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Multivariate Extreme Value Models via Copulas

Fabrizio Durante

Department of Knowledge-Based Mathematical Systems
Johannes Kepler University, A-4040 Linz, Austria

e-mail: fabrizio.durante@jku.at

Nowadays, several multivariate models have been considered to account for the de-
pendence between extremes, especially in view of their possible application to risk
measurement in environmental sciences — see, e.g., [4, 7, 1] and references therein. In
this respect, the concept of copula has provided to be very useful for the construction
of Multivariate Extreme Value models.

Here, we recall that a multivariate copula C(u1, . . . , ud) is a joint distribution over
Id, whose univariate margins are uniform. The link between d-copulas and multivariate
distributions is provided by Sklar’s Theorem [8], asserting that any d-dimensional joint
distribution function F can be expressed in terms of its margins F1, . . . , Fd, and a
suitable copula C, implicitly defined by:

F (x1, . . . , xd) = C (F1(x1), . . . , Fn(xd)) . (1)

Copulas fully describe the overall structure of dependence of the variables of interest,
and provide a global model for their stochastic behaviour. They are also fundamental
for the definition of several rank-based measures of association, like Kendall’s τ and
Spearman’s ρ, which are frequently used in applications. For a thorough theoretical
and practical introduction about copulas see, respectively, [3, 6] and [5, 7].

Now, suppose that F is a multivariate extreme value (shortly, MEV) distribution,
i.e. F is the distributional limit of (stationary) sequences of component-wise maxima
of d-dimensional random vectors. Then, it is well known that all the margins Fi’s of
F are Generalized Extreme Value laws, and the corresponding copula C is MEV, i.e. it
satisfies the relation

C
(
ut

1, . . . , u
t
d

)
= [C (u1, . . . , ud)]

t (2)

for all u ∈ Id and t > 0 [7]. Two MEV copulas are of particular interest, Πd(u) =
u1 · · ·ud and Md(u) = min {u1, . . . , ud}. The former one models independent vari-
ates, while the latter one models comonotone dependent ones, where each variable is a
monotone increasing function of the others.

The main target pursued in this talk is to present a general multivariate framework
for modeling the maxima sampled via a network of non-independent gauge stations.
To this aim, we present a new multi-parameter MEV copula with some distinguished
properties:

1. the parameters can be interpreted in terms of multivariate measures of association
and/or dependence;
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2. the simulations are simple and fast;

3. the procedures for fitting empirical data may use an analogue of the Method of
Moments technique; this may be convenient when the joint distributions are not
absolutely continuous.

This model has been recently proposed in [2].
In order to illustrate the practical utility of this new family of MEV copulas, we

consider in the talk a set of three certified gauge stations recording annual maximum
flood data in northwestern Apennines and Thyrrhenian Liguria basins (Italy): (1) Ai-
role, (2) Merelli, and (3) Poggi. Then, we compare this new MEV model with other
models already presented in the literature.
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Inferential Aspects of Copula Modeling

Enrico Foscolo∗

25th February 2009

Abstract

In this paper we propose a brief review of the main estimation
methods regarding copulas parameters. Firstly, we show fully para-
metric method through the so-called inference functions for marginals
(IFM), then we enter into a set of semiparametric procedures, among
which we mention the pseudo maximum likelihood (MPL) and the min-
imum distance (MD) methods. We highlight in particular the issue of
robustness, useful if one can not be able to determine the appropriate
copula for our data. Finally, we show a series of results obtainned in
large simulation studies, in order to comment the performance of each
estimator.

1 Introduction

There are many fields in which we face multivariate phenomena and tools
are required in order to detect joint behaviour of several random variables.
Let us focus our attention on financial, insurance or environmental (in par-
ticular, hydrology) area: it becomes aware of the fact that phenomena, which
are treated, are mostly multidimensional. Over the last ten years it has been
made a large use of copula-based models because of their useful properties.
Without loss of generality, let us consider here only the bivariate case and
parametric families of copulas with one-dimensional parameter θ.

From a formal point of view we can define copulas C as two-place func-
tions with uniform marginals: copulas are precisely distribution functions
that express the dependence between random variables.

Let (X, Y ) be a continuous bivariate random vector with probability
distribution HX,Y : <2 7→ [0, 1] and marginals FX (x) := P (X ≤ x) and

∗Department of Statistical Science, University of Bologna, Italy.
E-mail: enrico.foscolo2@unibo.it
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GY (y) := P (Y ≤ y). Specifically, a function C is called copula if it satisfies
the following conditions:

(C1) for all u, v ∈ [0, 1],
C (u, 0) = 0 = C (0, v) (1)

and
C (u, 1) = u = C (1, u) (2)

(C2) for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C (u2, v2)− C (u2, v1)− C (u1, v2) + C (u1, v1) ≥ 0. (3)

The well-known Sklar’s theorem (see Sklar (1959)) elucidates the role that
copulas play in the relationship between a bivariate distribution function and
its univariate marginals.

Theorem 1.1 (Sklar, 1959) Let H a bivariate distribution function with
marginals F and G; then a copula exists such that for all x, y in <

HXY (x, y) = C [F (x) , G (y)] (4)

Moreover, if F and G are continuous, then the copula C(�, �) is unique.

Let us note that, if C is a copula and F and G are distribution functions,
then C [F (x) , G (y)] is a joint distribution function with marginals F and
G.

We could sentencing that the main advantage of copula-based models is
to separate marginal behaviour from joint behaviour:

• by varying C(�) one alters the dependence structure,

• by varying F (�) and G(�) one alters the marginal behaviour.

Both operations are permitted. In this way, the selection of an appropri-
ate model for the dependence between X and Y , represented by copula, can
proceed independently from the choice of the marginal distributions. Copu-
las are an effective way to describe multivariate dependence with any kind
of marginal distribution.

Despite the large literature, there are still many problems to be solved.
From a statistical point of view, as Genest and Favre (2007) point out, “in-
ference for copulas is [. . .] still under development” and “formal methodology
for testing the goodness-of-fit of copula models is just emerging”.
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So the aim of this paper is to classify the most common estimating pro-
cedures for copulas parameters and compare the results of simulation studies
in order to verify the performance in term of mean squared error.

Since there is not available a well-recognized tool for identifying the cor-
rect parametric copula for a specific data set, great attention will be given to
the issue of robustness. With this goal we shall show the results presented
in Mendes et al. (2007) and Foscolo et al. (2008), where some estimators are
tested in different situations of contagion of data generating process.

2 The Maximum Likelihood and Maximum

Pseudo Likelihood Methods

The classical statistical inference theory that can be applied here is the
asymptotic maximum likelihood estimation (MLE).

Now, suppose that a parametric family of copulas {Cθ : θ ∈ Θ} has been
considered as a model for the dependence between two random variables X
and Y .

Given a random sample (X1, Y1), (X2, Y2), . . ., (Xn, Yn), from HXY (x, y) =
Cθ {F (x) , G (y)}, we wish to estimate θ.

Let us denote the density associated with F , G and C as fδ, gη, cθ re-
spectively. The density of HXY (x, y) is given by

h (x, y) =
∂2

∂x∂y
H (x, y) =

∂2

∂x∂y
Cθ (Fδ (x) , Gη (y)) =

= fδ (x) gη (y) cθ (Fδ (x) , Gη (y)) (5)

The Maximum Likelihood Estimator (or Exact Maximum Likelihood Method,
see Cherubini et al. (2004)) of (δ, η, θ) is then defined by maximizing

l (δ, η, θ) =
n∑

i=1

ln fδ (xi) +
n∑

i=1

ln gη (yi) +
n∑

i=1

ln cθ (Fδ (xi) , Gη (yi)) (6)

Multivariate optimization is computationally intensive and sometimes
there is a non-negligible risk that the true optimum is not found. For these
reasons, Joe (1997) suggests to proceed in two steps (Inference Functions For
marginals (IFM)):

• estimate δ and η separately from the marginal log-likelihoods,
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n∑

i=1

ln fδ (xi) ,
n∑

i=1

ln gη (yi) (7)

• for i ∈ {1, . . . , n} set Ûi = Fδ̂ (xi) and V̂i = Gη̂ (yi);

• now choose θ̂ as the estimated value of θ that maximizes the score
function

n∑

i=1

ln cθ

(
Ûi, V̂i

)
(8)

The main advantage of this method is that it is easy to implement, but
the main drawback is that an inadequate selection of marginal distributions
could reflect on the estimation of the dependence parameter θ, even when
C ∈ Cθ holds true.

Moreover, Joe (2005) showed that the two-stage estimator is asymptoti-
cally normal and that, under reasonable regularity conditions, it is as efficient
as one-stage maximum likelihood estimator (see also Zhao and Harry (2005)).

In addition, there are other possible ad hoc estimation methods that
have been proposed for overwhelming the hard computational efforts to get
exact MLE or IFM. These methods share, and also mix, concepts from non-
parametric statistical inference and simulation techniques.

Semiparametric copula models are based on parametric copulas and on
nonparametric estimation of marginal distribution functions. As the marginals
are unknown, they must be estimated in some way. The safest way is non-
parametric estimation of the marginals:

F̂ (x) =
1

n

n∑

j=1

I (Xj ≤ x) (9)

Ĝ (y) =
1

n

n∑

j=1

I (Yj ≤ y) (10)

To avoid boundary problems, F̂ (x) and Ĝ (x) are often rescaled by re-
placing n by (n + 1) in the denominator.

In the bivariate case, the Maximum Pseudo Likelihood Method (MPL)
requires that Cθ be absolutely continuous with density cθ and it simply con-
sists of doing an optimization of the multivariate likelihood as a function of
the dependence parameter θ (see Genest et al. (1995) and Genest and Favre
(2007)):
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l (θ) =
n∑

i=1

ln cθ

(
F̂ (xi) , Ĝ (yi)

)
(11)

Only rank-based estimators are considered in the sequel for F and G:

F̂ (xi) =
Ri

n + 1
(12)

Ĝ (yi) =
Si

n + 1
(13)

where (Ri, Si) are the pairs of ranks associated with the sample. This
methodological choice is justified by the fact that ranks are the best sum-
mary of the joint behaviour of the random pairs. So the method involves
maximizing a rank-based log-likelihood score function.

The MPL method is just easier to implement as Joe’s one, because you
only need to take the ranks. As a copula function is invariant by monotone
increasing transformations of the marginals, it seems natural to expect the
same of its parameter estimates. The estimator

θ̂n := arg max
θ

n∑

i=1

ln cθ

(
Ri

n + 1
,

Si

n + 1

)
(14)

of θ does just that.
There is a clear loss of information in assuming nonparametric estimation

for the marginals. If the parametric form of the marginals was known, Joe’s
method would obviously be preferable.

Genest et al. (1995) proved that the estimator θ̂n is asymptotically normal
and that, under reasonable regularity conditions, it is as efficient as one-
stage maximum likelihood. These calculations do not make any parametric
assumption about marginal distributions. Thus,

θ̂n ≈ N

(
θ,

ν2

n

)
(15)

where ν2 is the sample variance computed from pseudo-observations (to
compute the variance and the pseudo-observations we remind the reader to
Genest and Favre (2007)).
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2.1 The Weighted Version of Maximum Likelihood Es-
timators

It is reasonable to assume that the parametric and semiparametric ap-
proach work well when the choice of the marginals and copula itself is done
in a correct way. Let us suppose that it does not happen, that is there is a
situation of misspecification or contamination of the data generating process.
In these cases we would need to use some robust tools in order to estimate
the dependence parameter θ.

Mendes et al. (2007) obtain an automatic robust procedure that should
work well when there are or not contamination in the data. The Weighted
Maximum Likelihood Estimators (WMLE) consist in a robustification of the
MLE, where points previously identify as outliers, i.e. far from the main
mass of points.

Mendes et al. (2007) introduce an estimation method for copulas param-
eters in two steps. At first step they are not concerned with efficiency. The
goal is to choose points which do not seem to follow the dependence structure
defined by the majority of the points. Identification of points is based on the
Mahalanobis distances computed using robust estimates for covariance and
location, being the cutoff point the 0.975-quantile of a chi-square random
variable with 2 degree of freedom. Points with robust distances greater than
cutoff are identified as atypical and are given zero weight. In the second step
they obtain the maximum likelihood estimates of θ̂ of copula parameters θ,
using just those data points with assigned weights equal to 1.

These estimates are expected to posses good bias properties but larger
variances when compared to the MLE under true model. Under contaminated
models, Mendes et al. (2007) show through simulations that for the majority
of scenarios considered they possess small bias and variance and outperform
the MLE.

3 The Minimum Distance Estimators

Suppose that the copula associated with the two-dimensional distribution
function H is C ∈ Cθ. On the other hand, we have the nonparametric esti-
mation of copula, called Empirical Copula (see Deheuvels (1979)), formally
defined by

Cn (u, v) =
1

n + 1

n∑

i=1

I (F (xi) ≤ u, G (yi) ≤ v) (16)

where I(A) denoting the indicator function of set A.
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Copula measures of goodness-of-fit, named Minimum Distance Estima-
tion (MDE), may be obtainned by computing distance between empirical
copula Cn and the parametric copula C fitted to the data. Let us define the
minimum distance functional T on the space of the copula by

T (D) := arg min
θ

ρ (Cn, C) (17)

Here ρ is a distance between probabilities on [0, 1]2. Let us consider the
empirical process Cn :=

√
n (Cn − C). In Tsukahara (2005), Mendes et al.

(2007) and Foscolo et al. (2008) it has been considered

• the Cramér-von Mises distance,

ρ (Cn, C) =

∫

[0,1]2
C2

n (u) dCn (u) (18)

• the Kolomogorov-Smirnov distance,

ρ (Cn, C) = sup
u∈[0,1]2

|Cn| (19)

The empirical version of these distance are given by, respectively,

•
ρemp (Cn, C) =

n∑

i=1

{Cn (ui, vi)− C (ui, vi)}2 (20)

•
ρemp (Cn, C) = max

u,v∈[0,1]2
|Cn (ui, vi)− C (ui, vi)| (21)

The MDE estimate for θ is the solution θ̂ which minimizes over all θ ∈ Θ
the selected empirical copula based goodness-of-fit statistic:

θ̂ = arg min
θ

ρemp (Cn, C) (22)

For a precise formulation of the robustness of MDE and for the proof of
asymptotic normality we remind the reader to Tsukahara (2005).
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3.1 The Weighted Version of Minimum Distance Esti-
mators

Mendes et al. (2007) propose different weight functions which emphasize
different regions on the unite squared and are able to handle different lo-
cations of model violation: so they obtain the so-called Weighted Minimum
Distance Estimators (WMDE).

In order to emphasize deviations in the tails (the corners of the unit
squared), they apply the weight function

w (ui, vi) =
1√

[C (ui, vi)] [1− C (ui, vi)]
(23)

or the squared weight function

w (ui, vi) =
1

[C (ui, vi)] [1− C (ui, vi)]
(24)

However, they note that this goal may be better achieved by using the
weight function

w1 (ui, vi) =
1√

[ui + vi − C (ui, vi)] [1− C (ui, vi)]
(25)

which emphasizes just the points in the lower left (called LL) and the
upper right (called UR) corners (denoted by LL+UR).

When using function (25), points in the lower right quadrant (called LR),
in the upper left quadrant (called UL), in the middle have the same lack of
influence on the resulting statistics. Thus, they propose a weight function
which assign more weight to points located in the middle and in the LL
corner, the UR corner, and in both corners, respectively:

w2,LL (ui, vi) =
√

1− ui − vi + C (ui, vi) (26)

w2,UR (ui, vi) =
√
C (ui, vi) (27)

w2 (ui, vi) =
√

1− ui − vi + 2C (ui, vi) (28)

The weight function (26) represents the square root of the probability
mass (as given by C) in the rectangle [x, 1]× [y, 1], and it increases from 0 to
1 as the point (x, y) moves towards (1, 1). The weight function (27) represents
the square root of the probability mass in the rectangle [0, x]× [0, y], and it
increases from 0 to 1 as the point (x, y) moves towards (0, 0). The weight
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function (28) represents the square root of the sum of the above probabilities
and possesses the nice property of downweighting just points located at the
LR and UL corners.

Mendes et al. (2007) observe that the weight function given by (23) is
too flat in the middle and gives much more weight to LL when compared
to UR. Their first proposed weight function (25) is an improvement, since
it enhances almost equally both the LL and the UR corners and does not
emphasize the LR and the UL corners. The second weight functions proposed
((26), (27), (28)) are even more promising because they give equal weights
to the LL and UR corners and to the middle points, just downweighting the
points in LR and UL corners.

According to the copula type (possessing or not tail dependence) it could
emphasize just the LL or the UR quadrant. The following weight functions
are based on variations of (25), (26), (27), (28) (still more weight may be
given to the tails if we consider second degree statistics, which use squared
weights):

(LL)
1√

ui + vi − C (ui, vi)
(29)

1

ui + vi − C (ui, vi)
(30)

1− ui − vi + C (ui, vi) (31)

(UR)
1√

1− C (ui, vi)
(32)

1

1− C (ui, vi)
(33)

C (ui, vi) (34)

In order to obtain robust estimators for the dependence parameter θ, we
mention Foscolo et al. (2008). They choose the Cramér-von Mises distance
(18) in order to estimate θ, but, in this form, they note that the estimator
gives biased estimates, in particular when the size of the sample is small. As
Genest et al. (1995) note, “there is typically enough data to obtain nonpara-
metric estimates of the marginal distributions, but insufficient information
to afford nonparametric estimation of the structure of association”.
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No matter what kind of copula, they observe that, when θ increases, the
points are always along the diagonal of the squared [0, 1]2. In this way, they
identify a sort of edge which separates the “central” data from the “outskirts”
ones (which, instead, have different membership according to the fact that u
and v come from a copula with a certain θ). They use the following algorithm
(based on conditional distribution method, see Nelsen (2006)):

• a series of n values u from a uniform r.v. (0, 1) is generated;

• always using the same u values, a series of n values v is generated
through the method quoted above for a total number of times defined
by the user (in this case, they choose to simulate n = 5000 v-values for
a number of simulation m equal to 2000);

• in this way, they can build the following matrix,

1◦ Simul. . . . m◦ Simul.
u1 v11 . . . u1m

. . . . . . . . . . . .
un vn1 . . . unm

• they calculate the means of the rows and their standard deviations;

• finally, they define the edges for the selection of data in the following
way

upperBound = vi� + costant ∗ St.D. (vi�) (35)

lowerBound = vi� − costant ∗ St.D. (vi�) (36)

where i = 1, . . . , n and costant is chosen by the user; the points outside
the edges will turn up the searched observations.

Thus, the proposed estimator, named Modified Minimum Distance Rank
Estimator (MMDRE ), has the following form:

ρemp (Cn, C) =
n?∑

i=1

{Cn (u?
i , v

?
i )− C (u?

i , v
?
i )}2 (37)

where n? represents the number of “outskirts” pairs (u?
i , v

?
i ).

10



4 Simulation Study

To check and compare the performance of various estimators, a simulation
study is carried out in Tsukahara (2005), Mendes et al. (2007) and Foscolo
et al. (2008).

In Tsukahara’s simulation study four well-known one-parameter fami-
lies of bivariate copulas are chosen: Clayton, Gumbel-Hougaard, Frank and
Plackett copula.

For each value of θ, Tsukahara generates 500 sample of size 100 and
computes five estimates: in particular pseudo maximum likelihood estima-
tor (14), minimum Cramér-von Mises distance estimator (18) and minimum
Kolmogorov-Smirnov distance estimator (19). The last two estimators are
based on the link between the parameter θ and the measures of association
Kendall’s τ and Spearman’s ρ.

Tsukahara notes that, in case of correct specification of copula C (u, v),
the pseudo maximum likelihood estimator performs better than the others;
it has the smallest mean squared error and bias in many cases. The per-
formance of the minimum Kolmogorov-Smirnov distance estimator is almost
always worst: for all four families, the estimator becomes unstable in that
its estimated bias and mean squared error both get larger as the positive
dependence gets stronger.

Mendes et al. (2007) compare MLE, WMLE, MDE, WMDE in a large
simulation study, where the experiments consider ε-contaminated parametric
copula families containning varying proportions ε of contaminating points lo-
cated at different regions of the copula support. The selected families include
elliptical copulas (Normal), copulas for extreme values (Gumbel, Husler-
Reiss), copulas widely used in practice (Frank, Joe, Tawn) and some other
families defined in Joe (1997).

They set ε equal to 0%, 5%, 10%: these proportions of atypical points
are generated from a contaminating bivariate normal distribution F ? with
correlation coefficient ρ = 0.00 and very small variances. They establish five
possibilities for the location of the contaminating points: the center of the
unit squared and the regions nearby the four corners. Three sample size
are considered (50, 100, 300) and the number of scenarios for each one is
1000. For sake of comparisons, for all copula models they set θ such that
corresponding kendall’s τ would be equal to 0.00, 0.25, 0.50.

Mendes et al. (2007) give the winner(s) under no contamination and for
the contaminated models. The results typically do not depend on the sample
size and on strength of dependence. Moreover, the efficiency of all estimators
increase with sample size. They show that for each copula family there is one
or a couple of robust estimates performing very well, in the sense of small
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mean squared error, despite the contamination percentage and location and
the sample size. They suggest that, when fitting copulas possessing upper-tail
dependence, it should use the upper right weighted version of (18) and (19).
The lower left weighted versions of minimum distance estimators should be
preferred for copulas possessing lower-tail dependence. When fitting elliptical
copulas or those possessing no-tail dependence, it could select the weighted
version of maximum likelihood estimator or the estimator (18) with squared
weights (25).

Finally we report the results of Monte Carlo simulations shown in Foscolo
et al. (2008). A simulation study has been carried out for Clayton, Frank
and Gumbel-Hougaard copula. For each of these functions they estimate
the dependence parameter θ, using (14), (18) and (37): 2000 pseudo-random
samples of size n = {100, 300, 500} are simulated from each of the three copu-
las with θ = {2, 3, 4, 5, 6, 7, 8}. They analyse the case of correct specification,
when the copula assumed in their estimator is just the one used to simulate,
and the case of totally misspecification, when this ideal situation does not
hold.

Because of its properties, the pseudo maximum likelihood method seems
to be always the best estimator, the most correct and efficient in case of
correct specification. Moreover, this comment is independent from the size
of samples. On the contrary, the estimators (18) and (37) appear more biased
then (14), although they make to mark good results in term of unbias and
efficiency when the sample occurs with a medium/large size (n = {300, 500}).
When they consider the case of totally misspecification, maximum pseudo
likelihood estimator strongly underestimates the parameter, while (18) and
(37) seem to converge to the correct values. The sample size again helps to
improve the efficiency of the estimators.

5 Concluding Remarks

Parametric and semiparametric estimators of copulas parameters have
been discussed and the issue of robustness have been introduced. Tsukahara
(2005), Mendes et al. (2007) and Foscolo et al. (2008) agree that maximum
likelihood procedure seems to be always the best estimator in term of mean
squared error, when model is not contaminated, even though in Mendes et al.
(2007) it is always possible to find a weighted minimum distance estimator as
good as the maximum likelihood estimator. With the exception of minimum
Kolmogorov-Smirnov distance estimator, which is almost always worst, under
contamination the robust estimators always presented superior performance.
We note that the efficiency of all estimators increase with sample size. As
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Mendes et al. (2007) point out, it seems that the parametric family of copula
is not determinant when finding the more robust estimator, but if it posses
lower or upper tail dependence.
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Let (X,Y ) be a pair of two non-negative, continuous random variables, with
survival function F (x, y). In different applied fields, as reliability, survival analysis,
interacting defaults, interest arises in studying the conditional survival function of
X,Y , given the event that X,Y fall over a threshold,

F t(x, y) = P (X > t+ x, Y > t+ y|X > t, Y > t) .

We denote by K the survival copula of F and by Kt, for t > 0, the survival copula
of F t. Since we aim at studying the evolution of dependence properties of F t, for
t ≥ 0, we consider the family {Kt}t≥0 of survival copulas.

Starting with a notion of dependence, we define different notions of dependence
for K, reflecting the dependence properties of the copulas Kt for some t (see [2]).

An analogous investigation concerns the ageing properties of the model F , de-
scribed by the ageing function B, associated with F (see [1]). Again, a family
{Bt}t≥0 is defined, representing ageing properties of the models F t, for t ≥ 0. A
property of an element of the family, Bt, can be expressed as a different property
of B.

For both the families, we are interested in studying which properties are pre-
served for t spanning R+.

The relationships among dependence and bivariate ageing are also investigated.
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Abstract—We present the applicability of hierarchical ag-
glomerative cluster algorithms to Terahertz (THz) spectroscopic
analysis of chemical compounds as well as hyper-spectral images.
We show the influence of different windowing and filtering
methods in the spectral data pre-processing to enhance the
clustering results. Two distance measures are compared: Classical
Euclidean distance on the full frequency range and a distance
working only on the minima of the spectra. We further propose
an interactive clustering process for THz hyper-spectral image
classification and visualization using a combination of the time-
domain and frequency-domain spectral information.

I. I NTRODUCTION

With the generation of a high volume of data comes the
necessity of computer aided data organization. Unsupervised
classification, also known as cluster analysis, is one method
to do that. The goal of cluster analysis is to categorize a given
amount of data without prior knowledge about the resulting
classes. We use clustering tools for the analysis of hyper-
spectral imaging data.
Hyper-spectral imaging is a way of using other spectral bands
than the one of visible light to analyze material. Such an image
is generated by gathering a spectrum at each pixel. These
spectra usually contain hundreds to thousands of measured
channels. Thus, the data has high volume - being the number
of pixels - as well as high dimensionality [1]. The most
prominent examples for hyper-spectral imaging are ultraviolet
and infrared imaging but with the development of THz spec-
troscopy also the spectral bandwidth of 100GHz to 10THz
is used [2]. Industrial applications do mainly focus on two
different properties of THz waves. Firstly, most packaging
materials such as ceramics, cloth, carton, and plastic are non-
absorband thus non-destructive testing is possible. Secondly,
most chemical compounds have a characteristic absorption
spectrum and hence can be detected.
Cluster analysis is applied here to improve the visualization
of the THz imaging especially by combining information from
time resolved as well as frequency resolved spectra.

II. M ETHODS

The main influence factors for clustering are the chosen
features and the distance measure. The computational cost
of these algorithms primarily lies in the calculation of the
distance measure depending on the dimensionality of the
feature space. In spectral analysis it is possible to analyze

both time domain as well as frequency domain features. The
usual features of the time domain have low dimensionality
- making the distances easily computable - while in the
frequency domain the dimensionality is high and a number
of preprocessing steps need to be executed beforehand.

A. Clustering

Classification in general deals with assigning classes to
a given set of data. In supervised classification the desired
classes are known beforehand and a sufficiently characterizing
set of samples from each class is given. In clustering only the
data is given and is being ordered with respect to a certain
distance measure. The distance between samples in one class
is to be minimized while the distance between clusters is
to be maximized [3]. In this paper classical agglomerative
hierarchical clustering shall be used. This algorithm operates
in the following way: Beginning with one sample per cluster in
each iteration the closest clusters are being united. Assuming
a given distance between the samples, the closeness of the
cluster is defined by the link function, generalized by the
Lance-Williams formula [4]. When merging the clustersCj

and Ck the distance of the resulting clusterCjk to another
clusterCl will be:

D(Cjk, Cl) = αjD(Cj , Cl) + αkD(Ck, Cl)+

βD(Cj , Ck) + γ|D(Cj , Cl) − D(Ck, Cl)|.

For the clustering in the time domain the following coefficients
are used:{αj , αk, β, γ} = {1/2, 1/2, 0, 1/2}. The resulting
distance is called complete link function. It is especially
beneficial when the clusters are not sharply separated but blend
in each other. If we assume that each cluster varies around a
“prototype” the average link distance -{ Cj

Cj+Ck
, Ck

Cj+Ck
, 0, 0}

- is to be preferred. We use these coefficients for clusteringin
the frequency domain. The hierarchical clustering procedure
results in a tree-graph called dendrogram. It is particularly
useful in navigating between different coarseness levels,i.e.
showing the samples being clustered in different numbers of
categories. The visualization of high-volume results can be
interactively improved by discarding certain branches of the
dendrogram altogether and displaying other branches in a finer
way.
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Fig. 1. Three characteristics of time domain spectra.

B. Features and Distance Measure

In time domain spectroscopy typical information that is
considered can be seen in Fig. 1. By the diminishment of
the main peak the absorption of the sample is measured,
the refraction is measured by the time delay and the
transformation of the peak contains the characteristic spectral
information. The decline of the peak and the time delay are
used for the first clustering. Both are normed by taking the
highest and lowest peak and the first and last position as
references.
In the frequency domain the most commonly used metric
is the Euclidean metric on all frequencies. This approach’s
main disadvantage is the so-called “curse of dimensionality”
[5]. Handling many dimensions the accumulations of
small differences over all frequencies can have the same
effect as one big differing peak. The proposed alternative
approach is useful in coping with this. THz spectra have
comparatively broad bandwidth features. Given a smooth
shape of the spectra, it is therefore possible to find the local
long-term minima of each spectrum. Those represent the
difference between the clusters. Minima are computationally
characterized here by being the point where the medium
gradient of an interval switches from negative to positive.The
choice of the size of the interval and the smoothness of the
spectra is essential in finding the relevant minima instead of
noise. It is helpful that noise generates sharp minima which
can be ignored by choosing the intervals sufficiently wide.
The distance measure is defined as follows:

Definition 1: Let Xf = {x1, ..., xr} be the frequencies of
the minima of SampleSX and Yf = {y1, ..., yk} be the
frequencies of the minima of sampleSY . The distance between
SY andSX is then defined by:

D(SX , SY ) =
√ ∑

f∈Xf∪Yf

(SX(f) − SY (f))2).

As most THz spectra of solids have few but broad peaks, an
immense features space reduction is achieved and thereby the
problems of high dimensionality are diminished. Furthermore
the computational costs of calculating a distance matrix are
shrunk considerably.

C. Preprocessing and Filtering

It is a common method to apply apodization functions prior
to the Fourier transform to eliminate undesirable effects.The
Fourier transform acts on the assumption of infinite periodic
signals while experimentally given data usually is finite. Thus
the effect of spectral leakage appears. Another problem are
measured side effects which influence the spectrum. Such are
fore example an echo of the pulse spectrum or the original
pulse appearing within the sample spectrum. Two kinds of
windowing functions are applied in this paper to deal with
these effects. The main pulse is considered the starting point
of the relevant information. Information before this pulseis
suppressed generously with a Nuttall window while informa-
tion coming after the pulse is hardly altered. Only to eliminate
the effects of spectral leakage a Hamming window is used
[6]. Two filtering methods were compared. These are Wavelet
Shrinkage and Savitzky Golay Filters. The latter is one of the
most prominent filters in Chemometrics. This is due to its easy
and fast calculability as well as its capacity to preserve peaks
[7].
Another approach is using Wavelet shrinkage [8]. The main
idea of Wavelet transformation is a loss free hierarchical
decomposition of a signal based on a basis of so called
Wavelets which can be considered band pass filters with cer-
tain desirable properties. The main advantage over the Fourier
transform is the possibility to express characteristics with
respect to as well frequency as time. In that way it is possible
to control the degree of influence certain frequencies have on
the signal depending on the interval they occur in. Although
the amount of information one gets is quite sophisticated
the discrete Wavelet transformation is computationally very
efficient thanks to a down-sampling mechanism that is applied
during the procedure [9].

III. A PPLICATION

We have to application examples. On the one hand - to
illustrate the effects of preprocessing and filtering - a data
set of high resolution spectra of five chemical compounds,
namely PABA, acetyl salicylic acid, salicylic acid, lactose, and
tartaric acid, nine spectra each compound is used. On the other
hand we carry out clustering on a hyper-spectral image of
a letter containing different materials among others chemical
compounds.

A. Spectra of Chemical Compounds

The Windowing is applied to the time resolved spectra in
the above mentioned way. In each spectrum the maximal peak
is determined and depending on the resolution the windows
are applied. As the single compound spectra have a very
good resolution the windowing mainly serves to suppress the



Fig. 2. Spectra of lactose. The relevant peak at0.5 THz is well preserved by
preprocessing and filtering while the spectra are smoother and more similar
to each other.

measured fraction of the original pulse. As can be seen in Fig.
2 the windowed spectra have clearer peaks and contain less
noise - with respect to similarity - than the unwindowed ones.

Fig. 3. Logarithmic transmission spectra of all five compounds after pre-
processing and windowing.

The spectral density of the measurements declines in higher
frequencies. It is advisable to discard information below a
certain spectral density. To further enhance the finding of
relevant minima and maxima filtering is applied. The Savitzky-
Golay filter produces similar results as the Wavelet shrinkage.
The peak preservance is slightly better in Wavelet shrinkage
in finding minima and maxima both perform similar. The
Savitzky-Golay filter is chosen for the further analysis because
it is computationally faster. As proposed before, classical
agglomerative clustering is applied. The evaluation is done
by considering misclassifications and quality of clusters in
terms of inter- and intra-cluster distance. Clustering theunpre-
processed spectra results in more than30% misclassification
depending on the clustering level.

The classification of the pre-processed and filtered spectra
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Fig. 4. Tree graph showing the parts of the clustering results. The distance
between salicylic acid (samples 19-24) and acetyl salicylicacid (samples 1-6)
is bigger in the top level picture, while the misclassification of sample 14 is
suppressed at the bottom level and the clusters are clearer.

leads to clear classification results as can be seen in Fig. 4 on
the top level dendrogram. The bottom level of Fig. 4 shows
the clustering result of the distance measure proposed before.
As can be seen in Fig 3 all compounds have clear minima,
that were detected. Depending on the respective spectrum the
number of minima varied between two and five. Therefore for
each two spectra a maximum of ten frequencies was taken
to calculate the distance. In comparison to that, for the usual
distance calculation about 300 frequencies per spectrum are
used. The clustering result were similarly good.

B. Imaging Data

The test data consists in the hyper-spectral image of an
envelope containing chemicals. The goal of image analysis
is to detect the chemicals within the image. First analysis is
carried out in the time domain. The features displayed in Fig.
5 are used. They are normalized beforehand with respect to
their maximal and minimal values to allow comparability.

On these two features the clustering is performed. The first
visualization in Fig. 6 shows a segmentation in only two
clusters. In the corresponding dendrogram those two groups
correspond to the first branching. The branch containing the
blue pixels of the image is set to being background and
discarded for further analysis. A subsequent finer clustering
is displayed in Fig. 7. From this clustering result the inter-
esting regions are chosen by the user and used for the same
process of spectral analysis as was performed on the chemical
compounds. The chosen regions correspond to less than a
quarter of the original pixels hence reduce the computational
costs of the spectral analysis. As shown above preprocessing
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Fig. 5. A letter containing different materials. Materials with high absobance
as well as chemical compounds. The plots display the differentvalues of the
main peak and the time delay.

Fig. 6. A first clustering of the letter in two categories. Theblue cluster
represents the background and therefore the information within is discarded
for further clustering.

and Filtering were necessary to yield good clustering results.
The chosen distance measure was Euclidean distance of all
frequencies. The minima-distance worked well on parts of the
data and performed considerably faster.But as can be seen in
Fig. 8 some spectra have no chemical content and therefore
do not contain clear minima. Therefore, some changes need to
be made to yield good clustering results on imaging data with
this measure. The result of the transmission clustering on all
frequencies is shown in Fig. 8. In the lower part the spectra
corresponding to the respective cluster are displayed. It can be
seen that spectrally different compounds were automatically
separated by the method. Only in the bright red cluster which
has high absorbance there should some further analysis be
done, as it can not clearly be determined if there are spectrally
interesting pixels here.

IV. CONCLUSION AND FURTHER WORK

In this paper it is shown that clustering algorithms are
well applicable on THz data. With prior pre-processing and
filtering, spectra of chemical compounds can be organized

Fig. 7. A clustering with five clusters in the foreground.
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Fig. 8. Result of clutering in the frequency domain. Dark red corresponds
to black, yellow and red pixel and spectra correspond to eachother.

automatically. Especially in applications where the number of
samples has high volume, clustering is a useful tool. The pre-
processing steps used here were windowing functions, spectral
density evaluation and filtering methods. All of these steps
improved the clustering result. The two compared filtering
methods performed comparably well. Savitzky-Golay filtering
was chosen here because of its computational efficiency.
Wavelet shrinkage has further advantages that were not taken
into consideration yet. Those are for example possibilities of
dimension reduction and better peak preservation which can
be more relevant for other compounds. The proposed feature
selection method can be taken to further improve the clustering
itself by using incremental methods that make the algorithms
more stable and computationally efficient [10], [11]. Clustering
is particularly interesting in hyper-spectral THz imaging, as
the amount of measured spectra is naturally higher. Here
two different clustering steps were carried out. Both the
clustering of the two-dimensional time domain feature space
and the clustering of the frequency domain feature space led
to an enhanced interpretability. It was shown that clustering
provides useful possibilities for hyper-spectral image interpre-



tation which is relevant for example in applications in the
security sector. The before described distance measure should
be adapted to be applicable to hyper-spectral data to improve
computational efficiency.
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Abstract

In this talk, we present a new clustering-based classification technique (eVQ-Class), which is able to adapt old clusters
and to evolve new ones on-line with new incoming data samples. It extends the conventional learning vector quantization
approach, which is a kind of supervised version of original vector quantization, in mainly three points: 1.) it is able to
evolve new clusters on demand by comparing new incoming samples with already generated clusters, 2.) it includes the label
information in the training process by introducing a hit matrix and extending the feature space and 3.) it comes with a new
weighted classification strategy. The novel approach will be evaluated based on high-dimensional feature data sets extracted
from images recorded on-line in order to perform on-line quality control in a production process by classifying images into
’good’ and ’bad’ ones. The evaluation includes a comparison with well-known batch (trained and re-trained) classification
techniques.

∗ This work was funded by the EC under grant no. 016429, project DynaVis and the Upper Austrian Technology and Research Promotion. It reflects
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Abstract

Classical microarray analysis works at resolutions of two to 20 micrometers and quantifies the abun-
dance of target molecules by determining average pixel intensities inside the microarray spots. Informa-
tion on the molecular properties like brightness and position are not accessible. Precise quantification of
e.g. hybridized cDNA molecules, however, can only be done when either the brightness is known or the
individual molecules are visualized.

In (Hesse et al., 2006) a new, high resolution approach is described, that enables the detection of
individual molecules bound to microarray surfaces. Since high resolution makes the detection of single
molecules possible, we propose the concentration of single molecules in each spot as a new measure of
hybridization, instead average pixel intensity as used for low-resolution methods. However, the high
resolution approach needs new algorithms in order to handle the three main tasks in microarray im-
age processing: spot localization, foreground-background segmentation and computation of summary
statistics that characterize the spot.

We have developed an approach for the analysis of high-resolution microarray images. It consists
first of a single molecule detection step, based on undecimated wavelet transforms, and second, on
separation of specific signal from unspecific background (corresponding to the segmentation step in
the classical microarray analysis). Evaluation of the detection method on simulated images yielded a
concentration range of 0.001 to 0.5 molecules per square micron and a minimum signal to noise ratio of
15 for reliable quantification (error of false negatives below 15%). Separation of foreground/background
works if foreground exceeds background by a factor of 2. The method has also been used for analyzing
real images and the results are in good agreement with the evaluation based on visual inspection.

1 Introduction

Microarray technology is used in medical diagnostics and basic research for analyzing the global transcrip-
tional state of biological samples. The massively parallel detection approach allows the determination of
several thousand expression levels in a single experiment. Novel technologies for sample preparation like
Fluorescence Activated Cell Sorting and Laser Capture Microdissection allow to isolate small subpopula-
tions of cells and enable researchers to investigate heterogeneities within their samples. For the global
expression analysis of such small samples standard low-resolution methods require time consuming and pos-
sibly distorting (Nygaard et al., 2005) pre-amplification steps. Recent developments in readout- (Hesse et al.,
2004) and platform/array-technology (Hesse et al., 2006; Sonnleitner et al., 2005), dramatically expand the
range of directly accessible concentrations by increasing detection efficiency and the resolution to the optical
diffraction limit. The images generated via this technique have sizes of typically a few GigaPixels and require
novel image analysis approaches.

∗Corresponding author: L.Muresan, email: leila.muresan@jku.at.
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In general, microarray technology is based on specific binding of fluorescent-tagged target molecules on
different locations of the array and the subsequent determination of target molecule abundance by measuring
fluorescence on the respective area. Classical methods use the pixel intensity values inside the pre-determined
spot regions of the microarray scans, which is an indirect measure for the presence of hybridized molecules.
In subsequent analysis tasks, the location of the spot pattern is roughly identified, the sub-images are
segmented into signal and background, and the information contained in the pixel intensities is summarized
via appropriate statistics. Some further steps, typically background subtraction and normalization, are
intended to remove all non-biological variation of the data. Several overviews of the classical microarray
image analysis are available (e.g. Bajcsy (2006); Yang et al. (2001, 2002)).

In the case of microarrays with single molecule sensitivity, different signal detection strategies and count
statistics have to be used. Each rectangular subimage of the microarray, obtained after the gridding step,
contains the spot location (foreground) surrounded by a background region. Figure 6 shows images of the a
simulated spot at diffraction limited resolution (200nm, left) and the same image downsampled to the scale
of the classical microarray techniques (4µm middle). Due to the background noise and the fluctuations of
the single molecule signal intensities in the downsampled image the foreground/background contrast is low,
making the segmentation difficult. The analysis of the high resolution images, consisting of the detection
of single cDNA molecules and the estimation of their concentration inside the spot, make the object of
this work. The detection of single molecules is based on sparsity-adaptive wavelet thresholding, applied
after a variance stabilization step. The estimation of the abundance of single molecules is performed on the
detection results, and separates specific hybridization from clutter.

The approach was validated by analyzing on one hand simulated data with known ground truth and on
the other hand, real microarray images, where the results were checked by visual inspection.

2 Model

Numerous models of the microarray signal were proposed Balagurunathan et al. (2004); Angulo (2008);
Chudin et al. (2006); Korn et al. (2004); Li et al. (2005). They include several aspect of the acquired data
such as image intensity and spot shapes.

However, having access to single molecule resolution and following (Chudin et al., 2006), we consider a
pixelwise compound Poisson process to model the intensity of a spot.

Given a rate λ > 0 and an arbitrary distribution Q, a compound Poisson process CP (λ,Q) has the
distribution of the random sum: Z =

∑N
i=1Xi,where N ∼ Poisson(λ) and Xi are independent and identically

distributed random variables with distribution Q, also independent of N . The tail behaviour of CP (λ,Q) is
inherited from Q, the expectation and variance are given by: E(Z) = λE(Q) and Var(Z) = λE(Q2). In our
case, the intensity of pixel i in the low-resolution microarray spot image is obtained from the high resolution
data as: Zi = Bi + Yi = Bi +

∑Ni

k=1Dk, where Bi represents background fluctuation and Yi is a compound
Poisson process, with Ni the number of single molecules inside the area corresponding to pixel i. Finally, Dk

is the intensity of single molecules (Dk ∼ Poisson(µ)). Thus the technology of high resolution microarrays
offers access to previously hidden information: instead of analyzing the low-resolution pixel values Zi, the
inference is based on Ni the number of single molecules in the image. The measure of hybridization is in our
case the concentration of single molecules inside the spot of interest. The knowledge of the values of Bi and
Dk has little relevance.

It is essential in microarray analysis the identification true signal and the control of the unspecific intensity
variation.

We have identified the following shortcomings, which make the classical analysis less appropriate than
the single molecule one:

1. Correct background estimation is difficult in low resolution microarray images

2. In case of low concentrations, due to low signal-to-noise (SNR) ratio and in the presence of artifacts low
resolution microarrays cannot discriminate between signal and background (and the spots are rejected
from analysis).
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Figure 1: Analysis of a spot in a high-resolution microarray image. (a) Original image, bright features
correspond to molecules bound to the chip. (b) Detection after undecimated wavelet thresholding. (c)
Selection of single molecule locations (local maxima on denoised image inside the detection support in (b)),
(d) Separation of hybridization signal from clutter.

3. The probability density function of a single molecule’s photon intensity distorts the analysis results

4. The variability of the number of fluorophores per molecule is not modeled (usually requires dye swap
normalization).

Besides offering a way to analyze very low concentration samples, the high resolution technique removes
bias due to background heterogeneity and removes the necessity of the normalization step and dye swap.

3 Methods

We describe here an original framework to measure hybridization on high-resolution microarray data. Our
approach relies on two independent steps. First we present a per formant method to detect blobs associated
to singles molecules. Second, we introduce a concentration estimation approach based on spatial statistics.

3.1 Detection of single molecules

High resolution imaging of microarrays provides very large data sets. Discrete Wavelet transform involving
filter banks are a reasonable approach for fast analysis of such data. Moreover, wavelet based approaches
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have shown interesting properties in the detection of small bright features (Starck et al., 1998; Olivo-Marin,
2002).

3.1.1 Isotropic undecimated wavelet transform (IUWT)

The wavelet transform is based on dilations and translations of a “father” and “mother” wavelet: φjk(t) =
2−j/2φ(2−jt− k) and ψjk(t) = 2−j/2ψ(2−jt− k) for j, k ∈ Z. The family

{
φJk, k = 0, 1, . . . , 2J − 1;ψjk, j ≥ J, k = 0, 1, . . . , 2j − 1

}

forms an orthonormal basis of L2([0, 1]). Any function f(t) ∈ L2([0, 1]) can be arbitrarily well approximated
by a wavelet series:

f(t) =
∑

k

aJkφJk(t) +
J∑

j=−∞

∑

k

djkψjk(t),

where

ajk = 〈f, φjk〉 , k = 0, 1, . . . , 2J − 1 (1)

djk = 〈f, ψjk〉 , j ≥ J, k = 0, 1, . . . , 2j − 1 (2)

represent the approximations and detail coefficients, respectively.
The functions φ and ψ fulfill the dilation equations (see Mallat (1999)):

φ(x/2) =
√

2
∑

k

hkφ(x − k), ψ(y/2) =
√

2
∑

k

gkφ(x − k) (3)

with hk a discrete low-pass and gk a discrete band-pass filter (followed by down-sampling), the approximation
and detail coefficients can be computed recursively:

aj+1,k =
∑

i

hi−2kaji, dj+1,k =
∑

i

gi−2kaji. (4)

Note that the described wavelet transform is anisotropic 1D and not translation invariant. However, these two
properties are essential to a good detection scheme. We propose then to consider the isotropic undecimated
wavelet transform (IUWT). The “à trous” scheme is thus used (Starck et al., 1998) and wavelet coefficients
are now computed over the entire grid as:

ajk = 〈f, φjk〉 , φjk = 2−j/2φ(2−j(t− k)) (5)

djk = 〈f, ψjk〉 , ψjk = 2−j/2ψ(2−j(t− k)). (6)

The recursive computation of the dyadic wavelet transform becomes:

aj+1,k = ajk ∗ h̃jk, dj+1,k = ajk ∗ g̃jk. (7)

where h̃jk (g̃jk, respectively) is obtained by inserting 2j − 1 zeros between each sample of hk (gk).
In order to preserve isotropy the filters h and g and the father and mother function φ and ψ have to be

nearly isotropic. A popular choice is based on the theB3 spline scaling function, hk = [1/16, 1/4, 3/8, 1/4, 1/16] ,
and for the 2D case a separable filter h(k,l) = hkhl and g(k,l) = δk,l − h(k,l), where δk,l = 1 if (k, l) = (0, 0)
and 0 otherwise.

The wavelet detail coefficients are given by: dj+1,(k,l) = aj,(k,l) − aj+1,(k,l) and the reconstruction is the
sum of all details and the coarsest approximation:

f(k,l) = aJ,(k,l) +
J∑

j=0

dj+1,(k,l). (8)

When there is no confusion, a single index will be used to denote the 2D index (k, l). The first index, j,
denotes the scale. Further details on IUWT can be found in (Starck et al., 2007).
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3.1.2 Thresholding based on False Discovery Rate (FDR)

The wavelet transform provides a sparse representation of signals as the number of significant coefficients
is small. The remaining coefficients of low amplitude can then be considered as noise and eliminated via
thresholding. Hard thresholding of wavelet coefficients djk can be written as

d∗jk =





d̂jk,
∣∣∣d̂jk

∣∣∣ ≥ T

0,
∣∣∣d̂jk

∣∣∣ < T.
(9)

Since signals produce significant wavelet coefficients, correlated across wavelet planes, while noise is supposed
to be uncorrelated, a pixel i is considered signal if all its corresponding wavelet coefficients dji, j = 1, . . . , J
are exceeding the threshold T , e.g. T = c · σ̂j , where σ̂k is the robust estimate of the noise variance at
scale k and c is a constant. As estimate of the noise variance Donoho and Johnstone (1994) propose:
σ̂j = median |dji −median (dji)| /0.674 and c is appropriately chosen, e.g c = 3 .

The difficulty of the detection task lies in the fact that it has to be robust for a whole range of single
molecule concentrations. The unknown concentration of single molecules in the image influences the sparsity
of the signal, and implicitly the value of the parameter T that has to be chosen in order to obtain a correct
detection. Therefore the detection method has to be driven by the (unknown) sparsity of the data. Some
recent thresholding algorithms are sparsity adaptive as for instance Stein Unbiased Risk Estimator (SURE),
FDR (Benjamini and Hochberg, 1995; Abramovich and Benjamini, 1996) and empirical Bayes methods
(Johnstone and Silverman, 2004, 2005).

The wavelet coefficient thresholding approach reformulated from a multiple hypothesis testing point
of view attaches to each wavelet coefficient of the true, unknown function f a (’no-signal’) hypothesis
Hjk : djk = 0. Ideally, only the signal coefficients should be kept.

The False Discovery Rate is defined as the expectation of the proportion of erroneously kept coefficients
among all the coefficients kept in the representation.

Applying the Benjamini-Hochberg method as described in (Abramovich and Benjamini, 1996) one maxi-
mizes the number of kept coefficients controlling meanwhile the FDR to a predefined level q. The algorithm
consists of the following steps:

1. For each d̂jk calculate the two-sided p-value:

pjk = 2
(
1− Φ

(∣∣∣d̂jk

∣∣∣ /σ
))

2. Order ascendingly the computed pjk-s, p(1) ≤ p(2) ≤ . . . ≤ p(m)

3. Find the largest i such that p(i) ≤ (i/m)q and denote it i0. Compute λi0 (j) = σΦ−1(1 − p(i0)/2).

4. Threshold all coefficients at level λi0 (j).

Again the significant pixels are those that have non-zero coefficients in all the J detail levels (except
the finest, which usually is contaminated by noise). The binary image obtained from the J detail levels,
B = ΠJ

j=1 {djk > λi0 (j)} is an indicator image for the support of the detected single molecules.
A denoised image is additionally obtained after applying the reconstruction step 8 with thresholded detail

coefficients. The wavelet detection algorithm has a certain “resolution”, two molecules that are spatially
close together will be detected as one. In order to correct for the underestimation of the number of molecules,
the binary image obtained after the detection step is combined with the denoised image such that all the
local maxima of the denoised image inside the support of the binary mask are considered distinct single
molecules (see fig. 1, c).
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3.1.3 Variance stabilization

Wavelet methods are typically designed for additive Gaussian noise: Xi = µi + ǫi, where ǫi ∼ N (0, σ).
However low intensities (small photon counts) collected by the sensor are not well modeled by Gaussian
noise. A combination of Poisson (shot-noise) and Gaussian noise is more appropriate to describe photon
count variations and read-out noise. The main difference is the heteroskedasticity of the new model (the
variance of the noise depends on the signal).

In order to take into account the characteristics of the noise, variance stabilizing transforms are applied
prior to wavelet detection to the input image which transform the heteroskedastic noise into Gaussian noise
of variance approximately equal to one. In case of a Poisson noise model (suitable to describe the photon
count model) the well known Anscombe transform can be used: t(Xi) = 2

√
Xi + 3/8 (it underestimates

the intensity for values under 30). Modeling both the photon count noise as well as the read-out noise,
one obtains the mixed Poisson-Gaussian image model (Starck et al., 1998), Xi = α · Ni + ǫi, where α > 0
represents the gain of the detector, Ni ∼ Poi(µi) and ǫi ∼ N (0, σ) that can be stabilized via the generalized

Anscombe transform (GAT): tG(x) =
√
αx+ 3

8α
2 + σ2 − αµ. The parameters α, µ, σ are determined from

the image itself via robust fitting as described in (Boulanger et al., 2008).

3.2 Foreground/background separation and estimation of single molecule con-
centration

Not all the peaks detected in the subimage belong to the spot of interest (see fig 1, c). The background
might be heavily contaminated by unspecifically bound signal, impurities, etc. (clutter), which unaccounted
for could seriously distort the hybridization results. Therefore, peaks detected in the subimages have to
assigned either to foreground or background. In the concentration estimation step, we thus model both the
spot and the background concentration.

In order to distinguish between peaks within the spot, representing true hybridization signal and those
representing clutter a spatial mixture model is used. A similar approach used for segmentation of classical
microarrays, but based on Gaussian mixture models for pixel intensity values, was described in Blekas et al.
(2005), where the mixtures had two (signal/background) or three (signal/background/artifacts) components.

The peak locations obtained after the wavelet transform correspond either to peaks situated in the spot
or to peaks in the background. Assuming that in case of strong hybridization there are much more peaks
inside the spot, we shall discriminate between foreground and background via the concentration of the peaks
in the two regions. The model we adopt is that of mixture of two Poisson processes with piecewise constant
intensities λ1 and λ2(for foreground and background, respectively).

3.2.1 Estimation of concentrations based on method of moments (MOM)

A first approach for concentration estimation is to consider the count of the detected peaks inside non-
overlapping, systematic quadrats, covering the subimage: yi, where i is an index over the lattice structure.
The counts are modeled as a mixture of two Poisson distributions, with constant rates λ1, λ2 (expressed in
counts per quadrat): p(yi|λ1, λ2, η1) = η1P (λ1) + (1 − η1)P (λ2) , where η1 denotes the weight of the first
component. This simple model doesn’t account for correlations between neighbouring quadrats.

The three parameters λ1, λ2 and η1 are determined via the method of moments for Poisson mixtures
distribution discussed by Everitt, as described in (Frühwirth-Schnatter, 2006).

Although inefficient compared to other estimators, this simple method offers a closed form solution in
the case of mixture of two Poisson distributions, which is crucial for the speed of the analysis for such a large
quantity of data.

Let Yi be the random variables representing the counts in the quadrat i and yi the measured value of
these variables. The first three factorial moments E(Hj(Y )|λ1, λ2, η1) of the random variable Y , Hj(Y ) =

Y !
(Y−j)! , j = 1, 2, 3 are matched with empirical moments obtained from yi, H̄j = 1

N

∑N
i=1Hj(yi).
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(a) Easily separable components of the mixture
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Figure 2: Pseudo-surface representing the density functions of kNN distance D
1
2
k (λ1, λ2) for the spatial

Poisson mixture with concentrations λ1 inside and λ2 outside the spot, respectively. . To each value k on
the kNN axis, corresponds a density function curve.

Since E(Hj(Y )|λk) = λk the equation system for λ1, λ2 and η1 becomes:

η1(λ1 − λ2) + λ2 = v1

η1(λ2
1 − λ2

2) + λ2
2 = v2

η1(λ3
1 − λ3

2) + λ3
2 = v3

with vj = 1
N

∑
i:yi≥j yi(yi − 1) . . . (yi − (j − 1)).

We tested several quadrat sizes, but the results obtained on real images were robust for quadrats of size
20× 20 pixels and above. However further study is necessary to select the optimal quadrat size.

3.2.2 Concentration estimation based on Expectation-Maximization approach

As a second approach we adopt the method of Byers and Raftery, used in minefield detection (Byers and
Raftery, 1998). The location of the detected peaks are treated as a mixture of two spatial Poisson processes
with different rates for foreground and background.

In the case of a single spatial Poisson processes with constant rate λ the distribution Dk of the distance
from a point of the Poisson process to it’s k-th nearest neighbor (kNN) can be written as

P (Dk ≥ x) =
k−1∑

q=0

e−λπx2 (
λπx2

)q

q!
= 1− FDk

(x). (10)

This leads to the density function:

fDk
(x) =

dFDk
(x)

dx
=
e−λπx2

2 (λπ)k
x2k−1

(k − 1)!

meaning that the D2
k follows a transformed Gamma distribution, D2

k ∼ Γ(k, λπ). Here λ is measured in
counts of single molecules per pixels squared.

The maximum likelihood estimate of the rate of the Poisson process is:

λ̂ =
k

π
∑n

i=1 d
2
i

(11)

where di, i = 1, . . . , n are the realizations of the k-th nearest neighbour distances.
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(a) N = 10 (b) N = 50 (c) N = 100 (d) N = 500 (e) N = 1000

Figure 3: Detection results for FDR thresholding, at different concentrations and SNR levels. A set of
simulated images is shown in (a)-(e) for different concentrations: N represents the number of peaks in the
512× 512 pixel image (corresponding to 102.4µm× 102.4µm). SNR = 5.02 (additional Gaussian noise with
σ = 2.2). The images are scaled for better visibility. The same pixel intensity scale is used for the five
images.

In the case of a mixture of two Poisson processes with two intensity rates λ1 and λ2, the model for Dk

can be written as: Dk = Dk(λ1, λ1) ∝ p Γ
1
2 (k, λ1π) + (1− p)Γ

1
2 (k, λ2π) .

As opposed to the method of moments’ η, p represents a proportion of the samplesDk. The three unknown
parameters that describe the distribution DK : p, λ1, λ2, are estimated via the Expectation Maximization
(EM) algorithm, together with the assignments to components (“missing data”) δi ∈ {0, 1}, where δi = 1 if
the i-th point belongs to the first component (signal), and δi = 0 otherwise.

The expectation step is:

E
(
δ̂
(t+1)
i

)
=

p(t)fDk

(
di, λ̂

(t)
1

)

p(t)fDk

(
di, λ̂

(t)
1

)
+ (1 − p(t))fDk

(
di, λ̂

(t)
2

)

and the maximization:

λ̂
(t+1)
1 =

k
∑n

i=1 δ̂
(t+1)
i

π
∑n

i=1 d
2
i δ̂

(
i t+ 1)

λ̂
(t+1)
2 =

k
∑n

i=1

(
1− δ̂

(t+1)
i

)

π
∑n

i=1 d
2
i

(
1− δ̂

(t+1)
i

)

p(t+1) =
n∑

i=1

δ̂
(t+1)
i

n
.

As initial values for the three parameters one can use the results obtained through the method of moments
method. The bigger the difference between the signal and clutter concentration the easier is to separate
the two components of the mixture. Also, as one can see in fig. 2 for high concentrations the task is more
challenging than for lower concentrations. The figure 2 is a pseudo-surface representing the distribution
function of the k-th nearest neighbour Dk(λ1, λ2) in the spatial mixture model for each fixed value k on the
axis kNN , and for fixed rates λ1 and λ2.

4 Results and discussion

The performance of the high resolution microarray image analysis was extensively tested on simulations as
well as real images.

4.1 Evaluation of the detection method

The detection algorithm was tested on a set of simulation images with varied image quality parameters, as
measured by the signal-to-noise ratio (SNR), as well as several molecule concentrations. Each image is of
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Figure 4: The results of detection on the simulations are summarized in figures: (a) ratio of true positives
and (b)ratio of false negatives with respect to the true number of simulated single molecules

dimension 512× 512 pixels and contains 10, 50, 100, 500 or 1000 randomly placed molecules.
To a single molecule corresponds a diffraction limited spot, approximated by a two-dimensional Gaussian

shape, with width s corresponding to the point spread function of the optical system (1.1 in our simulations).
Both the constant background intensity and the peak intensity S were chosen on a logarithmic scale between
10 and 100. Noise is generated for each pixel as described in 3.1.3: the photon count noise was modeled by
draws from Poisson distributions, and finally Gaussian noise is added to each pixel from N (0, σ), where σ was
chosen as 0, 5, 10, 15 and 20% of the maximum peak intensity. For this special case of Poisson-Gaussian model
described , we use to following signal-to-noise (SNR) definition as in Murphy (2001): SNR = S/

√
B + σ2,

where S represents the single molecule intensity, B the (local) background of the image and σ the standard
deviation of the read-out noise. (For simplicity S is the maximum intensity of the single molecule profile).

The SNR for our simulations is between 0.9 and 31.6.. For each set of parameters 10 images were
generated and analyzed. One set of simulations is presented in figure 3 (a− e).

The results are summarized in figure 4 (a and b). For SNR above 10 the detection for all five con-
centrations levels, with over 80% true positives for less than 500 molecules, but only above 60% for high
concentrations (N = 1000). However, at high concentrations the spots can be analyzed also with con-
ventional methods designed for low resolution microarrays. The SNR typical for our system, is usually at
least 15, ( at this level true positives exceed 85% of the number of simulated peaks for N = 500, and 70%
forN = 1000, respectively). The rate of false positives is under 9% even for very low concentrations (N = 10)
and substantially lower for N > 100. The detection performance was similar for simulation with the same
SNR, independent of the weight of Poisson and Gaussian noise in the generation of the simualted image.

4.2 Evaluation of concentration estimation

The concentration estimation algorithms were tested on data representing the position of single molecules
and clutter, respectively. The assumption is that signal (molecules’ position) has a higher concentration
than clutter. For each data set, two spatial Poisson processes are simulated: one of intensity λ1 inside a
disk of radius R (150 pixels in our case) and a second one, of intensity λ2, independent of the first one, in a
rectangle excluding this area. The values of λ1 are increasing with a step of 0.005 from 0.01 to 0.05 peaks
per pixel squared, while λ2 varies from 0.005 to λ1− 0.005, for each value of λ1. For each (λ1, λ2) parameter
pair, ten data sets were generated. The results of the estimation of the signal concentration λ1 is presented
in figure 5. The results in the case of MOM estimation are strongly biased downward compared to the true
value, while in the case of EM this bias is less strong. When the two concentration are close together one
can see a stronger bias, due to the failure of separating the two components of the mixture.
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Figure 5: Background/foreground separation for three different concentrations via Method of Moments and
Expectation Maximization methods. The true λ values are represented as a stair-case function and for better
visibility, the estimation results were slightly shifted on the abscissa.

Figure 6: Correlations between the true and the estimated signal concentrations were computed for simulated
images (left), for the downscaled ones (middle) and for the denoised and downscaled images (right).

4.3 Correlation tests

Finally we have compared how the results of our analysis correlate with the original concentrations, and
compared these correlation results with those obtained via a classical technique on the downscaled images of
the same data. The downscaled images corresponds to the resolution of commercially available systems. For
this purpose, 60 images were generated with SNR between 2.85 and 31.6. In each image, single molecules
were simulated with concentrations λ1 between 0.001 and 0.011 peaks/pixels squared inside a disk of radius
150 pixels. The clutter outside this disk, λ2 was varied between 0.001 and 0.09, such that λ2 ≤ λ1+0.02. The
images of the single molecules were generated as described in 4.1. As classical analysis we have chosen the
maximum likelihood (MLE) approach to estimate the parameters of a Gaussian mixture with two components
applied on the pixel intensities of the downscaled image (from each 20× 20 pixels patch of simulated image
we have generated by summation one pixel in the downscaled image). The MLE was applied directly to the
downscaled data as well as to the downscaled result of the denoised images by wavelet thresholding.

As it is shown in figure 7 the single molecule analysis always shows a better correlation than the analysis
of the downscaled images. The lowest correlation value for single molecule analysis, 0.837, is obtained for
SNR = 4.81. For more typical SNR values, above 10, the correlation coefficient is higher than 0.935.

5 Conclusion

In this paper we have presented the analysis of microarray images at single molecule resolution. A model
for microarray image formation was given, in order to explain the advantages of the single molecule tech-
nique. The analysis consists of estimating the two concentration of hybridization signal, which implies single
molecule detection and signal clutter separation. We have tested the detection algorithm and the signal
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Figure 7: Correlations between the estimated and the true signal concentrations. The single molecule
analysis always performs better than the analysis on the downscaled data (original and denoised via wavelet
thresholding).

concentration based on MOM and EM methods on simulated images and we have shown that they perform
well for the parameters typical for our system. Furthermore we have shown that our approach provides good
correlation results for concentrations and SNR values where the low resolution based methods fail.
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