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New results in microarray image analysis at
single molecule level

L. Muresan, E.P Klement1, J. Jacak, G. Schütz1,2, and J. Hesse3

1 Department of Knowledge-based Mathematical Systems, Johannes Kepler
University, Linz,

2 Biophysics Institute, Johannes Kepler University, Linz,
3 Upper Austrian Research. ?

Abstract. In this work we present the analysis of high resolution mi-
croarray images obtained via the Nanoreader scanning system. Nanore-
ader via fast, high resolution and highly sensitive imaging, allows the
detection of single molecule signals on the microarray slide. Through
this system one gains a better understanding of the sample, even at very
low concentration, by ignoring background and dye effects.
The novel technique generates the need for a new kind of analysis for
the microarray image data, both for detection of signal and estimation
of cDNA concentration. Detection of single molecules is performed via
shrinkage of undecimated wavelet coefficients and using the positions of
the single molecules, an estimation of the signal concentration is per-
formed, based on mixture models. Two alternatives are considered in
order to solve the parameter estimation task: a fast method of moments,
(MOM) and a maximum likelihood based on Expectation-Maximization
(EM) approach. The performance of the two approaches is discussed and
finally, results of experiments on simulations and real data are provided.
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CARDIAC 4D IMAGE SEQUENCE
REGISTRATION USING BRIDGING POINTS

Alfredo Lopez1,2, Karl D. Fritscher2, Thomas Trieb3,
Rainer Schubert2 and Julian Mattes1

Abstract
In this paper we present a new approach for the registration of two cardiac 4D image sequences. In
a first step we establish a temporal association between the sequences. For one (or two) selected
pair(s) of associated points in time of both sequences, which we call the bridging points in time, we
allow the use of additional information such as the semi-automatic segmentation of the investigated
structure. We establish the 3D inter-subject registration for each other pair of associated points
in time exploiting (1) the inter-subject registration for the bridging pair of points in time, (2) the
intra-subject motion calculation in both sequences between the currently considered points in time
and the bridging pair, and (3) the concatenation of the obtained transformations. We formulate a
cost functional integrating the similarity measures comparing the images of the bridging pair(s) of
points in time and of the current pair of points in time, respectively. We evaluated our algorithm on 8
healthy volunteers leading to 28 inter-subject combinations and we analyze the behavior for different
parameter settings weighting differently the involved pairs of points in time. The approach based on
the bridging pairs outperforms a direct 3D registration of corresponding points in time, in particular
in the right ventricle we gain up to 33% in registration accuracy. Starting with a cost functional
taking into account the similarity at the first bridging point in time, the results improve stepwise by
integrating, additionally, first, information from the current pair of points in time and secondly, from
a second bridging point in time. Finally, we show an example visualizing, for different pairs of initial
points in time, a comparison of the motion fields of two subjects.

1. Introduction

The need to compare the motion of anatomical structures belonging to different individuals or their
shape at different selected corresponding points in time may occur in very different situations when
studying kinetic processes of medical or biological objects [15]. For instance, this comparison is
necessary to see how the motion of a healthy structure differs from the motion of the same kind
of structure but in a pathological state [9]. If the considered anatomical structure is the heart, the
comparison allows to investigate the shape variation across subjects at the initial points of the seven
different phases of the cardiac cycle [8], to compare the motion fields starting from these initial points
(cf., Fig. 6), and to correlate shape differences to specific characteristics of the motion occurring in the
considered phase. For different heart diseases, for instance myocarditis, differences in the motion of
the heart compared to healthy subjects can be observed. However, without a quantitative comparison
of the motion as described above a precise characterization of these differences is not possible. In
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particular, a quantitative comparison would be helpful for the assessment of the evolution of the
disease when comparing the motion of the heart of the same patient at different stages of the disease.
Another task is the correction of motion artifacts [21] where the composed motion of an object moving
by itself and moved by its moving environment shall be compared only with the motion of the object
itself (for instance, in case of respiratory artifacts when considering cardiac motion). This correction
can be based on a statistical representation of the motion, in particular on a 4D or motion atlas [3, 17,
13].

When dealing with sequences of 3D (or 2D) images a 4D (or 3D, respectively) registration of the
image sequences is essential for the local comparison of motion [2] or the analysis of shape variation
at selected points in time (e.g., the initial points of the different phases of the cardiac cycle mentioned
above). 4D registration means to register not only 3D images of a time sequence but to register two
different time sequences as a whole, called a “spatio-temporal alignment” [2, 14]. It implies a tem-
poral alignment of the sequences as well as a spatial alignment. The latter mapping allows a direct
local comparison of the (previously calculated) motion at anatomically corresponding points for the
two investigated subjects (see Fig. 6). Additionally, typical models for the analysis of shape varia-
tion [4, 5] require the knowledge about inter-subject correspondence as provided by this alignment.
4D registration has also been used to compare sequences acquired with different modalities [23], for
instance gated cardiac SPECT images with MR images [6, 1]. For building statistical motion rep-
resentations [3, 17] Peperides et al. [14] proposed a spatio-temporal inter-sequence registration in
which the (global and local) spatial transformation is the same for all points in time. A more detailed
description of the related work can be found in Lopez et al. [10].

In this paper we consider the spatio-temporal alignment of the cardiac cycle where the spatial com-
ponent may be different for each point in time. After a linear temporal association, we focus on
the individual spatial 3D inter-subject registration for each pair of associated points in time. For a
given pair of points in time we use 4D information by exploiting the consideration that the spatial
transformation relating the two subjects at this pair of points in time is also determined by the spa-
tial transformation for any other pair of points in time together with the intra-subject transformation
relating the considered pairs of points in time (c.f., Fig. 2). Our approach uses intra-subject and
inter-subject free-form registration. In the next subsection we detail some aspects of the related work
mentioned above and delimit it from the work presented in this paper. A precise problem formulation
is provided in Section 2. together with the presentation of the registration framework for intra- and
inter-sequence analysis used in this paper. We describe our new approach in Section 3.We present our
results in Section 4. before discussing them and concluding in Section 5.

2. Problem Formulation and Registration Framework

In contrast to purely spatial registration, usually, a natural condition should be imposed for spatio-
temporal registration, where we aim to align two different image sequences. If (~x, t), with ~x ∈
IRd, t ∈ IR, where d is the dimension of the space (in our case d = 3), denotes a point ~x in the image
space at time t, the transformation Ts.t. : IRd× IR → IRd× IR between image sequences should satisfy
the equation

Ts.t.(~x, t) = (Tspat(~x, t), Ttemp(t)), (1)

where Ttemp is a monotonous increasing function and where Tspat(·, t) maps the image space onto
itself. This formulation of our 4D registration problem ensures that different regions of an image
stack in one sequence will be mapped to a single stack in the other sequence. The spatio-temporal



transform used in this paper differs from the one presented in (Perperidis et al. 2005) [14] where its
spatial component depends uniquely on the spatial argument ~x and hence the same spatial transform
is applied for each point in time.

If we consider a fixed point in time t and a given associated point in time Ttemp(t) the calculation
of Tspat(·, t) may be achieved using purely spatial inter-patient registration. In our approach we
use spatial registration also for intra-patient motion estimation. The problem of spatial registration
is usually formulated as an optimization problem: Given a source image I defined over a domain
ΩI ⊆ R3 and a target image J defined over a domain ΩJ ⊆ R3 registering I to J consist of finding
a parametric mapping T (·;p∗) : ΩJ → ΩI within a certain class of transforms (called transformation
model) such that its associated parameter p∗ minimizes a certain cost functional C(p) = −S(p) +
λR(p), i.e.

p∗ = arg min
p∈P

−S(p) + λR(p). (2)

The mapping T (p∗) leads (together with a subsequent gray value interpolation procedure) to a trans-
formed source image [22]. Hence, we call the source image I also moving image and, correspond-
ingly, we call the target image J fixed image. The functional C is composed by a similarity term S(p)
which measures how well the transformed moving image resembles the fixed image J and a regu-
larization term R(p) ensuring the smoothness of the transformation. The regularization parameter
λ ≥ 0 controls the trade-off between these two terms.

A similarity measure and a transformation model which have been successfully used for intra- and
inter-subject registration [14] are the normalized mutual information (NMI) according to Studholme
et al. [19], and tri-linear B-Splines [18]. The latter is implemented in the Insight Segmentation and
Registration Toolkit (ITK) [22] using a B-spline interpolation kernel. We set the control points of the
B-splines in a multi-resolution scheme. Equally, we used the ITK implementation for calculating the
entropies [11] involved in the NMI measure and the L-BFGS-B minimization package as suggested in
(Mattes et al. 2003) [11] and implemented in ITK. As regularization term we implemented the second
order stabilizer [20]. For intra-subject registration of a given reference point in time to any other point
in time we register the reference image stepwise to each successive image until the desired point in
time is reached by initializing each registration process with the transformation resulting from the
previous step. In our 4D analysis approach, presented in the next section, we used these components
as well for intra-subject registration as well as for inter-subject registration.

3. Our Approach for 3D Registration Using 4D Information

3.1. Motivation

The images taken at comparable points in time of time sequences of different subjects may represent
strong differences as well in the anatomy of the considered structure as well in the acquisition quality.
Fig. 1(a,b) shows for each of two healthy volunteers (see Section 4.1.) a 2D slice of the respective
3D image of the heart obtained at the moment of the R-wave (the first point in time of our image
sequences). In the image in Fig. 1(a) a structure not belonging to the right ventricle is visible close
to the right ventricle which appears in a different way in Fig. 1(b). For this reason a strong mismatch
occurs after normalized mutual information (NMI) based B-Spline registration as shown in Fig. 1(c).
However, if we mask the image after a segmentation of the endocardial surface (the values outside
this surface are set to gray-level 0 by the masking, the other values are not changed) we obtain a good
result with the same registration technique also in the critical regions of the right ventricle (Fig. 1(d)).



Figure 1. Normalized mutual information (NMI) based 3D inter-subject registration of the hearts for two subjects
at the moment of the R-wave (for the purpose of obtaining images representing the same number of voxels a
preprocess of all sequences have been done and in particular they were bring to a common reference system):
(a,b) 2D slices at corresponding axial levels of the respective 3D images of the hearts at that moment. (c,d) slice of
transformed image (b) after 3D registration on image (a) without (in (c)) and with (d) previous segmentation and
masking of the endocardium. Note the misalignment of the approach without masking where a part of the right
ventricle has been mapped onto the structure shown by the arrow in (a) and not belonging to the right ventricle.
The regularization parameter was set to λρ = 5.0 in both cases.
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Figure 2. Overview of the bridging point registration approach. (t, t′) is the current pair of points in time for which
we want to obtain the 3D registration. The arrows point form the moving to the fixed images.

For that purpose, we segmented the first point in time of the cardiac cycle using the method introduced
in (Fritscher and Schubert 2005) [7] based on statistical appearance models and level set segmentation
(see also Section 4.1.).

3.2. Our approach: Bridging point registration

Here, we propose an approach, which we will call bridging point registration, for the registration of
two 3D images Ai and Bi′ belonging to two 4D sequences (A and B) of different subjects, respec-
tively. The approach allows to use additional information provided by the user for one single or two
selected pair of points in time, namely by applying the masking based on a semiautomatic segmenta-
tion as described in Subsection 3.1.. Fig. 1(d) depicts the registration result using the masked image.
The selected pairs of points in time we call bridging points (in time) Ab0 , Ab1 and Bb′

0
, Bb′

1
(where

Ai or Bi′ , i = b0 or i = b1, i′ = b′0 or i = b′1 belong to the sequences A or B, respectively). Here,
we calculated first a temporal association between the images of the two sequences. We used a linear
temporal alignment of the two sequences using temporal nearest neighbor interpolation.



If we consider a fixed point in time t and a given corresponding point in time t′ = Ttemp(t) the
calculation Tspat(·, t) might be achieved using purely spatial inter-subject registration. In our approach
(see Fig. 2), we calculate first the intra-subject registration of Ab0 with respect to At, transforming
image Ab0 (the moving image, c.f., Section 2.) on image At, obtaining the intra-subject transformation
ft : ΩAt → ΩAb0

. Likewise, we perform the intra-subject registration transforming image Bt′ on
image Bb′

0
obtaining the intra-subject transformation gt′ : ΩBb′

0
→ ΩBt′ . Correspondingly, we proceed

with bridging point (b1, b
′
1) leading to the transformations ht and it′ as depicted in Fig. 2.

These intra-subject transformations are used as input for the inter-subject registration of the two im-
ages At and Bt′ that we formulate as optimization problem with the following cost functional:

C(p; λt, λb0 , λb1) = λtS(Tspat(·, t;p), At, Bt′) + λb0S(ft ◦ Tspat(·, t;p) ◦ gt′ , Ab0 , Bb′
0
) (3)

+λb1S(ht ◦ Tspat(·, t;p) ◦ it′ , Ab1 , Bb′
1
) + λρR(Tspat(·, t;p))

where Tspat(·, t;p) denotes a parametric transformation with parameter vector p and within a trans-
formation space T , the weights λj are parameters to be fixed and S(T,Ai, Bi′) denotes the similarity
measure quantifying how well image Ai transformed via T resembles to image Bi′ . R(Tspat(·, t;p))
is a regularization term (see Section 2.). ft ◦ Tspat(·, t;p) ◦ gt′ denotes the concatenation of the trans-
formations gt′ , Tspat(·, t;p), ft which leads to the successive transformation of image Ab0 in opposite
direction (c.f., notations in Section 2.) as illustrated in Fig. 2. We used for intra- and inter-subject
registration the normalized mutual information (NMI) similarity measure and successively a rigid,
an affine and a multi-resolution B-spline based transformation as described in Section 2.We optimize
C(p; λt, λb0 , λb1) with respect to p using the optimizer mentioned in Section 2.

In order to validate the quality of different direct (standard) registration approaches (using only the
information of the images to be registered at the current pair of points in time of two 4D sequences)
a protocol to assess the registration consistency within so-called registration loops has been devel-
oped and used in Pennec et al. [12] (see also Roche et al. [16]). A registration loop is given by the
concatenation of the intra- and inter-subject transformations obtained by registration at two pairs of
points in time and optimally it should lead to the identity. In contrast, our approach allows to use
the transformation between images Ab0 and Bb′

0
as well as that between images Ab1 and Bb′

1
as an

additional constraint for the registration of images At and Bt′ and hence, to transfer the information
obtained by the registration for the bridging points to the other pairs of points in time (see Section 5.
for further discussion). For evaluation (Section 4.2.), we register correspondingly image Bt′ on image
At and take the direction minimizing the cost value for deciding if transforming image At on Bt′ or
vice versa.

4. Evaluation and Results

4.1. Data and Evaluation Measures

We evaluated our approach using MR data from 8 healthy volunteers leading to 28 (undirected, and 56
directed) inter-subject combinations (see Table 1). The 8 image sequences have been acquired with a
Siemens Sonata 1.5 T scanner and consist of cine breath-hold series of short axis slices. The original
size of each pixel in each 3D image of each sequence was 1.56×1.56 mm and the slice thickness was
5 mm, the pixel number was 192× 192 in each xy-plane and varied in z-direction with the size of the



heart. The length of the cardiac cycle varied from 500 to 720 msec and an image has been taken each
50 msec. (sequences of 10 up to 15 3D images). In order to create spatially isotropic data, the images
have been resampled to a voxel size of 1.56× 1.56× 1.56 mm using linear interpolation.

In order to evaluate our new approach we defined a distance measure based on the mean of point-
wise distances of surface points. For that purpose (and not to use it for registration), we labeled the
endocardial regions of different anatomical structures (Left Atrium, Left Ventricle, Right Atrium and
Right Ventricle) and we extracted the corresponding endocardial surfaces also for all other points in
time by using the segmentation result of the first point in time (see Section 3.2.) as an initial surface
for semiautomatic segmentation [7] based on geodesic active contours (as implemented in the Insight
Segmentation and Registration Toolkit (ITK) [22]). We applied the resulting transformation of the
registration process to the surface of the corresponding subject among the two surfaces to compare.
Given two set of surface points, let say S1 and S2, the mean distance d(S1, S2) is the average of the
distances between each point in both surfaces to the corresponding nearest point in the other surface,
more precisely

d(S1, S2) =
1

n1

∑

x∈S1

min
y∈S2

d(x, y) +
1

n2

∑

y∈S2

min
x∈S1

d(x, y), (4)

where d(x, y) is the euclidean distance and ni the cardinality of Si(i = 1, 2).

4.2. Registration Results

We assessed the quality of the registration using the evaluation measure introduced in Subsection 4.1..
Table 1 shows the mean distance results for the 2nd and 4th pairs of point in time after the first of the
two selected bridging points (after the temporal alignment we selected frame 0 and frame 4 as bridg-
ing points), averaged over all 28 inter-subject combinations, before (identity) and after transforming
surfaces (extracted for the purpose of validation only and not for registration) by the transformations
obtained trough affine and B-spline bridging point registration. Using our B-spline multi-resolution
scheme we added successively 2 control points to each grid line in each grid direction until a total res-
olution of 13×13×13 control points is obtained. According to the observed quality measures values,
the bridging point registration performs better in the right atrium and specially in the right ventricle
compared to the direct 3D inter-subject registration using the same basic registration technique and
the same parameter settings as for the bridging point registration. Moreover, for the direct registration
we observe a less robust behavior and a high variability in the quality of results (up to mean distance
values above d = 5.0). A notable improvement of the bridging-point registration results in the four
structures under evaluation occurs when using not only the information at the bridging point but also
at the point in time corresponding to the images to be registered (λt = 0.5, λb0 = 0.5, see the third
and the fifth columns in Table 1). For each of these structures this improvement is valid between 20
(left ventricle, time = 2) and 28 (right atrium, time = 4) inter-subject registration processes from
the 28 considered inter-subject comparisons. The improvement increases if we add a second bridging
point b1 in the registration process (evaluated for t = 2, only, as b1 = 4). For the latter two settings of
the weights we have, a better performance in all the structures compared to the direct registration and
the setting (λt = 0, λb0 = 1). A strong improvement in the right ventricle (1.96 mm compares to 2.92
mm) and atrium (1.81 mm compares to 2.39 mm) was expected as the background structure making
the registration process difficult as shown in Figure 1 appears only close to the right ventricle.

The computation time on a Pentium(R) D, 3.2GHz, amounts to 2h for the intra-subject registration
from point in time 0 to point in time 4 (hence, for 4 different image pairs) and to 40 or 60 min for



bridging-point registration standard
time = t, λt = 0 time = t, λt = 0.5 time = t, λt = 0.33
b0 = 0, λb0 = 1 b0 = 0, λb0 = 0.5 b0 = 0, λb0 = 0.33

b1 = 4, λb1 = 0.33

identity affine affine + affine affine + affine affine + affine +
bspline bspline bspline bspline

time t = 2
Left Atrium 4.59 4.12 2.22 4.11 1.98 3.82 1.68 2.04
Left Ventricle 4.32 2.67 1.92 2.69 1.85 2.76 1.73 1.91
Right Atrium 5.17 4.07 2.24 4.10 2.06 3.80 1.79 2.39
Right Ventricle 5.19 2.88 2.21 3.05 2.12 2.96 1.95 2.92
time t = 4
Left Atrium 4.67 4.13 2.36 4.10 2.09 — — 2.24
Left Ventricle 4.26 2.66 2.07 2.62 1.89 — — 1.79
Right Atrium 5.09 4.06 2.30 3.97 2.05 — — 2.38
Right Ventricle 5.28 3.27 2.51 3.26 2.34 — — 3.14

Table 1. Distance d in mm, mean over 28 inter-subject comparisons. The upper block of rows numbers correspond
to the results of the inter-patient registration at frame time 2 whereas the lower one corresponds to point in time
4. The first column correspond to the values before registration. The next two pair of columns correspond to the
results after bridging point registration based on affine and B-Spline transformations using b0 = 0 as the only
bridging point in time and respectively two different weight-settings for the terms in the cost functional (in this two
cases, λb1=0 in Eq. (3), it is omitted for sake of simplicity). In the next columns the result of including a second
bridging point is shown for the case of registration at point in time 2 (see Eq. (3)). We did not test time frame
4 as b1 = 4. Finally, the last column correspond to the direct gray level based registration (standard approach)
results. Note that the mean distance improved up to 33% or 25%, respectively, using the bridging point registration
compared to the standard approach in the right ventricle at time 2 or time 4, respectively.

inter-subject direct or bridging-point registration.

5. Discussion, Conclusion and Further Work

We proposed a method for the alignment of 3D images of corresponding points in time in two image
sequences of different subjects using 4D information. The 4D information was brought in when cal-
culating the spatial 3D registration for a given pair of points in time in both sequences by integrating
constrains from the spatial inter-subject registration at other pairs of points in time concatenated with
the intra-sequence motion relating the other points in time with the given pair of points in time. In
particular, we use bridging points in time for which we allow interactive segmentation and we define
a scheme making it possible to integrate the information obtained through the mentioned constrains
into a single cost functional.

Our results based on 28 inter-subject combinations show that our bridging point approach outperforms
a direct approach, in particular, in the right ventricle by 25% up to 33%. Interestingly, to integrate
also gray-value information of the considered point in time (by setting λt > 0) improved notably the
result even if no segmentation was performed in this point in time. Furthermore, the integration of
a second bridging point in time led again to an additional appreciable improvement: from 6% (left
ventricle) up to 16% (left atrium). Here, we used the first point in time and the point of maximum



Figure 3. Illustration of the results obtained with our new approach compared to a direct normalized mutual
information based inter-subject registration for the 4th point in time of both image sequences, respectively. (a,b)
2D slices at corresponding axial levels of the respective 3D images of the heart at point in time 4. (c,d) slice of
transformed image (b) after direct registration (c) and after our bridging-point approach (t = 4, λt = 0.5, b0 = 0,
λb0 = 0.5 in Eq. (3)) (d). With the direct approach again a part of the right ventricle has been mapped onto a
structure that does not belong to the right ventricle (see arrow in (a)), leading to a strong mismatch. Our approach
behaves robust and accurate in this situation.

Figure 4. Overlaying of the 2D slices at the corresponding axial levels taken from the images at the 4th point in
time. The fixed image in red is superposed by the transformed moving image in green after direct (a) and bridging-
point registration with associated cost functional defined in Eq. (3) with (t = 4, λt = 0, b0 = 0, λb0 = 1) in (b) and
with (t = 4, λt = 0.5, b0 = 0, λb0 = 0.5) in (c). Note that in the latter case the resemblance in the left ventricle is
better than in the former. Both bridging-point registration method (b,c) performs substantially better in the right
ventricle compared to the standard approach (a).

contraction as bridging points in time. As a next step, we will test out other bridging points and the
use of additional bridging points not coming with additional user information.

For the comparison of motion in different image sequences Rao et al. [15] calculated the motion fields
with respect to the end-diastolic images, spatially registered the end-diastolic images, and transformed
the motion fields based on the calculated transformation and on its inverse. Hence, implicitly, they
make use of analogue spatial associations for the other points in time, compared to our approach with
λb0 = 1, λt = 0 and λb1 = 0. The fact that we obtain better results using the settings λb0 = 0.5,
λt = 0.5 and λb1 = 0 or λb0 = 0.33, λt = 0.33 and λb1 = 0.33 illustrates the limitation of an implicit
use of the considered spatial associations compared to the explicit spatial registration for the other
points in time in our approach. Similarly, trying to exploit the consistency property of registration
loops by simply concatenating the transformations resulting from intra-subject registration and di-
rect inter-subject registration in the bridging point would, additionally, not lead to a B-spline as the
concatenation of two B-splines is not necessarily a B-spline.



Figure 5. 3D wireframe rendering the endocardial surface of the right ventricle for the target subject and the
overlaid 3D endocardial surface of the right ventricle for the transformed source subject. (a) Obtained after direct
registration and (b) after our our bridging-point approach (t = 4, λt = 0.5, b0 = 0, λb0 = 0.5 in Eq. (3)). The
target subject is extracted from the image shown in Fig. 3(b) and the source subject from that shown in Fig. 3(a).
Note that the surfaces have been extracted for the purpose of evaluation only; both registration methods do not use
them.

Further applications of the 4D registration problem as formulated in Section 2. include the use of
different reference points in time, for instance, for analyzing shape variation for different points in
time or for compensating shape differences when transforming motion fields for far points in time. In
Fig. 6 we present a first example for visualizing the differences in motion over the heart cycle of two
different subject. The motion vectors belonging to one subject have been transformed to the other
subject using the inverse of the Jacobian of the inter-subject transformation obtained by registration
(c.f., Rao et al. [15]). Fig. 6 illustrates the additional information obtained by transforming the motion
fields into the same reference system for different initial points in time. Currently, we investigate the
use of an invertible inter-subject transformation in order to ensure that the inverse of the Jacobian
exists in each point. Another application is the comparison of sequences acquired with different
imaging modalities, e.g., SPECT and MRI.

For future work we plan to formulate our cost functional in terms of regions and to integrate an
automatic decision about a local weighting of the terms corresponding to the different pairs of points
in time. Additionally, we intend to apply our technique to investigate the evolution of the cardiac
motion of patients suffering from myocarditis.

References

[1] U.E. Aladl, G.A. Hurwitz, D. Dey, D. Levin, M. Drangova, and P. Slomka. Automated regis-
tration of gated cardiac single-photon computed tomography and magnetic resonance imaging.
Journal of Magnetic Resonance Imaging, 19:283–290, 2004.

[2] Y. Caspi and M. Irani. Spatio-temporal alignment of sequences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24:1409–1424, 2002.

[3] R. Chandrashekara, A. Rao, G. I. Sanchez-Ortiz, R. H. Mohiaddin, and D. Rueckert. Construc-
tion of a statistical model for cardiac motion analysis using non-rigid image registration. In



Figure 6. Visualization of the similarities and differences of the motion during the heart cycle of two different
subjects. Based on the inter-subject transformation obtained by our registration approach the motion vectors
have been transformed into the same reference system (see text) and the correlation between the motion vectors
has been calculated pointwise and color coded (dark gray is high and light gray low correlation and white is high
negative correlation, cf. (d)). (a) movements between the first point in time of the heart cycle and the point of
maximum contraction are considered; (b) as in (a) but the second point in time is the end-diastole; (c) additional
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and end-diastole as second point in time.
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Abstract

In this work we give a state-of-the-
art review of two of the most es-
tablished classes of fuzzy implica-
tion operations, viz., (S,N)- and
R-implications. Firstly, we dis-
cuss their properties, characteriza-
tions and representations. Using the
presented facts, an almost complete
characterization of the intersections
that exist among some subfamilies of
(S,N)- and R-implications are ob-
tained.
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1 Introduction

Fuzzy implications were introduced and stud-
ied in the literature as the generalization of
the classical implication operation. Following
are the two main ways of defining an implica-
tion in the Boolean lattice (L,∧,∨,¬):

p → q ≡ ¬p ∨ q, (1)
p → q ≡ max{t ∈ L | p ∧ t ≤ q}, (2)

where p, q ∈ L and the relation ≤ is defined
in the usual way, i.e., p ≤ q iff p ∨ q = q, for
every p, q ∈ L. The implication (1) is usually
called the material implication, while (2) is
from the intuitionistic logic framework, where
the implication is obtained as the residuum
of the conjunction, and is often called as the
pseudocomplement of p relative to q. Interest-
ingly, despite their different formulas, defini-
tions (1) and (2) are equivalent in the Boolean

lattice (L,∧,∨,¬). On the other hand, in the
fuzzy logic framework, where the truth val-
ues can vary in the unit interval [0, 1], the
natural generalizations of the above defini-
tions, viz., (S,N)- and R-implications, are
not equivalent. This diversity is more a boon
than a bane and has led to some intensive
research on fuzzy implications for close to
three decades. Quite understandably then,
the most established and well-studied classes
of fuzzy implications are the above (S,N)-
and R-implications.

The main goal of this article is to give a
state-of-the-art survey of these two families
of fuzzy implications by discussing their alge-
braic properties, characterizations, represen-
tations and presenting both existing and some
new results connected with their intersections.

2 Preliminaries: basic fuzzy logic
connectives

We assume that the reader is familiar with the
classical results concerning basic fuzzy logic
connectives, and all the notations used in the
text must be contextually clear. Only some
definitions that are important in the sequel
are given.

A generalization of the law of excluded mid-
dle, which in the classical case has the follow-
ing form p ∨ ¬p = ⊤, is as follows:

Definition 1. Let S be a t-conorm and N a
fuzzy negation. We say that the pair (S,N)
satisfies the law of excluded middle if

S(N(x), x) = 1, x ∈ [0, 1]. (LEM)



One can associate a fuzzy negation to any t-
norm or t-conorm as given in the definition
below.

Definition 2. Let T be a t-norm and S a t-
conorm. The functions NT , NS defined as

NT (x) = sup{t ∈ [0, 1] | T (x, t) = 0},
NS(x) = inf{t ∈ [0, 1] | S(x, t) = 1},

are called the natural negations of T and S,
resp., where x ∈ [0, 1].

Remark 1. (i) Notice that if S(x, y) = 1
for some x, y ∈ [0, 1], then y ≥ NS(x)
and if T (x, y) = 0 for some x, y ∈ [0, 1],
then y ≤ NT (x).

(ii) If the pair (S,N) satisfies (LEM) then
N ≥ NS.

Example 1. Table 1 gives the natural nega-
tions of the basic t-norms and t-conorms,
where

ND1(x) =

{
1, if x = 0,

0, if x > 0,

ND2(x) =

{
1, if x < 1,

0, if x = 1.

NC(x) = 1− x .

Table 1: Examples of natural negations
t-norm T NT t-conorm S NS

positive ND1 positive ND2

TLK NC SLK NC

TD ND2 SD ND1

TnM NC SnM NC

The following relation exists between NT and
NS of a De Morgan triple.

Theorem 1. Let T be a left-continuous t-
norm and S be a t-conorm. If (T,NT , S) is
a De Morgan triple, then

(i) NS = NT is a strong negation,

(ii) S is right-continuous.

3 Fuzzy implications and basic
algebraic properties

In the literature, especially at the beginnings,
we can find several different definitions of
fuzzy implications. We will use the following
definition (see [5]).

Definition 3. A function I : [0, 1]2 → [0, 1] is
called a fuzzy implication if, for all x, y, z ∈
[0, 1], it satisfies

I(x, z) ≥ I(y, z) if x ≤ y, (I1)
I(x, y) ≥ I(x, z) if y ≥ z, (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

Table 2: Examples of basic fuzzy implications
Name Formula
 Lukasiewicz ILK : min(1, 1− x + y)

Gödel IGD :

{
1, if x ≤ y

y, if x > y

Reichenbach IRC : 1− x + xy
Kleene-Dienes IKD : max(1− x, y)

Goguen IGG :

{
1, if x ≤ y
y
x , if x > y

Rescher IRS :

{
1, if x ≤ y

0, if x > y

Yager IYG :

{
1, if x = 0 and y = 0
yx, if x > 0 or y > 0

Weber ITD :

{
1, if x < 1
y, if x = 1

Fodor IFD :

{
1, if x ≤ y

max(1− x, y), if x > y

Definition 4. Let x, y, z ∈ [0, 1]. A fuzzy
implication I is said to satisfy

(i) the left neutrality property, if

I(1, y) = y, (NP)

(ii) the exchange principle, if

I(x, I(y, z)) = I(y, I(x, z)), (EP)

(iii) the identity principle, if

I(x, x) = 1, (IP)



(iv) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, (OP)

(v) the law of contraposition with respect to
a fuzzy negation N , CP(N), if

I(x, y) = I(N(y), N(x)). (CP)

Just as in the case of t-norms or t-conorms,
a fuzzy negation can be obtained from fuzzy
implications too as follows.

Definition 5. If I is a fuzzy implication, then
the function NI : [0, 1] → [0, 1] defined by

NI(x) = I(x, 0), x ∈ [0, 1],

is called the natural negation of I.

4 (S, N)-implications: properties
and characterizations

It is well-known in the classical logic that the
unary negation operation ¬ can combine with
any other binary operation to generate rest of
the binary operations. This distinction of the
unary ¬ is also shared by the Boolean im-
plication →, if defined in the following usual
way:

p → q ≡ ¬p ∨ q.

The definition as given above was the first to
catch the attention of the researchers leading
to the following class of fuzzy implications.

4.1 Definition and examples

Definition 6 (cf. [5]). A function I : [0, 1]2 →
[0, 1] is called an (S,N)-implication if there
exists a t-conorm S and a fuzzy negation N
such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1]. (3)

If N is a strong negation, then I is called
a strong implication (shortly S-implication).
We will denote it by IS,N .

Example 2. The following Table 3 lists few
of the well-known (S,N)-implications along
with the underlying t-conorms and fuzzy nega-
tions.

Table 3: Examples of basic (S,N)-implications
S N (S,N)-implication IS,N

SM NC IKD

SP NC IRC

SLK NC ILK

SD NC IDC :





y, if x = 1
1− x, if y = 0
1, otherwise

SnM NC IFD

any S ND1 ID :

{
1, if x = 0
y, if x > 0

any S ND2 ITD

SM 1− x2 IMK : max(1− x2, y)

4.2 Properties of (S,N)-implications

In this section we analyze (S,N)-implications
with respect to the algebraic properties given
in Definition 4. We begin with the following
remark.
Remark 2 (see [9, 2]). (i) All (S,N)-

implications are fuzzy implications which
satisfy (NP) and (EP).

(ii) If I is an (S,N)-implication obtained
from a fuzzy negation N , then N = NI .

(iii) An IS,N satisfies CP(N) with some fuzzy
negation N if and only if N = NI is
a strong negation, i.e., IS,N is an S-
implication.

Since not all (S,N)-implications satisfy the
identity principle (IP) and, hence, the or-
dering property (OP) (for example IRC and
IKD), we analyze these axioms for (S,N)-
implications now.
Lemma 1. For a t-conorm S and a fuzzy
negation N , the following are equivalent:

(i) An IS,N satisfies (IP).

(ii) The pair (S,N) satisfies (LEM).

Theorem 2. For a t-conorm S and a fuzzy
negation N , the following are equivalent:

(i) An IS,N satisfies (OP).

(ii) N = NS is a strong negation and the pair
(S,NS) satisfies (LEM).



4.3 Characterizations and
representations of
(S,N)-implications

A first characterization of S-implications was
presented by Trillas and Valverde [9] (see also
[5]) and it can be written in the following
form.

Theorem 3. For a function I : [0, 1]2 → [0, 1]
the following are equivalent:

(i) I is an S-implication.

(ii) I satisfies (I1) (or (I2)), (NP), (EP) and
(CP) with respect to a strong negation N .

The characterization of the family of all
(S,N)-implications is still an open problem,
but some partial results were recently ob-
tained in [2].

Theorem 4 ([2], Theorems 2.6, 5.1 and 5.2).
For a function I : [0, 1]2 → [0, 1] the following
statements are equivalent:

(i) I is an (S,N)-implication generated from
some t-conorm S and some continuous
(strict, strong) fuzzy negation N .

(ii) I satisfies (I1) (or (I2)), (EP) and
the function NI is a continuous (strict,
strong) fuzzy negation.

Moreover, the representation of the (S,N)-
implication (3) is unique in this case.

It should be noted that the properties in The-
orem 4 are mutually independent (see [2]).

In the class of continuous function we have
the following important result.

Proposition 1. For a function I : [0, 1]2 →
[0, 1] the following are equivalent:

(i) I is a continuous (S,N)-implication.

(ii) I is an (S,N)-implication with continu-
ous S and N .

Finally, we are able to prove one of the most
important results connected with (S,N)-
implications. It is usually called in the lit-
erature as Smets-Magrez Theorem, since the

equivalence between points (i) and (v) was
presented in [8]. We would like to note,
that a similar result was obtained by Trillas
and Valverde two years earlier (see [9], Theo-
rem 3.4). In fact, in the article [8], the authors
required more conditions than it is necessary
(see [5], Theorem 1.15).

Theorem 5 (cf. [9, 8, 5]). For a function
I : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) I is continuous and satisfies (EP), (OP).

(ii) I is an (S,N)-implication obtained from
a continuous t-conorm S and a continu-
ous negation N , which satisfies (OP).

(iii) I is a continuous (S,N)-implication,
which satisfies (OP).

(iv) I an (S,N)-implication obtained from a
nilpotent t-conorm and its natural nega-
tion.

(v) I is isomorphic to the  Lukasiewicz impli-
cation ILK.

Remark 3. The continuity of the t-conorm
S is important in the above theorem. Con-
sider the Fodor implication IFD. It is a
non-continuous (S,N)-implication, not iso-
morphic to the  Lukasiewicz implication and
obtained from the right continuous t-conorm
SnM. But it satisfies both (EP) and (OP).

5 R-implications: properties and
characterizations

From the isomorphism that exists between
classical two-valued logic and classical set the-
ory one can immediately note the following set
theoretic identity:

P ∪Q = P \Q = ∪{T | P ∩ T ⊆ Q} ,

where P,Q are subsets of some universal set.
The above identity gives another way of defin-
ing the Boolean implication and is employed
in the intuitionistic logic. Fuzzy implications
obtained as the generalization of the above
identity form the family of residuated impli-
cations, usually called as R-implications in



the literature. In this section, we investi-
gate properties they possess, analogous to our
treatment of (S,N)-implications in Section 4.

5.1 Definition and examples

Definition 7 (see [5]). A function
I : [0, 1]2 → [0, 1] is called an R-implication
if there exists a t-norm T such that, for all
x, y ∈ [0, 1],

I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}. (4)

If an R-implication is generated from a t-
norm T , then we will often denote this by IT .

Firstly, observe that since for any t-norm T
and all x ∈ [0, 1] we have T (x, 0) = 0, the
appropriate set in (4) is non-empty. It is
very important to note that the name ‘R-
implication’ is a short version of ‘residual
implication’, and IT is also called as ’the
residuum of T ’. This class of implications
is related to a residuation concept from the
intuitionistic logic. In fact, in this context
this name is proper only for left-continuous
t-norms.
Proposition 2 (cf. [6]). For
a t-norm T the following are equivalent:

(i) T is left-continuous.

(ii) T and IT form an adjoint pair, i.e., for
any x, y, t ∈ [0, 1], they satisfy the resid-
uation property

T (x, t) ≤ y ⇐⇒ IT (x, y) ≥ t. (RP)

(iii) The supremum in (4) is the maximum.

Example 3. Table 4 lists few of the well-
known R-implications along with their t-
norms from which they have been obtained.
Note that TD is not left-continuous but still
ITD is a fuzzy implication.

5.2 Properties of R-implications

Now we examine R-implications based on the
properties introduced in Section 3.
Theorem 6 (cf. [5]). If T is any t-norm (not
necessarily left-continuous), then IT ∈ FI.
Moreover, IT satisfies (NP) and (IP).

Table 4: Examples of basic R-implications
t-norm T R-implication IT

TM IGD

TP IGG

TLK ILK

TD ITD

TnM IFD

Without additional assumptions on a t-norm
T , the residual implication IT may not satisfy
other basic properties. Such examples will be
presented in the talk. On the other hand, we
have:

Theorem 7 (see [5], Theorem 1.14). If IT is
an R-implication based on a left-continuous
t-norm T , then IT ∈ FI and IT satisfies
(NP), (EP), (IP), (OP). Moreover, IT is
left-continuous with respect to the first vari-
able and right-continuous with respect to the
second variable.

5.3 Characterizations and
representations of R-implications

Our main goal in this subsection is to present
the characterization of R-implications. In
fact, presently such a characterization is avail-
able only for R-implications obtained from
left-continuous t-norms. We also discuss the
representations of R-implications for some
special classes of left-continuous t-norms. To
do this we consider the dual situation now,
i.e., a method of obtaining t-norms from fuzzy
implications. Since for every fuzzy implica-
tion I we have I(x, 1) = 1, for all x ∈ [0, 1],
the following function TI : [0, 1]2 → [0, 1] de-
fined by, for all x, y ∈ [0, 1],

TI(x, y) = inf{t ∈ [0, 1] | I(x, t) ≥ y}, (5)

is a well defined function of two variables and
similar to Proposition 2 we have:

Proposition 3. For a fuzzy implication I the
following are equivalent:

(i) I is right-continuous with respect to the
second variable.

(ii) I and TI form an adjoint pair, i.e., they
satisfy (RP).



(iii) The infimum in (5) is the minimum.

Remark 4. It is interesting to note, that
formula (5) does not always generate a t-
norm. For example, if I is the Reichenbach
implication IRC, then for x > 0 we obtain
TIRC

(x, 1) = 1, so TIRC
is not a t-norm.

Using similar techniques as in the proof of
Theorem 7 one can prove the following result.

Theorem 8. If I ∈ FI satisfies (EP), (OP)
and is right-continuous with respect to the sec-
ond variable, then TI defined by (5) is a left-
continuous t-norm. Moreover I = ITI

.

From Theorems 7 and 8 we get the following
well-known characterization of R-implications
generated from left-continuous t-norms.

Corollary 1 (cf. [7]). For a function
I : [0, 1]2 → [0, 1] the following are equivalent:

(i) I is an R-implication generated from a
left-continuous t-norm.

(ii) I satisfies (I2), (EP), (OP) and is right
continuous with respect to the second
variable.

It should be noted, that in contrast to the
characterization of (S,N)-implications the
problem of mutual-independence of the above
properties is still an open problem.

For continuous R-implications we have the
following result, which is an other version of
Theorem 5.

Theorem 9. For a function I : [0, 1]2 → [0, 1]
the following are equivalent:

(i) I is continuous and satisfies (EP), (OP).

(ii) I is a continuous R-implication based on
some left-continuous t-norm.

(iii) I is an R-implication based on some con-
tinuous t-norm, with a strong natural
negation NI .

(iv) I is an R-implication based on some
nilpotent t-norm.

(v) I is isomorphic to the  Lukasiewicz impli-
cation ILK.

6 Intersections among families of
(S, N)- and R-implications

In this section, we discuss the different over-
laps that exist between the above families.
Let us denote the different families of fuzzy
implications as follows:

• IS,N – the family of all (S,N)-
implications;

• CIS,N – the family of all continuous
(S,N)-implications;

• ISC,NC – the family of all (S,N)-
implications obtained from continuous t-
conorms and continuous negations;

• IS – the family of all S-implications;

• IS,NS – the family of all (S,N)-
implications obtained from t-conorms
and their natural negations;

• IS∗,N∗
S

– the family of all (S,N)-
implications obtained from right-
continuous t-conorms and their natural
negations which are strong;

• IT – the family of all R-implications;

• CIT – the family of all continuous R-
implications;

• ITLC – the family of all R-implications ob-
tained from left-continuous t-norms;

• CITLC – the family of all continu-
ous R-implications obtained from left-
continuous t-norms;

• ITC – the family of all R-implications ob-
tained from continuous t-norms;

• CITC – the family of all continuous R-
implications obtained from continuous t-
norms;

• ILK – the family of all implications iso-
morphic to the  Lukasiewicz implication
ILK.

In the following two subsections, we sum-
marize the known intersections between



the above subfamilies of (S,N)- and R-
implications based on the results cited and
obtained earlier, which is also diagrammati-
cally represented in Figures 1 and 2. Follow-
ing this, we discuss the relationships between
families of (S,N)- and R-implications. The
final result will also be diagrammatically rep-
resented.

6.1 Intersections between subfamilies
of (S,N)-implications

From Proposition 1, we get

CIS,N = ISC,NC .

From Tables 1 and 3, Remark 2 (ii) and since
isomorphism preserves (NP), (EP) and (OP),
we have that

ILK = IS,NS ∩ ISC,NC

= ISC,NC ∩ IS∗,N∗
S

 IS∗,N∗
S
 IS,NS ∩ IS.

6.2 Intersections between subfamilies
of R-implications

By Theorem 9, we have

CITLC = ILK.

Quite obviously, we have the following con-
tainments:

CITLC = ILK  ITC  ITLC  IT.

Similarly we get

CIT ∩ ITC = CIT ∩ ITLC = CITC = CITLC = ILK.

It is still an open problem to find, if there
exists, a continuous R-implication generated
from a non-continuous t-norm.

6.3 Intersections between families of
(S,N)- and R-implications

One of the first works on the intersection of
S- and R-implications was done by Dubois
and Prade [4], wherein they have shown that
S-implications and R-implications could be
merged into a single family, provided that the

class of triangular norms is enlarged to non-
commutative conjunction operations.

Firstly, note that since ITD is both an (S,N)-
and R-implication, we have

ITD ∈ IS,N ∩ IT 6= ∅,

i.e., the intersection of (S,N)- and R-
implications is non-empty. From Theorems 3,
7 and 9, we get

IS ∩ ITC = ILK.

On the other hand, by Theorem 5 and Corol-
lary 1, we have

CIS,N ∩ ITLC = ILK.

The weaker version of the above two re-
sults is well known in the scientific litera-
ture and, in general, we say that the only
continuous S-implication and R-implication
(generated from a left-continuous t-norm) is
the  Lukasiewicz implication (up to an iso-
morphism). However, there are many R-
implications obtained from t-norms that are
left-continuous but non-continuous and are
still S-implications, for example the Fodor im-
plication IFD.

Let us denote by

• IT∗ – the family of all R-implications ob-
tained from left-continuous t-norms hav-
ing strong induced negations.

It is clear now from our discussion, that

IS ∩ ITLC = IT∗ ! ILK.

Many families of left-continuous t-norms (up
to a conjugation) with strong induced nega-
tions are known in the literature (see the
works of Jenie, Maes and De Baets).

A characterization of the fuzzy implications
that fall under the following intersections has
been given recently in [3]:

IS ∩ ITLC = IS,N ∩ ITLC = INT(T),NT = IT∗ ,

where
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• INT(T),NT is the family of all (S,N)-
implications obtained from the NT -dual
t-conorms of the left-continuous t-norm
T whose natural negation NT is strong.

Theorem 10. For a left-continuous t-norm
T and a t-conorm S the following statements
are equivalent:

(i) The R-implication IT is also an (S,N)-
implication IS,N .

(ii) The R-implication IT is also an S-
implication IS,NT

with the strong nega-
tion NT .

(iii) (T,NT , S) form a De Morgan triple.

Remark 5. The left-continuity of T is very
important in the above theorem. For exam-
ple, consider any t-conorm S whose natural
negation NS 6= ND2. However, IS,ND2

= ITD

which is also an R-implication obtained from
the non-left-continuous t-norm TD. It is obvi-
ous that the triple (TD, ND2, S) does not form
a De Morgan triple.

The results presented in this section are also
diagrammatically represented in Figure 3.

7 Concluding remarks

From this discussion we see that the following
open problems remain:

Problem 1. Characterize the following:

(i) (S,N)-implications generated from non-
continuous negations;

(ii) R-implications generated from non-left-
continuous t-norms;
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(iii) continuous R-implications generated
from non-left-continuous t-norms;

(iv) the non-empty intersection IS,N ∩ IT.
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