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Program

Session 1. Chair: Thomas Vetterlein

9:00 F. Sobieczky:
Unimodularity of graphs for unbiased parameter estimation

9:30 G. Badia:
Maximality of First-order Logics Based on Finite MTL-chain

Session 2. Chair: Bernhard Moser

10:15 U. Anlauf:
The Steiner Tree Problem Considering Obstacles

10:35 A-M. Meder:
Optimization of Electrical Drives Using Deep Learning Techniques
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Overview
1. Definition of Statistical Depth

I Location Depth, Regression Depth
I Convex Peeling, Mahalanobis Depth
I Oja Depth, Simplicial Depth

2. Robustness

I High Breakpoint

3. Implementation

I O(n2 log n)
I R-Package

4. Literature



Idea of Statistical Depth

For a given statistical model 〈S,F ,P〉 to give an estimate of the
probability density of the distribution from which a sample
X ∈ RN×d is drawn.

I Tukey, 1975 [1]



1. Definition of Halfspace Depth
Statistical Depth of a point in a sample space of a statistical model
is relative to a given sample X ∈ Rn×d :

I supposed to give an approximation of the density function of
the distribution from which the sample has been drawn.

1. Location Depth (Halfspace-Depth, [2]):

depn(x ,X ) = min |{v ∈ R, yrow(X ) | ‖v‖ = 1, 〈(x − y) , v〉 ≥ 0}|

I Restriction on P: Unimodal Distributions with convex
contourplanes

I High Robustness: Breakpoint is fraction of removable data
points without estimator turning ‘bad’



1. Other Depth Notions
Convex Peeling:

I Remove consecutive convex hulls
I Not robust: Outer Contours depend heavily on configuration of

data points

Mahalanobis Depth:

I Remove consecutive furthest outliers with resp. to Mahalanobis
distance

I Not Robust: ‘Mean’ instead of Median is used

Oja Depth (1983): Volume of simplices data point x falls into
Simplicial Depth (Liu, 1990): Number of simplices x falls into



2. Robustness (Now classical results)

I Halfspace depth has high breakpoint (Donoho and Gasko[2]):

1.)
lim inf
n→∞ max (depn(x)/n) ≥

1
d + 1

2.) For centrosymmetric underlying distributions:

lim inf
n→∞ max (depn(x)/n) ≥

1
2

More precisely: max (depn(x)/n) > 1
2 − O

(
1√n

)

3.) For distributions ε-close to centrosymmetry:

max (depn(x)/n) >
1
2(1 − ε)



3. Implementation

Rousseew and Struyf have found fast algithms for computing
dep(x ,X ) in

I O(N logN) steps for d = 2,
I O(N2 logN) steps for d = 3.

Moreover, they define the regression depth as the number of sign
flips of residuals in a linear regression to be performed when shifting
approximating hyperplane to lie ‘outside’ of data cloud. This can be
computed in

I O(N2 logN) steps for arbitrary dimenion.
I Generalizing concept of depth which encompasses location

depth and regression depth: [4].



3. R-Package ‘depth’

library(depth)
A<-matrix(rnorm(100), ncol=2)
depth::depth(c(0,0), A)

## [1] 0.34
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Maximality of First-order Logics Based on Finite

MTL-chains

Guillermo Badia

April 3, 2018

A pair formed by a formal language and a semantics (i.e., a function that
evaluates the formulas in our residuated lattice) is called a model-theoretic logic.
I will begin by considering a first order language (with the finitary propositional
connectives of the so called monoidal t-norm logic (MTL) and the usual quanti-
fiers ∀,∃) over systems of relations evaluated on a finite MTL-chain (a linearly
ordered commutative integral residuated lattice denoted by A). MTL-chains
are the basis of a very large number of fuzzy logics. I will denote my starting
model-theoretic logic by L A

ωω.
An expressive extension of L A

ωω could be obtained by, say, allowing infinitary
propositional connectives, second order quantifiers or a quantifier to capture
cardinality relations such as “most”. The relation “being as expressive as”
between model-theoretic logics is a partial ordering ≤. A Lindström theorem is
a characterization of a given model-theoretic logic in the aforementioned partial
order in terms of some combination of semantic properties.

In this talk, I will present the following two Lindström theorems for L A
ωω.

Theorem 1. (First Lindström Theorem) Let L A be a model-theoretic logic
such that L A

ωω ≤ L A. If L A has the Löwenheim-Skolem property for countable
sets of formulas and the Compactness property, then L A ≤ L A

ωω.

Theorem 2. (Second Lindström Theorem) Let L A be an effective model-
theoretic logic (i.e., the collection of its formulas is recursive) such that L A

ωω ≤
L A. If L A has the Löwenheim-Skolem property for countable sets of formulas
and the abstract Weak Completeness property (the collection of its validities is
recursively enumerable), then L A ≤ L A

ωω.

These results shed light on the methamatematics of predicate fuzzy logic,
providing an answer to the question: what is special about a first order language
in the context of monoidal t-norm logics?
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 The Steiner Tree Problem Considering Obstacles   

Ulrike Anlauf 

Knowledge-Based Mathematical Systems (KBMS) - Johannes Kepler University Linz

Abstract –  A first glance at the Euclidean Steiner Tree Problem and its obstacle-
avoiding variant by means of evolutionary computation techniques. 





 Optimization of Electrical Drives Using Deep Learning
Techniques  

 Adela-Maria Meder 

Knowledge-Based Mathematical Systems (KBMS) - Johannes Kepler University Linz

Abstract  –  In  order  to  be  effective  in  electrical  drive-design  use  cases,  multi-
objective optimization algorithms must rely heavily on model-based surrogate evaluators (i.e.,
regression models) that replace the finite element simulations. Surrogates based on various
machine learning paradigms (like shallow multi-layer perceptrons, support vector machines,
radial basis functions) have been previously tested with mixed success. As recent types of
deep structured neural networks have shown very promising results in several application
fields, the goal is to test the potential of these advanced machine learning techniques in the
context of existing electrical drive design frameworks.


