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Coherence Probe Microscopy 3D Image Processing
Review and Recent Results

Verena Schlager
Johannes Kepler Universität Linz

FLLL / CDL-MS-MACH

November 8, 2010

Abstract

Optical coherence tomography (OCT), a technique originally proposed for applications in
the field of biomedical diagnostics, is shown to be an efficient measurement technique for a
multitude of problems posed in technical engineering and material research [1]. Coherence
Probe Microscopy (CPM) should bring us to a still more efficient technique for analyzing
surfaces of organic or polymer material.
The mathematical side of the CPM research is to increase the image quality and the analyze of
the images. For the first part image enhancement techniques like denoising filters, binarization
techniques or background correction play a quite important role. The second part splits
into retrieving orientation informations of the inner structure and clustering the images into
different groups depending on their inner structure, e.g. for detecting failure images.
In this presentation I will give a review about this different considerations of my master thesis.
Additionally I will present the recent results in orientation analysis based on the Riesz-Laplace
wavelet transform [2, 3, 4].
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Monogenic Signal and Phase Filter: Applications in Image Processing and
Optics

Bettina Heise, FLLL/ZONA, Christian Doppler Laboratory MS-MACH,
Johannes Kepler University, Linz, Austria

Abstract: Mathematical methods, based on monogenic signal theory, offer an alternative in field of
image processing. Whereas analytic signals are well-known as 1D-approach in electrical engineering
and signal processing, for 2D-signals (as e.g. images) the Riesz transform possesses a functionality
comparable to the 1D-Hilbert transform [1]. We encounter examples of these methods e.g. for
corner/edge detection [2], for fringe analysis [3], and in an generalized way for texture analysis
[4]. The computed features, as local energy, local phase and frequency, or local orientation of
structures within the image, can be used for the description and classification of the textures
under investigation in the following.
The question may be posed how monogenic signal processing can be combined with multi-scale/
multi-resolution techniques. Different approaches are described in literature: Monogenic signal and
wavelet-based methods [5], monogenic signal and scale-space methods [6], and monogenic signal
and empirical mode decomposition [7].
In optics, spiral phase filtering or vortex filtering [8], applying a phase filter with a helical phase
function in Fourier domain, represents the physical analogue to the mathematical Riesz transform
in image processing. However, it should be noted that in optical imaging the complex-valued
electric field is the quantity of interest to be influenced, in contrast to the scalar-valued intensity
modified in image processing. Therefore, the obtained effects will differ: in optics these filters find
use e.g. for laser beam shaping to provide so-called donut modes [9] or for contrast modifications
during the imaging process; in image processing they are applied e.g. for extraction of salient
image points [10] or for local phase/frequency-based analysis of the recorded patterns.
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Texture Analysis based on Monogenic Signals and Emperical Mode Decomposition
Swanhild Bernstein
Institute of Applied Analysis, Freiberg University of Mining and Technology

Analytic signal representation as introduced by Gabor plays an important role in optical signal
processing and in coherence theory of optical fields. Several definitions for extending the notion
of representation to two and more dimensions have appeared. We will present the model of
monogenic signals which is one generalization. Combining the signal and its Riesz transformed
result yields the monogenic signal

fM(x) = f (x) + (hR ∗ f )(x).

Applying the Poisson kernel to the original signal results in a smoothed signal which, for all scale
parameters s, results in a Poisson scale-space

p(x; s) = ( f ∗ hP)(x) and q(x; s) = ( f ∗ hQ)(x),

where s denotes the scale parameter, p(x; s) is the Poisson scale-space and hP indicates the
scalar-valued Poisson kernel and hQ denotes the conjugated Poisson kernel. The expressions
for the local amplitude and local phase in this case are

AM(x; s) =
√

p(x; s)2 + |q(x; s)|2 and ΦM(x; s) =
q(x; s)
|q(x; s)| arctan

( |q(x; s)|
p(x; s)

)
.

The monogenic scale-space is an alternative to the Gaussian scale-space. Coupling methods
of differential geometry tensor algebra, monogenic signal and quadrature filter, a general model
for 2D image structures can be obtained as the monogenic extension of a curvature tensor.

The analysis of emperical data in order to detect and parameterize multiscale patterns and
shapes is an important problem. The so-called Hilbert-Huang transform consits in the followi-
ng: first, one decomposes iteratively the times series into empirical adaptive nonlinear modes
(instrinsic mode functions (IMF)) which exhibits nonlinear shapes and patterns . Second, the
Hilbert spectrum analysis of the IMFs provides the localized time-frequency spectrum and the
extraction of instantaneous frequencies.
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Special classes of distorted generated copulas

Monika Pekárová

November 8, 2010

Abstract

Based on a recent representation of copulas invariant under univariate conditioning, a new class of copulas
linked to a distortion of the identity function is introduced and studied.

1 INTRODUCTION

Copulas [19] link univariate marginal distribution functions into a joint distribution function of the corresponding
random vector. In this paper we will deal with bivariate copulas only. Recall that a function C : [0, 1]2 → [0, 1]
is a (bivariate) copula whenever it is grounded, C(x, y) = 0 whenever 0 ∈ {x, y}, it has neutral element 1,
C(x, y) = x∧ y, whenever 1 ∈ {x, y} and it is 2-increasing, C(x+ ǫ, y+ δ)−C(x, y+ δ) ≥ C(x+ ǫ, y)−C(x, y)
for all x, y, ǫ, δ ∈ [0, 1] such that x + ǫ, y + δ ∈ [0, 1]. Three basic copulas Π,M,W given by Π(x, y) = xy,
M(x, y) = x∧ y, W (x, y) = (x+ y− 1)∨ 0, express the independence, total comonotone dependence (Y = ϕ(X)
for an increasing function ϕ) and total countermonotone dependence (Y = η(X) for a decreasing function η) of
the univariate random variables X and Y , respectively. For modelling purposes, the knowledge of a large class
of copulas is required. Thus several parametric classes of copulas have been introduced. For an overview we
recommend monographs [9, 17]. It seems so that the most prominent class of copulas is the class of Archimedean
copulas together with their M -ordinal sums.

For more details we recommend [17, 20]. Note only that by Cf we denote an Archimedean copula Cf : [0, 1]
2 →

[0, 1] given by
Cf (x, y) = f (−1)(f(x) + f(y)), (1)

where f : [0, 1] → [0,∞] is a continuous strictly decreasing convex function satisfying f(1) = 0 and f (−1) : [0,∞] →
[0, 1] is the pseudo-inverse of f , f (−1)(u) = f−1(min(u, f(0))). The function f is called a generator of copula
Cf and we denote by F the set of all generators.

We introduce some well-known examples of parametric families of Archimedean copulas, compare [9, 17]:

i) For real λ 6= 0, define fλ : [0, 1] → [0,∞] by fλ(x) = x−λ−1
λ . Then fλ ∈ F whenever λ ≥ −1. Adding

f0 = fΠ, fΠ(x) = − log x, the Clayton family (Cfλ)λ≥−1 is recognized, with Cf−1
= W,Cf0 = Π and

Cf1 = H (Ali-Mikhail-Haq copula) given by H(x, y) = xy
x+y−xy whenever xy 6= 0.

ii) The Gumbel family can be seen as (Cfλ
Π
)λ≥1.

iii) The Yager family can be seen as (Cfλ
W
)λ≥1.

The idea of a modification of formula (1) by means of a dependence function known from the extreme value
copulas (EV-copulas, in short) was proposed in [2] as Archimax copulas. We give some more details on Archimax
copulas in Section 3. On the other side, a recent study of copulas invariant under univariate conditioning initiated
in [14] and [8] was completed by Durante and Jaworski in [5], providing a complete description of copulas with
the above mentioned property. In the next section, we give more details on this result. The main aim of
this paper is a generalization of construction provided by the results of Durante and Jaworski. Motivated by
Archimax copulas, we introduce a new class of DUCS (Distorted Univariate Conditioning Stable) copulas in
Section 3. In Section 4, several examples and properties of DUCS copulas are discussed.

2 Copulas invariant under univariate conditioning

We will consider copulas invariant under left univariate truncation only, and we will call them briefly copulas
invariant under univariate conditioning. Copulas invariant under univariate conditioning are linked to g-ordinal
sums based on the product copula and introduced in [14].
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Proposition 2.1 Let f ∈ F and let f̄ : [0, 1] → [0,∞] be given by f̄(x) = f(1 − x). Then the functions C(f),
C(f̄) : [0, 1]

2 → [0, 1] given by

C(f)(x, y) = xf (−1)

(
f(y)

x

)
(2)

whenever x ∈]0, 1], and
C(f̄)(x, y) = x

(
1− f (−1)

(
f̄(y)

x

))
(3)

whenever x ∈]0, 1], are copulas, which are invariant under univariate conditioning.

Note that for any f ∈ F and c > 0, C(cf) = C(f). Moreover, C(f) ≤ Π and for each x ∈]0, 1[ there is y ∈]0, 1[
so that C(f)(x, y) < xy. Similarly, C(f̄) ≥ Π and for each x ∈]0, 1[ there is y ∈]0, 1[ such that C(f̄)(x, y) > xy.

Observe also that for each (x, y) ∈ [0, 1]2, C(f̄)(x, y) = x − C(f)(x, 1 − y), i.e., C(f̄) is a flipping of the copula
C(f), compare [4, 17].

Theorem 2.2 A copula C : [0, 1]2 → [0, 1] is invariant under univariate conditioning if and only if C is a
g-ordinal sum where each summand Ck, k ∈ K, satisfies Ck ∈ {C(fk), C(f̄k)} for some fk ∈ F .

The main aim of our paper is a generalization of copulas introduced in Proposition 2.1, and thus we give
now some examples.

Example 2.3

i) Let f = fW . Then C(fW ) = CfW = W , and C(f̄W ) = M .

ii) For p ∈]0, 1], define hp : [0, 1] → [0,∞] by hp(x) = (1−xp)
1
p . Then hp ∈ F and C(hp) = Cf−p

is a Clayton
copula with parameter −p ∈ [−1, 0[ (see Introduction item (i)). Observe that Cf−p

≤ Π.

iii) For λ ∈]0,∞[, define gλ : [0, 1] → [0,∞] by gλ(x) = ((1− x)−λ − 1)−
1
λ . Then gλ ∈ F and C(ḡλ) = Cfλ is

a Clayton copula with parameter λ ∈]0,∞[. Note that then Cfλ ≥ Π.

iv) Recall that f1 : [0, 1] → [0,∞] in Introduction item (i) is given by f1(x) =
1
x−1. Then C(f1)(x, y) =

x2y
1−y+xy ,

and C(f̄1)(x, y) =
xy

x+y−xy = Cf1(x, y).

3 DUCS copulas

Based on the description of EV-copulas (extreme value copulas), see [21] or overview chapter [7], Capéraà et
al. [2] have introduced Archimax copulas as a common generalization of Archimedean copulas and EV-copulas.
Recall that for f ∈ F , an Archimax copula Cf,D : [0, 1]2 → [0, 1] is given by

Cf,D(x, y) = f (−1)

(
(f(x) + f(y))D

(
f(x)

f(x) + f(y)

))
, (4)

with convention 0
0 = ∞

∞ = 1. Here D : [0, 1] → [0, 1] is a dependence function which is convex and satisfies
x ∨ (1 − x) ≤ D(x) ≤ 1 for all x ∈ [0, 1]. Evidently, for the strongest dependence funtction D∗ : [0, 1] →
[0, 1], D∗(x) = 1, the Archimax copula Cf,D∗ is just the Archimedean copula Cf , Cf,D∗ = Cf . On the other
side, for the weakest dependence function D∗ : [0, 1] → [0, 1], D∗(x) = x ∨ (1 − x), for any f ∈ F it holds
Cf,D∗ = M . For D 6= D∗, Archimax copulas Cf,D can be seen as distorted Archimedean copulas. Inspired by
this observation, we propose to consider distorted univariate conditioning stable copulas, briefly DUCS copula.

Proposition 3.1 Let f ∈ F and let d : [0, 1] → [0, 1] be a function. Define C(f,d) : [0, 1]
2 → [0, 1] by

C(f,d)(x, y) = xf (−1)

(
f(y)

d(x)

)
, (5)

with convention 0
0 = 0. Then:

i) C(f,d) is grounded

ii) 1 is neutral element of C(f,d) if and only if d(1) = 1
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iii) C(f,d) is a copula for any f ∈ F if and only if there is a function d̃ : [0, 1] → [0, 1] so that d(x)d̃(x) = x

for all x ∈ [0, 1], and both d and d̃ are non-decreasing on ]0, 1].

Note that given d : [0, 1] → [0, 1] such that there is a function d̃ : [0, 1] → [0, 1] satisfying d(x)d̃(x) = x for all
x ∈ [0, 1], necessarily d(x) ≥ x, d̃(x) ≥ x and both d and d̃ are continuous and positive on ]0, 1]. If d(0) = 0,
the value d̃(0) can be chosen arbitrarily. However, in order to have the uniqueness of the relation of d and d̃,

we will consider continuous d and d̃ only. Evidently, then˜can be seen as duality,
˜̃
d = d.

Denote by D the set of all continuous non-decreasing functions d : [0, 1] → [0, 1] such that there is a continuous
non-decreasing function d̃ : [0, 1] → [0, 1] for which d(x)d̃(x) = x for all x ∈ [0, 1]. Elements of D will be called
distortions. Clearly d ∈ D if and only if d̃ ∈ D. Now we are ready to define DUCS copulas.

Definition 3.2 A copula C : [0, 1]2 → [0, 1] is called a DUCS copula whenever there is a generator f ∈ F and
a distortion d ∈ D so that C = C(f,d).

Example 3.3

i) The strongest distortion d∗ ∈ D is given by d∗(x) = 1. For any f ∈ F , C(f,d∗) = Π, i.e., the product

copula is the strongest DUCS copula. Moreover, d∗ = (d̃∗) the weakest distortion is given by d∗(x) = x,
and C(f,d∗) = C(f) for any generator f ∈ F (observe the striking similarity with the bounds of Archimax
copulas).

ii) For any d ∈ D, the copula C(fW ,d) : [0, 1]
2 → [0, 1] is given by C(fW ,d)(x, y) = max(0, x + (y − 1)d̃(x)).

Take a parametric family (d(α))α∈[0,1] of distortions, d(α)(x) =
x

α+(1−α)x . Then d̃(α)(x) = α + (1 − α)x,

and C(fW ,d(α))(x, y) = max(0, α(x + y − 1) + (1 − α)xy). Observe that the family (C(fW ,d(α)))α∈[0,1] is a
parametric family of Archimedean copulas continuous and decreasing in parameter α, with extremal ele-
ments W = C(fW ,d(1)) and Π = C(fW ,d(0)). Note that the generator f(α) of C(fW ,d(α)) for α < 1 is given
by f(α)(x) = − log(α+ (1− α)x).

iii) For α ∈]0, 1[, define d{α} : [0, 1] → [0, 1] by d{α}(x) = max(α, x). Then d{α} ∈ D, and the DUCS copula
C(fW ,d{α}) : [0, 1]

2 → [0, 1] is given by

C(fW ,d{α})(x, y) =

{
max(0, x

α (y − 1 + α)) if x ∈ [0, α],

W (x, y) elsewhere.
(6)

Observe that this copula is a W -ordinal sum copula as introduced in [16], see also [3, 6], C(fW ,d{α}) =
W − (〈0, α,Π〉).

4 Properties and examples of DUCS copulas

DUCS copulas are based on generators from F and distortions from D. The structure of F , especially construc-
tion methods for generators, were deeply studied in [1]. Concerning the distortions set D, we have the next
important result.

Proposition 4.1 Let A : [0, 1]n → [0,∞] be a continuous idempotent homogeneous aggregation function. Then
for any d1, · · · , dn ∈ D, also the function d : [0, 1] → [0, 1] given by d(x) = A(d1(x), · · · , dn(x)) is a distortion.

As a corollary of Proposition 4.1, D is a convex class which is also a lattice with top element d∗ and bottom
element d∗. Note that a similar conclusion holds for the class of DUCS copulas with a fixed generator f .

Corollary 4.2 Let f ∈ F and d1, d2 ∈ D. For DUCS copulas C(f,d1) and C(f,d2), denote C = C(f,d1) ∨ C(f,d2)

and D = C(f,d1) ∧ C(f,d2). Then both C and D are DUCS copulas, C = C(f,d1∨d2) and D = C(f,d1∧d2).

For special distortions we can get interesting DUCS copulas.

Proposition 4.3 Let d(λ) ∈ D be given by d(λ)(x) = x
1
λ , λ ∈ [1,∞[. Then, for any f ∈ F , C(f,d(λ)) = C(fλ).

Proposition 4.4 Let d[α] ∈ D be given by d[α](x) =
x
α ∧ 1, α ∈]0, 1]. Note that d[α] = d̃{α}, (see Example 3.3

iii). Then, for any f ∈ F , C(f,d[α]) = g − (〈0, α, Cf 〉), i.e., DUCS copula C(f,d[α]) is a g-ordinal sum.
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Remark 4.5 For any distortion d ∈ D and constant α ∈]0, 1], the function d〈α〉 : [0, 1] → [0, 1] given by

d〈α〉(x) = d(αx)
d(α) is also a distortion (formally, conditional distortion), and (d̃〈α〉)(x) = d̃(αx)

d̃(α)
, i.e., (d̃〈α〉) =

(d̃)〈α〉. After some processing concerning the univariate conditioning, see [14], it can be shown that the left con-
ditioning with threshold α of DUCS copula C(f,d) is just the DUCS copula C(f,d〈α〉), i.e.,(C(f,d))(α) = C(f,d〈α〉).

Moreover, d〈α〉 = d for all α ∈]0, 1] yields the Cauchy equation d(αx) = d(α)d(x), with solution d(x) = x
1
λ ,

λ ∈ [1,∞[, i.e. d = d(λ), see Proposition 4.3. Thus the only univariate conditioning invariant DUCS copulas
are copulas C(f,d(λ)) = C(fλ).

For more details and proofs we recommend [15].
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Ph.D. Thesis, Université Laval Québec, Canada, 1995.

[11] E. P. Klement, R. Mesiar and E. Pap: Quasi- and pseudo-inverses of monotone functions, and the con-
struction of t-norms. Fuzzy Sets and Systems, 104(1):3–13, 1999.

[12] E. P. Klement, M. Manzi and R. Mesiar: Ultramodular aggregation functions and a new construction
method for copulas. Submitted, 2010.

[13] E. Liebscher: Construction of asymmetric multivariate copulas. J. Multivariate Analysis 99:2234–2250,
2008.
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Convex combination in dependence structure of Archimax
copulas and comparison study on real data

Tomáš Bacigál and Vladimı́r Jágr

November 4, 2010

Abstract

In this paper we focus on asymmetric copulas that are able to model relationship of
non-exchangeable random variables. Investigation is aimed at relation between powers
of aditive generators and dependence functions of Archimax copulas. We also propose
some new construction methods for dependence functions and give application to real
hydrological data.

1 Introduction

Copula is a function which allows modelling dependence structure between stochastic variables.
In recent years copulas turned out to be a promising tool in multivariate modelling, mostly
with applications in actuarial sciences and hydrology. The main advantage is that the copula
approach can split the problem of constructing multivariate distributions into a part containing
the marginal distribution functions and a part containing the dependence structure. These
two parts can be studied and estimated separately and then rejoined to form a multivariate
distribution function.

In the simplest, bivariate case, copula is a function C : [0, 1]2 → [0, 1] which satisfies the
boundary conditions, C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for t ∈ [0, 1] (uniform
margins), and the 2-increasing property, C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for
all u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]. Copula is symmetric if C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]2 -
then it can model exchangeable random variables - otherwise is asymmetric.

In the contribution we summarize our recent research, for more proofs and examples please
refer to [3].

2 Archimax copulas

The most used symmetric models are Archimedean copulas [14], i.e., copulas Cϕ : [0, 1]2 → [0, 1]
expressable in the form

Cϕ(u, v) = ϕ(−1) (ϕ(u) + ϕ(v)) , (1)

where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing convex function satisfying ϕ(1) = 0
(such ϕ is called a generator), and its pseudo-inverse ϕ(−1) : [0,∞] → [0, 1] is given by

ϕ(−1)(t) = ϕ−1 (min(ϕ(0), t)) . (2)

For nice overview of fitting Archimedean copulas to real data we recommend [5] and references
therein.
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Going further, among few classes of asymmetric copulas, convenient enough to model non-
exchangeable random variables, we focus on the class of Archimax copulas [4] built up from a
generator ϕ and a convex function A : [0, 1] → [0, 1], max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1],
called dependence function. Then the corresponding Archimax copula is given by

Cϕ,A(u, v) = ϕ(−1)

[
(ϕ(u) + ϕ(v))A

(
ϕ(u)

ϕ(u) + ϕ(v)

)]
for all u, v ∈ [0, 1] (3)

(with conventions 0/0 = ∞/∞ = 0, where ϕ(−1) is given by (2). Observe that Archimax
copulas contains as special subclasses all Archimedean copulas (then A ≡ 1) and all extreme
value copulas [15], in short EV copulas (then ϕ(t) = − log(t)). For the weakest dependence
function A = A∗, A∗(t) = max(t, 1−t), we have Cϕ,A∗ = M , the strongest copula of comonotone
dependence, independently of the generator ϕ. Moreover, it is easy to check that an Archimax
copula Cϕ,A is symmetric if and only if A(t) = A(1 − t) for all t ∈ [0, 1] (i.e., A is symmetric
wrt. axis x = 1/2).

Now, to introduce new facts, suppose that ϕ is a generator of a copula Cϕ. Then also ϕλ,
λ > 1, is a generator of a copula Cϕλ. As an example recall the Gumbel family of copulas(
CG

(λ)

)
λ∈[1,∞[

, generated by generators ϕG
(λ) : [0, 1] → [0,∞], ϕG

(λ)(t) = (− log t)λ, which bears

from the product copula Π generated by ϕG
(1).

Proposition 2.1. Let ϕ : [0, 1] → [0,∞] be a generator of a copula Cϕ. For any dependence
function A, and any λ ≥ 1, the Archimax copula Cϕλ,A is also an Archimax copula based on
generator ϕ, i.e., Cϕλ,A = Cϕ,B(A,λ)

, where B(A,λ) : [0, 1] → [0, 1] is a dependence function given
by

B(A,λ)(t) = A(λ)(t)

[
A

((
t

A(λ)(t)

)λ
)]1/λ

, (4)

with A(λ) : [0, 1] → [0, 1], A(λ)(t) =
(
tλ + (1− t)λ

)1/λ
.

Dependence function A(λ), λ ∈ [0, 1], are called Gumbel dependence functions due to the fact
that CG

(λ) = CϕG
(1)

,A(λ)
. Observe that the Archimedean copula Cϕλ is just an Archimax copula

based on ϕ and A(λ), Cϕλ = Cϕ,A(λ)
, independently of the generator ϕ. Proposition 2.1 has an

important impact for the structure of Archimax copulas. For any generator ϕ : [0, 1] → [0,∞],
classes Aϕλ of Archimax copulas based on generator ϕλ, λ ∈ [1,∞[, are nested, and Aϕλ $ Aϕµ

whenever 1 ≤ µ < λ ≤ ∞, where Aϕ∞ =
⋂∞

λ=1Aϕλ = {M}. Therefore it is important to
know the basic form η of each generator ϕ, ϕ = ηλ with λ ≥ 1, where η : [0, 1] → [0,∞] is a
generator such that for any λ ∈]0, 1[, ηλ is no more convex. Such generators η will be called
basic generators and they correspond to Archimedean copulas Cη such that for any p > 1, the
corresponding Lp-norm ‖Cη‖p > 1 (for more details we recommend [1, 13]).

Proposition 2.2. Let ϕ : [0, 1] → [0,∞] be a generator. Let α = inf
{

ϕ(x)ϕ′′(x)
(ϕ′(x))2

∣∣ x ∈]0, 1[ and
ϕ′(x), ϕ′′(x) exist

}
. Then η = ϕ1/p, where p = 1

1−α
, is a basic generator.

Based on Propositions 2.1 and 2.2, we propose to fit Archimax copulas based on basic
generators η only. Thus before choosing the appropriate candidates for fitting of a generator,
one should check their basic forms. The next lemma gives a sufficient condition for a generator
η to be basic.

Lemma 2.3. Let η : [0, 1] → [0,∞] be a generator and let η′(1−) 6= 0. Then η is a basic
generator.



Proof. Due to continuity of η and η(1) = 0, if η′(1−) 6= 0 then α = inf
{

η(x)η′′(x)
(η′(x))2

∣∣ x ∈]0, 1[ and
η′(x), η′′(x) exist

}
= 0 and thus p = 1.

Example 2.4.

(i) For each Gumbel generator ϕG
(λ), the corresponding basic generator is η = ϕG

(1) (the gen-

erator of the product copula).

(ii) The weekest copula C(p) which has minimal Lp-norm, ‖C(p)‖p = 1, p ∈ [1,∞[, is an
Archimedean copula generated by a generator ϕY

(p) : [0, 1] → [0,∞], ϕY
(p)(x) = (1 − x)p

(Y stands for Yager family, see [16], more details on Lp-norms and copulas can be found
in [1]). Again, for any p ∈ [1,∞[, the corresponding basic generator η = ϕY

(1) is unique

(generator of the lower Frechet-Hoeffding bound W ).

(iii) Based on Lemma 2.3 one can quickly check that the families of Clayton, Frank, Ali-
Mikhail-Haq (see [9, 14]), are generated by basic generators only.

(iv) From two-parameter families given in [9], for example BB1 generator ϕ(t) = (t−a − 1)b

with a > 0, b ≥ 1 gains its basic form only for b = 1, and thus would result in strict
Clayton copula.

3 Some construction methods for dependence functions

Based on some known dependence functions, it is desirable to be able to construct new depen-
dence functions to increase the fitting potential of our Archimax copulas buffer. Recall that for
dependence functions A1, . . . , An also their convex sum A =

∑n
i=1 λiAi is a dependence function.

Inspired by the bivariate construction [10] and based on the recent results [12], consider depen-
dence functions A1, . . . , An. Then the corresponding EV copulas CA1 , . . . , CAn : [0, 1]2 → [0, 1]
are given by

CAi
(u, v) = exp

(
(log u+ log v)Ai

(
log u

log u+ log v

))
. (5)

Take arbitrary two probability vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n,
∑n

i=1 ai =
∑n

i=1 bi = 1.
Then due to [12] the function C : [0, 1]2 → [0, 1] given by

C(u, v) =

n∏

i=1

Ci

(
uai, vbi

)
(6)

is also a copula. Note that EV copulas are characterized by the power stability C
(
uλ, vλ

)
=

(C(u, v))λ for any λ ∈]0,∞[, u, v ∈ [0, 1]. It is then easy to see that C given by (6) is also
an EV copula, and thus there is a dependence function A so that C = CA. For processing
purposes, denote t = log u

log u+log v
. Then log v = 1−t

t
log u and log u+ log v = log u

t
. Moreover,

C(u, v) = exp

(
(log u+ log v)A

(
log u

log u+ log v

))
= exp

(
log u

t
A(t)

)
. (7)

On the other hand, due to (6),

C(u, v) =
n∏

i=1

exp

((
ai log u+ bi

1− t

t
log u

)
Ai

(
ai log u

ai log u+ bi
1−t
t
log u

))

= exp

(
log u

t

n∑

i=1

(tai + (1− t)bi)Ai

(
tai

tai + (1− t)bi

))
. (8)



Comparing (7) and (8), we see that

A(t) =

n∑

i=1

(tai + (1− t)bi)Ai

(
tai

tai + (1− t)bi

)
. (9)

What was just shown is the following construction method.

Proposition 3.1. Let A1, . . . , An be dependence functions. Then for any probability vectors
(a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n, also the function A : [0, 1] → [0, 1] given by (9) is a depen-
dence function.

Observe that the formula (9) can be deduced by induction from the original formula given
in [10], see also [8] dealing with A1, A2 and α, β ∈ [0, 1]. Then the function A : [0, 1]2 → [0, 1]
given by

A(t) = (αt+ β(1− t))A1

(
αt

αt+ β(1− t)

)
+

+ ((1− α)t+ (1− β)(1− t))A2

(
(1− α)t

(1− α)t+ (1− β)(1− t)

)

is a dependence function. Moreover, if (a1, . . . , an) = (b1, . . . , bn), then the formula (9) turns
into the standard convex sum A(t) =

∑n
i=1 aiAi(t). Evidently, this method allows to introduce

asymmetric Archimax copulas even if starting from symmetric Archimax copulas.

Inspired by [2] where construction methods for generators of Archimedean copulas were
discussed, we propose one more construction method for dependence function. For a dependence
function A, denote by B a [0, 1] → [0, 1] function given by B(t) = A(t)− 1 + t. Each such B is
characterized by its convexity, non-decreasingness and boundary conditions

max(0, 2t− 1) ≤ B(t) ≤ t.

The pseudo-inverse B(−1) : [0, 1] → [0, 1] of B is given by

B(−1)(u) = sup{t ∈ [0, 1] |B(t) ≤ u},

and it is characterized by concavity, non-decreasingness and boundary conditions

u ≤ B(−1)(u) ≤ u+ 1

2
. (10)

Consider dependence functions A1, . . . , An and related functions B
(−1)
1 , . . . , B

(−1)
n . Then the

convex combination
∑n

i=1 λiB
(−1)
i is concave, non-decreasing and satisfy the boundary condi-

tions (10), and thus there is a dependence function A such that its related function B(−1) is

just equal to
∑n

i=1 λiB
(−1)
i . This fact proves our next construction method.

Proposition 3.2. Let A1, . . . , An be dependence functions and let (λ1, . . . , λn) ∈ [0, 1]n be a
probability vector. Then the function A : [0, 1] → [0, 1] given by

A(t) =

(
n∑

i=1

λiB
(−1)
i

)(−1)

(t) + 1− t (11)

is a dependence function.



4 Application

To examine performance of new models we consider two kinds of bivariate hydrological data.
One is constitued by monthly average flow rate of two rivers (one is tributary to another)
comprising 660 realisations, another sequence of 113 entries comes from annual summer term
maxima of a river flow with corresponding flood volume (Figure 1).
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Figure 1: Scatter plot of data after transformation by corresponding empirical marginals.

family generator ϕθ(t) parameter range limiting case (Archimed.)

Gumbel (− log(t))θ1 [1,∞] {1} Π, {∞} M
Clayton t−θ1 − 1 ]0,∞] {0} Π, {∞} M

Frank − log
(

e−θ1t−1

e−θ1−1

)
ℜ {−∞} W , {0} Π, {∞} M

Joe − log
(
1− (1 − t)θ1

)
[1,∞] {1} Π, {∞} M

BB1 (t−θ1 − 1)θ2 ]0,∞]× [1,∞] {0, 1} Π, {∞,∞} M
dependence function Aθ(t) limiting case (EV)

Mixed θ1t2 − θ1t+ 1 [0, 1] {0} Π

Gumbel
(logistic)

(
tθ1 + (1 − t)θ1

)1/θ1 [1,∞] {1} Π, {∞} M

Hüsler Reiss t ∗ Φ
(

1
θ1

+ θ1
2 log(t/(1−t))

)
+ [0,∞] {1} Π, {∞} M

+(1− t)Φ
(

1
θ1

− θ1
2 log(t/(1−t))

)

Φ is CDF of standard normal
Tawn
(asymmetric
logistic)

1− θ2 + (θ2 − θ1)t + [0, 1]× [0, 1]× {0, 0, 1} Π, {1, 1,∞} M

+
(
(θ1t)θ3 + (θ2(1− t))θ3

) 1
θ3 ×[0,∞]

LPL





1− 1−b
a

t t ≤ a− c
b−a
1−a

+ 1−b
1−a

t t ≥ a+ c

At2 +Bt + C otherwise

[0, 1]× [0, 1]× {0, ., .} {1, ., .} {., 1, .} Π

A =
(1−b)

4(1−a)ac
×[0, 1] {0.5, 0, 0} M

B = 2(1−b)(2ac−a−c)
4(1−a)ac

C =
2(1+b)ac+(1−b)c2−(b+4c−1)a2

4(1−a)ac

a = θ1, c = θ3 min(a, 1− a)
b = max(a, 1− a)(1 − θ2) + θ2

Table 1: Overview of parametric families used to construct Archimax copula.

Tables 2 and 3 summarize competition of new construction methods alongside well-established
models (for overview see Table 1, [14][9]) and related construction methods [2]. Besides parame-
ters and maximized value of log-likelihood function [7] we provide the corresponding estimation



time and test statistic Sn of GOF test [6] (not p-values which are of lesser efficiency for compar-
ison purposes). Parameters were chosen from a grid of 21 values in each dimension of θ, specif-
ically the sequence seq = {0, 0.05, . . . , 1} was stretched by formula min + (max −min)seqpow

to fit a reasonable range of parameters for each model. Those parameters bounded by finite
values min and max were left in regular grid, i.e. pow = 1, otherwise we replaced infinity by
10 and set pow = 2 so that grid thin out from point representing independence. Parameters
other than bounded by unit interval were rounded to one decimal place. Only the range giving
positive dependence is considered. Values in parentheses are fixed during estimation, square
brackets indicate construction method of dependence function, in particular [bi] denotes bicon-
vex combination given by Proposition 3.1 for n = 2, [li] represents special case when ai = bi
(i = 1, 2), and [inv] refers to Proposition 3.2. So far we implemented construction procedures
for two dependence functions only and their individual parameters are estimated separately (in
advance) from weighting parameters of their combination.

Software is implemented in R and published at www.math.sk/wiki/bacigal.

5 Conclusion

As seen from our results, given the two different data sets, the newly proposed construction
methods give better fit in case of dependence functions with roughly equal fitting performance.
Note that the best results for fixed number of parameters are given by Archimax construction
with both generator and dependence function, from which we may judge that majority of
well-established models in Archimedean and EV branch capture mutually different dependence
structure, in other words they complement one another well. The few exceptions that follow
from Proposition 2.1 are equivalences of Archimedean copula with Gumbel generator and EV
copula with Gumbel dependence function, or equivalence of BB1 and Archimax copula with
Clayton generator and Gumbel dependence function. In our software actually the estimation
of Archimedean part is faster which may evoke a demand for some alternative to Proposition
2.1 in reverse order.
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generator dependence function log-lik time GOF
family par. family par. L(θ) [sec] Sn

Gumbel 1.8 221.6 3 0.2112
Clayton 1.6 199.5 3 0.2559
Frank 5.6 223.4 4 0.0943
Joe 2.1 171.6 4 0.6144
BB1 0.6 1.6 245.5 55 0.0460

Mixed 1.00 216.0 3 0.2987
Gumbel 1.8 221.6 4 0.2112
HüslerReiss 1.6 215.6 14 0.2026
LL 0.75 0.70 (0.05) 35.6 400 3.1640
LPL sym. (0.50) 0.10 0.80 221.1 400 0.1886
LPL 0.55 0.05 0.75 215.6 8100 0.1359
Tawn 0.70 1.00 2.4 244.4 6700 0.1874

Gumbel 1.2 Mixed 0.95 225.5 92 0.1256
Gumbel 1.8 Gumbel 1.1 224.0 110 0.1276
Gumbel 1.8 HüslerReiss 0.6 222.5 340 0.1266
Clayton 0.6 Mixed 0.85 246.9 90 0.0588
Clayton 0.6 Gumbel 1.6 245.6 107 0.0471
Clayton 0.6 HüslerReiss 1.2 242.1 330 0.0584
Frank 2.5 Mixed 0.85 239.4 107 0.0717
Frank 3.6 Gumbel 1.4 238.6 125 0.0673
Frank 4.2 HüslerReiss 0.9 236.3 330 0.0686
Joe 1.2 Mixed 0.95 215.8 65 0.2065
Joe 1.2 Gumbel 1.8 212.5 76 0.1341
Joe 1.2 HüslerReiss 1.2 203.8 230 0.3392
BB1 0.6 1.0 Mixed 0.85 246.9 2300 0.0588
BB1 0.6 1.0 Gumbel 1.6 245.5 2600 0.0460
BB1 0.6 1.6 HüslerReiss 0.0 245.5 7400 0.0460

Gum–Cla 0.95 229.6 9 0.1316
Gum–Fra 0.10 230.8 11 0.1080
Gum–Joe 1.00 221.6 10 0.2112
Cla–Fra 0.00 223.4 11 0.0943
Cla–Joe 0.10 220.4 10 0.1683
Fra–Joe 0.90 226.6 12 0.1133
BB1–Gum 1.00 245.5 10 0.0460
BB1–Cla 1.00 245.5 10 0.0460
BB1–Fra 1.00 245.5 12 0.0460
BB1–Joe 1.00 245.5 11 0.0460

[li] Mix–Gum 0.00 221.6 22 0.2112
[inv] 0.00 221.6 330 0.2112
[bi] 0.10 0.00 221.6 450 0.2873
[li] Mix–Hüs 0.35 218.2 36 0.2328
[inv] 0.55 217.0 1800 0.2522
[bi] 0.10 0.00 225.0 770 0.2767
[li] Gum–Hüs 0.85 221.7 37 0.2098
[inv] 0.90 221.7 1900 0.2103
[bi] 0.85 0.95 222.0 790 0.2472

Clayton 0.6 [li] Mix–Gum 1.00 246.9 470 0.0588
Clayton 0.6 [li] Mix–Hüs 0.90 246.9 770 0.0649
Clayton 0.6 [li] Gum–Hüs 1.00 245.6 780 0.0471

Table 2: Estimation summary for 2 rivers flow rate.



generator dependence function log-lik GOF
family par. family par. L(θ) Sn

Gumbel 4.8 128.4 0.0203
Clayton 4.2 93.8 0.1094
Frank 10.0 106.0 0.0885
Joe 6.1 112.1 0.0796
BB1 0.2 4.2 129.4 0.0201

Mixed 1.00 66.5 0.5975
Gumbel 4.8 128.4 0.0203
HüslerReiss 4.9 128.7 0.0225
LL 0.55 0.50 (0.05) 38.6 0.8873
LPL sym. (0.50) 0.00 0.50 112.4 0.0928
LPL 0.50 0.00 0.50 112.4 0.0928
Tawn 1.00 1.00 4.8 128.4 0.0203

Gumbel 2.8 Mixed 1.00 128.6 0.0198
Gumbel 4.8 Gumbel 1.0 128.4 0.0203
Gumbel 3.2 HüslerReiss 1.2 128.8 0.0188
Clayton 2.0 Mixed 1.00 108.5 0.0659
Clayton 0.2 Gumbel 4.2 129.4 0.0205
Clayton 0.4 HüslerReiss 4.2 129.6 0.0173
Frank 10.0 Mixed 1.00 128.5 0.0116
Frank 3.6 Gumbel 3.2 131.2 0.0132
Frank 4.2 HüslerReiss 3.0 131.8 0.0124
Joe 3.6 Mixed 1.00 117.4 0.0491
Joe 1.2 Gumbel 4.2 127.4 0.0216
Joe 1.2 HüslerReiss 4.2 127.5 0.0248
BB1 0.2 2.4 Mixed 1.00 129.6 0.0211
BB1 0.2 1.0 Gumbel 4.2 129.5 0.0185
BB1 0.2 2.4 HüslerReiss 1.6 130.0 0.0171
Gumbel 2.4 LPL sym. (0.50) 0.00 0.85 130.2 0.0201
Clayton 1.6 LPL sym. (0.50) 0.15 0.45 121.4 0.0299
Frank 7.2 LPL sym. (0.50) 0.00 0.80 130.5 0.0137

Gum–Cla 1.00 128.4 0.0203
Gum–Fra 1.00 128.4 0.0203
Gum–Joe 1.00 128.4 0.0203
Cla–Fra 0.00 106.0 0.0885
Cla–Joe 0.00 112.1 0.0796
Fra–Joe 0.00 112.1 0.0796
BB1–Gum 1.00 129.4 0.0201

[li] Mix–Gum 0.00 128.4 0.0203
[inv] 0.00 128.4 0.0203
[bi] 0.00 0.00 128.4 0.0203
[li] Mix–Hüs 0.00 128.7 0.0225
[inv] 0.00 128.7 0.0225
[bi] 0.00 0.00 128.7 0.0225
[li] Gum–Hüs 0.30 128.7 0.0219
[inv] 0.25 128.7 0.0220
[bi] 0.85 0.90 129.6 0.0254

Table 3: Estimation summary for summer flood data.
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Hermann Weyl's discrepancy norm turns out to show interesting 
mathematical properties as dissimilarity measure of signals. 
Of special interest is to study the dissimilarity of time or space shifted 
signals. For the discrepancy norm monotonicity and a Lipschitz 
property can be proven at least for non-negative signals as 
encountered in image processing. 
The motivating question is whether there are also other norms having 
such properties. In this talk a deeper insight into this norm is outlined 
by studying its unit ball as geometric object and by showing how it can 
be understood as the result of a projection of the unit cube in an 
extended space. 
 


