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Recent Advances
in Approximate Reasoning

Thomas Vetterlein
Department of Knowledge-Based Mathematical Systems

Johannes Kepler University Linz
Altenbergerstraße 69, 4040 Linz, Austria
Thomas.Vetterlein@jku.at

A notion is called vague if it may happen that the objects under consideration cannot
be sharply divided into those to which the notion applies andthose to which it does not
apply. The adjective “large”, referring, for instance, to the height of trees in a forest, is
an example.

Vague notions belong to a coarse level of granularity; “large”, for instance, is usable
only to delineate large from small objects. To reason with vague notions does not
cause problems when conclusions are to be drawn on this low level of granularity.
When, however, objects are considered with regard to properties involving a finer level
of granularity, the coarse-level notions are usually not suitable. If their usage is never-
theless intended, they need to be interpreted within the finelevel.

We present one general possibility of how to do so. Our formalism is an advancement
of the Logic of Approximate Reasoning [Rus, Rod, GoRo]. The same time, it comes
close to fuzzy logic in the sense of Hájek [Haj]. The disadvantage of the original
version of approximate reasoning of being discontinuous under certain circumstances
is removed. Moreover, the disadvantage of fuzzy logics of not having well interpretable
proof systems is overcome as well.
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Reliable All-Pairs Evolving Fuzzy Classifiers
Edwin Lughofer1

Abstract

In this paper, we propose a novel design of evolving fuzzy classifiers (EFC) for multi-class clas-
sification problems. Therefore, we exploit the concept of all-pairs (AP) aka all-versus-all classification
using binary classifiers for each pair of classes. This benefits from less complex decision boundaries
to be learned opposed to direct multi-class approach as well as achieves a higher efficiency in terms
of incremental training time than one-versus-rest classification techniques. Regression-based as well
as singleton class label fuzzy classifiers are used as architectures for the binary classifiers, which are
evolved and incrementally trained in a data-streaming context. The classification phase considers the
preference levels of each pair of classes collected in a preference relation matrix and uses a weighted
voting scheme on this matrix by taking into account the reliability of the binary classifiers as integrating
the degree of ignorance of samples to be classified. Furthermore, the concept of conflict is handled
appropriately in form of conflict models in the single binary classifiers as well as when calculating the
final class response based on the preference relation matrix. The advantage of the new evolving fuzzy
classifier concept over single model (using direct multi-class classification concept) and multi model
(using one-versus-rest classification concept) architectures will be underlined by empirical evaluations
and comparisons at the end of the paper based on high-dimensional real-world multi-class classification
problems.

Index Terms

evolving fuzzy classifiers, multi-class classification, all-pairs classification, incremental learning,
preference level, preference relation matrix, reliability, ignorance, conflict

Edwin Lughofer1 is with the Department of Knowledge-based Mathematical Systems, Johannes Kepler University of Linz,
Austria, email: edwin.lughofer@jku.at
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Automatic Analysis of Terahertz Spectra
Henrike Stephani

henrike.stephani@itwm.fraunhofer.de

Abstract

The technology of Terahertz time-domain spectroscopy (THz-TDS) is used here to classify measurements by their

characteristic peaks in the spectrum. From the data acquisition to the classification the goal is to achieve a high level

of automation and standardization and at the same time preserve adaptability.

Several steps to achieve that will be introduced. We will start by presenting various preprocessing possibilities

that should be applied to enhance the quality of the spectra.After the measurements are transformed into a well

interpretable form they have to be organized automatically. For this purpose we use unsupervised classification.

Because it does not need input parameters to produce a result, we use hierarchical clustering. The classical version of

which is easily implemented and can be adapted to the respective application by choosing the right distance measures.

To handle high volume data, an algorithm that uses pre-clustering is used. To be able to evaluate the result of an

unsupervised classification we furthermore propose a new evaluation scheme.

Because the input data is very high-dimensional in its features, methods that reduce that dimensionality have to be

applied. Furthermore these methods have to be evaluated. Tobe able to perform such an evaluation we propose a

simulation scheme that produces spectra which resemble THz-TDS spectra in shape, noise characteristics, and peaks.

Thereby we can produce spectra with a known ground truth and use them for evaluation.

The feature reduction is then performed by only using wavelet coefficients of a certain scale. Although this seems to

produce already good results wavelet coefficients have two major disadvantages: they are not shift invariant and their

height does not necessarily represent the height of the original time-series. Therefore, we propose to alternatively

use so-called complex wavelets. Though the number of coefficients on one level is thereby increased by a factor of

two, the transform is shift invariant and improves the interpretability of the singularities by a direct representation

of shifts in the phase and height in the magnitude coefficients. These feature sets are evaluated with the evaluation

scheme and a correlation analysis.

Further work will consists in evaluating the features by theproposed cluster evaluation scheme and showing various

real-world application examples.
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Characterization and Analysis of Speckle Patterns in
Optical Coherence Tomography Images
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Jean-Luc Bouchot
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Abstract — In this talk we are interested in analyzing speckle patterns in OCT scans of a polymer
material being stressed. Some special care should be taken in order to assess the displacements
or the dynamics of the speckles as the images have particular characteristics: heavy noise, low
signal-to-noise ratio, low structural information.

We will present some new low-level image correlation methods which allow a local character-
ization of the speckle patterns by means of displacement fields or local dynamic characterization.
We will also present some ideas for post-processing these characterizations for segmentation pur-
poses.

Key words — Optical Coherence Tomography, Low-level correlation, flow-field, optical flow,
clustering
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1 Introduction

Optical Coherence Tomography (OCT) is an imaging technique which allows to get information
from the subsurface area of a material. We are interested here in analyzing the internal behavior
of a polymer tissue being stressed.

The problem of analyzing speckled images is challenging. They are characterized by their high
sensitivity to noise, as well as they rather low amount of structural information. In these cases, it
is impossible to track the displacements by traditional methods and any feature-based matching
would fail. Motivated by the first results obtained in [14], we extended the algorithm from a
charcterization of the dynamics to the computation of flow fields by local low-level correlation
techniques.

The talk is articulated as follows. In the next section we give some hints on how the images
are obtained and what are their characteristics. Then, in Section 3 we describe our approaches for
local analysis of speckles dynamics. The following section is dedicated to the experiments and
Section 5 gives some ideas on how to make use of the results of the previous sections in order
to segment an image into 3 main areas: static parts (where the internal structures stay almost the
same), dynamic parts (where a flow field computation makes sense) and a noisy part (where the
information carried by the speckles is corrupted by noise).

2 OCT Image: Acquisition and Characteristics

OCT imaging is a rather novel imaging process [11] for subsurface investigation of tissue. It is
often used in a medical context for analysis of the retina [3] or for skin analysis purposes [4].
It has recently been adapted for material sciences and non desctructive testing [13] in the con-
text of polymer being stressed [14]. The challenge is now to find some digital image processing
techniques for its automatic exploitation.

We first describe the acquisition set up in the following subsection and then give some ideas
of the challenging problems related to OCT images in Subsection 2.2.

2.1 Set-up

OCT images are based on low-coherence interferometry of (typically) near infra-red light. It
can achive sub-millimeter accuracy with deeper penetration as confocal microscopy in scattering
tissues. The images are acquired by a CCD camera at the output of an interferometer; see Fig 1.

A light source is splitted into 2 beams through a beam splitter. The first one will act as the
reference beam while the second one will be diffracted in the scatterers of the samples. Finally,
both beams are merged again together interferring with one another. These intereference patterns
convey information on how much structure in the sample send back light. By analyzing these
structures we can, as we will show in the next Sections, characterize the internal modifications of
the material.
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Figure 1: Sketch of the setup for the acquisition of the OCT images; reference mirror (RM), po-
larizer (P), beamsplitter (BS), polarizing BS (PBS), quarter wave plates (QWP), galvano-scanner
mirror (GM), diffraction gratings (DG), line camera (CCD).

2.2 Characteristics

The images obtained with the presented setup are completely different than any images taken
with a camera of a natural scene; see Fig. 2 for an illustration. The contrast is high only due to
the presence of speckles and the (interesting) structural aspects are rather on low-contrast area.
Moreover, it must be known that these OCT images are corrupted by speckle noise. One can
distinguish two types of speckles. The first one is a complete random noise created by multiple
backscattering in the sample, which we call the signal degrading speckles. The second one is the
one of importance and comes from the scattering in the focal plane of the lenses. It is denoted as
signal carrying speckles.

This particularity of speckles in OCT images as being both signal degrading and signal carry-
ing makes it hard to analyze the images. Indeed one cannot only filter out the speckles and work
on the resulting image, as it would leads to a lack of information, and therefore more adequate
techniques should be develop, as we will see in the next section.

3 Local Analysis of Speckled OCT

In this section we present our main contributions to this talk. As stated in the previous section,
processing speckled images is challenging as noise appear as signal carrying as well as proper
noise. These problems have already been stated in [14] together with some first ideas for the
processing of such images.

Here we are interested in improving the interpretation of OCT obtained speckled images. We
have developped different methods for the characterization of the dynamics of the speckles. We
give details of the two main classes of appraoches: local dissimilarity measures and local correla-
tions.



3 Local Analysis of Speckled OCT 3

(a) Example of a grayscale natural image (b) Example of an OCT scan of a polymer material

Figure 2: Some examples of natural image scenes and OCT speckled images. It appears clearly
that the structural aspects of the material are within low-contrast area of the OCT scan.

3.1 Local Dissimilarity Measures

This method was first introduced in [14] and deeper analyzed in [5]. It allows us to clearly separate
dynamic region of a material from more static ones. It is based on the work of Baudrier et al. [1]
on the topic of binary image comparison. The authors computed a so called Local-Dissimilarity
Map (LDMap) based on the Hausdorff distance. Another work is done to assess the quality of a
Magnetic Resonnance Image (MRI) [10]. We adapted this approach to compare two images within
a time shift. We adapted this method to be capable of different metrics. The LDMap considers a
small neighborhood centered at a given pixel of a given frame and computes the dissimilarity with
the same neighborhood from the consecutive frame. The LDMap computation is done as follows:

∀1 ≤ i ≤M, ∀1 ≤ j ≤ N,LDMap[d](i, j) = d(I(t) ◦A(i, j), I(t+1) ◦A(i, j)) (1)

with M,N being the size of the input images, A(i, j) a windowing function around pixel (i, j). t
is an index corresponding to the time.

It was empirically verified that the local dissimilarity gives a good idea of the dynamics of the
speckles from the tested materials.

Parameters As it appears in Eq. 1 defining the LDMap two major parameters should be taken
into account and tuned depending on the applications.

The most important one seems to be the choice of the window size. Indeed taking a bigger
size for the window will increase the risk of averaging out the speckles present. As we stated in the
theory in Sec. 2 we should not get rid of the local speckles as they are responsible for conveying
the signal information. On the other hand, by taking a too small windowing function we will
not get any robust estimation of the disparities. Indeed if we assume an extreme case as being
the one where we consider the windowing function as a single pixel (i, j) itself, the dissimilarity
computation will return an almost binary values which can be interpreted as follows: is the speckle
still at the same place or not? Practical results will be shown in the experimental part, Sec. 4,
Fig. 4(a) to Fig. 4(c). They show that the LDMap is a good indicator of the presence of noise or
displacements.
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A second parameter is the choice of the dissimilarity measure d. In the experiments we have
made on polymer materials (see details in Sec 4.2), it seems that this parameter as much less
impact than the previous one. In our tests ye did not remark some main differences after changing
this parameter and we will threefore keep on with the classical euclidean norm.

3.2 Local Correlation Methods

The methods we present here aim at describing quantitatively the speckles displacements. Each of
presented methods yield an image of 2 dimensional vectors containing the optimal x displacement
on one side and the y one on the other.

Here again the different methods can be classified into two categories: the pixel based methods,
and the frequency based ones.

3.2.1 Local Cross Correlation

In this approach we define a speckled window as being part of a neighboring region. The aim is to
find in the neighboring region inside the consecutive images where we are more likely to find the
given speckled window.

Correlation The correlation coefficient used is the one defined by Lewis [7]. It is defined, for a
given input window w, on a neighborhood N as

NCC(u, v) =

∑
(x,y)∈w

(
N (x− u, y − v)−N u,v

)
(w(x, y)− w)

{∑(x,y)∈w
(
N (x− u, y − v)−N u,v

)2∑
(x,y)∈w (w(x, y)− w)2} 1

2

(2)

where the overbar denotes the average, eventually centered at location (u, v). Finding the correla-
tion peak for each patch gives us a u and v for the displacements of the window.

The whole process works as follows:

Define window and neighborhood sizes

For all window in img1, look for highest correlation in img2 on neighborhood. The position
of the peak in the correlation tells us the local displacement.

Parameters Of course here again there are two main parameters to be tuned. The first one is
here again the size of the windowing. For the same reasons as earlier, this is a crucial that one
has to tune well. The other is this time the size of the neighborhood considered for the search.
Indeed, as the speckles have some kind of randomness, the choice of a large neighboring search
will increase the chance to find more than only one really similar region and therefore could lead
to misinterpretation of the results or non unicity of the solution. In this case, which correlated
solution should be the good one?

Fig. 4(d) to 4(f) show some examples of results of local cross correlation with different win-
dowing size.
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3.2.2 Optical Flow

Optical flow is another technique coming from a completely different area. It has been used
in computer vision for instance for the purpose of image compression [8] or tracking [6, 12].
However as the aim of the optical flow is to keep track of some information within a time delay
it motivates us to use this approach for speckle tracking. Many algorithms have been developped
in the past years and while numerous papers can be found on the topic, we refer the reader to [15]
for a good and recent description of the method.

Basically, the aim of optical flow is to minimize the following objective function:

E[I(t), I(t+1)](u, v) =
∑

i,j

{ρD
(
I(t)(i, j)− I(t+1)(i+ ui,j , j + vi,j)

)
(3)

+ λ(ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1))}
where u denotes the horizontal displacement field, v the vertical one, and ρD and ρS are respec-
tively the data and spatial penalty functions. λ is a regularitzation parameter. Remark that the first
term in the sum can easily be understood as a pattern matching (find the best match) whereas the
second one ensures a given smoothness on the flow-field: close pixel should mainly have close
flow.

An application of the optical flow to the speckle pattern analysis is illustrated on Fig. 3(c).

The three above described methods are all part of the pixel-based methods. The following
ones are based on a frequency analysis.

3.2.3 Phase-correlation

The main idea here is to use the property of the Fourier transform to recover the displacement,
consider as a translation of a pattern.

If we denote by F the 2 dimensional fourier transform and by δx and δy the displacements in
x and y direction respectively, the following holds:

F (f(· − δx, · − δy)) (µ, ν) = e−j(µδx+νδy)F(f)(µ, ν) (4)

Therefore any shift in the spatial domain is converted into a shift in the phase of the fourier trans-
form. Therefore, we are looking for a peak of the correlation function in the frequency domain
instead of the peak in the space domain.

The results obtained on some artificial dataset are shown in Fig. 4(g) to 4(i). They show the
importance of having a rather large area for a better estimation of the displacements in the Fourier
domain.

3.2.4 Pseudo Stokes Vector Correlation

This idea is based on the work of Wang et al. [16]. Before computing the local correlations, it
transforms an image (and its consecutive one) in a complex representation using the Riesz trans-
form. It allows, after a local linear approximation, to compute at each pixel a 3 dimensional vector:
the Pseudo Stokes Vector.
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Once the three components per pixel are obtained, the correlation is done by averaging a
combination of the correlation of the three components independently:

PSV Ccorr(I1, I2) = C(S1(I1)× S1(I2), S2(I1)× S2(I2), S3(I1)× S3(I2)) (5)

where C denotes the chosen combination of correlations.

As for the phase-correlation or the normalized cross correlation, we try to find the peak of the
correlation of a patch of the first image in a neighborhood of the second image.

Parameters There are different parameters to be tuned depending on the applications and the
aspect of the image. As always the choice the window size which defines the local domain used
for the correlation is important. As already stated in [16], the biggest the averaging size, the more
robust the approach is. This effect can be seen on Fig. 4(j) to 4(l). While it seems that taking a too
big averaging window would yield bad results (as seen on the last figure), one should notive that
we encounter some strong border effects when considering a 23×23 averaging on a 50×50 image.

4 Experiments

In order to assess the quality of the methods we have carried tests on two dataset. The first one
being an artificial dataset shows the feasibility of our methods whereas the second one shows the
complications inherent to real-world examples.

4.1 Artificial Dataset

For evaluation purposes we have designed some test samples were we can control the noise added
to the images, and the part of images being either dynamic, static or noisy, as it is the case when
dealing with real samples. Such toy examples can be seen on 3, where the left image represent the
original one and the following one is created by shifting the left part to the bottom by a given values
(in this case 3 pixels). The whole image is corrupted by speckle noise with different variances.

These images have been analyzed with the different methods presented in the previous section
with their parameters varying. The results can be seen in Fig. 4.

4.2 Polymer Samples

Some real world examples taken from some tests of material testing on polzmer were used. Some
samples are given in Fig. 5. For space reasons we will show only the results obtained with the
LDMap and phase correlation. We decided to stick at those ones, as they are the ones which
show the more robust results within fine tuning of the parameters. All the other methods (except
from the optical flow) indeed need to be carefully addapted to each casem and for comparable
results. The optical flow appears to be a rather unreliable method whenever it comes to real-world
examples.

The most interesting figure (Fig. 5(d)) shows some distincts regions. The white one represents
the parts of the material where the structure stays static along time. On the left side, one sees some



5 Segmentation 7

(a) Original Image (b) Distorded Image (c) Optical Flow

Figure 3: An artificial OCT scan created by adding random speckle noise to a uniform pattern.
The distorded image is obtained by shifting half of the image to the bottom. Both images are
50×50 pixels large. The third image shows their optical flow.

more dense pink region which is the part of the material where the scaterrers are fleeing. The rest
of the image contains some high speckle noise, which makes either unusable or unusefull. The aim
of the next Section is to give some idea on how to make use of such flow in order to automatically
separated each area.

5 Segmentation

As we are aiming at segmenting an image into 3 major regions: dynamic region, static region, and
noisy one, we want to apply some unsupervised clustering to the results given by the computations
described in Section 3. This Section aims at giving the first ideas developed for this purposes, even
if the work is still under development.

5.1 Features

First of all, we want to characterize grossly how the three regions are, visually, distinct. We should
note that the dynamic region are characterized by rather smooth and consistent displacement fields,
which means that the different flow on a local neighborrhod should not have many disparities. A
static region is characterized by low dissimilarity from an image to the following one. Finally the
noisy region will both have high displacements and unconsistent directions in the displacement
fields. These ideas are summarized in Table 1 in terms of local dissimilarity, gradient magnitude
and entropy of weighted histograms (see for instance [2] for some information).

5.2 Spectral Clustreing

Spectral clustering is a method developed for unsupervised classification based on spectral trans-
formations of an affinity matrix. As this part of the work is still in progress, and because no
particular work has been done on the process, we refer the reader to the work of Luxburg [9] for a
relevant introduction on the topic.
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(a) LDMap obtained on a 14×14
neighborhood

(b) LDMap obtained on a 22×22
neighborhood

(c) LDMap obtained on a 28×28
neighborhood

(d) NCC obtained on a 3×3 neigh-
borhood

(e) NCC obtained on a 7×7 neigh-
borhood

(f) NCC obtained on a 9×9 neigh-
borhood

(g) Phase correlation obtained on a
7×7 neighborhood

(h) Phase correlation obtained on a
11×11 neighborhood

(i) Phase correlation obtained on a
15×15 neighborhood

(j) PSVC obtained on a 11×11
neighborhood

(k) PSVC obtained on a 19×19
neighborhood

(l) PSVC obtained on a 23×23
neighborhood

Figure 4: Results for the dynamic estimation of speckles using different methods and parameters
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(a) First test sample (b) Second test image

(c) LDMap. window: 24×24 (d) Local Phase Correlation. Window: 21×21

Figure 5: Results on some real-world examples, using the LDMap and the phase based correlation.

Table 1: Interest of the chosen feature for the task of separating the three different region in our
OCT images

Flow Magnitude Entropy of Directions Dissimilarity
Static Low High Low
Dynamic High Low High
Noise High High High
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6 Conclusion

We have presented some methods for the analysis of speckled patterns in OCT scans. While the
first results are promising some work is still undergoing for the post processing of the flow fields
obtained. Moreover, a subpixel accuracy module should be embedded to give more robust results.
This would allow indeed to work with faster setup and therefore get accurate results.

On the other hand, in the context of non-destructive material testing, we are interested in
classifying the images into distinct region. Therefore the classification module should be adapted
carefully and the features given should be studied deeper in the near future.
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