
Fact (1) The Q-valued power set of X is the free right Q-module

(
QX , ∗

)
on X , and

is consequently uniquely determined by X up a right Q-module isomorphism.

(2) The Q-valued power set
(
QX , ∗

)
is isomorphic to the tensor product P(X) ⊗ Q

(cf. [5, p. 10]), where the complete lattice P(X) is the ordinary power set of X .

(3) Every right Q-module (M,�) is a quotient of (QM , ∗) and the corresponding quo-
tient morphism QM π−→M has the form:

π(f) =
∨
s∈M

s� f(s), f ∈ QM .

(4) Since the right action QX ⊗ Q
∗−→ QX is join-preserving, the right adjoint map

QX ∗`−−→ QX ⊗Q of ∗ is determined by
(
∗`(g)

)
(f) =

∨{α ∈ Q | f ∗ α ≤ g} =
∧
x∈X

(f(x)↘ g(x)), f, g ∈ QX . (1)
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Obviously, the evaluation of ∗` at f, g ∈ QX — i.e. d(f, g) =
(
∗`(g)

)
(f) (see (1)),

induces a Q-preorder d on QX — the so-called inclusion Q-order. Then the Q-valued
power set of X viewed as Q-preordered set (QX , d) is always Q-join complete. In fact,
for every Q-fuzzy set F in QX (i.e. QX F−→ Q) the Q-join of F is given by

f0(x) =
∨

f∈QX

f(x) ∗ F (f), x ∈ X,

since the following relation holds for all g ∈ QX (cf. [3, Def. 3.3.7, Thm 3.3.8]):

d(f0, g) =
∧

f∈QX

F (f)↘ d(f, g).
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Abstract. In this submission, we consider a compact dagger quantaloid qRel
whose objects are called quantum sets, and which can be regarded as a non-
commutative (or quantum) generalization of the category Rel of ordinary sets
and relations. We show that in this category one can find quantum generaliza-
tions of partial orders in a similar way as one can do in fuzzy set theory by means
of Q-relations for some quantale Q. In this way, we obtain quantum generaliza-
tions of several ordered structures, for instance the quantum generalization of the
power set. Moreover, we present a quantum generalization of complete partial
orders. The latter are used in computer science for the denotational semantics of
programming languages; we use their quantum generalizations for the denota-
tional semantics of quantum programming languages.

1 Introduction

Quantales were originally introduced as non-commutative generalizations of locales,
but are nowadays central in fuzzy set theory as well [1]. The idea is that given two
sets X and Y , any relation X → Y can be respresented by a function X × Y → 2.
Here, the two-point set 2 represents the truth values, and turns out to be an example of a
quantale. If we now replace 2 by an arbitrary quantale Q, we obtain the ‘fuzzification’
of relations. Hence, we define a Q-relation X → Y to be a function X × Y → Q. We
can now form the category Q-Rel of ordinary sets and Q-relations, which generalizes
the category of ordinary sets and ordinary relations Rel. The category Q-Rel turns
out to be a quantaloid, i.e., a category enriched over suplattices. Moreover, Q-Rel is
a dagger category: for any morphism r : X → Y , there exists an opposite or dual
morphism r† : Y → X , which is defined by r†(x, y) = r(y, x) via the isomorphism
X × Y ∼= Y ×X . It turns out that this provides sufficient structure to generalize many
concepts of ordinary set theory. For instance, a Q-function f : X → Y is a Q-relation
such that f† ◦ f ≥ 1X and f ◦ f† ≤ 1Y , whereas a Q-partial order on a set X is a
Q-relation r : X → X such that 1X ≤ r (reflexivity), r ◦ r ≤ r (transitivity), and
r ∧ r† = 1X (antisymmetry).

We are not exactly doing fuzzy set theory, but we are interested in quantizing set
theory, i.e., finding a non-commutative generalization of the category of sets. In order
to do so, we consider a dagger quantaloid qRel, whose objects are called quantum sets.
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We will give precise definitions below. The category qRel was originally introduced
in [2], and proven in [3] to be equivalent to a full subcategory of the category of von
Neumann algebras and Weaver’s quantum relations [6]. The latter category is also an
example of a dagger quantaloid. However, in contrast to this ambient category, the cat-
egory qRel is compact, i.e., for each object Y (we call quantum sets), there is a dual
object Y∗ such that the homsets qRel(X ×Y,Z) and qRel(X ,Y∗×Z) are bijective.
Here, × refers to the monoidal product on qRel, which is not cartesian, but since it
generalizes the usual product of sets, we use the same notation.

Since Rel can be embedded into qRel, we call the morphisms in the latter simply
relations, although they are not defined as subsets of the product of two quantum sets.
We can now generalize classical structures in the same way as one can do in Q-Rel: a
function F : X → Y between quantum sets is a relation between quantum seets such
that F † ◦ F ≥ IX and F ◦ F † ≤ IY , where IX is the identity on X . Also in this case,
a function between quantum sets is not a function in the classical sense, i.e., it does not
assign a unique element of Y regarded as an ordinary set to any element of X . In fact,
any function between quantum sets corresponds to a normal ∗-homomorphism between
the corresponding von Neumann algebras. However, just as in the case of relations,
there is a fully faithful functor of Set into the category qSet of quantum sets and
functions, which shows that the definition of a function between quantum sets extends
the notion of a function between ordinary sets. Moreover, qSet has almost the same
categorical properties as the category Set of ordinary sets and functions, namely it is
symmetric monoidal closed, complete and cocomplete. The only difference is that the
monoidal product on Set is cartesian, whereas the monoidal product on qSet is only
semicartesian, reflecting the quantum nature of the category.

This suggests a way of quantizing mathematical structures as follows: first we con-
sider the (typically cartesian) category C of objects and morphisms corresponding to
the mathematical structure we want to quantize. Usually, the objects of C are tuples
consisting of a set and relations satisfying some identities in terms of the categorical
properties of Rel that captures the mathematical structure. Then we form a (typically
semicartesian monoidal) category qC whose objects are now quantum sets equipped
with relations satisfying the same identities as those of C. The quantization is ‘sound’
if there is a fully faithful functor C → qC such that the underlying quantum sets of the
objects in the image of the functor correspond to commutative von Neumann algebras.
We quantize posets in this way, and use the thus-obtained quantum posets to construct
denotational models for quantum programming languages.

2 Quantum sets

We give a brief overview of the category qRel. Its objects, called quantum sets, are
collections X of finite-dimensional Hilbert spaces, and are in a bijective correspondence
with von Neumann algebras of the form

⊕
X∈X L(X), where L(X) denotes the space

of all linear maps on the Hilbert space X . A relation R : X → Y between quantum
sets is an assignment that to each Hilbert space X in X and each Hilbert space Y in Y
assigns a subspace R(X,Y ) of L(X,Y ), the space of all linear maps X → Y .
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Composition is defined like the composition of matrices: given R : X → Y and
S : Y → Z , we define S ◦R : X → Z by (S ◦R)(X,Z) =

∨
Y ∈Y S(Y,Z) ·R(X,Y ),

where S(Y,Z) · R(X,Y ) is the subspace of L(X,Z) spanned by linear maps of the
form sr, where r ∈ R(X,Y ) and s ∈ S(Y,Z). The supremum

∨
is the supremum

in the set of all subspaces of L(X,Z). The identity IX on X is the relation given by
IX (X,X ′) = δX,X′C1X for each two Hilbert spaces X and X ′ in X . The dagger
R† : Y → X of a relation R : X → Y is given by R†(Y,X) = {r∗ : r ∈ R(X,Y )},
where r∗ is the adjoint of the linear map r : X → Y . The set qRel(X ,Y) of relations
X → Y becomes a complete modular ortholattice when ordered by R ≤ S if and only
if R(X,Y ) ⊆ S(X,Y ) for each Hilbert space X in X and each Hilbert space Y in Y .
Here, the orthocomplement ¬R of a relationR : X → Y is the largest relation S : X →
Y such that Tr(R† ◦ S) = 0, where Tr is the trace on qRel, whose existence follows
from the compactness of qRel. It follows that qRel is a quantaloid. The monoidal
product X × Y of quantum sets X and Y is the quantum set consisting of the Hilbert
spaces X ⊗ Y for X in X and Y in Y , where ⊗ is the usual tensor product of Hilbert
spaces. Given relations R : X → V and S : Y → Z , we define the monoidal product of
relationsR×S : X ×Y → V×W by (R×S)(X⊗Y, V ⊗W ) = R(X,V )⊗S(Y,W ).
Finally, the dual X ∗ of X is the quantum set consisting of the duals X∗ of the Hilbert
spaces X in X . We have a fully faithful functor ‘(−) : Rel → qRel that to each
ordinary set S assigns the quantum set ‘S consisting of the Hilbert spaces Cs for s ∈ S,
i.e., one-dimensional Hilbert spaces labeled by elements of S. Note that ‘S corresponds
to the von Neumann algebra

⊕
s∈S L(Cs), which is indeed commutative. Furthermore,

given a relation r : S → T between ordinary sets, we define the relation ‘r : ‘S → ‘T
between the corresponding quantum sets as the relation ‘r(Cs,Ct) = L(Cs,Ct) if
(s, t) ∈ r, and ‘r(Cs,Ct) = 0 otherwise.

One then can define a function as in Rel, namely a morphism F : X → Y between
quantum sets such that F † ◦ F ≥ IX and F ◦ F † ≤ IY . We define qSet to be the
category of quantum sets and functions in this sense. The functor ‘(−) : Rel → qRel
now restricts to a fully faithful functor ‘(−) : Set → qSet.

3 Quantum posets

Following Weaver [6, Definition 2.6], we define a quantum poset to be a pair (X , R)
consisting of a quantum set X and a relation R ∈ qRel(X ,X ) such that IX ≤ R,
R ◦ R ≤ R, and R ∧ R† ≤ IX . A monotone map F : (X , R) → (Y, S) is simply a
function F : X → Y satisfying F ◦ R ≤ S ◦ F . We denote the category of quantum
posets with monotone maps by qPOS, which generalizes the category POS of posets
and monotone maps as follows from the following theorem:

Theorem 1. [4] The category qPOS is complete, has all coproducts, and is symmetric
monoidal closed. Moreover, there is a fully faithful functor ‘(−) : POS → qPOS
defined by (S,⊑) 7→ (‘S, ‘ ⊑).

The power set construction can be extended to a functor Rel → Set that is right adjoint
to the inclusion of Set into Rel. Its counit is the opposite ∋ of the membership relation
∈. The composition of these adjoint functors yields the power set monad Pow on Set.

43



Moreover, any poset (S,⊑) can be embedded into Pow(S) ordered by inclusion via
the function d : s 7→↓ s. This function is determined by the condition ∋ ◦d = (⊒),
where ∋, d, and ⊒ are regarded as morphisms in Rel. Compactness of qRel allows us
to prove a similar theorem in the quantum case:

Theorem 2. [4, Theorems 9.3 & 9.5] The inclusion qSet → qRel has a right adjoint
qPow : qRel → qSet, whose counit we denote by ∋. Given any quantum set X , there
is a canonical order Q on qPow(X ) (the quantum analog of the inclusion order) such
that for any order R on X , there is an order embedding D : (X , R) → (qPow(X ), Q),
which is the unique function such that ∋X ◦D = R† (where R† is the inverse order of
R).

The most important application of quantum posets lies in the denotational semantics
of quantum programming languages, i.e., the translation of any phrase in the given
programming language to a mathematical function in such a way that the function is
the composition of the functions corresponding to the phrase’s subphrases. Since it is
virtually impossible to debug quantum programs, it is pertinent to find different tools
for the verification of quantum programs such as denotational semantics. For ordinary
programming languages, denotational semantics is often done in terms of complete
partial orders (cpos), i.e., posets in which any monotonically increasing sequence has
a supremum. In [5], we constructed denotational models for quantum programming
languages based on the quantization of the category CPO of cpos:

Theorem 3. [5, Theorem 5.6] There is a symmetric monoidal closed, complete and co-
complete subcategory qCPO of qPOS such that the functor ‘(−) : POS → qPOS
restricts to a fully faithful functor CPO → qCPO.

References

1. D. Hofmann, G.J. Seal, and W. Tholen, Monoidal Topology, Cambridge University Press
(2014).

2. A. Kornell, Quantum sets, J. Math. Phys. 61 (2020), no. 10.
3. A. Kornell, Discrete quantum structures , arXiv:2004.04377, (2020).
4. A. Kornell, B. Lindenhovius and M. Mislove, A category of quantum cpos, submitted,

arxiv:2101.11184 (2020)
5. A. Kornell, B. Lindenhovius and M. Mislove, Quantum CPOs, Proceedings 17th Interna-

tional Conference on Quantum Physics and Logic, arxiv:2109.02196 (2021)
6. N. Weaver, Quantum relations, Mem. Amer. Math. Soc. 215 (2012).

44



Injective hulls in a category of V -semigroups

Jan Paseka1 and Sergejs Solovjovs2

1 Department of Mathematics and Statistics, Faculty of Science
Masaryk University, Brno, Czech Republic

paseka@math.muni.cz
2 Department of Mathematics, Faculty of Engineering

Czech University of Life Sciences, Prague, Czech Republic
solovjovs@tf.czu.cz

Abstract. This talk describes injective objects and hulls in a category of V -
semigroups considered as semigroup objects in the monoidal category V -Cat
of V -categories, namely, categories enriched in a unital commutative quantale V .

1 Introduction

The concept of lattice-valued (pre)order plays an important role in lattice-valued math-
ematics [3]. In particular, I. Stubbe [9] gave a brief survey of quantaloid-enriched cate-
gories as a convenient setting for “fuzzy logicians and fuzzy set theorists”, which incor-
porated the above notion of lattice-valued (pre)order. Moreover, P. Eklund et al. [5] con-
sidered quantale-enriched categories as a tool to develop “many-valued order theory”
as part of their aim to offer “a new way to approach many-valuedness in mathematics”.
This talk considers quantale-enriched categories as a setting for doing lattice-valued
categorical algebra. We show an explicit description of injective objects and hulls in a
category of generalized semigroups viewed as semigroup objects in the monoidal cate-
gory V -Cat of V -categories (categories enriched in a unital commutative quantale V ).

We observe that injective objects and hulls themselves have a significant place in
the study of categories. Recall from, e.g., [1] that given a category C and a class M
of C-morphisms, a C-object C is called M-injective (or just injective if the class M
is clear from the context) provided that for every morphism A

m−→ B in M and every

C-morphism A
f−→ C, there exists a C-morphism B

g−→ C such that g · m = f . A
morphism A

m−→ B in M is called M-essential provided that a C-morphism B
h−→ C

belongs to M whenever the composite h ·m does. An M-injective hull of a C-objectA
is a pair (m,B) consisting of an M-injective object B and an M-essential morphism
A

m−→ B. Many familiar mathematical constructions can be regarded as an injective
hull, e.g., the Mac Neille completion of a poset or the algebraic closure of a field.

In view of the importance of injective objects, a number of researchers studied
their concrete realizations in various categories of interest. In particular, G. Bruns and
H. Lakser [2] showed that the injective objects in the category of meet-semilattices are
exactly the frames (complete lattices with finite meets distributing over arbitrary joins).
J. Lambek et al. [6] extended this result by showing that the injective objects in the cate-
gory of partially ordered monoids (po-monoids) and submultiplicative order-preserving

45



maps with respect to a special class of monomorphisms (“embeddings”) are precisely
the unital quantales. Moreover, X. Zhang and V. Laan [10] extended the above result
even further through showing that the injective objects with respect to a certain class of
order embeddings in the category of partially ordered semigroups (po-semigroups) with
submultiplicative morphisms (employing the setting of [6] but discarding the require-
ments related to the existence of the unit element) are exactly the quantales. Finally,
the result of [10] was generalized by X. Zhang and J. Paseka [12] for the setting of S-
semigroups (po-semigroups equipped with an action of a po-semigroup S), where the
injective objects appeared to be the S-semigroup quantales (S-semigroups, which are
quantales, and where the action of S satisfies an additional distributivity condition).

Inspired by the above results, this talk characterizes the injective objects in a spe-
cific category of V -semigroups equipped with a left V -action, where V stands for a
unital commutative quantale. Following the setting of M. M. Clementino and A. Mon-
toli [4] employed for the study of categorical behaviour of V -groups, we consider V -
semigroups as semigroup objects in the monoidal category V -Cat of V -categories (cat-
egories enriched in V ) and V -functors. Since the case V = 2 provides preordered semi-
groups, our result extends the above one of [10], i.e., in case of V -semigroups, we get
that the injective objects are exactly the quantale algebras of, e.g., [8] (an analogue of
algebras over a commutative ring with identity) satisfying additional requirements re-
lated to the enrichment in the quantale V . Moreover, we also show that the machinery of
injective hulls of po-semigroups proposed in [10] could be transferred to our extended
setting. In particular, we give an explicit description of injective hulls of V -semigroups.

2 Injective objects

This section provides a brief outline of the obtained results on injective objects of V -
semigroups. From now on, V = (V,⊗, k) stands for a unital commutative quantale.
Observe that for every element u ∈ V , the map V −⊗u−−−→ V has a right adjoint map

V
hom(u,−)−−−−−−→ V (it follows that v ⊗ u ⩽ w iff v ⩽ hom(u,w) for every u, v, w ∈ V ).

Definition 1. A V -category is a pair (X, a) with a set X and a V -relationX �a //X

(a map X × X
a−→ V ) such that k ⩽ a(x, x) for every x ∈ X (reflexivity) and

a(x, y) ⊗ a(y, z) ⩽ a(x, z) for every x, y, z ∈ X (transitivity). Given V -categories

(X, a) and (Y, b), a map X
f−→ Y is a V -functor (X, a)

f−→ (Y, b) provided that
a(x, x′) ⩽ b(f(x), f(x′)) for every x, x′ ∈ X . V -Cat is the category of V -categories.

Observe that 2-Cat is isomorphic to the category Prost of preordered sets and
monotone maps (where 2 = ({⊥2,⊤2},∧,⊤2) is a two-element unital quantale), and
P+-Cat is isomorphic to the category Met of generalized metric spaces [7] and non-
expansive maps (where P+ = ([0,∞]op,+, 0) is the extended real half-line with the
dual partial order). We also notice that the quantale V provides a V -category (V,hom).

Every V -category (X, a) induces a preorder on its underlying set X (induced pre-
order) by x ⩽ x′ iff k ⩽ a(x, x′). A V -category is said to be separated if its induced
preorder is a partial order. Given V -categories (X, a), (Y, b), one defines a V -category
(X, a) ⊗ (Y, b) by (X × Y, a⊗ b) with (a⊗ b)((x, y), (x′, y′)) = a(x, x′) ⊗ b(y, y′).
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Definition 2. A V -semigroup is a triple (X,+, a) such that (1) (X,+) is a semigroup;
(2) (X, a) is a V -category; (3) (X, a) ⊗ (X, a)

+−→ (X, a) is a V -functor (a(x, x′) ⊗
a(y, y′) ⩽ a(x+ y, x′ + y′) for every (x, y), (x′, y′) ∈ X ×X). Given V -semigroups

(X, a) and (Y, b), a V -functor (X, a)
f−→ (Y, b) is V -submultiplicative provided that

f(x)+f(x′) ⩽ f(x+x′) for every x, x′ ∈ X . V -Sgr is the category of V -semigroups.

We notice that the category 2-Sgr is isomorphic to the category of preordered semi-
groups and submultiplicative preorder-preserving maps in the sense of [10].

Definition 3. A V -act-semigroup is a V -semigroup (X, a) with a left action V ×X ∗−→
X of V where (1) u∗ (v ∗x) = (u⊗v)∗x for every u, v ∈ V , x ∈ X; (2) k ∗x = x for
every x ∈ X; (3) (V,hom)⊗ (X, a)

∗−→ (X, a) is a V -functor (hom(v, v′)⊗a(x, x′) ⩽
a(v ∗ x, v′ ∗ x′) for every (v, x), (v′, x′) ∈ V × X). Given V -act-semigroups (X, a)

and (Y, b), a V -submultiplicative V -functor (X, a)
f−→ (Y, b) is V -act-submultiplicative

provided that v∗f(x) ⩽ f(v∗x) for every v ∈ V , x ∈ X . V -Act-Sgr is the category of
V -act-semigroups. V -Act-Sgrs is its full subcategory of separated V -act-semigroups.

There exists a full embedding 2-Sgr �
� E // 2-Act-Sgr, E(X, a) = (X, a, ∗) with

⊥2 ∗ x = x = ⊤2 ∗ x for every x ∈ X . The category V -Act-Sgr provides a quantale-
valued analogue of the category of S-posets and S-submultiplicative order-preserving
maps for a po-monoid S of [11] (which considers partial orders instead of preorders).

Definition 4. Given V -act-semigroups (X, a) and (Y, b), a V -act-submultiplicative V -

functor (X, a)
f−→ (Y, b) is a V -embedding provided that the map X

f−→ Y is injective
and b(f(x1)+. . .+f(xn), f(x)) ⩽ a(x1+. . .+xn, x) for every n ∈ N = {1, 2, 3, . . .},
x1, . . . , xn, x ∈ X . M stands for the class of all V -embeddings.

Theorem 1. A separated V -act-semigroup (Z, c) is M-injective iff (Z,⩽) is a V -
algebra (⩽ is the induced partial order) such that c(

∨
S, z) =

∧
s∈S c(s, z) for every

z ∈ Z, S ⊆ Z, and c(u1∗z1+. . .+un∗zn, z) = hom(u1⊗. . .⊗un, c(z1+. . .+zn, z))
for every n ∈ N, u1, . . . , un ∈ V , z1, . . . , zn, z ∈ Z.

The case V = 2 shows that the result of [10] on injective objects for po-semigroups
holds in a bigger category 2-Act-Sgrs of po-semigroups, which are also 2-acts.

3 Injective hulls

This section shows an outline of the obtained results on injective hulls of V -semigroups.

Definition 5. Given V -act-semigroups (X, a) and (Y, b), a V -act-submultiplicative V -

functor (X, a)
f−→ (Y, b) is a V -ih-embedding provided that the map X

f−→ Y is injec-
tive and b(v1 ∗f(x1)+ . . .+vn ∗f(xn), f(x)) ⩽ a(v1 ∗x1 + . . .+vn ∗xn, x) for every
n ∈ N, x1, . . . , xn, x ∈ X , v1, . . . , vn ∈ V . Mih is the class of all V -ih-embeddings.

Definition 6. A V -functor (X, a)
j−→ (X, a) is a V -nucleus on a V -category (X, a)

provided that k ⩽ a(x, j(x)) for every x ∈ X and j(j(x)) = j(x) for every x ∈ X .
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Definition 7. Every V -act-submultiplicative V -functor (X, a)
j−→ (X, a), which is ad-

ditionally a V -nucleus on a separated V -category (X, a), provides a separated quotient
V -act-semigroup (Xj ,+j , ∗j , aj) such that Xj = {x ∈ X | j(x) = x}, aj(x, x′) =
a(x, x′), x+j x

′ = j(x+ x′), and v ∗j x = j(v ∗ x) for every x, x′ ∈ X , v ∈ V .

V -act-semigroups (X, a) give separated V -act-semigroups P(X, a) = (XV ,+V , ∗V ,
aV ) := (V -Cat((X, a◦), (V,hom)),+V , ∗V , [−,−]), a◦(x, x′) = a(x′, x), (f +V

g)(x) =
∨

x1,x2∈X f(x1)⊗g(x2)⊗a(x, x1+x2), and [f, g] =
∧

x∈X hom(f(x), g(x)).

Proposition 1. Given a separated V -act-semigroup (X, a), a map XV
j−→ XV defined

by j(f) =
∨{g ∈ XV | aV (µ(x1) +V f +V µ(x2), µ(x3)) ⩽ aV (µ(x1) +V g +V

µ(x2), µ(x3)) and aV (µ(x1) +V f, µ(x3)) ⩽ aV (µ(x1) +V g, µ(x3)) and aV (f +V

µ(x2), µ(x3)) ⩽ aV (g +V µ(x2), µ(x3)) and aV (f, µ(x3)) ⩽ aV (g, µ(x3)) for every
x1, x2, x3 ∈ X} is a V -act-submultiplicative V -functor and a V -nucleus on P(X, a).

Theorem 2. Given a separated V -act-semigroup (X, a), (η, (XV j, aV j)) is an Mih-
injective hull of (X, a), where (X, a)

η−→ (XV j, aV j) is defined by η(x) = j(a(−, x)).

The case V = 2 shows that the result of [10] on injective hulls of po-semigroups is
valid in a bigger category 2-Act-Sgrs of po-semigroups, which are also 2-acts.

Acknowledgement. Jan Paseka was supported by the Austrian Science Fund (FWF),
project I 4579-N, and the Czech Science Foundation (GAČR), project 20-09869L, en-
titled “The many facets of orthomodularity”.
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Judgment aggregation extends the problems of preference aggregation and voting
theory to more general decision problems, where diverse individual beliefs, judgments
or viewpoints have to be aggregated into a consistent collective opinion. Despite the
simplicity of the problem, seemingly natural aggregation procedures fail to return con-
sistent collective outcomes, leading to the so-called doctrinal paradox.

In this tutorial I will give an overview of judgment aggregation. After mentioning
some of the impossibility theorems that characterised the early phase of this field, I will
turn to the definition and the investigation of concrete aggregation rules, and outline
some future lines of research.
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The talk will present Logic Tensor Networks: a logical framework and and a plat-
form that integrates learning based on neural networks with constraints expressed in
first-order many-valued/fuzzy logic. LTN supports a wide range of reasoning and learn-
ing tasks with logical knowledge and numeric data using rich symbolic knowledge rep-
resentation in first-order logic which semantic is defined in terms of embeddings, and
real functions implemented by neural networks. LTN has been successfully used to
solve tasks in which background knowledge plays an important role such as semantic
image interpretation.
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Quantales are algebraic structures that are preordered sets on the one hand, and
semigroups on the other. They can be used as a basis for many-valued logics, where
some truth values can be interpreted as stronger than others, or incomparable depend-
ing on what the order structure in question looks like. In the finite case, the preorder
induces a complete lattice, and in addition, the semigroup and order relation uniquely
determine two adjoint operators, referred to as implications, that behave like multi-
valued analogues of the traditional Boolean implication. There is a growing body of
literature surrounding these structures, including recent efforts to apply quantales in
practical applications such as healthcare or circuit design. To this end there is a need
to understand quantales as a design space, with a more detailed outlook of the numbers
involved as well as concrete examples than previous work has emphasized.

In this work, every quantale on up to 9 elements has been enumerated up to iso-
morphism, catalogued and classified with respect to various properties using computer
software. This improves on previous work by the author that enumerated all quantales
on up to 6 elements. A number of concrete examples of quantales with peculiar prop-
erties are presented, along with observations and patterns of theoretical and practical
interest. For example, just by looking at the numbers we can now claim that there are
over 19 million quantales on 8 elements, hundreds of millions on 9 elements, and well
over 29 million on the nine-element chain lattice alone. Among other things, we study
the subquantales of the enumerated quantales, find all Frobenius quantales on order 9
or less that are not Girard, and reflect on how the choice of underlying lattice dictates
what properties a quantale can have. We also define never before considered properties
of quantales, a few problems and conjectures based on what we have seen in the data.

To enumerate the quantales, the program Mace4 was used. In order to do this in
reasonable time as well as to keep the workload on the program within its capabilities, a
branching scheme based on isomorphically invariant properties was utilized. To classify
the quantales with respect to different properties, custom Python scripts and C++ code
were used to post-process the enumerated quantales. A companion iOS / Mac app has
also been developed to enable easier browsing of quantales of order up to 6.

Acknowledgement. We would like to thank Prof. Patrik Eklund for discussions that not
only inspired us to do this project, but also provided valuable input for the continued
progress and development of the work. We would also like to thank the IT support
people at the Department of Computing Science at Umeå University for letting us use
their computers for this project.
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MV-algebras, the equivalent algebraic semantics in the sense of Blok Pigozzi of
Łukasiewicz logic, have a deep connection with interesting geometrical objects. Indeed,
the category of finitely presented MV-algebras with homomorphisms is dually equiva-
lent to a category whose objects are rational polyhedra and the morphisms are so-called
Z-maps [12]. This connection allows the study of relevant algebraic and logical prop-
erties from the geometrical point of view, such as, for instance, the study of projective
algebras and amalgamation, or correspondingly, the investigation of interpolation and
unification problems [6, 8, 9, 12, 14].

Looking at Łukasiewicz logic as a substructural logic, thus as an axiomatic exten-
sion of the Full Lambek Calculus with exchange and weakening [10], we consider its
positive (i.e., 0-free) fragment. The latter is also algebraizable, and its corresponding
equivalent algebraic semantics is the variety of Wajsberg hoops. Wajsberg hoops are in-
teresting structures also from a purely algebraic point of view. They play an important
role in the theory of hoops [4], which are naturally ordered commutative monoids, and
they have a particular connection with lattice-ordered abelian groups (abelian ℓ-groups
for short). In fact, the variety WH of Wajsberg hoops is generated by its totally ordered
members, that are, in loose terms, either negative cones of abelian ℓ-groups, or intervals
of abelian ℓ-groups [2] (equivalently, MV-algebras, via Mundici’s Γ functor [13]). In
the context of the algebraic semantics of many-valued logics, the relevance of Wajsberg
hoops is also related to the study of the equivalent algebraic semantics of Hájek Basic
Logic and its positive subreducts (BL-algebras and basic hoops). Given the well-known
decomposition result in terms of Wajsberg hoops for totally ordered BL-algebras given
by Aglianò and Montagna [1], the understanding of Wajsberg hoops is key to obtain
interesting results in this framework.

We show that finitely presented Wajsberg hoops have an interesting geometrical
dual as well, in particular, with what we will call pointed rational polyhedra. More
precisely, we show how finitely presented Wajsberg hoops are dually equivalent to a
(non-full) subcategory of rational polyhedra with Z-maps, given by rational polyhedra
in unit cubes [0, 1]n that contain the lattice point 1 = (1, . . . , 1), and pointed Z-maps,
that are Z-maps that respect the lattice point 1. In particular, we use a key result in [2]
to first show that Wajsberg hoops are equivalent to a (non full) subcategory of finitely
presented MV-algebras, and then we suitably restrict the Marra-Spada duality [12].

The connection with the MV-algebraic duality with rational polyhedra allows the
use of the deep results obtained by Cabrer and Mundici about finitely generated pro-
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jective MV-algebras [8, 9, 6] to describe finitely generated projective Wajsberg hoops.
In particular, we show that no MV-algebra (or more precisely, its 0-free reduct) is pro-
jective in the variety of Wajsberg hoops, and actually that finitely generated nontrivial
projective Wajsberg hoops are necessarily unbounded. Interestingly enough, this im-
plies that, in particular, the (0-free reduct of the) two-element Boolean algebra 2 is not
projective in the variety of residuated lattices, while 2 is projective in every variety
of bounded commutative integral residuated lattices, and in the variety of all bounded
commutative integral residuated lattices it is the only finite projective algebra [3].

The fact that Wajsberg hoops are the equivalent algebraic semantics of the positive
fragment of Łukasiewicz logic allows us to use our algebraic and geometric investiga-
tion to derive some analogies and differences between Łukasiewicz logic and its positive
fragment. In particular, we show that while deducibility in the fragment coincides with
deducibility of positive terms in Łukasiewicz logic, the same is not true for admissibility
of rules.

Moreover, via the algebraic approach to unification problems developed by Ghilardi
[11], we will show that the unification type of the variety of Wajsberg hoops, and thus
of the positive fragment of Łukasiewicz logic, is nullary. This is in close analogy with
the case of MV-algebras, and indeed our proof adapts to pointed rational polyhedra the
pathological example given in [12] for the case of Łukasiewicz logic.

Moreover, via the algebraic approach to admissibility developed in [7], we show that
while the exact unification type of Łukasiewicz logic is finitary, the one of its positive
fragment is unitary. This in particular implies decidability of the admissibility of rules
in Wajsberg hoops and the positive fragment of Łukasiewicz logic.
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3. P. Aglianò, S. Ugolini, Projectivity in (bounded) integral residuated lattices,
arXiv:2008.13181.

4. W.J. Blok, I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis 43, 233–257,
2000.

5. W.J. Blok, D. Pigozzi. Algebraizable Logics. Mem. Amer. Math. Soc. 77. The American
Mathematical Society, Providence, 1989.

6. L. Cabrer, Simplicial geometry of unital lattice-ordered abelian groups, Forum Mathe-
maticum 27 (3), 1309–1344, 2015.

7. L. Cabrer, G. Metcalfe, Exact unification and admissibility, Logical Methods in Computer
Science, 11(3:23), 1–15, 2015.

8. L. Cabrer, D. Mundici, Projective MV-algebras and rational polyhedra, Algebra Universalis,
62, 63–74, 2009.

9. L. Cabrer, D. Mundici, Rational polyhedra and projective lattice-ordered abelian groups
with order unit, Communications in Contemporary Mathematics 14(03), 2012.

10. N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse
at Substructural Logics, Studies in Logics and the Foundations of Mathematics, vol. 151,
Elsevier, Amsterdam, The Netherlands, 2007.

54



11. S. Ghilardi. Unification through projectivity. Journal of Logic and Computation 7(6): 733–
752, 1997.

12. V. Marra, L. Spada. Duality, projectivity, and unification in Łukasiewicz logic and MV-
algebras. Annals of Pure and Applied Logic 164(3): 192–210, 2013.

13. D. Mundici, Interpretation of AFC∗-algebras in Łukasiewicz sentential calculus, Journal of
Functional Analysis, 65, 15–63, 1986.

14. D. Mundici, Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic 35, Springer,
2011.

15. S. Ugolini, The polyhedral geometry of Wajsberg hoops. Manuscript, 2022. Preprint:
arXiv:2201.07009.

55





Institute for Mathematical Methods in Medicine
and Data Based Modeling
Johannes Kepler University
Altenberger Straße 69
4040 Linz, Austria

Tel. +43 732 2468 4140
E-Mail: Astrid.Hoffmann@jku.at
WWW: www.jku.at/en/m3dm



The support of the Johannes Kepler University Linz, the Land Oberösterreich,
and the European Society for Fuzzy Logic and Technology is gratefully ac-
knowledged.


