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CUMULATIVE WAVEFRONT RECONSTRUCTOR FOR THE

SHACK-HARTMANN SENSOR

Mariya Zhariy, Andreas Neubauer,1 Matthias Rosensteiner,2

and Ronny Ramlau1
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Abstract. We present a new direct algorithm aiming at the reconstruction of
the optical wavefront from the Shack-Hartmann sensor measurements in Single

Conjugate Adaptive Optics (SCAO) systems. The objective of an adaptive op-

tics system designed for a large telescope can be only achieved if the wavefront
reconstruction is sufficiently fast. Our scheme does not contain any explicit

regularization for the reconstruction process but is still able to provide a good

quality of reconstruction. The analysis of quality is given for three varying
parameters: the diameter of the telescope, the number of subapertures and

the level of photon noise. It has been shown both analytically and numerically
that the quality of the reconstruciton, measured by the Strehl ratio, is reason-

able for the small photon noise level and increases with the increasing number

of subapertures for the same telescope size. The impact of the photon noise
on the reconstruction gets higher with the increasing telescope diameter. The

computational complexity of the method is linear in the number of unkowns.

Counting all summation and multiplication steps the scaling factor is 14. More-
over, due to its simple structure, the cumulative reconstructor is pipelinable

and parallelizable, which makes the effective computation even faster.

2000 Mathematics Subject Classification: 78A10,78M25.
Key words and phrases: Adaptive optics, inverse problems, Cumulative wavefront recon-

structor.
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Abstract — In this presentation we reintroduce an approximation formula for the discrepancy of
discrete signals and extend it for general continuous function on σ finite measurable spaces.

Together with this approximation, estimation of convergence and sensitivity of the approxima-
tion are given.

Finally, a formula for approximating the derivative of the discrepancy correlation is also given.
First results show a good approximation power, together with low computations.
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1 Introduction 1

1 Introduction

In this talk we start by recalling a first result obtained for signals defined on spaces with discrete
uniform measures, as introduced in [1]. In this work we had introduced an approximation for-
mula for the discrepancy norm [6] based on p-norms. Then as a result, we had shown that this
approximation can be efficiently used in an alignment problem due to its implementation by two
convolutions.

Here we investigate such approximations in a more general context of signals defined on (even-
tually) continous non-uniform measure spaces.

Moreover we compute formulas for the estimation of the derivative of the discrepancy corre-
lation function as we would need it for practical applications of gradient descent like algorithms.

2 Approximation of one dimensional signals’ discrepancy

2.1 Motivation

This subsection is intended as an introduction for our next results and is based on the work of
Bouchot et al. [1].

In this case, we consider the counting measure µc and function of bounded support. Without
loss of generality, we have f : D := {1, · · · , N} → R and the discrepancy norm reads

‖f‖D = max
i,j∈D

|
j∑

k=i

fk| = max
j∈D
{0,

j∑

k=1

fk} −max
i∈D
{0,

i∑

k=1

fk} (1)

which can be implemented in a linear time by means of integral images [2, 7].

Note that the 0 in the max, min operations is essential as the sums should be taken starting at
−∞. But the function can be extended with 0 outside the domain D. We can also equivalently
write ‖f‖D = maxj∈D0

∑j
k=0 fk − mini∈D0

∑i
k=0 fk where we define D0 = D ∪ {0} and

f0 = 0.

Before we recall the idea of the approximation and its property, we give some definitions

Definition 1 (Generalized mean). Let φ be a continuous continous invertible monotone function,
let f = {fk}Nk=1, we can define [4] a mean as

Mφ(f) = φ−1
(∑N

k=1 φ(fk)

N

)
(2)

Moreover, as we would expect from a mean, we have mink fk ≤ Mφ(f) ≤ maxk fk. (see [3] Ch
II for the proof)

Now if we consider taking Lp norms as φ in the previous definition, this yields the following
p means:

Mp(f) =

(∑N
k=1 |fk|p
N

)1/p

(3)
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In our previous work we have introduced an approximation of the discrepancy norm for dis-
crete one dimensional signals as described in the following theorem.

Theorem 1. Let f ∈ `1 = L(Z, µc), we define

γp : `1 → R+

f 7→ γp(f) := ln

(
Mp(χ(f))

M−p(χ(f))

)
(4)

where χ(f)(k) := exp(
∑k

l=0 fl) is the exponential of the cumulative function.

Then the followings holds:

γp(f) ≤ ||f ||D < γp(f) +
2

p
ln(N + 1) (5)

and γp is positive definite.

The proofs and more details on this theorem can be found in [1].

Corollary 1 (Choice of p).

∀ε > 0,∀f ∈ `1,∀p ∈ R, p ≥ p∗ :=
2

ε
ln(N + 1)⇒ |γp(f)− ‖f‖D| ≤ ε (6)

This last part allows to compute an optimal approximation in a practical way. Indeed, due to
the power p coming in the approximation process, the danger of getting overflow is getting higher
and higher with finest approximation.

2.2 Approximation in the continuous case

Now that we have seen how practical and close the approximation can be, we want to extend this
to continuous measurable functions.

From now on we go back to the setting of measure space on R : (R,Σ, µ) with µ being a finite
measure.

In the same way, we can introduce the continuous counter-part of the generalized means

Mφ(f) = φ−1
(∫

R φ(f(x))dµ(x)∫
R dµ

)
(7)

And the following bounding property still holds infx∈R f(x) ≤ Mφ(f) ≤ maxx∈R f(x) (where
inf and sup are understood as their essential definitions: µ{x : f(x) > sup f} = 0). We also
re-define the p-means Mp in the same way.

The proposed approximation is reintroduced in the same way:

Γp : L1(R, µ)→ R+

f 7→ Γp(f) := ln

(
Mp(χ(f))

M−p(χ(f))

)
(8)

where χ is defined as the exponential of the cumulative function.

The following theorem holds:
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Theorem 2 (Approximation of the discrepancy norm for 1D continuous functions). Γp defines an
approximation of the discrepancy norm in the sense that

i) ∀f ∈ L(R, µ),Γp(f) −→
p→∞

‖f‖D

ii) Γp(f) ≤ ‖f‖D
iii) ∀ε > 0,∃p∗ : ∀p ∈ R, p ≥ p∗ ⇒ |Γp(f)− ‖f‖D| ≤ ε

Proof. Direct calculus and application of the following lemmas and inequalities give the result.

Lemma 1 (p−norm approximation of the∞ norm). Let f be in Lq ∩ L∞ for a certain q ∈ R. It
holds:

‖f‖p −→
p→∞

‖f‖∞ (9)

A proof of this lemma can be found in Ch.III, Theorem 14F. of [5].

∀f ∈ Lp(R, µ) ∩ Lq(R, µ), 1 ≤ p ≤ q ≤ ∞, ‖f‖p ≤ µ(R)1/p−1/q‖f‖q (10)

Lemma 2 (Eventual convergence of Lp means towards∞ norm). Let ε′ > 0 and g ∈ Lq∩L∞ for

a certain q ∈ R. Let p0 = p0(t, ε′, g) =
ln
(
µ(Eg(t))

µ(R)

)

ln( 1−ε′
1−t )

, with Eg(t) = {x : |g(x)| > ‖g‖∞(1 − t)}.
It holds

∀p > max{q, p0},
Mp(g)

‖g‖∞
≥ 1− ε′ (11)

Remarks This lower bound depends strongly on the function f through the set Ef (t); this is
due to the non-equivalence of norms in the continuous case (in the discrete case, the bounds given
for the theorem were crisp and uniform).

In the proof we have made use of an upper level set Ef (t) and have proven that we get an
upper bound for t = ε/2. It would work for t = ε/4 too and more generally for all 0 < t < ε. We
have no idea at the moment what would be the influence of this on the estimated p∗.

Finding a nice p∗ is a crucial problem for pratical applications. Indeed because we are taking
the pth power of an exponential, the risk to encounter overflow is high. Therefore we need to
ensure a good approximation but keeping the power p as small as possible.

Example of lower bounds For illustration purposes let us see this effect on some toy examples.

We consider three functions:

f1 : [0, 5]→ R
x 7→ 1 if x ∈ [1, 2[∩[3, 4], 0 elsewhere (12)

f2 : [−10, 10]→ R
x 7→ sin(x) (13)

f3 : [−10, 10]→ R
x 7→ a · x+ sin(x) (14)
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where we have chosen a to be around 1/10. In our case, we consider a measure as a combination
of uniformly distributed diracs (every 0.02 for f1 and every 0.01 for the two others.)

f1, f2, f3 are illustrated in Fig. 1.

(a) 2 steps function: 250 data (b) Horizontal wave: 2001 data (c) Oblique wave: 2001 data

Figure 1: Our dataset of 1 dimensional toy functions used in our paper.

We start by analyzing the convergence of the p−norms approximations towards. The two first
statements of Theorem 2 tell that Γp gets to ‖ · ‖D from below with p increasing. Figs. 2 depict
this behaviour. One sees that the values of Γp functions increase drastically with p close to 0 and
tends to stabilize to ‖ · ‖D early.

(a) 2 Steps function (b) Horizontal sine wave (c) Oblique sine wave

Figure 2: Convergence of the Γp functions towards the discrepancy norm. The horizontal axis
corresponds to changing values of p while the vertical one is the output of the Γp and discrepancy
norm functions.

The next point we need to have a look at is the reliability of our estimator for the value of p∗.
While this value is clearly not optimal (we have left potentially a lot of the function away when
deriving the estimation), we would like it to be relatively small anyway. As this is the value we
are going to use afterwards for our tests, we need it to be small enough, in order not to get into
machine overflow.

We have gahtered results based on our three toy functions. For all of them, we have ntoed the
p∗ defined in Theorem 2, and the smallest integer value, denoted by p∗, for which the approxima-
tion up to an ε0 holds. Moreover, as it can be seen in the proof of the theorem, one can tune the
threshold used for the decomposition of the function. This threshold has also been analyzed for
the horizontal sine wave function.

The results are summarized in Table. 1.

It comes out that we indeed get close approximate of the discrepancy norm of a function by
means of p−norms approximation. The estimator of a good p∗ is however strongly dependent on
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Function ε0 α p∗ Γp∗(f) ‖f‖D p∗

2 steps
0.1 1/2 100.77 99.97 100 32
5 0.2 2.68 98.81 100 1

Horizontal sines

0.1 1/4 257.73 99.96 100.00 101
0.1 1/2 348.72 99.97 100.00 101
0.1 3/4 666.56 99.98 100.00 101
0.05 1/2 767.06 99.98 100.00 212

2 1/2 13.45 99.39 100.00 4

Oblique sines
1 1/2 105.99 685.72 685.85 13
2 1/4 44.64 685.55 685.85 7

Table 1: Examples of approximation and lower bound estimations on some toy functions.

the choice of the threshold. However first tests tend to show that in when given a threshold in the
order of 0.1 or 0.2 yield stable and reliable results.

(a) 2 Steps function (b) Horizontal sine wave (c) Oblique sine wave

Figure 3: Computed values of the p∗ estimator. The continuous curvs show the estimated p∗ while
the the dotted straight line corresponds to the p∗ as described in the Table 1

Figs. 3 show the behaviour of the estimation of p∗ for different thresholding values. For the
rest of the paper we will use in our applications a thresholding of 0.2 which seems to lie in a rather
stable area and which achieves low values of p∗.

3 Differentiation of the approximation

In this subsection we want to introduce a way of optimizing the discrepancy norm based correlation
function. Given a function f and a reference g, we want to find the optimal translation parameter
t∗ such that ‖ft∗ − g‖D is minimal, where ∀t ∈ R, ft(x) = f(x− t). We consider the following
optimization problem:

t∗ = argmin
t∈R

‖ft − g‖D (15)

We would like to optimize the objective function J(t) = ‖ft − g‖D making use of the mono-
tonicity property of the discrepancy norm when facing misaligned functions. However, due to its
definition with max and min, the discrepancy norm is not everywhere differentiable (it is however
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almost everywhere differentiable du to Rademacher’s theorem). Moreover, as it can be seen from
Fig. 4, the objective function shows some kind of plateau on some clinical cases which yield any
gradient based method to fail in finding a correct solution. Therefore, we want to make use of the
previous approximation to compute an approximated gradient to the objective function. As we will
see, we can derive formula based on a scalar product which allows us to compute the derivative
very efficiently.

Theorem 3 (Derivation of the discrepancy correlation). The discrepancy correlation function’s
derivative J(t) can be approximated in the following way:

∂J

∂t
(t) ≈

〈 ·∫

x=−∞

f ′(x− t) dµ(x),

(
χ(−ft + g)

‖χ(−ft + g)‖p

)p
−
(

χ(ft − g)

‖χ(ft − g)‖p

)p〉
(16)

Proof. We need to compute the derivative of the discrepancy norm of a difference. As it has been
seen in the previous section, it can be approximated by means of Lp norms and we get

∂J

∂t
(t) ≈ ∂Γp

∂t
(ft − g) =

∂

∂t

(
1

p
ln
(
‖χ(ft − g)‖pp

)
+

1

p
ln
(
‖χ(−ft + g)‖pp

)
+ C

)
(17)

Now application of the chain rule and the theorem of differentiation under the integral gives
the result.

While this formula seems complicated, we can see that on real discrete signals applications, it
can be simplified a little

Corollary 2 (Derivation for discrete uniform measure). Assume µ is a uniform discrete measure
on a bounded domain. Then the derivation of the discrepancy autocorrelation function can be
approximated by

∂J

∂t
(t) ≈

〈
ft,

(
χ(−ft + g)

‖χ(−ft + g)‖p

)p
−
(

χ(ft − g)

‖χ(ft − g)‖p

)p〉
(18)

or equivalently:

∂J

∂t
(t) ≈

N∑

i=1

ft(i)

((
χ(−ft + g)(i)

‖χ(−ft + g)‖p

)p
−
(
χ(ft − g)(i)

‖χ(ft − g)‖p

)p)
(19)

where N denotes the size of the discrete finite signal (i.e. vector) we consider.

4 Conclusion

We have seen how the discrepancy correlation function can be approximated and differentiated
by means of p norms for 1 dimensional eventually continuous signals. Besides analytic formalae,
we have propose some way to select beforehand the values of the power sufficient to get a good
approximation. As it comes out on practical examples, these power might not be optimal they are
still however small enough to get reliable results without overflow troubles.

Future work will include extension to higher dimensional signals and practical applications of
such results for image alignment.
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(a) Extended two steps function (b) Autocorrelation function: dis-
crepancy and Γp

(c) Approximate derivatives

Figure 4: This figure shows how a gradient descent based optimization algorithm might fail when
trying to locally optimize the discrepancy correlation function. Indeed the correlation function
(second figure) shows some plateau where the derivative (illustrated on the third figure) is 0. On
the other hand, using an appropriate p−norm approximation allows to overcome this effect while
keeping a really close objective function.
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Fusion of Patchmatch and Discrepancy Norm

Gernot Stübl and Bernhard Moser

July 5, 2012

Abstract

This talk presents the current work in progress of applying discrep-
ancy norm to a patchmatch based algorithm for generating approxi-
mate nearest neighbour fields. The goal is to improve the behaviour of
the original patchmatch algorithm with patches of high frequency and
accelerate the algorithm through recent theoretic insights.

Two potential improvements have been identified: (a) enhance the
random phase by integrating a RANSAC like global optimization pro-
cedure and utilize the Lipschitz property of the discrepancy norm as
well as (b) utilize the discrepancy norm as similarity function in the
propagation phase. The main focus of the talk regards (b). Experi-
ments on a standardized database have shown that discrepancy norm
and L1 have different strengths and weaknesses in different regions
of an image. Therefore a weighted combination is of both similarity
measures is envisioned.

A first explorative version of such a weighting function is done by
analysing the settling sequence in the self reference case. Experiments
on the dataset showed that a simplistic learning algorithm can classify
if a settling sequence is shorter with discrepancy norm or L1 norm
with a F-measure of 69% . This motivates to invest further research
into this direction. However the current results show over the whole
dataset only minor improvements, so further effort has to be taken into
refining the learning algorithm and weighting function.
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Fault Detection by Residual Analysis

Francisco Serdioa, Ewdin Lughofera

aDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Austria

Abstract

Principal Component Analysis (PCA) has been widely used in the field of fault detection, with
a good degree of success. But this approach becomes not applicable when the process at hand
presents time-varying behaviors, mainly due to the assumption of linear correlation between the
variables made by PCA. We propose an alternative to PCA in the field of fault detection, describing
the framework to use when developing the approach and describing also its modeling capabilities.
Our approach is residual-based, and focus its attention in the track of the residuals over time. Our
framework establish data cleaning, system identification, model training and model testing stages.
The system identification extracts the variables that identify each channel in the process. The model
training stage trains a model per channel according to the identified system. The approach allows
to train several models per channel and select the best one, but this is still on the outlook. Once
we have a model explaining each channel in the process, the best ones are selected according to its
quality, R2−ad justed. This opens the door to exclude low-quality and/or instable models, bringing
into play the concept of cascadability. Cascadability gives the opportunity to include new models
when new channels appear, replace models when there are changes on the process and remove
models when the quality is either degraded or not good enough according to established parameters.
The testing stage get the residuals of the identified systems and calculate both global and local
error bars as an uncertainty measure. Residuals are normalized according to the uncertainty and
subsequently tracked online with a dynamic tolerance band. The residuals outside the tolerance
band are them classified as faults, so the system triggers a fault alarm. We test our approach
with three different models -linear model, transformed linear model and fuzzy model-, using both
global and local error bars when expressing the uncertainty. We show results where its clear that
our approach outperforms PCA most of the times either regardless the type of the model used or the
way used to articulate the uncertainty. Our results are encouraged by an statistical test, manifesting
the pairwise preference of the methods. From the results we also reinforce the existing literature
reporting the (sometimes) non-applicability of PCA in time-varying processes.

Keywords: Fault detection, data-driven regression modeling, non-linear transformations,
Box-Cox, fuzzy systems extraction, dynamic residual analysis, Principal Component Analysis.

Email addresses: francisco.serdio@jku.at (Francisco Serdio), ewdin.lughofer@jku.at (Ewdin Lughofer)
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Waveband Selection in NIR Spectra Using Enhanced Genetic Operators

Carlos Cernuda*a, Edwin Lughofera, Wolfgang Märzingerb, Wolfram Summererc
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bi-RED Infrarot Systeme GmbH, Linz, Austria

cRecendt GmbH, Linz, Austria

Abstract

Nowadays the techniques employed in data acquisition provide huge amounts of data. Some parts
of the information are related to the others, making desirable a way to reduce the number of vari-
ables, i.e. dimensionality reduction, loosing as less information as possible, in order to decrease
computational times and complexity when applying any Data Mining technique, e.g. for classi-
fication or regression purposes. Genetic Algorithms(GA) offer the possibility of selecting which
variables contain the most relevant information in order to represent all the original ones. The tra-
ditional genetic operators seem to be too general, leading to results which could be improved by
means of designed genetic operators that employ some available problem specific information.

Especially, when dealing with calibration by means of NIR spectral data, which use to contain
thousands of variables, it is known that not isolated wavelengths but wavebands allow a more robust
model design. This aspect should be taken into account when crossing individuals. We propose
three crossover operators specifically designed for calibration with NIR spectral data, based on a
pseudo-random 2-points crossover where the first point is randomly chosen and the selection of the
second point is guided by problem specific information, and we compare their performance against
state of the art operators. The chosen fitness function is partial least squares regression (PLSR),
because it is fast and widely used in chemometrics. Our benchmark consists of two real world high
dimensional data sets, corresponding to polyetheracrylat (PEA), where hydroxyl number, viscosity
and acidity are on-line monitored; and melamine resin production, where the chilling point is con-
sidered in order to regulate the condensation. The former contains a very low number of samples,
each of them measured several times. Once the variables are selected, we check their performance
on PLSR (linear) and FLEXFIS (non linear), in order to check that the chosen algorithm for the
fitness function is not relevant in the results achieved by the selected variables. We show that de-
signed operators promote wavebands selection, lead to in general better good quality solutions, and
converge faster and smoother to them than S-o-A operators.

Keywords: Variable Selection, Dimensionality Reduction, Genetic Algorithm, Forward Selection,
Variable Bands, Design Genetic Operators.

Email address: carlos.cernuda@jku.at (Carlos Cernuda*)
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On the Performance of Master-Slave

Parallelization Methods for Multi-Objective

Evolutionary Algorithms

Alexandru-Ciprian Zăvoianu a,c Edwin Lughofer a

Wolfgang Amrhein a,b Erich Peter Klement a,c

aDepartment of Knowledge-based Mathematical Systems / Fuzzy Logic
Laboratorium Linz-Hagenberg, Johannes Kepler University of Linz, Austria

bInstitute for Electrical Drives and Power Electronics, Johannes Kepler University
of Linz, Austria

cACCM, Austrian Center of Competence in Mechatronics, Linz, Austria

Abstract

This paper is focused on a comparative analysis of the performance of two master-
slave paralellization methods: the standard generational scheme (GEN-MSPS) and a
steady-state asynchronous scheme (SSA-MSPS). Both parallelization methods can
be used to drastically improve the physical optimization time of multi-objective
evolutionary algorithms (MOEAs) that rely on time-intensive fitness evaluation
functions. We assesd both the quantitative and the qualitative impact of opting for
a certain parallelization scheme and the obtained empirical results indicate that,
when dealing with a time-wise fitness evaluation distribution that has a significant
amount of variance, the SSA-MSPS seems to be the better parallelization option.

Key words: evolutionary computation, multi-objective optimization, performance
comparison, master-slave parallelization, steeady-state evolution.

Preprint submitted to AdvKBT 2012 4 July 2012





Derivation Digraphs for Similarity-Based
Functional Dependencies

(Abstract for seminar: Advances in Knowledge-Based Technologies
Summer 2012) ?

Lucie Urbanova and Vilem Vychodil

DAMOL (Data Analysis and Modeling Laboratory)
Dept. Computer Science, Palacky University, Olomouc
17. listopadu 12, CZ–77146 Olomouc, Czech Republic

lucie.urbanova01@upol.cz, vychodil@acm.org

Abstract. We present a graph-based method of reasoning with similarity-
based functional dependencies in an extension of the Codd’s model of
data, which generalize the ordinary functional dependencies by consider-
ing similarity of attribute values. The main results show that a degree to
which an similarity-based functional dependency is semantically entailed
from a set (or a graded set) of other similarity-based functional depen-
dencies can be characterized by existence of particular directed acyclic
graph

1 Introduction

This paper is a continuation of our previous work [3, 4] where we have intro-
duced the concept of a ranked table over domains with similarities, which is a
counterpart to the concept of a table (relation) of the ordinary Codd’s model.
The motivation for our extension is the fact that in many situations is desirable
to consider similarities on domains instead of equalities. Assume that a buyer
(user of database) want to buy a family car and is searching for a car sold for
7 000e, which is three years old. Then the user is interested not only in cars
sold for the exact price 7 000e and being exactly three years old, but also in
cars which are sufficiently “close” to his requirements (expressed as query in
database). The “closeness” can be formalize using similarity relations (reflexive
and symmetric) on domains values. Then each tuple in the answering data table
will have a rank value to denote how much a tuple matches the user’s query.
Ranks have mainly comparative meaning: the higher the rank the better match,
and will come from complete residuated lattice, see section 2 for details. The
data table equipped with similarity relations on domains and ranks assigned to
tuples will be called a ranked data table (shortly an RDT). An example of such
a table can be seen in Table 1. The table consists of the following attributes:

? Supported by grant no. P103/11/1456 of the Czech Science Foundation and internal
grant of Palacky University no. PrF_2012_029. DAMOL is supported by project reg.
no. CZ.1.07/2.3.00/20.0059 of the European Social Fund in the Czech Republic.



Table 1. Cars for sale at 7 000e from year 2009

Brand Model Price Year Fuel Km

0.97 Renault Scénic 6 940 2009 Diesel 115 556
0.8 Renault Scénic 7 200 2010 Diesel 101 478

0.75 Opel Zafira 7 500 2008 Diesel 130 656
0.54 Citroen C3 Picasso 7 925 2009 Diesel 109 015
0.1 Volkswagen Caddy 8 600 2008 Diesel 122 855

Brand, Model, Price (in euros), Year (year of production), Fuel, Km (state of
the odometer in kilometers).

Another situations when similarities naturally appears is when searching for
functional dependencies in a relational database. The interpretation of an ordi-
nary functional dependence A ⇒ B in a given data table D is the following: if
any two tuples have the same values on all attributes from A, then they have the
same values on all attributes from B. As one can see, there are no non-trivial
functional dependencies in Table 1, however, one can intuitively see that there
are “similarity” dependencies, for example: Similar year of production imply
similar state of tachometer. Thus it seems natural to interpret functional depen-
dence A⇒ B as follows: if any two tuples have similar values on attributes from
A, then they have similar values on attributes from B. In our model we consider
sets A, B as fuzzy sets over some finite set of attributes R and we allow the
functional dependence to be satisfied in degrees, not only 0 or 1, see section 2
for more details.

In the original Codd’s model semantic entailment is used to determine whether
a functional dependency follows from a set of other functional dependencies and
plays very important role in eliminating redundancy. The best known inference
system has been proposed by Armstrong [1] and can be seen as a system con-
sisting of two rules [13]: (Ax): infer A∪B ⇒ B, and (Cut) from A ⇒ B and
B∪C ⇒ D infer A∪C ⇒ D. An interesting alternative graph-based approach
that is also aimed at possible automated proving has been proposed by Maier
in [14], see also [15] for an extensive description and its application for theorem
proving. The goal of this paper is to show a graph-based inference for similarity-
based functional dependencies (shortly SBFDs) in RDTs, where the attributes
are graded.

2 Preliminaries

We recall basic notions of directed graphs, residuated lattices, and our extension
of Codd’s relational model. Details can be found in [2, 5, 10, 11, 8, 6].

A directed graph (a digraph) is a pair D = 〈V,A〉, where V is a nonempty
finite set of elements called vertices and A is a binary relation A ⊆ V × V , each
〈v, w〉 ∈ A is called an arc. V and A are called the vertex set and the arc set of
D, respectively. If 〈v, w〉 ∈ A, we say that the arc 〈v, w〉 leaves v and enters w. A
digraph D = 〈V,A〉 is acyclic (in short, D is a DAG) if there is no finite sequence



v1, . . . , vk (k ≥ 2) of vertices from V such that v1 = vk and 〈vi, vi+1〉 ∈ A for all
i = 1, . . . , k − 1, i.e., if D does not contain a cycle in the usual sense.

A complete residuated lattice with a truth-stressing hedge (shortly, a hedge)
[11, 12], which serves as a structure of truth degrees, is an algebra L = 〈L,∧,∨,⊗,→
, ∗, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least
and the greatest element of L, respectively; 〈L,⊗, 1〉 is a commutative monoid
(i.e. ⊗ is commutative, associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗
and → satisfy so-called adjointness property: a ⊗ b ≤ c iff a ≤ b → c for each
a, b, c ∈ L; hedge ∗ satisfies 1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗,a∗∗ = a∗, for
each a, b ∈ L, ai ∈ L (i ∈ I). Elements a of L are interpreted as truth degrees.
The operations ⊗ and→ are (truth functions of) “fuzzy conjunction” and “fuzzy
implication” and are called a multiplication and residuum, respectively. Hedge
∗ is a (truth function of) logical connective “very true”, see [11, 12].

A special case of a complete residuated lattice with hedge is the two-element
Boolean algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the structure
of truth degrees of the classical logic.

2.1 Ranked Data Tables over Domains with Similarities

We consider a set of attributes Y . Any subset R ⊆ Y is called a relation scheme.
For each attribute y ∈ Y we consider its domain Dy, i.e. a set of all possible
values of the attribute. In addition, we equip each domain Dy with a binary L-
relation ≈y on Dy which satisfies the following conditions: (i) for each u ∈ Dy:
u ≈y u = 1, and (ii) for each u, v ∈ Dy: u ≈y v = v ≈y u. Each binary L-relation
≈y on Dy satisfying (i) and (ii) shall be called a similarity ; pair 〈Dy,≈y〉 is called
a domain with similarity. Let R ⊆ Y be a relation scheme and denote by Tupl(R)
the Cartesian product of domains Dy (y ∈ R). Each r ∈ Tupl(R) is called a tuple
over R. Obviously, r(y) ∈ Dy for each y ∈ R; r(y) is called the y-value of r.

Definition 1. Let R ⊆ Y be a relation scheme. A ranked data table on R over
{〈Dy,≈y〉 | y ∈ R} (shortly, an RDT) is any finite L-set D in Tupl(R). The
degree D(r) to which r belongs to D is called a rank of tuple r in D.

According to Definition 1, if D is an RDT on R over {〈Dy,≈y〉 | y ∈ R}
then D is a map D : Tupl(R) → L assigning to each tuple r over R a degree
D(r) ∈ L which is called a rank. Note that D is, in fact, an n-ary L-relation
between domains Dy (y ∈ Y ) since D is a map from

∏
y∈R Dy to L. For an RDT

D on R, tuples t1, t2 ∈ Tupl(R) and L-set C ∈ LR of attributes, we introduce a
degree to which t1 and t2 have similar values on attributes from C

t1(C) ≈D t2(C) = (D(t1)⊗D(t2))→
∧

y∈R
(C(y)→ t1(y) ≈y t2(y)) (1)

Now the validity of similarity-based functional dependency (shortly SBFD) is
captured by the following definition. A degree ||A ⇒ B||D to which A ⇒ B is



true in a RDT D is defined by

||A⇒ B||D =
∧

t1,t2∈Tupl(R)

(
(t1(A) ≈D t2(A))∗ → (t1(B) ≈D t2(B))

)
(2)

Remark 1. By basic rules of semantics of predicate fuzzy logic, t1(C) ≈D t2(C)
is a truth degree of formula “if t1, t2 are from D then for each attribute y from
C, t1 and t2 have similar values on y”, and ||A ⇒ B||D is a truth degree of
formula “for any tuples t1, t2: if t1 and t2 have very similar values on attributes
from A then they have similar values on attributes from B”.

We first define a semantic entailment from a collection T of SBFD’s. We will say
that a datatable D is a model of theory T if for each SBFD from T , a degree to
which A⇒ B is truth in D is higher or equal to a degree prescribed by T ,

Mod(T ) = {D| for eachA,B ∈ LR : T (A⇒ B) ≤ ||A⇒ B||D} (3)

Then a degree to which A⇒ B semantically follows from a theory T of SBFD’s
is given by: ||A⇒ B||T =

∧
D∈Mod(T ) ||A⇒ B||D.

In our previous work we have shown that for finite L there is an axiomatiza-
tion which uses (Ax) and (Cut) as in Section 1 (only with sets replaced by L-sets
and ∪ being the union of L-sets defined componentwise using ∨) with an addi-
tional deduction rule of multiplication: (Mul): from A⇒ B infer c∗⊗A⇒ c∗⊗B,
where c ∈ L and x⊗C is an L-set in Y defined by (x⊗C)(y) = x⊗ C(y) for all
y ∈ Y . The inference system consisting of (Ax), (Cut), and (Mul) is complete
in the following sense: ||A ⇒ B||T = 1 iff T ` A ⇒ B, i.e. iff there is a proof
of A ⇒ B from T . This result (ordinary-style completeness [6]) characterizes
SBFDs which follow semantically from T to degree 1. There is also a result on
graded-style (Pavelka-style [16]) completeness saying that

||A⇒ B||T =
∨{c ∈ L |T ` A⇒ c⊗B}, (4)

i.e. that the degree to which A⇒ B semantically follows from T is a supremum
of degrees c ∈ L for which A⇒ c⊗B are provable from T in the ordinary sense.
Details can be found in [6].

3 Derivation Acyclic Digraphs for SBFDs

We now introduce derivation diagrams as particular acyclic digraphs where ver-
tices are labeled by attributes from Y and degrees from L. The arcs of the
diagrams will correspond to SBFDs from an input theory and indicate which
formulas from the theory are used in the process of inference. In what follows,
L∗ is a complete residuated lattice with hedge.

Definition 2 (T -based L∗-derivation DAG). Let T be a set of SBFDs over
Y .

1. Any D = 〈V, ∅〉 such that ∅ 6= V ⊆ Y × L is a T -based L∗-derivation DAG;



2. If D = 〈V,A〉 is a T -based L∗-derivation DAG and there are E ⇒ F ∈ T ,
attribute y ∈ Y , and vertices 〈y1, a1〉 ∈ V, . . . , 〈yk, ak〉 ∈ V such that for

s0 =
∧{E(y)→ 0 | y ∈ Y and y 6∈ {y1, . . . , yk}}, (5)

s1 =
∧{E(yi)→ ai | i = 1, . . . , k}, (6)

m =
∨{a ∈ L | 〈y, a〉 ∈ V }, (7)

d =
(
(s0 ∧ s1)∗ ⊗ F (y)

)
∨m, (8)

we have d > m > 0, then D′ = 〈V ′, A′〉, where

V ′ = V ∪ {〈y, d〉}, (9)

A′ = A ∪ {〈〈yi, ai〉, 〈y, d〉〉 | i = 1, . . . , k}, (10)

is a T -based L∗-derivation DAG.

Remark 2. (a) As one can see, the definition of T -based L∗-derivation DAGs is
recursive. The base step says that any set of unconnected vertices is a T -based
L∗-derivation DAG. The meaning of the vertices is the following: if 〈y, a〉 ∈ V ,
we can interpret the fact that the attribute y is assumed valid at least to degree
a.

(b) In the second step, the definition postulates that more complex T -based
L∗-derivation DAGs result from simpler ones by adding a vertex and arcs leading
from vertices related to antecedents of SBFDs from T .

If D is a T -based L∗-derivation DAG, we let D(y) =
∨{a ∈ L | 〈y, a〉 ∈ V }

and call D(y) the yield of D on y. Clearly, the yield of D corresponds to (7), i.e.,
we can interpret it as the degree to which y is known to be valid according to
D. Moreover, 〈y, a〉 ∈ V is called an initial vertex of D is 〈y, a〉 has no incoming
arcs (i.e., no arc in D enters 〈y, a〉).

The following notions introduces derivation digraphs related to SBFDs:

Definition 3 (T -based L∗-derivation DAG for E ⇒ F ). Let D = 〈V,A〉
be a T -based L∗-derivation DAG. Then D is called a T -based L∗-derivation DAG
for E ⇒ F if {〈y,E(y)〉 | y ∈ Y and E(y) > 0} is the set of initial vertices of D
and D(y) ≥ F (y) for all y ∈ Y .

4 Completeness

We now turn our attention to the completeness by which we mean a characteri-
zation of the semantic entailment by the existence of L∗-derivation DAGs.

Theorem 1. Let T be a theory. If T ` A ⇒ B, then there is a T -based L∗-
derivation DAG for A⇒ B.

Theorem 2. Let T be a theory. If there is a T -based L∗-derivation DAG for
A⇒ B, then T ` A⇒ B.



The next theorem follows from Theorem 1 and Theorem 2 and completeness
of fuzzy attribute logic, see [7].

Theorem 3. If L is finite, then ||A ⇒ B||T = 1 iff there is a T -based L∗-
derivation DAG for A⇒ B.

Furthermore, we can express the graded-style completeness as follows:

Theorem 4. If L is finite, then ||A ⇒ B||T is the greatest degree a ∈ L such
that there is a T -based L∗-derivation DAG for A⇒ a⊗B.

Remark 3. From the point of view of the syntax, functional dependencies are
the same formulas as attribute implications in formal concept analysis [9] but
their interpretation is different. An interesting property is that both the different
interpretations of the if-then rules yield the same notion of semantic entailment.
As a result, one can use a single inference system for reasoning with both at-
tribute implications and functional dependencies. The same hold in fuzzy setting
for SBFD’s and graded attribute implication in fuzzy formal concepts analysis
[7]. Thus the developed theory can be used for graded attributes implication as
well [17].

5 Illustrative Example

In following example, we use a particular finite linearly ordered  Lukasiewicz
algebra with L = {0, 0.1, . . . , 0.9, 1} ⊆ [0, 1] as a structure of truth degrees.
We consider the genuine ordering of real numbers, i.e., ∧ and ∨ in (5)–(8) are
the usual minima and maxima, respectively. Moreover, ⊗,→ are  Lukasiewicz
operations (see [11]) and ∗ is identity.

We demonstrate here how to obtain a T -based L∗-derivation DAG. Assume
we have a theory T :

T = {{0.7/y3} ⇒ {1/y4}, {0.7/y1, 0.8/y2} ⇒ {0.6/y3},
{0.6/y1, 0.9/y3} ⇒ {0.9/y5, 0.1/y6}, {0.5/y2, 0.6/y4} ⇒ {0.7/y6}}

and consider A = {0.7/y1, 0.7/y2}, B = {0.6/y4, 0.6/y6}. Suppose we are interested
in whether ||A ⇒ B||T = 1 or not. According to Theorem 3, ||A ⇒ B||T = 1
iff there is T -based L∗-derivation DAG for A ⇒ B. The desired T -based L∗-
derivation DAG for A⇒ B can be seen in Figure 1, notice that the set of initial
vertices is equal to A and B ⊆ BD. From Theorem 2, we know that A ⇒ B is
provable from T .
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How do you decide? Connecting personal traits with
machine-learned behavior.

Wolfgang Heidl wolfgang.heidl@profactor.at

Profactor Research, 4407 Steyr-Gleink, AUSTRIA

In this paper we propose a statistical model that links
personal traits to properties of machine-learned behav-
ior models. If successfully validated, the model would
be a useful tool in the exploratory phase of behav-
ior research. The model has originally been developed
for investigating gender differences in visual inspection
(Heidl, 2012). It is organized in two nested levels. At
the lower level we model decision behavior of each sub-
ject by machine-learned decision trees. Properties of
the decision trees are linked to gender at the upper
level.

The proposed model is not restricted to the given set-
ting but is applicable to a broad set of tasks for which
responses to stimuli can be measured in a controlled
experiment. Correlations between task behavior as
captured by machine learned models an personal traits
different to gender, such as age, education and atti-
tudes can readily be computed. To investigate the
wider utility of the proposed model, we have conducted
a regression analysis between visual inspection behav-
ior of 100 subjects and a set of 88 personal traits re-
trieved from a post-experiment questionnaire.

Visual inspection is carried out for quality control of
products at the end of a production line. This task
is quite often done by women. Their job is to make
a quick accept/reject decision and to sort out the bad
products. Manufacturing companies often argue that
women have more endurance in performing this task
and also make decisions with better reproducibility.
Motivated from this casually observed gender differ-
ence we have carried out a carefully designed exper-
iment to investigate these differences in detail (Heidl
et al., 2010; Heidl et al., 2011). The subject’s decision
behavior has then been modeled by CART decision
trees (Breiman et al., 1993). From the trees 15 meta-
features (Heidl et al., 2012) have been extracted that
give various measures of tree complexity as well as im-
portance of input features for the subject’s decisions.

For each of the extracted meta-features we have fit a
linear regression model using the personal traits as ex-

planatory variables. Fitting of the regression models
has been done with the Lasso algorithm (Tibshirani,
1996). By using the L1-norm of the coefficient vec-
tor as regularization penalty, the Lasso combines co-
efficient shrinkage and subset selection to control the
effective number of parameters. The significance of
the correlations represented by the regression models
is assessed by computing their cross validation (CV)
error in a permutation test. The associated p-value is
obtained as the fraction of permutations for which the
CV-error is lower than on the observed data.

Results show significant correlations to subsets of the
88 personal traits exist for six of the 15 decision model
meta-features. Among those meta-features are four
that already showed significant gender differences. For
those meta-features gender is again contained in the
subset of explanatory variables chosen by the Lasso.
Most interesting are the significant links identified for
two of the meta-features describing input feature im-
portance for the subject’s decision for which gender
differences are insignificant. In those links gender is
indeed not present in the subset of explanatory vari-
ables.

The results show that the proposed model allows for
generalization from a single, pre-selected trait (gen-
der) to a set of explanatory variables, among which
relevant subsets are chosen in CV-guided procedure.
It has to be noted that this approach corresponds to
a much wider and more exploratory research question
than asking for gender differences. As such, for a given
sample size lower observed significance levels are to be
expected. Intuitively, the more possibly noisy explana-
tory variables are considered, the more likely it is to
observe spurious results. This intuition is formally re-
flected in the dependence of test statistics on the num-
ber of model parameters (Cohen, 1988). Having a tool
for exploratory research does not free the practitioner
from the necessity of domain knowledge to interpret
results. However, given such knowledge, the identified
links can act as valuable hints for building hypothesis
for later confirmatory research.
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