Triangular norms.
Position paper I: Basic analytical and algebraic properties

Erich Peter Klement
Fuzzy Logic Laboratorium Linz-Hagenberg
ep.klement@jku.at

Radko Mesiar
Slovak Technical University, Bratislava & Czech Academy of Sciences, Prague
mesiar@cvt.stuba.sk

Endre Pap
University of Novi Sad
pap@im.ns.ac.yu, pape@eunet.yu

Abstract — We present the basic analytical and algebraic properties of triangular norms. We discuss continuity as well as the important classes of Archimedean, strict and nilpotent t-norms. Triangular conorms and De Morgan triples are also mentioned. Finally, a brief historical survey on triangular norms is given.

Submitted for publication
1 Introduction

Triangular norms (briefly t-norms) are an indispensable tool for the interpretation of the conjunction in fuzzy logics [29] and, subsequently, for the intersection of fuzzy sets [74]. They are, however, interesting mathematical objects for themselves.

Triangular norms, as we use them today, were first introduced in the context of probabilistic metric spaces [60, 64, 63], based on some ideas presented in [47] (see Section 7 for details). They also play an important role in decision making [22, 28], in statistics [51] as well as in the theories of non-additive measures [42, 56, 68, 71] and cooperative games [11]. Some parameterized families of t-norms (see, e.g., [23]) turn out to be solutions of well-known functional equations.

Algebraically speaking, t-norms are binary operations on the closed unit interval $[0, 1]$ such that (T, \leq) is an abelian, totally ordered semigroup with neutral element 1 [30].

For the closely related concept of uninorms (which turn $[0, 1]$ into an abelian, totally ordered semigroup with neutral element $e \in [0, 1]$) see [41, 73].

A recent monograph [41] provides a rather complete overview about triangular norms and their applications.

In a series of three papers we want to summarize in a condensed form the most important facts about t-norms. This Part I deals with the basic analytical properties, such as continuity, and with important classes such as Archimedean, strict and nilpotent t-norms. We also mention the dual operations, the triangular norms, and De Morgan triples. Finally we give a short historical overview on the development of t-norms and their way into fuzzy sets and fuzzy logics.

To keep the paper readable, we have omitted all proofs (usually giving a source for the reader interested in them) and rather included a number of (counter-)examples, in order to motivate and to illustrate the abstract notions used.

Part II will be devoted to general construction methods based mainly on pseudo-inverses, additive and multiplicative generators, and ordinal sums, adding also some constructions leading to non-continuous t-norms, and to a presentation of some distinguished families of t-norms.

Finally, Part III will concentrate on continuous t-norms, in particular, on their representation by additive and multiplicative generators and ordinal sums.

2 Triangular norms

The term triangular norm appeared for the first time (with slightly different axioms) in K. Menger [47]. The following set of independent axioms for triangular norms goes back to B. Schweizer and A. Sklar [59, 60, 61].

Definition 2.1 A **triangular norm** (briefly t-norm) is a binary operation T on the unit interval $[0, 1]$ which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function $T : [0, 1]^2 \rightarrow [0, 1]$ such that for all $x, y, z \in [0, 1]$:

1. \[T(x, y) = T(y, x), \]
2. \[T(x, T(y, z)) = T(T(x, y), z). \]
Figure 1: 3D plots (top) and contour plots (bottom) of the four basic t-norms T_M, T_P, T_L, and T_D (observe that there are no contour lines for T_D)

(T3) $T(x, y) \leq T(x, z)$ whenever $y \leq z$,

(T4) $T(x, 1) = x$.

Since a t-norm is an algebraic operation on the unit interval $[0, 1]$, some authors (e.g., in [53]) prefer to use an infix notation like $x \ast y$ instead of the prefix notation $T(x, y)$. In fact, some of the axioms (T1)–(T4) then look more familiar: for all $x, y, z \in [0, 1]$

(T1) $x \ast y = y \ast x$,

(T2) $x \ast (y \ast z) = (x \ast y) \ast z$,

(T3) $x \ast y \leq x \ast z$ whenever $y \leq z$,

(T4) $x \ast 1 = x$.

Because of the importance of some functional aspects (e.g., continuity) and since we prefer to keep a unified notation throughout this paper, we shall consistently use the prefix notation for t-norms (and t-conorms).

Since t-norms are obviously extensions of the Boolean conjunction, they are usually used as interpretations of the conjunction \land in $[0, 1]$-valued and fuzzy logics.

There exist uncountably many t-norms. In [41, Section 4] some parameterized families of t-norms are presented which are interesting from different points of view.

The following are the four basic t-norms, namely, the minimum T_M, the product T_P, the Łukasiewicz t-norm T_L, and the drastic product T_D (see Figure 1 for 3D and contour plots), which are
2 Triangular norms

given by, respectively:

\[T_M(x, y) = \min(x, y), \]
\[T_P(x, y) = x \cdot y, \] \hspace{1cm} (1)
\[T_L(x, y) = \max(x + y - 1, 0), \] \hspace{1cm} (2)
\[T_D(x, y) = \begin{cases}
0 & \text{if } (x, y) \in [0, 1]^2, \\
\min(x, y) & \text{otherwise.}
\end{cases} \] \hspace{1cm} (4)

These four basic t-norms are remarkable for several reasons. The drastic product \(T_D \) and the minimum \(T_M \) are the smallest and the largest t-norm, respectively (with respect to the pointwise order). The minimum \(T_M \) is the only t-norm where each \(x \in [0, 1] \) is an idempotent element (compare Definition 6.1), whereas the product \(T_P \) and the Łukasiewicz t-norm \(T_L \) are prototypical examples of two important subclasses of t-norms, namely, of the classes of strict and nilpotent t-norms, respectively.

It should be mentioned that the t-norms \(T_M, T_P, T_L, \) and \(T_D \) were denoted \(M, \Pi, W, \) and \(Z, \) respectively, in [63].

Sometimes we shall visualize t-norms (and functions \(F : [0, 1]^2 \to [0, 1] \) in general) in different forms: as 3D plots, i.e., as surfaces in the unit cube, as contour plots showing the curves (or, more generally, the sets) where the function in question has constant (equidistant) values, and, occasionally, as diagonal sections, i.e., as graphs of the function \(x \mapsto F(x, x). \)

The boundary condition (T4) and the monotonicity (T3) were given in their minimal form. Together with (T1) it follows that, for all \(x \in [0, 1], \) each t-norm \(T \) satisfies

\[T(0, x) = T(x, 0) = 0, \]
\[T(1, x) = x. \] \hspace{1cm} (5, 6)

Therefore, all t-norms coincide on the boundary of the unit square \([0, 1]^2. \)

The monotonicity of a t-norm \(T \) in its second component (T3) is, together with the commutativity (T1), equivalent to the (joint) monotonicity in both components, i.e., to

\[T(x_1, y_1) \leq T(x_2, y_2) \]
\[\text{whenever } x_1 \leq x_2 \text{ and } y_1 \leq y_2. \] \hspace{1cm} (7)

Since t-norms are just functions from the unit square into the unit interval, the comparison of t-norms is done in the usual way, i.e., pointwise.

Definition 2.2 If, for two t-norms \(T_1 \) and \(T_2, \) we have \(T_1(x, y) \leq T_2(x, y) \) for all \((x, y) \in [0, 1]^2, \) then we say that \(T_1 \) is *weaker* than \(T_2 \) or, equivalently, that \(T_2 \) is *stronger* than \(T_1, \) and we write in this case \(T_1 \leq T_2. \)

We shall write \(T_1 < T_2 \) if \(T_1 \leq T_2 \) and \(T_1 \neq T_2, \) i.e., if \(T_1 \leq T_2 \) and if \(T_1(x_0, y_0) < T_2(x_0, y_0) \) for some \((x_0, y_0) \in [0, 1]^2. \)

As an immediate consequence of (T1), (T3) and (T4), the drastic product \(T_D \) is the weakest, and the minimum \(T_M \) is the strongest t-norm, i.e., for each t-norm \(T \) we have:

\[T_D \leq T \leq T_M. \] \hspace{1cm} (8)
Between the four basic t-norms we have these strict inequalities:
\[T_D < T_L < T_P < T_M. \] (9)

A slight modification of axiom (T4) leads to the following notion, introduced in S. Jenei [33, 34].

Definition 2.3 A function \(F : [0,1]^2 \rightarrow [0,1] \) which satisfies, for all \(x, y, z \in [0,1] \), the properties (T1)–(T3) and
\[F(x,y) \leq \min(x,y) \] (10)
is called a **t-subnorm**.

Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the zero function is a t-subnorm but not a t-norm.

Each t-subnorm can be transformed into a t-norm by redefining (if necessary) its values on the upper right boundary of the unit square [41, Corollary 1.8].

Proposition 2.4 If \(F : [0,1]^2 \rightarrow [0,1] \) is a t-subnorm then the function \(T : [0,1]^2 \rightarrow [0,1] \) defined by
\[
T(x,y) = \begin{cases}
F(x,y) & \text{if } (x,y) \in [0,1]^2, \\
\min(x,y) & \text{otherwise},
\end{cases}
\]
is a triangular norm.

An interesting question is whether a t-norm is determined uniquely by its values on the diagonal of the unit square. In general, this is not the case, but the two extremal t-norms \(T_D \) and \(T_M \) are completely determined by their diagonal sections, i.e., by their values on the diagonal of the unit square.

The associativity (T2) allows us to extend each t-norm \(T \) (which was introduced as a binary operation) in a unique way to an \(n \)-ary operation for arbitrary \(n \in \mathbb{N} \cup \{0\} \) by induction:
\[
\prod_{i=1}^{n} x_i = \begin{cases}
1 & \text{if } n = 0, \\
T(x_n, \prod_{i=1}^{n-1} x_i) & \text{otherwise}.
\end{cases}
\] (11)

We also shall use the notation
\[T(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} x_i. \]

If, in particular, \(x_1 = x_2 = \cdots = x_n = x \), we shall briefly write
\[x_T^{(n)} = T(x, x, \ldots, x). \] (12)

The \(n \)-ary extensions of the minimum \(T_M \) and the product \(T_P \) are obvious. For the Łukasiewicz t-norm \(T_L \) and the drastic product \(T_D \) we get
\[
T_L(x_1, x_2, \ldots, x_n) = \max \left(\sum_{i=1}^{n} x_i - (n-1), 0 \right),
\]
\[
T_D(x_1, x_2, \ldots, x_n) = \begin{cases}
x_i & \text{if } x_j = 1 \text{ for all } j \neq i, \\
0 & \text{otherwise}.
\end{cases}
\]
The fact that each t-norm T is weaker than T_M implies that, for each sequence $(x_i)_{i \in \mathbb{N}}$ of elements of $[0, 1]$, the sequence
\[
\left(\prod_{i=1}^{n} x_i \right)_{n \in \mathbb{N}}
\]
is non-increasing and bounded from below and, subsequently, convergent. We therefore can extend T to a (countably) infinitary operation putting
\[
\prod_{i=1}^{\infty} x_i = \lim_{n \to \infty} \prod_{i=1}^{n} x_i.
\] (13)

However, similarly as for infinite series of numbers, then some desirable properties such as the generalized associativity may be violated (for more details see [48]).

3 Triangular conorms

In [61] triangular conorms were introduced as dual operations of t-norms. We give here an independent axiomatic definition.

Definition 3.1 A triangular conorm (t-conorm for short) is a binary operation S on the unit interval $[0, 1]$ which is commutative, associative, monotone and has 0 as neutral element, i.e., it is a function $S: [0, 1]^2 \rightarrow [0, 1]$ which satisfies, for all $x, y, z \in [0, 1]$, (T1)–(T3) and

(S4) $S(x, 0) = x$.

The following are the four basic t-conorms, namely, the maximum S_M, the probabilistic sum S_P, the Łukasiewicz t-conorm or (bounded sum) S_L, and the drastic sum S_D (see Figure 2 for 3D
and contour plots), which are given by, respectively:

\[S_M(x, y) = \max(x, y), \]
\[S_P(x, y) = x + y - x \cdot y, \]
\[S_L(x, y) = \min(x + y, 1), \]
\[S_D(x, y) = \begin{cases}
1 & \text{if } (x, y) \in [0, 1]^2, \\
\max(x, y) & \text{otherwise.}
\end{cases} \]

The t-conorms \(S_M, S_P, S_L, \) and \(S_D \) were denoted \(M^*, \Pi^*, W^* \) and \(Z^* \), respectively, in [63].

The original definition of t-conorms given in [61] is completely equivalent to the axiomatic definition given above: a function \(S : [0, 1]^2 \rightarrow [0, 1] \) is a t-conorm if and only if there exists a t-norm \(T \) such that for all \((x, y) \in [0, 1]^2\) either one of the two equivalent equalities holds:

\[S(x, y) = 1 - T(1 - x, 1 - y), \] (18)
\[T(x, y) = 1 - S(1 - x, 1 - y). \] (19)

The t-conorm given by (18) is called the dual t-conorm of \(T \) and, analogously, the t-norm given by (19) is said to be the dual t-norm of \(S \). Obviously, \((T_M, S_M), (T_P, S_P), (T_L, S_L), \) and \((T_D, S_D)\) are pairs of t-norms and t-conorms which are mutually dual to each other.

Considering the standard negation \(N_s(x) = 1 - x \) (compare (20)) as complement of \(x \) in the unit interval, equation (18) explains the name t-conorm. We shall keep this original notion and avoid the term s-norm which sometimes is used synonymous in the literature.

The duality expressed in (18) allows us to translate many properties of t-norms into the corresponding properties of t-conorms, including the n-ary and infinitary extensions of a t-conorm.

The duality changes the order: if, for some t-norms \(T_1 \) and \(T_2 \) we have \(T_1 \leq T_2 \), and if \(S_1 \) and \(S_2 \) are the dual t-conorms of \(T_1 \) and \(T_2 \), respectively, then we get \(S_1 \geq S_2 \).

If \((T, S)\) is a pair of mutually dual t-norms and t-conorms, then the dualities (18) and (19) can be generalized as follows (here \(I \) can be an arbitrary finite or countably infinite index set):

\[S \bigcap_{i \in I} x_i = 1 - T \bigcap_{i \in I} (1 - x_i), \]
\[T \bigcap_{i \in I} x_i = 1 - S \bigcap_{i \in I} (1 - x_i). \]

In fuzzy logics, t-conorms are usually used as an interpretation of the disjunction \(\lor \).

4 Negations and De Morgan Triples

Finally, let us have a brief look at negations.

Definition 4.1

(i) A non-increasing function \(N : [0, 1] \rightarrow [0, 1] \) is called a negation if

\[N(0) = 1 \quad \text{and} \quad N(1) = 0. \]
(ii) A negation \(N : [0, 1] \rightarrow [0, 1] \) is called a strict negation if, additionally,

\[
\begin{align*}
\text{(N2)} & \quad \text{\(N \) is continuous.} \\
\text{(N3)} & \quad \text{\(N \) is strictly decreasing.}
\end{align*}
\]

(iii) A strict negation \(N : [0, 1] \rightarrow [0, 1] \) is called a strong negation if it is an involution, i.e., if

\[
\text{(N4)} \quad N \circ N = \text{id}_{[0,1]}.
\]

It is obvious that \(N : [0, 1] \rightarrow [0, 1] \) is a strict negation if and only if it is a strictly decreasing bijection.

The most important and most widely used strong negation is the standard negation \(N_s : [0, 1] \rightarrow [0, 1] \) given by

\[
N_s(x) = 1 - x.
\]

(20)

Note that \(N : [0, 1] \rightarrow [0, 1] \) is a strong negation if and only if there is a monotone bijection \(g : [0, 1] \rightarrow [0, 1] \) such that for all \(x \in [0, 1] \)

\[
\varphi(x) = g^{-1}(N_s(g(x))),
\]

(21)
i.e., each strong negation is a monotone transformation of the standard negation [69].

The negation \(N : [0, 1] \rightarrow [0, 1] \) given by \(N(x) = 1 - x^2 \) is strict, but not strong.

An example of a negation which is not strict and, subsequently, not strong, is the Gödel negation \(N_G : [0, 1] \rightarrow [0, 1] \) given by

\[
N_G(x) = \begin{cases}
1 & \text{if } x = 0, \\
0 & \text{if } x \in [0, 1].
\end{cases}
\]

(22)

The standard negation \(N_s \) was used, e.g., in [59, 60] when introducing t-conorms as duals of t-norms, or in [74] when modeling the complement of a fuzzy set.

Given a t-norm \(T \) and a strict negation \(N \), one obtains a t-conorm \(S : [0, 1]^2 \rightarrow [0, 1] \), which is \(N \)-dual to \(T \) in the sense of

\[
S(x, y) = N^{-1}(T(N(x), N(y))).
\]

(23)

Note, however, that if \(N \) is a non-strict negation, formula (23) cannot be applied.

If \(N \) is a strong negation, then, applying the construction in (23) to the t-conorm \(S \), we get back the t-norm \(T \) we started with.

A triple \((T, S, N) \), where \(T \) is a t-norm, \(S \) is a t-conorm and \(N \) is a negation is called a De Morgan triple if for all \((x, y) \in [0, 1]^2 \) we have

\[
\begin{align*}
T(x, y) &= N(S(N(x), N(y))), \\
S(x, y) &= N(T(N(x), N(y))).
\end{align*}
\]

This means that, given a t-norm \(T \), \((T, S, N) \) is a De Morgan triple if and only if \(N \) is a strong negation and \(S \) is the \(N \)-dual of \(T \).
Let $s : [0, 1] \rightarrow [0, 1]$ be a strictly increasing bijection. Then $S : [0, 1]^2 \rightarrow [0, 1]$ defined by

$$S(x, y) = s^{-1}(\min(s(x) + s(y), 1))$$

is a t-conorm (in fact, S is a nilpotent t-conorm with additive generator s [41, Definition 3.39]). Moreover, $N : [0, 1] \rightarrow [0, 1]$ given by

$$N(x) = \inf\{y \in [0, 1] \mid S(x, y) = 1\}$$

is a strong negation. If T is t-norm which is N-dual to S then we have

$$T(x, y) = s^{-1}(T_L(s(x), s(y))),$$
$$S(x, y) = s^{-1}(S_L(s(x), s(y))),$$
$$N(x) = s^{-1}(N_a(s(x))),$$

which means that the De Morgan triple (T, S, N) is isomorphic to the Łukasiewicz De Morgan triple (T_L, S_L, N_a).

Even if (T, S, N) is a De Morgan triple, we do not necessarily have $T(x, N(x)) = 0$ and $S(x, N(x)) = 1$ for all $x \in [0, 1]$, i.e., the law of the excluded middle (which is one of the crucial features of the classical, two-valued Boolean logic) may be violated. For instance, if the t-norm T in the De Morgan triple (T, S, N_a) has no zero divisors, i.e., if $T(x, y) > 0$ whenever $x > 0$ and $y > 0$ (see Definition 6.1(iii)), then the law of the excluded middle never holds. On the other hand, in the De Morgan triple (T_L, S_L, N_a) and, a fortiori, in each De Morgan triple (T, S, N_a) with $T \leq T_L$, we have a many-valued analogue of the classical law of the excluded middle.

It is noteworthy that, given a De Morgan triple (T, S, N), the tuple $([0, 1], T, S, N, 0, 1)$ can never be a Boolean algebra: in order to satisfy distributivity we must have $T = T_M$ and $S = S_M$ (see Proposition 6.18), in which case it is impossible to have both $T(x, N(x)) = 0$ and $S(x, N(x)) = 1$ for all $x \in [0, 1]$.

5 Continuity

As can be seen from the drastic product T_D and its dual S_D, t-norms and t-conorms (viewed as functions in two variables) need not be continuous (in fact, they need not even be Borel measurable functions [41, Example 3.75]). Nevertheless, for a number of reasons continuous t-norms and t-conorms play an important role. Therefore, we shall discuss here continuity as well as left- and right-continuity.

Recall that a t-norm $T : [0, 1]^2 \rightarrow [0, 1]$ is continuous if for all convergent sequences $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \in [0, 1]^2$ we have

$$T \left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n \right) = \lim_{n \to \infty} T(x_n, y_n).$$

Obviously, the continuity of a t-conorm S is equivalent to the continuity of the dual t-norm T. Since the unit square $[0, 1]^2$ is a compact subset of the real plane \mathbb{R}^2, the continuity of a t-norm $T : [0, 1]^2 \rightarrow [0, 1]$ is equivalent to its uniform continuity.
Obviously, the basic t-norms T_M, T_P and T_L as well as their dual t-conorms S_M, S_P and S_L are continuous, and the drastic product T_D and the drastic sum S_D are not continuous.

In general, a real function of two variables, e.g., with domain $[0, 1]^2$, may be continuous in each variable without being continuous on $[0, 1]^2$. Because of their monotonicity, triangular norms (and conorms) are exceptions from this:

Proposition 5.1 A t-norm $T : [0, 1]^2 \rightarrow [0, 1]$ is continuous if and only if it is continuous in each component, i.e., if for all $x_0, y_0 \in [0, 1]$ both the vertical section $T(x_0, \cdot) : [0, 1] \rightarrow [0, 1]$ and the horizontal section $T(\cdot, y_0) : [0, 1] \rightarrow [0, 1]$ are continuous functions in one variable.

Obviously, because of the commutativity (T1), for a t-norm or a t-conorm its continuity is equivalent to its continuity in the first component.

For applications, e.g., in probabilistic metric spaces, many-valued logics or decomposable measures, quite often weaker forms of continuity are sufficient. Since we have a similar result as Proposition 5.1 for left- and right-continuous t-norms, these definitions are given in one component only.

Definition 5.2 A t-norm $T : [0, 1]^2 \rightarrow [0, 1]$ is said to be left-continuous (right-continuous) if for each $y \in [0, 1]$ and for all non-decreasing (non-increasing) sequences $(x_n)_{n \in \mathbb{N}}$ we have

$$\lim_{n \to \infty} T(x_n, y) = T\left(\lim_{n \to \infty} x_n, y\right).$$

Clearly, a t-norm is continuous if and only if it is both left- and right-continuous.

The nilpotent minimum T^{nM} (mentioned in [57, 58, 21], for a visualization see Figure 3) defined by

$$T^{nM}(x, y) = \begin{cases} 0 & \text{if } x + y \leq 1, \\ \min(x, y) & \text{otherwise}, \end{cases}$$

(24)

is a t-norm which is left-continuous but not right-continuous. The drastic product T_D, on the other hand, is right-continuous but not left-continuous. An example of a t-norm which is neither left-nor right-continuous can be found in Example 6.14(iv).

Clearly, a t-norm T is left-continuous if and only if its dual t-conorm given by (18) is right-continuous, and vice versa.
6 Algebraic properties

In the language of algebra, \(T \) is a t-norm if and only if \((\mathbb{R}, 1, \leq)\) is a fully ordered commutative semigroup with neutral element 1 and annihilator (zero element) 0. Therefore, it is natural to consider additional algebraic properties a t-norm may have.

Our first focus are idempotent and nilpotent elements, and zero divisors. Since for each \(n \in \mathbb{N} \) we trivially have \(0^{(n)}_T = 0 \) and \(1^{(n)}_T = 1 \), only elements of \([0, 1] \) will be considered as candidates for nilpotent elements and zero divisors in the following definition.

Definition 6.1 Let \(T \) be a t-norm.

(i) An element \(a \in [0, 1] \) is called an **idempotent element** of \(T \) if \(T(a, a) = a \). The numbers 0 and 1 (which are idempotent elements for each t-norm \(T \)) are called **trivial** idempotent elements of \(T \), each idempotent element in \([0, 1] \) will be called a **non-trivial** idempotent element of \(T \).

(ii) An element \(a \in [0, 1] \) is called a **nilpotent element** of \(T \) if there exists some \(n \in \mathbb{N} \) such that \(a^{(n)}_T = 0 \).

(iii) An element \(a \in [0, 1] \) is called a **zero divisor** of \(T \) if there exists some \(b \in [0, 1] \) such that \(T(a, b) = 0 \).

The set of idempotent elements of the minimum \(T_M \) equals \([0, 1] \) (actually, \(T_M \) is the only t-norm with this property). For the Łukasiewicz t-norm \(T_L \) as well as for the drastic product \(T_D \), both the set of nilpotent elements and the set of zero divisors equal \([0, 1] \). The minimum \(T_M \) and the product \(T_P \) have neither nilpotent elements nor zero divisors, and \(T_F, T_L, \) and \(T_D \) possess only trivial idempotent elements.

The set of idempotent elements of the nilpotent minimum \(T^{nM} \) defined in (24) equals \(\{0\} \cup \]0.5, 1[, its set of nilpotent elements is \]0, 0.5[, and its set of zero divisors equals \]0, 1[.

The idempotent elements of t-norms can be characterized in the following way, which involves the operation minimum [41, Proposition 2.3].

Proposition 6.2 (i) An element \(a \in [0, 1] \) is an idempotent element of a t-norm \(T \) if and only if for all \(x \in [a, 1] \) we have \(T(a, x) = \min(a, x) \).

(ii) If \(T \) is a continuous t-norm, then \(a \in [0, 1] \) is an idempotent element of \(T \) if and only if for all \(x \in [0, 1] \) we have \(T(a, x) = \min(a, x) \).

Remark 6.3 For arbitrary t-norms some general observations concerning idempotent and nilpotent elements and zero divisors can be formulated.

(i) No element of \]0, 1[can be both idempotent and nilpotent.

(ii) Each nilpotent element \(a \) of a t-norm \(T \) is also a zero divisor of \(T \), but not conversely (\(T^{nM} \) is a counterexample).

(iii) If a t-norm \(T \) has a nilpotent element \(a \) then there is always an element \(b \in [0, 1] \) such that \(b^{(2)}_T = 0 \).
(iv) If \(a \in]0,1[\) is a nilpotent element of a t-norm \(T \) then each number \(b \in]0,a[\) is also a nilpotent element of \(T \), i.e., the set of nilpotent elements of a t-norm \(T \) can either be the empty set (as for \(T_M \) or \(T_P \)) or an interval of the form \(]0,c[\) or \(]0,c[\). The same is true for zero divisors.

Example 6.4 For the t-norm \(T \) [63, Example 5.3.13] given by

\[
T(x, y) = \begin{cases}
0 & \text{if } (x, y) \in [0, 0.5]^2, \\
2(x - 0.5)(y - 0.5) + 0.5 & \text{if } (x, y) \in [0.5, 1]^2, \\
\min(x, y) & \text{otherwise,}
\end{cases}
\]

its set of nilpotent elements and its set of zero divisors both equal \(]0, 0.5[\), and for each element of the family \((T_c)_{c \in [0,1]} \) of t-norms defined by

\[
T_c(x, y) = \begin{cases}
\max(0, x + y - c) & \text{if } (x, y) \in [0, c]^2, \\
\min(x, y) & \text{otherwise,}
\end{cases}
\]

the set of nilpotent elements and the set of zero divisors of \(T_c \) equal \(]0, c[\).

Although the set of nilpotent elements is in general a subset of the set of zero divisors, for each t-norm the existence of zero divisors is equivalent to the existence of nilpotent elements, i.e., a t-norm has zero divisors if and only if it has nilpotent elements [41, Proposition 2.5].

For right-continuous t-norms (in fact, the right-continuity of \(T \) on the diagonal of the unit square is sufficient) it is possible to obtain each idempotent element as the limit of the powers of a suitable \(x \in [0, 1] \) [41, Proposition 2.6].

Proposition 6.5 Let \(T \) be a t-norm which is right-continuous on the diagonal \(\{(x, x) \mid x \in [0, 1]\} \) of the unit square \([0, 1]^2 \), and let \(a \in [0, 1] \). The following are equivalent:

(i) \(a \) is an idempotent element of \(T \).

(ii) There exists an \(x \in [0, 1] \) such that \(a = \lim_{n \to \infty} x_T^{(n)} \).

It is well-known that, for continuous t-norms, its set of idempotent elements is a closed subset of the unit interval \([0, 1]\). As a consequence of [41, Corollary 2.8], this is also true for t-norms which are right-continuous in some specific points of the diagonal of the unit square and, consequently, for t-norms which are right-continuous:

Corollary 6.6 Let \(T \) be a t-norm such that for each \(a \in [0, 1] \)

\[
T(a, a) = a \quad \text{whenever} \quad \lim_{x \searrow a} T(x, x) = a.
\]

Then the set of idempotent elements of \(T \) is a closed subset of \([0, 1]\).
The t-norm T given in (25) shows that the converse implication does not necessarily hold in Corollary 6.6 (just consider the case $a = 0.5$).

Some t-norms have additional algebraic properties. The first group of such properties centers around the notions of strict monotonicity and the Archimedean property, which play an important role in many algebraic concepts, e.g., in semigroups.

Definition 6.7 For an arbitrary t-norm T we consider the following properties:

(i) The t-norm T is said to be *strictly monotone* if

\[(SM) \quad T(x, y) < T(x, z) \quad \text{whenever } x > 0 \text{ and } y < z.\]

(ii) The t-norm T satisfies the *cancellation law* if

\[(CL) \quad T(x, y) = T(x, z) \quad \text{implies } x = 0 \text{ or } y = z.\]

(iii) The t-norm T satisfies the *conditional cancellation law* if

\[(CCL) \quad T(x, y) = T(x, z) > 0 \quad \text{implies } y = z.\]

(iv) The t-norm T is called *Archimedean* if

\[(AP) \quad \text{for each } (x, y) \in]0, 1[^2 \quad \text{there is an } n \in \mathbb{N} \text{ with } x^{(n)}_T < y.\]

(v) The t-norm T has the *limit property* if

\[(LP) \quad \text{for all } x \in]0, 1[: \lim_{n \to \infty} x^{(n)}_T = 0.\]

Example 6.8

(i) The minimum T_M has none of these properties, and the product T_P satisfies all of them. The Łukasiewicz t-norm T_L and the drastic product T_D are Archimedean and satisfy the conditional cancellation law (CCL) and the limit property (LP), but none of the other properties.

(ii) If a t-norm T satisfies the cancellation law (CL) then it obviously fulfills the conditional cancellation law (CCL), but not conversely (see, e.g., T_L).

(iii) The algebraic properties introduced in Definition 6.7 are independent of the continuity: the continuous t-norm T_M shows that continuity implies none of these properties. Conversely, T_D and the non-continuous t-norm T given by

\[
T(x, y) = \begin{cases}
\frac{xy}{2} & \text{if } (x, y) \in]0, 1[^2, \\
\min(x, y) & \text{otherwise,}
\end{cases}
\]

which is strictly monotone and satisfies the cancellation law (CL), are examples demonstrating that none of the algebraic properties implies the continuity of the t-norm under consideration.
The strict monotonicity (SM) of a t-norm is related to the other properties as follows [41, Proposition 2.11]:

Proposition 6.9 Let T be a t-norm. Then we have:

(i) T is strictly monotone if and only if it satisfies the cancellation law (CL).

(ii) If T is strictly monotone then it has only trivial idempotent elements.

(iii) If T is strictly monotone then it has no zero divisors.

The Archimedean property (AP) of a t-norm can be characterized in the following way [41, Theorem 2.12].

Proposition 6.10 For a t-norm T the following are equivalent:

(i) T is Archimedean.

(ii) T satisfies the limit property (LP).

(iii) T has only trivial idempotent elements and, whenever

$$\lim_{x \downarrow x_0} T(x, x) = x_0$$

for some $x_0 \in]0, 1[$, there exists a $y_0 \in]x_0, 1[$ such that $T(y_0, y_0) = x_0$.

Combining the continuity with some algebraic properties, we obtain two extremely important classes of t-norms.

Definition 6.11

(i) A t-norm T is called **strict** if it is continuous and strictly monotone.

(ii) A t-norm T is called **nilpotent** if it is continuous and if each $a \in]0, 1[$ is a nilpotent element of T.

Example 6.12

(i) The product T_P is a strict t-norm, and the Łukasiewicz t-norm T_L is a nilpotent t-norm. In fact [41, Propositions 5.9, 5.10] each strict t-norm is isomorphic to T_P and each nilpotent t-norm is isomorphic to T_L.

(ii) Because of Proposition 6.9(i), a t-norm T is strict if and only if it is continuous and satisfies the cancellation law (CL).

(iii) Each strict and each nilpotent t-norm fulfills the conditional cancellation law (CCL).

The following result gives a number of sufficient conditions for a t-norm to be Archimedean [41, Proposition 2.15].

Proposition 6.13 For an arbitrary t-norm T we have:

(i) If T is right-continuous and has only trivial idempotent elements then it is Archimedean.
(ii) If T is right-continuous and satisfies the conditional cancellation law (CCL) then it is Archimedean.

(iii) If $\lim_{x \to x_0} T(x, x) < x_0$ for each $x_0 \in]0, 1[$ then T is Archimedean.

(iv) If T is strict then it is Archimedean.

(v) If each $x \in]0, 1[$ is a nilpotent element of T then T is Archimedean.

In [43] it was shown that each left-continuous Archimedean t-norm is necessarily continuous.

All the implications between the algebraic properties of t-norms considered so far are summarized and visualized in Figure 4. The following are counterexamples showing that there are no other logical relations between these algebraic properties.

Example 6.14

(i) The Łukasiewicz t-norm T_L shows that an Archimedean t-norm need not be strictly monotone, and that the limit property (LP) does not imply the cancellation law (CL). The product T_P is an example of a continuous Archimedean t-norm without nilpotent elements. The drastic product T_D is an example of a non-continuous Archimedean t-norm for which each $a \in]0, 1[$ is a nilpotent element.

(ii) The t-norm given in (26) shows that a strictly monotone t-norm need not be continuous and, subsequently, not necessarily strict.

(iii) The non-continuous t-norm given in (25) shows that a t-norm with only trivial idempotent elements is not necessarily strictly monotone or Archimedean.

(iv) A t-norm may satisfy both the strict monotonicity (SM) and the Archimedean property (AP) without being continuous and, subsequently, without being strict. One example for this is the t-norm introduced in (26), another t-norm with these features is the following [10]: recall that each $(x, y) \in]0, 1[^2$ is in a one-to-one correspondence with a pair $(\langle x_n \rangle_{n \in \mathbb{N}}, \langle y_n \rangle_{n \in \mathbb{N}})$ of strictly increasing sequences of natural numbers given by the unique infinite dyadic representations

\[x = \sum_{n=1}^{\infty} \frac{1}{2^n} \quad \text{and} \quad y = \sum_{n=1}^{\infty} \frac{1}{2^n} \]
of the numbers \(x \) and \(y \), respectively. Using this notion, then the function \(T: [0, 1]^2 \to [0, 1] \) given by

\[
T(x, y) = \begin{cases}
\sum_{n=1}^{\infty} \frac{1}{2^{x_n+y_n}} & \text{if } (x, y) \in]0, 1[^2, \\
\min(x, y) & \text{otherwise},
\end{cases}
\]

is a t-norm which is strictly monotone, Archimedean, and left-continuous on \(]0, 1[^2 \). However, \(T \) is discontinuous in each point \((x, y) \in]0, 1[^2 \) where at least one coordinate is a dyadic rational number (i.e., of the form \(\frac{m}{2^n} \) for some \(m, n \in \mathbb{N} \) with \(m \leq 2^n \); observe that the set of discontinuity points of \(T \) is dense in \([0, 1]^2 \). Consequently, \(T \) is not strict.

(v) A modification of the t-norm in (iv) yields a t-norm which is strictly monotone but neither Archimedean nor continuous (compare [67]): keeping the notation of (iv), the function \(T: [0, 1]^2 \to [0, 1] \), which is defined by

\[
T(x, y) = \begin{cases}
\sum_{n=1}^{\infty} \frac{1}{2^{x_n+y_n-n}} & \text{if } (x, y) \in]0, 1[^2, \\
0 & \text{otherwise},
\end{cases}
\]

is a t-norm which is strictly monotone, left-continuous on \([0, 1]^2 \), but discontinuous in each point \((x, y) \in]0, 1[^2 \) where at least one coordinate is a dyadic rational number. However, \(T \) is not Archimedean.

(vi) The function \(T: [0, 1]^2 \to [0, 1] \) defined by

\[
T(x, y) = \begin{cases}
x y & \text{if } (x, y) \in [0, 0.5[^2, \\
2(x - 0.5)(y - 0.5) + 0.5 & \text{if } (x, y) \in [0.5, 1[^2, \\
\min(x, y) & \text{otherwise},
\end{cases}
\]

is a t-norm which has only trivial idempotent elements, no zero divisors, is not Archimedean and not strictly monotone.

(vii) Recall that each \(x \in [0, 1] \) has a unique infinite dyadic representation \(x = \sum_{n=1}^{\infty} \frac{1}{2^{x_n}} \), where \((x_n)_{n \in \mathbb{N}} \) is a strictly increasing sequence of natural numbers, and consider the function \(f: [0, 1] \to [0, 1] \) defined by

\[
f(x) = \begin{cases}
\sum_{n=1}^{\infty} \frac{2}{2^{x_n}} & \text{if } x = \sum_{n=1}^{\infty} \frac{1}{2^{x_n}}, \\
0 & \text{if } x = 0.
\end{cases}
\]

Then the function \(T: [0, 1]^2 \to [0, 1] \) (introduced in [66], compare [41, Example 3.21]) given by

\[
T(x, y) = \begin{cases}
f(f^{-1}(x) \cdot f^{-1}(y)) & \text{if } (x, y) \in [0, 1]^2, \\
\min(x, y) & \text{otherwise},
\end{cases}
\]
where \(f^{-1} : [0, 1] \rightarrow [0, 1] \) is the pseudo-inverse of \(f \) (observe that \(f^{-1} \) is also known as Cantor function) given by

\[
f^{-1}(x) = \sup\{z \in [0, 1] \mid f(z) < x\},
\]

is an Archimedean t-norm which is continuous in the point \((1, 1)\), but which has no zero divisors and which is not strictly monotone. A more complicated example of this type is the Krause t-norm [41, Appendix B.1], which is also a non-continuous t-norm with a continuous diagonal, thus providing a counterexample to an open problem stated in [63].

It turns out that among the continuous Archimedean t-norms there are only two classes: the nilpotent and the strict t-norms. The existence of nilpotent elements (or zero divisors) provides a simple check for that [41, Theorem 2.18].

Theorem 6.15 Let \(T \) be a continuous Archimedean t-norm. Then the following are equivalent:

(i) \(T \) is nilpotent.

(ii) There exists some nilpotent element of \(T \).

(iii) There exists some zero divisor of \(T \).

(iv) \(T \) is not strict.

Remark 6.16 (i) A consequence of Proposition 6.10 is that a t-norm \(T \) is Archimedean if and only if it fulfills the limit property \((LP)\). Note that, e.g., for topological semigroups, the Archimedean property is usually defined by means of the limit property \((LP)\) (see [49, 12]).

(ii) An immediate consequence of Theorem 6.15 and Example 6.12(iii) is that a continuous t-norm is Archimedean if and only if it satisfies the conditional cancellation law \((CCL)\).

(iii) From Theorem 6.15 it follows that a continuous t-norm \(T \) is strict if and only if for each \(x \in [0, 1] \) the sequence \((x_T^{(n)})_{n \in \mathbb{N}} \) is strictly decreasing and converges to 0. Again, this is the usual way to define the strictness of topological semigroups.

The strict monotonicity of t-conorms as well as strict, Archimedean and nilpotent t-conorms can be introduced using the dualities \((18)\) and \((19)\). Without presenting all the technical details, we only mention that it suffices to interchange the words t-norm and t-conorm and the roles of 0 and 1, respectively, and sometimes to reverse the inequalities involved, in order to obtain the proper definitions and results for t-conorms. For instance, a t-conorm \(S \) is strictly monotone if

\[
(SM^*) \quad S(x, y) < S(x, z) \quad \text{whenever } x < 1 \text{ and } y < z.
\]

The Archimedean property is an example where it is necessary to reverse the inequality, so a t-conorm \(S \) is Archimedean if

\[
(AP^*) \quad \text{for each } (x, y) \in [0, 1]^2 \quad \text{there is an } n \in \mathbb{N} \text{ such that } x_S^{(n)} > y.
\]
Algebraic properties

<table>
<thead>
<tr>
<th>without zero divisors</th>
<th>with zero divisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 6.14(vi)</td>
<td>Archimedean t-norms</td>
</tr>
<tr>
<td>Example 6.14(vii)</td>
<td></td>
</tr>
<tr>
<td>Example 6.14(vii)</td>
<td></td>
</tr>
<tr>
<td>Example 6.8(ii)</td>
<td></td>
</tr>
<tr>
<td>T<sub>p</sub></td>
<td></td>
</tr>
<tr>
<td>T<sub>L</sub></td>
<td></td>
</tr>
<tr>
<td>T<sub>D</sub></td>
<td></td>
</tr>
<tr>
<td>T<sub>nM</sub></td>
<td></td>
</tr>
<tr>
<td>((0.5, 1, T<sub>D</sub>))</td>
<td>(0, 0.5, T<sub>L</sub>)</td>
</tr>
</tbody>
</table>

Figure 5: Different classes of t-norms, each of them with a typical representative: within the central circle one finds the continuous t-norms, and the classes of strict and nilpotent t-norms are marked in grey (for the definition of the ordinal sums ((0, 0.5, T_L)) and ((0.5, 1, T_D)) see [41, Definition 3.44])

Of course, a t-conorm fulfills any of these properties if and only if the dual t-norm fulfills it.

Finally let us have a brief look at the distributivity of t-norms and t-conorms.

Definition 6.17 Let T be a t-norm and S be a t-conorm. Then we say that T is distributive over S if for all x, y, z ∈ [0, 1]

\[
T(x, S(y, z)) = S(T(x, y), T(x, z)),
\]

and that S is distributive over T if for all x, y, z ∈ [0, 1]

\[
S(x, T(y, z)) = T(S(x, y), S(x, z)).
\]

If T is distributive over S and S is distributive over T, then (T, S) is called a distributive pair (of t-norms and t-conorms).

In the context of distributivity the minimum T_M and the maximum S_M play a distinguished role (compare also [8]).

Proposition 6.18 Let T be a t-norm and S a t-conorm. Then we have:

(i) S is distributive over T if and only if T = T_M.

(ii) T is distributive over S if and only if S = S_M.

(iii) (T, S) is a distributive pair if and only if T = T_M and S = S_M.
7 Historical remarks

The history of triangular norms started with K. Menger’s paper “Statistical metrics” [47]. The main idea was to study metric spaces where probability distributions rather than numbers are used to model the distance between the elements of the space in question. Triangular norms naturally came into the picture in the course of the generalization of the classical triangle inequality to this more general setting. The original set of axioms for t-norms was somewhat weaker, including among others also triangular conorms.

Consequently, the first field where t-norms played a major role was the theory of probabilistic metric spaces (as statistical metric spaces were called after 1964). B. Schweizer and A. Sklar [59, 60, 61] provided the axioms of t-norms, as they are used today, and a redefinition of statistical metric spaces given in A. N. Šerstnev [64] led to a rapid development of the field. Many results concerning t-norms were obtained in the course of this development, most of which are summarized in the monograph [63] of B. Schweizer and A. Sklar.

Mathematically speaking, the theory of (continuous) t-norms has two rather independent roots, namely, the field of (specific) functional equations and the theory of (special topological) semigroups.

Concerning functional equations, t-norms are closely related to the equation of associativity (which is still unsolved in its most general form). The earliest source in this context seems to be N. H. Abel [1], further results in this direction were obtained in L. E. J. Brouwer [9], É. Cartan [13], J. Aczél [2], and M. Hosszú [32]. Especially J. Aczél’s monograph [3, 4] had (and still has) a big impact on the development of t-norms. The main result based on this background was the full characterization of continuous Archimedean t-norms by means of additive generators in C. M. Ling [45] (for the case of strict t-norms see [61]).

Another direction of research was the identification of several parameterized families of t-norms as solutions of some (more or less) natural functional equations. The perhaps most famous result in this context has been proven in M. J. Frank [23], showing that the family of Frank t-norms and t-conorms (together with ordinal sums thereof) are the only solutions of the so-called Frank functional equation.

The study of a class of compact, irreducibly connected topological semigroups was initiated in W. M. Faucett [20], including a characterization of such semigroups, where the boundary points (at the same time annihilator and neutral element, respectively) are the only idempotent elements and where no nilpotent elements exist. In the language of t-norms, this provided a full representation of strict t-norms. In P. S. Mostert and A. L. Shields [49] all such semigroups, where the boundary points play the role of annihilator and neutral element, were characterized (see also [55]). Again in the language of t-norms, this provided a representation of all continuous t-norms [45].

Several construction methods from the theory of semigroups, such as (isomorphic) transformations (which are closely related to generators mentioned above) and ordinal sums (based on the work of A. H. Clifford [14], and foreshadowed in F. Klein-Barmen [37] and A. C. Climescu [15]), have been successfully applied to construct whole families of t-norms from a few given prototypical examples [62]. Summarizing, starting with only three t-norms, namely, the minimum T_M, the product T_P and the Łukasiewicz t-norm T_L, it is possible to construct all continuous t-norms by means of isomorphic transformations and ordinal sums [45].
Non-continuous t-norms, such as the drastic product T_D, have been considered from the very beginning [60]. In [45] even an additive generator for this t-norm was given. However, a general classification of non-continuous t-norms is still not known.

In his seminal paper “Fuzzy sets”, L. A. Zadeh [74] introduced the theory of fuzzy sets as a generalization of the classical Cantorian set theory whose logical basis is the two-valued Boolean logic (compare also D. Klaua [35, 36]). It was suggested in [74] to use the minimum T_M, the maximum S_M, and the standard negation N_s to model the intersection, union, and complement of fuzzy sets, respectively. However, also the product T_P, the probabilistic sum S_P and the Łukasiewicz t-conorm S_L (the latter in a restricted form) were already mentioned as possible candidates for intersection and union of fuzzy sets, respectively, in this very first paper.

The use of general t-norms and t-conorms for modeling the intersection and the union of fuzzy sets seems to have at least two independent roots. On the one hand, there was a series of seminars devoted to this topic, held in the seventies by E. Trillas at the Departament de Matemàtiques i Estadística de l’Escola Tècnica Superior d’Arquitectura of the Universitat Politecnica de Barcelona. On the other hand, there were suggestions by U. Höhle during the First International Symposium on Policy Analysis and Information Systems (Durham, N.C., 1979) and the First International Seminar on Fuzzy Set Theory (Linz, Austria, 1979). The canonical reason for this was that the axioms of commutativity, associativity, monotonicity as well as the boundary conditions were (and still are) generally considered as reasonable, even indispensable properties of meaningful extensions of the Cantorian intersection and union (a notable exception from this are the compensatory operators which may be non-associative, compare H.-J. Zimmermann and P. Zysno [75], J. Dombi [16], M. K. Luhandjula [46], I. B. Türksen [70], C. Alsina et al. [5], R. R. Yager and D. P. Filev [72], and E. P. Klement et al. [40]).

Very early traces of (some slight variations of) t-norms and t-conorms in the context of integration of fuzzy sets with respect to non-additive measures can be found in the PhD thesis of M. Sugeno [68], first concepts for a unified theory of fuzzy sets (based on T_M and S_M) were presented in C. V. Negoita and D. Ralescu [50] and S. Gottwald [24, 25, 26]. The first papers using general t-norms and t-conorms for operations on fuzzy sets were J. M. Anthony and H. Sherwood [7], C. Alsina et al. [6], D. Dubois [17], and E. P. Klement [38, 39] (see also D. Dubois and H. Prade [19]). A full characterization of strong negations as models of the complement of fuzzy sets can be found in E. Trillas [69].

Acknowledgment

This work was supported by two European actions (CEEPUS network SK-42 and COST action 274) as well as by grants VEGA 1/8331/01 and MNTRS-1866.

References

References

