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In the last years Seminar I introduced the Monogenic Wavelet and the
Riesz Transform as a new possibility to new get image properties. With these
properties some new applications can be performed as well as several pre-
calculations to improve existing applications.
The main areas of using these properties include machine learning, Image
Processing and Imaging in FF-OCM (Full Field Optical Coherence Tomogra-
phy). This work shows the progress of my thesis "Wavelets in Image Process-
ing" and gives an insight of the further work in this area.

Reinhardt: Applications of Image Processing using Monogenic Wavelet Frames



1 Recap 3

1 Recap

The base of the Monogenic Signal is the Riesz Transform. It is defined as:

R̂αf(ξ) = i
ξα
‖ξ‖ f̂(ξ), α = 1, . . . , n (1)

With the help of this Transform the analytical Signal based on the Hilbert Transform

fa = f + iHf

can be extended to the Monogenic Signal

fm = (f,R1f, . . . ,Rnf) (2)

This Monogenic Signal provides the extraction of new image properties like Amplitude,
Phase and Phase Orientation by the following calculations:

• Amplitude: A(x) =
√
f 2(x) + (R1f(x))2 + . . .+ (Rnf(x))2

• Phase: P (x) =
∣∣∣atan2(

√
(R1f(x))2 + . . .+ (Rnf(x))2, f)

∣∣∣

• Phase orientation: O(x) = (R1f(x),...,Rnf(x))√
(R1f(x))2+...+(Rnf(x))2

The locale phase can be interpreted as the optical flow of an image. Here the local
phase orientation denotes the direction of the flow and the local phase angle denotes
the strength. The influence of the properties can be easily shown at the example of the
so called "Zone Plate" test image in figure 1.

2 Applications of Monogenic Signals

Applications in Image Processing

Next to the fact that the Riesz Transform is a good working edge-detector, the Monogenic
Analysis can be used to find new kinds of features for classification of images. First
ideas of using the three extracted properties of textures instead the image itself exists, but
haven’t been implemented or tested yet. Similar ideas exists for the clustering of textures.
The main effort of the use of these properties is the reaching of higher robustness in the
algorithms of Machine Learning.
To show that this approach is useful, a decomposition into the new image properties
were made. Due to deal with the backlight the algorithms "Equalisation of Brightness"
respectively "Rolling Ball" were performed. The results of this composition are shown in
figure 2.

As a result it can be seen that these similar looking textures can get new features from
the phase and the orientation to provide a possibility of cluster/classify them. Several
tests in the future will show the usability and the improvement of the clustering/classifi-
cation.

Reinhardt: Applications of Image Processing using Monogenic Wavelet Frames
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Applications in Imaging

With the help of the SLM Device the filters can be applied in an optical setup called Full
Field Optical Coherence Microscopy. Information about this technology can be provided
by Dr. Bettina Heise and DI Stefan Schausberger from the CD Laboratory/Linz.
The first step is to take 2 phase shifted images and to use the difference to eliminate the
backlight. The resulting image can be used in the usual way to extract the new image-
properties. These are shown in figure 3.
Next to the usability of the provided ways of Image Processing the filters can be also

used directly as a phase filter. Because of the fact, that in imaging just intensities can be
measured and given as filters, the Riesz Transform cannot be applied in each direction.
These special Filters have been implemented and tested but not evaluated and inter-
preted yet.

3 An Outlook on new Wavelet Frames

3.1 Notations

The Group GLn (K) or GL (n,K) includes all regular n×n Matrices with coefficients out
of K.
Vectors:

• x ∈ Rn is a column vector.

• ξ ∈ R̂n is a row vector.

• a vector multiplying a matrix on the right is understood to be a column vector

• a vector multiplying a matrix on the left is understood to be a row vector

Operators for f ∈ L2 (Rn):

• The Translation-Operator Ty with y ∈ Rn is defined as (Tyf) (x) = f (x− y)

• The Dilation-Operator withM ∈ GLn (R) is defined as (DMf) (x) = |detM |− 1
2 f (M−1x)

• The Modulation-Operator with ν ∈ Rn is defined as (Mνf) (x) = exp2πiνx

While f ∈ L1 (Rn) ∩ L2 (Rn) the Fourier Transform is defined as

f̂ (ξ) =

∫

Rn

f (x) exp−2πiξx dx (3)

With the back transform
f̌ (x) =

∫

R̂n

f (ξ) exp2πiξx dξ (4)

The results are the following properties of the operators

• (Tyf )̂ (ξ) =
(
Myf̂

)
(ξ)

• (DMf )̂ (ξ) =
(
D̂M f̂

)
(ξ) = |detM | 12 f̂ (ξM)

Reinhardt: Applications of Image Processing using Monogenic Wavelet Frames
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3.2 Affine systems with composite dilations

A general definition of affine systems with composite dilations can be given by ([FM-
CFHLG09]):

AAB (Ψ) =
{
DADBTkψ

l : A ∈ GA, B ∈ GB, k ∈ Zn, l = 1, . . . , L
}

(5)

where Ψ ⊂
{
ψ1, . . . , ψl

}
∈ L2 (Rn) , GA ⊂ GLn (R) and GB ⊂ GLn (R) with |detB| = 1

Here the Elements A ∈ GA dilate into at least one direction while the elements of GB

give the geometry of the system AAB (Ψ).
GB is a countable subset of S̃Ln (Z) = {B ∈ GLn (R) : |detB| = 1} andGA = {Ai : i ∈ Z}

where A ∈ GLn (Z). Also it is required that A normalises GB (ABA−1 ∈ GB for each
B ∈ GB) and that the space of quotients B/ (ABA−1) is finite. Then the sequel {Vi}i∈Z
of closed subsets of L2 (Rn) is called AB Multiresolution Analysis, if:

(i) DBTkV0 = V0, for ech B ∈ GB and k ∈ Zn

(ii) for each i ∈ Z is Vi ⊂ Vi+1, where Vi = D−iA V0

(iii)
⋂
Vi = {0} und

⋃
Vi = L2 (Rn)

(iv) there is a φ ∈ L2 (Rn) so that ΦB = {DBTkφ : B ∈ GB, k ∈ Zn} a semi orthogonal
Parseval Frame of V0. It means that ΦB is a Parseval Frame of V0 with the additional
fact that DBTkφ ⊥ DB′Tk′φ is for any B 6= B′, B,B′ ∈ GB, k, k′ ∈ Zn.

The space V0 is called AB Scale Space and the function φ is called AB Scale Function für
V0. Furthermore φ is called orthonormal AB Scaling Function, if Φ is a ONB for V0.

Outgoing from the theory about affine systems from section 3.3 of the book [FM-
CFHLG09] and the definitions from [LLKW05] there is the possibility to define affine
systems with composite dilations in R2 with

AAB (ψ) =
{
ψi,j,k = |detA|

j
2 ψ
(
BjAix− k

)
: i, j ∈ Z, k ∈ Z2

}
(6)

Here is AMas (ψ) = AAB (ψ) = Aa,s,t (ψ) with

Mas =

(
1 s
0 1

)(
a 0
0
√
a

)
=

(
a s
√
a

0
√
a

)

and
Aa,s,t (ψ) =

{
ψa,s,t = a−

3
4ψ
(
M−1

as (x− t)
)

: a ∈ R+, s ∈ R, t ∈ R2
}

(7)

The generating functions ψ should be well localised what means that they decrease fast
in frequency and spatial domain.

These systems have the basis of an affine Group. In the case of two dimensional
Shearlets this is the group

G =
{

(M, t) : M ∈ Dα, t ∈ R2
}

(8)

with 0 < α < 1 and Dα ⊂ GL2(R) (General Linear Group) with

Dα
{
M = Mαs =

(
a −aαs
0 aα

)
, a > 0, s ∈ R

}
(9)

Reinhardt: Applications of Image Processing using Monogenic Wavelet Frames
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f 7→
{
SHα

ψf (a, s, t) = 〈f, ψast〉, a > 0, s ∈ R, t ∈ R2
}

(10)

SH maps f ∈ L2(R2) on a transform independent space which depends on the scale a,
the shearing parameter s and the localisation t.
With the elements out of G a continious Shearlet System can be formed from ψast:

ψast (x) = |detMas|−
1
2ψ
(
M−1

as (x− t)
)

(11)

These shearlet systems are not tested or implemented in a discrete way yet. The effort in
these systems will be the separation of different frequency areas in one specified scale
of a Multiresolution Analysis of Shearlets. More further work will be done in research of
a possible monogenic Shearlet system which could offer an extraction of the new image
properties in the scales and in the specified support areas of the used Wavelets.

Reinhardt: Applications of Image Processing using Monogenic Wavelet Frames
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(a) Original (b) Amplitude

(c) Phase (d) Orientation

Fig. 1: Zoneplate
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(a) Original (b) Amplitude

(c) Phase (d) Orientation

Fig. 2: Texturanalyse
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(a) Original Image 1 (b) Original Image 2

(c) Original (d) Amplitude

(e) Phase (f) Orientation

Fig. 3: OCM Aufnahme
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(a) h1 (b) rh1

(c) h2 (d) rh2

(e) h3 (f) rh3

Fig. 4: OCM - Filter
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Fig. 5: OCM - Riesz

Fig. 6: OCM - Riesz Result
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Detecting cracks in reciprocating compressor valves 
 
 

K. Pichler1, E. Lughofer2, T. Buchegger1, E.P. Klement2, M. Huschenbett3 

1Linz Center of Mechatronics GmbH, Linz, Austria 
2Johannes Kepler University, Linz, Austria 

3Hoerbiger Service America, Inc., Greenwood Village, Colorado, USA 
 
 

Reciprocating compressors are heavily used in modern industry, for instance for gas transportation and 
storage. In many cases, compressors run at high capacity and without backup. Hence unexpected shutdowns 
lead to large losses in productivity. Furthermore, there is an economic trend towards saving labor costs by 
reducing the frequency of on-site inspection. Such considerations mean that compressors are run by remote 
control stations and monitored by automated technical systems. In this case, the system must be able to retrieve 
and evaluate relevant information automatically to detect faulty behavior. 

The state of the art solutions for reciprocating compressor valve fault detection are designed for constant 
load conditions. When the load changes, operators adapt the threshold values manually. Since modern 
reciprocating compressors are controlled by reverse flow capacity control systems, changing load levels are 
not unusual, and the fault detection methods have to cope with that fact. Furthermore, most of the proposed 
solutions employ in-cylinder pressure measurements. We are developing a method that is based on vibration 
data. This makes sensor mounting easier and cheaper than the commonly used in-cylinder pressure 
measurements. 

In this paper, the basics of the project are presented. We give an introduction about the reciprocating 
compressor test bench we used to acquire real world test data. A matter of special importance will be the 
reverse flow capacity control system to control the compressors load. This system keeps the suction valve open 
at the beginning of the compression phase to allow a fraction of the gas to flow back into the suction chamber. 
Thus it influences the timing of the valve events of the suction valves as well as the discharge valves. Then we 
will provide an overview of the measured data. The data contain pressure measurements, temperatures, 
vibrations,… Furthermore we will present a first attempt to solve the problem by employing a vibration 
analysis approach that determines the spectral energy in certain frequency bands. We discuss the results using 
this approach and some of its drawbacks. Finally, we discuss the issues to be solved for extending the method 
to make it independent of the load level and the valve type. 

 





Fitness Landscape Analysis applied to instances

of the Quadratic Assignment Problem Library

Michael Affenzeller

Upper Austrian University of Applied Sciences,
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Abstract

Fitness Landscape Analysis (FLA) is a technique to extract features
of problem instances that can be used for comparison and to anticipate
or predict the performance of metaheuristics algorithms. This talk will
present recent results on the analysis of instances of the quadratic assign-
ment problem library (QAPLIB).
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Population Decision Modeling

Wolfgang Heidl wolfgang.heidl@profactor.at

Profactor Research, 4407 Steyr-Gleink, AUSTRIA

1. Introduction

At the beginning of each scientific analysis process
stands a model. The model captures the relevant de-
tails of the system under investigation, leaves out fea-
tures that are considered irrelevant and encodes rela-
tions that are assumed to exist. In short the model
formalizes the assumptions we make about a system
on which the analysis will be based.

In the current setting we investigate differences in vi-
sual inspection decision making (Heidl et al., 2011).
Our system consists of a population of humans that
carry out a repeated decision-making task (Betsch
et al., 2004) over a set of stimuli images. We assume
that the decision process of humans is influenced by
a set of personal properties. The decision task is de-
fined in terms of visual illustrations and is presented
to each subject in the same way. The task definition
is therefore a constant parameter of our system.

In a straight-forward realization of this setup the set
of stimuli used for each subject to decide upon is iden-
tical and thus constant across the population. The
only variables remaining in the model are the personal
properties and the subject responses. With this simpli-
fied model, omitting the covariate stimuli properties,
differences in decision outcomes can certainly be mea-
sured and analyzed, but lacking a decision model no
further insights can be achieved.

Instead we take a structured modeling approach and
introduce a nested, 2-level model, where we separate
modeling of individual subject’s decision behavior at
the inner level from modeling of the influence of sub-
ject properties. For description of the decision be-
havior we intend to utilize models from the field of
machine learning that are automatically adapted to
the data at hand in terms of parameters but also in
their very structure. To foster interpretation of those
models we introduce descriptive meta features. At the
outer level we model the influence of subject proper-
ties on their decision behavior and thus on the inner
model. Here we will primarily resort to linear regres-
sion type models that are amenable to direct inter-

pretation. The inferences we draw will therefore take
the form of correlations between personal properties
of subjects and characteristic features of their decision
models.

The following treatment starts with the description
of our system in the most general and abstract way,
where the goal is to identify the relevant variables
(factors) and to define the cause-effect relationships
(dependent and independent variables, covariates) of
our hypothesis. We will then refine the abstract, real
world decision stimuli and introduce a feature-based
description of measurable stimuli characteristics. The
decision models at the inner level are thus formalized
as functions mapping from the vector space of reals
to the categorical outcomes. At the outer stage we
simplify from the (infinite dimensional) function space
of decision models by introducing finite dimensional
L2-features that describe function models.

2. Model

At the inner level L1 of our model we consider repeated
decision making tasks over a finite set of alternatives
Y := {Y1, ..., Yk}. In those tasks decisions need to be
made upon a series of similar stimuli {ψ1, . . . , ψl} ⊂ Ψ
under certain time constraints. Then for each subject
p, the decison-making processes is thus modeled by the
function

fp : Ψ 7→ Y

yi = fp(ψi) (1)

The population of decision-makers are then repre-
sented by points in the vector space of decision func-
tions. We assume that the influence of personal prop-
erties v ∈ V on the decision functions are in turn gov-
erned by a functional relationship g, such that

g : V 7→ (Ψ 7→ Y )

fp(·) = g(vp) (2)

While being most general, the formulation given here
is difficult to handle practically and yields little insight
when it comes to inference. In particular, the stimuli ψ
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in (1) are abstract entities that need further refinement
to be accessible to statistical treatment. Even with its
domain and image properly defined, the utility of the
function-space formulation of (2) for inference is lim-
ited. Analysis will depend on the expressiveness of a
functional distance measure and results will eventu-
ally be formulated in terms of (dis)similarity to pro-
totypical decision functions. However, in the end we
would like to infer about specific instances of decision
functions. Therefore we will need to define how these
properties can be extracted from the functions fp(·).
As indicated before, the abstract model given by (1)
and (2) needs to be refined to be of practical use. We
start by quantizing the the stimuli ψ. We assume a
D-vector of stimuli features x relevant to the decision
process can be extracted from the stimuli by the func-
tion

Φx : Ψ 7→ RD

xi = Φx(ψi) (3)

The choice of features will be specific to the task at
hand. The features can be descriptions of the stimuli
on a basic or higher perceptual level, such as the power
spectral density of an audio signal or shape and texture
descriptions of objects in an image or even describe
the basis for decision on a conceptual level such as
the problem description in a simulated problem solving
task (Stevens & Soller, 2005). For a set of l stimuli we
will the denote the corresponding set of feature vectors
as the feature matrix X = (x1 · · · xl).

To make the decision functionals amenable to a
feature-based description, we will restrict fp(·) to be
parametrized instances from an a-priori set function
class C, i.e.

fp(·) := fC(·,θp) (4)

For the sake of readability we will from now on omit
the class index of parametrized functions. In such
functions we will write the instance parameter at the
end of the argument list, separated by a semicolon.
The decision model parameters θp encode the specific
instance of given class of models f . The models will in
general differ in description length, i.e. in the length
of their encodings for each subject. As an example, let
the decision model class be decision trees of the CART
flavor. The encoding of a specific tree instance could
then be a list of pairs {k, tk} of the tree traversed in
preorder, with k being feature indices and t the cor-
responding thresholds. For such a tree, description
length thus differs with number of tree nodes. From
the viewpoint of statistical modeling, θp encompass
both model structure and parameters. Without loss

of generality we will assume that encodings of decision
models are made using vectors of real numbers with
length Hp for subject p i.e. θp ∈ RHp .

We can now write the decision model at L1 as

yp,i = f(xp,i;θp)⊕ εp,i , (5)

where we introduce random disturbances εp,i to the
decisions to account for various sources of model error.
We use the ⊕ operator here, since the responses y are
elements from the set of decision alternatives, where
addition may be ill-defined.

At the outer level L2 of our model we describe the de-
cision functionals (i.e. decision models) by a finite set
of interpretable features. To distinguish these model-
describing features from the stimuli features we will
from now on denote them as meta-features or L2 fea-
tures. A vector of J L2 features, sp ∈ RJ are extracted
from the parameters θp of the decision models by the
extraction function

Φs : RHp 7→ RJ

sp = Φs(θp) . (6)

Like the L1 features, the choice (selection) of the meta-
features is of course application specific and depends
on the research hypothesis under investigation. Once
the set of meta-features is defined, their values can
be acquired for each subject. For the outer L2 of the
model those features are observables. Modeling of L2
can thus draw from the full repertoire of statistical
modeling.

The L2 model links the L2 features to J personal prop-
erties v of the subjects, such as age, sex and education,
that will typically be acquired by means of a question-
naire. It takes the form

g : RJ 7→ RJ

sp = g(vp;β) + ζp (7)

where it is assumed that g defines a class of functions
that are parametrized by the L2-parameters β. Again,
we introduce random disturbances ζp to account for
the various sources of model error.

3. Estimation

We treat decision making as a subjective process that
we assume to vary in parameters and structure. Our
approach to adequately capture those variations is to
use separate instances of models for each subject. The
model instances are chosen from a class of models that
can adapt their complexity to fit the empirical data at
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hand. As such, the L1 model instances for each sub-
ject are self-sufficient and the experiments need to be
designed such that parameters therein can adequately
be identified. In some sense our model can be seen as
longitudinal (Rabe-Hesketh et al., 2004) in that multi-
ple measurements are available for each subject. How-
ever, the main focus of our investigation is not vari-
ation over time but variation over stimuli. Thus, at
the inner level of the model we perform a true exper-
iment, where ’treatments’ (stimuli) are actively con-
trolled and responses measured. This is in contrast to
the predominant approach taken in the classical ex-
amples of multilevel statistical models, which follow
an observational approach (Goldstein, 2010). Since we
describe the decision making of subjects with separate,
potentially differently structured models, our overall
model is a composite of the L1 instances and a link-
ing L2 model. Therefore, we seek a way of jointly
estimating the parameters of the model components,
while still leaving the local estimation to the special-
ized methods.

For this joint estimation to be meaningful, we need to
set a common goal, a target against which the progress
and quality of the estimation can be measured. The
usual way to proceed is maximum likelihood estima-
tion (MLE1) where we seek parameter values such that
likelihood of the observed data is maximized. Given
a model (assumed distribution) of the residuals a loss
function for the estimation can be specified and then
minimized. The most common choice are independent
residuals with zero mean and equal variance, for which
estimation boils down to ordinary least squares. How-
ever, in our multi-level, composite setting the simplifi-
cation of equal variance is not warranted because resid-
uals arise in different levels of the model and concern
different concepts/traits.

In the following sections we will develop the reduced
form distribution that specifies the joint likelihood
function of our model. Assuming conditional indepen-
dence of the responses of different subjects we then
factor the joint likelihood into an integral over com-
ponent likelihoods at the L1 and L2 levels. Since no
closed-form solution exist to this integral we introduce
a nonparametric sampling-based estimation procedure
that combines maximum likelihood component esti-
mates. Finally, we introduce weighted regression as a
simplified, parametric solution, when the model errors
in L2 are assumed to be Gaussian random variables.

1We will use the abbreviation MLE also for the resulting
maximum likelihood estimates.

3.1. Reduced Form

The reduced form of our model expresses the relation-
ship between covariates, responses and random vari-
ables in a single equation. If the meta-feature extrac-
tion function Φs is invertible, i.e. if the decision model
encoding θp can be fully reconstructed from the set of
meta-features sp, we can combine the Equations (5),
(6) and (7) obtain the reduced form

yp,i = f
(
xp,i, Φs

−1 (g(vp,β) + ζp
) )
⊕ εp,i . (8)

Now the reduced form distribution, the conditional dis-
tribution of the observed responses y given the covari-
ates, X,v and the parameters β is the product

p(y|X,v;β) =
P∏

p=1

p(2)(yp|Xp,vp;β) (9)

where the L2 contributions of each subject are ob-
tained by latent variable integration (Rabe-Hesketh
et al., 2004):

p(2)(yp|Xp,vp;β) =

∫
p(ζp) p(1)(yp|Xpvp, ζp,βp) dζp .

(10)

Notice that the L2 contributions are just the expected
values of the L1 distributions over the L2 disturbances.
The contributions at the decision level L1 are

p(1)(yp|Xp;vp, ζp,βp) =

lp∏

i=1

p(εp,i) (11)

where the L1 disturbances are computed using (8),

εp,i = ypi 	 f
(
xp,i; Φs

−1 (g(vp;β) + ζp
) )

. (12)

What is needed now for the evaluation of (9) are a
feasible way to integrate over ζ, and assumed distribu-
tions p(ζ) and p(ε) of the disturbances. In the general
case, and specifically with data-driven decision mod-
els with adaptive structure and thus varying parameter
count at L1, Φs is not invertible and the integral can
neither be solved in closed form nor evaluated with
Laplace approximations or quadrature-type numerical
integration (Rabe-Hesketh et al., 2004). Our strategy
will be to circumvent the inversion of Φs by changing
the integration variable to θ, and to use Monte Carlo
sampling to evaluate the integral.

3.2. Decomposition into component likelihoods

For notational convenience we omit dependence on the
covariates Xp and vp. Now we write the L2 contribu-
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tions of the reduced form distribution as the marginal-
ization over the latent variables θp,

p(2)(yp|β) =

∫
p(yp,θp|β) dθp . (13)

We then factor the integrand into

p(yp,θp|β) = p(yp,θp,β)/p(β)

= p(yp|θp,β) · p(θp,β)/p(β)

= p(yp|θp,β) · p(θp|β)

= p(yp|θp) · p(θp|β) (14)

where we used conditional independence of responses
yp given the latent variables θp in the last step. There-
fore,

p(2)(yp|β) =

∫
p(yp|θp) p(θp|β) dθp , (15)

where the first term are the L1 component likelihoods
p(1)(yp|Xp;θp) and the second term the L2 likelihoods

p(2)(θp|vp;β). While the inversion of Φs is no longer
needed to compute the integrands of (15), the integral
can still not be evaluated in closed form for all but
the simplest models in L1 and L2 (Newton & Raftery,
1994). However, we can use Monte-Carlo methods to
estimate the integral.

3.3. Monte-Carlo estimation by sampling from
the L1 posterior

Standard Monte-Carlo estimation of (15) requires sam-

ples θ(r)p drawn from p(θp|β). Such samples can not be

obtained from the L2 posterior distribution, p(2)(sp|β)
since this would again require the extraction function
Φs to be invertible.

However, under quite general conditions (Newton &
Raftery, 1994), importance sampling allows for sam-
ples to be drawn from a different, easier to handle dis-
tribution but still produce a simulation consistent esti-
mate. To compensate for not sampling from p(2)(θp|β)
density conversion weights

w(r) =
p(2)(θ(r)p |β)

p∗(θ(r)p )
(16)

are introduced, where p∗(θ(r)p ) is the density of the
importance sampling function. The efficiency of this
approach depends on the overlap of the samples with
the support of the integrand. In general, the θp sup-
port of p(yp|θp) will be highly sparse and not reside
in a fixed-dimensional Eucledian space.

Analogous to (Newton & Raftery, 1994), our strategy
is to use the L1-posterior p(1)(θp|yp) as our impor-
tance sampling function. In general this would be a
poor importance sampling function to substitute for
p(2)(θ(r)p |β), but here we integrate over p(1)(yp|θ(r)p ),

making p(1)(θp|yp) a good choice. Several nonpara-
metric methods exist to obtain samples (approxi-
mately) from the posterior distribution, ranging from a
“poor man’s” approximation (Hastie et al., 2009) using
non-parametric bootstrap (Efron, 1979) estimates, to
more elaborate sampling schemes like weighted likeli-
hood bootstrap (Newton & Raftery, 1994) and Markov
chain Monte Carlo sampling (Gelfand & Smith, 1990).

Therefore, we have p∗(θ(r)p ) ≈ p(1)(θp|yp) and the den-
sity conversion weights become

w(r) ≈ p(2)(θ(r)p |β)

p(1)(θp|yp)

=
p(2)(θ(r)p |β) · p(yp)

p(1)(yp|θ(r)p ) · p(θ(r)p )
. (17)

The importance sampling Monte Carlo estimates of
the L2 contributions to the reduced form distribution
are then

p(2)(yp|β) ≈
R∑

r=1

p(1)(yp|θ(r)p ) · w(r)

/
R∑

r=1

w(r)

=
R∑

r=1

p(2)(θ(r)p |β) · p(yp)

p(θ(r)p )

/
R∑

r=1

p(2)(θ(r)p |β) · p(yp)

p(1)(yp|θ(r)p ) · p(θ(r)p )
.

When we assume uninformative (uniform) priors

p(θ(r)p ) and remove the additional common factor
p(yp) we get

p(2)(yp|β) ≈
R∑

r=1

p(2)(θ(r)p |β)

/
R∑

r=1

p(2)(θ(r)p |β)

p(1)(yp|θ(r)p )

(18)

being L2-weighted harmonic means of the sampled L1
likelihoods.

Having generated booststrap estimates θ(r)p for each
subject p the (approximate) MLE is optained by us-
ing (18) in (9) and maximizing over β. The maximiza-
tion can start from a L2-model fit on non-boostrap L1-
estimates θp and then progress by (numeric) gradient
decent. Note that L1-posteriors do not depend on β
and hence need not be recomputed during the course
of the optimization.

3.4. Weighted Regression

When we formulate the approximate reduced form dis-
tribution and its maximization, our aim is to properly
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address the varying uncertainties associated with the
L1 parameter estimates and thus in the corresponding
L2 responses sp (7). For this purpose it is usually suf-
ficient to model the uncertainties by multivariate nor-
mal distributions. The random effects (uncertainties)
in the L2-model are represented by the disturbances ζp
for which we can now estimate per-subject covariances
Σ̂ζp that can be used for weighted regression over sp.
We transform the bootstrap estimates of θp into L2

responses s
(r)
p = Φs

(
θ(r)p

)
and compute

Σ̂ζp =
1

R− 1

R∑

r=1

(s(r)p − sp)(s(r)p − sp)T , (19)

with

sp =
1

R

R∑

r=1

s(r)p .

As indicated in the previous chapter, fitting of trained
models typically requires a procedure to determine
complexity controlling hyper parameters. These pa-
rameters are chosen such as to minimize the expected
prediction error (EPE) of the model on future data.
Commonly cross validation is employed to estimate
the EPE. For a given hyper parameter set, the model
is fit on the entire training data, which will in our case
yield per-subject parameter estimates θp. To obtain

the required bootstrap estimates θ(r)p we draw boot-
strap samples from the entire training data. From the
view point of computational effort it might be desir-
able to combine the usual cross validation sampling
scheme for hyper-parameter estimation with bootstrap
sampling. Indeed, bootstrap schemes have also been
suggested for EPE estimation (Efron, 1983) (Efron &
Tibshirani, 1997). Therefore, determination of hyper
parameters and bootstrap estimates of the actual pa-
rameters can be obtained from the same set of boot-
strap samples.

In either case, the bootstrap estimates θ(r)p will suf-
fer from training-set-size bias, because the number of
distinct observations in each bootstrap sample is only
about 63% of the training set size (Hastie et al., 2009).
This bias is negligible for hyper-parameter determina-
tion, where one a assumes that it does not influence the
rank of models in the search for the minimum EPE.
However, depending on the learning curve, the esti-
mated parameters of trained models will vary system-
atically with training set size. This indicates another
benefit of the weighted regression setting. While we
can use the L2 responses computed from the whole
training set as unbiased point measurements, we need
resort to the biased bootstrap estimates only for the

acc:362

x27 < 327.5

x55 < 0.808
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Figure 1. Decision tree induced from the responses of one
subject. Triangles denote splits according to the criterion
given next to it. Each leaf node is marked by a filled circle
and the decision (accept/reject) associated to it. After the
colon the number of samples ending up in the leaf node is
given. The tree is displayed in terms of levels with equal
depth d, with the height h = 4 being the maximum depth.

weights, that are derived from the error covariances
(19).

4. Results

We illustrate the effectiveness of our proposed joint
MLE approach for population decision modeling in a
visual inspection study (Heidl et al., 2010) with 50 fe-
male and 50 male subjects. We will compare the statis-
tical significance (Cohen, 1988) of population decision
models obtained by ordinary regression as used in the
original paper and by the weighted regression approach
presented in this work. The decision behavior of each
subject is modeled by CART decision trees (Breiman
et al., 1993) and the extracted meta-features are re-
gressed against subject’s sex. As such we invectigate
sex differences in visual inspection decision making.

To make the results more illustrative we will start with
a brief introduction of decision trees and the set of
model describing meta-features used in the study. We
will then compare effect sizes and significance levels
of the sex differences obtained by the weighted and
non-weighted approaches.

4.1. Classification trees and meta-features

Figure 1 shows a typical decision tree induced from
the responses of one subject in our study. To predict
a subject decision y for an image with features x the
decision tree is traversed downward starting from the
root node nr at the top. The split criteria at the inner
nodes determine the edges to follow until a leaf node
is reached. Each leaf node represents a classification
result.

From Figure 1 we can for instance deduce the following
rule for the leftmost branch:
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IF x27: Area of largest cavity < 327.5 AND
x55: Contrast of largest dirt in the critical
zone < 0.808 AND x2: Number of faults
other than scratches < 4.5 THEN accept
that part.

If we know whether the values on the right hand side
of the inequations are low, high or medium (based on
relative comparison), then we can transfer this rule
into a more linguistic, readable one, e.g.:

IF Area of largest cavity IS NOT HIGH AND
Contrast of largest dirt in the critical zone
IS LOW AND Number of faults other than
scratches IS LOW TO MEDIUM THEN ac-
cept that part.

As indicated in the previous subsection, trained clas-
sifiers may not in general be encoded into parameter
vectors θp of fixed length, making classifier compar-
ison non-trivial. Apparently, classification trees too
suffer from this problem, but meta-features describing
the tree structure can be devised in a straight-forward
manner.

Classification trees produced by the by the CART al-
gorithm are full binary trees, where every node other
than the leaves has exactly two children. The tree size
N is given by the number of nodes including L leaf
nodes, where N = 2L − 1. The depth di of a node ni
is the length of the path from the root to the node,
with the maximum node depth being the tree height
h. For trees that model decision behavior, the depth
at the leaf nodes can be interpreted as effort needed
to come to a decision. In addition to L and h, which
depend on the graph structure alone, we can also take
into account how the samples traverse the tree. If we
count the number li of training instances traversing
node ni, and denote the set of leaf nodes {ni|i ∈ L},
we can compute the average depth per sample

µ̃d =

∑
i∈L dili∑
i∈L li

, (20)

where L is the set of leaf node indices. Similarly, we
define the relative depth variability σ̃′d as

σ̃′d =
σ̃d
µ̃d
, with σ̃d =

√∑
i∈L(di − µ̃d)2li∑

i∈L li
. (21)

By taking the number of traversing training instances
into account we can also calculate the tree entropy

H =
∑

i∈L
Hi (22)

Meta
feature

Mean value Effect
size

(standard deviation) (p-value)

All Female Male
Leaf count 6.020

(3.102)
6.860
(3.567)

5.180
(2.260)

-0.563
(0.00417)

4.851
(2.838)

6.385
(3.106)

3.868
(2.136)

-0.944
(0.00106)

Average
depth per
sample

3.121
(0.916)

3.395
(0.882)

2.846
(0.866)

-0.628
(0.00250)

2.982
(1.001)

3.375
(0.856)

2.610
(0.986)

-0.828
(0.00127)

Height 4.280
(1.638)

4.840
(1.617)

3.720
(1.457)

-0.728
(0.00064)

3.876
(1.840)

4.795
(1.602)

3.124
(1.673)

-1.020
(0.00042)

Entropy 1.839
(0.552)

2.040
(0.495)

1.637
(0.532)

-0.783
(0.00019)

1.802
(0.565)

2.049
(0.481)

1.563
(0.537)

-0.954
(0.00005)

Relative
depth
variability

0.360
(0.121)

0.407
(0.105)

0.313
(0.117)

-0.844
(0.00006)

0.359
(0.117)

0.401
(0.104)

0.316
(0.112)

-0.794
(0.00013)

Table 1. Sex differences in structural meta-features of sub-
jective classification trees. Comparison of standard ap-
proach (upper rows in the feature blocks) versus weighted
approach (lower rows in the blocks). Results with higher
significance of the two approaches are indicated in bold
face.

with the entropy contributions of each (leaf)node

Hi = −pi log2 pi , pi =
li
l
. (23)

4.2. Sex differences in visual inspection
decision making

In Table 4.2 we compare the results obtained by the
standard (non-weighted) approach to the ones ob-
tained by the weighted approach presented in this pa-
per. For all but the relative depth variability meta
feature, the weighted approach increases the measured
effect sizes and decreases the p-value by factors rang-
ing from 1.5 for the height to around 4 for the leaf
count.

The meta-feature variances for each subject have been
estimated from 100 bootstrap samples of the data.
The co-variance structure in the meta-features has
been ignored, i.e.

Σ̂ζp =




σ2
p,1 0 0

0
. . . 0

0 0 σ2
p,J


 (24)
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Figure 2. Distibution of the normalized meta-feature
weights for 100 subjects. For each meta-feature the weights
have been sorted by magnitude and normalized by their
median value. The weights vary from roughly 0.5 = 10−0.3

to 2 = 100.3 times their median.

leading to the weights wp,k = 1/
√
σ2
p,k for meta-

feature sp,k. Figure 2 shows the normalized weight
distribution for all five meta-features. From the figure
we can see that the weights for individual subjects vary
roughly from half their median value (10−0.3) to dou-
ble their median value (100.3). This strongly indicates,
that the uniform weight assumption of the unweighted
approach is not warranted.

5. Discussion

In this paper we have shown, how machine learned
models of decision behavior can be used as a measure-
ment device to make inferences over a population of
decision makers. While separate, specialized models,
including their established local maximum likelihood
estimation procedures are used, we can still formulate
the likelihood of the composite model as the basis for
a joint maximum likelihood estimation procedure. As
such, the presented framework is suitable not only to
the investigation of repeated decision making. It is
a flexible, data-driven approach to investigate differ-
ences in how specific tasks are carried out. By choos-
ing regression-type L1 models, the class of suitable
tasks for our approach can readily be extended from
ones having finite sets of possible responses to contin-
uous responses. Also, the subjects under investigation
need not be humans but can be generalized to animals
and other biological and non-biological systems that
respond to the application of stimuli.

Along the way of deriving our framework we made
simplifications based on the following assumptions:

• The relevant aspects of subject behavior can be
identified from a set of measurable stimuli, and
the corresponding responses.

• The subjective decision models are instances of a
chosen hypothesis-class, trained by some machine
learning algorithm.

• The decision behavior of subjects is adequately
represented by a finite set of meta-features that
are extracted from the identified decision model
instances. The L2 model rests on the extracted
meta-features.

It follows from the last assumption, that the link be-
tween L1 models and the L2 model is not bijective in
general. Decision models can therefore not be synthe-
sized from personal properties of subjects.

The benefit of utilizing machine learned models at L1
is evident in the area of exploratory research. Ef-
fectively, the learning algorithm performs automatic
model selection within a class of models with tunable
complexity. Moreover, many machine learning algo-
rithms are robust to non-informative features. There-
fore, the researcher can safely specify an over-complete
description of the stimuli when the truly relevant set
of features is not yet known. For now, the application
of separate instances of trained models at L1 requires
experiments to be designed self-sufficient for each sub-
ject. No information is transferred between subject
models that would allow joint training and reduce the
required stimuli sample sizes for the individual sub-
ject. The field of transfer learning (Pan & Yang, 2010)
is rapidly gaining research interest and will present a
future opportunity to be applied in this work’s con-
text.
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