

Unit 16

Feed-Forward Artificial Neural Networks

Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer

Introduction

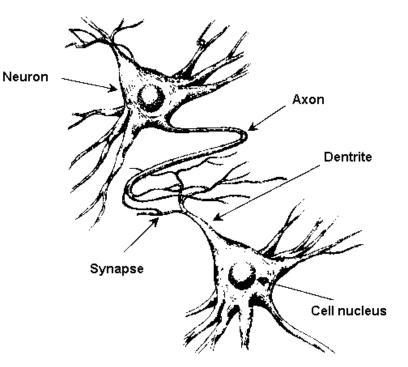
- The most universal and versatile classifier is still the human brain
- Starting in the 1940ies, ideas for creating intelligent systems by mimicking the function of nerve/brain cells have been developed
- An artificial neural network is a parallel processing system with small computing units (neurons) that work similarly to nerve/brain cells

Neurophysiological Background

(cf. [Nauck, Klawonn & Kruse, 1994])

- Every neuron (nerve or brain cell) has a certain electric charge
- Electric charge of connected neurons may raise or lower this charge (by means of transmission of ions through the synaptic interface)
- As soon as the charge reaches a certain threshold, an electric impulse is transmitted through the cell's axon to the neighboring cells
- In the synaptic interfaces, chemicals called neurotransmitters control the strength to which an impulse is transmitted from one cell to another

Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer



Feed-Forward Neural Networks

- Note that this is only a very brief overview of the topic!
- We restrict to *feed-forward neural networks*, i.e. simple static input-output systems without any feedback loops between neurons or system dynamics
- Within this class, we consider perceptrons and multi-layer perceptrons (along with the backpropagation algorithm)

Perceptrons

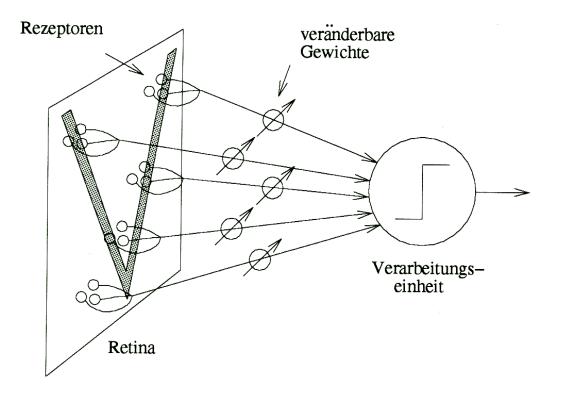
 A perceptron is a simple threshold unit with the following I/O function:

$$f_{\mathbf{w},\theta}(x_1,\ldots,x_p) = \begin{cases} 1 & \text{if } \sum_{i=1}^p w_i \cdot x_i > \theta \\ 0 & \text{otherwise} \end{cases}$$
(1)

In analogy to the biological model, the inputs x_i correspond to the charges received from connected cells through the dentrites, the weights w_i correspond to the properties of the synaptic interface, and the output corresponds to the impulse that is sent through the axon as soon as the charge exceeds the threshold θ

The Retina Metaphor

(cf. [Nauck, Klawonn & Kruse, 1994])



The Perceptron Learning Algorithm

- 1. Given: data set $\{(\mathbf{x}_i, y_i) \mid i = 1, ..., n\}$, where $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{0, 1\}$; learning rate σ ; initial weight vector \mathbf{w}
- 2. For k = 1, ..., n do:
 - If $f_{\mathbf{w},\theta}(\mathbf{x}_k) = 0$ and $y_k = 1$
 - $\mathbf{w} := \mathbf{w} + \sigma \cdot \mathbf{x}_k$
 - $\theta := \theta \sigma$
 - Else if $f_{\mathbf{w},\theta}(\mathbf{x}_k) = 1$ and $y_k = 0$
 - $\mathbf{w} := \mathbf{w} \sigma \cdot \mathbf{x}_k$
 - $\theta := \theta + \sigma$
- 3. Return to 2. if stopping condition not fulfilled
- 4. Output: vector of weights $\mathbf{w} \in \mathbb{R}^p$, threshold θ

Perceptrons and Linear Separability

In case that the two sets

$$X_0 = \{\mathbf{x}_i \mid y_i = 0\} \text{ and } X_1 = \{\mathbf{x}_i \mid y_i = 1\}$$

are linearly separable in \mathbb{R}^p , the perceptron learning algorithm terminates and finally solves the learning task

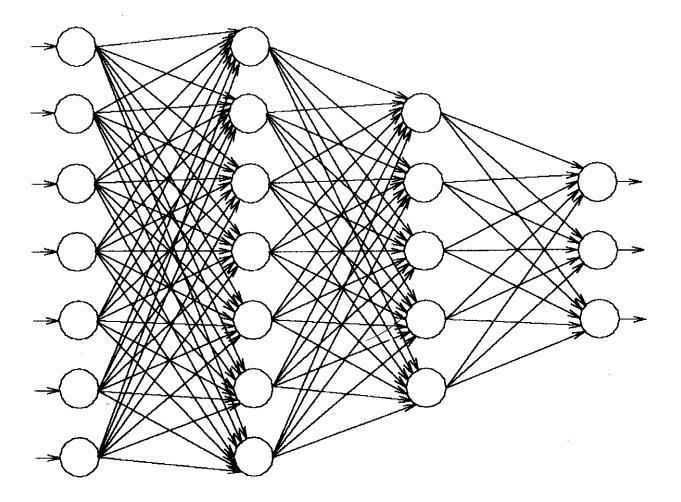
- Note that the solution is not unique and that the learning algorithm just gives one arbitrary solution
- Perceptrons cannot solve classification tasks that are not linearly separable!

Multi-Layer Perceptrons

- The only solution to the limitation of linear separability is to introduce intermediate layers
- A multi-layer perceptron is a feed-forward artificial neural network consisting of a certain number of layers of perceptrons
- The output of such a network is computed in the following way: The outputs of the first layer are initialized with the net input (*x*₁,...,*x_p*), then the outputs of the other neurons are computed layer by layer using Formula (1)
- The "only problem" is how to find appropriate weights and thresholds that solve a given classification problem

Multi-Layer Perceptrons (cont'd)

(cf. [Nauck, Klawonn & Kruse, 1994])



Some Historical Remarks

- Minsky and Papert, the pioneers of perceptrons, conjectured in the late 1960ies that a training algorithm for multi-layer perceptrons—even if one could be found—is computationally infeasible and that, therefore, the study of multi-layer perceptrons is not worthwhile
- Because of this conjecture, the study of multi-layer perceptrons was almost halted until the mid of the 1980ies

Some Historical Remarks (cont'd)

- In 1986, Rumelhart and McClelland first published the backpropagation algorithm and, thereby, proved Minsky and Papert wrong
- It turned out later that the backpropagation algorithm had already been discovered by Werbos in 1974 in his dissertation

Continuous Activation Functions

 The first important idea is to replace the discontinuous threshold function in (1) by a differentiable threshold-like (sigmoid) function φ. Then the output of a neuron is computed as

$$f_{\mathbf{w},\theta}(x_1,\ldots,x_p) = \varphi \left(\sum_{i=1}^p w_i \cdot x_i + \theta\right)$$
(2)

A common choice is the *logistic function*, i.e. (β is a predefined steepness parameter)

$$f_{\mathbf{w},\theta}(x_1,\ldots,x_p) = \left(1 + \exp\left(-\beta \cdot \left(\sum_{i=1}^p w_i \cdot x_i + \theta\right)\right)\right)^{-1}$$

Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer

Network Topology (1/3)

- Assume that the network has m distinct layers. Let us denote the set of neurons in the *j*-th layer with U_j
- The first layer (input layer) has |U₁| = p neurons. The output of the k-th input neuron is just the k-th component of the input vector. So, input neurons just propagate the input leaving it unchanged.
- The output layer has $|U_m| = K$ neurons

Network Topology (2/3)

- Given a neuron u, the set of preceding neurons it receives input from is denoted with U(u) and the set of consecutive neurons it sends output to is denoted with $\overline{U}(u)$
- For the sake of simplification, we can interpret the bias θ as a weight as well: let us introduce an auxiliary neuron ũ that always produces a constant output 1; assume that ũ sends output to every neuron in the network except the ones in the input layer
- Denote $U = U_1 \cup \cdots \cup U_m \cup \{\tilde{u}\}$

Network Topology (3/3)

- Special properties:
 - if $u \in U_1$, $\underline{U}(u) = \emptyset$
 - if $u \in U_m$, $\overline{U}(u) = \emptyset$
 - if $u \in U_j$ (for some $j = 1, \ldots, m-1$), $\overline{U}(u) = U_{j+1}$
 - if $u \in U_j$ (for some j = 2, ..., m), $\underline{U}(u) = U_{j-1} \cup \{\tilde{u}\}$ • $\overline{U}(\tilde{u}) = U \setminus U_1$, $\underline{U}(\tilde{u}) = \emptyset$
- Given two neurons u, v such that $v \in \overline{U}(u)$ (and, therefore, $u \in \underline{U}(v)$, the weight connecting u and v is denoted with W(u, v)

Computing the Output

- Assume we are given an input vector $\mathbf{x} = (x_1, \dots, x_p)$
- Let us denote the output of a neuron u with o_u
- Then the output is computed layer by layer in the following way:
 - if u is the k-th neuron in the input layer U_1 , then $o_u = x_k$
 - $o_{\tilde{u}} = 1$
 - if $u \in U_j$ for some $j = 2, \ldots, m$:

$$o_u = \varphi(\mathsf{net}_u), \text{ where } \mathsf{net}_u = \sum_{v \in \underline{U}(u)} o_v \cdot W(v, u)$$

The Backpropagation Algorithm (Basic Variant)

- 1. Given: data set $X = \{(\mathbf{x}_i, \mathbf{y}_i) \mid i = 1, ..., n\}$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $\mathbf{y}_i \in [0, 1]^K$, learning rate σ , some network topology (with initial weights), activation function φ
- 2. Select some input $\mathbf{x} \in X$ and propagate it through the network to compute all outputs o_u ($u \in U$)
- 3. For all $u_k \in U_m$ (u_k is the k-th output neuron) do:

•
$$\delta u_k := \varphi'(\operatorname{net}_k) \cdot (y_k - o_{u_k})$$

4. For $j = m - 1, \ldots, 2$, step -1 do:

• For all
$$u \in U_j$$
 do:
• $\delta_u := \varphi'(\operatorname{net}_u) \cdot \sum_{v \in \overline{U}(u)} \delta_v \cdot W(u, v)$

5. For all $v \in U_2 \cup \cdots \cup U_m$ and all corresponding $u \in \underline{U}(v)$:

•
$$W(u,v) := W(u,v) + \sigma \cdot o_u \cdot \delta_v$$

- 6. Return to 2. if stopping condition not fulfilled
- 7. Output: set of weights

Interpreting the Backpropagation Algorithm

- The term backpropagation is motivated by the fact that the errors $(y_k o_{u_k})$ are backwards propagated through the network (by means of the values δ_u)
- This trick solves the problem that we do not know a desired output for neurons in intermediate layers
- It can be shown that one backpropagation step is one gradient descent step to minimize the error measure

$$E_{\mathbf{x}} = \sum_{k=1}^{K} (y_k - o_{u_k})^2,$$

i.e. the squared error w.r.t. sample ${\bf x}$

Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer

Enhancing the Backpropagation Algorithm

- Different samples may suggest different (contradicting) changes to the weights; in order to avoid instable oscillating behaviors, low learning rates must be used
- Convergence of this basic variant, therefore, is usually slow
- Batch training is an elegant solution to this issue

The Backpropagation Algorithm (Batch Variant)

- 1. Given: data set $X = \{(\mathbf{x}_i, \mathbf{y}_i) \mid i = 1, ..., n\}$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $\mathbf{y}_i \in [0, 1]^K$, learning rate σ , some network topology (with initial weights), activation function φ
- 2. Set all $\Delta W(u, v) = 0$ ($u \in U \setminus U_m$ and $v \in U_2 \cup \cdots \cup U_m$)
- 3. For all $\mathbf{x} \in X$
 - (a) propagate ${\bf x}$ through the network to compute all outputs $o_{{m u}}$ ($u\in U$)

(b) For all
$$u_k \in U_m$$
 (u_k is the k -th output neuron):

•
$$\delta u_k := \varphi'(\operatorname{net}_{u_k}) \cdot (y_k - o_{u_k})$$

(c) For
$$j = m - 1 \cdots, 2$$
, step -1 , do:

For all
$$u \in U_j$$
 do
• $\delta_u := \varphi'(\operatorname{net}_u) \cdot \sum_{v \in \overline{U}(u)} \delta_v \cdot W(u, v)$

- (d) For all $v \in U_2 \cup \cdots \cup U_m$ and all corresponding $u \in \underline{U}(v)$: • $\Delta W(u,v) := \Delta W(u,v) + \sigma \cdot o_u \cdot \delta_v$
- 4. For all $v \in U_2 \cup \cdots \cup U_m$ and all corresponding $u \in \underline{U}(v)$:
 - $W(u,v) := W(u,v) + \Delta W(u,v)$
- 5. Return to 2. if stopping condition not fulfilled
- 6. Output: set of weights

Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer

Interpreting the Backpropagation Algorithm (cont'd)

It can be shown that the batch variant of the backpropagation algorithm performs a gradient descent with respect to the global error measure

$$E = \sum_{\mathbf{x}\in X} E_{\mathbf{x}} = \sum_{\mathbf{x}\in X} \sum_{k=1}^{K} (y_k - o_{u_k})^2,$$

i.e. the sum of squared errors w.r.t. the sample set \boldsymbol{X}

Multi-Layer Perceptrons Applied to Classification

- Assume we are given a data set data set $X = \{(\mathbf{x}_i, y_i) \mid i = 1, ..., n\}$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \{c_1, ..., c_K\}$
- Then any multi-layer perceptron with p input neurons and K output neurons can, in principle, be used to solve the classification problem given by X
- In order to bring the data set into the right format, we replace the desired outputs y_i by binary vectors y; if $y_i = c_l$ then

$$\mathbf{y}_i = (0, \ldots, 0, \underbrace{1}_{l-\text{th pos.}}, 0, \ldots, 0)$$

Multi-Layer Perceptrons Applied to Pattern Classification

- Multi-layer perceptrons can be used with feature values as inputs (as in all previous considerations as well)
- However, they can be used on (downsampled) image data as well, where the number of input neurons must be the number of pixels
- Notorious example: character recognition

Multi-Layer Perceptrons Applied to Regression

- Assume we are given a data set data set $X = \{(\mathbf{x}_i, y_i) \mid i = 1, ..., n\}$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $\mathbf{x}_i \in \mathbb{R}^K$ (in the simplest case K = 1)
- It is clear that only multi-layer perceptron with p input neurons and K output neurons can be used to solve the classification problem given by X

Multi-Layer Perceptrons Applied to Regression (cont'd)

- There are two ways to make multi-layer perceptrons usable for regression:
 - Transforming/scaling all desired output vectors \mathbf{y}_i to $[0, 1]^K$
 - Using so-called linear neurons in the output layer, i.e., for $u \in U_m$, $\varphi(x) = x$ is used, while the other neurons remain unchanged
 - The backpropagation algorithm can be left unchanged for both variants
- Multi-layer perceptrons are universal approximators, however, this is only a theoretical result with minor practical value

Overfitting, Accuracy, Generalization

- In the architecture presented here, the numbers of intermediate layers and neurons have to be fixed a priori
- Too many intermediate neurons may result in overfitting effects
- Too few intermediate neurons usually result in a weak classification/regression accuracy
- The methods presented in Unit 12 (accuracy measures, holdout, cross validation) can be used to measure these effects, but only a posteriori

Advantages of Artificial Neural Networks

- Universal
- Easy to apply

Disadvantages of Artificial Neural Networks

- Black box
- Large effort for training
- Design variables can only be chosen heuristically/by trial and error