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Abstract:

Similarity measures for translationally misaligned image patterns are studied. It turns out that

for measures based on standard concepts like cross-correlation, Lp-norm and mutual informa-

tion monotonicity with respect to the extent of misalignment can not be guarantueed. In this

paper we introduce a novel distance measure for images based on Hermann Weyl’s discrepancy

concept which relies on the evaluation of partial sums. In contrast to standard concepts in this

case monotonicity, positive-definiteness and a homogenously linear upper bound with respect

to the extent of misalignment can be proven. It is shown that this monotonicity property is not

influenced by the image’s frequencies or other characteristics which makes this new similarity

measure predestinated for similarity-based registration, tracking and segmentation.

1 Introduction

In this paper we focus on measuring the extent of misalignment between translationally trans-

formed gray-valued (textured) image patches. Such similarity measures are commonly used

in the context of video tracking of moving objects, registration purposes and also texture

analysis. In literature one can find a series of concepts of similarity measures for images.

Exemplarily, let us single out the following concepts: cross-correlation, Lp-norms, mutual

information, Bhattacharyya coefficient as most popular measures in this context, see, e.g.,

[4, 5, 6, 7, 8, 11, 13, 16]. We postulate that such a measure should satisfy at least some

compatibility criterions with respect to the translational transformations under consideration.

Therefore, let us consider a pattern P and its rigid spatial transform P ′ then — having in

the field of image registration and video tracking in mind — usually one expects from such

a distance measure between P and P ′ that it reflects the extent of misalignment performed

by the rigid transformation T that carries P over to P ′. Roughly spoken, this compatibility

criterion means that

[C1] a vanishing distance entails a vanishing extent of misalignment and vice versa (positive
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definiteness)

[C2] the distance measure behaves continuously at least with respect to arbitrary small mis-

alignments (continuity)

[C3] an increasing extent of misalignment implies an increasing distance measure and vice

versa (monotonicity)

As it will be discussed later on and demonstrated by means of examples the standard concepts

just mentioned do not meet the criterions [C1]-[C3] simultaneously.

To put the conditions [C1]-[C3] more formally, let us consider the family

T N = {Tt : RN → RN |Tt(x) = x− t, t ∈ Rd}

of translations on RN , N ∈ N, respectively.

In order to formalize the criterions [C1]-[C3], let us think of an image pattern P modeled

by a discrete function f : ZN → {0, 1, . . . ,m} with finite support, or, more generally by a

non-negative Lebesque-integrable function f ∈ RN , dµ, f ≥ 0 with respect to the measure µ.

For convenience let us denote FN the set of such functions.

Then, let us consider distance measures d : FN × FN 7−→ R+
0 and its induced misalignment

functions ∆d[f ] : RN → R+
0 ,

∆d[f ](t) = d(f, ft)

where

0 < σ(f) = sup{d(f, f ◦ T )|T ∈ T N} <∞.
Then, d induces the corresponding similarity measure sf

sf : {f} × {f ◦ T |T ∈ T } 7−→ [0, 1], sf (f, f ◦ T ) = 1− d(f, f ◦ T )

σ(f)
(1)

for the pattern f and its transform f ◦ T , T ∈ T N .

While the positive-definiteness property [C1] can be modelled by requiring

∆d[f ](t) = 0⇐⇒ t = 0, (2)

the continuity condition [C2] ends up with

∆d[f ](t)→ 0⇐⇒ t→ 0, (3)

and, finally, we have the monotonicity condition [C3]

0 ≤ λ1 ≤ λ2 ⇐⇒ ∆d[f ](λ1t) ≤ ∆d[f ](λ2t), (4)



Figure 1: illustration of pat-
tern of eq. (5)

Figure 2: cross-correlation
induced misalignment

Figure 3: mutual informa-
tion induced misalignment

Figure 4: Bhattacharyya in-
duced misalignment

Figure 5: Euclidean dis-
tance induced misalignment

Figure 6: misalignment
based on Weyl’s discrepancy

where t ∈ RN . For simplicity let us look at an illustrative example on R given by

f(x) =

{
1 if x ∈ [1, 2[∪[3, 4[

0 else,

as illustrated in Figure 1.

The cross-correlation of f and f ◦Tt, which in fact is an auto-correlation, χf (t) =
∫∞
−∞ f(x)(f ◦

Tt)(x)dx, induces the distance measure dcorr(f, f ◦ Tt) = 1 − χf (−t). As Figure 2 demon-

strates, if the pattern f is shifted from left to right by a shift of t the corresponding mis-

alignment function ∆corr[f ] does not increase monotonically. In particular, already for t = 1

the induced distance becomes maximal which is somewhat counterintuitive as for t = 1 the

patterns f and f ◦ T1 are still close together. This means that the distance measure dcorr
is not fully compatible with respect to translations as it does not reflect spatial separation

properly. As illustrated in Figure 3 this non-monotonicity applies also to the misalignment

function

∆mut[f ](t) = 1− Imut(f, f ◦ Tt)

based on mutual information

Imut(f, g) =
∑

i

∑

j

H[f, g](i, j) log
H[f, g](i, j)

H[f ](i)H[g](j)

where H[f, g] denotes the joint histogram of f and g and H[f ], H[g] denotes the histograms of

f , g, respectively. As well for Lp-norms as demonstrated in Figure 5 for the Euclidean distance

monotonicity can not be guaranteed. In contrast to the distance and similarity concepts just



mentioned the Bhattacharyya similarity coefficient between histograms,

B(f, g) =
∑

i

√
H[f ](i)H[g](i),

induces a misalignment function

∆Bhattacharyya[f ](t) = 1−B(f, f ◦ T1)

that is monotonic but does not satisfy the positive-definiteness condition [C1] as demonstrated

in Figure 4. Finally, Figure 6 shows the misalignment function based on the so-called discrep-

ancy norm which is defined in Section 2 for one-dimensional functions and vector data. Later

on in Section 4 the concept of discrepancy is carried over to Lebesque-integrable functions on

arbitrarily finite real domains. Corollary 5 is the central statement of this paper which claims

that this discrepancy norm satisfies all the conditions [C1]-[C3] simultaneously for arbitrary

dimensions.

2 Hermann Weyl’s Discrepancy Measure

In [14] Hermann Weyl studies pseudorandomness of sequences of numbers from the unit in-

terval. As a measure of discrepancy from uniformly distributed sequences he introduces the

so-called discrepancy measure. Recall that a sequence (xk)k ⊂ (0, 1) is uniformely distributed

if and only if for all a, b ∈ (0, 1), b < a, the fraction N(a,b)
N

converges uniformly to (b−a), where

N(a, b) denotes the number of the first N elements of the sequence (yk) which are contained

in the subinterval (a, b), that is N(a, b) = |{k ≤ N | yk ∈ (a, b)}|. From this it is quite natural

to define

DN = sup
0≤a<b≤1

∣∣∣∣
N(a, b)

N
− (b− a)

∣∣∣∣ (5)

as a notion of discrepancy that reflects to which degree a sequence deviates from being uni-

formly distributed. In terms of Weyl’s definition (5) uniformly distributed sequences can be

characterized by limN DN = 0. If we think of ν(a, b) =
∫ b
a

1dx and µ(a, b) = N(a,b)
N

as the mea-

sures (in the sense of measure theory) induced by the unifom and the empirical distribution

given by the sequence (yk)k, respectively, we come to the general concept of discrepancy for

arbitrary measures

D(µ, ν) = sup
A∈A
|µ(A)− ν(A)| , (6)

where A is a σ-algebra of measureable sets over the domain X and µ and ν are measures

defined on the measure space (X ,A).

2.1 Discrepancy for vector data and one-dimensional functions

In this section we focus on discrete data and on measures given by µ =
∑n

i=1 αiδxi
where

xi ∈ X . For example, xi represents integer points on the real line or pixel coordinates of an



image. For vectors, therefore, let us introduce

‖.‖D : Rn → R+, (α1, . . . , αn) 7→ max
1≤a≤b≤n

|
b∑

i=a

αi| (7)

which is called the discrepancy norm on Rn.

Applications of Weyl’s concept of discrepancy can be found in the field of numerical integra-

tion, especially in the context of Monte Carlo methods in high dimensions (e.g., [12, 15]),

in computational geometry (e.g., [1]) and in pattern recognition (e.g., [10]). There are also

applications to image processing in the context of pixel calssification [2, 3].

The mapping (7) yields the maximal absolute sum of values αi over index intervals. In

contrast to p-norms ‖.‖p = (
∑

i α
p
i )

(1/p) the mapping ‖.‖D strongly depends on the sign and

also the order of the entries. However, the mapping (7) turns out to fulfill the axioms of a

norm: the properties of positive-definiteness, that is ~α = 0 if and only if ‖~α‖D = 0 and of

positive-homogeneity, ‖λ · ~α‖D = λ · ‖~α‖D where ~α = (α1, . . . , αn), immedeately follow from

definition (7). The triangle inequality can also easily be proven by observing that |∑i αi+βi| ≤
|∑i αi|+ |

∑
i βi| implies

max
1≤a≤b≤n

|
b∑

i=a

αi + βi| ≤ max
1≤a≤b≤n

{|
b∑

i=a

αi|+ |
b∑

i=a

βi|} ≤ max
1≤a≤b≤n

{|
b∑

i=a

αi|}+ max
1≤a≤b≤n

{|
b∑

i=a

βi|}.

It is interesting and illustrative to compare ‖.‖D with conventional p-norms. As it is well

known from vector space theory all norms of a finite vector space are topologically equivalent,

therefore, for any p ∈ [1,∞) there are constants λ1, λ2 > 0 such that there holds λ1‖~α‖p ≤
‖~α‖D ≤ λ2‖~α‖p for all ~α ∈ Rn. This means that the unit balls of the corresponding norms

can be nested by scaling. By the way, it turns out that λ1 = n−1/p and λ2 = n1−1/p , which

can be proven by the fact

‖~α‖∞ = max
1≤i≤n

|αi| ≤ ‖~α‖D ≤
n∑

i=1

|αi| = ‖~α‖1,

the inequality
n∑

i=1

|αi|p ≤
n∑

i=1

‖~α‖p∞ = n‖~α‖p∞,

hence, ‖~α‖p ≤ n1/p‖~α‖∞, and by applying Hoelder’s inequality

‖~α‖1 =
n∑

i=1

|αi · 1| ≤ ‖~α‖p‖(1, . . . , 1)‖1−1/p = ‖~α‖pn1−1/p.

It is interesting to observe that the unit ball of ‖.‖D is less symmetric than the unit balls

of the p-norms. For n = 2 we can illustrate the unit balls graphically, see Figure 7 which



Figure 7: unit balls of ‖.‖1 and ‖.‖2, ‖.‖∞ and ‖.‖D

demonstrates that the ‖.‖D unit ball is biased and that this norm is not isotropic. Gernerally,

we have that ~α = (αi)i with αi ≥ 0 entails the relation ‖~α‖D = ‖~α‖1 and ~α = ((−1)i)i the

equality ‖~α‖D = ‖~α‖∞, respectively, indicating that the more there are alternating signs of

consecutive entries the lower the value of the discrepancy norm. To get a geometric under-

standing of the discrepancy norm let us consider a contour generated by a sequence of vectors

v = (~v1, . . . , ~vn) as shown in Figure 8. Observe that the diameter

Θ(v) = max
1≤a≤b≤n

‖
b∑

i=a

~vi‖2

can be understood as a generalized discrepancy extended to vector entries. The diameter with

respect to a certain direction ~w is given by

Θ(v, ~w) = max
1≤a≤b≤n

|
b∑

i=a

< ~vi, ~w > |

where < ., . > denotes the usual inner product. Note that we have

∆(v, ~w) = ‖(< ~vi, ~w >)i‖D. (8)

Consequently, let us extend the vector ~α = (α1, . . . , αn) to a sequence α = ((1, α1), . . . , (1, αn))

of vectors by setting ~vi = (1, αi), then we regain the discrepancy by choosing the direction

~w = (0, 1), which means that the contour α is projected onto the y-axis, hence

‖(α1, . . . , αn)‖D = max
1≤a≤b≤n

∣∣∣∣∣
b∑

i=a

〈
(1, αi)

T , (0, 1)T
〉
∣∣∣∣∣

As illustrated in Figure 8 this means that the discrepancy of a vector (α1, . . . , αn) can be

understood as diameter of the contour generated by (1, αi) in the direction of the y-axis. The

contour can also be looked at as the graph of a piecewisely linear function f with slopes

αi, respectively, where f |x=i =
∑j

i=1 αi. As this diameter equals the difference between the

maximal and the minimal value of f we obtain the relationship

Proposition 1 Denote ~α = (α1, . . . , αn) then

‖~α‖D = max
1≤i≤n

i∑

j=1

αj − min
1≤i≤n

i∑

j=1

αj. (9)



Figure 8: Interpretation of the discrepancy norm ‖(α1, . . . , αn)‖D as diameter

Proposition 1 is crucial for performance reasons. Note that equation (9) allows to compute

the discrepancy of a vector of length n with O(n) operations instead of O(n2) number of

operations resulting from the original definition.

3 Properties of the misalignment function based on the discrep-

ancy norm, the one-dimensional case

In this section we turn to the more general setting of Lebesque integrable function space

L1(R, µ) on the real line R equipped with a Lebesque measure µ. Then, in analogy of Definition

7 let us set

‖f‖D = sup
X=[a,b]⊂R

|
∫

X

fdµ| (10)

Recall that

ω(δ; g) := sup
|h|<δ

sup
x
|g(x+ h)− g(x)| (11)

is called the modulus of continuity of the continuous function g. Theorem 2 demonstrates

that H. Weyl’s discrepancy meets the conditions [C1]-[C3] of Section 1. The proof can be

found in [9].

Theorem 2 Let f ∈ L1(R, µ), let F (x) =
∫

[−∞,x] fdµ, δµ(t) = sup{µ([a, b])| |b − a| ≤ t}, let

ft(x) = f(x− t) and let ∆D[f ](t) = ‖f − ft‖D denote the misalignment function, then:

1. If f is non-trivial, i.e.,
∫
|f |dµ > 0, then

∆D[f ](t) = 0⇐⇒ t = 0.

2. The misalignment function satisfies the Lipschitz continuity condition at t = 0, i.e.,

∆D[f ](t) ≤ 2ω(t;F ) ≤ 2 δµ(t) ‖f‖∞ (12)



3. The misalignment function is monotone in the sense that for any t ∈ R

0 ≤ λ1 ≤ λ2 =⇒ ∆D[f ](λ1t) ≤ ∆D[f ](λ2t) (13)

4 Extension to multivariate functions

A natural way to extend the concept of discrepancy norm of vector data to image data or,

more generally, to Lebesque integrable multivariate functions f ∈ L(RN , dµ), N ∈ N, is by

replacing intervals in (10) by connected sets, i.e.,

‖f‖(N)
C = sup

ω∈C
|
∫

C

fdµ| (14)

where C refers to a system of connected subsets of RN . In this paper we concentrate on

systems C which are made up by Cartesian products of intervals. Particularly, we study

‖f‖(N)

BN = sup
B∈BN

|
∫

B

fdµ| (15)

where BN denotes the set of N -dimensional open boxes I1× I2× · · · × IN with open intervals

Ii from the real line, and the variant

‖f‖(N)

B̃N
= sup

B∈B̃N

|
∫

B

fdµ| (16)

where B̃N ⊂ BN is composed by Cartesian products of intervals of the form ]−∞, x[, ]x,∞[.

However, formula (14) is not the only possibility for an extension. Particularly, (9) gives

reason to construct a measure based on integral images and analogous concepts for higher

dimensions, respectively. Therefore, let us define the set of integrals

I
(i1,...,iN )
f =

{∫

Ts(Q(i1,...,iN ))

fdµ

∣∣∣∣∣ s ∈ RN

}
(17)

where

Q(i1,...,iN ) = {(λ1i1, . . . , λN iN)T |λ1 ≥ 0, . . . , λ1 ≥ 0},
Ts(A) = {x− s|x ∈ A} and ij ∈ {−1, 1}. For example, the sets Q(i,j), i, j ∈ {−1, 1} describe

the four quadrants of the two-dimensional plane. Observe that (17) coincides with the well-

known construction Ii0,j0 =
∑

i≤i0,j≤j0 f(i, j) of an integral image in case of N = 2, i1 = i2 = 1

and the discrete finite measure dµ.

For symmetry reasons we propose the following alternative definition of discrepancy for mul-

tivariate functions f ∈ L(RN , dµ), N ∈ N

‖f‖(N)
I = max

(i1,...,iN )∈{−1,1}N

{
sup I

(i1,...,iN )
f − inf I

(i1,...,iN )
f

}
. (18)



Next proposition states that (15), (16) and (18) extend the 1-dimensional case 10 in the sense

that they coincide for the one-dimensional case with (10) and that they are norms. Its proof

can be found in [9].

Proposition 3 Let N ∈ N, then

1. ‖.‖(N)

BN , ‖.‖(N)

B̃N
and ‖.‖(N)

I are norms on L(RN , dµ).

2. ‖f‖D = ‖f‖(1)

B1 = ‖f‖(1)

B̃1
= ‖f‖(1)

I for all f ∈ L(R1, dµ).

However, the 2-dimensional example f0 : Z2 → R, given by

(f0(i, j))i,j =




−1 −1 −1 −1

−1 3 3 −1

−1 3 3 −1

−1 −1 −1 −1




yields ‖f0‖(2)

B̃2
= 7, ‖f0‖(2)

I = 11 and ‖f0‖(2)

B2 = 12 showing that in general the constructions

(15), (16) and (18) do not coincide.

Surprisingly, however, next lemma shows that on the reduced function space {f − f ◦ T | f ∈
L(RN , µ), f ≥ 0} the discrepancy concepts ‖.‖(N)

B̃N
and ‖.‖(N)

BN coincide, and that the misalign-

ment function based on (15) can be expressed in terms of integral images and its higher

dimensional variants, respectively.

Lemma 4 For all N ∈ N and non-negative f ∈ L(RN , dµ), f ≥ 0, T ∈ T N , there holds

‖f − f ◦ T‖(N)

BN = ‖f − f ◦ T‖(N)

B̃N
(19)

= max
(i1,...,iN )∈{−1,1}N

{
sup I

(i1,...,iN )
f−f◦T

}
(20)

(21)

Finally, corollary 5 provides the generalization of theorem 2 for ‖.‖(N)

BN and ‖.‖(N)

B̃N
.

Corollary 5 Let N ∈ N, let f ∈ L(RN , µ), f ≥ 0, and let denote ∆C[f ](t) = ‖f − f ◦ Tt‖C
the misalignment function, t ∈ RN , furher, let

δµ[f ](t) = sup
B̃∈BN

max

{∫

B̃\Tt(B̃)

fdµ,

∫

Tt(B̃)\B̃
fdµ

}

then for C = BN = B̃N we have

1. If f is non-trivial, i.e.,
∫
|f |dµ > 0, then

∆C̃ [f ](t) = 0⇐⇒ t = 0



Figure 9: Example for 2D
misaligment; the box is
shifted

Figure 10: Misalignment
w.r.t. shift in x (top)
and y (below); gray: Bhat-
tacharyya, solid: discrep-
ancy, dashed: correlation

2. The misalignment function satisfies the inequality

∆C̃ [f ](t) ≤ δµ[f ](t). (22)

3. The misalignment function is monotone in the sense that

λ1 ≤ λ2 =⇒ ∆C̃ [f ](λ1t) ≤ ∆C̃ [f ](λ2t) (23)

for arbitrary t ∈ RN .

Figure 9 shows an example of a soccer player. The image patch marked by the black box

is shifted around the player in order to generate the 2-dimensional misalignment function

which is illustriated in the Figures 11, 12 and 13 for Bhattacharyya, cross-correlation and

dsicrepancy, respectively. In order to make the various similarity measures visually better

comparable, the x and y cuts of the surfaces of Figures 11, 12 and 13 are depicted in Figure 4.

As expected from theory the misalignment function induced by the discrepancy ‖.‖B̃N shows

monotonicity and positive-definiteness.

5 Conclusion

In this paper we have discussed similarity of images from an axiomatic point of view concen-

trating on positive-definiteness and monotonicity properties of the corresponding misalignment



Figure 11: Bhattacharyya
induced misalignment

Figure 12: cross-correlation
induced misalignment

Figure 13: discrepancy in-
duced misalignment

functions. It could be demonstrated that a similarity concept based on Hermann Weyl’s dis-

crepancy meets these criterions in contrast to the standard concepts like mutual information

and cross-correlation. Both properties make this similarity measure predestinated for tracking

and registration applications which remains to be investigated in depth in future work.
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Abstract

In this paper clustering methods are used to perform object extraction from binary images as they
occur in industrial surface inspection processes. Graph-based and spectral clustering algorithms,
which are both capable of detecting arbitrary and non-connected shapes of "white" pixels, are
presented.
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1 Introduction

One of the major steps in image processing is image segmentation, which means to extract re-
gions from the image that correspond to the objects we are interested in. In surface inspection
these interesting objects are all deviations from the "perfect" part, because they may represent an
unacceptable imperfection or even a severe defect. So in many cases the segmentation takes a
test image from a part to be inspected and a master image of a "perfect" workpiece as inputs. It’s
obvious that these two images have to be congruent (at least as good as possible) and have to be
aquired under similar illumination conditions in order to make them comparable. The first step
now is to calculate the absolute difference between master and test image. The resulting values
make up a difference image, where all non-zero pixels represent a deviation from the ideal master.
As next step a thresholding, which is the simplest segmentation algorithm, is applied on the differ-
ence image. The threshold operation sets all pixels, which have a grayvalue above a certain level
to one and the remaining pixels to zero. So thresholding produces a binary image with a black
(0) background and a white (1) foreground, which contains the objects of interest. Generally the
binary image contains multiple (interesting) objects that should be returned individually. In other
words the white pixels have to be somehow grouped together in order to extract distinct regions.

Clustering methods have been used in a variety of disciplines leading from statistics and numeri-
cal analysis to data mining and machine learning. Generally speaking clustering can find "natural"
groupings (clusters) in data. Each of these clusters consist of datapoints that are similar between
themselves and dissimilar to those of other groups with respect to a previously choosen similar-
ity/dissimilarity measure.

These characteristics make clustering a candidate for solving the object extraction task described
before. The basic idea is to consider the white pixels in the binary difference image as datapoints,
which serve as input for the clustering algorithm. In this case the original task, namely the extrac-
tion of objects, becomes equivalent to the problem of finding clusters in the set of datapoints. The
question, which pixels belong together or to the same object respectively, is now addressed by the
clustering algorithm and on how it partitions the datapoints.

In the next sections two different clustering approaches, which could be used for the object extrac-
tion task, are described in detail.

2 Graph-Based Clustering - Reduced Delaunay Graph

Generally graph-based clustering starts by constructing a (neighborhood) graph, which vertices
correspond to data points and weighted edges represent (dis-)similarities between them. Then an
algorithm is applied to partition the graph by deleting edges according to some criterion. The result
is a set of connected components, where each connected component represents a single cluster. In
this sense clustering can be seen as a problem of cutting graphs into "good" pieces.

A short review on the most important terminology of graph theory needed in this section is given
in the following (see also [1]):
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Figure 1: Graph example.

A graph is a set of vertices V = {v1, ..., vn} and edges E which connect various pairs of
vertices. A graph can be written G = {V,E}. Each edge can be represented by a pair of
vertices (vi, vj), that is E ⊂ V × V .

A directed graph is one in which edges (vi, vj) and (vj , vi) are distinct.

An undirected graph is one in which no distinction is drawn between edges (vi, vj) and
(vj , vi).

A weighted graph is one in which a weight wij is associated with each edge.

If the edges are not weighted, the graph is called unweighted graph.

Two vertices are said to be connected if there is a sequence of edges starting at the one and
ending at the other;

A connected graph is one where every pair of vertices is connected.

A graph that is not connected is called disconnected graph.

Every graph consists of a disjoint set of connected components, that is
G = {V1 ∪ V2...Vm, E1 ∪ E2...Em}, where {Vi, Ei} are all connected graphs and there is
no edge in E that connects an element of Vi with one of Vj for i 6= j.

A graph is described by its adjacency matrix (also called weight matrix)

W =




w11 . . . w1n
... wij

...
wn1 · · · wnn


 .

Its elements wij are zero if the vertices vi and vj are not connected. If they are connected,
wij exhibits the weight of the edge.

The degree of a vertex is the sum of all adjacent edge weights: di =
n∑

j=1
wij .

The degree matrix D is a diagonal matrix with the degrees of the vertices as diagonal ele-
ments:

D =




d1 . . . 0
... di

...
0 · · · dn


 .
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The graph-based data representation is ideally suited for encoding pairwise information of ob-
jects such as similarities, distances and relations. In this way the graph captures the local neighbor-
hood relationships of the data points. Moreover, in most cases this leads to a sparse representation
of the data, which has computational advantages.

In the object extraction task every white pixel xi of the binary image is viewed as a vertex vi

of a weighted graph. To calculate the (spatial) similarity between two white pixels xi und xj the
Gaussian similarity function

s(xi, xj) = e−
d(xi,xj)2

2σ2

is commonly used. As distance function d(xi, xj) the Euclidian or some other distance measure
can be applied. The extraction of objects in this case is accomplished by partitioning the graph
according to the particular clustering algorithm and finding the resulting connected components.

Given a data set consisting of points x1, ...., xn with pairwise simlilarities sij = s(xi, xj) or
distances dij = d(xi, xj), a graph can be constructed in various ways. Some of the most popular
constructions are listed in the following:

ε-Neighborhood Graph. Here all vertices whose pairwise distances are smaller than ε are
connected. As edge weights the distance values can be used, but as the distances between
all connected points are roughly the same (at most ε), the ε-neighborhood graph is usually
considered as an unweighted graph.

k-Nearest Neighbor Graph (k-NNG). In this case vertex vi is connected to vertex vj if vj

is among the k nearest neighbors of vi or vice-versa. If k=1 then this type of graph is called
simply Nearest Neighbor Graph (NNG). The second possibility is to connect vertex vi with
vj , if both vi is among the k-nearest neighbors of vj and vj is among the k-nearest neighbors
of vi. The resulting graph is called the Mutual k-Nearest Neighbor Graph. The edges are
weighted by either the pairwise similarity or distance values. The edges of the so-called
Shared Nearest Neighbour Graph exhibit the number of nearest neighbors two vertices have
in common.

Minimum Spanning Tree (MST). A spanning tree of a graph is a connected graph which
connects all points of the original graph by only one path. A single graph can have many
different spanning trees. Hence, the minimum spanning tree is a spanning tree with weight
less than or equal to the weight of every other spanning tree.

Relative Neighborhood Graph (RNG). Here the two points vi and vj are connected if and
only if there is no other vertex from the original data set laying in a lune between vi and vj ,
which is defined as the disjoint intersection between two hyperspheres centered at vi and vj

and whose radii are equal to the distance between them (see figure 2).

Gabriel Graph (GG). Here two vertices vi and vj are connected by an edge, if they form
the endpoints of the diameter of an empty sphere. In the two-dimensional case vi and vj

are connected, if the disk, having the line segment vivj as its diameter, contains no other
vertices from the original data set (see figure 3).
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(a) (b)

Figure 2: a) Points p and q are connected, b) Points p and q are not connected, because of r inside
the lune

(a) (b)

Figure 3: a) Points a and b are connected, b) Points a and b are not connected, because of c inside
the disk

Delaunay Triangulation (DT). The DT (also called Delaunay Diagramm) is the dual of
the Voronoi Diagramm. Both are discussed below in detail in the context of the Reduced
Delaunay Graph.

Fully Connected Graph. Here all points with positive similarity are connected with each
other and the edges are weighted by the corresponding similarity values. This construction
is usually only chosen if the similarity function itself already encodes mainly local neigh-
borhoods.

In figure 4 different graphs (namely the NNG, MST, RNG, GG and DT) are visualized for a
sample set of data points. It can be seen i.e. that the NNG already consists of a set of connected
components (without any partitioning operation applied), so it can be directly used as clustering
result. Obviously the number of edges increase from left to right, which lines up with the mathe-
matical relationship between the shown graphs (see also [2]):

NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT

One representative of a graph-based clustering algorithm discussed in more detail here is the
Reduced Delaunay Graph (RDG). According to [3] it is able to find clusters of complex shape and
groups data points simlilarly to human observers. The algorithm starts by constructing a Delaunay
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Figure 4: Different neighborhood graphs (taken from [2]).

graph DG from a set of data points S. Given the set S = p1, ..., pN of N points in the plane, it is
possible to partition the plane into cells C1, ..., CN in such a way that the points which belong to
cell Cj , associated with point pj ∈ S, are closer to pj than to any other point pk ∈ S, k 6= j:

q ∈ Cj ⇔ d(q, pj) ≤ d(q, pk), ∀q, ∀pj , pk ∈ S

Figure 5: Voronoi diagramm and Delaunay graph of a set of data points.

The resulting partition is called Voronoi diagramm. By connecting all pairs of points of S,
whose Voronoi diagramm cells share a boundary, the Delaunay graph is obtained. In order to
determine the weight for each edge the distance between the corresponding vertices p and q is
computed and normalized with the distance of p and q to their respective nearest neighbours ac-
cording to the following formulas:

r1(e) = ξ(p, q) =
d(p, q)

min
x∈S

{d(p, x)} r2(e) = ξ(q, p) =
d(q, p)

min
x∈S

{d(q, x)}

So for each edge the two ratios r1(e) and r2(e) are obtained , which generally are not equal. These
two are combined into a single number by calculating their geometric average:

r(e) =
√

r1(e) · r2(e)
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Clustering is now performed by removing all edges from the DG for which the weight r(e) is
larger than a fixed threshold. The remaining graph is called the Reduced Delaunay Graph (RDG).
By applying a graph-traversing algorithm, i.e a recursive depth-search, the connected components
of the graph can be found. Finally each connected component corresponds to a cluster.

One important question is how to choose the threshold value for removing the edges from the
DG. When sorting all edge weights of the graph in a decending order and making a plot with the
x-axis representing the numbers from one to the number of edges and the y-axis showing the sorted
weight values, an L-shaped curve evolves. A good threshold value can be obtained by taking the
edge weight at the "knee" of the curve. It can be determined automatically by normalizing the two
axis and finding the point with the closest (euclidian) distance to the origin.

When applying the RDG algorithm to three artificial test images the following results are obtained:

Figures 6, 7 and 8 show the DG in the upper left, the RDG in the upper right, the clustering
result in the lower left and the L-shaped curve with the sorted edge weights (in the plots called
normalized distances) in the lower right corner.

Figure 6: RDG results of the first artificial dataset.

In the first case of compact clusters the algorithm finds seven objects. As it can be seen in
the upper right of figure 6 two compact clusters are still connected by an edge after thresholding
and are therefore grouped together. Whether this is desirable or not depends on the application.
Anyway, the two clusters are quite close, so grouping them into a single cluster is not completely
wrong. In the lower right of the figure the determination of the threshold value is visualized. The
small red circle represents the knee-point of the curve closest to the origin, which complies to the
automatically found threshold value (in this case the threshold is around 4.24).

Figure 7 shows the results for the second test image with various shapes. Here the seven dis-
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tinct objects are perfectly extracted.

Figure 7: RDG results of the second artificial dataset.

Also in the last case of three objects made up by non-connected pixels the RDG algorithm
works very well as it is shown in figure 8.

Figure 8: RDG results of the third artificial dataset.

Finally two other promising graph-based approaches suitable for object extraction should be
mentioned here: the Chameleon algorithm [4] and the Shared Nearest Neighbor Clustering (SNN)
[5]. The first one is a two-phase algorithm, which starts with partitioning a sparse graph repre-
sentation of the data points (in this case a k-nearest neighbor graph) into several relatively small
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subclusters. In the second phase these subclusters are repeatedly merged according to two sim-
ilarity measures, namely the relative interconnectivity (RI) and the relative closeness (RC). The
latter approach represents a combination of graph- and density-based clustering. After construct-
ing a shared nearest neighbor graph, an algorithm similar to DBSCAN is applied to group the data
points. It is able to find clusters of varying shapes, sizes and densities.

3 Spectral Clustering - Normalized Cut

In recent years, spectral clustering has become one of the most popular modern clustering algo-
rithms. It can be seen as a special kind of graph-based clustering as it also operates on a graph
representation of the data set. There exist different point of views about spectral clustering, but
basically all of them lead to the same equations and algorithms. In the following an approach
derived from graph partitioning is pursued (as described by [6]). A throughout tutorial on spectral
clustering can be found in [7].

Spectral clustering starts with a weighted, undirected graph G = {V,E}, where the weight of
each edge w(vi, vj) is a function of similarity between the vertices vi and vj . The grouping task
now consists of partitioning the set of vertices into disjoint sets V1, ..., Vm, where the similarity of
the vertices within one of these sets is high and accross different sets is low.

The straightforward way to partition the graph into two pieces is to find the two disjoint sets
A,B with A ∪B = V and A ∩B = {}, which minimize the cut value:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

Computing the optimal bipartitioning (aka. the minimum cut) is a well-studied problem and there
exist efficient algorithms for solving it. But the minimum cut criterium has one drawback as it
favours cutting small sets of isolated vertices in the graph. Figure 9 illustrates that the cut which
partitions out the vertices n1 or n2 has a smaller cut value than the vertical cut dividing the regions
with different densities.

Figure 9: Here the minimum cut criterion leads to a bad partition.
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In order to remove this bias a normalized measure called normalized cut (Ncut) is defined as:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

with
assoc(A, V ) =

∑

u∈A,t∈V

w(u, t) , assoc(B, V ) =
∑

u∈B,t∈V

w(u, t)

The normalized cut represents a dissassociation measure, which reflects the dissimilarity between
the two sets A and B. Compared to the minimum cut this definition of the dissassociation between
the two groups has the advantage, that isolated vertices don’t get small cut values.

A measure for total normalized association within groups for a given partition is defined by:

Nassoc(A,B) =
assoc(A,A)
assoc(A, V )

+
assoc(B,B)
assoc(B, V )

where assoc(A,A) and assoc(B,B) are the total weights of edges connecting vertices within A
and B, repectively. It reflects how tightly on average the vertices within the groups are connected
to each other. These two measures for association and disassociation are related by the following
formula:

Ncut(A,B) = 2−Nassoc(A,B)

This means that minimizing the disassociation between the groups and maximizing the associa-
tion within the groups can be satisfied simultaneously. Hence, the clustering algorithm just has
to minimize the normalized cut in order to find the "best" two-way partitioning of a graph. The
criterion for doing so can be formulated mathematically in the following way:

Let x be an N = |V | dimensional indicator vector, where xi = 1 if vertex vi is in A and −1
otherwise. Finding the minimum of Ncut(A,B) can be rewritten as

min
x

Ncut(x) = min
y

yT (D −W )y
yT Dy

with the conditions y(i) ∈ {1,−b} and yT D1 = 0. D and W are representing the degree matrix
and the adjacency matrix of the graph. The term (D − W ) is called the (unnormalized) Lapla-
cian matrix. The values of y are used to distinguish between the vertices belonging to A and B
after the bipartitioning. If y(i) is 1 then the vertex vi belongs to A and if y(i) is−b it belongs to B.

Finding the discrete valued vector y that minimizes the criterion is a very difficult non-deterministic
polynomial time problem, but a solution can be found efficiently, when the problem is embedded
in the real value domain. When y is allowed to take real values (also called relaxation) it can be
shown that the minimization of the Ncut criterion leads to the following generalized eigenvalue
problem:

(D −W )y = λDy.

It can be proven that the smallest eigenvalue is guaranteed to be zero and the second smallest
eigenvector of the generalized eigensystem represents the real valued solution of the normalized
cut problem. Consequently the third smallest eigenvector optimally subpartitions the first two
pieces and so on. Finally the normalized cut clustering algorithm consists of the following steps
[6]:
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1. Set up a weighted graph G = {V,E} and set the weight of an edge connecting two vertices
to be a measure of similarity between the two vertices.

2. Solve (D −W )y = λDy for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph.

4. Decide if the current partition should be subdivided and recursively repartition the seg-
mented parts if necessary.

When using the spectral clustering algorithm in practice for object extraction in binary images,
some additional things have to be considered. First of all the graph edge weight has to be choosen
according to a similarity measure. As mentioned in the previous chapter the Gaussian similarity
function is commonly used for this task. In figure 10 a set of white pixels and the corresponding
adjacency matrix based on Gaussian similarities are shown. Large entries of the matrix are dis-
played bright, small entries dark. The two bright diagonal blocks represent the high similarities of
vertices inside the two clusters and the two nearly black off-diagonal blocks correspond to the low
similarities between vertices of different clusters.

Figure 10: A set of white pixels (left) and the corresponding adjacency matrix (right).

The value of σ in the similarity function has to be set according to the total range of the
occuring distances. In case of object extraction it is fixed at some percentage (typically between
5 and 10 percent) of the image size. Figure 11 visualizes the shape of the Gaussian similarity
function with σ = 5 for distances up to 128, which corresponds to the width and heigth of the
artificial test images used in this chapter.

In the example shown here, vertices, which have a distance greater than 15, are considered to
be nearly completely dissimilar, whereas vertices less than 5 pixels apart, exhibit a similarity value
higher than 0.5.

Solving the generalized eigenvalue problem can be very time consuming. Due to the fact that
the Laplacian matrix (D −W ) is sparse in most cases, only the top few eigenvectors are needed
for graph partitioning and the precision required for the eigenvectors is low (often only the sign is
required) specially optimized eigensolvers can be applied (like i.e the Lanczos method) in order
to speed up the computation time.
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Figure 11: The Gaussian similarity function (σ = 5) with distances ranging from 0 to 128 (left)
and from 0 to 15 (right).

To partite the graph into two pieces, the real valued eigenvector solution has to be thresholded.
Basically there exist three methods for finding an appropriate threshold value: one can take 0 or
the median value or can search for the threshold, which minimizes the Ncut.

Finally after the graph is bi-partitioned, the algorithm recursively splits the two parts again. In
order to stop the recursion at some point, a second threshold value has to be introduced. If the
Ncut becomes higher than this threshold, no more further partitioning is performed (and of course
also not when there is only a single point left).

The results obtained when clustering the three test images with the normalized cut algorithm
are shown in figure 12. In all cases the objects are extracted correctly. Here the σ value in the
Gaussian similarity function was set to 2, the threshold for making the eigenvector discrete, was
determined by finding the value, which minimizes the Ncut.

(a) (b) (c)

Figure 12: Normalized cut results of the a) first, b) second, (c) third artificial dataset.

As stopping criterion for the recursion a threshold for the Ncut was fixed at 0.01. In figure 13
the recursive nature of the computation is shown. The green areas show the pixels examined at
the current stage, the blue and red areas stand for the partitions derived from the algorithm. In the
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case of the third test image the partitioning has been carried out in five steps:

1. All points are considered (all pixels are green in the left part of figure 13a) and a cut is made
between the upper left arc and the rest. The Ncut value is approximately zero.

2. Only the upper left arc is considered and no further partitioning is performed, because it
would lead to a minimum Ncut value of 0.02, which is higher than the threshold value set
by the user (figure 13b).

3. The disc in the center and the lower right arc are processed and partitioned in two parts
(figure 13c). The Ncut value is again nearly zero.

4. No more cutting of the center disc is performed, due to a minimum Ncut value of 0.035
(figure 13d).

5. Also the lower right arc is not further divided because of an NCut value approximately 0.028
(figure 13e).

(a) (b)

(c) (d)

(e)

Figure 13: Visualized recursion steps a) to e) performed by normalized cut algorithm on the third
artificial dataset.

Another way to apply spectral clustering is using all k smallest eigenvectors without any recur-
sion in order to cut the graph into multiple (in this case k) pieces in one step. Here the following
procedure has to be carried out [7]:
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1. Set up a weighted graph G = {V,E} and set the weight of an edge connecting two vertices
to be a measure of similarity between the two vertices.

2. Solve (D −W )y = λDy for eigenvectors with the k smallest eigenvalues.

3. Build up a matrix U containing the k smallest eigenvectors.

4. Treat every row of U as a point zi in a k-dimensional space.

5. Perform the k-means algorithm on the points zi in order to find the clusters.

This algorithm changes the representation of the original data points into k-dimensional points
zi to enhance the cluster properties in the data. In this new representation the clusters are quite
obvious and can easily been detected by a simple k-means algorithm.

Two problems arise, when using this approach for object extraction: the number of clusters (here
k) has to be known in advance and, due to errors caused by the binarization of the real-valued
eigenvectors, the method as described here is less robust than the recursive bi-partitioning. A more
sophisticated algorithm for performing the multi-cut, starting with an oversegmentation followed
by subsequent pruning, is described in [6].

4 Conclusion and Outlook

The two clustering approaches presented in this paper seem to be very useful for the extraction of
objects from binary images as they are able to detect arbitrary and non-connected shapes. However
they are computationally expensive and are therefore maybe not feasible for time-critical inspec-
tion applications. In the near future, further tests will be carried out in order to evaluate their
performance on real images.
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1 Introduction

If machine learning methods are applied to data-sets of images or textures or
even pieces of music, then the machine learning methods can not be applied
directly. Instead, usually features are calculated for the visual data. If the
used features are inappropriate, then the used machine learning method has
no chance. As an alternative to features, image metrics can be used. Many
classification methods, for example the k-nearest-neighbor-classification
method do not need anything more than a metric. And sometimes it is
much easier to calculate, if two images are similar or not similar, than to
find reasonable features. This is especially true, if the images that we are
dealing with, are textures, because in textures, no cars or animals have to
be detected. Detecting cars or animals on images is a very challenging task,
whereas calculating how similar two textures are, is much easier.

There two different approaches, how image metrics can be calculated:

1. The first possibility is to use algorithms that compare two images directly.
For example, by comparing the histograms of the two images.

2. The second possibility is to calculate features for the images, and then
to calculate metrics based on these features. Here we concentrate on the
second possibility, because we want to have methods that are similar to
what the brain does. Therefore we use a method, simulating the visual
cortex, for calculating the features (see [4]).

We want to find out, which of the standard metrics lead to good texture
classification rates. How can the qualities of different metrics be compared?

As we are dealing with textures, the answer is quite easy: When a texture
is cut into four or nine pieces, then the resulting textures are very similar. So
if the metric of two such textures is calculated, then the metric should have a
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small value. On the other hand, if we have two pictures that are very different,
then the metric should be quite high. The more these two circumstances are
fulfilled, the better is the quality of the metric.

The well known ’Brodatz’ Dataset consists of 92 texture images. These
images are cut into nine parts, and the classification task is to find out for
each part, to which group it belongs.
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ABSTRACT

Ill-conditioned or ill-posed problems occur in a big variety of applications ranging from image decon-
volution to mathematical finance [EHN96]. In order to solve these one has to introduce a stabilization
and a regularization parameter which controls this stabilization.

A short article by Bakushinskii in 1984 [Bak84] showed that in inverse problems with deterministic
noise it is impossible to choose an optimal regularization parameter without knowing the noise level.
The construction of particular examples is comparably easy. However, it could still be the case that
these counterexamples are so rare that they do not affect the day to day business [Bau07].

Therefore the situation changes when one uses e.g. stochastic instead of deterministic noise, or imposes
some non-degeneracy conditions on the noise. Similarly, depending on the regularization method mi-
nor conditions (in a Bayes case [KS05] similar to standard Hölder source conditions) on the solution
need to be imposed. The smoothness of the solution and the error level stays unknown. For Tikhonov
regularization one can use classical source conditions in certain cases.

Then one can show that a discretized version of quasi-optimality (which just needs regularized solutions
as input) performs in an optimal way [BR07, BK07]. Numerical examples will be shown.
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Abstract. Let us recall that a triangular norm (also t-norm for short) is any
monotone commutative and associative binary operation on the unit interval
[0, 1] with neutral element 1. Being defined on a subset of the reals, it can be
viewed also as a real function of two variables or equivalently as a surface in R3.
Up to associativity, all the defining properties of the t-norms have transparent
geometric counterparts which are easily visible on the corresponding surfaces.
The associativity does not.

In our approach we adopt a level set view of triangular norms and we utilize
tools and ideas from web geometry. Note that web geometry is mostly considered
as a subbranch of differential geometry and deals with systems (mostly tripples)
of foliations on a differential manifold. We adapt a simple web-geometric concept
of the Reidmeister closure condition in such a way that it makes sense for
more general structures than just foliations. Then we discuss relationships of
the modified concept to the t-norms and we show that for many t-norms the
Reidmeister closure condition is a geometric counterpart of associativity.

Finally we present several applications of the new approach. First of all, we
provide a solution to an open problem about convex combinations of continuous
nilpotent t-norms. In particular, we show that none nontrivial convex combina-
tion of such t-norms is again a t-norm. Further we provide several construction
methods based on the Reidmeister closure condition and we show that in several
cases we are able to generalize older construction methods. Finaly we give some
ideas how to construct t-norms on more general lattice-ordered domains; here
the main motivation are possible constructions of MTL-algebras.
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Abstract

3D- micro-material inspection with respect to defect or deformation detection
covers a wide application field in machine vision tasks. Optical testing methods
are preferable techniques as they do not introduce any remarkable damages in
the material. Depending on the kind of material and dimensions of the sample
the wavelength and the appropriate imaging technique has to be chosen. In
the micro- and sub-micrometer range of testing typically interferometric mea-
surement techniques using UV, VIS or NIR light spectrum are well established.
Image processing tasks for interferometric applications include e.g. demodula-
tion, unwrapping, denoising, orientation estimation, topological profile recon-
struction or recognition of artifacts and displacements in the (sub) micrometer
range.
Optical Coherence Tomography (OCT) was developed for achieving additionally
an inside view beyond the surface of the sample at a depth range of about 1 mm.
In recent years OCT, originally introduced for the imaging of biological tissues
[1], was established more and more in fields outside from biomedical applica-
tions [2]. The potential of OCT as a low coherence interferometric technique for
contact-free and non-destructive testing was recognized meanwhile in material
research. Due to improvements in increased resolution (Ultrahigh-resolution
OCT) [3] or in higher acquisition speed and sensitivity (Fourier Domain OCT,
FD-OCT) technical relevant processes can be considered.
Spectral Domain OCT (SD-OCT), as a variant of FD-OCT, has the important
property that no movable parts are needed for a depth scan. The spectrometer
as the crucial part replaces the movement of the mirror in the reference arm.
Due to this, the acquisition speed only depends on the read out rate of the line
detector. By inverse Fourier transform of the spectrogram the depth profile can
be determined. The individual depth profiles can be combined to form cross-
sectional images or 3D profiles of the investigated materials.
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Due to its sensitivity and speed SD-OCT has a still developing potential for e.g.
defect and crack recognition in ceramics or glasses, structure characterization
in fiber composite materials, foams or multilayer foils.
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