
Advances in
Knowledge-Based Technologies

Proceedings of the
 Master and PhD Seminar
Summer term 2009, part 1

Softwarepark Hagenberg
SCCH, Room 0/2

29 April 2009

Software Competence Center Hagenberg Fuzzy Logic Laboratorium Linz
Softwarepark 21 Softwarepark 21
A-4232 Hagenberg A-4232 Hagenberg
Tel. +43 7236 3343 800 Tel. +43 7236 3343 431
Fax +43 7236 3343 888 Fax +43 7236 3343 434
www.scch.at www.flll.jku.at

Program

13:00–14:30 Session 1 (Chair: Roland Richter)

13:00 Thomas Klambauer:
Generic Image Processing

13:30 Ankur Pandey:
The Relation of Dominance

14:00 Edwin Lughofer:
Handling Drifts and Shifts in On-Line Data Streams with Evolving Fuzzy Systems

Generic Image Processing

Thomas Klambauer∗

April 27, 2009

Abstract

The generic composition of image processing components poses a non-trivial
software architectural problem. Especially dealing with multiple inputs and out-
puts of different types per component and the handling of parameters as well as
component interconnection introduce substantial complexity. A close analysis of
the problem and the multitude of desirable properties will be presented. Possi-
ble solutions together with a short assessment of popular in-use architectures are
explored.

1 Introduction

Modularization and composition of software components as well as the design
of stable generic interfaces are some of, if not the most prevalent problems in
software design. As precursor of the same-titled bachelor thesis1, this paper will
address this problem - also by restricting itself to the specific requirements of the
environment of the accompanying project.

The goal is to devise a framework architecture that allows for the dynamic
integration of components - plugins - without changes to the hosting application
or other components.

Host Application

Plugins

Services Interface

Figure 1: Plugin Architecture (Component Level)

It is to be realized on the Windows platform with implementations and inter-
faces specified in C++ supported by Microsoft tools: compiler, linker, etc. No
cross-machine - thus no cross-architecture - situation is part of the usage scenario,

∗
1To be available at http://klambauer.info by August 2009.

1

thus the operation of the framework is always restricted to a local machine. To
stay in scope the discussion will not consider multiple processes for components
and assume a single process to contain all code and data. Furthermore Microsofts
Component Object Model (COM)[1] is not considered for complexity reasons.

2 Problem Area Analysis

Integral problem fields are the Application Programming Interface (API), the Ap-
plication Binary Interface (ABI) and Module interconnection.

2.1 API

The typical use case for the framework is the processing of image data by an
image processing algorithm. Thus the passive, algorithmic view of a component is
predominant and we expect a component to receive data as input from probably
multiple sources and multiple types, to process it and yield probably multiple
outputs of different types. This view also assumes that all the thread management
lies with the host application and no relevant component-owned threads will exist.

Data types include image data (including different color types) and related
information like descriptions of geometric objects in the image, text, positional
information and calculation results. Future additions to this list are likely and
upwards compatibility is desirable. Figure 2 illustrates these goals.

Host Application

Plugins

Connection Logic

Figure 2: Plugin Interconnection

A central problem is the type-safe, generic interconnection of plugins and here,
the lack of reflection in C++ prominently enters the stage. Concerning type safety
some options are reasonable, but which also affect the API as a direct result:

Centralized, static types All cross-interface types and interfaces are managed
centrally through headers and/or some shared base library. Depending on in-
terface conventions this might at least apply to C and C++ standard library
types as well as the Boost.GIL[2] which is being projected as image carrier.
However for other more frequently changing composite types this approach
greatly reduces modularity and independence of plugins and the host.

Dynamic types enabled by a runtime type system with basic reflection-like func-
tionality. Though the most versatile approach, much naturalness in the inter-
face design is lost - interface functions and their arguments to be registered
for export; composite datatypes requiring a nontrivial setup.

2

We can clearly see the correlation of those concepts to statically and dynam-
ically typed (scripting) languages in coherence to the tasks at hand. Between
those two extremes there is some room for interpolation. For instance an interface
querying mechanism like in use in COM seems feasible.

Caution is furthermore required concerning C++ language specifics and the
crossing of module (OS library) boundaries. Template types for instance need
to be instantiated to be exported as only a few (Comeau, Borland) Compilers
support the module-level export of uninstantiated templates.

Another consideration stemming from performance concerns - as the data dealt
with are likely to be megabyte ranged image objects - is the ownership of objects
that will be passed by reference. More specific, it has to be ensured that mem-
ory occupied by interface-passed object will be freed. The usual C++ way to
guarantee this, is the wrapping into a ownership-managing template class like
std::auto_ptr<T> or boost::shared_ptr<T>. However this brings us to the
topic of binary dependencies between modules.

2.2 ABI

Memory management, already quite complex outside of garbage collected run-
times, is faced with another dimension when references to dynamically allocated
memory pass module boundaries. The C++ standard dictates that heap and free
store2 operations must not be mixed on the same memory chunk due to probably
independent implementations and thus resulting corruption of memory manage-
ment data structures. A key observation here is that the same set of problems can
occur with simply different runtimes or implementation versions of the C or C++
runtime libraries.

Consider two shared libraries (DLLs) both linking statically to the C++ run-
time library meaning that during runtime static data structures and algorithms
will not be shared between them. When deleteing an object created by the other
library and passed over an interface, this will result in heap corruption of the
runtime [3, 4]. Two solutions to this problem are illustrated in figure 33.

Here the first solution requires that each object is handed back to the source
for deallocation near its creation point, often seen as a create, destroy function
pair. The second approach builds on some enforcement or trust that the same
instance of the runtime will be shared dynamically such that all plugins need to
use exactly the same version of the runtime(s) and must not statically link to
them.

The use of boost::shared_ptr (also part of C++ TR1 and the future C++0x
standard library) solves this problem by carrying a deleter function pointer that
will call the appropriate deallocator.

2.3 Plugin Interconnection

A distinguishing peculiarity of the desired framework in comparison to other plugin
architectures is that plugins primarily not work with some interface on the host
application side, but (also) with other plugins with (probably) variable interfaces.

This generic interconnection issue could be solved by following methods:

2heap: malloc,free; free store: new,delete
3Picture by Alex Blekhman

3

Figure 3: C,C++ Runtimes and Modules

Dynamic types by enabling a runtime configurable connection between plugins,
similar to a scripting language - a Module interconnection language - being
able to evaluate and integrate code at runtime.

Connector plugins that have knowledge of the static types of the actual in-
terfaces and by this leaving the host application independent of the actual
plugins, but moving this burden into a separate plugin. Drawbacks include
that this is an indirect approach and the number of connectors may become
quadratic in the number of plugins.

An interesting mixed approach is presented as a Generic function-binding in-
terface in [8] by Scott Bilas:

On the Windows platform, at runtime the export table of modules can be read
out and using Microsoft supplied helper DLLs, names can be unmangled and used
further processing. This allows to reflect a modules/plugins interface at runtime
and could be used to dynamically setup connections.

The author supplied skeleton implementation code to assert feasibility, but
this method is obviously highly platform dependent and builds on a very complex
basis.

3 Existing architectures

Various attempts to tackle the mentioned problems have been made by prominent
in-use plugin architectures.

3.1 QT Plugins

The popular QT C++ library[5] by Trolltech (Nokia) provides platform-independent
mechanisms for the runtime loading of plugins to enable the specialization of li-
brary behavior and for extending a QT user application.

The interconnection between application and plugins is (only) supported through
predefined C++ interfaces[6], which can be specialized by plugins. Necessary run-
time types are enabled through a Meta-Object System[7] that basically builds upon

4

a QObject base class. Furthermore a Meta-Object Compiler as a source-code pre-
processor is used to support the architecture.

Though an industry-quality, solid library, the above mentioned methods are
very intrusive but settle on a middle-ground between flexibility and complexity
regarding plugins.

3.2 Adobe Photoshop Plug In Modules

Filter Plugins in Photoshop fulfill a similar purpose like the targeted plugins as
they both process image data.

The interface is one pure C method through which all calls, requests and
parameters are multiplexed:
1 DLLExport MACPASCAL void PluginMain (const short selector ,

2 void *filterParamBlock ,

3 long *data ,

4 short *result)

All command codes and data structures are defined in host application side ver-
sioned headers. This shows a solution where all the real interface parts were
moved into the runtime and the actual interface is implicit in the code parsing
parameters, casting to structures and manipulating those.

This ensures one stable static interface but a highly opaque dynamic interface,
where all the versioning is performed during runtime. This approach enables
widespread upward- and downward compatibility with flexible behavior, at the
drawback of the necessity to multiplex the real interface.

As a note it is worth mentioning that Photoshop supports scripting Application
Actions via the Microsoft COM interface.

4 Summary

A first plunge has been taken into the complexity of interconnecting plugins at
a C++ shared library level without falling back to existing complex component
technologies. It was observed that the runtime boundary for C++ applications is
much harder to take than source code cooperation due to the absence of reflection
technology, the standard scope that focusses on the source level and the delegation
of module and library concepts to operating system and compiler vendors.

Though all of those points are realizable, great efforts for general solutions are
required and have been taken by eg. Microsoft with COM. Also, many of those
points are already covered in more recent languages. The challenge to be faced
here is to find a reasonable and realizable midway.

References

[1] http://www.microsoft.com/com/default.mspx.

[2] http://www.boost.org/doc/libs/1_38_0/libs/gil/doc/index.html.

[3] http://msdn.microsoft.com/en-us/library/ms235460.aspx.

[4] http://blogs.msdn.com/oldnewthing/archive/2006/09/15/755966.aspx.

[5] http://www.qtsoftware.com.

5

[6] http://doc.trolltech.com/4.5/plugins-howto.html.

[7] http://doc.trolltech.com/4.5/metaobjects.html.

[8] Mark DeLoura. Game Programming Gems 1. Charles River Media, 2000.

6

Technical Report
FLLL–TR–0901

The Relation of Dominance

Ankur Pandey
email: ankurpandey.info@gmail.com

Abstract — The motivation to study dominance came from the framework of probabilistic metric
spaces, where it turned out to be crucial for construction of Cartesian products of such spaces. In
this early setting the operations considered with respect to dominance were mainly the triangle
functions and of the triangular norms. Later on researchers from the field of fuzzy logic proved
that the concept of dominance plays an important role in a much wider class of problems related
to construction of product-like structures. In particular, it has been clarified, how dominance
allows to construct T-transitive fuzzy relations as Cartesian products of T-transitive factors. In this
setting the dominance of a much more general class of operations, namely aggregation functions,
is considered.

In this thesis the notion of dominance would be reviewed from the most general viewpoint. It
would be also interesting to investigate the relationship of dominance to product-like construc-
tions in general.

Institut für Wissensbasierte Mathematische Systeme Fuzzy Logic Laboratorium Linz

Johannes Kepler Universität Linz
Altenberger Str. 69
A-4040 Linz
Austria

Softwarepark 21
A-4232 Hagenberg

Austria

Handling Drifts and Shifts in On-Line Data

Streams with Evolving Fuzzy Systems

E. Lughofer a

aDepartment of Knowledge-based Mathematical Systems, Johannes Kepler
University of Linz, A-4040 Linz, Austria (email: edwin.lughofer@jku.at)

Abstract

In this paper, we present new approaches to handle drift and shift in on-line data
streams with the help of evolving fuzzy systems (EFS). EFS are fuzzy rule-based sys-
tems which can be generated autonomously from data streams and can incorporate
human knowledge, but do not require such knowledge if it is not available. EFS are
characterized by the fact that their structure is not fixed and not pre-determined,
but is extracted from the data pattern on-line in an incremental manner. EFS proved
to be very efficient for fast on-line modelling processes. When dealing with so called
drifts and shifts in data streams one needs to take into account two major issues: a)
automatic detection of drifts and shifts, and b) automatic reaction to the drifts and
shifts in terms of gradual out-dating of older learned relationships. This is impor-
tant to avoid interruptions in the learning process. To address the first problem we
propose an approach based on the concepts of age and utility of fuzzy rules/clusters.
The second problem itself is composed of two sub-problems: 1) influence of the drifts
and shifts on the antecedent parts (fuzzy set and rule structure) and 2) influence of
the drifts and shifts on the consequent parts (parameters) of the fuzzy models. To
address the latter sub-problem we propose an approach that introduces a gradual
forgetting strategy in the local learning process. To address the former sub-problem
we introduce an approach that is based on the automatic adaptation of the learn-
ing rate of the evolving vector quantization (eVQ) method that is used to form
the antecedent parts of the rules in the so called FLEXFIS approach. The paper is
concluded with an empirical evaluation of the impact of the proposed approaches
in (on-line) real-world data sets where drifts and shifts occur.

Key words: drifts and shifts in data streams, evolving fuzzy systems, FLEXFIS,
detection and reaction to drifts and shifts, age of a cluster/fuzzy rule, gradual
forgetting

