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Efficient and Robust Median-of-Means
Algorithms for Location and Regression

Alexander Kogler, Patrick Traxler1

Abstract. We consider the computational problem to learn
models from data that is possible contaminated with outliers.
We design and analyze algorithms for robust location and ro-
bust linear regression. We show that our algorithms, which are
based on a novel extension of the Median-of-Means method
by employing the discrete geometric median, are efficient and
robust against many outliers in the data. We present theoret-
ical and experimental results.

1 Software Competence Center Hagenberg, Austria, email:
patrick.traxler@scch.at. This research was supported by the FFG
Comet Research Program.





 Nature Inspired Optimization Algorithms  

 Jenny Hernández   

Abstract  -  Managing  great  amounts  of  information  and  studying  this  data  has
become of great importance in the past years. Data mining and discretization methods have
been developed as a solution to this problem. In this talk we will discuss some nature inspired
algorithms regarding this matter.  





 Transfer Learning with Deep Neural Networks for
Regression Problems 

 Werner Zellinger 

Knowledge-Based Mathematical Systems (KBMS) - Johannes Kepler University Linz
Software Competence Center Hagenberg (SCCH) 

Abstract -  Transfer Learning (TL) in the field of time-series prediction with neural
networks  is  considered.  In  particular,  the  research  domain  around  an  industrial  project
(TRUMPF) guided by the Software Competence Center Hagenberg (SCCH) is examined and
possible improvements of the current approaches are considered. This work aims at providing
evidence regarding the following aspects: (a) On the goals and directions of the next years
and (b) on some experiments of the last three months. Concerning (a), the review of the
state-of-the-art  for  TL with neural  networks shows,  that the primary key findings of  these
works  are  measures  for  the  similarity  between  the  neural  networks  hidden  activation
distributions  w.r.t  different  learning  tasks.  This  fact  together  with  the  time-series  aspect
motivates possible future directions. Concerning (b), different regression algorithms are tested
on the TRUMPF data, including elastic net regression, support vector machines, long-short-
term  memory  networks,  gated  recurrent  neural  networks,  auto  encoders  and  some
combinations. In particular, a new L2 regularizer-technique for multi-task neural networks is
proposed and tested on the data. 





On Preserving Metric Properties of
Integrate-and-Fire Sampling

Bernhard A. Moser
Software Competence Center Hagenberg, Austria

Email: bernhard.moser@scch.at

Abstract—The leaky integrate-and-fire model (LIF), which
consists of a leaky integrator followed by a threshold-based
comparator, is analyzed from a mathematical metric analysis
point of view. The question is addressed whether metric properties
are preserved under this non-linear operator that maps input
signals to spike trains, or, synonymously, event sequences. By
measuring the distance between input signals by means of
Hermann Weyl’s discrepancy norm and applying its discrete
counterpart to measure the distance between event sequences, it
is proven that LIF approximately preserves the metric. It turns
out that in this setting, for arbitrarily small thresholds, LIF is
an asymptotic isometry.

Keywords—Integrate-and-fire sampling, discrepancy norm,
isometry

I. INTRODUCTION

Integrate-and-fire sampling is well known in computational
neuroscience as a simplified model of the input-output behav-
ior of a neuron [1]–[4]. Its time encoding principle is also
encountered in neuromorphic engineering [5]–[9] and in the
mathematical literature of signal recovery from non-uniform
samples [10]–[12].

The leaky integrate-and-fire model (LIF) is probably the
most prominent example of a formal spiking neuron model. Its
model relies on a resistor-capacitor circuit representation [13]
which consists of a capacitor C in parallel with a resistor R
driven by a current I(t). This RC circuit yields the standard
differential equation RC dU

dt = −U(t) + RI(t) which relates
the induced voltage U(t) to the driving current I(t) at time
t. The time constant τ = RC refers to the the leakage of the
integrator. Finally, by solving this first-order linear differential
equation we obtain the leaky integrator with leakage parameter
τ , i.e.,

U(t) =
1

C

∫ t

tk

I(s)e
s−t
τ ds, (1)

where, in the neuronal context, I(t) models the stimulus, U
the membrane potential and τ the membrane time constant
of the neuron. The firing time instants tk are defined by
a threshold criterion. Synonymously, the firing time instants
are referred to as time events. The event that U(t) reaches
a positive threshold θp > 0 at time tk is encoded by the
pair (tk, ηk), where ηk = η(tk) = θp which represents the
value of the threshold. Analogously, if U(t) reaches a negative
threshold −θn < 0 at time tk then this event is represented
by (tk, ηk) where ηk = −θn < 0. Immediately after a firing
event the value of the integrator is reset and the process repeats.
Figure 1 illustrates the block diagram of the LIF sampler. Note
that the sequence of pairs (tk, ηk) defines a function in time

Fig. 1. Block diagram of leaky integrate-and-fire sampling with time constant
τ > 0

which assumes the value ηk at time point tk and vanishes
elsewhere. The corresponding sequence is referred to as event
sequence. Consequently, the notion of a union or intersection
of event sequences is defined by means of the corresponding
set operations on the underlying sets of events.

For sake of convenience of notation, in the following we
restrict to equal positive and negative thresholds, i.e., θp =
θn = θ > 0. The results of this paper can proven also for
θp 6= θn by only slight modifications. For the purpose of our
mathematical analysis, therefore, we have the LIF model

±θ =

∫ tk+1

tk

f(s)e
s−tk+1

τ ds, (2)

where f : [t0, tE ]→ R is supposed to be Lebesgue integrable,
i.e., f ∈ L[t0, tE ]. Let us introduce the set of event sequences
E[t0, tE ] on the time interval [t0, tE ] as the set of all functions
η : [t0, tE ] → {−θn, 0, θp} where the set of time events,
i.e., {t ∈ [t0, tE ]| η(t) 6= 0} has no accumulation point.
Note that on a compact domain [t0, tE ] the assumption of
being Lebesgue integrable, f ∈ L[t0, tE ], implies (essential)
boundedness of f , which in turn guarantees that (2) induces a
sequence of events (tk, η(tk))k where (tk)k has no accumu-
lation point. This means that the resulting sequence of events
is an event sequence. In particular, the notion of next event is
well defined.

This paper is motivated by the question whether it is
necessary to (approximately) reconstruct the stimuli from the
spike trains when asking whether two spike trains refer to
similar stimuli. Therefore, we are interested in the question
whether these input and output spaces can be enriched by a
topological (metric) structure that remains invariant under LIF.

Let us introduce the mapping

∆
(θ)
LIF : L[t0, tE ]→ E[t0, tE ], (3)

which transfers an input signal f into an event sequence η(θ)
f =

∆
(θ)
LIF (f) by applying the LIF sampler (2).



Equipping these spaces with a metric dF (., .) and dE(., .),
respectively, the question reads whether

dF (f1, f2) = lim
θ→0

dE(∆
(θ)
LIF (f1),∆

(θ)
LIF (f2)). (4)

As pointed out in [14], for the special case τ = ∞ the
asymptotic isometry property (4) can only be satisfied if the
metric dE is equivalent to that of Hermann Weyl’s discrepancy
measure, i.e., dE(η1, η2) = supa,b |

∫ b
a
η1 − η2dc|, where dc

denotes the counting measure. For functions f, g we have the
analog definition of Weyl’s discrepancy measure by integrating
w.r.t the Lebesgue measure dλ instead of the counting measure,
i.e., dF (f1, f2) = supa,b |

∫ b
a
f1 − f2dλ|.

In this paper, choosing Weyl’s discrepancy measure for
both, the input and the sequence space with respect to the
Lebesgue and the counting measure, respectively, we will
prove the asymptotic isometry property (4) for LIF for arbitrary
time constants τ > 0.

The paper is organized as follows. First of all, in Sec-
tion II we recall some basic properties of Hermann Weyl’s
discrepancy norm. In particular, we consider MMD intervals
which are intervals of minimal length of maximal partial sum
(discrepancy). In the following, Section III contains the proof
which consists of two steps, a denseness argument regarding
the generated spikes of non-trivial signals in Subsection III-A
and a convergence argument regarding MMD intervals in
Subsection III-B.

II. HERMANN WEYL’S DISCREPANCY MEASURE

Let us consider a path γ = ((0, 0)T , (1, x1)T , (1, x1)T +
(1, x2)T , . . . ,

∑n
i=1(1, xi)

T ) in (N0 × R)n+1. The diameter
(range) of γ in the direction of (0, 1)T is given by

max
1≤n1,n2≤n

|
n2∑

i=n1

〈
(1, xi)

T , (0, 1)T
〉
|

= max
1≤n1,n2≤n

|
n2∑

i=n1

xi|

= max
1≤i≤n

i∑

j=0

xj − min
1≤i≤n

i∑

j=0

xj ,

where 〈., .〉 denotes the usual inner product, and x0 = 0.
Hermann Weyl [15] introduced the measure

µD : Rn → R+
0 , (x1, . . . , xn) 7→ max

1≤a≤b≤n
|
b∑

i=a

xi|,

in the context of measuring irregularities of distributions.
This measure was investigated in the context of numerical
integration [16], computational geometry [17], [18], pattern
recognition [19], image processing [20], [21] and random
walks [22].

Analogously, this measure can be defined for an event
sequence η given by its sequence of events (tk, η(tk))k and
set of time events T = (tk)k, i.e,

‖η‖D = sup
a,b≥0

∣∣∣∣∣∣
∑

a≤tk≤b
η(tk)

∣∣∣∣∣∣
(5)

and, respectively, for a Lebesgue integrable function f , i.e.,

‖f‖D = sup
a,b≥0

∣∣∣∣∣

∫ b

a

fdλ

∣∣∣∣∣ . (6)

For convenience in (5) and (6) we use the same symbol ‖.‖D
as its definition becomes clear from the context. In both cases
‖.‖D satisfies the axioms of a norm.

A. Relevance for Level-Crossing Sampling

Recently, we pointed out the special role of Hermann
Weyl’s discrepancy measure for level-crossing sampling [14],
[23]. While uniform sampling guarantees that small deviations
of continuous input signals can cause only small deviations of
the resulting sequences of sampled data, this, in general, is not
the case for level-crossing sampling. In order to illustratively
demonstrate the problem that even arbitrarily small deviations
in the input can lead to large deviations in the resulting
sampled coded data, consider two sinus signals: the first with
amplitude α > 0, and the other with an amplitude β, arbitrarily
close but below α.

In the first case, send-on-delta sampling with threshold θ =
α produces a sequence of infinitely many events (tk, ηk) with
alternating signs, −1 and 1, while in the second case the signal
is below the threshold, which means that no event is triggered
at all.

Similar effects can also be observed for other types of
threshold-based sampling schemes such as level-crossing sam-
pling with hysteresis, send-on-delta and integrate-and-fire. This
means that for event-based sampling, small changes of the
threshold can lead to drastic changes in the resulting sequence
of events. Therefore, in general, it is not possible that devia-
tions between resulting event sequences, w.r.t. a given event
metric, can be made arbitrarily small by limiting the deviation
between the input signals for threshold-based sampling. Rather,
it turns out that stability is a matter of degree and, above
all, a matter of the chosen event metric. It turns out that for
being a stable event metric it has to be equivalent to Weyl’s
discrepancy norm.

As pointed out in [23], Weyl’s discrepancy satisfies the
following asymptotic metric equivalence relation for integrate-
and-fire sampling with τ =∞. See the Appendix for a proof.

Proposition 2.1 (Asymptotic Isometry, τ =∞): Let
f1, f2 ∈ L[t0, tE ] be bounded integrable signals. Let
η

(θ)
fi

= ∆
(θ)
LIF (fi) be the event sequences that result from LIF

sampling with threshold θ > 0 and τ =∞. Then

‖f1 − f2‖D − 4θ ≤ ‖η(θ)
f1
− η(θ)

f2
‖D ≤ ‖f1 − f2‖D + 2θ,

hence,
lim
θ→0
‖η(θ)
f1
− η(θ)

f2
‖D = ‖f1 − f2‖D. (7)

Note that Proposition (2.1) provides a solution to the problem
stated in (4) for τ = ∞, i.e., if we choose the discrepancy
norm ‖.‖D for dF and dE in (4) by its continuous and dis-
crete variant, respectively, we obtain the asymptotic isometry
property (7).

In this paper we present a sketch for a proof that (7) is also
valid for arbitrary time constants τ > 0 for LIF. To be precise,
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in this paper we prove the asymptotic isometry property (4) in
Section III for functions f that vanish only on a finite number
of proper intervals Ik. The mathematical problem that arises
in the general case is discussed in subsection III-C.

In contrast to the proof of (7) in [23], which relies on the
reconstruction of the signal values at the points of time of
firing, here, we avoid the reconstruction by following another
idea based on so-called MMD intervals. For details regarding
MMD intervals see [22] and [24].

B. MMD Intervals for Event Sequences

Let us consider an event sequence η : [t0, tE ]→ R given by
its sequence of events (tk, ηk)k, i.e., η(tk) = ηk and η(t) = 0
whenever t, where the sequence (tk)k does not contain any
subsequence converging to an accumulation point. Suppose
that ‖η‖D = d <∞.

We call J = [a, b) ⊆ [0,∞) a minimal interval with
maximal discrepancy (MMD) of η if |∑tk∈J ηk| = ‖η‖D = d
and if L ( J implies |∑tk∈L ηk| < d, where L is a subinterval
of J .

Note that MMD intervals are mutually disjoint. Let us
enumerate these MMD intervals in an increasing order,
(Jj)j=1,...,K , such that j1 < j2 implies tr < ts for all tr ∈ Jj1
and ts ∈ Jj2 . By this we obtain the partition of subintervals

[t0, tE ] = J̃0 ∪
K⋃

i=1

(Jj ∪ J̃j) (8)

with MMD intervals Jj = [aj , bj ] and in-between intervals
J̃j (j = 1, . . . ,K − 1) such that

∑
tk∈J̃j ηk = 0. Observe

that, in analogy to the Chebychev alternation theorem, the
signs (σj)j ∈ {−1, 1}K of the sums

∑
k∈Jj ηk are alternating.

As a direct consequence of the MMD property we obtain
Lemma 2.2. A proof can be found in [22].

Lemma 2.2: Let η : [t0, tE ] → R be an event sequence
of finite discrepancy norm, ‖η‖D < ∞. Let η be given by
its sequence of events (tk, ηk)k. Further, let (Jj)

K
j=1, Jj =

[aj , bj ], be the sequence of MMD intervals in increasing order.
Then, for any j ∈ {1, . . . ,K} and c ∈ [aj , bj ] there holds

σj
∑

tk∈[aj ,c]

ηk > 0

and
σj

∑

tk∈[c,bj ]

ηk > 0

where σj ∈ {−1, 1} denotes the signum of
∑
tk∈[aj ,bj ]

ηk.

Analogous results can be stated for the Lebesgue measure
based version (6).

III. PROOF OF ASYMPTOTIC ISOMETRY FOR WEYL’S
DISCREPANCY

The proof consists of two steps. In the first step, Subsec-
tion III-A, we show that for sufficiently small thresholds θ > 0
the generated time events spread densely across the time do-
main of non-zero signal values, i.e., {t ∈ [t0, tE ]| f(t) 6= 0}|.
In the second step, Subsection III-B, MMD intervals of the

event sequences resulting from applying LIF with thresholds
tending to zero, θk ↓ 0, are considered. By selecting a
convergent subsequence of these MMD intervals, a subinterval
[a, b] ⊆ [t0, tE ] as its limit is specified. By exploiting the
denseness property of Subsection III-A, we finally show that
[a, b] is an interval with maximal discrepancy with respect to
the signal space.

A. On the Denseness of Spikes for Thresholds Tending to Zero

Since the leakage parameter α = 1/τ is not vanishing the
integrator of LIF also depends on the distribution of the spikes.
The closer the neighboring spikes, the better the approximation
of the integral part of LIF by an idealized LIF without any
leakage, α = 0.

Therefore, in this section we wonder how the LIF-based
generated spikes are distributed if the thresholds tend to zero.
Are there holes or do we get an arbitrarily close-meshed set
of time points? Next, we show that there might occur holes,
i.e., intervals containing no spikes. However, it turns out that
such holes coincide with points in time with vanishing function
values which do not contribute to the integration. As a result
we get the Dense Co-Spike LIF Representation Lemma 3.1
which tells us that to any spike tk there are pre-specified close
co-spikes sk, vk such that the LIF integral over [tk, tk+1] can
be split into two integrals with integral ranges [tk, sk] and
[vk, tk+1] for sufficiently small thresholds.

Lemma 3.1 (Dense Co-Spike LIF Representation):
Let ε > 0 and f ∈ L[t0, tE ]. Further, let (t

(θ)
k )k denote

the time events (spikes) resulting from applying LIF, (2),
with threshold θ > 0 then there are time events (co-spikes)
s

(θ)
k , v

(θ)
k ∈ [t

(θ)
k , t

(θ)
k+1) in the ε-neighborhoods of t(θ)k and

t
(θ)
k+1, respectively, i.e,

∣∣∣t(θ)k − s
(θ)
k

∣∣∣ < ε,
∣∣∣t(θ)k+1 − v

(θ)
k

∣∣∣ < ε,
satisfying

θ =

∣∣∣∣∣

∫ t
(θ)
k+1

t
(θ)
k

f(t)eα(t−t(θ)k+1)dt

∣∣∣∣∣

=

∣∣∣∣∣

∫ s
(θ)
k

t
(θ)
k

f(t)eα(t−t(θ)k+1)dt+

∫ t
(θ)
k+1

v
(θ)
k

f(t)eα(t−t(θ)k+1)dt

∣∣∣∣∣

for all 0 < θ ≤ θ0 for some θ0 > 0.

Proof: Consider θ0 > 0 and suppose that there is a hole.
That means there is a point t∗ such that

t∗l := lim sup{t(θ)k | t
(θ)
k < t∗, 0 < θ < θ0}

< lim inf{t(θ)k | t
(θ)
k > t∗(θ), 0 < θ < θ0} =: t∗r . (9)

The hole assumption (9) implies that there is an interval
[u∗l , u

∗
r ] with t∗l ≤ u∗l < t∗ < u∗r ≤ t∗r such that

{t(θ)k | θ ≤ θ0} ∩ [u∗l , u
∗
r ] = ∅ (10)

for some θ0 > 0. Now fix θ < θ0 and consider ι(θ) =

max{k| t(θ)k < u∗l }. By construction, we get min{k| t(θ)k >

u∗r} = ι(θ) + 1, i.e., for threshold θ the spike at t(θ)ι(θ) is the

last one before the hole and the spike at t(θ)ι(θ)+1 is the first

after the hole. Note that the sequences (t
(θ)
ι(θ))θ and (t

(θ)
ι(θ)+1)θ
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are convergent, i.e., limθ→0 t
(θ)
ι(θ) = t̃l, limθ→0 t

(θ)
ι(θ)+1 = t̃r.

Thus,

0 = lim
θ→0

θ

= lim
θ→0

∣∣∣∣∣

∫ t
(θ)

ι(θ)+1

t
(θ)

ι(θ)

f(t)e
α(t−t(θ)

ι(θ)+1
)
dt

∣∣∣∣∣

=

∣∣∣∣∣

∫ T

t̃l

f(t)eα(t−T )dt

∣∣∣∣∣ (11)

for any T ∈ [t̃l, t̃r]. By applying the Radon-Nikodym theorem
we conclude from (11) that f = 0 a.e. on [t̃l, t̃r].

B. Proof for Functions Vanishing on Finitely Many Intervals

Though the asymptotic isometry property (4) for Weyl’s
discrepancy ‖.‖D can be proven for the general case of
functions with finite discrepancy on arbitrary, not necessarily
compact intervals, for sake of adequateness of this paper we
will only present a proof under the restrictions that

• the time domain is given by a compact interval [t0, tE ],

• the functions are Lebesgue integrable,

• the functions only vanish on finitely many intervals.

The last assumption is related to Lemma 3.1. Its relevance will
become clear in the proof. The proof for the general case is
mathematically more technical and, therefore, is reserved for
a mathematical journal. Nethertheless, we give a sketch of the
general situation in Subsection III-C.

Proposition 3.2 (Asymptotic Isometry, Version I): Let
f1, f2 ∈ L[t0, tE ] vanish only on a finite number of proper
intervals. Then

lim
θ→0
‖∆(θ)

LIF (f1)−∆
(θ)
LIF (f2)‖D = ‖f1 − f2‖D. (12)

Proof: The concept of the proof relies on considering
MMD intervals of the corresponding event sequences induced
by LIF with thresholds tending to zero. For convenience, let
us set ∆f = f1 − f2, η1 = ∆

(θ)
LIF (f1), η2 = ∆

(θ)
LIF (f2) and

∆η(θ) = η1 − η2. Let T be the union of time events w.r.t. η1

and η2. Note that with f1, f2 also ∆f satisfies the assumptions
of Proposition 3.2. Let S ⊆ [t0, tE ] be the set of points which
are not inner points of proper intervals on which both functions
f1, f2 are vanishing. Consider a sequence of thresholds θk that
tends to zero, i.e., limk θk = 0.

Now, let us choose ε > 0. First of all, we point out that
there is an index N such that for all k ≥ N the mesh size of the
union of spikes induced by applying LIF on fi, i = 1, 2, with
threshold θk restricted to S is bounded by ε. Next, let us turn
our focus on MMD intervals. Since the discrepancy measure
is based on the supremal partial sum over all subintervals of
the given compact time domain [t0, tE ], the existence of an
MMD interval is guaranteed. This means, for any threshold
θk > 0 there is an MMD interval [ak, bk] ⊆ [t0, tE ] of
∆η(θk). From the compactness of [t0, tE ] we conclude that
there is a convergent subsequence ([akn , bkn ])n of ([ak, bk])k.
Let us denote the limits of the borders by limn akn = a and
limn bkn = b. In the following we will show that [a, b] is an

interval of maximal partial integral of ∆f with respect to the
continuous-time version of ‖.‖D. Then, there is a threshold
θkn such that the MMD borders akn and bkn are within the ε-
neighborhood of a and b, respectively. Consequently, also the
outermost spikes of η1 and η2 of the corresponding MMD
interval of ∆η(θ) are within the ε-neighborhood of a and
b, respectively. Let us denote the corresponding spikes by
t
(1)
mk ∈ [a − ε, b + ε], k = 1, . . . , κ1 and t

(2)
nk ∈ [a − ε, b + ε],

k = 1, . . . , κ2, respectively. Due to the assumption there
are only finitely many proper intervals, Z(1)

l , l = 1, . . . , z1

and Z
(2)
l , l = 1, . . . , z2, on which f1 and f2 are vanishing,

respectively. Note that a spike never can fall inside such
an interval. Thus there are only finitely many spikes which
bridge such intervals. Let us put the corresponding indices of
such bridging spikes together and let us denote this set of
indices by K1 w.r.t. η1. Analogously, we define K2 w.r.t. η2.
Then, {1, . . . , κi} = Ki ∪ K̂i, where K̂i = {1, . . . , κi}\Ki

for i = 1, 2. Note that the cardinality of Ki is bounded
independent from the threshold θ due to the assumption that
there are only finitely many such intervals. That is, there is a
K ∈ N such that max{|K1|, |K2|} ≤ K. For convenience let
us write

θ
(1)
k =

∫ t
(1)
mk+1

t
(1)
mk

f1(t)e
α(t−t(1)mk+1)

dt,

θ
(2)
k =

∫ t
(2)
nk+1

t
(2)
nk

f2(t)e
α(t−t(2)nk+1)

dt.

Due to the boundedness of ∆f we obtain
∣∣∣∣∣

∫ b

a

∆fdt

∣∣∣∣∣

=

∣∣∣∣∣

∫ b

a

f1dt−
∫ b

a

f2dt

∣∣∣∣∣

=

∣∣∣∣∣4ξ‖∆f‖∞ +

κ1∑

k=1

θ
(1)
k −

κ2∑

k=1

θ
(2)
k

∣∣∣∣∣

=

∣∣∣∣∣∣
4ξ‖∆f‖∞ +

∑

k∈K̂1

θ
(1)
k −

∑

k∈K̂2

θ
(2)
k

+
∑

k∈K1

θ
(1)
k −

∑

k∈K2

θ
(2)
k

∣∣∣∣∣∣
(13)

where |ξ| ≤ ε. Note that Lemma 3.1 implies that θ(i)
k ≤

2‖fi‖∞ε for k ∈ K̂i, i = 1, 2. Thus
∣∣∣∣∣∣
∑

k∈K1

θ
(1)
k −

∑

k∈K2

θ
(2)
k

∣∣∣∣∣∣
≤ 4K‖∆f‖∞ε. (14)

Note that MMDη =
∑κ1

k=1 θ
(1)
k − ∑κ2

k=1 θ
(2)
k is a maximal

partial sum w.r.t. η1−η2. Now, consider some arbitrary interval
(c, d). Let c̃ = inf{t ≥ c| |f1(t)−f2(t)| > 0} and d̃ = sup{t ≤
d| |f1(t)−f2(t)| > 0}. If d̃ ≤ c̃ then the corresponding partial
integral vanishes and is trivially smaller than Σf = |

∫ b
a

∆fdt|.
Due to the fact that the mesh size for the set S is bounded by ε
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Fig. 2. Illustration of the idea of step (16) in the proof of Proposition 3.2:
1. MMD intervals [ak, bk] of LIF induced event sequences are considered;
2. take a convergent subsequence of these intervals; 3. check that the integral
over the limit interval [a, b] is greater or equal than another arbitrary interval
[c, d]; 4. prove this inequality by exploiting the maximality property of the
partial sum w.r.t. [ak, bk].

there are spikes in the ε-neighborhood of c̃ and d̃, respectively.
Let us denote their points in time by

t ∈ (c̃− ε, c̃+ ε),

t ∈ (d̃− ε, d̃+ ε). (15)

By taking (13), (15), the characterizing properties of MMD
intervals and |

∫ d
c

∆fdt| = |
∫ d̃
c̃

∆fdt| into account, we obtain
∣∣∣∣∣

∫ b

a

∆fdt

∣∣∣∣∣+ 4K‖∆f‖∞ε+ 2 · 4‖∆f‖∞ε

≥ MMDη + 4K‖∆f‖∞ε+ 4‖∆f‖∞ε

≥

∣∣∣∣∣∣
∑

ti∈T ∩[t,t]

∆η(θk)(ti)

∣∣∣∣∣∣
+ 4K‖∆f‖∞ε+ 4‖∆f‖∞ε

≥

∣∣∣∣∣∣
∑

ti∈T ∩[t,t],i∈K̂1

θ
(1)
i −

∑

ti∈T ∩[t,t],i∈K̂2

θ
(2)
i

∣∣∣∣∣∣
+ 4‖∆f‖∞ε

≥ |
∫ d̃

c̃

∆fdt|

= |
∫ d

c

∆fdt|. (16)

See Figure 2 which illustrates the idea of this step. (16) proves
that [a, b], indeed, is an MMD interval of ∆f . Together with
(13), which shows that limk ‖∆η(θk)‖D =

∫ b
a

∆fdt, we finally
come to the conclusion that limk ‖∆η(θk)‖D = ‖∆f‖D, which
proves (21).

C. Discussion of Proof for General Case

From the Lemma 3.1 and its proof we immediately obtain
Corollary 3.3, stating that for a function f that does not vanish
on any interval [a, b], a < b, eventually, for sufficiently small
thresholds the LIF-induced set of spikes are pre-specified close
meshed, i.e., a neighboring spike is at most a pre-specified
distance ε > 0 away.

Corollary 3.3 (Denseness of Spikes): Let ε > 0 and f ∈
L[t0, tE ] such that there is no proper interval [a, b] ⊆ [t0, tE ],
a < b, with f = 0 a.e. on [a, b]. Then, there is a θ0 > 0 such

that for all θ < θ0 the mesh size of the corresponding spikes
(t

(θ)
k )k is bounded by ε, i.e.,

sup
k

(
t
(θ)
k+1 − t

(θ)
k

)
< ε. (17)

It is interesting to observe that the set of functions of
Corollary 3.3 is dense in L[t0, tE ] with respect to the dis-
crepancy norm ‖.‖D. For convenience let us denote the set
of such functions which do not vanish on any proper interval
by D ⊆ L[t0, tE ]. Moreover, we can show that to any given
ε > 0 and function f ∈ L[t0, tE ] there is a function f̃ ∈ D
such that they have the same number of MMD intervals and
that the Hausdorff distance between such corresponding MMD
intervals is bounded by ε > 0.

Theorem 3.4 (‖.‖D-denseness of D in L[t0, tE ]): Let
ε > 0. Let f ∈ L[t0, tE ] and suppose that ‖f‖D < ∞.
Further, let Ik denote the MMD intervals of f on [t0, tE ].
Then there is a f̃ ∈ D such that f and f̃ have the same
number of MMD intervals satisfying

‖f − f̃‖D ≤ ε, (18)
dH(Ik, Ĩk) ≤ ε, (19)

where Ĩk denote the corresponding MMD intervals of f̃ , and
dH denotes the Hausdorff metric.

Proof: Given a function f ∈ L[t0, tE ], which vanishes
on some interval I . The idea is to bridge this hole by some
auxiliary function that fluctuates around the zero line with a
maximal pre-specified discrepancy. As a candidate for such
a function we consider a sinus with amplitude ε > 0 and
frequency π/ε, i.e.,

χ
(ε)
I (t) = ε sin

(
t
π

ε

)
1I(t),

χ
(ε)
f (t) =

∑

k

χ
(ε)
Ik

(t), (20)

where Ik denote the proper intervals on which f vanishes.
Note that

‖χI‖D ≤
2

π
ε2

for arbitrary intervals I and that the statements (18) are a direct
consequence of construction (20) by setting f̃ = f + χ

(ε)
f .

The ‖.‖D-denseness of D in L[t0, tE ] allows to circumvent
the problem with the zero intervals (proper intervals on which
f vanishes) and is probably the first step towards proving the
asymptotic isometry property (4) in the general case:

Conjecture (Asymptotic Isometry, Version II): Let
f1, f2 ∈ LD[t0,∞). Then

lim
θ→0
‖∆(θ)

LIF (f1)−∆
(θ)
LIF (f2)‖D = ‖f1 − f2‖D. (21)

Its analysis is reserved for future research.

IV. CONCLUSION

In this paper we presented an introduction in the analysis
of metric preserving properties of LIF as mapping between
metric spaces. We concentrated on Weyl’s discrepancy measure
as metric as it is the only one (up to equivalence) which
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guarantees stability in the metric sense. We outlined a proof
that LIF is an asymptotic isometry with respect to this metric.
We presented a detailed proof for the restricted scenario that
is characterized by compact time domains and functions that
only vanish on a finite number of proper intervals, and gave
an outlook for the general case.

APPENDIX

The appendix deals with the special case of τ =∞. Thus
the LIF model (2) becomes

±θ =

∫ tk+1

tk

f(s)ds

and, by setting g(t) =
∫ t
t0
f(s)ds, its firing condition reduces

to an on-delta-send sampling scheme (SOD). That is, an event
is fired if g crosses a level kθ, k ∈ Z, for the first time
(subsequent repeated crosses at the same level are not counted).
Note that for (essentially) bounded f we obtain a Lipschitz
continuous g. Therefore, Proposition 2.1 can be reformulated
in terms of SOD and Lipschitz continuous functions. For
details see [23].

Proposition A.1: Let g1, g2 : [t0, tE ] → R, be bounded
Lipschitz continuous-time signals, θ > 0, and let η(θ)

1 , η(θ)
2 be

the event sequences induced by g1, g2, respectively, w.r.t. the
on-delta-send sampling principle, . Then, with η

(θ)
diff = η

(θ)
2 −

η
(θ)
1 , fdiff = g2 − g1 we obtain

max{2‖fdiff‖Φ − 4θ, 0} ≤ ‖η(θ)
diff ‖D ≤ 2‖fdiff‖Φ + 2θ, (22)

where ‖g‖Φ = supt∈[t0,tE ] g(t)− inft∈[t0,tE ] g(t).

Proof: Note that because of g(t) =
∫ t
t0
f(s)ds we obtain

‖g‖Φ = ‖f‖D Proposition A.1 is equivalent to Proposition 2.1.
Further, note that the diameter semi-norm ‖.‖Φ can also be
represented by

‖g‖Φ = 2 inf
c∈R

sup
t∈[t0,tE ]

|g(t)− c|. (23)

Let T be the ordered set of sampling points of the event
sequences η

(θ)
1 and η

(θ)
2 , respectively. Then for some ti ∈

T \{t0} we have either η1(ti)
(θ) 6= 0 or η2(ti)

(θ) 6= 0. Set

κ1(j) := max({k ≤ j| η1(tk) 6= 0} ∪ {0}), (24)

and, analogously, for η2. If η(θ)
1 (tj) 6= 0 we get κ1(j) = j. If

η
(θ)
1 is vanishing on [t0, tj ] (24) yields κ1(j) = 0. In all other

cases κ1(j) denotes the index of the closest sampling point
tκ1(j) ≤ tj at which η

(θ)
1 deviates from zero. Let us assume

that |T | ≥ 2 and consider a tj ∈ T \{t0}. Without loss of
generality we may assume that η(θ)

2 (tj) 6= 0. Note that

|g1(tκ1(j))− g2(tκ2(j))|
= |g1(tκ1(j))− g2(tj)|
≤ |g1(tj)− g2(tj)|+ θ. (25)

Inequality (25) results from f1(tj) ∈ (f1(tκ1(j)) −
θ, f1(tκ1(j)) + θ) due to the definition of SOD. According to

(23) and (25) we obtain

‖η(θ)
2 − η(θ)

1 ‖D

= 2 inf
c

max
i≥0,ti∈T

|
i∑

j=0

η
(θ)
2 (tj)− η(θ)

1 (tj) + c|

= 2 inf
c

max
i≥0,ti∈T

|g2(tκ2(i))− g2(t0)

−g1(tκ1(i)) + g1(t0) + c|
= 2 inf

c
max

i≥0,ti∈T
|g2(tκ2(i))− g1(tκ1(i)) + c|

≤ 2 inf
c

max
i≥0,ti∈T

{|g2(ti)− g1(ti) + c|+ θ}
≤ 2‖g2 − g1‖Φ + 2θ.

The case |T | = 1 (η(θ)
1 and η(θ)

2 are vanishing for all t ≥ t0)
trivially satisfies ‖η(θ)

2 − η
(θ)
1 ‖D = 0 ≤ 2‖g2 − g1‖Φ + 2θ,

which proves the right part of inequality (22).

Now, let us turn to the left part of inequality (22). Due to
the intermediate value theorem for continuous functions for all
ρ ≥ t0 there is a tρ > t0 such that

2‖(g2 − g1)|[t0,ρ]‖Φ
= 2 inf

c
sup

t∈[t0,ρ]

|g2(t)− g1(t) + c|

= 2 inf
c

sup
t∈[t0,ρ]

|(g2(t)− g2(t0))− (g1(t)− g1(t0)) + c|

= 2 inf
c
|(g2(tρ)− g2(t0))− (g1(tρ)− g1(t0)) + c|

≤ 2[inf
c
|

∑

tj ∈ T ,
tj ≤ tρ

η
(θ)
2 (tj)−

∑

tj ∈ T ,
tj ≤ tρ

η
(θ)
1 (tj) + c|+ 2θ]

≤ 2 inf
c

max
i
|
i∑

j=0

η
(θ)
2 (tj)− η(θ)

1 (tj) + c|+ 4θ

= ‖η(θ)
2 − η(θ)

1 ‖D + 4θ. (26)

The last line of (26) follows from (23).
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