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On Human–Machine Interaction During On-line
Image Classifier Training

Edwin Lughofer, James Smith, Davy Sannen, Christian Eitzinger

Abstract. This paper considers on a number of issues that arise when
a trainable machine vision system learns directly from humans, rather
than from a “cleaned” data set, i.e. data which is perfectly labelled with
complete accuracy. This is done within the context of a generic system for
the visual surface inspection of manufactured parts, however, the issues
treated are relevant not only to wider computer vision applications such
as medical image screening, but also to classification more generally.
Some of these issues arise from the nature of humans themselves: they
will be not only internally inconsistent, but will often not be completely
confident about their decisions, especially if they are making decisions
rapidly. People will also often differ systematically from each other in
the decisions they make. Other issues may arise from the nature of the
process, which may require the machine learning to have the capacity
for real-time, online adaptation in response to users’ input. It may be
that the users cannot always provide input to a consistent level of detail.
We describe how all of these issues may be tackled within a coherent
methodology. Using a range of classifiers trained on real data sets from a
CD imprint production process, we will present results which show that
most of these issues may actually lead to improved performance.

Key words: Image classification, on-line adaptation and evolution, re-
solving contradictory inputs, variable input levels, partial input confi-
dence



1 Introduction

In many machine vision applications, such as inspection tasks for quality control,
an automatic system tries to reproduce human cognitive abilities. The most effi-
cient and flexible way to achieve this is to learn the task from a human expert [1],
either by supervised data or by knowledge acquisition from the human operators
in form of rule bases. Typically Machine Learning systems are trained in super-
vised batch mode from a set of example data items each of which has a unique
label. Although there may be inconsistencies or noise within the data, these are
generally considered to be random in nature, and each point is considered to be
labelled with complete accuracy.

However, as Machine Learning technology moves from research laboratories
to practical applications such as Machine Vision, a range of issues arise concern-
ing how humans relate to, and interact with such systems [2] [3]. Not only does
this question the feasibility, or even relevance of considering “cleaned” data sets,
there is an increasing demand for systems to operate in situations where off-line
batch-mode processing is not appropriate [4]. This can occur if data is hard,
time-consuming or costly to obtain, or if the underlying processes change fairly
rapidly, requiring re-configuration. Both of these cases lead to the need for an
element of incremental on-line training [5], which prompts a renewed interest in
the nature of the human interaction with adaptive ML systems [6] [7].

In this paper we focus on a number of issues relating to human-machine
interaction in the context of a generic system for the visual surface inspection
of manufactured parts. Section 2 describes the basic architecture of our generic
system, the data sets used in this work and the experimental framework. Part
1 of the talk deals with the issues arising when the nature of the application
demands real-time on-line learning after an initial batch-mode phase. Part 2 of
the talk deals with the fact that different users will often differ systematically
from each other, and considers how best to incorporate this diversity of informa-
tion. Other issues may arise from the fact that humans cannot always work as
fast as the underlying applications. For example, Part 3 considers how demand
for rapid user responses may reduce the level of detail in the feedback they can
produce, and suggests some alternative ways for dealing with this. In In Part 4
of the talk we consider that for a number of reasons, the operator(s) may not be
completely confident in their decisions and show how a suitable change in the
human-machine interface used for online labelling can be exploited to capture
this information and lead to performance improvements. We end by drawing
some conclusions from this work, and highlighting areas that require further
research attention (Section 3).

2 Architecture and Data-sets

The whole framework is shown in Figure 1. Starting from the original image
(left) a so-called “contrast image” is calculated, where the gray value of each
pixel correlates to the degree of deviation from the normal appearance of the



Fig. 1. Classification framework for classifying images into good and bad, the four
major HMI issues marked with red ellipsoids.

surface. This contrast image just serves as an interface to the subsequent pro-
cessing steps in order to remove the application-dependent elements. From the
contrast image regions of interest (ROI) are extracted, each of which contains a
single object which may or may not be a fault. From the segmented ROIs a large
number of object features are calculated such as area, brightness, homogeneity or
roundness of objects characterizing their shape, size etc. These are complemented
by aggregate features characterizing images as a whole. The feature vectors are
then processed by a trained classifier system that generates a final good/bad
decision for the whole image. For off-line training the classifiers we exploited ba-
sically four different methods, namely: the decision tree-based classifiers CART
[8], and C4.5 [9]; k-Nearest Neighbours (kNN) [10]; and two incremental learn-
ing algorithms eVQ-Class [11] and FLEXFIS-Class [12]. When applying these
classification algorithms on the standard aggregated feature sets (containing 17
pre-defined features) to real-world data from an on-line CD imprint production
process, we achieved accuracies between 87% and 93% as estimated by 10-fold
cross-validation. Even though the accuracies lie in a reasonable range, they fall
short of the original goals for a very high-performance and robust system.

Hence, one goal of the enhanced human-machine interaction issues discussed
in this paper is to guide the classifiers towards 99% accuracy. Another goal is to
widen the applicability and usability of the whole system. The specific issues for
human-machine interaction are highlighted in Figure 1, where the labels HMI
1-4 refer to the following issues:

1. HMI 1: the incorporation of operator’s feedback on classifier(s) decisions
during on-line mode, which lead to a refinement and improvement of the
classifiers accuracy, especially when changing operating conditions or system
behaviors arise during on-line mode. A fixed kept static classifier would be
out-dated and deliver wrong classification results after a while.

2. HMI 2: feedback or labels from different experts may be contradictory, hence
this should be resolved by ensembling mechanisms of different classification
statements.

3. HMI 3: labels may be provided at different levels of detail (on images or
single objects) according to the speed of on-line processing and according to
the effort for labelling off-line.



4. HMI 4: the operator(s) may provide an additional information in form of a
confidence level as not being completely confident in its (their) decision(s)
due to low experience or occurring similar patterns between faulty and non-
faulty regions.

All these four topics will be treated and underlined how they impact the clas-
sification performance of the whole system on both data sets mentioned above.
Classification performance will be measured in terms of 10-fold CV error, except
for the incremental on-line training issue, where the accuracy on a separate test
set is calculated (as CV is an off-line procedure).

3 Conclusion and Outlook

As machine learning systems move out of the laboratory and into real-world
applications such as vision and image processing, it is valuable to reconsider
some of the assumptions that have been made about how such systems can best
learn from users. In this paper we have discussed some of the more important of
these issues, and suggested how they might be handled. Experiments conducted
with ’real’ data within the context of a generic image processing system show
that when properly handled, the human factors can represent an additional form
of information to these systems for improving performance and may widen the
applicability and usability, rather than to be a disagreeable source of noise. Key
issues of these factors include on-line guidance and feedback, a diversity of user
skills, uncertainties as well as different levels of know-how and detail in users’
input. The improvements are made possible by recent advances in the speed
with which graphical user interfaces can operate. The next generation of user-
interaction devices offers the potential to build on this research, creating much
richer human-machine learning interaction.
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Abstract

In this paper clustering methods are used to perform segmentation of binary images originated
from an industrial inspection process. Two clustering algorithms for detecting arbitrary and non-
connected shapes of "white" pixels - a hierarchical and a density-based one - are presented. Also
a method for prior checking the existence of clustering structures in an image is discussed.

Keywords: image segmentation, grouping, connected components, Hopkins index, hierarchical
clustering, density-based clustering
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1 Introduction

In many industrial inspection systems images of a "master" part are compared with images from
the ongoing production process in order to detect faulty units. The differences between these two
images are located, classified and - based on the output of the classifier - a decision, whether the
part has to be rejected, is made.

Successful operation of such a quality control application is based on a reliable algorithm for
recognizing "suspicious" objects in the current image. In the next chapters clustering methods,
originally from the field of data-mining, are evaluated, if they are feasible to fulfil this task. Artifi-
cially created image datasets and real images from a CD print process are used for this evaluation.

2 Segmentation / grouping problem and the clustering approach

Starting with a "master" and the current "test" image, the inspection system first creates a dif-
ference image by taking the absolute difference between them. In order to find all deviations
a thresholding, which sets every non-zero pixel to "white", is performed. The resulting binary
difference image is the starting point for the subsequent algorithms.

Figure 1: Binary version of a CD print difference image

The task now is to find all the objects in the binary image by grouping all "white" pixels be-
longing to the same object together. This segmentation process is easy as long as objects consist
of connected pixels (here a connected component algorithm can do the job). But in many appli-
cations objects are kind of "widespread" (i.e. ink splashes) or discontinuous (i.e. scratches of
varying depth). Also generally no information about their size, shape and number is available.

The basic idea now is to use clustering methods for the object recognition task. The coordi-
nates of the "white" pixels represent the datapoints to be clustered. The question "Which pixels
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belong together / to the same object?" is now addressed by the clustering algorithm and on how it
partitions the datapoints.

3 Description of three clustering methods

In the next section a measure of cluster tendency is described, followed by a review of the single
linkage hierarchical algorithm plus some ideas to find out the "right" number of clusters. Finally
a density-based clustering approach is investigated.

3.1 Cluster tendency - The Hopkins Index

Because most of the clustering algorithms cannot deal with less than two clusters, a measure of
cluster tendency has to be calculated before trying to find groups in the data. In [1] the so called
Hopkins Index is described, which can be calculated by the following algorithm:

Given a dataset
X = {x1, .., xn} ∈ Rp

1. Choose randomly m points
S = {s1, .., sm} ∈ X

2. Choose randomly m points

R = {r1, .., rm} ∈ Hconvex(X)

3. Calculate the distances dsi (dri) from each si (ri) to its nearest neigbour in X

4. Calculate h according to formula

h =

m∑
i=1

dp
ri

m∑
i=1

dp
ri +

m∑
i=1

dp
si

∈ [0, 1]

5. Perform algorithm multiple times and take the mean of h.

If h ≈ 0.5 then the datapoints are likely to have a random pattern (only a single cluster).
If h ≈ 0 then the datapoints are located in a regular grid (as many clusters as datapoints).
If h ≈ 1 then a clustering structure exists (number of clusters between 2 and the number of data-
points).

In the objects recognition context the Hopkins Index can be used to detect whether there are
(more than one) objects in a binary image or not. If it is smaller than a certain threshold all "white"
pixels belong to the same object. Tests with an artificially created image dataset, consisting of
about 20000 images (128x128px, no noise), show the following (promising) results:
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Number of images used : 19224

Number of images with a single cluster : 1213

Number of single clusters found : 1205

Number of single clusters not found : 8

Number of single clusters overdetected : 47

3.2 Hierarchical clustering algorithm - Single Linkage

In [2] hierarchical clustering for object recognition is discussed in detail. For binary image seg-
mentation it has two big advantages: the shape of the clusters can be arbitrary and - when using the
single linkage distance measure - elongated clusters are properly detected ("chaining effect"). Due
to its nature, a hierarchy of possible partitions is generated and a criterion has to be found in order
to find the right "cutoff" of the hierarchy. To solve this problem in literature [3] cluster validation
indices like the RMSSDT, SPR or RS are applied to each step of the hierarchical clustering. When
they reach extremal values, the best partition of the datapoints is assumed to be found. But most
of these indices (all the before mentioned) cannot handle arbitrary shaped clusters, so they are not
feasible for the binary image segmentation / grouping task. Another way to find an appropriate
"cutoff" is by examining the graph of the merge-distance (the distance of the closest clusters at a
certain level of the hierarchy) versus the number of clusters. The point where the largest magni-
tude difference, the largest ratio difference or the largest second derivative occurs, is supposed to
give the right hint for finding the "cutoff". In [4] the L-method, based on fitting a pair of straight
lines to the merge-distance graph and minimizing some measure derived from the previous fit, is
shown as a possible approach. Till now a fixed threshold for the "cutoff" is implemented. The
clustering algorithm stops, if the closest clusters are more far away than the threshold. This saves
computational time, but lacks of "adaptiveness" to the content of the current image.

Figure 2: Hierarchical clustering on a CD print image

Tests on real images (CD prints) have shown that hierarchical clustering performs quiet well
as long as the right "cutoff" is found.
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3.3 Density-based clustering algorithm - DBSCAN

The basic idea of density-based clustering algorithms is that clusters are dense regions in the data
space, separated by regions of lower object density (local cluster criterion). A detailed description
of the density-based algorithm DBSCAN can be found in [5]. Again clusters of arbitrary shape
can be identified. Two parameters, namely the maximum radius ε of the neighbourhood and the
minimum number of points MinPts in an ε-neighbourhood of a datapoint, have to be set by the
user. It turned out that the selection of the right values for these two parameters is very tricky and
only slight variations can influence the clustering result dramatically. In [5] a heuristic method
using the so-called MinPts-distance plot is described to estimate ε, while MinPts is set to
4 for two-dimensional data. In the implementation of [6] an estimation formula is applied to
automatically set the value of ε (MinPts is set to 4 as default).

One interesting feature of DBSCAN is that it can handle noise, i.e. detect outliers. The
question arises how should outliers be treated in the context of image segmentation / grouping. At
the moment they are simply ignored (with the risk to miss some important objects).

Figure 3: Density-based clustering on a CD print image

As mentioned before DBSCAN is very sensitive to the choice of its two parameters. The
automatic setting via the estimation formula sometimes produces very unsatisfying results on the
real CD print images but works pretty well for the artificial ones.

4 Conclusion and future work

Clustering methods seem to be a feasible solution for the binary image segmentation / grouping
problem. Two major challenges in using them in an industrial inspection system are their high
computational cost and the problem of automatically finding the right parameters (i.e. the number
of clusters). In the future some more algorithms will be evaluated together with alternative ways
of finding optimal parameter settings.
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Abstract

In many applications of supervised learning a main goal, besides achiev-
ing good generalization properties, is to detect which features are mean-
ingful to build an estimator. There at least two main difficulties in the
solution of this type of problems:

1. the initial number of potentially relevant features is often much
larger than the number of examples, and

2. it is often the case that many of the variables (also those that are
relevant) are strongly dependent.

Both the above issues make the problem of variable selection ill-posed:
in this work we explore the use of regularization theory techniques for
restoring well-posedness and ensure generalization property. (Joint work
with Ernesto de Vito and Christine de Mol)
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Abstract
Using a simple pattern finding approach, we investigate to
what degree patterns found in the tempo and loudness curves
measured from musical performances coincide with repeated
musical structures in the score that was performed. We show
that the high frequency content in such curves is more use-
ful for finding repetitions of musical structures than low fre-
quency content. In some cases removing low frequency con-
tent even improves the accuracy of pattern finding.

1 Introduction
It is commonly asserted that a primary function of musical
expression is to clarify the structure of the music that is be-
ing played [Clarke, 1991, Palmer, 1997]. And indeed, count-
less studies of expressive music performance find that struc-
tural aspects of the musical score are in some way or another
reflected in the expressive information that is extracted from
performances. One such aspect is phrase structure, which is
typically marked by a decrease of both tempo and loudness at
phrase boundaries [Todd, 1989].

The observation that phrase structure is reflected in ex-
pressive tempo and loudness information as measured from
performances, raises the question whether it would be pos-
sible to recognize the phrase structure by merely observing
expressive information (and not, for example, pitch, or rhyth-
mic information). This would form a complementary ap-
proach to studies that investigate regularities in expressive
data in a score-driven way (for example [Repp, 1990]). From
a practical point of view, performance-based phrase struc-
ture reconstruction could provide additional cues to systems
that try to infer the structure of music pieces from, e.g.,
scores or MIDI files. Furthermore, applications such as score-
following/automatic page turning could benefit from phrase-
structure recognition.

An apparently discouraging argument against the en-
deavor of reconstructing phrase structure from expressive in-
formation is that a musician is by no means obliged to play

repeated parts of the score in a similar way (a phenomenon
termed ‘consistency’ in [Madsen and Widmer, 2006]). It can
even be argued that playing repeated parts in different ways is
one of the aspects that make human performances intriguing.
In practice however, there is often considerable agreement be-
tween the performance of repeated parts [Repp, 1990].

In this paper we investigate to what degree the phrase
structure of a piece is reflected in the tempo and loudness
information measured from performances of the piece. We
do this by measuring how well patterns found in the tempo
and loudness curves coincide with the phrase structure, more
specifically melodic gestures, relatively small musical con-
structs (typically containing less than ten notes). Rather than
determining the precise beginnings and endings of phrases
and melodic gestures, our goal is to identify patterns that are
repeated throughout the performance. We measure accuracy
in terms of how many of the instances of the pattern span re-
peated melodic gestures (precision), and how many repeated
melodic gestures are identified as instances of the same pat-
tern (recall). Obviously, a phrase structure reconstruction is
not correct if the boundaries of the phrases/melodic gestures
are not correct, but we believe that if repeated parts of the
score are identified largely correctly, a useful step towards
phrase structure reconstruction has been made.

From the experiments reported here it becomes clear that
even the patterns found by a relatively simple pattern finding
approach coincide to a considerable extent with repetitions of
melodic gestures in the phrase structure. The results also indi-
cate that the high frequency content of the tempo and loudness
curves is more characteristic for melodic gestures than the low
frequency content.

2 Related Work
It is undisputed that phrase structure is one of the factors that
determine the expressive features of performance. Neverthe-
less, most of the work on automatic pattern finding and recog-
nition of structure in music pieces has focused on score in-
formation. The pattern finding problem is often conceptu-

1
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ally divided into a segmentation step, in which the bound-
aries of musical compounds are determined, and a clustering
step, in which the delimited segments are grouped by iden-
tity, similarity or any other musically meaningful relation.
Some approaches just deal with the segmentation problem
[Temperley, 2001, Cambouropoulos, 2001], others deal with
the clustering problem [Cambouropoulos and Widmer, 2000],
or with both [Rolland, 1999].

The strategy we present in this paper, as said before, deals
with performance information rather than score information.
Furthermore, no prior segmentation of the data is used. In-
stead, our algorithm considers all non-overlapping pairs of
equally long subsequences as possible instances of a single
pattern. In this sense, our approach is related to that of
[Madsen and Widmer, 2006], in which patterns found in ex-
pressive information are used to characterize the degree to
which performers play repeated parts similarly.

3 Method

In this section we report the setup of an experiment in which
we apply a pattern finding algorithm to expressive perfor-
mance information in order to find repeated musical struc-
tures. We compare the results under three conditions: 1) us-
ing the original tempo and loudness curves, 2) using only the
low-frequency content of the tempo and loudness curves, and
3) using only the high frequency content.

3.1 Data

The performance data used here stems from six performances
of Schumann’s piece “Träumerei” by renown pianists. The
piece is played by Argerich, Kempff, Brendel, and Horowitz
(of whom three different recordings of the piece are included).
For each performance, instantaneous tempo and loudness
information at half beat level is available (based on semi-
automatic beat-tracking, cf. [Widmer, 2005]). Thus, the ex-
pressive performance information extracted from an audio
recording is represented as a chronological sequence of pairs
of tempo and loudness values, where each pair corresponds to
a half beat position in the score. The total sequence consists
of 255 pairs.

3.2 Decomposition of tempo and loudness
curves

As stated in the introduction, typically both tempo and
loudness curves convey phrase structure by a slowly evolving

increase and decrease over the course of a musical phrase,
roughly approximating a parabolic form. That is, the phrase
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Figure 1: Decomposition of a tempo curve (from Schumann’s
Träumerei, performed by Horowitz, 1987) into slow and fast fluc-
tuations. Top: Original tempo (in BPM); Middle: Smoothed Tempo
(BPM); Bottom: Residual as a proportion of smoothed tempo (log
scale)

is started relatively slow and soft, and after growing faster
and louder towards the middle of the phrase, tempo and loud-
ness decrease towards the end of the phrase. Although this
might facilitate finding the beginnings and endings of phrases,
it possibly makes distinguishing phrases more difficult, since
the tempo and loudness curves of distinct phrases have their
overall parabolic form in common.

Assuming that identifying distinct phrases in a piece is
hindered by the parabolic component they have in common,
an obvious solution is to fit a set of second order polyno-
mials to the tempo and loudness curves on the interval of
each phrase and subtract these from the original curves (as
in [Tobudic and Widmer, 2003]). However, such an approach
might introduce a bias towards the structure present in the
score, a danger of the score-driven approach that we wish to
avoid. As a simple non score-driven alternative, we apply a
low-pass filter to the curves. The low-pass filtered curve con-
tains only the lower frequency content. When this curve is
subtracted from the original curve, the residual thus contains
just the high frequency content. Most of the parabolic com-
ponent will be contained in the low frequency curve. An ex-
ample of a tempo curve and its low and high frequency com-
ponents is shown in figure 1. A three point moving average
filter is used as a low-pass filter both in the example and in
the experiments. The peaks in the residual correspond to the
sides of the parabolic forms, the points at which the original
curve shows rapid changes.

3.3 Pattern Finding

We employ a simple pattern finding approach that is based on
the correlation coefficient (r) between pairs of subsequences
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of tempo and loudness values. Tempo and loudness curves are
treated in parallel, and we define the match score of a pair of
subsequences as the average of r values for tempo and loud-
ness (we will refer to this average as the r value of the match).
After a subsequence length l and a threshold α for the r val-
ues have been fixed, the pattern finding algorithm returns a
graph where the vertices are subsequences, and edges repre-
sent a match (r ≥ α) between two subsequences. We define
the patterns to be the connected components in the graph.

Although the instances of a single pattern do not over-
lap (overlapping subsequences are excluded from matching),
the instances of different patterns may overlap. When the in-
stances of two patterns overlap pairwise by a constant offset,
the two patterns can be seen as parts of a larger pattern that
covers both. In this case, the two patterns are fused, so that
each instance of the new pattern spans an overlapping pair of
instances of the old patterns. Especially for lower α values,
this reduces the number of patterns considerably. Note that
as a result of this fusing, patterns may have different lengths
(although the instances of a single pattern of course do have
the same length), and that the size l that was chosen acts a
minimum size, rather than a fixed size.

3.4 Evaluation

The patterns that are found are compared to the phrase analy-
sis of the piece in terms of melodic gestures (that was adopted
from [Repp, 1995]). We focus on the MG’s in the soprano
voice. For this voice, the piece has eight distinct MG’s, most
of which occur several times throughout the phrases. We eval-
uate repeated patterns found in the performance data by mea-
suring how well they coincide with repetitions of the MG’s.

We define the precision of a pattern as the degree of MG
agreement among the instances of the pattern at each posi-
tion. To this end, we define an MGid for each position, that is,
a pair of (MGlabel , offsetIntoMG). For example, the MGid
of a position that is the first element of an instance of MG2
would be (MG2 , 0). We define A to be the set of MGid’s
of all positions in the performance. The precision of a set of
patterns is simply the average of the precisions per pattern,
which is in turn the average of the precisions per position in
the pattern. The precision at a position, finally, is the frac-
tion of pattern instances with MGid a at that position, for the
a ∈ A that maximizes this fraction:

Prec =
1
N

N∑
n=1

1
Ln

Ln∑
i=1

max
a∈A

|{ k | sk,n
i = a }|
Kn

, 1≤k≤Kn

where N is the number of patterns, Ln is the length of the
n-th pattern, Kn the number of instances the n-th pattern, and
sk,n

i is the MGid corresponding to the i-th position of instance
k of pattern n.

Figure 2: Two fragments from Schumann’s Träumerei that were
matched using tempo and loudness information

Given a set of patterns, recall is defined as the average
recall over all positions. Informally speaking, the recall at a
position measures the largest fraction of related positions (in
terms of MGid’s) that is covered by a single pattern. More
precisely, let aj be the MGid of the j-th position, and let
Bj = { x | ax = aj} be the set of all instances of aj . Fur-
thermore, let pos(sk,n

i ) denote the (global) position of the i-th
element of the k-th instance of the n-th pattern. The recall is
then defined as:

Rec =
1
Q

Q∑
j=1

max
1≤n≤N,
1≤o≤Ln

|Bj ∩ { pos(sk,n
i ) | i = o }|

|Bj |
, 1≤k≤Kn

where Q is the length of the sequence of tempo/loudness
values. The interpretation of N , Kn, and Ln is as above.

Using the above definitions of precision and recall, we
evaluate the overall accuracy of a set of patterns with the F-
score F = 2·Prec ·Rec/(Prec + Rec).

4 Results and Discussion
As an illustrative example, figure 2 displays two score frag-
ments that were matched based on the tempo and loudness of
the performance. Although the fragments are not instances
of the same melodic gesture according to the phrase analy-
sis, there are several interesting similarities. For example, the
position in the metrical grid is the same, both fragments end
in a chord, and are not immediately continued in the soprano
voice, and the soprano voices in both cases are largely ascend-
ing. Also, both fragments contain a crescendo. This however
was not a necessary nor a sufficient condition for the match,
since other instances of the same pattern did not contain a
crescendo, nor did the pattern contain all crescendos.

For each of the six recordings, we applied the pattern find-
ing algorithm to the original tempo and loudness curves (OR),
the low-frequency components (LF), and the high-frequency
components (HF) respectively, using various segment sizes
and r-threshold values. Figure 3 shows the F-scores (aver-
aged over the six recordings) for each of the three curve types
as a function of the r-threshold, for four different segment
sizes.
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Figure 3: F-scores as a function of r-threshold, for segment sizes of
3 beats (upper left), 5 beats (upper right), 11 beats (lower left), and
15 beats (lower right)

Unsurprisingly, the F-scores for LF and OR peak at higher
r-thresholds than HF (regardless of segment size). This is in
accordance with our hypothesis that the low frequency com-
ponents make it harder to discriminate different MG’s, and
thus need a higher r-threshold. A more interesting result is
that pattern finding on LF gives systematically lower perfor-
mance than on the others, implying that the high frequency
components of the tempo and loudness curves contain essen-
tial information for telling MG’s apart. Moreover, pattern
finding on HF only gives results that are comparable to the
results for OR, and in some cases (segment size 10) even bet-
ter.

5 Conclusions and Future Work
In this paper, we have described a first step towards phrase
reconstruction from expressive performance data, by detect-
ing patterns in tempo and loudness curves. Although we have
not addressed the question of finding the exact boundaries of
musical phrases, we have found that repetitions of musical
structures can be identified with modest success.

Moreover, our experiments show that removing the low
frequency content from the tempo and dynamics curves
hardly decreases, and sometimes even increases the ability
to find expressive patterns that coincide with musical struc-
tures. It must be noted however that, even if six different
performances were used, the current experiment covers just
one musical piece. Further experiments are needed to inves-
tigate to what extent the results generalize to pieces that are
performed at very regular tempos.

Lastly, although the F-score that was used for evaluation
is a good indicator of the accuracy of the individual patterns
that are found, it does not fully describe the accuracy of a set
of patterns when interpreted as a hypothetical phrase struc-

ture. For example, it does not explicitly measure redundancy
between patterns, nor incorrect phrase boundaries. More elab-
orate evaluation will be required to address such issues.
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Abstract

The acquisition speed of magnetic resonance imaging (MRI) is an im-
portant issue. Increasing the acquisition speed shortens the total patient
examination time, it reduces motion artifacts and increases the frame
rate of dynamic MRI. Parallel MRI is a way to use multiple receiver coils
with distinct spatial sensitivities to increase the MRI acquisition speed.
The acquisition is speeded up by undersampling the k-space in the phase-
encoding direction. The resulting data loss and consequent aliasing is
compensated for by the use of additional information obtained from sev-
eral receiver coils.

In my talk, I summarize the state-of-the-art in parallel MRI area. We
also provide the theoretical background of MRI because full understanding
of the principles behind parallel MRI is needed to understand its further
extension. The main contribution of this talk is introduction of a novel
parallel MRI method. Our method takes advantage of the smoothness of
the reconstruction transformation in space. B-spline functions are used to
approximate the reconstruction transformation. This reduces the number
of the reconstruction parameters and makes the method more robust es-
pecially in areas with low signal-to-noise ratio. The B-spline coefficients
are estimated by minimizing the total expected reconstruction error. We
compare our new method theoretically and experimentally with two com-
mercially available methods - SENSE and GRAPPA. The experiments
were performed on simulated, phantom and in-vivo images. We show
that our method outperforms the SENSE and GRAPPA reconstruction
methods on a considerable number of input images and reaches the same
quality on the rest.


