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Since their inception in 1979 the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects in the context of fuzzy
sets by bringing together researchers in fuzzy sets and established mathemati-
cians whose work outside the fuzzy setting can provide direction for further
research. The philosophy of the seminar has always been to keep it deliberately
small and intimate so that informal critical discussions remain central.

LINZ 2023 will be the 40th seminar carrying on this tradition and is devoted
to the theme “Copulas – Theory and Applications”. The goal of the seminar is
to present and to discuss recent advances of copulas and their applications in
pure and applied fields.

This volume contains the abstracts of the contributions accepted for presen-
tation at LINZ 2023. The regular contributions are complemented by four in-
vited plenary talks, providing insights and new impulses on the various aspects
of the topics at LINZ 2023.
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A simple extension of Azadkia & Chatterjee’s
rank correlation to a vector of endogenous variables

Jonathan Ansari and Sebastian Fuchs

Department for Artificial Intelligence and Human Interfaces
University of Salzburg, Austria

jonathan.ansari@plus.ac.at,sebastian.fuchs@sbg.ac.at

Abstract. We propose a direct and natural extension of Azadkia & Chatterjee’s
rank correlation T introduced in [2] to a set of q ≥ 1 endogenous variables.
The approach builds upon converting the original vector-valued problem into a
univariate problem and then applying the rank correlation T to it. The novel mea-
sure T q then quantifies the scale-invariant extent of functional dependence of
an endogenous vector Y = (Y1, . . . , Yq) on a number of exogenous variables
X = (X1, . . . , Xp), p ≥ 1, characterizes independence of X and Y as well as
perfect dependence of Y on X and hence fulfills all the desired characteristics
of a measure of predictability. Aiming at maximum interpretability, we provide
various general invariance and continuity conditions for T q as well as novel or-
dering results for conditional distributions, revealing new insights into the nature
of T .

Measure of predictability

In regression analysis the main objective is to estimate the functional relationship Y =
f(X, ε) between a set of q ≥ 1 response variables Y = (Y1, . . . , Yq) and a set of p ≥ 1
exogenous variables X = (X1, . . . , Xp) where ε is a model-dependent error. In view
of constructing a good model, the question naturally arises to what extent Y can be
predicted from the information provided by the multivariate exogenous variable X, and
which of the exogenous variables are relevant for the model at all.

We refer to κ as a measure of predictability for the q-dimensional random vector Y
given the p-dimensional random vector X if it satisfies the following axioms (cf, e.g.,
[3],[7] for the case q = 1):

(A1) 0 ≤ κ(Y|X) ≤ 1.
(A2) κ(Y|X) = 0 if and only if Y and X are independent.
(A3) κ(Y|X) = 1 if and only if Y is perfectly dependent on X, i.e., there exists some

measurable function f : Rp → Rq such that Y = f(X) almost surely.

In addition to the above-mentioned three axioms, it is desirable that additional infor-
mation improves the predictability of Y . This yields the following two closely related
properties of a measure of predictability κ which prove to be of utmost importance for
this paper (cf, e.g, [5, 6]):

(P1) Information gain inequality: κ(Y|X) ≤ κ(Y|(X,Z)) for all random vectors X,
Z and Y.
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(P2) Characterization of conditional independence: κ(Y|X) = κ(Y|(X,Z)) if and
only if Y and Z are conditionally independent given X.

Due to axioms (A2) and (A3), the values 0 and 1 of a measure of predictability κ
have a clear interpretation. However, the meaning of κ , taking values in the interval
(0, 1) , is not specified. This justifies the investigation of dependence orderings ≺ that
are compatible with κ in the following sense:

(P3) Monotonicity: If (X,Y) ≺ (X′,Y′), then κ(Y|X) ≤ κ(Y′|X′).

In view of interpreting the values of a measure of predictability κ, it is further desirable
to have an understanding of the measures’ performance in terms of convergence, such
as

(P4) Continuity: If (Xn,Yn)n∈N converges (in some sense) to (X,Y), then
limn→∞ κ(Yn|Xn) = κ(Y|X).

Recently, for q = 1 , a particularly suitable candidate for such a measure has been
studied by [2]: Their so-called ‘simple measure of conditional dependence’ T is given
(in its unconditional form) by

T (Y |X) :=

∫
R var(P (Y ≥ y |X)) dPY (y)∫

R Var(1{Y≥y}) dPY (y)
(1)

and is based on [4]. Although the literature is rich concerning measures of predictability
for a single endogenous variable (see, e.g., [6]), the measure T is special in that it not
only satisfies the information gain inequality (P1) but also characterizes conditional
independence (P2). Using these properties, we show that the functional T q defined by

T q(Y|X) :=

∑q
i=1

[
T (Yi|(X, Yi−1, . . . , Y1))− T (Yi|(Yi−1, . . . , Y1))

]
∑q
i=1

[
1− T (Yi|(Yi−1, . . . , Y1))

] (2)

= 1− q −∑q
i=1 T (Yi|(X, Yi−1, . . . , Y1))

q −∑q
i=1 T (Yi|(Yi−1, . . . , Y1))

,

with T (Y1|∅) := 0 ,

is a natural extension of Azadkia & Chatterjee’s rank correlation coefficient to a mea-
sure of predictability for a vector (Y1, . . . , Yq) of q ≥ 1 endogenous variables. To
illustrate that T q is a correct choice for an extension of T , we first observe that for
q = 1 the above defined functional T q reduces to T . Further, due to the information
gain inequality for T , each summand of the nominator in (2) is non-negative. Since T
characterizes conditional independence, the ith summand of the nominator vanishes if
and only if Yi and X are conditionally independent given (Yi−1, . . . , Y1) . Hence, as a
consequence of the chain rule for conditional independence, X and Y are independent
if and only if T q(Y|X) = 0 . The denominator, which only takes values in the interval
[1, q] , guarantees that T q is normalized and thus, similarly, T (Y|X) = 1 if and only if
Yi is a function of X for all i ∈ {1, . . . , q} .
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The measure of predictability T q

To the best of the authors’ knowledge, so far the only measure of predictability appli-
cable to a vector Y = (Y1, . . . , Yq) of q ≥ 1 endogenous variables has been introduced
by [3] and employs the vector-valued structure of Y for its evaluation. In [1], we show
that T q defined by (2) is a measure of predictability for Y given X, where T q exhibits
a simple expression, is fully non-parametric, has no tuning parameters and is well-
defined without any distributional assumptions. Further, T q fulfils the information gain
inequality (P1), characterizes conditional independence (P2), satisfies the so-called data
processing inequality, is self-equitable, and exhibits numerous invariance properties. In
particular, for continuous marginal distributions, T q depends only on the underlying
copulas.

To tackle the monotonicity property (P3), we introduce the Schur order for condi-
tional distributions ≤S which turns out to be a natural ordering of predictability hidden
behind the properties of T . All the fundamental properties of ≤S , i.e., the characteri-
zation of (conditional) independence and complete directed dependence as well as the
information gain inequality, are inherited by T . Since the Schur order satisfies a di-
mension reduction principle to bivariate copulas that are conditionally increasing in
sequence (CIS), it follows that also T q only depends on transformations to bivariate
CIS copula.

To address the continuity property (P4), we establish general continuity results for
T q using a characterization of conditional weak convergence in [8]. Applying these
results, we obtain continuity of T q in classes of elliptical and l1-norm symmetric dis-
tributions. Further, for elliptical distributions, a characterization is given for the case
where T q attains the values 0 and 1, respectively.

Acknowledgement. Both authors gratefully acknowledge the support of the Austrian
Science Fund (FWF) project P 36155-N ReDim: Quantifying Dependence via Dimen-
sion Reduction and the support of the WISS 2025 project ’IDA-lab Salzburg’ (20204-
WISS/225/197-2019 and 20102-F1901166-KZP).
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On infinite-order s-vine copula processes

Martin Bladt1 and Alexander J. McNeil2

1 Department of Mathematical Sciences
University of Copenhagen, Denmark

mab@math.ku.dk
2 School for Business and Society

University of York, UK
alexander.mcneil@york.ac.uk

Abstract. We construct stationary and ergodic time series with serial depen-
dence behaviour described by stationary d-vine (or s-vine) copulas. We pay par-
ticular attention to the case where the s-vine is generated by an infinite sequence
of copulas. Such models are shown to yield a rich class of processes generalizing
classical Gaussian ARMA processes and allowing both non-Gaussian marginal
behaviour and non-Gaussian and non-linear serial dependence. We explain how
these models can be estimated and give examples showing their superiority to
classical models for certain datasets.

1 Introduction

Let (Xt)t∈Z be a strictly stationary time series with continuous marginal distribution
FX and let (Ut)t∈Z be the process of uniformly-distributed random variables given by
Ut = FX(Xt) for all t. In this paper we are interested in processes where the dynamics
of (Ut)t∈Z are described explicitly by a set of copula functions.

The main examples of such models in the literature are first-order Markov copula
processes [7, 10] and their higher-order d-vine generalizations [16, 3, 6, 14]. These are
based on pair copula decompositions [11, 4, 1], i.e. models constructed from bivariate
copulas. While this literature concerns processes constructed from a finite set of bivari-
ate copulas, we consider the generalization to processes defined by an infinite sequence
of bivariate copula functions, as suggested in [5]. We derive some of properties of these
processes, show how they may be estimated and highlight some open theoretical issues.

Our interest in these processes stems from the fact that they can be used to define
non-Gaussian analogues of stationary Gaussian processes. We can obtain processes
with both non-Gaussian marginal behaviour and non-Gaussian and non-linear serial-
dependence behaviour. Moreover, we can propose natural non-Gaussian analogues to
classical ARMA, seasonal ARMA and ARFIMA models that share a degree of structure
with their classical counterparts [5].

2 Notation

Let (Ck)k∈N be a sequence of bivariate copulas with continuous partial derivatives of all
orders and densities ck that are strictly positive on (0, 1)2. For k ∈ N let the functions
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Rk : (0, 1) × (0, 1)k → (0, 1) and R∗
k : (0, 1) × (0, 1)k → (0, 1) be defined in a

recursive, interlacing fashion by R1(x;u) = h
(1)
1 (u, x), R∗

1(x;u) = h
(2)
1 (x, u) and, for

k ≥ 2,
Rk(x;u) = h

(1)
k

(
R∗
k−1(uk;u[k−1:1]), Rk−1(x;u[1:k−1])

)

R∗
k(x;u) = h

(2)
k

(
R∗
k−1(x;u[1,k−1]), Rk−1(uk;u[k−1:1])

)

where h(i)k (u1, u2) = ∂
∂ui

Ck(u1, u2) and where the notation u[i,j] = (ui, . . . , uj)
′

denotes sub-vectors of the vector u consisting of contiguous components, which may
be in ascending or descending order of the indices according to whether j > i or j < i.
For reasons that become clearer in Section 3 below, we refer to the functions R and
R∗ as forward and backward Rosenblatt functions respectively. We denote the inverse
of the Rosenblatt forward function by Qk(z;u) so that Rk(Qk(z;u);u) = z for all
(z,u) ∈ (0, 1)× (0, 1)k and k ∈ N.

3 Construction of s-vine copulas

Let (Zt)t∈N by a sequence of iid uniform innovations. Suppose we set U1 = Z1 and

Uk = Qk−1(Zk;U[k−1:1]), (1)

for k = 2, . . . , n and some fixed n ≥ 2. The random vector U = (U1, . . . , Un)
⊤ will

have a joint distribution given by a copula C(n) with density

c(n)(u) =
n−1∏

k=1

n∏

j=k+1

ck

(
R∗
k−1(uj−k;u[j−k+1:j−1]), Rk−1(uj ;u[j−1:j−k+1])

)
. (2)

This is the density of a a d-vine copula subject to translation-invariance conditions,
which we will refer to as a stationary d-vine or s-vine copula, since it belongs to the
larger class of copulas for stationary multivariate time series introduced in [14].

For k = 1, . . . , n − 1, t ≥ 1 and t + k ≤ n, the copula Ck is the copula of
the conditional distribution of (Ut, Ut+k) given the variables in between; we refer to
this as the kth partial copula. The Rosenblatt functions are the conditional distribution
functions

Rk(x;u) = P(Ut+k ≤ x | Ut+k−1 = u1, . . . , Ut = uk)

R∗
k(x;u) = P(Ut ≤ x | Ut+1 = u1, . . . , Ut+k = uk)

and hence the construction (1) is simply the familiar method of generating a realization
from a copula using the inverse of Rosenblatt’s transformation [15].

4 Construction of s-vine processes

We are interested in constructing strictly stationary processes whose higher-dimensional
marginal distributions have copulas with densities of the form (2), that is processes
which conform to the following definition.
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Definition 1 (S-vine process). A strictly stationary time series (Xt)t∈Z is an s-vine
process if for every t ∈ Z and n ≥ 2 the distribution of the vector (Xt, . . . , Xt+n−1) is
absolutely continuous and admits a unique copula C(n) with a joint density of form c(n)
in (2). An s-vine process (Ut)t∈Z is an s-vine copula process if its univariate marginal
distribution is standard uniform.

We consider constructing a process (Ut)t∈N starting from a single uniform ran-
dom variable U1 and iterating construction (1) ad infinitum for the sequence of copulas
(Ck)k∈N.

If the copula sequence satisfies Ck = C⊥ (independence copula) for k > p we refer
to this as the finite-order case. In this case, for k > p, we have that

Uk = Qp(Zk;U[k−1:k−p]),

so Uk only depends on the previous p values. It can be shown that this gives a sta-
tionary and ergodic Markov process of order p [5] and there is literature on rates of
mixing [7, 2, 8, 12]. Thus, in this case, construction (1) is an exact simulation algorithm
for a realization U = (U1, . . . , Un)

⊤ of any length n from an s-vine copula process.
The random vector X = (F−1

X (U1), . . . , F
−1
x (Un)))

⊤ is a realization from an s-vine
process (Xt)t∈Z with marginal distribution FX .

We are particularly interested in the infinite-order case where the copula sequence
satisfies Ck → C⊥ as k → ∞ but where, for every n ∈ N, there exists k ≥ n such that
Ck ̸= C⊥. When each Ck is a Gaussian copula with parameter αk then a result of [9]
can be used to show that absolute summability of the sequence (αk)k∈N is a sufficient
condition for (1) to describe the construction of a stationary and ergodic process. On
the other hand, if αk = (k+1)−1 for all k, then it is shown in [5] that this yields a non-
ergodic process. In the case of non-Gaussian copula sequences there remain a number
of open questions about the conditions on the copula sequence for ergodic and mixing
behaviour. We will present some partial results and formulate some conjectures.

We develop an estimation methodology for finite and infinite-order s-vine pro-
cesses based on the Kendall partial rank autocorrelation function (kpacf), which is
the sequence of Kendall tau values (τk)k∈N corresponding to the copula sequence
(Ck)k∈N. This allows us to propose a new interpretation of the concept of a non-
Gaussian ARMA(p,q) process of any order (p, q); the idea can also be applied to de-
velop non-Gaussian extensions of other Gaussian processes such as seasonal ARMA
models and ARFIMA models. We also develop a model checking methodology based
on a natural definition for model residuals.

5 Applications

We will give some specific examples of s-vine processes for modelling macroeco-
nomic time series. In particular, we will show some results for a non-Gaussian seasonal
ARIMA model for rate of inflation data. The estimation of models has been imple-
mented in the R library tscopula [13].
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Dependence orders and copula issues arising from
public rescue of bank defaults

Umberto Cherubini1 and Sabrina Mulinacci2

1 Department of Economics
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2 Department of Statistical Sciences
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Abstract. In this talk we will analyze the problem of how the budget constraints
for the rescue of bank defaults influences the joint distribution of times to default
of a banking system. In particular, we will propose and discuss new models with
different features and we will analyze the induced dependence.

1 Introduction

A common feature of the financial crises is the debate on which players to rescue to
prevent possible systemic developments. Rescue and support are obviously limited by
a budget constraint and can take different forms. Direct injection of funds in the banks
in the form of equity is the most usual way. Other popular forms of help consist of
freeing the financial system from some common source of risk: providing deposit in-
surance prevents contagion from the banking system to the real economy and buying
troubled assets (as in the TARP program during the big financial crisis) can stop con-
tagion across financial institutions. The same systemic threat can originate from oper-
ational risk events, such as the breach of the security of a digital system, exposed to
failure of its components because of external cyber attacks or physical disasters.

A question that arises is how the presence of this partial safety net can affect the
joint default distribution of the banks in the system. More particularly, we are interested
in assessing the effect of this safety net on the marginal times to default of the financial
institutions and their dependence structure, represented by their copula function and
the corresponding non-parametric dependence measures. In this talk, we address this
problem by combining tools and models that are typical of copula functions theory and
those coming from reliability theory.

In a technical setting, consider a system whose individual lifetimes have an assigned
dependence structure and marginal distributions. Assume you can repair, or rescue, a
limited number of components, subject to a bounded cost function. The question that
is addressed in this talk is how this repair and rescue may affect both the marginal
lifetimes, their dependence and the lifetime of the system. Reliability theory suggests
that the structural links among the banks may make a difference. The role of each bank
is given by the structure of the whole banking system: in case of system made of all
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SIFI banks then the default of just one of them implies the default of the whole system,
recalling a system in which the components are assembled in series, while in the case
of a system made of ”small” banks, the end of the entire system coincides with the
default of the last bank. In the financial jargon, a banking system in series calls for
a first-to-default rescue, while in a parallel system, preserving the system requires a
last-to-default rescue.

The connection with reliability theory is clear if we refer to repairable systems (see
Spizzichino, 2021, for a review on multivariate survival models for reliability systems).
As the simplest case, consider a system with d independent components, and assume we
have resources to fix the individual components n times. Repair and rescue is assumed
to occur on a first come first served basis (that corresponds to the case of the rescue of
a series system). The question is: are the components still independent? The qualitative
answer is no, because the lifetime of each components depends on the end of the others,
that take out repair resources. The quantitative answer, that is how dependence may
change, is instead addressed in this talk. In fact, even in this particular situation, the
problem is not trivial.

In order to include some underlying fundamental dependence we will consider the
case in which the d components lifetimes are conditionally i.i.d. with a particular at-
tention to the case in which they are linked by a Gumbel copula being this choice
particularly suited when dealing with exponentially distributed lifetimes (see Cherubini
and Mulinacci, 2017).

2 Aims and Provisional results

Let, for simplicity, assume d = 2. We denote with (Y
(n)
1 , Y

(n)
2 ) the random vector of

the residual lifetimes when n (n ≥ 0) repairments are allowed. If (Z(n+1)
1 , Z

(n+1)
2 ) do

represent the additional corresponding lifetimes in case of failure and repair, then the
residual lifetimes in the case of n+ 1 repairs are given by

Y
(n+1)
1 = Y

(n)
1 + Z

(n+1)
1 1{Y (n)

1 <Y
(n)
2 }

Y
(n+1)
2 = Y

(n)
2 + Z

(n+1)
2 1{Y (n)

1 <Y
(n)
2 }

(1)

and the distribution of
(
Y

(n)
1 , Y

(n)
2

)
for all n ≥ 1 can be obtained recursively, starting

from the initial distribution of
(
Y

(0)
1 , Y

(0)
2

)
whose dependence structure represents the

fundamental dependence of the system. Even in this simple case, the solution is quite
involved.

In fact, if we consider the particular case in which no fundamental dependence is
assumed (that is that Y (0)

1 and Y (0)
2 are independent), Y (0)

1 and Z(n)
1 are exponentially

distributed with parameter λ1 and Y
(0)
2 and Z

(n)
2 are exponentially distributed with

parameters λ2, and if, additionally, for i = 1, 2 and n ≥ 0, Z(n+1)
i is independent of

(Y
(n)
1 , Y

(n)
2 ), then, if λs = λ1 + λ2, the joint survival distribution of (Y (n)

1 , Y
(n)
2 ) is

F̄ (t1, t2) =





(
λs

λ1

)n
e−λ2t2 [Cλ1t1(n)− Cλ1t2(n− 1)] + Cλst2(n− 1), if t1 ≤ t2(

λs

λ2

)n
e−λ1t1 [Cλ2t2(n)− Cλ2t1(n− 1)] + Cλst1(n− 1), if t1 > t2

,
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where Cx(n) = e−x
∑n
j=0

xj

j! , and the analysis of its probabilistic properties will
be the object of part of the talk. As a second step, we will add some fundamental de-
pendence assuming that the components are conditionally i.i.d. and we will analyze its
contribution to the resulting distribution. A similar analysis will be conducted in the
case of more than two components.

However, even though there is clearly some parallelism with reliability theory, we
will discuss differences and analogies and if and how much reliability theory can actu-
ally help.

Acknowledgment. We are particularly thankful to Fabio Spizzichino for the discus-
sions, comments and precious suggestions.
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1 Introduction

Archimedean copulas are popular and well-known mainly due to their simple alge-
braic structure. We revisit the close interrelation between Archimedean copulas Cγ and
probability measures γ on (0,∞) established via the so-called Williamson transform
as studied in [7] (also see [8, Theorem 1.11]) and derive novel and simple expressions
for the level set masses and the Kendall distribution function in terms of γ. Moreover,
we show that within the class of multivariate Archimedean copulas uniform conver-
gence is equivalent to weak convergence of the corresponding probability measures
on (0,∞) and that singularity and regularity properties of the Archimedian copulas
may directly be derived from properties of the probability measures on (0,∞). Using
the afore-mentioned results we conclude that the subfamily of all absolutely continu-
ous Archimedean copulas as well as the family of all singular Archimedean copulas is
dense in the set of all Archimedean copulas.

2 Notation and preliminaries

Throughout this contribution Cd denotes the family of all d-dimensional copulas for
some fixed integer d ≥ 3. To simplify notation, we write vectors in bold symbols. The
d-stochastic measure associated with a copula C ∈ Cd will be denoted by µC , i.e.,
µC([0,x]) = C(x) for all x ∈ Id, whereby [0,x] := [0, x1] × [0, x2] × . . . × [0, xd]
and I := [0, 1]. For the (1, . . . , d− 1)-marginal of C ∈ Cd we will write C1:d−1, i.e.,

C1:d−1(x1, x2, . . . , xd−1) := C(x1, x2, . . . , xd−1, 1),

for all (x1, ..., xd−1) ∈ Id−1. If a d-dimensional random vector X has distribution func-
tion C in the sequel we will simply write X ∼ C.
Given an arbitrary metric space (S, d), the Borel σ-field on S will be denoted by B(S)
and we write λd for the Lebesgue measure on B(Id). In what follows Markov ker-
nels (regular conditional distributions) will play a prominent role: A mapping K :
Id−1×B(I) → I from Id−1 to I is a (d−1)-Markov kernel if and only if x 7→ K(x, E)
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is B(Id−1)-B(I)-measurable for every fixed E ∈ B(I) and E 7→ K(x, E) is a proba-
bility measure on B(Id−1) for arbitrary x ∈ Id−1. It is well-known (see, e.g., [1]) that
every copula C ∈ Cd induces a Markov kernel KC : Id−1 × B(I) → I and that KC is
unique only µC1:d−1 -almost everywhere. For more background on conditional expecta-
tion and Markov kernels we refer to [2, Section 5] and [5, Section 8].
A continuous, non-increasing, function ψ : [0,∞) → [0, 1] fulfilling ψ(0) = 1,
limz→∞ ψ(z) = 0 =: ψ(∞) and being strictly decreasing on [0, inf{z ∈ [0,∞] :
ψ(z) = 0}] (with the convention inf ∅ := ∞) is called an Archimedean generator.
Moreover, the map φ : [0, 1] → [0,∞] defined by φ(y) := inf{z ∈ [0,∞] : ψ(z) = y}
for every y ∈ [0, 1] denotes the so-called pseudo-inverse of an Archimedean generator
ψ. A copula C ∈ Cd is called Archimedean (in which case we write C ∈ Cdar) if there
exists some Archimedean generator ψ with

C(x) = ψ(φ(x1) + · · ·+ φ(xd))

for every x ∈ Id. It can be shown that the latter is the case if ψ is a d-monotone
Archimedean generator on [0,∞), i.e., ψ is an Archimedean generator fulfilling that
(−1)d−2ψ(d−2) exists on (0,∞), is non-negative, non-increasing and convex on (0,∞)
(whereby g(m) denotes the m-th derivative of a function g). Following [4], in order to
have a one-to-one correspondence between copulas and their generator we implicitly
assume that all generators are normalized in the sense that φ( 12 ) = 1, or equivalently,
ψ(1) = 1

2 holds.

3 Main results

According to [7], we may characterize generators of d-dimensional Archimedean cop-
ulas in terms of the Williamson transform Wdγ of probability measures γ on (0,∞).
We recall the following result (see [7] and [8, Theorem 1.11]) where we write fm+ for
the m-th power of the positive part f+ of a function f , i.e., fm+ := (f+)

m:

Theorem 1. Let ψ : [0,∞) → I be a function and d ≥ 2. Then the following two
conditions are equivalent:

(1) ψ is the generator of a d-dimensional Archimedean copula Cψ .
(2) There exists a unique probability measure γ on B([0,∞)) with γ({0}) = 0 such

that
ψ(z) =

∫

[0,∞)

(1− tz)d−1
+ dγ(t) =: (Wdγ)(z), (1)

holds for every z > 0. In other words, ψ is the Williamson transform of (the
Williamson measure) γ.

It is worth noting that the normalization property ψ(1) = 1
2 translates to the probability

measure γ as
∫
I(1− t)d−1dγ(t) = 1

2 .
According to [7], for every t ∈ (0, 1] the t-level set of C ∈ Cd can be written as

Lt :=
{
(x, y) ∈ Id−1 × I : C(x, y) = t

}

=

{
(x, y) ∈ Id−1 × I :

d−1∑

i=1

φ(xi) + φ(y) = φ(t)

}
. (2)
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Denoting the Kendall distribution function of C ∈ Cd by F dK(t) := P(C(X) ≤ t) for
t ∈ [0, 1] and assuming X ∼ C, the next theorem yields a simple representation of
the level-set masses and the Kendall-distribution function of an Archimedean copula in
terms of its corresponding Williamson measure γ:

Theorem 2 ([3]). Let C be a d-dimensional Archimedean copula with generator ψ and
Williamson measure γ. Then

µC(Lt) = γ({ 1
φ(t)}), t ∈ (0, 1] (3)

holds for every t ∈ (0, 1]. Moreover, the Kendall distribution function F dK of C fulfills

F dK(t) = γ([0, 1
φ(t) ]) (4)

for every t ∈ (0, 1].

As a consequence of Theorem 1 we obtain that a sequence of Archimedean copulas
converges uniformly if and only if their corresponding Williamson-measures converge
weakly on (0,∞) (again see [3]):

Theorem 3. Suppose that C,C1, C2, . . . are d-dimensional Archimedean copulas with
generators ψ,ψ1, ψ2, . . . and let γ, γ1, γ2, . . . denote the corresponding Williamson
measures. Then the following assertions are equivalent:

(1) (Cn)n∈N converges uniformly to C.
(2) (γn)n∈N converges weakly on (0,∞) to γ.

Following [6], every Markov kernel KC can be decomposed into the sum of three sub-
Markov kernels from Id−1 to B(I) as

KC(x, ·) = Kdis
C (x, ·) +Ksing

C (x, ·) +Kabs
C (x, ·), (5)

whereby each measure Kdis
C (x, ·) is discrete, each Ksing

C (x, ·) is singular and has no
point masses and Kabs

C (x, ·) is absolutely continuous on B(I). Using the fact that the
marginal C1:d−1 of C ∈ Cdar is absolutely continuous (see [7]) and letting c1:d−1 de-
note the corresponding density, in what follows we will refer to the three measures
µdisC , µsingC , µabsC , defined by

µdisC (G) =

∫

Id−1

Kdis
C (x, Gx)c

1:d−1(x)dλd−1(x)

µsingC (G) =

∫

Id−1

Ksing
C (x, Gx)c

1:d−1(x)dλd−1(x) (6)

µabsC (G) =

∫

Id−1

Kabs
C (x, Gx)c

1:d−1(x)dλd−1(x)

for every G ∈ B(I), as the discrete, the singular, and the absolutely continuous compo-
nent of µC . The next theorem (see [3]) states, how the singularity/regularity of γ carries
over to the corresponding Archimedean copula.
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Theorem 4. Suppose that C ∈ Cdar has generator ψ and Williamson measure γ. Then
the following assertions hold:

(1) If γ is absolutely continuous then µabsC (Id) = 1, i.e., C is absolutely continuous.
(2) If γ is discrete then µdisC (Id) = 1.
(3) If γ is singular without point masses then µsingC (Id) = 1.

Referring to Cdar,abs as the family of all absolutely continuous d-dimensional Archime-
dean copulas, Cdar,dis as the family of all C ∈ Cdar with µdisC (Id) = 1, and Cdar,sing as
the family of all C ∈ Cdar with µsingC (Id) = 1, combining Theorem 4 and Theorem 3,
yields that all the afore-mentioned classes are dense in Cdar with respect to the unifrom
metric:

Corollary 5 ((see [3])) Cdar,dis, Cdar,abs and Cdar,sing are dense in Cdar with respect to
the uniform metric.
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1 Introduction

Welfare and related phenomena such as poverty and inequality are multidimensional,
that is, they depend not only on income but also on other aspects such as working con-
ditions and material well-being. Hence, to appropriately account for the multivariate
nature of these phenomena, it is necessary to measure the potential interdependence
between their dimensions. In this paper, we focus on one aspect of multivariate depen-
dence, namely the dependence in the lower and upper tails of the joint distribution. In
particular, lower tail dependence captures the risk that individuals who score low in
one dimension also score low in the others. Similarly, upper tail dependence captures
the risk that individuals who score high in one dimension also score high in the oth-
ers. In our context, we will refer to these two features as contagion of deprivations and
contagion of affluences, respectively. To build up measures of tail dependence, we fol-
low a copula based approach. This approach is particularly appropriate in multidimen-
sional welfare analysis, where we deal with non-Gaussian distributions and possibly
non-linear relationships.

Despite its theoretical appeal and its popularity in fields such as finance or environ-
mental sciences, the concept of tail dependence has only recently been applied in wel-
fare economics in D’Agostino et al. (2022).These authors provide a novel application
of tail dependence concepts in poverty analysis but limited to a bidimensional setting.
Our paper generalises this work by incorporating a multidimensional perspective that
includes a pioneering application of multivariate tail dependence concepts to welfare
analysis. To do so, we rely on a particular version of the multivariate tail concentration
funcion proposed by Di Bernardino and Rullière (2017). This function, which is based
on the work of Venter (2002) and Durante et al. (2015) for the bivariate case, has sev-
eral advantages. First, it allows to represent, in a unit square, the degree of multivariate
dependence in both tails of the joint distribution, regardless of the number of dimen-
sions considered. Second, it avoids the cumbersome task of estimating asymptotic tail
dependence coefficients. Additionally, we show that this function is closely related to a
measure of multivariate overall dependence, namely the Blomqvist’s beta.
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Our paper illustrates the use of the multivariate TCF by analysing the evolution of
tail dependence between the three dimensions of the AROPE rate in the EU-28 over
the period 2008-2018. First, we find evidence of lower and upper tail dependence in all
EU-28 countries. That is, there is evidence of a risk of contagion of deprivations and
affluences. Second, this dependence is time-varying over the period analysed and it is
not homogenous over all countries. And third, in most of the EU-28 countries, the risk
of contagion of deprivations tends to be higher than the mirrored risk of contagion of
affluences.

2 Methodology

The copula approach focuses on the positions of the individuals across the variables,
rather than on the values that these variables attain for such individuals. In particular, let
the continuous random vector X = (X1, . . . , Xd) represent the relevant d dimensions
analysed and let Fi denote the marginal distribution of dimension i, with i = 1, . . . , d.
Then, each original variable Xi is transformed by applying the so-called probability in-
tegral transformation, obtaining a transformed variable Ui = Fi(Xi), with i = 1, . . . d.
These transformed variables attach to each individual in the population its relative po-
sition in all dimensions.

From probability theory, the transformed variables U1, . . . , Ud are standard uniform
random variables U(0, 1) and the joint distribution of the vector U = (U1, ..., Ud) turns
out to be the copula function C. Therefore, the copula is a d-dimensional cumulative
distribution function, C : Id → I, with I = [0, 1], whose univariate marginals are
U(0, 1). So, for a given real vector u ∈ Id, the value C(u) represents the proportion of
individuals in the population with positions outranked by u, i.e, C(u) = p(U ≤ u) =
p(U1 ≤ u1, . . . , Ud ≤ ud). For instance, C(0.2, ..., 0.2) will represent the probability
that a randomly selected individual is simultaneously in the 1st quintile (“low-ranked”)
in all dimensions.

Another important function, which is not a copula itself but it is related to the copula
C, is the survival function, C̄ : Id → I, defined as:

C̄(u) = p(U > u) = p(U1 > u1, . . . , Ud > ud),

where U = (U1, ..., Ud) is a random vector of variables U(0, 1) whose joint distribu-
tion function is the copula C. For instance, C̄(0.8, . . . , 0.8) will represent the proba-
bility that a randomly selected individual is simultaneously in the 5th quintile in all
dimensions.

The copula and survival function defined above play an essential role in determining
the so-called lower and upper tail dependence coefficients, respectivelty. Following Joe
(2015), in a d-dimensional framework, these coefficients are defined as:

λdL = lim
u→0+

Pr(U1 ≤ u, . . . , Ud−1 ≤ u|Ud ≤ u) = lim
u→0+

C(u, . . . , u)

u
, (1)

λdU = lim
u→1−

Pr(U1 ≥ u, . . . , Ud−1 ≥ u|Ud ≥ u) = lim
u→1−

C̄(u, . . . , u)

1− u
. (2)
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As Durante et al. (2015) point out, “while tail dependence give an asymptotic ap-
proximation of the behaviour of the copula in the tail of the distribution, it might be
also of interest to consider the case when the tail behaviour is considered at some (fi-
nite) points near the corners of the unit square”. To face this goal, we use a particular
version of the multivariate tail concentration function (TCF), namely qdC : (0, 1) → I,
given by:

qdC(u) =
C(u, . . . , u)

u
1(0,0.5] +

C̄(u, . . . , u)

1− u
1(0.5,1) (3)

where 1A denotes the indicator function on a set A.
In our framework, if we consider the three dimensions of the AROPE rate (income,

work intensity and material well-being), evaluating the TCF at lower (high) values en-
ables analysing the risk of contagion of deprivations (affluences). For instance, qdC(0.2)
will capture the risk that an individual that is in the 1st quintile in income is also simul-
taneously in the 1st quintile in both work intensity and material well-being. Similarly,
qdC(0.8) will capture the risk that an individual that is in the top quintile in income is
also simultaneously in the top quintile in both work intensity and material well-being.

The TCF has the advantage of representing, in a unit square, the dependence struc-
ture on the tails of a multivariate distribution, regardless of the number of dimensions
considered. Moreover, in the limits, this function yields the multivariate tail dependence
coefficients defined in (1) and (2), namely qdC(0

+) = λdL and qdC(1
−) = λdU . Addition-

ally, the multivariate TCF is related to a measure of global dependence, namely the
multivariate Blomqvist’s beta, βd,C , proposed by Úbeda-Flores (2005). In particular,
the following relathionship holds.

qdC(0.5) + qdC(0.5
+)

2
= βd,C [1− 2−d+1] + 2−d+1.

In practice, we propose to estimate the multivariate TCF by replacing in (3) both the
copula and the survival function with their empirical counterparts. For non-continuous
data, the empirical checkerboard copula in Genest et al. (2017) will be used.

3 Results

In this paper, we apply the multivariate TCF to analyse the evolution of multivariate tail
dependence between income, work intensity and material well-being in the countries of
the EU-28 over the period 2008-2018.

Figure 1 displays, for the EU-28 countries, the estimated trivariate TCF for years
2008 (blue line), 2014 (red line) and 2018 (green line) together with 95% standard
bootstrap confidence intervals using 1000 bootstrap replications. As a benchmark, the
theoretical trivariate TCF of independence is displayed in black.

Several conclusions emerge from Figure 1. First, there is a risk of contagion of both
deprivations and affluences, since the estimated TCFs are above the theoretical TCF of
the independence for the three years considered. This means that, in the EU-28, there
is a positive probability that a household that scores low (high) in one dimension also
scores low (high) in the other two dimensions simultaneously. Second, in most of the
EU-28 countries the TCFs are not symmetric, i.e, the risk of contagion of deprivations
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Fig. 1. TCF for the EU-28 countries and years 2008 (blue), 2014 (red) and 2018 (green) with
bootstrap confidence intervals and TCF of independence (black).

tends to be higher than the mirrored risk of contagion of affluences. Actually, the latter
tends to zero in the limit. Third, multivariate tail dependence changes accross countries
and over time. In some countries, the level of dependence between welfare dimensions
hardly changed over the period analysed. By contrast, in other countries there was a
significant increase of the risk of cumulative deprivation and affluence over the period
2008-2014, but the post-2014 recovery period allowed to reduce that risk to the levels
of 2008. However, there are also countries where the Great Recession strengthened tail
dependence in such a way that this was still higher in 2018 than in 2008.
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We study the large sample properties of sparse M-estimators in the presence of
pseudo-observations. Our framework covers a broad class of semi-parametric copula
models, for which the marginal distributions are unknown and replaced by their em-
pirical counterparts. It is well known that the latter modification significantly alters the
limiting laws compared to usual M-estimation. We establish the consistency and the
asymptotic normality of our sparse penalized M-estimator and we prove the asymptotic
oracle property with pseudo-observations, possibly in the case when the number of pa-
rameters is diverging. Our framework allows to manage copula-based loss functions
that are potentially unbounded. Additionally, we state the weak limit of multivariate
rank statistics for an arbitrary dimension and the weak convergence of empirical copula
processes indexed by maps. We apply our inference method to Canonical Maximum
Likelihood losses with Gaussian copulas, mixtures of copulas or conditional copulas.
The theoretical results are illustrated by two numerical experiments.
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Abstract. Building upon the new measure of predictability T q introduced by
Ansari & Fuchs (2023), which quantifies the extent of functional dependence of
a response vector Y = (Y1, . . . , Yq) on a set of explanatory random variables
X = (X1, . . . , Xp), we present a model-free and dependence-based feature
ranking and forward feature selection of data with multiple response variables,
thus facilitating the selection of the most relevant explanatory variables. We fur-
ther provide a hierarchical clustering method for random variables and devise a
visualization tool for the interconnectedness of random variables based on the
degree of predictability among them.

Introduction

As a direct and natural extension of Azadkia & Chatterjee’s rank correlation T , pre-
sented in [2] and given (in its unconditional form) by

T (Y |X) :=

∫
R var(P (Y ≥ y |X)) dPY (y)∫

R var(1{Y≥y}) dPY (y)

(see also [3]), to a vector Y = (Y1, . . . , Yq) of q ≥ 1 response variables, in [1] we
introduce the functional T q defined by

T q(Y|X) :=

∑q
i=1

[
T (Yi|(X, Yi−1, . . . , Y1))− T (Yi|(Yi−1, . . . , Y1))

]
∑q
i=1

[
1− T (Yi|(Yi−1, . . . , Y1))

]

with T (Y1|∅) := 0.

T q(Y|X) quantifies the degree of predictability of Y given X, i.e., the scale-invariant
extent of functional dependence of the response vector Y = (Y1, . . . , Yq) on a number
of explanatory variables X = (X1, . . . , Xp), p ≥ 1, and fulfills the desired characteris-
tics of a measure of predictability, namely

(A1) 0 ≤ T q(Y|X) ≤ 1.
(A2) T q(Y|X) = 0 if and only if Y and X are independent,
(A3) T q(Y|X) = 1 if and only if Y is perfectly dependent on X, i.e., there exists

some measurable function f : Rp → Rq such that Y = f(X) almost surely.
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In addition, T q fulfills the so-called information gain inequality:

(P1) T q(Y|X) ≤ T q(Y|(X,Z)) for all random vectors X,Y and Z,

formalizing the idea that additional explanatory variables improve the prediction, and
characterizes conditional independence between random vectors:

(P2) T q(Y|X) = T q(Y|(X,Z)) if and only if Y and Z are conditionally independent
given X.

T q has a model-free, strongly consistent estimator which can be computed in
O(n log n) time and which is given by a simple function of the graph-based estima-
tor Tn for T proposed in [2].

Forward feature selection

Up to our knowledge, there is rather little literature on feature selection methods that
are applicable to multivariate response vectors (i.e., for q > 1). In the class of linear
methods, the lasso allows an extension to multiple output data [6], while the kernel
feature ordering by conditional independence in [5] is a general model-free method
defined for reproducing kernel Hilbert spaces.

Making use of the above described properties of T q , we propose a model-free
and dependence-based forward feature selection method for multi-response data called
MFOCI. We prove that MFOCI is consistent in the sense that the subset XS := (Xj)j∈S
with S ⊆ {1, . . . , p} of selected explanatory variables via MFOCI is sufficient with
high probability, i.e., with high probability Y and XS are conditionally independent
given XSc := (Xj)j∈Sc where Sc := {1, . . . , p} \ S. We further provide several sim-
ulations and real-data examples for multi-response data illustrating the superior perfor-
mance of our method in comparison to existing procedures.

Identifying networks

Since T q measures the strength of dependence between random vectors, there exist sev-
eral ways of identifying networks on the level of random variables.

Interconnectedness of banks.
As illustrative example we first consider the interconnectedness of the 3 largest banks in
each of the U.S. (US) and Europe (EU), and compare further their connectedness with
the 4th largest banks in the US and Europe, which are Citigroup (CG) and Deutsche
Bank (DB), respectively.
For revealing the interconnectedness of the banks, we estimate their degree of pre-
dictability via T q from a sample of log-returns of the Banks’ stock data. Figure 1 shows
the values of T qn for the above described interrelations.
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Fig. 1. Interconnectedness of the three largest banks in the US and Europe, as well as connected-
ness with the banks Citigroup and Deutsche Bank measured by T q ; for example, the intercon-
nectedness of the three largest US banks with the three largest EU banks was calculated using T q

n

with p = 3 explanatory and q = 3 response variables.

Clustering.
For T q we employ the agglomerative hierarchical clustering procedure proposed in [4],
where as dissimilarity measure we here propose a suitable function of T q measuring
the maximum degree of predictability between two given disjoint subsets of random
variables. Figure 2 illustrates the clustering output of the three largest US and EU banks
based on log-return data.
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Fig. 2. Hierarchical clustering of the three largest banks in the US (JPM, BAC, WFC) and Europe
(HSBC, BNP, CAG) measured by T q .

References

1. Ansari, J. and S. Fuchs (2023). A simple extension of Azadkia & Chatterjee’s rank correla-
tion to a vector of endogenous variables. Available at arxiv.org/abs/2212.01621.

2. Azadkia, M. and S. Chatterjee (2021). A simple measure of conditional dependence. Ann.
Stat. 49(6), 3070–3102.

3. Dette, H., K. F. Siburg, and P. A. Stoimenov (2013). A copula-based non-parametric measure
of regression dependence. Scand. J. Statist. 40(1), 21–41.

4. Fuchs, S., F. M. L. Di Lascio, and F. Durante (2021). Dissimilarity functions for rank-based
hierarchical clustering of continuous variables. Comput. Statist. Data Anal. 159, Article ID
107201, 26 pages.

5. Huang, Z., N. Deb, and B. Sen (2022). Kernel partial correlation coefficient - a measure of
conditional dependence. J. Mach. Learn. Res. 23(216), 1–58.

6. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser.
B. Stat. Methodol. 58(1), 267–288.

36



Distorted copulas

Roberto Ghiselli Ricci

Dipartimento di Economia e Management
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Abstract. Transformations of copulas based upon strictly increasing bijections
on the real unit interval are discussed. In particular, the problem of determining
the subset of bijections which ensure that the transformation of a given copula is
still a copula is studied. The real novelty is that several results strongly depend
on a fruitful connection between real analysis and group theory.

1 Motivation

Let C be a (bivariate) copula and let g : [0, 1] → [0, 1] be a continuous, strictly increas-
ing bijection. The distorsion of C by means of g is the function Cg : [0, 1]2 → [0, 1]
given by

Cg(x, y) = g−1(C(g(x), g(y))). (1)

The distortion of a copula as in eq. (1) is also known as transformation of C via g. This
topic has been considered in many papers both from a theoretical point of view and in
applied contexts. See, for instance, [1, 4, 10, 2, 8].

The study of distorted copulas is particularly interesting because they may be used
to generate in a very flexible way new families of copulas. Furthermore, it is quite
intriguing to analyze how some dependence properties of a copula are modified in a
distorted copula, for example the tail dependence coefficients (see [12, 9]). To this pur-
pose, it is essential to have some information about the subset of bijections which ensure
that the distortion of a copula is still a copula. More formally, denote by C the set of
bivariate copulas and by Θ the set of strictly increasing and continuous bijections on
the real unit interval: given an arbitrary copula C, let I(C) = {g ∈ Θ : Cg ∈ C}. In
[4], the authors exactly pose the problem of determining I(C) for a given C ∈ C. Note
that this problem has been completely solved in the context of triangular norms (see,
for instance, [11]) when C =M , C = Π and C =W , where

M(x, y) = min{x, y}, W (x, y) = max{0, x+ y − 1}, Π(x, y) = xy.

In the first case, we have I(M) = Θ, while in the two remaining cases, whenC is either
a nilpotent or strict Archimedean copula, I(W ) and I(Π) are given by the concave and
the log-concave bijections of Θ, respectively (see also [3]).

To the best of our knowledge, there are no general results related to different types of
copulas: moreover, quite surprisingly, only a few investigations appear in the literature
with regard to the connection between I(C) and I(Cg) for a given copulaC and a fixed
g ∈ Θ.

37



2 Main results

A semi-copula S is a function from [0, 1]2 to [0, 1] that is increasing in each variable and
satisfies S(x, 1) = S(1, x) = x for every x ∈ [0, 1], but it may be neither associative
nor commutative [6, 5]. It is not difficult to see that the set of continuous semi-copulas is
closed under the distortion of any g ∈ Θ. The same does not occur when S is a copula:
indeed a distorted copula is generally only a continuous semi-copula (see, for instance,
[7]).

Given any copula C, we call horizontal section of C any mapping of the kind x 7→
C(x, v) for any fixed v ∈ [0, 1]. Analogously, a vertical section of C is any mapping of
the kind x 7→ C(v, x) for any fixed v ∈ [0, 1].

The first results are related to a necessary condition: particularly, Cg ∈ C requires
that every horizontal and vertical section of Cg is an absolutely continuous function on
[0, 1]. The absolute continuity of both g and its inverse g−1 is a sufficient condition for
assuring the above requirement, but generally not necessary, as we will show by means
of a particular counter-example. However, we prove that the converse is true when C is
jointly strictly monotone, i.e.

C(x, y) < C(x′, y) and C(y, x) < C(y, x′)

for any x, x′, y ∈ [0, 1] such that x < x′ and y > 0.
We can formalize the process of distortion of a semi-copula within the branch of

group theory given by the actions. Let X be an arbitrary, non empty set and let G be
a group. A (right) action of G upon X is a mapping Ψ : X × G → X satisfying the
following axioms:

– Ψ(Ψ(x, g), h) = Ψ(x, gh) for all g, h ∈ G and for any x ∈ X;
– Ψ(x, e) = x for all x ∈ X , where e denotes the identity element of G.

We will present some results about the connection between I(C) and I(Cg) when we
have some information on I(C) just resorting to the group action, by identifying G
with Θ and X with the set of continuous semi-copulas.

Finally, a third group of results is related to some sufficient conditions in order to
determine at least a subset of I(C) for some remarkable examples of copulas.
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In this talk we discuss copula-based dependence quantification between multiple
groups of random variables of possibly different sizes. A focus in the talk is on the
family of Φ-divergences. An axiomatic framework for this purpose is provided, and we
illustrate the divergence measures by means of examples. For statistical inference we
focus on the absolutely continuous setting assuming copula densities exist. We con-
sider parametric and semi-parametric frameworks, discuss estimation procedures, and
establish asymptotic properties of the proposed estimators. Simulations indicate finite-
sample performances, and practical use is discussed.

This talk is based on joint work with Steven De Keyser (KU Leuven).
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This talk will provide an overview of the recent progress made in exploring Sourav
Chatterjee’s newly introduced rank correlation. The objective is to elaborate on its prac-
tical utility and present several new findings pertaining to (a) the asymptotic normality
and limiting variance of Chatterjee’s rank correlation, (b) its statistical efficiency for
testing independence, and (c) the issue of its bootstrap inconsistency. Notably, the pre-
sentation will reveal that Chatterjee’s rank correlation is root-n consistent, asymptoti-
cally normal, but bootstrap inconsistent — an unusual phenomenon in the literature.
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Abstract. We study relations between the shape of a strict triangular norm and
its generators. In particular, we introduce the class of balanced generators.

1 Formulation of the goal

Triangular norms (t-norms for short) are binary operations on the real interval [0, 1]
which are commutative, associative, nondecreasing, and with neutral element 1. We
restrict attention to t-norms T which are strict, i.e., continuous and satisfying T (x, y) <
T (x, z) whenever y < z and x > 0. T-norms are used mainly in fuzzy logics as the
interpretation of a conjunction. We refer to [3] for basics on t-norms.

It is known [4, 7] that each strict t-norm T has a (non-unique) additive generator,
t : [0, 1] → [0,∞], and a multiplicative generator, θ : [0, 1] → [0, 1], which allow to
express it as

T (x, y) = t−1
(
t(x) + t(y)

)
= θ−1

(
θ(x) θ(y)

)
.

A strict t-norm is a copula iff its (any) additive generator is convex [3]. Conversely, as-
sociative copulas are t-norms. Thus many families of binary operations were introduced
and studied independently as copulas and t-norms.

Many different proofs of the existence of generators of strict t-norms were published
(see the bibliography of [9]). However, we found their interpretability unsatisfactory. It
is not known how the “shape” of a generator influences that of the corresponding t-norm
and vice versa.

One possible approach is to describe the t-norm by a collection of points which
should lie on its graph (or close to it) and fit a t-norm to these data. This can be easily
done if we restrict attention to some parametric family of t-norms. If we try to find an
optimal approximation among all strict or nilpotent t-norms, their associativity makes
the task difficult. A feasible solution was proposed by Beliakov in [1]. His solution is
not optimal, as shown in [10]. However, all these attempts ignore the local behavior of
the t-norm, e.g., its derivatives. We are not aware of any attempt to make an analogy of
a Hermite interpolation by a t-norm.

We posed the question of how a (local) change of a t-norm influences its generator
or, vice versa, how a change of a generator modifies the t-norm. Particular attention is
paid to their first derivatives.
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2 Inspiration

There is one result that links the shape of a t-norm and its multiplicative generator. It
was first published in [8], here we cite it from [9]:

Theorem 1. Let θ be a multiplicative generator of a strict t-norm T such that θ′(0) ∈
]0,∞[. Then

θ(y) =
∂

∂x
T (x, y)

∣∣∣
x=0

= lim
x→0+

T (x, y)

x

for all y ∈ [0, 1] whenever these expressions are defined.

The latter expression means that, up to the scaling factor 1/x, the function y 7→
T (x, y) becomes a very good approximation of a multiplicative generator of T when
x → 0, see Fig. 1. Thus a close look at the graph of T near the line segment {(0, y) |
y ∈ [0, 1]} allows to deduce the “shape” of (one distinguished) multiplicative generator
of T . Other multiplicative generators of T are powers of this generator and do not admit
such an interpretation. We shall discuss this situation in more detail in Section 3.

Fig. 1. A balanced generator of a Frank t-norm, two of its powers, and its approximation by Th. 1

3 Derivatives at bounds of the domain

The derivatives at the upper bounds of the domains are linked by the following rules:

Theorem 2. Let T be a strict t-norm, t its additive generator, and θ its multiplicative
generator. From the following conditions, 1 and 2 are equivalent and they imply 3:
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1. θ has a continuous, nonzero, finite derivative at 1.
2. t has a continuous, nonzero, finite derivative at 1.
3. T is differentiable at (1, 1) (i.e., it has there a total differential; explicitly, its linear

approximation in the neighborhood of (1, 1) is (x, y) 7→ x+ y − 1).

Remark 1. Theorem 2 operates with the existence of derivatives as follows: if one
derivative exists and satisfies the assumptions, the other derivative also exists.

Notice that the linear approximation at (1, 1) coincides (locally) with the Łukasie-
wicz t-norm, T (x, y) = max(x+ y − 1, 0), which is nilpotent, but the theorem applies
to strict t-norms, e.g., to all strict Frank t-norms, defined by

T (x, y) = logλ

(
1 +

(λx − 1) (λy − 1)

λ− 1

)
for λ ∈ (0,∞) \ {1} ,

including the product t-norm (as the limit case for λ → 1). On the other hand, follow-
ing [6], any continuous t-norm can be approximated by a strict t-norm with arbitrary
precision. As an example, the minimum t-norm is the limit case of Frank t-norms for
parameter λ → 0, although it is not differentiable at (1, 1) (and does not have a gener-
ator).

In Theorem 2, if one of the generators satisfies the first two conditions, all genera-
tors satisfy it, too. The reason is that additive generators are determined up to a posi-
tive multiple and multiplicative generators up to a positive power, and these operations
keep the derivatives at 1 finite and non-zero. Now we shall discuss derivatives at 0 and
the situation becomes different. Additive generators of strict t-norms are unbounded
in a neighborhood of 0, thus speaking of their “shape” is not much useful. We could
ask whether they tend to ∞ faster or slower than the negative logarithm, but this does
not help our intuition and understanding of the graph. For multiplicative generators the
condition similar to Theorem 2 is meaningful.

Definition 1. [2] A multiplicative generator θ of a strict t-norm is called a balanced
generator if it has a (right) derivative at 0 such that 0 < θ′(0) <∞.

Example 1. Frank t-norms for parameter λ ∈ (0,∞) \ {1} have multiplicative genera-

tors θλ =
λx − 1

λ− 1
which are balanced. Hamacher product (which belongs to the family

of Ali–Mikhail–Haq copulas),

TH(x, y) =
x y

x+ y − x y
for x, y ̸= (0, 0) ,

has a multiplicative generator
θH(x) = e

x−1
x

and has no balanced generator.

Theorem 1 reconstructs balanced generators. Every strict t-norm has at most one
balanced generator; the derivative of its rth power at 0 is 0 for r > 1 and ∞ for r < 1,
see Fig. 1. A question arises how to find a balanced generator if it exists and we know
a multiplicative generator that is not balanced. We have an answer:
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Theorem 3. Let T be a strict t-norm with a multiplicative generator θ. If there is a finite
nonzero limit

r = lim
x→0+

x θ′(x)
θ(x)

, (1)

then T has a balanced generator

θ∗ = θ1/r . (2)

If T has a balanced generator θ∗, it is determined by (1) and (2).

If a balanced generator has a continuous derivative at 0, the corresponding t-norm
is differentiable at (0, 0); its total differential there is zero. We can say more about its
similarity to the product near this point:

Theorem 4. Let T be a strict t-norm with a balanced generator θ such that θ′(0) =
c ∈ ]0,∞[. Then

lim
(x,y)→(0,0)

T (x, y)

c x y
= 1 .

4 Diagonals of t-norms

A diagonal of a t-norm T is the unary function ∆(x) = T (x, x). It is known that
a diagonal does not determine the t-norm uniquely; see [5] for the characterization of
all t-norms with a given diagonal ∆. Its main steps construct a multiplicative generator
θ as follows:

1. One point
(
x, θ(x)

)
∈ ]0, 1[

2 of the graph of the multiplicative generator can be
chosen arbitrarily,

2. Then the diagonal determines θ on a countable infinite set M ⊂ ]0, 1[.
3. The set M is not dense. Choose two subsequent elements a, b ∈M such that a < b

and ]a, b[ ∩M = ∅. The restriction θ|]a,b[ can be any function such that θ|[a,b] is
strictly increasing and continuous.

4. The remaining values of θ are uniquely determined by the preceding steps.

A fact that seems to remain unnoticed is that the range of possible values of the
multiplicative generator constructed this way is limited by the difference x −∆(x) >
0. The closer the diagonal is to the identity, the closer must be all t-norms with this
diagonal. This restriction may be helpful if the diagonal is close to the identity, which
is sometimes the case, e.g., for Frank t-norms with a small parameter.

5 Conclusion

We collected some results which relate the shapes of generators and the corresponding
t-norms. Although some of them are vaguely formulated and others are only local prop-
erties, referring to derivatives at points, they help to understand the geometry of these
objects. These rules can be also demonstrated by graphs of specific aspects of these
relations, see [2].

45



Acknowledgement. This work was supported by the Czech Science Foundation grant
19-09967S.

References

1. G. Beliakov: Fitting triangular norms to empirical data. In: Erich Peter Klement and Radko
Mesiar, editors, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms.
Elsevier Science B.V., Amsterdam, 2005, 261–272.
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Abstract. We discuss sets of copulas with prescribed values on some fixed sub-
set S of the unit n-cube In. The first problem is to find conditions for S and
for the values on S, which ensure the existence of at least one copula that attains
these values, and the second is to find exact bounds for the set of all such copulas.

1 Introduction

Uncertainty modeling is quickly becoming one of the main topics in applied mathemat-
ics and statistics. Modern applications often require statistical estimations to be made
even if there is little or no information about the dependence structures involved. To
obtain good mathematical models in such situations, it is thus important to take into
account any additional information that is available.

In the case of complete dependence uncertainty, the set of all possible distribution
functions of a random vector X is described by the set of all copulas. Having additional
information about the distribution of X manifests as restrictions on the corresponding
set of copulas. These restrictions often involve prescribed values for copulas on some
subset S ⊆ In, such as diagonals, sections, finite sets of points, general compact sets,
etc. There are two questions that can be posed in each case. The first question

(Q1) Does there exist at least one copula that attains the prescribed values on S?

leads to finding conditions for the set S and for the prescribed values on S, that will
ensure the set of corresponding copulas in nonempty. The second question

(Q2) What are the exact lower and upper bound (constrained Fréchet-Hoeffding bound)
for the set of all copulas having the prescribed values on S?

involves finding formulas for the bounds and proving that the bounds are exact, i.e., at
each point they are attained by some copula.
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We mention a couple of known results on this topic. Existence of bivariate copulas
with given diagonal section δ was established by Bertino [2], and Fredricks and Nelsen
[5], and the lower and upper bounds for such copulas are given in [11]. The lower bound
is known to be exact, while the exactness of the upper bound for general δ is still an
open question - it is only solved for special types of δ. Diagonal sections of multivariate
copulas were investigated by Jaworski [6]. Copulas with prescribed opposite-diagonal
sections were considered by de Amo et al. [3]. Furthermore, a function Q defined on In
is a quasi-copula if and only if for any track S in In (i.e. a parametric curve with non-
decreasing components) there is a copula C that coincides with Q on S. Some results
for a general compact set S can be found in [8].

The first result concerning (Q1) for a finite set S (apart from the classical result
for |S| = 1, which is an integral part of the theory) was given in the bivariate setting
in 2010 by Mardani-Fard et al. [9], who showed that if |S| = 3 and Q is an arbitrary
bivariate quasi-copula, then there exists a bivariate copula C which coincides with Q
on S. For |S| = 4 this is no longer true, since bivariate copulas have positive volume on
any rectangle while proper quasi-copulas do not. Using a linear programming method
De Baets et al. [4] proved that an analogous result holds for trivariate copulas when
|S| = 2, but not when |S| = 3. It was an open problem whether the same is true for
higher dimensional copulas, see [1]. In the talk we present a positive answer to this
question using a constructive induction method.

Very little is know about (Q2) for a finite set. In fact, existing results seem to be
limited to the case when a single value of a copula is prescribed, i.e. when |S| = 1.
The bounds for bivariate copulas with a given value at a given point were discovered
by Nelsen [10] in 1999. These bounds are given in terms of shuffles of min, so they
are again copulas, and thus automatically exact. In 2004 Rodrı́guez-Lallena and Úbeda-
Flores [12] provided the bounds for n-copulas with a given value at a given point z ∈ In.
Whether these bounds are exact when n ≥ 3 was posed as an open question, with only
a partial answer given by the authors, namely in the regions [0, z] and [z,1]. We settle
this question by showing that the given bounds are indeed exact for any n ≥ 3.

2 Results

Let n ≥ 2 and denote by W and M the lower and upper Fréchet-Hoeffding bound for
the set of n-copulas. In this section we provide an answer to (Q1) when |S| = 2 and an
answer to (Q2) when |S| = 1. It turns out that the former is a consequence of the latter,
so we start with the latter.

Let z = (z1, z2, . . . , zn) be a fixed point in In and choose a real number a such that
W (z) ≤ a ≤M(z). It was shown in [12], that if C is a copula (or even a quasi-copula)
with C(z) = a, then

max
{
W (u), a−

n∑

i=1

(zi − ui)
+
}
≤ C(u) ≤ min

{
M(u), a+

n∑

i=1

(ui − zi)
+
}

(1)

for all u = (u1, u2, . . . , un) ∈ In, where r+ = max{0, r} denotes the positive part of
a real number r. Our first theorem shows that these bounds, which are n-quasi-copulas,
are exact (i.e. best possible).
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Theorem 1 ([7]). Fix a point z = (z1, z2, . . . , zn) ∈ In and a real number a such that
W (z) ≤ a ≤ M(z). Then for every point x = (x1, x2, . . . , xn) ∈ In there exists an
n-copula Cu satisfying the conditions

Cu(z) = a and Cu(x) = min
{
M(x), a+

n∑

i=1

(xi − zi)
+
}
,

and an n-copula Cl satisfying the conditions

Cl(z) = a and Cl(x) = max
{
W (x), a−

n∑

i=1

(zi − xi)
+
}
.

So n-copula Cu attains the prescribed value at z, and the upper bound at x, while
n-copula Cl attains the prescribed value at z, and the lower bound at x. This implies
that the given bounds are exact.

Now suppose two points z and w in In are fixed, and we prescribe the values at z
and w to be two values coming from a single n-quasi-copula Q. In this case, question
(Q2) asks whether there is a n-copula, that coincides withQ at points z and w. Since the
bounds given in (1) hold also for n-quasi-copulas, Theorem 1 can be used to construct
such an n-copula by taking an appropriate convex combination of copulas Cu and Cl
from Theorem 1, with x replaced by w. We thus have the following result.

Theorem 2 ([7]). Let z and w be two points in In and let Q be an n-quasi-copula.
Then there exists an n-copula C such that

C(z) = Q(z) and C(w) = Q(w).

The essence of our construction method thus lies in the proof of Theorem 1. The
core idea of the proof is the notion of an F-copula, where F is an n-tuple of increasing
1-Lipschitz functions defined on I, with value 0 at 0 and a common value T ∈ I at 1.
An F-copula is a grounded n-increasing function with marginals F, and it is meant to
model a slice of a higher dimensional copula, namely, a slice of a slice of a slice . . . of
a copula is an F-copula for appropriate F.

The proof of Theorem 1, say for the upper bound, can be summarized as follows
(see also Figure 1).

1. Formulate Theorem 1 for F-copulas.
2. Reorder the coordinates if necessary.
3. Take a slice through x in the x1 coordinate, namely {x1} × In−1, and define an

appropriate (n − 1)-tuple F′ that will serve as the marginals on the slice, and an
appropriate value a′ at the projection z′ of z to the slice.

4. Use induction to find an F′-copula C ′ that will serve as a slice of the eventual
solution F-copula.

5. Extend C ′ defined on the slice, together with the value a at z, to an F-copula C
defined on In, which will automatically satisfy the necessary conditions.

6. Apply the result to the n-tuple F of uniform marginals.

Additionally, the technical aspects of the proof require generalizations of certain
classical results from the theory of copulas to the setting of F-copulas, including the
Fréchet-Hoeffding bounds and the answer to (Q1) for |S| = 1. Furthermore, a byprod-
uct of step 5. is also an answer to (Q1) when S is a union of an (n − 1)-dimensional
slice of In and an arbitrary point in In.
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Fig. 1. A visualization of the procedure used in the proof of Theorem 1 (figure adapted from [7]).
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Abstract. We extend the notion of extreme points in the Krein–Milman sense
of the class of semilinear copulas introduced by Durante et al. to the class of all
bivariate shock–induced copulas. This class properly contains semilinear copulas
for which the results of our procedure are consistent with the existing notion.
We show that our extreme copulas are dense in every class to which they belong
(including the class of semilinear copulas) in a stronger sense than in the Krein–
Milman approach; in fact, they are dense in a similar way that shuffles of M are
dense in the set of all copulas. We also provide a stochastic interpretation of our
extension of extremality. Roughly speaking, a shock–induced copula is extreme
whenever the inducing shocks have pairwise disjoint supports.

1 Introduction

Let U and V, respectively, denote the two lifetimes of the components of a system.
The independent times of occurrence of three types of shocks are denoted by X,Y
and Z, respectively. The first two are idiosyncratic shocks that are fatal to only one of
the two components at a time. The third one is an exogenous shock that affects both
components. Note that

U = min{X,Z} and V = min{Y,Z}. (1)

In this case, the random vector (U, V ) obeys the Marshall copula Cφ,ψ , and the two
functions φ,ψ can be interpreted in terms of distribution functions of the previously
introduced random variables as FX(x) = φ(FU (x)) for all x with FU (x) > 0, and
FY (y) = ψ(FV (y)) for all y with FV (y) > 0.

In various applications, random events may have a different meaning than shocks,
e.g., lifetime, in which case the two minima above may become maxima. In finance,
random events can have opposite effects on long and short investments. Therefore, we
often cannot consider these events as either shocks or lifetimes. Nevertheless, we use
the common terminology “shock–induced copulas” when studying these copulas and
their properties, regardless of their actual application.
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In the seminal paper by Durante, Girard, and Mazo [2], which introduces a broad
family of copulas, including those induced by shocks, the operators such as “min” or
“max” in the Expression (1) above are called the linking functions. While symmetric
linking functions lead to the Marshall copula, the asymmetric choice U = max{X,Z}
and V = min{Y,Z} yields the maxmin copula. Although this copula is obtained by a
reflection in the linkage from the Marshall case, another reflection in a component does
not bring us back to the Marshall copula – it brings us to RMM.

Let us briefly recall the classes of shock–induced copulas that form the main back-
ground of our investigation.

(A) Marshall copulas: Maps Cφ,ψ(u, v) = min{vφ(u), uψ(v)}, where

1. φ,ψ are two increasing real valued maps on [0, 1];
2. φ(0) = ψ(0) = 0 and φ(1) = ψ(1) = 1;

3. φ∗(u) =
φ(u)

u
and ψ∗(v) =

ψ(v)

v
are decreasing,

are called Marshall copulas [6]. We denote this class of copulas with M.
(B) Maxmin copulas: Maps Cφ,ψ(u, v) = uv + min{u(1 − v), (φ(u) − u)(v −

ψ(v))}, where

1. φ,ψ are two increasing real valued maps on [0, 1];
2. φ(0) = ψ(0) = 0 and φ(1) = ψ(1) = 1;

3. φ∗(u) =
φ(u)

u
and ψ∗(v) =

1− ψ(v)

v − ψ(v)
are decreasing,

are called maxmin copulas [7]. We denote this class of copulas with Mm.
(C) Reflected maxmin copulas: Maps Cf,g(u, v) = max{0, uv − f(u)g(v)},

where

1. f, g are two real valued maps on [0, 1];

2. the functions f∗(u) =
f(u)

u
and g∗(v) =

g(v)

v
are decreasing;

3. the functions f̂(u) = f(u) + u and ĝ(v) = g(v) + v are increasing;
4. f(0) = g(0) = 0, f(1) = g(1) = 0, f∗(1) = g∗(1) = 0,

are called reflected maxmin copulas (RMM for short) [5]. We denote this class of copu-
las with Mmσ . Every such copula can be obtained from a maxmin copula after applying
the reflection on the second variable, i.e., v 7→ 1− v. The functions φ and ψ transform
into f and g with the following rules: f(u) = φ(u)− u and g(u) = 1− u− ψ(1− u).

(D) Semilinear copulas: The family of semilinear copulas [3] may be considered
as a special case of Marshall copulas. Although they deserve to be defined on their own,
they are precisely symmetric Marshall copulas, i.e., we have ψ = φ.

2 Results

In this section we present the results of [4]. A set of functions F = {f : I −→ I :
f(0) = f(1) = 0, u + f(u) ↗, f(u)/u ↘}, where I = [0, 1], will be used as a
set of generators of certain families of copulas. Observe that this set is equivalently
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defined as F̂ = {φ : φ(0) = 0, φ(1) = 1, φ(u) ↗, φ(u)/u↘}. Indeed, the bijective
correspondence F → F̂ is given by f 7→ φ(u) = f(u) + u. Functions of these sets are
continuous on (0, 1] and may have a jump at 0. If we redefine their values at 0 as their
right-hand side limits, these sets are compact and convex.

We also introduce two sets of points

A =

{
u ∈ I : f ′(u) =

f(u)

u

}
and B = {u ∈ I : f ′(u) = −1}, for f ∈ F ;

A =

{
u ∈ I : φ′(u) =

φ(u)

u

}
and B = {u ∈ I : φ′(u) = 0}, for φ ∈ F̂ .

(2)

With µ we denote the Lebesgue measure on I. We now present a characterization of
the extreme points of F (respectively F̂).

Theorem 1. A function f (respectively φ) is an extreme point of F (respectively F̂) if
and only if µ(A ∪B) = 1.

For X,Y, Z continuously distributed random variables we obtain the following
characterization of extreme generators.

Theorem 2. If X (respectively Y ) and Z are continuously distributed, then f (respec-
tively g) is an extreme point of F if and only if the supports of X (respectively Y ) and
Z are disjoint.

A rough definition of the support of X , denoted suppX ⊆ R, is that x ∈ suppX if
either (1) the probability of the set {X = x} is nonzero (the set of these points is called
the discrete support, denoted suppdX), or (2) FX is differentiable with nonzero deriva-
tive at x and belongs to an interval in which the points with this property are dense (the
set of these points is called the absolutely continuous support, denoted suppaX). The
support also contains accumulation points of the points of types (1) and (2). However,
there are shocks whose supports cannot be obtained only in this way.

1. Using the Cantor function, we can generate an example with shocks whose supports
are neither of type (1) nor (2), nor their combination.

2. The Cantor function can provide generators that are not extreme.
3. Two shocks that are both singular can provide an example of a generating function

that is extreme.

Introduce x0 and z0 as the infimum of the support of X and Z, respectively, and
let w0 = max{x0, z0}. Similarly, introduce y1 and z1 respectively as the supremum of
the support of Y and Z respectively, and let w1 = min{y1, z1}. If we assume that the
random variables X,Y, Z are combinations of discrete and continuous type, we obtain
the following theorem.

Theorem 3. Assume that each of the three shocks is distributed discretely, continu-
ously, or as a combination of the two. Then

1. generator φ is extreme if and only if

(suppdX ∩ suppdZ) \ {w0} = ∅ and µ (suppaX ∩ suppaZ) = 0;

53



2. generator ψ is extreme if and only if

(suppdY ∩ suppdZ) \ {w1} = ∅ and µ (suppaY ∩ suppaZ) = 0.

The following three theorems show the density of extreme generators among all
generators and the density of extreme copulas, i.e. copulas generated by extreme gen-
erators, among shock–induced copulas of their respective types. It follows that extreme
copulas are dense in the class of semilinear copulas.

Theorem 4. Extreme generators are dense in the set of generators F .

Theorem 5. In either of the three families of copulas, Marshall, maxmin, and RMM,
the extreme copulas given by the formulas above form a dense subset.

Remark 1. In the class of semilinear copulas, where the extreme copulas of Durante et
al. [1] are defined, their definition coincides with our notion given above.

Corollary 1. In the class of semilinear copulas extreme copulas form a dense subset in
sup norm topology.

The next two theorems give the stochastic interpretation of continuously distributed
shocks and combinations of discrete in continuously distributed shocks, respectively.

Theorem 6. Let X , Y and Z be continuously distributed independent shocks generat-
ing a copula that belongs to either of the three families M, Mm, or Mmσ . Then the so
obtained copula is an extreme one if and only if µ([suppX ∪ suppY ] ∩ suppZ) = 0.

Theorem 7. Let X , Y , and Z be independent shocks. Assume that each of the three
shocks is distributed discretely, continuously, or as a combination of the two, and sup-
pose that they generate a copula C that belongs to either of the three families M, Mm,
or Mmσ . Then

1. In the case of M copula C is extreme if and only if

(suppdX∩suppdZ)\{inf suppU} = ∅, (suppdY ∩suppdZ)\{inf suppV } = ∅,

µ (suppaX ∩ suppaZ) = 0, µ (suppaY ∩ suppaZ) = 0.

2. In the case of Mm or Mmσ copula C is extreme if and only if

(suppdX∩suppdZ)\{inf suppU} = ∅, (suppdY ∩suppdZ)\{sup suppV } = ∅,

µ (suppaX ∩ suppaZ) = 0, µ (suppaY ∩ suppaZ) = 0.

Acknowledgement. The authors acknowledge financial support from the Slovenian
Research Agency (research core funding No. P1-0222).
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B. Schweitzer, M. D. Taylor (eds.), Distributions with Fixed Marginals and Related Topics
in LMS, Lecture Notes – Monograph Series, vol. 28, 1996, 213–222.
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Abstract. We consider the bounds for possible values of one concordance mea-
sure of a bivariate copula given the value of some other concordance measure.
Most of the obtained bounds are also attained.

1 Introduction

A concordance measure, or its generalization, a weak concordance measure, is often
a better way to model dependence than Pearson’s correlation coefficient since it is in-
variant with respect to monotone increasing transformations of the random variables.
Because of this invariance, the concordance of a random vector (X,Y ) is uniquely
determined by its copula.

The most commonly used concordance measures are Spearman’s rho, Kendall’s tau,
Gini’s gamma and Blomqvist’s beta. Additionally, Spearman’s footrule is probably the
most used weak concordance measure. They are defined as follows:

Spearman’s rho ρ(C) = 12

∫ 1

0

∫ 1

0

C(x, y)dxdy − 3,

Kendall’s tau τ(C) = 4

∫ 1

0

∫ 1

0

C(x, y)dC(x, y)− 1,

Gini’s gamma γ(C) = 4

∫ 1

0

C(x, x)dx+ 4

∫ 1

0

C(x, 1− x)dx− 2,

Spearman’s footrule ϕ(C) = 6

∫ 1

0

C(x, x)dx− 2,

Blomqvist’s beta β(C) = 4C
(
1
2 ,

1
2

)
− 1.
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The range of every concordance measure is the interval [−1, 1], while the range of
Spearman’s footrule is [− 1

2 , 1].
Given their widespread use in a variety of practical applications, it is natural to

compare different concordance measures in terms of the values that they can attain. In
particular, if a value of one measure is known, we may ask what are the possible values
of the other measures.

The investigation of the above question was started in 1950 by Daniels [1], who
compared Spearman’s rho and Kendall’s tau and gave some estimates for the values
of the two measures. The exact region of all possible pairs of values (τ(C), ρ(C)),
C ∈ C, was determined in 2017 by Schreyer, Paulin, and Trutschnig [7]. The regions
determined by Blomqvist’s beta and the other three concordance measures (Spearman’s
rho, Kendall’s tau, and Gini’s gamma) are given in [6] as an exercise for the reader,
while the region determined by Blomqvist’s beta and Spearman’s footrule is given in
[2].

In the talk we will describe the exact regions determined by Spearman’s footrule,
Gini’s gamma and Kendall’s tau. We will also tightly estimate the exact region deter-
mined by Spearman’s footrule and Spearman’s rho. The exact region determined by
Spearman’s rho and Gini’s gamma remains open.

2 Results

The exact regions determined by Spearman’s footrule, Gini’s gamma and Kendall’s tau
are polygons, more precisely triangular or quadrilateral regions.

Theorem 1 (KB, Mojškerc, [3]). The exact region determined by Spearman’s footrule
and Gini’s gamma of all points {(ϕ(C), γ(C)) ∈ [− 1

2 , 1] × [−1, 1]; C ∈ C} is given
by

4

3
ϕ(C)− 1

3
≤ γ(C) ≤ min

{
4

3
ϕ(C) +

1

6
,
2

3
ϕ(C) +

1

3

}
.

Theorem 2 (KB, Stopar, [5]). The exact region determined by Spearman’s footrule
and Kendall’s tau of all points {(ϕ(C), τ(C)) ∈ [− 1

2 , 1]× [−1, 1]; C ∈ C} is a trian-
gular region given by

4

3
ϕ(C)− 1

3
≤ τ(C) ≤ 2

3
ϕ(C) +

1

3
.

Theorem 3 (KB, Stopar, [5]). The exact region determined by Gini’s gamma and
Kendall’s tau of all points {(γ(C), τ(C)) ∈ [−1, 1]× [−1, 1]; C ∈ C} is given by

max

{
2

3
γ(C)− 1

3
, 2γ(C)− 1

}
≤ τ(C) ≤ min

{
2

3
γ(C) +

1

3
, 2γ(C) + 1

}
.

All the boundary points of these regions are attained by shuffles of min.
The exact region determined by Spearman’s rho and Spearman’s footrule is more

complicated.
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Theorem 4 (KB, Stopar, [4]). The exact region determined by Spearman’s footrule
and Spearman’s rho of all points {(ϕ(C), ρ(C)) ∈ [− 1

2 , 1] × [−1, 1];C ∈ C} is given
by

2

9

√
3(1 + 2ϕ(C))3/2 − 1 ≤ ρ(C) ≤ s(ϕ(C))

where s : [− 1
2 , 1] → [−1, 1] is a concave function satisfying

r(x) ≤ s(x) ≤ 1− 2

3
(1− x)2

and r is the function defined by

r(x) =





2x+ 1
2 −

√
3
9 (1 + 2x)3/2; x ∈ [− 1

2 ,− 1
8 ],

4
3x+ 7

24 ; x ∈ [− 1
8 ,

1
4 ],

2n+ 1

n2 + n
x+

2n2 − 2n+ 1

2(n2 + n)
; x ∈ [1− 3

2n , 1− 3
2(n+1) ] for n = 2, 3, . . . ,

1; x = 1.

The exact region determined by Spearman’s footrule and Spearman’s rho is similar
in shape to the exact region determined by Sperman’s rho and Kendall’s tau, i.e., the
upper bound seems to be a piecewise function with finer and finer pieces. However, the
exact region determined by Sperman’s rho and Kendall’s tau is not convex while in our
case the region is convex.

The obtained regions are shown in Figure 1.
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Fig. 1. The exact regions determined by pairs of various (weak) concordance measures, [3–5].
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3 Concordance similarity measure

We introduce the (κ1, κ2)-similarity measure between (weak) concordance measures
κ1 and κ2 as

κsm(κ1, κ2) = 1− A(κ1, κ2)

(1− κ1(W ))(1− κ2(W ))
,

where A(κ1, κ2) is the area of the exact region determined by κ1 and κ2 and W is
the lower Fréchet-Hoeffding bound, [3]. It describes how closely related two (weak)
concordance measures are.

In Table 1 we give (κ1, κ2)-similarity measures between all pairs of (weak) concor-
dance measures for which the exact region determined by them is known.

κsm ρ τ γ ϕ β

ρ 1 0.7114 0.65?? 0.3750
τ 0.7114 1 0.7500 0.7500 0.3333
γ 0.7500 1 0.8125 0.5000
ϕ 0.65?? 0.7500 0.8125 1 0.5000
β 0.3750 0.3333 0.5000 0.5000 1

Table 1. (κ1, κ2)-similarity measure between pairs of (weak) concordance measures

It turns out that Spearman’s footrule and Gini’s gamma are most closely related. On
the other hand, the value of Blomqvist’s beta gives us little information about the values
of other (weak) concordance measures.

Acknowledgement. The authors acknowledge financial support from the Slovenian
Research Agency (research core funding No. P1-0222).
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1 General aspects

When considering multivariate data from practice, it often happens that data values are
missing. The causes of missing values can be different: defective machines, failed mea-
surements, plants dying, etc. Imputation and various maximum likelihood techniques
are well-established strategies for dealing with missing data. The classical theory can
be found in several textbooks, see [3] for example.

We introduce a new approach and consider parametric estimation of the copula of
dimension d, taking into account the concrete data structure at hand. No missing data
values are replaced. We just use the available data. Moreover, we do not assume spe-
cial probabilistic mechanisms for missing data. The data items with the same pattern of
complete and missing data are combined into a subset. For each of these patterns, the
corresponding marginal copula of non-missing components is introduced. Using these
marginal copulas and the copula itself, an adapted version of the Cramér-von Mises
divergence is constructed. The minimization of the estimated Cramér-von Mises diver-
gence results in the minimum distance estimator for the parameters. As an example, we
fit product copulas (see [1]) to ecological data.

2 Data structure

Let X = (X(1), . . . , X(d))T be a d-dimensional random vector representing the data
without missing values. In the case of a complete observation vector, we denote the
joint distribution function by H and the (continuous) marginal distribution functions of
X(j) by F1, . . . , Fd. According to Sklar’s theorem, we have

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for xi ∈ R,

where C : [0, 1]d → [0, 1] is the d-dimensional copula. The detailed theory of copulas
can be found in the popular monograph by [4].
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Next we describe the structure of the data, including missing values. The sample
breaks down into m subsets of data items with the same pattern of missing data. The
number m does not depend on n. Every pattern is modeled as a binary vector b =
(b1, . . . , bd)

T ∈ {0, 1}d which has at least two components equal to 1:

bj =

{
1 if the j-th component is observed,
0 if the j-th component is not observed.

Here b(1), . . . ,b(m) ∈ {0, 1}d are the pattern vectors of the data subsets. We give an ex-
ample: the pattern b(k) = (0, 1, 0, 1)T of data subset k means that the data items of this
subset have a non-missing second component and a non-missing fourth one, whereas
components 1 and 3 are missing. We assume that for all data subsets the distribution
function of the data items coincides with the corresponding multivariate marginal dis-
tribution functions resulting fromH . The complete data items have distribution function
H . The data structure and the subset distribution functions are given in Table 1.

Table 1: Structure of the data including subset distribution functions (x̃µ =
(xj , j ∈ Jµ))

subset data pattern distribution fcn.
1 Y11, . . . , Y1n1 ∈ Rd b(1) = 1, H

complete data J1 = {1, . . . , d}
2 Y21, . . . , Y2n2 ∈ Rd2 b(2), x̃2 7→ C2(Fj(xj), j ∈ J2)

J2 = {l : b(2)l = 1}
. . .
m Ym1, . . . , Ymnm

∈ Rdm b(m), x̃m 7→ Cm(Fj(xj), j ∈ Jm)

Jm = {l : b(m)
l = 1}

The copulas of the subsets are determined by

Cµ(uj , j ∈ Jµ) = C(u⊙ b(µ) + 1−b(µ)) (µ = 1 . . .m),

where u = (u1, . . . , ud)
T , 1 = (1, . . . , 1)T ∈ Rd, a⊙b = diag(a) b is the Hadamard

product of vectors a,b ∈ Rd.

3 Divergence and Estimation

Let F = {C(. | θ)}θ∈Θ be a parametric family of copulas. Θ ⊂ Rq is the parameter
space. Due to the high complexity of the multivariate data, it cannot be expected that
a copula model class can be found to which the copula of the data belongs. Therefore,
model fitting aims at the best possible approximation of the underlying copula C by the
family F . For this purpose, we consider the Cramér-von-Mises divergence as a measure
for the discrepancy between the copula C and F . Define the model copula for subset µ:

Cµ(uj , j ∈ Jµ | θ) = C(u⊙ b(µ) + 1−b(µ) | θ)
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for u ∈ [0, 1]d, θ ∈ Θ,µ = 1 . . .m. We introduce the population version of the diver-
gence as

D(C, C(. | θ)) =
m∑

µ=1

∫

[0,1]dµ
(Cµ(u)− Cµ(u | θ))2 wµ(u) dCµ(u),

where wµ : [0, 1]dµ → [0,+∞) (µ ∈ {1 . . .m}) is the Lipschitz-continuous weight
function for the data subset µ. This quantity D(C, C(. | θ)) describes the deviation of
the sample copula from the model copula.

Let F̂nj be the empirical marginal distribution function of the j-th component using
all available non-missing data. Define F̌ ∗

nµ(yj , j ∈ Jµ) = (F̂nj(yj))j∈Jµ . Further Ĥnν

denotes the empirical distribution function of the subset ν:

Ĥnν(y) =
1

n̄ν

∑

µ:1≤µ≤m, b(µ)
j ≥b(ν)

j ∀j

nµ∑

i=1

1 {ψνµ(Yµi) ≤ y}

for y ∈ Rd, where n̄ν is the number of data items for subsets µ with b(µ)j ≥ b
(ν)
j ∀j.

Here function ψνµ selects the components of subset µ which are also present in subset
ν: ψνµ(yj , j ∈ Jµ) = (yj , j ∈ Jν). Next we consider the following estimator for
D(C, C(. | θ)).

D̂n(θ) =
m∑

µ=1

1

nµ

nµ∑

i=1

(
Ĥnµ(Yµi)− Cµ(F̌ ∗

nµ(Yµi) | θ)
)2

wµ(F̌
∗
nµ(Yµi)).

In our approach, we deal with approximate minimum distance estimators θ̂ defined
as approximate minimizers of D̂n(.). Compared to the maximum likelihood method,
the Cramér-von Mises statistic has the advantage that no copula densities have to be
calculated and the partial statistics of the patterns are comparable.

4 Results

Let limn→∞
nµ(n)
n = γµ be fulfilled for positive constants γµ, µ = 1 . . .m. Suppose

that the Hessian of θ 7→ D(C, C(. | θ)) is positive definite at θ = θ0. Under these
assumptions and some additional assumptions on partial derivatives of (u, θ) 7→ C(u |
θ) and wµ, we have proved consistency and the asymptotic normality of the estimator
θ̂. These results allow us to write down formulas for confidence intervals. The theorems
generalise former results in the case of complete data (m = 1), see Liebscher (2009).
Moreover, a result on asymptotic normality of D̂n(θ̂) has been derived.

62



References

1. Liebscher, E. Construction of asymmetric multivariate copulas. J. Multivariate Anal. 99
(2008), 2234-2250.

2. Liebscher, E. Semiparametric Estimation of the Parameters of Multivariate Copulas. Kyber-
netika 6 (2009), 972–991.

3. Little, R.J.A. Rubin, D.B. “Statistical Analysis with Missing Data”. third Edition. J. Wi-
ley&Sons 2019.

4. Nelsen, R.B. An Introduction to Copulas. Lecture Notes in Statistics 139. second edition,
Springer 2006.

63



Uninorms, n-uninorms and pseudo-uninorms
with continuous underlying functions

Andrea Mesiarová-Zemánková12
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The introduction of statistical metric spaces (probabilistic metric spaces as they
are called today) by Menger in [3] and exploration of related concepts has initiated a
deep study of triangular norms (see Schweizer and Sklar [4]) and related operations on
the unit interval. In particular, commutative and associative binary functions on the unit
interval were considered and applied in many theoretical and applied fields, for example
in probability, statistic, many-valued logic, decision theory, artificial intelligence, neural
networks, image processing, data fusion, however, also in economics, social sciences,
and many others.

Generalization of the position of the neutral element or the annihilator of a t-norm
yielded the definition of uninorms and nullnorms [1, 5]. Since these operations behave
differently below and above the neutral element (annihilator) it was soon observed that
they can be used in bipolar aggregation, or bipolar many-valued logic. In fact, uninorms
and nullnorms can be taken as bipolar t-norms and t-conorms. Observe that similarly
as in the case of t-norms and t-conorms we can construct uninorms using continuous
additive generators which yields the class of representable uninorms. From an algebraic
point of view, proper uninorms are the only binary operations ∗ on the unit interval
which make the structures ([0, 1],max, ∗) and ([0, 1],min, ∗) distributive commutative
semi-rings [2].

The theoretical study of structural properties of uninorms has attracted many re-
searchers. Nevertheless, similarly as in the case of t-norms, the class of all uninorms is
very complex and therefore their characterization results always rely on some additional
properties. In our case this additional property will be the continuity of the underlying
functions.

First, we will focus on the characterization of uninorms with continuous underlying
functions. We will discuss the ordinal sum construction for uninorms, their character-
izing set-valued functions and decomposition of uninorms with continuous underlying
functions into representable and trivial semigroups, and the cardinality of the related
ordinal sum. Then we will focus on n-uninorms which generalize uninorms and null-
norms and are related to reference levels of interest for scores. We will again discuss
characterizing set-valued functions of n-uninorms and decomposition of n-uninorms
with continuous underlying functions into z-ordinal sum of trivial and representable
semigroups. Finally, we will focus on further generalizations: pseudo-uninorms and
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pseudo-n-uninorms with continuous underlying functions, where the axiom of commu-
tativity is relaxed. We will identify all pairs of points of non-commutativity and give
similar characterizations as in the case of their commutative counterparts.

Acknowledgement. This work was supported by grant VEGA 1/0036/23.
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Abstract. Survival analysis, also known as time-to-event analysis, is a branch
of statistics which studies the expected duration of time until one event happens:
however, it is well known that the standard lack-of-memory property is generally
not satisfied by the distributions used in this kind of analysis. For this reason,
in this talk, we propose an extension of the standard strong and weak lack-of-
memory properties: after investigating the main statistical and probabilistical as-
pects of these distributions, we present applications to insurance and risk man-
agement.

1 Pseudo Lack-of-Memory Properties

Let us consider, in place of the standard product, a strict Archimedean t-norm given by

x⊗h y = h(h−1(x) h−1(y)), x, y ∈ [0, 1]

where h is a strictly increasing bijection of [0, 1], see, among the others, B. Schweizer
and A. Sklar (1961). In this setup, we introduce the function

exph(x) = h(ex)

which represents a generalization of the exponential function since it solves the func-
tional equation

f(x+ y) = f(x)⊗h f(y).

Now, we say that the distribution of a non-negative random vector (X1, X2) with joint
survival function F̄ satisfies the pseudo lack-of-memory in its strong form if

F̄ (t1 + s1, t2 + s2) = F̄ (t1, t2)⊗h F̄ (s1, s2) (1)

and in its weak version if

F̄ (s1 + t, s2 + t) = F̄ (s1, s2)⊗h F̄ (t, t), (2)

with t1, s1, t2, s2, t ≥ 0. The standard lack-of-memory property, analyzed in Marshall
and Olkin (1967), is recovered when h = id.
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We prove that the solution of (1) is given by

F̄ (x, y) = exph(−λ1x− λ2y), λ1, λ2 > 0, (3)

which is a bivariate survival function when h is convex and, in this case, the resulting
bivariate distribution is absolutely continuous with Archimedean dependence.
As for (2), we find quite general sufficient conditions on h, λ and on the marginal
distributions F̄1,F̄2 of the components X1 and X2 such that its solution, given by,

F̄X1,X2(x, y) =

{
exph(−λy)⊗h F̄1(x− y), x ≥ y

exph(−λx)⊗h F̄2(y − x), x < y
, (4)

is a bivariate survival function with P(X1 = X2) > 0.
The copula and the dependence structure are studied both in the most general form

and for specific choices of the marginals and of h. Moreover, a comparison between sur-
vival probabilities obtained with the standard lack-of-memory property and the pseudo
one is made for different super-additive and sub-additive generators both in the strong
as well as in the weak cases.

2 Distributions of Residual Lifetimes

We also show that the survival distribution of the excess-of-loss random vector (X1 −
t1, X2 − t2) in the strong lack of memory property case is again of type (3) with

ht1,t2(x) =
h(xe−λ1t1−λ2t2)
h(e−λ1t1−λ2t2)

in place of h. Similarly, the survival distribution of the

excess-of-loss random vector (X1 − t,X2 − t) in the weak case is of type (4) with

ht(x) =
h(xe−λt)
h(e−λt)

in place of h. Moreover, we analyze the evolution of their depen-
dence structure as a function of the elapsed time.
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Decision making under risk involves a ranking of distributions, which is typically
based on a method for assigning a real number to a distribution using a risk measure, a
premium principle or a context of expected utility. As it is typically difficult to assess
a concrete risk measure or utility function it is a well established idea to use stochastic
dominance rules in form of stochastic orders to compare distributions. However, it is
often equally difficult to completely specify a distribution, in particular in a multivariate
setting. Therefore it is an interesting question whether one can derive unambiguous
decisions under partial knowledge of the distributions.

In this talk we address this question under the condition that we only know the mean
and variance of the involved distributions or that we know the marginal distributions but
not the copulas in a multivariate context. Under such assumptions we derive sufficient
conditions for concepts of almost stochastic dominance that are based on restrictions
on marginal utilities.

The talk is based on joint work with Marco Scarsini, Ilia Tsetlin, and Robert L. Winkler.
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1 Università di Genova, Italy marta.nairuscone@unige.it
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Abstract. In this work an effective procedure to avoid degeneracies in multidi-
mensional unfolding for preference rank data is proposed. We adopt the strategy
of augmenting the data matrix, trying to build a complete dissimilarity matrix,
by using copula-based association measures among rankings (individuals), and
between rankings and objects (namely, a rank-order representation of the ob-
jects through tied rankings). Our proposal is able to both recover the order of
the preferences and reproduce the position of both rankings and objects in a ge-
ometrical space. Application on real datasets show that our procedure returns
non-degenerate unfolding solutions.

1 Copula

Copula are functions that join multivariate distribution functions to their marginal dis-
tribution functions [8]. They describe the dependence structure existing across pairwise
marginal random variables. In this way we can consider bivariate distributions with
dependency structures different from the linear one that characterizes the multivariate
normal distribution.

Each copula is related to the most important measures of dependency: the Pearson
correlation coefficient and the Spearman ρ correlation coefficient. The Spearman’s ρ
coefficient (see [8] pp. 169-170 for the definition of the ρ correlation coefficient for
continuous random variables) measures the association between two variables and can
be expressed as a function of the copula. More precisely, if two random variables are
continuous and have copula C with parameter θ, then the Spearman ρ correlation is

ρs(C) = 12

∫

I2
Cθ(u1, u2)du1du2 − 3. (1)

For continuous random variables it is invariant with respect to the two marginal distri-
butions, i.e. it can be expressed as a function of its copula. This property is also known
as ’scale invariance’. Note that not all measures of association satisfy this property, e.g.
Pearson’s linear correlation coefficient [5].

2 Unfolding as a special case of multidimensional scaling on
copula-based association between rankings

Unfolding, originally formulated by Coombs [3] for the analysis of the two-mode pref-
erence choice data, is a technique that allows the estimation of two configurations usu-
ally representing the coordinates for a set of m individuals and a set of n objects on
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the basis of proximity values between them, typically expressing preferences of each
individual over each object.

Therefore unfolding applies multidimensional scaling [4] to an off-diagonal n×m
matrix, usually representing the scores (or the rank) assigned to a set of m items by n
individuals or judges [1]. Using of either scores or rankings traditionally discriminates
between metric and non-metric unfolding.

The goal is to obtain two configuration of points representing the position of the
judges (X) and the items (Y ) in a reduced geometrical space. Each point representing
the individuals is considered as an ideal point so that its distances to the object points
correspond to the preference scores [3].

Unfolding can be seen as a special case of multidimensional scaling because the off-
diagonal matrix is considered as a block of an ideal distance matrix in which both the
within judges and the within items dissimilarities are missing. The presence of blocks
of missing data causes the phenomenon of the so-called degenerate solutions, i.e., so-
lutions that return excellent badness of fit measures but not graphically interpretable at
all.
To tackle the problem of degenerate solutions, several proposals have been presented in
the literature [1]. By following the approach introduced by [9], we adopt the strategy
of augmenting the data matrix, trying to build a complete dissimilarity matrix, and then
applying any MDS algorithms.
Let Γ be the originalm×n original preference data matrix. In order to augment the data
matrix we add to this n additional rows, one for each of the n objects, that correspond
to tied rankings representing the jth item, j = 1, . . . , n. As a result, a new N × n Γ ∗

matrix is obtained, with N = n +m. Then we use copula-based association measures
among rankings (the individuals), and between rankings and objects (namely, a rank-
order representation of the objects through tied rankings), obtaining in fact a N × N
dissimilarity matrix to be analyzed with any MDS algorithm.

3 An application on a real data set

Fig. 1 shows a comparison between the Unfolding solutions of PRESCAL [2], which
actually is the most used algorithm for Unfolding analysis, and our proposal by using
the Spearman ρ correlation coefficient via copula on the breakfast data set. Green and
Rao [6] collected 42 rankings of 15 objects by asking 21 students and their wives to
order 15 breakfast items in terms of their preference.

PREFSCAL works by setting two penalties on a modified loss function in such a
way to guarantee non degenerate solutions. A possible drawback of this algorithm is
that it is not always clear how set the penalty terms. In fact the user must make attempts
in order to find the right solution.
The figure emphasizes that the solution of our procedure is not degenerate and it is
comparable with the one of PREFSCAL, especially with its unconditional output. It
is normal that our output looks like the unconditional PREFSCAL solution because
we propose a solution that, depending on how we defined the dissimilarity matrix, is
unconditional as well.
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Fig. 1: Unfolding solutions for breakfast data. Breakfast items are labeled as follow:
Toast pop-up; Buttered toast; English muffin and margarine; Jelly donut; Cinnamon
toast; Blueberry muffin and margarine; Hard rolls and butter; Toast and marmalade;
Buttered toast and jelly; Toast and margarine; Cinnamon bun; Danish pastry; Glazed
donut; Coffee cake; Corn muffin and butter.

4 Concluding remarks

We propose an unfolding algorithm based on the augmentation of the data matrix and
a copula-based association between rankings. The shown result highlights that our pro-
posal produces non-degenerate unfolding solutions that are comparable with the ones
obtained with PREFSCAL. With respect to PREFSCAL, any parameter must be a priori
chosen by the user. On the other hand PREFSCAL always guarantees non degenerate
solutions. A robust simulation study will be discussed.
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Relations between copula-based dependence and ageing.
A new approach based on partial orderings for copulas
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Abstract. In the case where dependence concept is based on notions of de-
pendence orderings for copulas, we propose a new approach to investigate the
inter-relations among dependence, univariate and bivariate ageing concepts for
exchangeable random variables. Such an approach allows to extend some pre-
viously known inter-relations to weak dependence concepts and to propose two
indeces of univariate a bivariate ageing.

The inter-relations among dependence, univariate and bivariate ageing concepts
have been analyzed in the past literature (see, e.g., Averous and Dortet-Bernadet (2004)
[1], Bassan and Spizzichino (2005) [3], and more recently Nappo and Spizzichino
(2020) [4]). Such studies essentially hint on copula-based concepts of stochastic de-
pendence.

As far as the univariate ageing of a random lifetime X is concerned, the main role
is played by dependence properties of the Archimeadean function generated by the
marginal survival function G of X , i.e.,

SG(u, v) := G
(
G

−1
(u) +G

−1
(v)

)
. (1)

The function SG is not always a copula, actually it is a semicopula when G is not con-
vex. Therefore the dependence concepts of interest need to be extended to Archimedean
semicopulas.

In the bivariate exchangeable case the main role is played by the dependence prop-
erties of the ageing functions B(u, v) (see (4) for the definition of B). The ageing
function B is a transformation of the survival copula Ĉ(u, v) and had been introduced
and applied in Bassan and Spizzichino (2001) [2] (see also [3] and [4]). We recall that
also the ageing functions B are not always copulas, indeed they generally belong to
the class of semicopulas. Then this approach necessarily requires the extension of the
dependence concept to such a class, which is actually larger than the subclass of the
Archimedean semicopulas.

For the case where the dependence concept is based on notions of dependence or-
derings we propose a different approach. Such an approach aims to extend the analysis
of the inter-relations among dependence, univariate and bivariate ageing concepts also
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to weak notions of dependence A further advantage of our approach dwells in the pos-
sibility of replacing dependence properties (of the ageing function B) by a comparison
between the survival copula of the model and SG. In such a framework the dependence
concepts and the related dependence orderings only need to be extended to the class of
the Archimedean semicopulas.

Furthermore the extension to weak dependence allows us to propose some theoreti-
cal indeces of ageing, somehow inspired to the well known Spearman correlation index.
Though this idea seems rather natural, to our knowledge no index of ageing has ever
been defined, neither for univariate nor for bivariate ageing.

More in details a brief description of our approach goes as follows.

We start by recalling one of the simplest property of Positive / Negative Univariate
Ageing (1-AG+ /1-AG−), i.e., the New Better than Used / New Worse than Used
(NBU/NWU), namely a positive random variable X with survival function G has the
NBU 1-AG+ (NWU 1-AG− ) property when

P(X > x) ≥
(≤)

P(X > x+ y|X > y), ∀x, y > 0 ⇔ G(x)G(y) ≥
(≤)

G(x+ y).

Setting u := G(x) and v := G(y), the NBU 1-AG+ property becomes

SG(u, v) := G
(
G

−1
(u) +G

−1
(v)

)
≤ uv,

or equivalently
SG(u, v) ≤ Π(u, v) ⇔ SG ⪯PQD Π (2)

where Π(u, v) = uv is the independent copula, and ⪰PQD is the PQD stochastic or-
der. The condition at the r.h.s. of (2) can be seen as Negaitive Quadrant Dependence
(NQD) of the Archimedean semicopula SG.

As far as the bivariate ageing property we restrict to the exchangeable case, i.e., to a
couple of random variables (X,Y ) with symmetric joint survival function F (x, y), with
common marginal survival function G, and with symmetric survival copula Ĉ(u, v).
We recall the NBU positive bivariate ageing property (2-AG+) related to the previous
univariate ageing property as defined in [2]:

B(u, v) ≥ Π(u, v) ⇔ B ⪰PQD Π (3)

where, setting γ(u) = exp{−G−1
(u)} and γ−1(z) = G(− log(z)),

B(u, v) := exp{−G−1 (
F (− log u,− log v)

)
} = γ

(
Ĉ(γ−1(u), γ−1(v))

)
. (4)

In this case it is easily seen that (3) is equivalent to Ĉ ⪰PQD SG.

The idea is to extend this procedure to other dependence concepts. We will restrict
to weak / strong dependence concepts defined as a comparison between the copula
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and the independent copula Π by means of a weak / strong Partial Dependence Order
⪰(w/s)PDO:

C is
(w/s)Dep+
(w/s)Dep− ⇔ C ⪰(w/s)PDO Π

C ⪯(w/s)PDO Π

As shown in the above cited papers ([1, 3]) many univariate ageing concepts (start-
ing from the NBU) can be expressed as

SG is
1-AG+
1-AG− ⇔ SG is

Dep−
Dep+

Then, in our framework, the related concepts of univariate e ageing are defined as a
comparison of the Archimedean semicopula SG with the Independent copula Π:

G is
1-AG+
1-AG− ⇔ SG(u, v) ⪯(w/s)PDO Π

SG(u, v) ⪰(w/s)PDO Π
⇔ SG(u, v) is

(w/s)Dep−
(w/s)Dep+

Similarly (see [2, 3]) for exchangeable models (X,Y ), with survival copula Ĉ and com-
mon marginal distributions G, many bivariate ageing concepts can be expressed as

(Ĉ, G) is
2-AG+
2-AG− ⇔ B is

Dep+
Dep−

In many examples (starting from the PQD dependence) the above condition is equiv-
alent to a comparison of the Archimedean semicopula SG with the survival copula Ĉ.
Then in our framework the bivariate ageing property is

(Ĉ, G) is
2-AG+
2-AG− ⇔ SG(u, v) ⪯(w/s)PDO Ĉ

SG(u, v) ⪰(w/s)PDO Ĉ

Note that, when SG is a true copula, the pair (SG, G) characterizes the Schur constant
model with joint survival fucntion G(x+y). Such a model may be seen as representing
the “noageing model” for two exchangeable random variables with common marginal
survival function G. Similarly, when SG is not a true copula, the pair (SG, G) may be
interpreted as a “noageing (pseudo) model”.

As already recalled, in [3] (see also [4]) some inter-relations among (1-AG±, 2-
AG±, Dep±) have been exploited by using the ageing function: for example

1. Dep+ 1-AG+ ⇒ 2-AG+
2. 2-AG+ 1-AG− ⇒ Dep+
3. 2-AG− Dep+ ⇒ 1-AG−

In our framework the bivariate the above inter-relations emerge in a direct and natural
way, and their proof becomes elementary.

We end by explaining briefly the proposed indeces of ageing related to Spearman
correlation index ρ. As it is well known ρ can be expressed in terms either of the joint
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copula C or the joint survival copula Ĉ. Furthermore ρ = ρC = ρĈ can be seen as a
measure of average quadrant dependence. Indeed

ρĈ = 12

∫ 1

0

∫ 1

0

Ĉ(u, v) du dv − 3 = 12

∫ 1

0

∫ 1

0

(
Ĉ(u, v)−Π(u, v)

)
du dv

= E
(
G(X0)G(Y0)

)
− E

(
G(X0)

)
E
(
G(Y0)

)

where X0 and Y0 are independent random variables with common survival function G.
Furthermore we stress that the average quadrant dependence can be seen as a weak de-
pendence concept (see Navarro and Pellerey (2021) [5] for a complete analysis of weak
notion of weak dependence concepts), which in its turn is associated to the following
weak Partial Order

C1(u, v) ⪯ρ C2(u, v) ⇔
∫ 1

0

∫ 1

0

C1(u, v) du dv ≤
∫ 1

0

∫ 1

0

C2(u, v) du dv.

and therefore ρ ≥ 0 is equivalent to Π ⪯ρ Ĉ. Given two exchangeable random vari-
ables X and Y with joint survival function F = Ĉ

(
G(x), G(y)

)
, we propose the fol-

lowing indeces νρG and sρF of univariate and bivariate ageing:

νρG := −ρ
SG

= 12

∫ 1

0

∫ 1

0

(
Π(u, v)− SG(u, v)

)
du dv

= E
(
G(X0)

)
E
(
G(Y0)

)
− E

(
G(X0 + Y0)

)

sρF := ρ
Ĉ
+ νρG = 12

∫ 1

0

∫ 1

0

(
Ĉ(u, v)− SG(u, v)

)
du dv

= E
(
Ĉ(G(X0), G(Y0))

)
− E

(
G(X0)

)
E
(
G(Y0)

)
.

Then positive univariate ageing is equivalent to νρG ≥ 0 and positive bivariate ageing is
equivalent to sρF ≥ 0.
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emerging from the Dedekind-MacNeille completion

of multivariate copulas
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Abstract. There is a growing interest in the studies of subclasses of multivariate
quasi-copulas [1, 3, 2]. The question about the Dedekind-MacNeille completion
of multivariate copulas has recently been solved [14, 15]. Its solution has brought
into light some subclasses of interest in imprecise probability. This presentation
should encourage open discussion among the participants of the Linz Seminar
2023 on problems in d-variate quasi-copulas for d ⩾ 3.

1 Three motivations

We start by some motivation for the method presented in this contribution.
(1) In 2005 B. Nelsen and M. Úbeda-Flores showed in a historical paper [9] that

the Dedekind-MacNeille completion of the poset of bivariate copulas is just the class
of bivariate quasi-copulas. The class of copulas is a poset (partially ordered set) for
pointwise order. This raises the question, how to get the abstract Dedekind-MacNeille
completion, of the poset of copulas in the multivariate setting. In [5] the two authors
together and Fernández-Sánchez demonstrate that for dimension d ⩾ 3 a simple exten-
sion of this result to d-variate (quasi-)copulas does not work any more.

To every distribution functionH there exists a copulaC such thatH(x1, . . . , xn) =
C(F1(x1), . . . , Fn(xn)), where Fi are the marginal distributions of H (the Sklar’s the-
orem). The definitions of copula and quasi-copula will be given in Section 2. The re-
spective families will be denoted by Cd and Qd.

(2) Another motivation, and as a matter of fact chronologically our first one, arises
from the imprecise probability. Applications of copulas in the imprecise settings are a
relatively new area. In 2015 I. Montes et al. published in [8] a possible approach to
bivariate imprecise copulas. If C is a nonempty set of copulas, then C = inf{C}C∈C
and C = sup{C}C∈C are quasi-copulas and the ordered interval (C,C), i.e., the set of
all intermediate quasi-copulas, may be called an imprecise copula. Following the ideas
of p-boxes it would be nice if the order ideal defined by these quasi-copulas contained
a “true” copula. However, we show in [10] that there exists an imprecise copula (A,B)
in this sense such that there is no copula C with A ⩽ C ⩽ B.

(3) A recent motivation emerged from the Linz-Ljubljana project. Part of it consid-
ers applications of semicopulas (capacities) in imprecise models [6]. Such a model is
typically required to satisfy some reasonable consistency conditions, such as avoidance
of sure loss and coherence. The method we now present extends to this situation as well.
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2 The method

Our approach upgrades the ideas of M. Dibala et al. [4], where possibly negative vol-
umes of quasi-copulas are studied as defects from being copulas. The attained technique
is called Algebraic Obstacles in the Geometry of Negative Volumes (ALGEN for short).
This method has been developed to solve some questions related to imprecise probabil-
ities.

Let us start by the promised definition of a quasi-copula. Let I = [0, 1]. For points
x,y ∈ Rd we write x ⩽ y if xi ⩽ yi for every i ∈ [d] where [d] = {1, . . . , d}. If
x ⩽ y, a d-box (rectangle) is the set [x,y] = [x1, y1] × · · · × [xd, yd]. Denote also by
ver [x,y] = {x1, y1} × · · · × {xd, yd} the set of vertices of this rectangle. For a real
valued function A and R = [x,y] we define the A-volume (or simply the volume if A is
understood) of the rectangle R by VA(R) =

∑
v∈verR signR(v)A(v), where signR(v)

equals 1 if vj = xj for an even number of indices, and −1 otherwise. A d-variate
quasi-copula is a function A : Id → I that satisfies the following three conditions:

(i) for every j ∈ [d] we have A(1, . . . , 1, uj , 1, . . . , 1) = uj ;
(ii) A is increasing in each of its variables;

(iii) A satisfies the 1-Lipschitz condition in each of its variables.

It is well-known and not hard to see that A then satisfies also

(iv) for every j ∈ [d] and for every point (u1, . . . , uj−1, uj+1, . . . , ud) ∈ Id−1 we
have A(u1, . . . , uj−1, 0, uj+1, . . . , ud) = 0.

Function A is a copula (equivalently) if it satisfies Conditions (i), (iv), and

(ii’) for every rectangle R ⊆ Id its A-volume is positive.

For any point x ∈ Id we define its multiplicity with respect toR bymR(x) = signR(x),
if x ∈ verR, and 0 otherwise.

Now, we denote by R the family of all objects of the form R =
⊔k
i=1Ri, where

{Ri}ki=1 is an arbitrary finite family of d-boxes with vertices in Id, and
⊔

denotes the
disjoint union. Let us extend the definition of multiplicity to any R ∈ R by mR(x) =∑k
i=1mRi

(x). Let A and B be a pair of real valued functions on Id and let

L(A,B)(R) =
∑

y∈In

mR(y)>0

B(y)mR(y) +
∑

y∈In

mR(y)<0

A(y)mR(y)

P
(A,B)
M (x) = inf

R∈R
mR(x)>0

L(A,B)(R)

|mR(x)|
and P

(A,B)
O (x) = inf

R∈R
mR(x)<0

L(A,B)(R)

|mR(x)|
.

Denote C(A,B) = {C ∈ Cd | A ⩽ C ⩽ B}, for d-variate quasi-copulas A ⩽ B.

Theorem 1 (The first law of ALGEN method). Let A ⩽ B be quasi-copulas, then
C(A,B) is nonempty if and only if L(A,B)(R) ⩾ 0 for all R ∈ R.

Theorem 2 (The second law of ALGEN method). Let A ⩽ B be quasi-copulas with
C(A,B) ̸= ∅. Then
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(a) B = sup C(A,B) if and only if B(x)−A(x) ⩽ P
(A,B)
O (x) for all x ∈ Id.

(b) A = inf C(A,B) if and only if B(x)−A(x) ⩽ P
(A,B)
M (x) for all x ∈ Id.

Our first law relates to “avoiding sure loss” principle and the second one to “co-
herence” principle. We can show that there are “good-looking” quasi-copulas A ⩽ B
with empty C(A,B), i.e., not avoiding sure loss (cf. [10]). The roles of the ALGEN test
functions L,PM , and PO are self-explanatory from these laws.

3 The Dedekind-MacNeille completion

The Dedekind-MacNeille completion of a poset, is the “smallest possible” complete
lattice containing this poset. Due to applications our solution should not be too abstract
– it should sit in the poset of, say, d-variate quasi-copulas. Let us give here a shortcut to
our solution. Denote by Cd, respectively Qd, the d-variate poset of copulas, respectively
quasi-copulas. We first present the upper Dedekind-MacNeille completion Cd of copulas
within the set of quasi-copulas.

Theorem 3 (The upper Dedekind-MacNeille completion). The upper completion of

Cd is given by Cd =
{
Q ∈ Qd | Q = Md − P

(max{Wd+P
(Wd,Q)

O ,Wd},Md)
M

}
with meet

and join operations given by

∧
S =Md − P

(max{Wd+P
(Wd,

∧
S)

O ,Wd},Md)
M and

∨
S =Md − P

(
∨
S,Md)

M .

The lower completion is expressed slightly differently than the upper one.

Theorem 4 (The lower Dedekind-MacNeille completion). The lower completion of

Cd is given by Cd =
{
Q ∈ Qd | Q = max{Wd +P

(Wd,Md−P (Q,Md)

M )
O ,Wd}

}
with meet

and join operations given by

∧
S = max{Wd+P

(Wd,
∧
S)

O ,Wd} and
∨
S = max{Wd+P

(Wd,Md−P (
∨
S,Md)

M )
O ,Wd}.

Our completions are “small”, Cd, say, is not even convex. There are other comple-
tions, all lattice isomorphic to each other but made of some other quasi-copulas.

4 Is the class of d-variate quasi-copulas too big?

Our completions are small subclasses of d-variate quasi-copulas. So, is there a “general”
well-defined smaller subclass that would serve our purposes? This brings us to the pretty
unexplored field of d-variate quasi-copulas for d ⩾ 3. A recent “Hitchhiker’s” problem
list was given in [2]. Problem 6, say, is our Motivation (2) of Section 1. Our negative
answer was given in [10] as explained in Section 2. Problem 2 of [2] (or at least an
important part of it) was solved as a part of Linz-Ljubljana project and published in
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[7]. In our oral presentation we intend to explain how this solution can be used in the
proof of the following theorem, which answers in the negative the question above. We
will also explain some other relations among the notions presented to encourage open
discussion among the participants of the Linz Seminar 2023

Theorem 5 (cf. [15]). Every d-variate quasi-copula can be obtained as a pointwise
supremum of a set of pointwise infima of sets of d-variate copulas. It can also be ob-
tained as a pointwise infimum of a set of pointwise suprema of sets of d-variate copulas.

Acknowledgement. The author is grateful to his frequent collaborator Nik Stopar, who
contributed to results presented here.
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1 Introduction

It might be well known to the audience of this years’s Linz seminar that the three basic
copulasW (x, y) = max{x+y−1, 0},Π(x, y) = x ·y, andM(x, y) = min{x, y} are,
respectively, characteristic for the counter-monotonicity, independence, and comono-
tonicity of a pair of two continuous random variables on the same probability space.
Moreover, W and M serve as the lower resp. upper bound of the set of all bivariate
copulas C2. It might also be known that the approach to “perturb” copulas may be seen
as an attempt to modify an underlying copula in order to obtain different, but some-
how similar ones. More precisely, a continuous function f : [0, 1]2 → R (usually called
the perturbation factor) is added to a given copula D, leading to the natural question
whether or not or under which conditions D + f as a perturbation of D is again a
copula (see, e.g., [1, 3, 17, 19]).

A most prominent example of a perturbation of Π is the family of Eyraud-Farlie-
Gumbel-Morgenstern (or EFGM) copulas (see also [16, 15, 8, 5]) given by
EFGMθ : [0, 1]

2 → [0, 1],

EFGMθ(x, y) = xy + θxy(1− x)(1− y), (1)

where a parameterized family of perturbation factors is added to Π (for more details
about EFGM copulas and for other families of copulas which can be considered as
perturbations see e.g. [2, 4, 6, 11, 12, 14, 16, 18]). EFGMθ is a copula if and only if
θ ∈ [−1, 1] (see, e.g., [16, Example 3.12]).

It has been Hürlimann [9, Theorem 3.1] who extended the family of EFGM copulas
by allowing the parameter θ to take any value in [−∞,∞] together with a truncation
by the Fréchet-Hoeffding bounds M resp. W and thus obtained a comprehensive para-
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metric family of copulas Hθ : [0, 1]2 → [0, 1], being defined by

Hθ =





W if θ = −∞,

Π(θ) ∨W if θ ∈ ]−∞, 0[ ,

Π(θ) ∧M if θ ∈ [0,∞[ ,

M if θ = ∞.

(2)

2 Transformations and truncation of copulas

If C ∈ C2 is an arbitrary copula, then also the x-flipping Cxflip, the y-flipping Cyflip

of C, and the survival copula Csurv of C, given by

Cxflip(x, y) = y − C(1− x, y),

Cyflip(x, y) = x− C(x, 1− y),

Csurv(x, y) = x+ y − 1 + C(1− x, 1− y),

are copulas. Moreover they are closely related to some symmetries of the random vector
(X,Y ) associated to the copula CX,Y by means of

(CX,Y )
xflip = C−X,Y , (CX,Y )

yflip = CX,−Y , (CX,Y )
surv = C−X,−Y

(compare also [7, 10]). Since for Π all these symmetries coincide, i.e., Π = Πxflip =
Πyflip = Πsurv, we may formulate the following equivalent expressions for EFGM
copulas

EFGMθ(x, y) = Π(x, y) + θΠ(x, y)(1− x)(1− y)

= Π(x, y) + θΠ(x, y) ·Πsurv(1− x, 1− y)

= Π(x, y) + θΠxflip(1− x, y) ·Πyflip(x, 1− y).

Based on these observations we introduce the following two types of perturbations
of a copula:

Definition 1. Let C : [0, 1]2 → [0, 1] be a bivariate copula and θ ∈ R. Then the (θ)-
transform C(θ) : [0, 1]

2 → R of C and the [θ]-transform C[θ] : [0, 1]
2 → R of C are

defined by, respectively,

C(θ)(x, y) = C(x, y) + θC(x, y) · Csurv(1− x, 1− y)

= C(x, y) + θC(x, y)(C(x, y)− x− y + 1), (3)

C[θ](x, y) = C(x, y) + θCxflip(1− x, y) · Cyflip(x, 1− y)

= C(x, y) + θ(x− C(x, y))(y − C(x, y)). (4)

As is obvious from above, we obtain Π(θ) = Π[θ] for the independence copula Π ,
even more, Π is the only copula for which the two transformations coincide for all
θ ∈ R; for any other copula C and parameter θ ̸= 0, C(θ) is different from C[θ].
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Note that for any copula C and any (x̂, ŷ) ∈ [0, 1]2 with C(x̂, ŷ) /∈ {0, x̂ + ŷ −
1}, C(θ)(x̂, ŷ) can take any value in R for an appropriate choice of θ ∈ R. A similar
statement holds for C

[θ]
(x̂, ŷ) whenever C(x̂, ŷ) /∈ {x̂, ŷ}, i.e. though C(θ) and C[θ]

fulfill the boundary conditions of a copula, they need not map into [0, 1].
Truncating the functions C(θ) and C[θ] by the Fréchet-Hoeffding bounds M and

W following the approach of Hürlimann as outlined above (compare also [13]), on
the one hand, guarantees that the range of the functions stays within [0, 1] and, on the
other hand, might also enlarge the set of admissible parameters for obtaining not only a
function but also a copula.

In our presentation we will discuss some of the properties of sets(ΘC) and [ΘC ] of
parameters θ ensuring that (C(θ))θ∈(ΘC) resp. (C

[θ]
)θ∈[ΘC ] are families of copulas. And

we will discuss for some special copulas C how these sets change and enlarge when
employing truncation. In particular, we look at C = M resp. C = W , i.e. the copulas
modeling co- and counter-monotonicity, and show that their truncated transformations
interestingly lead to families of copulas with non-convex sets of admissible parameters.
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Abstract. Non-stationarity is one of the most challenging issues in time series
analysis and prediction. The nature of non-stationary time series may follow mix-
ture distributions, such as bimodal or multimodal. Also, in multivariate time se-
ries, this non-stationarity problem may lead to a change in the associated joint
distribution, and therefore to a different type of copula used to calculate this joint
distribution. In this work we consider non-stationary multivariate time series in
presence of bimodal marginals, and we use copulas to carry out predictions. We
use two methods including dynamic copulas and mixture copulas to calculate
forecasts for real financial multivariate time series. Finally, we compare the per-
formance of these two methods.

1 Instruction for authors

As the use of large amount of data has grown in many disciplines, the structure of data
has become more and more complex. This complexity is severe in longitudinal and time
series data, especially in multivariate cases [1, 2]. Such cases often show stationarity
violation as well as bimodality or multi-modality, see e.g., DeYoreo and Kottas (2017)
[3]. Dealing with the non-stationarity of multivariate time series when the marginal
distribution is a mixture of distributions is the main aim of this work.

For a d-dimensional random vector X = (X1, X2, ..., Xd), let us assume that X
is generated from a (finite) mixture of K-components mixture model and its density at
x = (x1, ..., xd) can be written as

f (x;η) =
K∑

k=1

πkgk (x;ηk) ,

where η = (η1, . . . ,ηK)
T is the parameter vector that contains all the mixture

model parameters with ηk = (θk, πk) in which θk is the parameter vector of all the
parameters of the k-th component. Also, gk (·;ηk) and πk are respectively the density of
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the k-th component and its weight and satisfy πk ≥ 0,
∑K
k=1 πk = 1, for k = 1, . . . ,K.

We refer to McLachlan and Lee (2019) [4] for more details. Similarly, the corresponding
joint distribution can be presented as

F (x;η) =
K∑

k=1

πkGk (x;ηk) ,

where Gk (.;ηk) is the distribution of the k-th component.
It is well known that copulas, which have been introduced by Sklar (1959) [5], are

sophisticated tools to capture the non linear as well as the linear relationships between
the variables in the multivariate case [6, 15]. If the continuous random vector X =
(X1, X2, ..., Xd) follows the joint multivariate distribution FX : Rd → [0, 1] and Fi :
R → [0, 1], i = 1, 2, ..., d, are the related marginal distribution functions of Xi, i =
1, 2, ..., d, then, there exist a copula C : [0, 1]d → [0, 1] in which

FX(x) = C(F1(x1), F2(x2), ..., Fd(xd)). (1)

Also, under some smoothness assumptions of X , from (1), one can obtain the joint
density f of X as

fX(x) = c (F1 (x1) , . . . , Fd (xd))
d∏

k=1

fk (xk) (2)

where c is the density of the copula C and fk, k = 1, .., d, are the respective densities of
the random variables X1, .., Xd. One may refer to Nelsen (2006) [8] and Durante and
Sempi (2016) [7] for more information.

For marginal modelling, many popular approaches such as ARMA, GARCH, and
their mixture (ARMA-GARCH) have been often applied to time series. The majority
of these models are constructed based on the stationarity assumption (see e.g., [9], p.
19) of the underlying time series, which is not realistic in real-world data sets (see,
e.g., Kleibergen et al., (1993) [12] and Mikosch and Stărică, (2004) [13]). We also refer
to [10] and [11] for more details about mixture of univariates in time series. Consid-
ering non-stationary multivariate time series, some techniques specifically deal with
non-stationarity, such as change point detection methods [21].

In this work, we use copulas as connection links between variables. Then, in order
to carry out multivariate change point detection, we use dynamic copulas. Following the
approach of Bücher et al. (2014) [16] and their proposed test statistics for stationarity,
we address the stationarity of time series and find the relevant change point(s), see also
Hofert et al. (2018) [15] for more explanations.

Since non stationarity in a multivariate time series affects marginals as well, we as-
sume that the distributions of univariate time series follow mixture distributions. There-
fore, we follow three scenarios to determine the best method to handle change point
detection in non-stationary multivariate time series with a mixture of marginal models.

In the first scenario, we determine the best-fitting marginal for each univariate vari-
able. By estimating the copula of the marginal residuals, we simulate M realizations
from a copula. Hence, from each simulation, we calculate the predicted values using
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the inverse cumulative distribution function (cdf) and the relevant fitted marginal mod-
els (see e.g., Ansell and Dalla Valle (2022) [18]).

In the second scenario, similarly to Sheikhi et. al (2023) [19], after finding the
change point(s), we split the time series into segments based on the obtained change
points. In each segment, we fit the best-fitting marginals for each univariate variable.
By estimating the copula of the marginal residuals, we simulate M realizations from
the copula. Hence, we calculate the predicted values for each simulation, using the in-
verse cdf and the relevant fitted marginal models.

In the third scenario, we estimate the best-fitting mixture marginal for each uni-
variate variable. By estimating the copula of the marginal residuals, we simulate M
realizations from the copula. Again, we calculate the predicted values for each simu-
lation, using the inverse cdf and the relevant fitted marginal models, see, for instance,
Sahin and Czado (2022) [20] for a similar approach in clustering.

In this work we consider data split in two groups: market data and social media
data. The market data are the stock prices of Tesla and the social media data are the
corresponding sentiment scores obtained from Twitter in a period of 6 years from Jan.
1, 2013, to Sep. 31, 2018. The market data contain daily open-high-low-close (aka as
OHLC) information on the Tesla stock; while the social media data are gathered from
Twitter and consist of relevant tweets, along with their sentiment with daily resolution,
see Mendoza et al. (2022) [17].

In order to compare the performances of the considered approaches we calculate
in-sample predictions for the last 10 percent observations of the time series in the three
scenarios. In this regard, the difference between true observations and our in-sample
prediction is our criterion for comparison. More specifically, we use the continuous
ranked probability score (CRPS) of Matheson and Winkler (1979) [23].
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1 Motivation

A popular method for measuring the dependence between random variables is using
measures of concordance such as Kendall’s τ , Spearman’s ρ and Gini’s γ, which are
margin-free so that their value only depends on the random variables connecting copula.
Since there exist various measures of concordance the question arises how different
measures relate to each other. For instance, in [9] it was shown that if the copula C
fulfills certain dependence properties (C has to be left tail decreasing and right tail
increasing) then ρ(C) ≥ τ(C) ≥ 0 holds. Hutchinson and Lai (see [7]) conjectured
that

−1 +
√

1 + 3τ(C) ≤ ρ(C) ≤ min
{3τ(C)

2
, 2τ(C)− τ(C)2

}

holds for stochastically increasing copulas C. However, the counterexample given in
[9] disproves the upper bound. Apparently, it depends on the properties of the particular
copula C whether certain relations hold.

In this paper we examine a well-known class of measures of concordance induced
by so-called invariant (with respect to permutations and reflections) copulas and derive
a dependence property that allows the elements of this class to be related to each other.

2 Invariant copulas and measures of concordance

Among the best-known invariant copulas are, for example, the

– independence copula Π ,
– arithmetic mean of the lower and upper Fréchet-Hoeffding boundW anfM defined

by MΣ := (M +W )/2 and
– copula V defined by

V (u, v) :=





M(u, v), if |u− v| > 1
2 ,

W (u, v), if |u+ v − 1| > 1
2 ,

u
2 + v

2 − 1
4 , otherwise.
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(a) Sample of Π (b) Sample of MΣ (c) Sample of V

Fig. 1: Examples of supports of reflection and permutation invariant copulas for sample
size N = 5.000.

It can be easily seen that those copulas are invariant by considering their supports (see
Figure 1).

[2] introduced an approach to generate invariant copulas via a transformation ϑ : C → C
as illustrated in Figure 2.

Fig. 2: Illustration of the map ϑ using the example of M .

Let C denote the class of all bivariate copulas and consider the map [., .] : C×C → R
given by

[C,D] :=

∫

[0,1]2
C(u, v)dQD(u, v)

where QD denotes the probability measure associated with the copula D; see [5]. The
map [., .] is in either argument linear with respect to convex combinations and is there-
fore called a biconvex form. Moreover, the map [., .] is symmetric.
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Now, consider a fixed copula A ∈ C. Then we have [M,A] > [Π,A] such that the
map κA : C → R given by

κA(C) :=
[C,A]− [Π,A]

[M,A]− [Π,A]

is well-defined; see [6]. We have the following results (see [1, 3, 4, 6]).

1. The map κA is a measure of concordance if and only if A is invariant.
2. If A is invariant, then κA is convex, order preserving and continuous.
3. If A is invariant, then [Π,A] = 1/4 and the identity

κA(C) =
[C,A]− 1/4

[M,A]− 1/4

holds for all C ∈ C.

Next we give some examples and see which well-known measures of concordance can
be obtained using this approach.

1. Spearman’s ρ: The copula Π is invariant and κΠ satisfies

κΠ(C) = 12[C,Π]− 3

which means that κΠ is Spearman’s ρ; see [4, 9].
2. Gini’s γ: The copula MΣ = (M +W )/2 is invariant and κMΣ

satisfies

κMΣ
(C) = 8[C,MΣ ]− 2

which means that κMΣ
is Gini’s γ; see [4, 9].

3. The copula V is invariant and therefore we obtain the measure of concordance

κV (C) := 16[C, V ]− 4

Note that Kendall’s τ can not be constructed using invariant copulas.

3 An ordering of measures of concordance

Introducing an ordering for invariant copulas in the sense that ϑ(A) ⪯ ϑ(B) whenever
A ≤ B pointwise, the question arises how the ordering of invariant copulas transfers
to the induced measures of concordance, i.e., does ϑ(A) ⪯ ϑ(B) imply κϑ(A)(C) ≤
κϑ(B)(C) for every copulaC ∈ C? Apparently, this is not the case, in general. However,
we were able to derive a dependence property for copulas C such that

α(B) · κϑ(B)(C)− α(A) · κϑ(A)(C) ≥ 0

holds whenever ϑ(A) ⪯ ϑ(B) for certain values α(A), α(B) > 0 only depending on A
andB. Among others, the following families of copulas satisfy the obtained dependence
property:
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– FGM-copula: For θ ∈ [−1, 1], the mapping Cθ : [0, 1]2 → [0, 1] given by

Cθ(u, v) := uv + θuv(1− u)(1− v)

is a copula and called Farlie-Gumbel-Morgenstern (FGM) copula.
– Gaussian copula: For ρ ∈ (−1, 0)∪(0, 1), the mapping Cρ : [0, 1]2 → [0, 1] given

by

Cρ(u, v) =

∫

(−∞,ϕ−1(u)]×(−∞,ϕ−1(v)]

1

2π
√

1− ρ2
exp

(
−s

2 − 2ρst+ t2

2(1− ρ2)

)
dλ2(s, t)

is a copula and called Gaussian copula, where ϕ−1 denotes the inverse of the stan-
dard Gaussian distribution function.
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1 Introduction

In a series of papers [3–6] the authors investigated discrete integrals such as the Choquet
and Sugeno integral and their axiomatization. As part of their study they showed that
universal integrals are based on semicopulas, and they provided lower and upper bounds
of the integral operations based on a given semicopula. These real-valued resp. unit
interval valued integrals can be considered as proper aggregation tool in the context
of fuzzy sets. The aim of the current paper is to generalize this approach to so-called
L-fuzzy sets and relations, i.e., fuzzy sets and relations that use an arbitrary Heyting
algebra L as membership degree instead of the unit interval. Furthermore, we present
the theory within arrow categories, i.e., we abstract from concrete sets and relations and
work within a suitable algebraic framework. The results of this work also show that the
results of [3] can be proven without referring to the real numbers and specific measures
such as the Lebesque measure and the induced measurable spaces.

2 Arrow categories

In this section we want to recall some basic notions from categories, allegories and
arrow categories [2, 10, 11].

We will write R : A→ B to indicate that a morphism R of a category C has source
A and target B. Composition and the identity morphism are denoted by ; and IA.

First, we are going to introduce Dedekind categories. These categories are called
locally complete division allegories in [2].

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A,B the collection R[A,B] is a complete Heyting algebra. Meet,
join, the order, the least and greatest element are denoted by ⊓,⊔,⊑, |= AB ,

|=

AB .
2. There is a monotone operation ⌣ (called converse) mapping a relation Q : A→ B

to Q⌣ : B → A such that for all relations Q : A → B and R : B → C the
following holds: (Q;R)

⌣
= R⌣;Q⌣ and (Q⌣)

⌣
= Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R) ⊓ S ⊑ Q; (R ⊓ (Q⌣;S)) holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B
(called the left residual of S and R) such that for all X : A → B the following
holds: X;R ⊑ S ⇐⇒ X ⊑ S/R.

93



It is easy to verify that the collection of all L-fuzzy relations, i.e., binary relations
between A and B that are given by a characteristic function A × B → L, forms a
Dedekind category.

Using the converse operation a second residual can be defined by Q\R :=

(R⌣/Q⌣)
⌣. Furthermore, we define the symmetric quotient by syQ(Q,R) := Q\R ⊓

Q⌣/R⌣.
In a Dedekind category we are already able to identify the membership values, i.e.,

the Heyting algbera L, that are used by the relations in an abstract manner. For this
we define a so-called scalar relation α : A → A on an object A by α ⊑ IA and|=

AA;α = α;

|=

AA. Concretely, an L-fuzzy relation is a scalar iff every element of A
is related to itself with a fixed degree a from L. As a consequence, there is a one-one
correspondence between the scalar relations on A and the lattice L.

A crisp L-fuzzy relation R satisfies R(x, y) = 0 or R(x, y) = 1 for all pairs (x, y)
where 0 and 1 are the smallest resp. greatest element of L. These relations can be
identified with Boolean valued relations, i.e., regular set-theoretic relations. The notion
of crispness cannot be defined abstractly in the theory of Dedekind categories [9, 10].
Because of this arrow categories were introduced [10, 11]. These categories add two
operations (.)↓ and (.)

↑ to Dedekind categories. Intuitively, the down-arrow (or kernel)
operation maps an L-fuzzy relation R to the greatest crisp relation included in R and
the up-arrow (or support) operation maps R to the least crisp relation that includes R.

Definition 2. An arrow category A is a Dedekind category with

|=

AB ̸= |= AB for all
objects A and B together with two operations ↑ and ↓ satisfying the following:

1. R↑, R↓ : A→ B for all R : A→ B.
2. (↑, ↓) is a Galois correspondence, i.e., Q↑ ⊑ R iff Q ⊑ R↓ for all Q,R : A→ B.
3. (R⌣;S↓)

↑
= R↑⌣;S↓ for all R : B → A and S : B → C.

4. If α ̸= |= AA is a non-zero scalar then α↑ = IA.
5. (Q ⊓R↓)

↑
= Q↑ ⊓R↓ for all Q,R : A→ B.

A relation R : A → B of an arrow category A is called crisp iff R↑ = R (or
equivalently R↓ = R). The collection of crisp relations is closed under all operations
of a Dedekind category, and, hence, forms a sub-Dedekind category of A [10, 11].

An abstract version of a singleton set is given by the notion of a unit. A unit 1 is an
object so that

|=

11 = I1 and

|=

A1 is total for every object A, i.e.,

|=

A1;

|=

1A =

|=

AA.
A relation v : 1 → A is called a vector on A and we denote the set of all vectors on A
by Vec(A) = A[1, A].

An operation ∗ : Sc(1) × Sc(1) → Sc(1) is called a pseudo multiplication if ∗ is
monotone in both parameters and we have α ∗ I1 = I1 ∗ α = α. Notice that pseudo
multiplications satisfy α ∗ |= 11 = |= 11 ∗ α = |= 11. In the context of the unit interval a
pseudo multiplication is called a semicopula [1]. Please note that ∗m defined by α ∗m
β = α iff β = I1, α ∗m β = β iff α = I1, and α ∗m β = |= 11 otherwise is the
smallest pseudo multiplication, and ∗g defined by α∗g β = α⊓β is the greatest pseudo
multiplication.

The disjoint union of two sets can be defined abstractly as a relation sum. A relation
sum A + B of two objects A and B is an object together with two crisp relations
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ι : A→ A+B and κ : B → A+B satisfying ι⌣; ι ⊑ IA, κ⌣;κ ⊑ IA, ι;κ⌣ = |= AB ,
and ι; ι⌣ ⊔ κ;κ⌣ = IA+B .

An abstract version of power sets is given by the notion of a relational (or direct)
power [7]. Please note that in the context of arrow categories we are interested in the
set of all L-fuzzy subsets of A, i.e., in the set of all functions f : A→ L. An object LA

together with a relation ε : A → LA is called a relational power iff syQ(ε, ε)
↓
= ILA

and syQ(R, ε)
↓ is total for every R : A → B. Notice that the relation syQ(R⌣, ε)

↓
:

B → LA is a crisp map for every relation R : B → A. For concrete relation this
construction yields the direct image of R. We denote this relation by Λ(R).

In this paper we are also interested in the set of all crisp subsets of a set. We call
this the crisp (relational) power and it is given by an object P(A) and a crisp relation
∈: A → P(A) satisfying syQ(∈,∈) = IP(A) and syQ(R↓,∈) is total for every R :

A → B. Similar to above the relation syQ(R⌣,∈) is a map for every crisp relation
R : B → A and we denote this by Λc(R). The order relation and the empty and the
full set within a crisp power are given by the relations Ω =∈ \ ∈, e = Λc( |= 1A) and
f = Λc(

|=

1A), respectively.

3 Relation measures and universal integrals

A concrete L-fuzzy relation R : A → 1 is given by its characteristic function from
A × 1 to L. Since A × 1 is isomorphic to A this function corresponds to a function
that assigns to every element of A a value of L. This observation leads to the following
definition of a relational measure.

Definition 3. A relation µA : P(A) → 1 is called a measure (or capacity) on A iff
µ⌣
A;Ω ⊑ µ⌣

A, e;µA = |= 11, and f ;µA = I1.

As usual we will regularly omit the index A, and we will denote the set of measures
on A by M(A) ⊆ A[P(A), 1].

Definition 4. A family of operations IA : M(A)×Vec(A) → Sc(1) with A ∈ ObjA is
called a (discrete) universal integral iff the following holds:

(A1) For each object A the operation IA is monotone in both arguments, i.e., µ1 ⊑ µ2

and v1 ⊑ v2 implies IA(µ1, v1) ⊑ IA(µ2, v2).
(A2) IA(µ, v) = Λc(v);µ if v is crisp.
(A3) IA(µ, α;

|=

1A) = α for all scalars α ∈ Sc(1).
(A4) For all measures µ1 ∈ M(A), µ2 ∈ M(B) and v1 ∈ Vec(A), v2 ∈ Vec(B) the

inclusion Λc((α\v1)↓);µ1 ⊑ Λc((α\v2)↓);µ2 for all scalars α ∈ Sc(1) implies
IA(µ1, v1) ⊑ IB(µ2, v2).

Furthermore, we say that I is based on the pseudo multiplication ∗ iff IA(µ, α; v) =
α ∗ Λc(v);µ for all measures µ ∈ M(A) and crisp v ∈ Vec(A).

Please note that [3, 4] only requires a weaker version of (A4) where the inclusion
⊑ on both sides of the implication is replaced by =. However, Proposition 2.7 of [3]
implies our (stronger) version in the context of the (extended) real numbers resp. the
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unit interval. We leave the investigation whether (A4) can be replaced by this weaker
version in the more general context of arbitrary Heyting algebras for future work.

Given a scalar β ∈ Sc(1) the relation µβ1+1 : P(1 + 1) → 1 defined by µβ1+1 =

∈⌣;

|=

A1;β ⊔ f⌣ is a measure on 1 + 1. For concrete L-fuzzy relations and 1 +

1 = {a, b} the relation µβ1+1 turns out to be the map µβ1+1(M) = |= 11 iff M = ∅,
µβ1+1(M) = β iff M = {a} or M = {b}, and µβ1+1(M) = I1 iff M = {a, b}. Given an
universal integral I we may use this measure and define α∗̂β = I1+1(µ

β
1+1, α; ι) where

ι : 1 → 1 + 1 is the first injection of the relational sum.

Lemma 1. The operation ∗̂ is a pseudo multiplication and I is based on ∗̂.

If we define ∗IA(µ, v) =
⊔

α∈Sc(1)
α ∗ Λc((α\v)↓);µ, then we obtain the following

theorem.

Theorem 1. ∗I is the smallest universal integral based on ∗.

In order to show that there is also a greatest universal integral based on a pseudo
multiplication we first define δµv ∈ Sc(1) by δµv =

⊔
α∈Sc(1)

α;Λc((α\v)↓);µ↑. Please

note that δµv was denoted by essupµv in [3, 4]. Using δµv and following [3, 4] we now
define ∗IA(µ, v) = δµv ∗ ( ⊔

|= 11 ̸=α∈Sc(1)
Λc((α\v)↓);µ).

Theorem 2. ∗I is the greatest universal integral based on ∗.

Contrarily to [3] the proof of the previous theorem does not use the Lebesque mea-
sure and Borel measurable functions. Instead it use the relational measure η : P(L1) →
1 defined by η = ∈⌣; ε⌣.

From the fact that ∗m is the smallest and ∗g is the greatest pseudo multiplication we
obtain the following corollary.

Corollary 1. ∗mI is the smallest and ∗gI is the greatest universal integral.
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