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Copulas and integrals

Radko Mesiar

Faculty of Civil Engineering
Slovak University of Technology

Radlinského 11, 813 68 Bratislava, Slovakia
radko.mesiar@stuba.sk

The stochastic dependence structure of bivariate random variables captured
by copulas can be applied in the integration approaches. Indeed, a copula C :
[0, 1]2 → [0, 1] can express the connection between function values and measure
values through an integral IC,m by IC,m(a 1A) = C(a, m(A)), where m is the
(monotone) measure and a ∈ [0, 1] is a constant. A class of copula–based univer-
sal integrals (they are well defined for any measurable space (X,A), any normed
monotone measurem : A → [0, 1] and anyA–measurable function f : X → [0, 1])
was introduced in [1] by

IC,m(f) = PC

({
(x, y) ∈ [0, 1]2 | y ≤ m(f ≥ x)

})
,

where PC is the probability measure on Borel subsets of [0, 1]2 induced by C. As
special instances recall that C = Π yields the Choquet integral, while C = Min
yields the Sugeno integral. If X is finite, X = {1, . . . , n}, and A = 2X , then we
have two equivalent formulae exploited, e.g., in multicriteria decision support,

IC,m(f) =
n∑

i=1

(
C(f(i),m(Ai))− C(f(i−1),m(Ai))

)
=

=
n∑

i=1

(
C(f(i),m(Ai))− C(f(i),m(Ai+1))

)
,

where (f(1), . . . , f(n)) is a nondecreasing permutation of (f(1), . . . , f(n)), A(i) ={
j | f(j) ≥ f(i)

}
, with conventions f(0) = 0 and An+1 = ∅.

Looking on integrals IC,· as functionals, one can introduce an axiomatic ap-
proach, too. For example, comonotone additivity is a genuine property of the
Choquet integral [4], while the comonotone maxitivity and the min–homogeneity
characterize the Sugeno integral [2]. We give a general axiomatic characterization
of discrete copula–based universal integrals. A substantial role of the comonotone
modularity will be shown, linking these integrals and OMA operators [3].
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Due to the fact, that analytical wavelets are widely used to decom-
pose 1D signals, it yields to find a multidimensional analogue. With
such an analogue, called monogenic wavelet, it is possible to combine
the principle of multiresolution analysis of wavelet frames with the ap-
proach to decompose a multidimensional signal, e.g. an image, into
amplitude, phase and phase direction. Applications can be found in the
enhancement of contrast, detection of edges and filtering of details.
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1 Generalization of the analytical signal 3

1 Generalization of the analytical signal

At first, the analytical signal and its multidimensional analogue, the Riesz trans-
formation should be introduced.
Let an arbitrary real-valued function f ∈ L2(R,R). Then it yields for the analytic
signal fa ∈ L2(R,C), fa = f + iHf , where

H :L2(R)→ L2(R) (1)

Hf =
1

π
P.V.

∫

R

f(x)

x− tdx (2)

means the Hilbert transform (here, P.V. denotes the Cauchy principal value). the
complex-valued analytical signal can now decomposed in its amplitude a(t) and
its phase ϕ(t).

fa(t) = a(t)eiϕ(t) = a(t)(cosϕ(t) + i sinϕ(t)) (3)

Obviously, it follows f(t) = a(t) cosϕ(t) for reconstruction. The derivative ϕ′(t) is
called instantaneous frequency.
For the Generalization of the Hilbert transform, the Riesz transform is used, be-
cause it is the only possibility to come along with rotations. This is very important
for the construction of isotropic filters. This transformation can also easily imple-
mented in the Fourier domain. The starting point of the generalization is the
Hilbert transform in the Fourier domain: H :L2(R)→ L2(R)

Ĥf(ξ) = i sgn(ξ)f̂(ξ) = i
ξ

|ξ| f̂(ξ) (4)

where i2 = −1. The kernel (Fourier multiplicator) is therefore i sgn(ξ) = i(ξ/|ξ|).
Consider an orthonormal basis {eα}nα=1 of Rn. To extend the Hilbert transform to
higher dimensions now, the Fourier multiplicator i(ξα/‖ξ‖) is applied to the signal
for each component ξα = 〈ξ, eα〉, α = 1, . . . , n of the multidimensional signal.
So the Riesz transform R :L2(Rn) → (L2(Rn))n is defined in the Fourier domain
by

R̂f =
(
R̂1f, . . . , R̂nf

)
(5)

where Rα :L
2(Rn)→ L2(Rn) is the αth component

R̂αf(ξ) = i
ξα
‖ξ‖ f̂(ξ), α = 1, . . . , n (6)

By using the orthonormal base {eα}nα=1, the Riesz transform can be written in the
form

R =
n∑

α=1

eαRαf

Reinhardt: Steerable Wavelet Frames and their Applications



1 Generalization of the analytical signal 4

The next point is to define all important operators for dilation (Dl), translation
(Tb) und rotation (ρ) in the usual way:

Dt, Tb, ρ :L
2(Rn)→ L2(Rn)

Dlf(x) = ln/2f(lx), l ∈ R+

Tbf(x) = f(x− b), b ∈ Rn

ρf(x) = f(ρ−1x), ρ = {ρα,β}nα,β=1 ∈ O(Rn)

The following properties characterizing the Riesz and the Hilbert transform uniquely.

TbH = HTb TbRα = RαTb (7)
DlH = HDl DlRα = RαDl (8)
‖H‖op ≤ 1 ‖Rα‖op ≤ 1 (9)

H ◦ ρ = ρ1,1(ρ ◦ H) Rα ◦ ρ =
n∑

β=1

ρα,β(ρ ◦ Rβ) (10)

These features are showing, that the Riesz transform has got all relevant properties
of the Hilbert transform, which supports the generalization. Equations (7) and
(8) are describing the wavelet generating operations. With the equation (10) the
Riesz transformed wavelets can be steered into all directions with the unit vector
a ∈ Rn, ‖a‖ = 1 and ρ ∈ O(n) with a = ρe1.

Rα = ρ−1R1ρ =
n∑

β=1

ρ1,βRβ (11)

Especially this property is the fundamental of the easy applications in image pro-
cessing because of the orthogonal directions of datasets. The main definition of
the monogenic signal can be found in [FS01]:
Let f ∈ L2(Rn,R) be a real-valued function. Let e0 ∈ Rn+1 be a vector that
extends the ONB {eα}nα=1 of Rn of Rn+1. The monogenic signal fm is defined as

fm = e0f +Rf = e0f +
n∑

α=1

eαRαf (12)

In the notation of (5)
fm = (f,R1f, . . . ,Rnf) (13)

Therefore fm :Rn → Rn+1 is a vector-valued mapping and because of the bounding
property in (9) element of L2(Rn,Rn+1).

Reinhardt: Steerable Wavelet Frames and their Applications
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2 A fitting exponential function

Similar to the decomposition of the analytic signal (3) into phase and amplitude
components it is aimed to find such a decomposition for the monogenic signal. This
decomposition consists of two main functions a :R → R and exp(iϕ(·)) :R → C.
On the image Rn+1 there isn’t such a a priori algebraic structure to define a
vector-valued multiplication. With the help of the underlying ONB and following
definitions

eαeβ = −eβeα
eαe0 = e0eα

e2α = −e0
e20 = e0

for all α 6= β, α, β = 1, . . . , n, an extention of the multiplication to all elements
x, y ∈ Rn+1 can be found via linear representation with respect to the ONB:

xy =

(
n∑

α=0

eαxα

)(
n∑

β=0

eβyβ

)
=

n∑

α=0

n∑

β=0

eαeβxαyβ (14)

This in general non-commutative vector-multiplication extends the Rn+1 to a
Clifford-Algebra Rn of the dimension 2n. (More information about this scheme
of extention of a multiplication can be found in [HSMF10]) With the identity
e0 ↔ 1, x has a representation of a pseudo-vector:

x = x0 + ~x, wobei ~x =
n∑

α=1

eαxα (15)

If ϕ denotes the angle between the scalar and the vector part then it follows from
tanϕ = ‖~x‖/x0

x = ‖x‖
(
x0
‖x‖ +

~x

‖~x‖ ·
‖~x‖
‖x‖

)

= ‖x‖
(
cosϕ+

~x

‖~x‖ sinϕ
)

Reinhardt: Steerable Wavelet Frames and their Applications



2 A fitting exponential function 6

Description:

• ‖x‖ Amplitude

• ϕ Phase

• ~x/‖~x‖ Phasenrichtung von x

~x
‖x‖

x

e1

e2

e0

x0

x1

x2

ϕ

The last thing, needed for a full decomposition like in (3), is the exponential
function inRn+1. For the usual exponential series it is important, that the subspace
Rn+1 of the algebra Rn is invariant under power operations (proof in [HSMF10]).
Here, a small example should be enough:

x2 = x20 + 2~xx0 + ~x~x =
(
x20 − ‖~x‖2

)
+ 2~xx0 ∈ Re0 +R~x

Due this fact, an exponential function can be found with

exp :Rn+1 → Rn+1, x→
∑

n∈N

xn

n!

It holds that exp(x0 + ~x) = (x0) exp(~x) for all x ∈ Rn+1. Furthermore, note that

Reinhardt: Steerable Wavelet Frames and their Applications



3 Implementation and application aspects 7

(~x/‖~x‖)2 = −1 With ϕ ∈ R and

exp

(
~x

‖~x‖ϕ
)

=
∞∑

k=0

(
~x
‖~x‖ϕ

)k

k!

=
∞∑

k=0

(
~x

‖~x‖

)2k
ϕ2k

(2k)!
+
∞∑

k=0

(
~x

‖~x‖

)2k+1
ϕ2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k ϕ
2k

(2k)!
+

~x

‖~x‖
∞∑

k=0

(−1)k ϕ2k+1

(2k + 1)!

= cosϕ+
~x

‖~x‖ sinϕ

it can be shown that
x = ‖x‖ exp

(
~x

‖~x‖ϕ
)

(16)

3 Implementation and application aspects

With an arbitrary isotropic wavelet frame ψ and the use of Clifford Frames (de-
tailed explanations in [HSMF10]) the approach of multiresolution analysis and the
aim of decomposition can be combined.
The most important points to know are:

• The wavelet controls the steepness, the edges are falling.

• The tightness of a wavelet frame (wavelet frames which match the Parseval’s
identity) is important to use the same filter bank for analysis and synthesis.

• The filters are applied in the Fourier domain, because there convolutions are
just multiplications.

• The singularity in the kernel of the Riesz transform can be handled by zero-
setting of the DC-Component of the picture.

• The compact supplier property ensure a perfect reconstruction of the picture
by the Shannon sampling theorem.

• A dilation matrix k
√
2In is useful to get a (k + 1)-channel filter bank with

– the low-pass filters h0
– several band pass filters hj, j = 1, . . . , k − 1

– the high-pass filter hk

Reinhardt: Steerable Wavelet Frames and their Applications



4 functionplots and images 8

With the help of the coefficients provided by the algorithm (see in section 4) it is
possible to calculate different useful properties of an image:

• Amplitude: As,j =
√
d2s,j + (R1ds,j)2 + (R2ds,j)2

• Phase: Ps,j = atan2(Ns,j, ds,j)

• Phase orientation: Os,j =




atan2

(
R2ds,j
Ns,j

,
R1ds,j
Ns,j

)
, R2ds,j ≥ 0

atan2
(
R2ds,j
Ns,j

,
R1ds,j
Ns,j

)
+ π, sonst

where Ns,j =
√
(R1ds,j)2 + (R2ds,j)2. The indices s, j mean the scale-index s and

the sub-channel-index j. Furthermore, a two-argument arctan is defined as usual
by

atan2(x, y) = arg(x+ iy)

A reconstruction of the picture by its phase and amplitude can be performed by

ds,j = As,j cos(Ps,j)

The main application of the combination of phase and amplitude decomposition
is the extraction of image-features on different detail levels. Another important
application is the ’equalisation of brightness’. The aim of this is to reconstruct
a corrupted image only by its phase. The amplitude is replaced by a default
noise-term:

d̃s, j = cos(Ps,j)

4 functionplots and images

Fig. 1: Originalbild von Barbara
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4 functionplots and images 9

Fig. 2: Resultate der Transformationen von Barbara

Reinhardt: Steerable Wavelet Frames and their Applications
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Genetic Operators Design

for Variable Selection

using Genetic Algorithms

AdvKBT Winter 2011/12, 1

Carlos Cernudaa

aFuzzy Logic Lab Linz (FLLL)
Department of Knowledge-Based Mathematical Systems

Johannes Kepler University Linz, Austria

Abstract

Nowadays the techniques employed in data acquisition provide huge amounts of data.
For instance, Near Infra-Red (NIR) spectral data consist on thousands of wavelengths
(variables). Some parts of the information are related to the others, making desirable
a way to reduce the number of variables, i.e. dimensionality reduction, loosing as
less information as possible, in order to decrease computational times and complex-
ity when applying any Data Mining technique, e.g. for classification or regression
purposes. Genetic Algorithms(GA) offer the possibility of selecting which variables
contain the most relevant information in order to represent all the original ones. The
traditional genetic operators seem to be too general leading to results which could
be improved by means of designed genetic operators that employ some available
problem specific information.

Keywords: Variable Selection, Dimensionality Reduction, Genetic Algorithm,
Forward Selection, Design Genetic Operators.

1. Introduction: Motivation and Methodology

Computational studies of Darwin’s Evolution and Natural Selection theories have
led to numerous models to tackle optimization problems [6, 3, 16, 5]. GA’s are one of

Email address: carlos.cernuda@jku.at (Carlos Cernuda)
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the most relevant. They are parallel iterative evolution-based optimizers based on the
application of selection, mutation, and recombination to a population of competing
problem solutions [13, 7]. There are many ways of constructing GA’s. In general
every GA must have a fitness function, in order to have the possibility of determining
the goodness of an individual, and genetic operators, to simulate natural evolution
of the population of individuals, i.e. solutions of the optimization problem. Usual
genetic operators suffer from a lack of exploitation capacity of the existing problem
specific information. Here is where clever design strategies can lead to appropriate
operators which allow the GA to converge faster to high quality solutions.

This paper is structured as follows: in section 2 we introduce the usual genetic
operators, describing all the relevant parts, and the description of the data set used
for comparison and how that comparison is done. Section 3 describes the design
original parts of our GA. In section 4 the results obtained are shown and commented.
Finally, section 5 gives a general overview and sets the trend for future works.

2. Methodology and Experimental Setup

2.1. Methodology

One crucial fact when using a GA is the way to codify the individuals. In this case
binary vectorial representation is the most adequate, meaning that and individual
x = (x1, x2, . . . , xm) contains values xi = 1 if the i-th variable is considered in the
model or xi = 0 if not. Not less important is the fitness function, in terms of which
we decide how good an individual is. In the case we will consider here, regression
models, the usual way is build a fast model and calculate the prediction error. Thus
the lower the error the better the individual. An initial population is needed. There
are several ways of generating an initial population, being random generation the
most popular. Given a pair of solutions (parents) we generate a new individual
(offspring) by means of a crossover operator. In order to favour diversity we will give
the offspring the chance of undergoing slightly, i.e. mutation operator. In principle
not all individuals must be employed as parents, just some selected ones according
to some criteria, i.e. selection operator.

2.2. Data set description

The KCCS data set consists on 25 multiple instances, i.e. every instance is a set
of 20 consecutive measurements, corresponding to 25 concrete moments. The type
of data is NIR spectral data, considering 982 equidistant wavelengths. Therefore we
are handling a matrix with 25 blocks of 20 rows and 982 columns.

2



(a) Output: OH-Zahl. (b) Output: Visk PL/PL.

(c) Output: SZ. (d) Inputs.

Figure 1: Graphic description of KCCS data set.

We consider three independent targets corresponding, in each of the moments, to

• The hydroxyl number (OH-Zahl).

• The viscosity (Visk PL/PL), obtained by means of a Parallel Plate Viscometry
procedure.

• The acidity (SZ).

Figure 1 shows respectively the target values for the 25 multiple instances, in
1(a), 1(b) and 1(c), and the 25 mean values as a representation of the multiple
instances, in 1(d).

2.3. Experimental Setup

Firstly we calculate the error using all the variables and we keep it as a threshold
for our selection procedure, as well as to be shown in the graphs. The maximum
number of generations is 30 and the minimum number of selected individuals is 32.
The performance obtained by 1-point crossover is very poor compared with the rest,
therefore it is omitted in the results section.

3



From previous studies [1] over the same data set we have results obtained, by
means of cross validation, using several state of the art linear and nonlinear methods
such as Multiple Linear Regression (MLR), Principal Components Regression [14],
Partial Least Squares Regression [8], Locally Weighted Regression [2], Regression
Trees [9], Stepwise Regression [4], Artificial Neural Networks [12], Generalized Linear
Models Networks [10], and Flexible Fuzzy Inference Systems [15]. In the graphs we
also provide the error obtained using the best of them in each of the outputs for
informative purposes.

3. Our Designed GA

As we want to reduce dimensionality we fix a maximum percentage of used vari-
ables, i.e. ones, in the individuals of the initial population, which are created ran-
domly. The number of individuals is set to 64. The selection criteria consists on ignor-
ing individuals that perform worse than the ”biggest” individual (1, . . . , 1), keeping
a minimum number of individuals. We will consider the most popular crossover op-
erator, 2-point crossover, as basic operator to compare with our designed ones. The
purpose of designing specific crossover operators is to increase the convergence speed
towards good solutions because the evaluation in terms of the fitness function takes
a long time. Then the mutation probability was set quite low, 0.5%, because the
individuals are supposed to be good solutions. The maximum number of generations
has been set to 30.

The chosen model for the fitness function is Partial Least Squares(PLS). PLS
finds factors that capture the greatest amount of variance in the predictor variables
while they are highly correlated with the predicted variables. Thus PLS attempts
to find factors which both capture variance and achieve correlation by means of
projecting not only the predictor variables (like PCA), but also the predicted ones,
to new spaces so that the relationship between successive pairs of scores is as strong
as possible. Considering matrix notation, we would have

X = TP + E , y = Tq + f

where T is the scores matrix, P and q are the loadings matrix and loadings vector
for the inputs X and the output y respectively, and E and f represent the residual
errors in both projections. In summary, PLS consists on a search of directions in
the factor space that are associated with high variation in the responses but biasing
them toward directions that are accurately predicted.

4



3.1. Forward Selection Crossover

Forward Selection(FS) [11] is a simple data-driven model building approach. In
this approach, one adds variables to the model one at a time. At each step, each
variable that is not already in the model is tested for inclusion in it. The most
significant of these variables, in terms of p-value, is added and its importance is
stored. The contribution of the included variable is subtracted, and the next most
significant variable is found. At the end all variables are ordered in terms of their
significance, being available also the contribution of each of the variables. Note that
this multiple use of hypothesis testing means that the real type I error rate for a
variable (i.e., the chance of including it in the model given it isn’t really necessary),
does not equal the critical level we could calculate over the original set. In fact,
because of the complexity that arises from the complex nature of the procedure, it
is essentially impossible to control error rates and this procedure must be viewed as
exploratory, i.e., as a tool for ranking the variables.

Our crossover operator works in a similar way as 2-point crossover but instead
of selecting the two points randomly, we select one randomly and the other one in
a way so that at least 33% and at most 66% of the total weight of the variables
is between both points. The weight is calculated as follows: we determine the α%
most important variables and they all receive maximum weight, i.e. 1. The rest of
variables receive a weight in [0.5, 1) by means of linear interpolation. Graphically it
is similar to a triangular fuzzy partition centered on the important variables.

3.2. Correlation Crossover

Following the same idea showed before, we determine a first cut point randomly
and then we restrict the selection of the second point using as weights the correla-
tions between the variables and the target. That is, we calculate previously a vector
containing all the correlations between each variable and the target. After determin-
ing one point randomly, we restrict the search of the second one to those parts which
leave between both points a percentage of minimum 33% and maximum 66% of the
total accumulated weight.

4. Results

Firstly we will see some graphical results target by target and operator by op-
erator. Afterwards we will use the information obtained in the variable selection
process, i.e. the reduced data sets using all three crossover operators, in order to
check how the performance is when applying FLEXFIS algorithm for each of the
samples.

5



Figure 2: Graphics for 2-point crossover operator on OH.

4.1. GA on OH-Zahl

Figures 2, 3 and 4 present (for 2-point, FS and Corr crossover operators respec-
tively) the values of the fitness function for the different number of variables (top
left) and the number of individuals containing each variable (bottom right) at the
end of the process, as well as the average number of variables used (bottom left) and
the information concerning the errors (top right) for each generation. This last shows
the error considering all variables in terms of the fitness function (dotted red line),
the best S-o-A algorithm error (dotted cyan), the average error of all individuals
(blue line) and the best individual error (green line).

First we should notice that the new operators behave in a more stable way and
converge faster than 2-point to good solutions. The number of variables is also lower.
When it comes to the designed ones, Corr is more stable, needs less variables and is
faster to converge to good solutions than FS.

4.2. GA on Visk PL/PL

Figures 5, 6 and 7 present again (for 2-point, FS and Corr crossover operators
respectively) the values of the fitness function for the different number of variables
(top left) and the number of individuals containing each variable (bottom right) at
the end of the process, as well as the average number of variables used (bottom left)
and the information concerning the errors (top right) for each generation.

Now the situation is a bit different in terms of stability, being 2-point and Corr
much more stable than FS which otherwise is the more accurate. The number of
variables behaves in the same way as for OH.
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Figure 3: Graphics for Forward Selection crossover operator on OH.

Figure 4: Graphics for Correlation crossover operator on OH.
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Figure 5: Graphics for 2-point crossover operator on Visk PL/PL.

Figure 6: Graphics for Forward Selection crossover operator on Visk PL/PL.
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Figure 7: Graphics for Correlation crossover operator on Visk PL/PL.

Figure 8: Graphics for 2-point crossover operator on SZ.

4.3. GA on SZ

As before, Figures 8, 9 and 10 present (for 2-point, FS and Corr crossover op-
erators respectively) the values of the fitness function for the different number of
variables (top left) and the number of individuals containing each variable (bottom
right) at the end of the process, as well as the average number of variables used (bot-
tom left) and the information concerning the errors (top right) for each generation.

The speed for converging is similar for all of them. 2-point obtains the most
accurate result but suffers from instability. In general, FS is the best one because it
is quite stable and accurate keeping a low number of variables.
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Figure 9: Graphics for Forward Selection crossover operator on SZ.

Figure 10: Graphics for Correlation crossover operator on SZ.
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OH Visk SZ
] RMSE SD ] RMSE SD ] RMSE SD

Original 948 1.1715 0.5377 948 5.1028 3.0114 948 0.1285 0.0703
2-p-XOver 121 1.5822 0.5997 142 5.4760 2.7895 110 0.1215 0.0602
FS-XOver 64 1.0344 0.5083 63 5.4117 2.8842 28 0.1346 0.0491
Corr-XOver 44 0.8194 0.3439 38 5.5260 3.2723 18 0.1441 0.0740

Table 1: Summary table.

4.4. FLEXFIS Performance

In order to construct a reduced data set with the information provided by the
GA, we take the individuals in the pool of solutions after the GA and we keep the
variables that are considered in any of the individuals. Table 1 shows the number
of variables considered (]), the root mean Square Error (RMSE) and the Standard
Deviation (SD) for all three targets and all four data sets, i.e. the original non
reduced and the three reduced ones.

We can see that the performance when using the reduced data sets is at least
as good as with the original one. For OH it is remarkable the decrease in number
of variables, root mean square error and standard deviation wrt the rest. When
comparing the results for the reduced data sets only we can notice the importance
of the designed operators, the errors are again similar (but in OH for which 2-point
behaves worse) with a reduction in the number of variables of between 2 and 8 times
wrt 2-point.

5. Conclusion

Problem specific designed crossover operators behave better than standard 1-
point and 2-points crossover operators in terms of stability, number of variables
and convergence speed. Taking into account that the new ones are quite similar in
performance then correlation crossover would be preferable because it is less time
consuming. In the future it could be interesting to design more new crossover oper-
ators as well as new selection, mutation and initial population generation strategies
in order to take advantages of the information provided by the data.
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Abstract. This research is focused on reducing the average size of the
solutions generated by an enhanced GP process without affecting the
high predictive accuracy the method exhibits when being applied on a
complex, industry proposed, regression problem. As such, the effects the
GP enhancements have on bloat have been studied and, finally, a bloat
control system based on dynamic depth limiting (DDL) and iterated
tournament pruning (ITP) was designed. The resulting bloat control
system is able to improve by ' 40% the average GP solution parsimony
without impacting average solution accuracy.

Keywords: genetic programming, symbolic regression, solution parsi-
mony, bloat control

1 Introduction

For the concrete, industry proposed, system identification problem that has been
considered for this research, an enhanced GP algorithm (Ehd-GP) developed by
the HEAL team is able to produce high quality regression models that were of
comparable, if not even better, accuracy than the regression models obtained us-
ing other, more well established, non-linear, data-mining techniques like support
vector machines (SVMs) and artificial neural networks (ANNs) [6] [11]. Further
evidence of the high quality of the solutions generated by Ehd-GP is summarized
in [9].

The main advantage of using GP for the given regression problem task lies
in the the ability of the this method to produce white-box, human interpretable,
models than can be easily used by human domain experts to gain new insight into
phenomena associated with the given industrial process. However, the degree of
interpretability a GP generated regression model exhibits is proportional to its
parsimony as trying to analyze large and/or highly complex models can be a
quite tedious task.

A general threat to GP model interpretability comes in the form of a well
studied phenomenon known as bloat : a generation-wise rapid growth in the size
of evolved programs without any corresponding benefits in terms of accuracy.
This phenomenon is very well known to GP practitioners and literature proposes
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a large set of studies regarding bloat. Controlling and combating bloat is an open
and fairly complicated task as Silva and Costa [8] argue that the phenomenon
is very likely to be a natural consequence of combining an evolutive (fitness
driven) search with a variable-length solution representation (i.e. two of the
main characteristics of the GP theory).

With the above mentioned evidence of the ability of Ehd-GP to produce high
accuracy regression models, the purpose of this research is to analyze the impact
the modifications in Ehd-GP have on bloat and, consequently, try to control the
bloating phenomenon in this GP process such as to reduce the average size of
the resulting solution models without affecting the high average quality of these
models.

2 The Ehd-GP Process

The Offspring Selection Strategy (OS) The most important modification
the Ehd-GP proposes over the standard GP process described by Koza [5] is the
incorporation of the offspring selection strategy [1]. The idea behind this elitist
selection method is that an offspring is accepted as a member of the population
of the next generation if and only if it outperforms the fitness of its own parents.
As with conventional GP, offspring are generated by parent selection, crossover
and mutation. The difference consists in the introduction of a second (offspring)
selection stage. A variable called success ratio indicates the ratio of the next
generation members that must outperform their respective parents. As long as
this ratio is not fulfilled, offspring are created and the successful ones are inserted
into the next generation, while those that do not outperform their parents are
stored in a rejection pool. After enough successful next generation offspring have
been created, the rest of the members of the generation are randomly chosen from
the rejection pool.

The Linear Scaled Error Measure The second important enhancement that
Ehd-GP proposes is the use of a linear scaled error measure (as described by
Keijzer in [4]) in the fitness evaluation function. The advantage of using a scaled
mean squared error (MSE), as opposed to the traditional approach, lies in “the
change of the view” that the selection operator has on the worth of an individual
expression. As this error measure rescales the expression on the optimal slope
and intercept, selection will favor expressions that are close in shape with the
target, instead of demanding first that the scale is correct.

3 Test Setup

The industry proposed main modeling scenario used in our tests contains 44
dependent variables and has been split into a training set, a validation set and a
test set. For a detailed description of the benefits of using this data partitioning
strategy in GP based modeling please see [9].
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Methodology Because GP remains at its core a stochastic method, we have
performed 100 GP runs of a given configuration in order to determine the general
behavior of that configuration (in terms of solution size and accuracy). We shall
refer to the data set that contains all the 100 solutions obtained for a specific
GP configuration as the the full data set of that configuration. Since solution
accuracy is the first performance GP criteria, we are especially interested in an-
alyzing and improving the best solutions that can be generated with a given GP
configuration. As a result, for each GP configuration, we have also constructed
a top accuracy subset that only contains the 25 most accurate solutions in the
full data set. Ties were broken in favor of the more parsimonious model.

Throughout this paper, our comparisons are based on basic central tendency
indicators (the average - µ, the standard deviation - σ and the median - µ1/2 )
for both the full solution data sets and the top accuracy subsets.

When comparing among GP configuration results based on the full data
sets, we also make use of significance testing to confirm our empirically based
hypotheses. The significance test we use is the Mann-Whitney-Wilcoxon test
(also know as the Mann-Whitney U test). The used significance level is α = 0.05
in the case of one-tailed tests. The choice for this particular non-parametric
test was made because we do not wish to presume that our solution data set is
normally distributed, either according to size or accuracy.

In order to provide a simple but accurate and suggestive overview of the
performance of the GP solutions in the full and top accuracy data sets, for each
GP configuration, we construct comparative kernel density estimation plots of
the the solution size and of the solution MSE.

GP Configurations The Ehd-GP was configured to enforce a strict OS thus
forcing every member of the next generation to outperform both its parents.
When generating a new offspring, one parent was chosen using proportional
selection and the other was chosen using random selection.

For our tests we have also used a Koza style standard GP process (Std-GP)
in which both parents were selected according to proportional selection.

Both GP processes used only point mutation and in both cases constants
were initialized and modified uniformly (between -20 and 20), whilst variables
were initialized and modified according to a normal distribution N(0, 1). The
other, more common, GP algorithm parameters that were used by both the Std-
GP and the Ehd-GP processes are: an arithmetic function library (+, −, ∗, %,
power, sqrt), a population size of 1000 individuals, a mutation rate of 15%, a
max tree height of 15 and a maximum number of evolved generations of 1000.

The initial population initialization method was PTC2 [7] for both GP pro-
cesses and the stopping criterion stated that a run should be terminated if no
validation wise improvement was found in the last 100 generations.

The max tree height limit value was chosen empirically after performing sys-
tematic tests on the modeling scenarios considered in this research and observing
that the very good solutions have a depth smaller than 10.
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4 Ehd-GP performance analysis

The performances of Std-GP and of Ehd-GP with regards to average solution
accuracy and average solution size are summarized in Table 1. The corresponding
comparative kernel density plots are presented in Fig. 1.

Our first empirical observation that the Ehd-GP is far superior in terms
of average solution accuracy is statistically significant as the Mann-Whitney-
Wilcoxon test yielded a one-tailed p-value smaller than 0.001.

The second empirical observation that the Ehd-GP tends to produce solu-
tions of lower parsimony than the Std-GP is also statistically significant, being
confirmed as the one-tailed Mann-Whitney-Wilcoxon test produced a one-tailed
p-value of 0.005.

5 A Bloat Control System for Ehd-GP

The main challenge of fitting an efficient bloat control mechanism in Ehd-GP
came from trying to integrate this such a modification with the existing OS
strategy.

For instance, anti-bloat selection methods [10][3] proved fairly difficult to
combine with the offspring selection enhancement because their most effective
implementations are based on dynamical adjustments of their control param-
eters. When using OS with a linear scaled error measure, the GP algorithm
converges quite fast (in > 90% of the runs the solution was found before the
22nd generation) and this means that there are far fewer opportunities for pa-
rameter adjustment.

In the case of anti-bloat genetic operators [2], our educated guess is that
for Ehd-GP, the combination between size and/or depth limitations imposed to
genetic operators (i.e. restricting the number of offspring than can be generated)
and OS has a high chance of leading to premature convergence (because of a rapid
drop in genetic diversity).

Dynamic Depth Limits - DDL In [8], Silva and Costa present a simple
yet effective solution for overcoming most of the shortcomings of static depth
limitation. Their idea is to dynamically adjust the value of the depth limit during
the run. Compared to the original method, we have made a series of modifications
in order to integrate DDL into the Ehd-GP process. In our implementation of
the concept (Algorithm 1), the dynamic limit is initially set to a low value
(InitialDepthLimit), that is usually 20-30% higher than that of the maxium
depth in the initial population. An offspring is automatically accepted in the
next generation if it satisfies the accuracy constraint and at the same time does
not infringe the depth limit. If an offspring infringes the depth limit but is the
best individual found so far, then it is accepted in the next generation if the
increase in size is matched by the increase in accuracy. In the latter case, the
limit is raised to match the depth of the new best-of-the-run individual. If during
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Algorithm 1 The dynamic depth limiting module (DDL module)

1: AcceptStatus = true
2: if OffDepth ≤ DepthLimit then
3: if (BestMSE / OffspringMSE - 1) ≥ (DLimit - OffspringDepth) * Clower then
4: if OffspringDepth > InitialDepthLimit then
5: DLimit = OffspringDepth
6: else
7: DLimit = InitialDepthLimit
8: end if
9: end if

10: else
11: if (BestMSE / OffMSE - 1) ≥ (OffspringDepth - DLimit) * Craise then
12: DLimit = OffspringDepth
13: else
14: AcceptStatus = false
15: end if
16: end if
17: return AcceptStatus

the run the best found individual at a given time has a depth that is significantly
lower than the current depth limit, the limit will be lowered.

The condition on Line 11 states that the DDL should be raised if each extra
depth level is matched by an increase in training accuracy of at least Craise%.
Analogously, the condition on Line 3 states that the DDL should be lowerd
if each decreased depth level is matched by an increase in training accuracy
of at least Clower%. As an empirical rule, tests have shown that the relation
Clower = 2 ∗ Craise enables the DDL to have a stable behaviour throughout the
run for all the considered test scenarios. Furthermore, after testing on three other
modeling scenarios, we discovered that Craise = 0.015 is also a stable setting.

Iterated Tournament Pruning - ITP Largely inspired by [9], and taking
into consideration all the particularities of the GP process we are trying to
enhance, we also decided to implement and test a bloat control strategy based
on syntax-tree pruning. Our ITP strategy is described in Algorithm 2 and is
based on a series of consecutive pruning tournaments. In each tournament we
create several pruning candidates of the syntax-tree model we wish to prune in
that tournament (the pruning base model). A pruning candidate for a model is
created through a very simple process (Line 6) that randomly selects a subtree
from the given model an replaces it with the mean value obtained by evaluating
that subtree over all the records in the training set. The size of the excised
subtree is limited to at most MaxPruning% with regards to the pruning base
model. At the end of each tournament the pruning candidate with the highest
accuracy (minimum MSE) will be selected as the next pruning base.

Initial tests performed with various settings for the configuration parameters
ITP supports indicate that: the MaxPruning and IterationsCount parameters



6 A.-C. Zăvoianu, G. Kronberger, M. Kommenda, D. Zaharie, M. Affenzeller

should be set such as to generally avoid the possibility of reducing a model to a
single node; ITP displays the best results when applied only to the individuals
that are not among the best 10-15% nor among the worst 20-40% according to
accuracy; an increased mutation rate of 25-50% would improve solution accuracy;

Algorithm 2 The iterated tournament pruning module (ITP module)

1: BestMSE = ∞
2: PrunSolution = Φ
3: PrunBase = OriginalModel
4: for i = 0 to IterationsCount do
5: for j = 0 to TournamentSize do
6: PrunCandidate = StochasticPrune(PrunBase, MaxPruning)
7: PrunMSE = ComputeMSE(PrunCandidate)
8: if PrunMSE < BestMSE then
9: PrunSolution = PrunCandidate

10: BestPrunMSE = PrunMSE
11: end if
12: end for
13: PrunBase = PrunSolution
14: end for
15: return PrunSolution

The Resulting Bloat Control System - BCS From the previous descrip-
tions, one can observe that DDL and ITP have two complementary ways of
fighting bloat. Whilst the former tries to prevent the creation and propagation
of bloat, the latter directly attempts to remove superfluous code from the popu-
lation members. As such, trying to combine both methods in a single integrated
solution aimed at combating bloating, seemed a very natural approach.

In our initial tests of the combined bloat control system, we decided to use for
the two bloat control methods the same parameter settings from the stand-alone
configurations. To our surprise, the approach proved quite successful.

6 Conclusions

Individually both the DDL and ITP modules managed to reduce the average
Ehd-GP solution size (see Table 1). Both improvements were statistically signif-
icant with Mann-Whitney-Wilcoxon test p-values smaller than 0.0001.

The combination of the two bloat control methods proved to reduce even
more the average Ehd-GP solution size (see Table 1). The average decrease of
solution size determined by BCS was statistically significant both with regards
to individual DDL (p-value = 0.0183) and to individual ITP (p-value < 0.0001).

While empirical observations may suggest that BCS also slightly increased
the average solution quality of the Ehd-GP, there was no solid statistic proof
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Fig. 1. Kernel density estimation plots for Std-GP and Ehd-GP

Table 1. Accuracy and size information regarding Std-GP and of Ehd-GP solutions

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Std-GP MSE 2.178 1.046 1.821 1.177 0.177 1.232

Ehd-GP MSE 1.448 0.584 1.280 0.929 0.037 0.930

DDL-GP MSE 1.514 0.643 1.345 0.919 0.049 0.940

ITP-GP MSE 1.228 0.925 1.065 0.962 0.035 0.970

BCS-GP MSE 1.339 0.470 1.210 0.915 0.032 0.900

Std-GP size 45.44 33.50 39.00 44.84 24.55 43.00

Ehd-GP size 52.60 28.11 47.00 53.36 29.94 52.00

DDL-GP size 32.92 16.30 30.50 34.16 14.32 34.00

ITP-GP size 39.34 18.65 35.00 42.16 18.43 38.00

BCS-GP size 29.17 11.18 28.00 26.36 10.21 23.00

that the average solution accuracy of the BCS augmented Ehd-GP process (BCS-
GP) was any different from that of original Ehd-GP. The BCS-GP process was
further tested on two more symbolic regression problems in [11] and the results
confirmed the findings reported in this paper. The corresponding comparative
kernel density plots of Ehd-GP and BCS-GP are presented in Fig. 1.
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In spite of the very good results obtained by the final bloat control system,
we consider that, at the current stage of development, its main function is that
of a proof of concept with regards to the successful combination of two bloat
combating methods that are based on different but complementary paradigms.
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1 Introduction

Distance measure between images is of theoretical as well as practical importance. The always
increasing amount of images available on the web as well as the development of online and offline
image retrieval tasks with many different images makes the design of a good similarity measure
hard and interesting. These similarities are then used, for instance, for assessing the image quality,
for segmenting an image, for compression algorithm evaluation. In this talk we survey the use of
different distance transform based measure and introduce a new one. Our work is articulated as
follows. We start by recalling the basics principle of binary image distance transforms and their
use for comparing binary images. Section 3 extends the distance transform to the gray level case,
and the image comparison metrics are introduced in Section 4. Finally some first experiments on
natural scenes compared with some state of the art structural similarity measures are given in the
final part of the talk.

2 Error Metric for Binary Images

This section aims at introducing a previous work from Baddeley [1]. He introduced a metric
based on the distance transform and Hausdorff distance. It is only used for binary images in the
context of image comparison. We first review how the distance transform is computed and then the
implementations for its linear computation/approximation. The last section introduces the metric
used for image comparison which is based on a Lp norm approximation of the Hausdorff distance.

2.1 Distance Transform

The basic idea for distance transforms in binary image processing is to convert any binary pattern
into a distance map which contains the distance to the closest foreground pixel. Therefore we need
to specify a distance d for measuring closeness in he pixel grid and we can define the distance map
as

Definition 1 (Binary distance map). Given a binary signal f defined on RN , which can actually
be represented as a set A = {x ∈ RN : f(x) = 1}, the distance transform is defined as

∀x ∈ RN , DTd[f ](x) = d(x,A) = min
y∈A

(d(x, y))

This definition yields a structural description of the image as contours are obtained easily by
taking the following sets: Ak = {x ∈ RN : DTd[f ](x) = k}. This example defines all the points
of a binary image lying at a distance of k to the closest foreground element.

2.2 Algorithms

Interesting with this representation is the cheap way to compute it. Some methods have been
developped to compute some approximations of the Euclidean Distance Transform which are no
more than 2% wrong. We refer the reader to [9, 3] for some theoretical concepts and proofs of
this results as well as the mask used. It is important to notice that thanks to this approximation,
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Figure 1: Sample binary distance transform with L1 distance measure.

the euclidean distance transform of an image can be approximated simply with passing a mask
forward and backward on an image.

Implementation of such forward and backward mask passing for higher dimensions have been
developped too. See for instance [4]. This formulation might help extending all the proposed
approaches to higher dimensional signals (for instance imaging in biomedicine).

2.3 Image Metric

Baddeley based his work on the use of the Hausdorff metric, which is actually a distance between
sets.

Definition 2 (Hausdorff distance). Given two sets A,B ⊂ RN , the Hausdorff distance is defined
as

H(X,Y ) = max(sup
x∈A

(d(x,B)), sup
y∈B

(d(y,A)))

Baddeley introduced the use of the Hausdorff distance for binary image comparison. Indeed,
as stated in definition 1, any binary image can be written as a set. However the Hausdorff distance
is not usable in its original form and an equivalent formulation has been proposed:

H(X,Y ) = sup
x∈X
|d(x,A)− d(x,B)| (1)

Now it appears that the Hausdorff distance can be implemented with distance transforms algo-
rithms and is therefore tractable for image processing applications. One last point remains critical
regarding noise sensitivity. Because of the max or sup calculation the presence of strong outliers
will introduce a bias in the measurement of dissimilarity. The idea given by Baddeley to overcome
this problem is to give an averaged approximation of the Hausdorff distance based on p-norm
which yields his dissimilarity coefficient, defined, for a given integer q as

∆q
b(f, g) =

[
1

NX

∑

x∈X
|d(x,A)− d(x,B)|q

]1/q

(2)

where A and B are the two sets respectively associated to the signals f and g and NX denotes the
number of points in the pixel grid.
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3 Gray-Level Distance Transforms

As detailed in the previous section, a metric for binary image comparison was introduced based on
a distance transform and p-norm approximation. Since then, different methods have been proposed
as an extension to the gray level case. Some work try to extend the ∆b metric itself (see Section
3.1) while other approaches try to extend the distance transform (see Section 3.2).

Other methods such as Weighted Distance Transform on Curved Spaces or the Grey Weighted
Distance Transform won’t be detailed here (the curious reader can have a first look at [7]). Neither
will be the work of Coquin and Bolon [5], or the one of Felzenszwalb and Huttenlocher [6].

3.1 Wilson

The approach introduced by Wilson et al. [12] aims at extending the previous ∆b metric to a metric
capable of handling gray-level images. The idea is to embed an N-Dimensional signal into a N+1
dimensional space and to compute distances from each point of this space to the subgraph of the
signal.

Definition 3 (Subgraph of a signal). Given a signal f defined on X ⊂ RN whose values are in a
given set Y (i.e. f : X → Y ), its subgraph Γf is defined as

Γf = {(x, y) ∈ X × Y : y ≤ f(x)}

Note that N will typically have value 1 (for proper signals) or 2 (for images). Y is the set of
possible gray values of the signal; for instance, for an 8-bit image we have Y = {0, · · · , 255}.

From now on, if needed we will denote by spatial coordinates any point in X and by intensity
or illumination values in Y .

Now, letD be the containing space, i.e. D = X×Y , we compute, for each point p = (x, y) ∈
D the distance to the subgraph of f :

d(p,Γf ) = inf
p′∈Γf

d(p, p′) (3)

Remark that expression 3 is general and one needs to specify the distance used inside the inf .
Wilson et al.have proposed a distance that separately takes into account spatial coordinates and
intensity values.

Definition 4 (Wilson’s distance). We can define a distance on X × Y as

∀p = (x, y), p′ = (x′, y′) ∈ D, dW (p, p′) = max(d(x, x′), |y − y′|)

where d(x, x′) defines, for instance, the euclidean distance between the spatial coordinates.

We can now introduce the notion of upper level set, which is a usefull concept for the derivation
of a metric which makes use of distance transform as for the binary case.

Definition 5 (Upper-level set). Given a signal f , we define an upper-level set at y as

Xy(f) = {x ∈ X : f(x) ≥ y}
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Finally pluging definitions 4 and 5 into equation 3 yields Wilson’s gray level distance trans-
form:

∀p = (x, y) ∈ D, DTW [f ](p) = d(p,Γf ) = inf
z∈Y
{max(d(x,Xz(f)), |y − z|)} (4)

Finally only a finite number of binary distance transforms have to be computed to get Wilson’s
gray level distance transform.

However, we propose another way to write this down, as it is rather unclear how to understand,
in a physical sense, the distance used here. Indeed, if we consider a 1-dimensional signal, then the
set X is a set of given time stamps while Y represents quantitative values (price of an action for
instance) and one should be careful when taking a max on variables with different signification.
Therefore we propose to add a normalization parameter which should be there to make sure both
spatial and intensity variables are comparable. This yield the following normalized distance:

dρW (p, p′) = max(d(x, x′), ρ|y − y′|) (5)

Embedding a signal into a higher dimensional space has another drawback. It makes the
visualization of the distances hard. Indeed, considering a 2-Dimensional signal (an image) the
distance transform using the approach of Wilson et al.yields a 3-Dimensional map which is no
longer easily displayed.

A last idea suggested is to cut off values higher than a threshold c in the definition of the
distance transform.

Definition 6 (Thresholded distance). Let c be a positive real number. The following expression
can be used as a distance for the distance transform:

dρW
∗
(p, p′) = min{dρW (p, p′), c}

This formulation allows to control the highest value achievable in the distance transform, as we
will see later, and to eventually accelerate the computation. Indeed, by considering a thresholding
of the distance, we can directly get rid of all the distance transform appear at an intensity distance
of more than the thresholding (more details are given in [12] ) .

As we see on Fig. 2, both c and ρ parameters strongly impact the results of Wilson’s Distance
Transform. If we consider the extrem case ρ = 0, we get that d0

W
∗
(p, p′) = min{d0

W (p, p′), c} =
d(x, x′). And because we are taking the infimum of this value to all possible cut, this would yield
a value of 0 everywhere but at the max of the signal. This is actually what we see when we look
at a given row of the grid from right to left: the images are getting darker and darker until only a
single white bar located at the signal’s maximum is visible.

On the other hand, taking a too large value for ρ will contribute to blow away all the spatial
coordinates and help the dissimilarity values to surpass the saturation threshold c. This is what we
see upper right triangle of the grid, where many values obtained are completely bright white and
therefore contains almost no more structural information (apart from the fact that the closest cut
more than c away from the given point). Of course, the larger the c the larger ρ can be. Of course
in this case "too large value" of ρ stronlgy depends on the chosen saturation threshold.

Finally, c allows to choose which kind of structure we want to detect between rather local
structure (small c) or more global features (larger c), as we can see, for instance in the third
column of the grid.
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Figure 2: Influence of the different saturation and normalization parameters of Wilson’s Distance
Transform. Each row fixes a c (1,2,5,10,100, from top to bottom) while each column fixes a ρ
parameter (0.5,1,2,8,16 from left to righ). The upper left corner shows the signal used for the
transformation. The reference signal is actually of size 256 and ranges from about -2 to 8. Some
cuts where made every intensity unit.

3.2 Molchanov

Another extension to higher dimensional space have been proposed by Molchanov [8]. In his work
the author introduces a distance transform which is also based on upper-level sets and sums them
together with some predefined weight. Molchanov does not consider the illumination coordinates
anymore (except intrinsically for the definition of the upper level sets). This simplifies the choice
for a normalization factor, compared to Wilson’s approach.

Definition 7 (Molchanov’s Distance Transform). Given a real-valued signal f defined on a do-
main X ⊂ RN , we can define a real-valued distance transform as follows:

DTM [f ](x) =
∑

y∈Y
µyd(x,Xy(f))

where d denotes the euclidean distance on the spatial coordinates and {µy}y∈Y denotes some
weighting factors.

The interesting point with this definition is that it does not create any artifact for the visualiza-
tion by adding a dimension to the signal. Moreover it has been well developped in a mathematical
sense and allows one to invert this procedure (at least for discrete finite signals; which is the case
for images); it means that one can compute a distance transform map from an image or get an
image from a distance transform map.

Figs. 3(b) to (d) show the inpact of discretizing the intensity space over different values. It
appears that the structure of the image with higher number of intensity levels is very similar to the
one with low number of intensity levels.
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(a) House image (b) 10 different intensity
values

(c) 50 different intensity
values

(d) 100 different intensity
values

(e) c = 10, 100 cuts (f) c = 20, 100 cuts (g) c = 50, 100 cuts (h) c = 100, 100 cuts

Figure 3: Molchanov distance transform on the House image. First row show the results with
varying number of discretization steps of the intensities while second row show varying value of
thresolding parameter.

As before, we can introduced a thresholded variant of the given distance: every distances
higher then a given threshold c are fixed to c. This allows a better control on the range of values
achievable by the distance transform. It also allows to consider dissimilarity within a circle of a
given radius around each pixel. Figs. 3(e) to 3(h) show how different kind of details appear when
using different thresholding values. It seems that the lower the thresholding value, the finer the
details appearing, while larger values of threshold yield coarser details.

Figs. 4 shows another example of different threshold on a more complex image. While the
House image has low textural information (only the brick wall), the Lena image shows interesting
textures, for instance in the hair or in the hat. On this image too it appears that the choice of c
affects the kind or size of details considered. On the Lena example, it appears that with a lower
c more strength is given to the high frequency details, while high values of c emphasizes on the
global shape of the face.

(a) Lena image (b) c = 10 (c) c = 20 (d) c = 100

Figure 4: Molchanov distance transform with different thresholdings of the distances on the Lena
image.
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4 Gray-Level Distance Metric

4.1 Global dissimilarity metrics

Baddeley combined the distance transform of two images to compute a metric for comparison
as developped sin sec. 2.3. This idea has also been applied in the work of Wilson et al.for the
comparison of gray level images. This yields the following coefficient, as an approximation of a
max with q-norms:

Definition 8 (Wilson’s metric for gray-level images). Given two signals f and g, Wilson’s dissim-
ilarity coefficient is given as

∆q
W (f, g) =


 1

ND

∑

p∈D
|DT ρW [f ](p)−DT ρW [g](p)|q




1/q

where ND denotes the number of points in the considered N+1 dimensional pixel raster D.

To our knowledge, no other such measures have been built for image comparison based on
Molchanov’s distance transform 7. Therefore we propose a similar coefficient:

Definition 9 (Molchanov’s metric for gray-level images). Given two signals f and g, Molchanov’s
dissimilarity coefficient can be given as

∆q
M (f, g) =

[
1

NX

∑

x∈X
|DTM [f ](x)−DTM [g](x)|q

]1/q

where NX denotes the number of points in the considered spatial pixel raster.

Both metrics described above are calculated as an average of local dissimilarities between
distance transforms of two given inputs. We could also without any problem use the thresholded
definitions of the distances (which give raise to some ∆∗ metrics). In this case, we have an upper
bound of the dissimilarity between two images.

Property 1 (Uniform boundedness of the ∆∗ metrics). Given a distance transform based on a
distance d, a threshold c and an integer q, the ∆∗ metric defined as

∀f, g ∆q
d
∗
(f, g) =

[
1

NX

∑

x∈X
|DT ∗[f ](x)−DT ∗[g](x)|q

]1/q

(6)

is bounded by c, independently from the two inputs f and g.

Remark 1: if we do not add the thresholding operation to the distance would also get a bounded
distance but the bound would depend on the size of the raster considered.

Remark 2: using c > dim(X) is equivalent to not using any thresholding at all.
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Proof. Let’s consider a distance measure between to spatial/spatial-intensity point in X d and a
threshold value c ≥ 0. Then we have ∀p, p′ ∈ X, d∗(p, p′) ≤ c.

This implies that for any 2 given signals f and g, we have

0 ≤ DT ∗[f ](p) ≤ c and 0 ≤ DT ∗[q](p) ≤ c.

Therefore, we get ∀p ∈ X, q ∈ N, |DT ∗[f ](p)−DT ∗[g](p)|q ≤ cq.
Finally, averaging the last expression and taking the q−root of it shows the result.

4.2 Experiments

In this section, we study the behavior of the different proposed approaches regarding small con-
trolled perturbations. We will independently consider measuring dissimilarities between an image
and its translated, rotated, or blurred variants. As a first experiment, we decided to stick to the use
of the mansion image as already presented, as it is an example of natural image scene without too
many complex structure, texture or background.

For comparison purposes, we have added two other metrics which are not entering the category
of distance transform based measures but are still computing some structural (dis-)similarities
between two images.

The first one is the SSIM index introduced by Wang et al.in 2004 [11]. This structural sim-
ilarity index is computed by combining three separate level of information between images. A
first similarity is computed to compare the intensities, then another one takes into account the
difference of contrast between the images. Finally a last similarity is computed on the resulting
structures. The three components are then combined together to build a local similarity measure
between 0 and 1 where 1 denotes a perfect similarity and 0 and perfect dismatch.

The other chosen similarity for comparison is the one introduced by Moser in [10]. The dis-
crepancy norm is a way of finding the biggest interval (in 1D cases) or convex sets/rectangles (in
nD cases) with the biggest dissimilarity to the uniform 0 distribution. In other terms, computing
the discrepancy norm of the difference of two signals or images is equivalent to finding the biggest
dissimilarity or discrepancy on the biggest convex subset of the domain. This yields dissimilarity
values which are positive, unbounded with 0 being the best match achievable and actually only
achieved when measuring differences between two exact same signals (due to its norm property).
It has been shown to be monotonic with respect to shiftings of a signal when computing autocor-
relation values.

A last similarity value called Local dissimilarity maps (LDMap) [2] have been added to the
comparison tables/plots. It is calculated by taking the pointwise product of the difference of the
two images on one size, with the difference of the two distance transforms on the other:

LDMap(f, g)q =

{
1

NX

∑

x∈X
(|f(x)− g(x)| · |DT [f ](x)−DT [g](x)|)q

}1/q

(7)

Dissimilarities and blurring For this purposes, the input image is blurred many times consec-
utively with a 5× 5 gaussian blurring masking with variance σblur = 0.5
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(a) House image after 10
blurring

(b) House image after 20
blurring

(c) House image after 35
blurring

(d) House image after 50
blurring

Figure 5: Examples of blurred images used for analysis of the different measures.

Blurring MSE Wilson Molchanov LDMap SSIM DN
10 times 12.6983 0.1029 0.7613 0.1783 0.8397 397.5537
20 times 17.1617 0.1128 0.8802 0.2566 0.7776 660.1263
35 times 21.3560 0.1273 1.0009 0.3346 0.7373 962.3175
50 times 24.2942 0.1366 1.0728 0.3915 0.6846 1208

Table 1: Results of the different metrics on the shown samples of blurred images

One sees on the images that the local structural information are getting blurred away. Therefore
we expect the dissimilarity values to follow this trend: the less structural proximity the two images
have the highest should be the value (or smaller for the SSIM similarity index). Table 1 shows the
values obtained on the images shown in Fig. 5.

One important remark to be done is that all of the proposed approaches show the expected
behaviour. However, one should be careful when analyzing the results as different metrics have
different dynamics. Because of that, we will not display the values for the discrepancy norm in
plots (it shows much too high values and would blows comprehension away).

Fig.6 shows the behaviour of the different similarity measures. It seems that they all show quite
a steep increase at the beginning and then tend to stabilize (after about 20 gaussian smoothing).

Dissimilarities and translation In this case, we have decided to expand our input image with
zero padding around it so that no information is getting lost during the shifting process. For this
purpose we have shifted the mansion image to the left, one pixel after another.

Once again, we have computed our different measures on those examples and gathered the
results regarding the images in Fig. 7 in Table 2 and in Fig.8

Interestingly all the presented metrics show a rather nice monotonicty behaviour. It seems that

Translation MSE Wilson Molchanov LDMap SSIM DN
5px 4.6562 1.4037 1.0869 0.5107 0.9399 900
10px 6.2390 2.4323 1.8769 1.1477 0.9296 1794
20px 8.3279 3.3104 2.5426 1.7079 0.9190 3570
30px 9.7284 3.7842 2.8999 1.9897 0.9114 5349

Table 2: Results of the different metrics on the shown samples of translated images
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Figure 6: Similarities with increasing gaussian blur.

(a) House image after a
shift of 5 pixels

(b) House image after a
shift of 10 pixels

(c) House image after a
shift of 20 pixels

(d) House image after a
shift of 30 pixels

Figure 7: Examples of translated images used for analysis of the different measures.

considering structural information for a similarity measure is particularly important when dealing
with misaligned images.

Dissimilarities and rotation In this case, we have decided to expand our input image with
zero padding around it so that no information is getting lost during the rotation process. The input
Mansion image is being rotated and the (dis-)similarities between the original image and its rotated
variants is computed for all the porposed metrics. Some sample images are shown on Fig. 9.

The results for these images as well as other particular cases are given in Table 3. Results on
a complete for all 90 rotations are gathered in Fig. 10

It appears that all the distance transform based metrics show some kind of cyclic behaviour by
first growing until reaching a local maxima at around 40 to 50Â◦ and then get down again. Our
feeling is that the behaviour is mainly due to the zero padding artifacts which creates artificially
high distances at each corner.



4 Gray-Level Distance Metric 11

Figure 8: Similarities with increasing shift.

Rotations MSE Wilson Molchanov LDMap SSIM DN
5 5.7108 2.1877 1.6454 0.9073 0.9342 1563
10 7.4848 3.0454 2.2986 1.4590 0.9217 2909
20 9.4796 3.7495 2.7887 1.8516 0.9069 4986
30 10.5129 4.0604 3.0413 2.0485 0.8987 6151
45 11.0306 4.2099 3.1517 2.1332 0.8948 7261
90 6.8741 2.4890 1.7951 0.7848 0.9240 5110

Table 3: Results of the different metrics on the samples of rotated images
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(a) House image after a
rotation of 5Â◦

(b) House image after a
rotation of 10Â◦

(c) House image after a
rotation of 45Â◦

(d) House image after a
rotation of 90Â◦

Figure 9: Examples of rotated images used for analysis of the different measures.

Figure 10: Similarities with increasing rotation angle.

5 Conclusion

We presented some results on our first researches on the topic of gray-level distance transforms for
image comparisons. It is interesting that tuning the different parameters allows to the give more
importance to different level or fineness of details.
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