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Conditionally distributivity of a uni-norm with respect to a triangular conorm

10:00 Susanne Saminger, Koen Maes:
Aggregation of reciprocal relations

10:30 Coffee Break

Session 2 (Chair: Ulrich Bodenhofer) 10:50–12:50

10:50 Thomas Biringer:
Knowledge based methods in management
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Abstract

In fuzzy set theory, the fuzzification of a crisp concept is not seldom rooted in
a straightforward adjustment of the disjunctive or conjunctive Boolean nor-
mal form of the underlying mathematical expression. However, the fuzzified
normal forms obtained can rarely be considered as true normal forms in an
extended logic or algebra. They are to be considered as functions, defined on
[0, 1]n, for some n ∈ N0, and taking values in the support [0, 1] of a BL-algebra
([0, 1],∨,∧, T, IT , 0, 1), with T a continuous t-norm and IT its residual impli-
cator. In this paper, we figure out to what extent the mutual distance between
both fuzzified normal forms depends on the original Boolean function. Special
attention is drawn to the ÃLukasiewicz triplet, as it is the only continuous De
Morgan triplet for which the difference between both fuzzified normal forms
is independent of the underlying Boolean function.

T-norm, t-conorm, De Morgan triplet, ÃLukasiewicz triplet, disjunctive normal form, con-
junctive normal form, Cauchy equation

1 Introduction

Attempting to capture imprecision associated with the combination of concepts, Türkşen
introduced interval-valued fuzzy sets based on a straightforward fuzzification (interpreting
∧ as a t-norm T , ∨ as a t-conorm S and ′ as a negator N) of the Boolean disjunctive
and conjunctive normal forms of the original Boolean expression [14, 16]. He claims that
by doing so, interpretation-dependent difficulties can be avoided. However, Türkşen’s
fuzzified normal forms cannot be seen as true normal forms. At best, if we work with the
Kleene algebra ([0, 1], min, max,N , 0, 1), they yield lower and upper approximations of a
given wff1 over that Kleene algebra. In general, these disjunctive and conjunctive fuzzi-
fied normal forms are [0, 1]-valued functions on [0, 1]n, for some n ∈ N0. They sometimes
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well formed formula
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provide a kind of standard fuzzification procedure. The reason for this lies in the obser-
vation that the crisp concepts themselves are often mathematically expressed by means
of their disjunctive or conjunctive normal form. For example, when constructing fuzzy
preference structures (P, I, J), researchers made intensive use of the fuzzified disjunctive
normal forms of the original crisp binary relations P , I and J [4]. Until now, little is
known about the relationships between the fuzzified normal forms. To get a better un-
derstanding of the true meaning of the fuzzified normal forms, we should first explore
more profoundly their comparability. In particular we deal with a system of functional
equations that originated by imposing some functional independence on the difference
between both fuzzified normal forms. This system of functional equations has a unique
solution when working with continuous t-norms and t-conorms.

2 A system of functional equations

For the sake of brevity, we denote from now on {0, 1} (resp. [0, 1]) by B (resp. I). In the
Boolean algebra B = (B,∨,∧,′ , 0, 1), every function f : Bn → B can be represented by
its unique disjunctive (DB) and conjunctive (CB) normal form. Replacing (∧,∨,′ ) by a
triplet (T, S,N), with N an involutive negator, results in a straightforward fuzzification
of these Boolean normal forms. The corresponding disjunctive and conjunctive fuzzified
normal forms are denoted by DF and CF . For each n-ary Boolean function f , we obtain
two In → I mappings DF (f) and CF (f):

DF (f)(x) = S{f(e) T (xe) | e ∈ Bn} ,

CF (f)(x) = T

{

[

(1 − f(e)) S
(

x(e0)
)N

]N

| e ∈ Bn

}

,

where x ∈ In, 0 = (0, ..., 0), xe = (xe1

1 , ..., xen

n ), xei

i = xi if ei = 1 and xei

i = xN
i if ei = 0.

In case (T, S,N) is a De Morgan triplet, the conjunctive fuzzified normal form can also
be written as

CF (f)(x) = T{[(1 − f(e)) T (xe)]N | e ∈ Bn}

= [S{(1 − f(e)) T (xe) | e ∈ Bn}]N .

Note that the use of an involutive negator is indispensable to define these fuzzified normal
forms unequivocally [9].

By definition, the difference between both fuzzified normal forms is given by

CF (f)(x) − DF (f)(x)

= T

{

[

(1 − f(e)) S
(

x(e0)
)N

]N

| e ∈ Bn

}

− S{f(e) T (xe) | e ∈ Bn} , (1)

for any Boolean function f and any x ∈ In. We are now looking for those triplets (T, S,N)
for which CF (f)(x)−DF (f)(x) is only a function of the variable x ∈ In (i.e. independent
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of the Boolean function f). In particular these triplets (T, S,N) solve the system of
functional equations, obtained by putting, for every x ∈ In, the 22n

different expressions
(1) on a par. Let aN be the fixpoint of the involutive negator N . To solve the system of
functional equations it is sufficient to look for those triplets that equalize the following
expressions

S(x, yN) − T (xN , yN) , (2)

S(x, y) − T (xN , y) , (3)

T (S(x, yN), S(x, y)) , (4)

1 − S(T (xN , y), T (xN , yN)) , (5)

for any (x, y) ∈ [0, aN ]2, x ≤ y [9]. Afterwards we can verify wheter the solutions of this
2-dimensional problem also fulfill the original system (1). From now on, if we deal with
the system of equalities (2) = (3) = (4) = (5), we take for granted that (x, y) ∈ [0, aN ]2 and
x ≤ y.

3 Continuous solutions

Taking a closer look at expressions (2)–(5) we see that (2) = (3) and (4) = (5) hold when
N = N and (T, S,N) = 〈T, S,N〉 (i.e. (T, S,N) is a De Morgan triplet). However, for
both equalities, the properties N = N and (T, S,N) = 〈T, S,N〉 get entangled. Although
various attempts to unlink them failed, we were in some sense able to emphasize their
mutual connection: one property cannot occur without the other.

For continuous De Morgan triplets 〈T, S,N〉 it follows immediately that the negator has
to be the standard negator.

Theorem 1 [9] Consider a continuous De Morgan triplet 〈T, S,N〉. If CF (f)(x) −
DF (f)(x) is independent of the Boolean function f , then N is the standard negator.

To obtain the ‘converse’ implication that N = N forces the De Morgan property on T
and S, we will first explore the system of functional equations (2) = (3)= (4) = (5) more
profoundly for general continuous triplets.

Lemma 1 [9] Consider a continuous triplet (T, S,N). If CF (f)(x) − DF (f)(x) is inde-
pendent of the Boolean function f , then there exist two I- automorphisms φ and ψ such
that T = (TL)φ, S = (SL)ψ and N = Nφ = Nψ.

Due Lemma 1 we are now able to compute the explicit forms of expressions (2)–(5):

(ψ−1[ψ(y) − ψ(x)])N − (φ−1[φ(x) + φ(y)])N , (6)

ψ−1[ψ(x) + ψ(y)] − φ−1[φ(y) − φ(x)] , (7)

φ−1[φ(ψ−1[ψ(x) + ψ(y)]) − φ(ψ−1[ψ(y) − ψ(x)])] , (8)

1 − ψ−1[1 + ψ(φ−1[φ(y) − φ(x)]) − ψ(φ−1[φ(x) + φ(y)])] , (9)
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At this point it remains unclear how to straightforwardly solve this system of functional
equations. Both I-automorphisms (φ and ψ) and their inverses occur there each time
in a different composition. To overcome this problem, we try to reduce the number of
(unknown) I-automorphisms from two to one. The functional equation (8) = (9) can be
transformed into

γ−1[γ(x) + γ(y)] − γ−1[γ(y) − γ(x)] = 1 − 2 γ−1

[

1 + γ(y − x) − γ(y + x)

2

]

, (10)

for any (x, y) ∈ [0, 1/2]2, x ≤ y and with γ : I → I : x 7→ γ(x) = ψ(φ−1[x]) [9].
Unfortunately this procedure cannot be applied to the other equations of the system
(6)=(7)=(8)=(9). Exploring the definition of γ more carefully, we can derive the following
properties.

Proposition 1 [9] Consider the continuous triplet (T, S,N) from Lemma 1 and let γ be
the I-automorphism as defined above. Then the following observations hold:

1. γ is reciprocal:
(∀x ∈ I)(γ(1 − x) = 1 − γ(x)) ,

2. N is the standard negator if and only if it holds that

(∀x ∈ [0, 1/2])(γ(2 x) = 2 γ(x)) .

We already showed that the De Morgan property implies N = N . At this point we are
finally able to prove that the converse property is also true. It is sufficient to show that
in case N = N , the I-automorphism γ is the identity mapping (Lemma 1).

Theorem 2 Every reciprocal I-automorphism θ, fulfilling θ(2 x) = 2 θ(x) for every x ∈
[0, 1/2], must be the identity mapping.

Combining Proposition 1 and Theorem 2 leads to the following result.

Theorem 3 [9] Consider a continuous triplet (T, S,N) with N = N . If
CF (f)(x) − DF (f)(x) is independent of the Boolean function f , then (T, S,N) is a De
Morgan triplet.

For continuous De Morgan triplets 〈T, S,N〉, with N = N , we are able to characterize
the solutions of (2) = (3) = (4) = (5). The Cauchy equation [1, 2] plays a key role in the
reasoning.

Theorem 4 Consider a continuous De Morgan triplet 〈T, S,N〉 with N = N . Then
(2)= (3)= (4)= (5) if and only if (T, S,N) is the ÃLukasiewicz triplet 〈TL, SL,N〉.

On the other hand we know that the ÃLukasiewicz triplet makes CF (f)(x) − DF (f)(x)
independent of the Boolean function f .
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Theorem 5 [8] For the ÃLukasiewicz triplet it holds that:

CF (f)(x) − DF (f)(x) = 1 −
∑

e∈Bn

T (xe) ,

for every n-ary Boolean function f and all x ∈ In.

If a continuous triplet (T, S,N) fulfills the system of functional equalities (1) the De
Morgan property is equivalent with N = N (Theorem 1 and Theorem 3). Therefore
Theorem 4 can be rewritten as one of the following theorems.

Theorem 6 [9] Consider a continuous triplet (T, S,N) with N = N . Then
CF (f)(x)−DF (f)(x) is independent of the Boolean function f if and only if (T, S,N) is
the ÃLukasiewicz triplet 〈TL, SL,N〉.

Theorem 7 [9] Consider a continuous De Morgan triplet 〈T, S,N〉. Then
CF (f)(x)−DF (f)(x) is independent of the Boolean function f if and only if (T, S,N) is
the ÃLukasiewicz triplet 〈TL, SL,N〉.

4 Conclusions

When working with the ÃLukasiewicz triplet, the difference between the conjunctive and
disjunctive fuzzified normal form is independent of the Boolean function f . We have
proven, by solving a system of functional equations, that the ÃLukasiewicz triplet is the
only continuous De Morgan triplet for which this independence holds. Throughout the
solution procedure, we have also laid bare the tight connection between the De Morgan
law and N being the standard negator.
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Abstract

Inspired by an open problem of Alsina, Frank and Schweizer, k-
Lipschitz t-norms and t-conorms are studied. Additive generators of
k-Lipschitz t-norms are completely characterized.

Keywords: additive generator, k-Lipschitz property, triangular
norm

1 Introduction

Triangular norms are, on the one hand, special semigroups and, on the other
hand, solutions of some functional equations [1, 3, 6, 8]. This mixture quite
often requires new approaches to answer questions about nature of triangular
norms.

A triangular norm (t-norm for short) T : [0, 1]2 → [0, 1] is an associative,
commutative, non-decreasing function such that 1 acts as a neutral element
[6]. Most important t-norms are the minimum TM, the product TP and
the ÃLukasiewicz t-norm TL given by TL(x, y) = max(x + y − 1, 0). Observe
that each continuous Archimedean t-norm T can be represented by means of
a continuous additive generator [3, 4], i.e., a strictly decreasing continuous
function t : [0, 1] → [0,∞] with t(1) = 0 such that

T (x, y) = t(−1)(t(x) + t(y)),

where the pseudo-inverse t(−1) : [0,∞] → [0, 1] in this special case is given by

t(−1)(u) = t−1(min(u, t(0))).

Note that if t is an additive generator of a t-norm T then for any d ∈]0,∞[
also d · t is an additive generator of the t-norm T. For continuous t-norms
also the opposite is true.

1



For the sake of completeness recall that each continuous t-norm (see [3, 4])
can be represented as an ordinal sum of continuous Archimedean t-norms (t-
norm is called Archimedean if for each (x, y) ∈ ]0, 1[2 there is an n ∈ N with

x
(n)
T < y, where x

(n)
T = T (x, x

(n−1)
T ) and x

(1)
T = x). More precisely, for each

continuous t-norm T there exists a unique (finite or countably infinite) index
set A, a family of unique pairwise disjoint open subintervals (]aα, eα[)α∈A and
a family of unique continuous Archimedean t-norms (Tα)α∈A such that for
all (x, y) ∈ [0, 1]2

T (x, y) =

{
aα + (eα − aα) · Tα( x−aα

eα−aα
, y−aα

eα−aα
) if (x, y) ∈ [aα, eα]2,

min(x, y) otherwise.

We shall also write T = (< aα, eα, Tα >)α∈A.
In the center of our interest are t-norms which satisfy k-Lipschitz prop-

erty.

Definition 1
Let T : [0, 1]2 → [0, 1] be a t-norm and let k ∈ ]0,∞[ be a constant. Then T
is k-Lipschitz if

|T (x1, y1)− T (x2, y2)| ≤ k · (|x1 − x2| + |y1 − y2|) (1)

for all x1, x2, y1, y2 ∈ [0, 1].

Because of the neutral element e = 1, a t-norm can be k-Lipschitz only
for k ≥ 1. It is evident that if a t-norm T is k-Lipschitz it is also m-Lipschitz
for any m ∈ R, k ≤ m. As it was shown in [5, 8], 1-Lipschitz t-norms are
exactly those t-norms which are also copulas. By [5, 7], a strictly decreasing
function t : [0, 1] → [0,∞] with t(1) = 0 is an additive generator of a 1-
Lipschitz Archimedean t-norm if and only if it is convex. The aim of this
work is to give an answer to the open problem no. 11 from [2], i.e., to
characterize and discuss k-Lipschitz t-norms.

Note that a partial answer to the problem of Alsina et al. posed in [2] was
given by Y.-H. Shyu [9] who has showed that if the additive generator t of a
t-norm T is differentiable and t′(x) < 0 for 0 < x < 1, then T is k-Lipschitz if
and only if t′(y) ≥ kt′(x) whenever 0 < x < y < 1. This special case, as well
as the characterization of additive generators of 1-Lipschitz t-norms, follow
from our characterization.
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2 k-Lipschitz t-norms and additive genera-

tors

Let T be a k-Lipschitz t-norm. Since it is k-Lipschitz it is evident that it
is necessarily also continuous and it can be uniquely expressed as an ordinal
sum of continuous Archimedean t-norms (for more details see [4]) which are
then necessarily k-Lipschitz Archimedean t-norms. Furthermore, each of
these k-Lipschitz Archimedean t-norm has a continuous additive generator.

Definition 2
Let t : [0, 1] → [0,∞] be a continuous strictly monotone function and let
k > 0 be a real constant. Then t will be called k-convex if

t(x + kε)− t(x) ≤ t(y + ε)− t(y) (2)

holds for all x ∈ [0, 1[ , y ∈ ]0, 1[ , ε ∈ ]0, 1[ where x ≤ y and ε ≤ min(1 −
y, 1−x

k
).

Note that because of the monotonicity of a continuous strictly decreasing
function t can by k-convex only for k ≥ 1. Moreover, when t is k-convex it is
l-convex for all l ≥ k. In the case of strictly increasing function, a continuous
strictly increasing function c can by k-convex only for k ≤ 1. Moreover, when
c is k-convex it is l-convex for all l ≤ k.

The following is an equivalent definition of k-convexity.

Lemma 1
Let t : [0, 1] → [0,∞] be a continuous strictly monotone function then the
followings are equivalent.

(i) t is k-convex.

(ii) For all x ∈ [0, 1[ , y ∈ ]0, 1[ , ε ∈ ]0, 1[ where x ≤ y and ε ≤ 1−y it holds

t(min(x + kε, 1))− t(x) ≤ t(y + ε)− t(y). (3)

Theorem 1
Let T : [0, 1]2 → [0, 1] be an Archimedean t-norm and let t : [0, 1] → [0,∞] be
an additive generator of T. Then T is k-Lipschitz if and only if t is k-convex.

Note that for k = 1 we get t(y + ε) − t(y) ≥ t(x + ε) − t(x) whenever
x ≤ y, 0 < ε ≤ 1− y, i.e., the function t is convex.
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Corollary 1
Let t : [0, 1] → [0,∞] be an additive generator of a k-Lipschitz Archimedean
t-norm. Let x0, y0 ∈ ]0, 1] , x0 ≤ y0 (x0, y0 ∈ [0, 1[ , x0 ≤ y0). Then if there
exist left (right) derivatives t′−(x0) and t′−(y0) (t′+(x0) and t′+(y0)) we have

t′−(x0) ≤ 1

k
t′−(y0)

(t′+(x0) ≤ 1

k
t′+(y0)).

Moreover, let z0 ∈ ]0, 1[ be such that both left and right derivatives t′−(z0)
and t′+(z0) exist. Then we have

t′−(z0) ≤ 1

k
t′+(z0).

From Corollary 1 and Theorem 1 follows the necessity of the result of
Y.-H.Shyu [9]

Corollary 2 (Y.-H. Shyu)
Let t : [0, 1] → [0,∞] be an additive generator of a t-norm T, differentiable
on ]0, 1[ and let t′(x) < 0 for 0 < x < 1. Then T is k-Lipschitz if and only if
t′(y) ≥ kt′(x) whenever 0 < x < y < 1.

Corollary 3
Let T : [0, 1]2 → [0, 1] be a continuous Archimedean t-norm and let t :
[0, 1] → [0,∞] be an additive generator of T such that t is differentiable on
]0, 1[ \ R, where R ⊂ [0, 1] is a set of isolated points. Then T is k-Lipschitz
if and only if kt′(x) ≤ t′(y) for all x, y ∈ [0, 1], x ≤ y such that t′(x) and t′(y)
exist.

Corollary 4
Let t : [0, 1] → [0,∞] be a strictly decreasing function differentiable on ]0, 1[ .
If k max

x∈[0,1]
t′(x) ≤ min

x∈[0,1]
t′(x) then t is an additive generator of some k-Lipschitz

t-norm.

Example 1
(i) Let t : [0, 1] → [0,∞] be given by t(x) =

sin(π
3
(1−x))
π
3

. Then max
x∈[0,1]

t′(x) =

−1
2

and min
x∈[0,1]

t′(x) = −1, and hence 2 max
x∈[0,1]

t′(x) ≤ min
x∈[0,1]

t′(x), i.e., t is

an additive generator of some 2-Lipschitz t-norm.

4



(ii) Let t : [0, 1] → [0,∞] be given by t(x) = (1 − x) + (1−x)2

4
. Then

max
x∈[0,1]

t′(x) = −1 and min
x∈[0,1]

t′(x) = −3
2
, and we have 3

2
max
x∈[0,1]

t′(x) ≤
min

x∈[0,1]
t′(x), i.e., t is an additive generator of some 3

2
-Lipschitz t-norm.

Although in the case of 1-Lipschitz t-norms their additive generators have
left (right) derivative everywhere on ]0, 1[ (since t(x)− t(x− ε) is increasing
when ε is decreasing), in the case of k-Lipschitz t-norms with k > 1 the
situation is different. The following is an example of an additive generator
of a 2-Lipschitz t-norm with no right derivative in 1

2
.

Example 2
Let (an)n∈N0 be a sequence, where an = 1

2
+ (1

2
)n+1. Let t : [0, 1] → [0,∞] be

given by

t(x) =





−x + 1
6

1
2n+1 + 11

12
if x ∈ [a2n, a2n+1], n ∈ N0

−x
2

+ 2
3
− 1

3
1

22n+3 if x ∈ ]a2n+1, a2n+2] , n ∈ N0

−x + 11
12

if x ∈ [
0, 1

2

[
.

Then t has no right derivative in point 1
2
. Moreover, since for all x ∈ [0, 1]

and all ε ∈ ]0, 1− x[ it is t(x+ ε)− t(x) ∈ [−ε,− ε
2
] we have t(x+2ε)− t(x) ≤

−ε ≤ t(y + ε) − t(y) for all x, y, 0 < ε ≤ min(1 − y, 1−x
2

), i.e., t is 2-convex
and due to Theorem 1 it is an additive generator of some 2-Lipschitz t-norm.

Note only that each continuous monotone function has derivative almost
everywhere, i.e., the Lebesgue measure of the set S of all points from [0, 1]
where derivative does not exist is equal to zero.

The following example shows that the requirement in Corollary 3 for
points from R to be isolated is substantial.

Example 3
Let t : [0, 1] → [0,∞] be given by t(x) = 1 − x + f(1 − x) for all x ∈ [0, 1],
where f : [0, 1] → [0, 1] is the Cantor function, i.e., f(1

3
) = f(2

3
) = 1

2
, etc.

Then t′(x) = −1 for all x ∈ [0, 1] where t′(x) exist. Since t is continuous and
strictly decreasing with t(1) = 0 we know that t is an additive generator of
some continuous t-norm. But t is not k-Lipschitz for any k ∈ [1,∞[ . For
example

T (
55

81
,
74

81
) = t(−1)(t(

55

81
) + t(

74

81
)) = t−1(

26

81
+

7

16
+

7

81
+

3

16
) =

16

27
+

7

8

5



and

T (
2

3
,
74

81
) = t(−1)(t(

2

3
) + t(

74

81
)) = t−1(

1

3
+

1

2
+

7

81
+

3

16
) =

47

81
+

13

16
.

We get that

T (
55

81
,
74

81
)− T (

2

3
,
74

81
) =

1

81
+

1

16
=

97

1296
=

6.0625

81
and

55

81
− 2

3
=

1

81
.

We have

|T (
55

81
,
74

81
)− T (

2

3
,
74

81
)| > 6|55

81
− 2

3
|,

i.e., T is not 6-Lipschitz. Similarly we can show for any k ∈ [1,∞[ that T is
not k-Lipschitz.

We will now continue in the investigation of additive generators of k-
Lipschitz t-norms.

Proposition 1
Let t : [0, 1] → [0,∞] be an additive generator of a k-Lipschitz t-norm T.
Then for any x, y ∈ [0, 1], x < y and any z ∈ [x, y] we have

t(z) ≤ z(kt(x)− t(y)) + xt(y)− kyt(x)

(k − 1)z + x− ky
.

Remark 1
Supposing the differentiability of t on [0, 1], from Lagrange formula we get
that t(y)− t(αx + (1−α)y) = t′(θ)(αy−αx) for some θ ∈ [αx + (1−α)y, y]
and that t(αx + (1 − α)y) − t(x) = t′(ϕ)((1 − α)y − (1 − α)x) for some
ϕ ∈ [x, αx + (1− α)y]. Since ϕ ≤ θ from Corollary 2 we have t′(θ) ≥ kt′(ϕ).
We get

t(y)− t(αx + (1− α)y) ≥ αk

1− α
(t(αx + (1− α)y)− t(x)) ,

i.e.,
(1− α)t(y) + αkt(x) ≥ (αk + 1− α)t(αx + (1− α)y). (4)

Recall the classical definition of convexity of a function t, in which for all
x, y ∈ Dom(t) and α ∈ [0, 1] it holds

t(αx + (1− α)y) ≤ αt(x) + (1− α)t(y).

However, the last inequality is just the inequality (4) for k = 1.

6



Since the left derivative of the function t(z) = k(z−1)
z(k−1)−k

, z ∈ [0, 1] in the

point 0 is t′(0) = − 1
k

and the right derivative in the point 1 is t′(1) = −k, from
Corollary 2 it follows that this function is not itself an additive generator of
some k-Lipschitz t-norm, but it is an additive generator of some k2-Lipschitz
t-norm. This means that the set of all normed additive generators of nilpo-
tent k-Lipschitz t-norms has no strongest element and its supremum is the
function k(z−1)

z(k−1)−k
.

Corollary 5
Let t : [0, 1] → [0,∞] be an additive generator of a k-Lipschitz t-norm T.
Then for any x, y ∈ [0, 1], x ≤ y and any z ∈ [x, y] we have

t(z) ≤ t(x) +
1

k

t(x)− t(y)

x− y
(z − x)

and

t(z) ≤ t(y) + k
t(x)− t(y)

x− y
(z − y)
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1. Introduction 
 
Many different kinds of operation defined on subset of real numbers play fundamental 
roles in many important fields as for exmple in fuzzy set theory, fazzy logic, neural 
nets, operation research, optimization problems, differential equations etc. Special 
intention is paid to operations defined on interval of reals. The examples are t-norms 
and t-conorms which act on the interval [0,1], pseudo-additions and pseudo-
multiplications in the sense of Sugeno and Murofushi [9] which act on the interval 
[0,�] or in the sense of E. Pap [6] which act on the interval [a,b] where is [a,b] is 
closed subinterval of [-�, +�], compesatory operators (Klement, Mesiar, Pap [5]) and 
uninorms (Fodor, Yager, Rybalov [1]). 
 In this paper we will consider a binary operations on unit interval i.e. above 
mentioned t-norms, t-conorms and uninorms.In many situations those operations have 
to be distributive one with respect to other as for example in the context of integrals 
based on decomposable measures. If the range of pseudo-aditive measures is subset of 
the unit interval  [0,1], countinous t-conorms S are natural candidates for the pseudo-
adition, leading to the concept of S-decomposable measures. For generalized Lebesque 
integral for [0,1]-valued functions, a second operation U turning ([0,1], S,U) into a 
semiring will be considered. Consequently U should be comutative, associative, non-
decreasing, and should have a neutral element e from (0,1] i.e. it should be a uninorm ( 
if e∈(0,1)) or a t-norm ( if e =1). Also some distributivity of U over S ( so-called 
conditional distributivity ) will be required (so [0,1], S, U) becomes a conditionally 
distributive semiring. 
 

 



 
 
2. Preliminaries 
 
Triangular  norms and conorms were originally introduced in the context of 
probablistic metric spaces. A triangular norm (shortly t-norm) i a binary operation on 
the unit interval which is commutative, associative, non-decreasing in each component 
and which has 1 as a neutral element. Dually, a triangular conorm (shortly t-conorm) is 
a binariy operation on the unit interval which is commutative ,associative, non-
decreasing in each component, and which has 0 as a neutral element. . The most 
important t-norms are the minimum TM , the product TP, and the Lukasiewicz t-norm 
TL, which (together with the corresponding t-conorms maximum SM, probablistic sum 
SP, and Lukasiewicz t-conorm SL) are given by 
  
  TM(x,y) =min(x,y),                    SM(x,y)=max(x,y) 
  TP(x,y) =xy                                SP(x,y)= x+y-xy                            
  TL(x,y) = max(x+y-1,0)             SL(x,y) =min(x+y,1) 
 Each countinuous Archimedian t-norm T has a multiplicative generator i.e. a 
countinnuous, strictly increasing function �:[0,1]�[0,1] satisfying �(1)=1 such that 
T(x,y)=�(-1) (�(x)�(y)) where �(-1) : [0,1]�[0,1] is the pseudo-inverse of � given by 
�

(-1) (x) = �-1 (min(x,�(1)) 
 The countinuous, strictly increasing functions s : [0,1]�[0,�] satisfying 
s(0)=0 serve as aditive generators  of countinuous Archimedean t-conorms S as 
follows: S(x,y)=s(-1) ( s(x)+s(y)). In particular , S is strict if and only if s(1)=� ( i.e. if s 
is bijection) and S is nilpotent if and only if s(1)<�. 
 Each continuous t-norm(t-conorm) can be represented as an ordinal sum of 
continuous Archimedean t-norms(t-conorms) i.e. there exists a uniquely determined 
(finite or coutable infinite) index set A, a family of uniquely determined pairwise 
disjoint open subintervals (a�, b�)� � A of [0,1] and a family of uniquely determined 
continuous Archimedean t-norms(t-conorms) (T�)� � A such that T=(<a�,e�,T�>)� � A 
where each <a�,e�,T�> is called summand. 
  A third class of operations will be important for us the so-called uninorms. 
Uninorrms are generalizations of t-norms and t-conorms allowing the neutral element 
lying anywhere in the unit interval [0,1]. Therefore a uninorm is binary operation on 
the unit interval which is commutative, associative, non-decreasing in each component 
and which has a neutral element e from [0,1]. Suppose U is a uninorm with neutral 
element e from (0,1). Define two functions TU and SU on the unit square as follows 

  [ ]1,0,
),(

),( ∈= yx
e

eyexU
yxTU                                                    (1) 



  [ ]1,0,
1

))1(,)1(
),( ∈

−
−−+−+

= yx
e

eyeexeeU
yxSU                     (2) 

It is easy to verifay that TU defined by (1) is a t-norm and SU defined by (2) is a t-
conorm. Therefore the structure of uninorms on the squares [0,e]2 and [e,1]2 is closely 
related  to t-norms and t-conorms. That is we have 

  eyxif
e

y

e

x
eTyxU ≤≤�

�

�
�
�

�= ,0,),(                                                (3) 

and 

  1,
1

,
1

)1(),( ≤≤�
�

�
�
�

�

−
−

−
−−+= yxeif

e

ey

e

ex
SeeyxU                        (4) 

with some t-norm T i some t-conorm S. T is called the underlying t-norm of U and S is 
called the underlying t-conorm of U. 
Concerning the definicion of U on the rest of unit square we have that  
  min(x,y) ),max(),( yxyxU ≤≤  if x yexorye ≥≥≤≤  

 Each increasing  bijection f:[0,1]�[0,�] defines (using the convention 
0��=0) a left-countinuous uninorm U (there exist no continuous uninorm) with neutral 
element f-1(1) by means of  U(x,y)=f-1 (f(x)f(y)). 
 The generators of t-conorms, t-norms and uninorms suggest that a t-conorm 
can be seen as transformations of the addition of non-negative real numbers, wheres 
uninorms and t-norms are transformations of multiplications. 
 Throughout this paper we shall work with a continuous t-conorm S and left-
contninuous uninorm U satisfying  the following conditional distributivity (CD) 
  
 U(x,S(y,z))=s(U(x,y),U(x,z))  for all x,y,z from [0,1] with S(y,z)<1        (CD) 
In this context we shall refer to ([0,1],S,U) as a conditionally distributive semiring 
 

3. Conditional distributivity  
 
In this section we will consider two cases depending on neutral element e of uninorm 
U. The first case is when e=1 and then U becomes a t-torm T. The second case is when 
e ( )1,0∈ .  
 
3.1 Conditional distributivity of t-norm T over t-conorm S 
 
The first case is described in the following theorem whose proof can be found in [3] 
Theorem  1 A continuous t-norm T and countinuous t-conorm S satisfies the condition  
(CD) if and only if  we have either one of the following cases 
(i) S=SM 



(ii) There is a strict t-norm T* and a nilpontent t-conorm S* such that the additive 
generator s of S* satisfaying s(1)=1 is also a multiplicative generator  of T*, and there 
is an a [ [1,0∈  such that for some countinuous t-norm T**, we have 
T=(<o,a,T**>,<a,1,T*>) and S=(<a,1,S*>). 
 
Remark 1 If in the functional equation (CD) we omit the condition  S(y,z)<1 we say 
that T is distributive over S and  then we have only trivial solutions, i.e., S=SM.  
 This remark shows how much the distributivity lows restrict the choice of 
possible t-conorms. Thus it seems reasonable to restrict the domain of the 
distributivity low if we look for solutions which are not trivial. 
 A full characterization of all pairs (T,S) satisfying the condition (CD) which 
are not continuous is still an open problem. 
 
3.2 Conditional distributivity of uninorm U over  t-conorm S 
 
In this subsection we give a characterization of all pairs (U,S) satisfying (CD) where U 
is a left-continuous uninorm with  neutral element e ( )1,0∈  and S is a continuous t-
conorm. In this subsection we will distinguish two cases. The first is when neutral 
element e of the uninorm U  is an idempotent element of the t-conorm S. The second 
case is when neutral element  e of the uninorm U  is not an  idempotent element of the 
t-conorm S. 
 
Theorem 2 A left-continuous uninorm U with neutral element  e ( )1,0∈  and a 

continuous t-conorm S where e is  an idempotent element of  S satisfy (CD) if and only 
if S=SM.. 
  
 
 The second case is more complicated and in order to investigate it  we shall  
prove a sequence of lemmas. Firstly we present a lemma in which the ordinal sum 
structure for a continuous t-conorm simplifies considerablly. 
 
Lemma 1 Let U be a left-continuous uninorm with neutral element e ( )1,0∈  and let S 

be a continuous t-conorm for which e is not  an idempotent element. If  the pair (U,S) 
satisfies the condition (CD), then |A|=1. 
  
  
 
Lemma 2  Let U be a left-continuous uninorm with neutral element e ( )1,0∈  and S be 

a continuous t-conorm for  which  e is not an idempotent element . If the pair (U,S) 



satisfies the condition (CD), then U(x,y) [ ]ba,∈  for all x,y [ ]ba,∈ , where a, b are from 
the previous Lemma 1 such that S=(<a,b,S*>). 
 
 So far  we have seen that  when  (CD) is satisfied then  ordinal sum 
representation  for t-conorm S is simplfied because we have only one summand 
<a,b,S*>. Also we have showed that U(x,y) [ ]ba,∈  when x,y [ ]ba,∈ , i.e., uninorm U 
is compatibile with structure of  t-conorm S. 
 Now we can apply results from [4] 
 
Theorem 3 Let ( [ ] ),,1,0 SU be a conditionally distributive semiring 

 (i) If S is strict t-conorm, i.e if it is generated by a bijective additive generator 
s:[0,1] � [0,� ], then U is generated by c� s for some constant c from (0,� ) and hence 

has the neutral element s )
1

(1

c
−  

 (ii) If S is a nilpotent t-conorm, i.e., if it has a (unique) additive generator s 
which can be seen as an increasingbijection s:[0,1] � [0,1], then U is a t-norm with 
multiplicative generator s. 
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1 Introduction 1

1 Introduction

In many areas of decision theory the question arises how to determine a collective decision, pref-
erence, or opinion based on several individual decisions, preferences or opinions. Different tech-
niques can be applied for achieving that goal. One of the possible strategies is simply to carry out
an aggregation process based on the experts’ decisions. This is usually done by some aggregation
operator which maps arbitrarily but countably many input values to one output value. Inputs and
outputs belong to the same domain and the output should be representative for the input data itself
or at least for some of its aspects.

We will focus on fuzzy preference relations, more precisely on reciprocal relations and their
aggregation. Reciprocal relations are binary fuzzy relationsR fulfilling R(a, b) + R(b, a) = 1
and are known under various names such as ipsodual relations, probabilistic relations, ... [1]. In
preference modelling such relations can be used to render the individual intensity of preference.
Consider a finite set of alternatives{x1, . . . , xm} andn experts,n ∈ N. The opinion of expertk
is represented by the fuzzy preference relationRk, such thatRk(xi, xj) expresses the degree by
which expertk prefers alternativexi over alternativexj . SometimesRk(xi, xj) is abbreviated by
the notationrk

ij (see, e.g., [2, 3, 4]).

In order to avoid inconsistent preferences it is often required that the degree to whichxi is
preferred toxj is in some sense complementary to the degree to whichxj is preferred toxi. The
latter can be obtained by using reciprocal preference relationsR, i.e.,R(xi, xj) + R(xj , xi) = 1.
In this case two alternativesxi andxj are indifferent ifR(xi, xj) = R(xj , xi) = 1

2 . Note that
in general, a crisp preference structure(P, I) can be associated with each reciprocal relationR
which is based on its strictα-cuts withα ∈

[
1
2 , 1

[
(see e.g. [2]).

2 Self-dual aggregation operators

Our aim is to aggregate reciprocal relations into another reciprocal relation by means of an aggre-
gation operator.

Definition 1 ([5]). A functionA :
⋃

n∈N[0, 1]n → [0, 1] is called anaggregation operatorif it
fulfills the following properties

(AO1) A(x1, . . . , xn) ≤ A(y1, . . . , yn) wheneverxi ≤ yi for all i ∈ {1, . . . , n}, n ∈ N,

(AO2) A(x) = x for all x ∈ [0, 1],

(AO3) A(0, . . . , 0) = 0 andA(1, . . . , 1) = 1.

Each aggregation operatorA can be represented by a family(A(n))n∈N of n-ary operations,
i.e. functionsA(n) : [0, 1]n → [0, 1] given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn).

Note that ,A(1) = id[0,1] and, forn ≥ 2, eachA(n) is non-decreasing and satisfies the boundary
conditionsA(n)(0, . . . , 0) = 0 andA(n)(1, . . . , 1) = 1. Usually, an aggregation operatorA and



2 Self-dual aggregation operators 2

its corresponding family(A(n))n∈N of n-ary operations are identified with each other. Then-ary
operationsA(n) : [0, 1]n → [0, 1], n ≥ 2 are also referred to asn-ary aggregation operators.

An aggregation operator can also be defined to act on any closed intervalI = [a, b] ⊆
[−∞,∞]. Then we will speak of anaggregation operator acting onI. While (AO1) and(AO2)
basically remain the same, only the boundary condition(AO3) has to be modified accordingly

(AO3’) A(a, . . . , a) = a andA(b, . . . , b) = b.

However, since we will use aggregation operators to combine reciprocal relations it is ap-
propriate to consider only aggregation operators with respect to the unit interval. Considering
arbitrary reciprocal relationsRi : X ×X → [0, 1], i ∈ {1, . . . , n}, n ∈ N, on some universeX,
we want to investigate whether the aggregated relationR onX defined by

R(a, b) = A(R1(a, b), . . . , Rn(a, b)) (1)

for some aggregation operatorA is again reciprocal, i.e., fulfillingR(a, b) + R(b, a) = 1 for all
a, b ∈ X. It can be shown (and has already been mentioned in [7]) that an aggregation operatorA
preserves the reciprocity of the involved relations if and only if it is self-dual, i.e.,

A(x1, . . . , xn) = 1−A(1− x1, . . . , 1− xn)

for all xi ∈ [0, 1], i ∈ {1, . . . , n}. Note that in the literature several other names have been used
for expressing the self-duality, e.g., neutrality [3] and reciprocity [2, 7].

Examples of self-dual aggregation operators are the arithmetic mean, all weighted arithmetic
means,med0.5, quasi-arithmetic means withf(1− x) = 1− f(x), OWA operators for which the
corresponding weighting triangle is self-reversed. Note that no t-norm, t-conorm, or uninorm is
self-dual.

In general, self-dual operations have already been characterized and investigated by Silvert [8]
in 1978, denoting such operations as ”symmetric sums”. In [5], this characterization has been
applied to aggregation operators.

Proposition 2 ([5]). An aggregation operatorA is self-dual if and only if there exists an aggrega-
tion operatorB such thatA = B] where

B](x1, . . . , xn) =
B(x1, . . . , xn)

B(x1, . . . , xn) + B(1− x1, . . . , 1− xn)
(2)

with the convention00 = 0.5.

If A is self-dual, it is sufficient to chooseB = A in order to obtainA = B]. However, in gen-
eral several aggregation operatorsB are appropriate for modelling the same self-dual aggregation
operatorA. Therefore,B is not uniquely determined and each set{B | A = B]}, with A some
aggregation operator, can be seen as an equivalence class on the set of all aggregation operators.

Besides this characterization, García-Lapresta and Marques Pereira have mentioned another
characterization of self-dual aggregation operators which is based on the arithmetic mean.
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Proposition 3 ([7]). An aggregation operatorA self-dual if and only if there exists an aggregation
operatorB such that

A(x1, . . . , xn) =
(B(x1, . . . , xn) + 1−B(1− x1, . . . , 1− xn))

2
.

Both characterizations are, however, only examples of a more general characterizations method.
Besides these algebraical characterizations, we were also able to introduce an approach for build-
ing self-dual aggregation operators based on a more geometrical point of view.

3 Properties of aggregation operators

As an aggregation operator often fulfills some additional conditions depending on its field of appli-
cation, we also explored the effect these extra conditions have on self-dual aggregation operators.
We provide here only the different properties we have tackled.

Definition 4. Consider some aggregation operatorA :
⋃

n∈N
[0, 1]n → [0, 1].

(i) A is calledsymmetric, if

∀n ∈ N,∀x1, . . . , xn ∈ [0, 1] : A(x1, . . . , xn) = A(xα(1), . . . , xα(n))

for all permutationsα = (α(1), . . . , α(n)) of {1, . . . , n}.

(ii) A is calledassociativeif

∀n, m ∈ N,∀x1, . . . , xn, y1, . . . , ym ∈ [0, 1] :
A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn),A(y1, . . . , ym)).

for arbitrarily many inputs

(iii) A is calledidempotentif

∀n ∈ N,∀x ∈ [0, 1] : A(
n times︷ ︸︸ ︷

x, . . . , x) = x.

(iv) An elemente ∈ [0, 1] is called a neutral element ofA if

∀n ∈ N,∀x1, . . . , xn ∈ [0, 1] :
if xi = e for somei ∈ {1, . . . , n} : A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn).

(v) An elementa ∈ [0, 1] is called anannihilatorof A if

∀n ∈ N,∀x1, . . . , xn ∈ [0, 1] : if xi = a for somei ∈ {1, . . . , n} : A(x1, . . . , xn) = a.

(vi) A is calledcontinuous, if
∀n ∈ N : A(n) is continuous.
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(vii) A fulfills theLipschitz propertywith constantc ∈ ]0,∞[ (is c-Lipschitzfor short) if

∀n ∈ N,∀x1, . . . , xn,y1, . . . , ym ∈ [0, 1] :

|A(x1, . . . , xn)−A(y1, . . . , yn)| ≤ c ·
n∑

i=1

|xi − yi|.

Symmetric aggregation operators are also known ascommutativeaggregation operators. From
multi-criteria decision making idempotency is sometimes also calledunanimitysince it expresses
unanimity if all criteria involved in the decision making process are fulfilled to the same degreex.
Examples of idempotent aggregation operators are the minimum and the maximum, but also the
arithmetic mean. The product is a non-idempotent aggregation operator.

Continuity does not imply thec-Lipschitz property for somec ∈ ]0,∞[. Also observe that for
differentn ∈ N the Lipschitz constantc can vary and hence should be denoted bycn. Because
of the boundary condition(AO3) the smallest Lipschitz constantcn related toA(n) is cn = 1

n
and because of the condition(AO2) an aggregation operatorA can never bec-Lipschitz with
c < 1. The arithmetic mean is an example of a 1-Lipschitz aggregation operator and is the unique
aggregation operator, such thatA(n) is 1

n -Lipschitz. Further examples of 1-Lipschitz aggregation
operators are the minimum, the product and the Łukasiewicz t-norm. Note that, any t-norm is a
symmetric, associative aggregation operator with neutral element 1 and annihilator 0.

For most of the foregoing properties we were able to characterize the self-dual aggregation
operators fulfilling the extra conditions in question covering the (so far) known results from the
literature dealing with special subclasses of aggregation operators. Combining several of these
conditions further restricts the set of acceptable self-dual aggregation operators.

4 Final Remarks

Having a look on the existing literature on the aggregation of reciprocal relations we have to
state that there is real need to investigate that topic on a general level. The results mentioned
so far are part of ongoing research related to the topic. Other results, e.g., when imposing some
transitivity conditions on reciprocal relations, have already been achieved and will surely be further
investigated by the authors in the future.
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2 2 Use of Machine Learning Methods

1 Introduction

Reffering to the topic ”start-up-management” there are no essays which ones demonstrate the
whole process incipient with development up to start of production, inclucing all involved divi-
sions. There are no fruitful disquisitions beyond the extensive cohesions among development,
logistics, serialproduction und their interact. So there is no basis for controlling a startup and for
rating the existing risk to meet the deadline, achieve quality and expenses. Presently there is no
conclusive knowledge base for a start of production. Its interesting to regard the start up concern-
ing ”novel product, new craft, new employees” from the point of view of the producing plant. To
my mind its witted - on the basis of the experience of the successful start up - to create a knowledge
base for future startups and modeling the start up with new techniques for knowledge engineering
and to compare the results of modeling to the values of the real start up.

Within the start up it became clear, that - due to the huge complexness of the organisational
structure - the present ”Technomorphe Managementsystem” is on upper bound respectively the
networked processes cant be acquired conclusive and the parameters as a whole dont flow into
decision making. Due to the nonlinear mutual processinteractions and the non-controllable com-
plexity there often arises a limited consideration for problems, whereby the management is pushed
into a reactive part respectively in worst case, it elects for a non-target-oriented measure. Due to
the ever-shortend development-period it comes as well to a intensive integration of processes.
Thus its essential to find the primal factors of success to control the start of production. To find the
essential factors (canals with huge information content), there should be applied new treatments
from different fields of knowledge (such as Maschinenlernen) and be checked on their capability.
In ”Technomorphen Systemen”, where its assumed, that enough information is available, its ap-
plied at best in clear systems, so its needful to arrange a ”Systemisches Modell”, what it used as
base for controllability ”Maschinenlernen”. In line with ”Maschinenlernen” its essential to use a
algorithm, what isnt just adopt to anticipate information, but to bring out a linguistic context from
observed facts out of the basic start-up. By this means it gets possible to operators, to discover
abnormal cohesions out of the basic start-up and if necessary taking corrective action.

2 Use of Machine Learning Methods

Figure 1: Sytemisches Modell
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Approach of machine learning without linguistic description

T = {(x1, y1) , (x2, y2) , ..... (xL, yL)} (1)

Sought after : Funktion f with
f̂(x) = ŷ ≈ y (2)

Target: Good prediction

G = {(x1, y1) , (x2, y2) , ..... (xM , yM )} (3)

Because of the enhancement of machine learning about the linguistic description the system
knowledge is expanded from pure data analyze with interpretable knowledge.

f̂(x) = ŷ ≈ y with ŷ ≈ y + interpretation of y

Thereby you are able to calculate the inversion of this problem. Therefore it is possible to
modify the input data because of the knowledge of the required initial state.

f̂−1(y) = x with ŷ ≈ y + interpretation of y (4)

For this purpose it is necessary to describe the impact data and parameters from the system
with exact linguistic data.

3 Complex lunch structure

Description of all input data in linguistic way. For handling this problem an approach of a hierar-
chical controller design will be used.

Figure 2: Complex System
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Figure 3: Part Readiness

The knowledge is available in empiric data.(See Figure 3)

For the linguistic description the triangular symmetrical membership funktions is applicated.

Figure 4: Part Quality

3.1 MISO system ( multiple Input/single output)

Given: A conventional MISO system (See Figure 6), performing the mapping as follows:[7]( Page
66 ff )

y = (x1, x2, x3, x4, ....xn) (5)

An input vectorX is defined in the Cartasian product space of the universe of discourse of partic-
ular inputs X1X2...Xn.

X =



x1

x2

.

.

.
xn


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Figure 5: MISO System

The functionf maps the set elements belonging to the universe of discourse of the input vector
X onto the universe of discourse of the outputY.

f : X1 ×X2 × ....×Xn (6)

3.2 Mandani fuzzy modell

The Mandani fuzzy modell of the system can have the form od a set of rules as well as membership
functions represented (See Figure 5)[7]( Page 281 ff )

Figure 6: Fuzzy system

1: If [Freigaben is fr̈uh] and [AnzahlÄnderungen is wenig] and [Prozessserie is gelb]then
[Teile Qualitätsrisiko is gering]
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1 Introduction
It has been proposed that extensive computational capabilities are achieved by systems whose dy-
namics is neither chaotic nor ordered but somewhere in-between order and chaos. This has led
to the idea of “computation at the edge of chaos”. Early evidence for this hypothesis has been
reported e.g. in [1]. The results of numerous computer simulations carried out in these studies
suggested that there is a sharp transition between ordered and chaotic dynamics. Later on this was
confirmed by Derrida and others [2]. They used ideas from statistical physics to develop an accu-
rate mean-field theory which allowed to determine the critical parameters analytically. Because of
the physical background this theory focused on the autonomous dynamics of the system, i.e. its
relaxation from an initial state (the input) to some terminal state (the output) without any external
influences. In contrast to such “offline” computations we will focus in this article on time-series
computations, i.e. mappings, also called filters, from a time-varying input signal to a time-varying
output signal. Such “online” or real-time computations describe more adequately the input to
output relation of systems like animals or autonomous robots which must react in real-time to a
continously changing stream of sensory input.

The purpose of this paper is to analyze how the computational capabilities of randomly connected
recurrent neural networks in the domain of real-time processing and the type of dynamics induced
by the underlying distribution of synaptic weights are related to each other. In particular we
will show that for the types of neural networks considered in this paper (defined in Sec. 2) there
also exists a transition from ordered to chaotic dynamics. This transition from ordered to chaotic
dynamics is determined using an extension of the mean-field approach described in [3] and [4]
(Sec. 3). As the next step we propose a novel complexity measure (Sec. 4) which can be calculated
using the mean-field theory developed in Sec. 3 and serves as a predictor for the computational
capability of a network in the time series domain. Employing a recently developed framework for
analyzing real-time computations [5, 6] we investigate in Sec. 5 the relationship between network
dynamics and the computational capabilities in the time-series domain. In Sec. 6 of this paper we
propose and analyze a synaptic scaling rule for self-organized criticality for the types of networks
considered here. In contrast to previous work [7] we do not only check that the proposed rule
shows adaptation towards critical dynamics but also show that the computational capabilities of
the network are actually increased if the rule is applied.

Relation to previous work: In [5] the so called liquid state machine (LSM) approach was proposed
and used do analyze the computational capabilities in the time-series domain of randomly con-
nected networks of biologically inspired network models (composed of leaky integrate-and-fire
neurons). We will use that approach to demonstrate that only near the edge of chaos complex
computations can be performed (see Sec. 5). A similar analysis for a restricted case (zero mean of
synaptic weights) of the network model considered in this paper can be found in [4].

2 The Network Model and its Dynamics
We consider input driven recurrent networks consisting of N threshold gates with states xi ∈
{0, 1}. Each node i receives nonzero incoming weights wij from exactly K randomly chosen
nodes j. Each nonzero connection weight wij is randomly drawn from a Gaussian distribution
with mean µ and variance σ2. Furthermore the network is driven by an external input signal
u(·) which is injected into each node. Hence, in summary the update of the network state xt =

(x1,t, . . . , xN,t) is given by xi,t = Θ
(∑N

j=1 wij · xj,t−1 + ut−1

)
which is applied for all neurons
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Figure 1: Networks of randomly connected threshold gates can exhibit ordered, critical and chaotic
dynamics. In the upper row examples of the time evolution of the network state xt are shown
(black: xi,t = +1, white: xi,t) = 0, input indicated above) for three different networks with
parameters taken from the ordered, critical and chaotic regime respectively. Parameters: K =
5, N = 500, ū = −0.5, r = 0.3 and σ2 and µ as indicated in the phase plot below. The
background of the phase plot shows the mean activity a∗ (see Sec. 3) of the networks depending
on the parameters σ2 and µ.

in parallel and where Θ(h) = 1 if h ≥ 0 and Θ(h) = 0 otherwise. In the following we consider
a randomly drawn binary input signal u(·): at each time step ut assumes the value ū + 1 with
probability r and the value ū with probability 1 − r. This network model is similar to the one
we have considered in [4]. However it differs in two important aspects: a) By using states xi ∈
{0, 1} we emphasis the asymmetric information encoding by spikes prevalent in biological neural
systems and b) it is more general in the sense that the Gaussian distribution from which the non-
zero weights are drawn is allowed to have an arbitrary mean µ ∈ R. This implies that the network
activity at = 1

N

∑N
i=1 xi,t can vary considerably for different parameters (compare Fig. 1) and

enters all the calculations discussed in the rest of the paper.

The top row of Fig. 1 shows typical examples of ordered, critical and chaotic dynamics (see the
next section for a definition of order and chaos). The system parameters corresponding to each
type of dynamics are indicated in the lower panel (phase plot). We refer to the (phase) transition
from the ordered to the chaotic regime as the critical line (shown as the solid line in the phase
plot). Note that increasing the variance σ2 of the weights consistenctly leads to chaotic behavior.
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3 The Critical Line: Order and Fading Memory versus Chaos
To define the chaotic and ordered phase of an input driven network we use an approach which is
similar to that proposed by Derrida and Pomeau [2] for autonomous systems: consider two (initial)
network states with a certain (normalized) Hamming distance. These states are mapped to their
corresponding successor states (using the same weight matrix) with the same input in each case
and the change in the Hamming distance is observed. If small distances tend to grow this is a sign
of chaos whereas if the distance tends to decrease this is a signature of order.

Following closely the arguments in [4, 3] we developed a mean-field theory (see [8] for all details)
which allows to calculate the update dt+1 = f(dt, at, ut) of the normalized Hamming distance
|{i : xi,t �= x̃i,t}|/N between two states xt and x̃t as well as the update at+1 = A(at, ut) of
the network activity in one time step. Note that dt+1 depends on the input ut (in contrast to [3])
and also on the activity at (in contrast to [4]). Hence the two-dimensional map Fu(dt, at) :=
(dt+1, at+1) = (f(dt, at, ut), A(at, ut)) describes the time evolution of dt and at given the input
times series u(·).
Let us consider the stady state of the averaged Hamming distance f∗ as well as the stady state of
the averaged network activity, i.e. (f∗, a∗) = limt→∞

〈
F t

u(d, a)
〉
.1 If f∗ = 0 we know that any

state differences will eventually die out and the network is in the ordered phase. If on the other
hand a small difference is amplified and never dies out we have f∗ �= 0 and the network is in the
chaotic phase. Whether f∗ = 0 or f∗ �= 0 can be decided by looking at the slope of the function
f(·, ·, ·) at its fixed point f∗ = 0. Since at does not depend on dt we calculate the averaged steady
state activity a∗ and determine the slope α∗ of the map rf(d, a, ū + 1) + (1 − r)f(d, a, ū) at the
point (d, a) = (0, a∗). Accordingly we say that the network is in the ordered, critical or chaotic
regime if α∗ < 1, α∗ = 1 or α∗ > 1 respectively. In [8] it is shown that the so called critical line
|α∗| = 1 where the phase transition from ordered to chaotic behavior occurs is given by

Pbf =
K−1∑
n=0

(
K − 1

n

)
a∗n(1 − a∗)n(rQ(1, n, ū + 1) + (1 − r)Q(1, n, ū)) =

1
K

(1)

Where Pbf denotes the probability (averaged over the inputs and the network activity) that a node
will change its output if a single out of its K input bits is flipped.2 Examples of critical lines that
were calculated from this formula (marked by the solid lines) can be seen in Fig. 2 for K = 5 and
K = 10.3

The ordered phase can also be described by using the notion of fading memory (see [5] and the
references therein). Intuitively speaking in a network with fading memory a state xt is fully
determined by a finite history ut−T , ut−T+1, . . . , ut−1, ut of the input u(·). A slight reformulation
of this property (see [6] and the references therein) shows that it is equivalent to the requirement
that all state differences vanish, i.e. being in the ordered phase. Fading memory plays an important
role in the “liquid state machine” framework [5] since together with the separation property (see
below) it would in principle allow an appropriate readout function to deduce the recent input,

1F t
u denotes t-fold composition of the map Fu(·, ·) where in the k-th iteration the input uk is applied and 〈·〉 denotes

the average over all possible initial conditions and all input signals with a given statistics determined by ū and r.
2The actual singe bit-flip probability Q depends on the number n of inputs which are 1 and the actual input and is

given by Q(1, n, u) =
∫ −u

−∞ φ(ξ, nµ, nσ2)
(
1 − Φ(−u − ξ, µ, σ2)

)
dξ +

∫ ∞
−u

φ(ξ, nµ, nσ2)Φ(−u − ξ, µ, σ2)dξ and
φ, Φ denote the Gaussian density and cumulative density respectively (see [8] for a detailed explanation).

3For each value of µ = −0.6 + k ∗ 0.01, k = 0..100 a search was conducted to find the value for σ2 such that
α∗ = 1. Numerical iterations of the map function A where used to determine a∗.
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Figure 2: NM -separation assumes high values on the critical line. The gray coded image shows
the NM -separation in dependence on σ2 and µ for K denoted in the panels, r = 0.3, ū = −0.5
and b = 0.1. The solid line marks the critical values for σ2 and µ.

or any function of it, from the network state. If on the other hand the network does not have
fading memory (i.e. is in the chaotic regime) a given network state x(t) also contains “spurious”
information about the initial conditions and hence it is hard or even impossible to deduce any
features of the recent input.

4 NM-Separation as a Predictor for Computational Power
As already mentioned the separation property [5] is especially important if a network is to be
useful for computations on input time-series: only if different input signals separate the network
state, i.e. different inputs result in different states, it is possible for a readout function to respond
differently. Hence it is clear that for any two different input time series for which the readout
function should produce different outputs should drive the recurrent network into two different
states.

The mean field theory we have developed (see [8]) can be extended to describe the time evo-
lution of the Hamming distance of the network states (i.e. the separation) and the network ac-
tivities that result from applying different inputs u(·) and ũ(·) with a mean distance of b :=
Pr {ut �= ũt}. In this case the three-dimensional map Su,ũ(dt, at, ãt) := (dt+1, at+1, ãt+1) =
(s(dt, at, ãt, ut, ũt), A(at, ut), A(ãt, ũt)) fully describes the time evolution of the Hamming dis-
tance and the network activities. In the following we will denote by s∗, a∗, and ã∗ the steady
state of the averaged Hamming distance and averaged network activities, i.e. (s∗, a∗, ã∗) =
limt→∞

〈
St

u,ũ

〉
.

The overall separation for a given input statistics (determined by ū, r, and b) is given by s∗.
However, this overall separation measurement can not be directly related to the computational
power since chaotic networks separate even minor differences in the input to a very high degree.
The part of this separation that is caused by the input distance b and not by the distance of some
initial state is then given by s∗ − f∗ because f∗ measures the state distance that is caused by
differences in the initial states and remains even after long runs with the same inputs (see Sec. 3).
Note that f∗ is always zero in the ordered phase and non-zero in the chaotic phase.
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Figure 3: Real-time computation at the edge of chaos. A The gray coded image (an interpolation
between the data points marked with open diamonds) shows the performance of trained networks
in dependence of the parameters µ and σ2 for the delayed 3-bit parity task. Performance is mea-
sured as the memory capacity MC =

∑
τ I(v, y(τ)) where I(v, y(τ)) is the mutual information

between the classifier output v(·) and the target function y
(τ)
t = PARITY(ut−τ , ut−τ−1, ut−τ−2)

measured on a test set. B Same as panel A but for K = 10. C Same as panel A but for
an average over 50 randomly drawn Boolean functions f of the last 5 time steps, i.e. yt =
f(ut, ut−1, ..., ut−4).

Since we want the NM -separation to be a predictor for computational power we correct s∗ − f∗

by a term which takes the separation into account which is due to a predominant input drive.
A suitable measure for this “immediate separation” i∗ is the average increase in the Hamming
distance i∗ if the system is run for a long time (t → ∞) with equal inputs u(·) = ũ(·) and then
a single step with an input pair (v, ṽ) with an average difference of b = Pr {v, �= ṽ} is applied:
i∗ = s(f∗) − f∗ = limt→∞

∑1
v,ṽ=0 r

v(1 − r)1−vb|v−ṽ|(1 − b)1−|v−ṽ| 〈s(F t
u)

〉 − f∗. Hence a
measure of the network mediated separation NMsep due to input differences is given by

NMsep = s∗ − f∗ − i∗ (2)

In Fig. 2 the NM -separation resulting from an input difference of b = 0.1 is shown in dependence
of the network parameters µ and σ2.4 Note that the NM -separation peaks at the critical line.
Because of the computational importance of the separation property this also suggests that the
computational capabilities of the networks will peak at the onset of chaos, which is confirmed in
the next section.

5 Real-Time Computations at the Edge of Chaos
To access the computational power of a network we make use of the so called “liquid state ma-
chine” framework which was proposed by Maass et.al. [5] and indepenently by Jaeger [6]. They
put forward the idea that any complex time-series computation can be implemented by composing
a system which consists of two conceptually different parts: a) a properly chosen general-purpose

4For each value of µ = −0.6+k ∗0.05, k = 0..20 10 values for σ2 where chosen near the critical line and 10 other
values where equally spaced (on a logarithmic scale) over the interval [0.02,50]. For each such pair (µ, σ2) extensive
numerical iterations of the map S where performed to get accurate estimates for s∗, f∗ and i∗.
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recurrent network with “rich” dynamics and b) a readout function that is trained to map the net-
work state to the desired outputs (see [5, 6, 4] for more details). This approach is potentially
successful if the general-purpose network encodes the relevant features of the input signal in the
network state in such a way that the readout function can easily extract it. We will show that near
the critical line the networks considered in this paper encode the input in such a way that a simple
linear classifier C(x(t)) = Θ(w ·x(t)+w0) suffices to implement a broad range of complex non-
linear filters. Note that in order to train the network for a given task only the parameters w ∈ R

N ,
w0 ∈ R of the linear classifier are adjusted such that the actual network output v(t) is as close as
possible to the target values y(t).
To access the computational power in a principled way networks with different parameters were
tested on a delayed 3-bit parity task for increasing delays and on randomly drawn Boolen functions
of the last 5 input bits. Note that this tasks are quite complex for the networks considered here
since most of them are not linear separable (i.e. the parity function) and require memory. Hence
to achieve good performance it is necessary that a state xt contains information about several
input bits ut′ , t′ < t in a nonlinear transformed form such that a linear classifier C is sufficient to
perform the nonlinear computations.

The results are summarized in Fig. 3 where the performance (measured in terms of mutual in-
formation) on a test set between the network output and the target signal is shown for various
parameter settings (for details see [4]). The highest performance is clearly achieved for parameter
values close to the critical line were the phase transition occurs. This has been noted before [1]. In
contrast to these previous results the networks used here are not optimized for any specific tasks
but ther computational capabilities are assessed by is evaluating it for many different tasks. There-
fore a network that is specifically designed for a single task will not show a good performance
in this setup. These considerations suggest the following hypotheses regarding the computational
function of generic recurrent neural circuits: to serve as general-purpose temporal integrator, and
simultaneously as kernel (i.e., nonlinear projection into a higher dimensional space) to facilitate
subsequent linear readout of information whenever it is needed.

6 Self-Organized Criticality via Synaptic Scaling
Since the computational capabilities of a network depend crucially on having almost critical dy-
namics an adaptive system should be able to adjust its dynamics accordingly.

Equ. (1) states that critical dynamics are achieved if the probability Pbf that a single bit-flip in
the input shows up in the output should on average (over the external and internal input statistics
given by ū, r and a∗ respectively) be equal to 1

K . To allow for a rule that can adjust the weights of
each node a local estimate of Pbf must be available. This can be accomplished by estimating Pbf

from the margin, i.e. the distance of the internal activation from the firing threshold, of each node.
Intuitively a node with an activation that is much higher or lower than its firing threshold is rather
unlikely to change its output if a single bit in its input is flipped. Formally Pi

bf of node i is given
by the average (over the internal and external input statistics) of the following quantity:

1
K

N∑
j=1,wij>0

Θ((wij(1 − 2xj(t− 1))(1 − 2xi(t)) −mi(t))) (3)

where mi(t) =
∣∣∣∑N

j=1 wijxj(t− 1) + ut

∣∣∣ denotes the margin of node i (see [8] for details). Each

node now applies synaptic scaling to adjust itself towards the critical line. Accordingly we arrive
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Figure 4: Self-organized criticality. A Time evolution of the network state x(t) starting in a
chaotic regime while the rule (4) is active (black: xi(t) = +1, white: xi(t) = 0). Parameters:
K = 5, ū = −0.5, r = 0.3, µ = 0 and initial σ2 = 100. B Estimated Pbf . The dotted line shows
how the node averaged estimate of Pbf evolves over time for the network shown in A. The running
average of this estimate (thick black line) as used by the rule (4) clearly shows that Pbf approaches
its critical value (dashed line). C Same as B but for K = 10 and initial σ2 = 0.01 in the ordered
regime.

at the following rule:

wij(t + 1) =

{
1

1+ν · wij if P esti
bf (t) > 1

K

(1 + ν) · wij(t) if P esti
bf (t) < 1

K

(4)

where ν � 1 is the learning rate and Pesti
bf (t) is a running average of the formula in Equ. (3) to

estimate P i
bf . Applying this rule in parallel to all nodes of the network is then able to adjust the

network dynamics towards criticality as shown in Fig. 4. The upper row shows the time evolution
of the network states x(t) while the SOC rule Equ. (4) is running. It is clearly visible how the
network dynamics changes from chaotic (the initial network had the parameters K = 5, µ = 0 and
σ2 = 100) to critical dynamics that respect the input signal. The lower row of Fig. 4 shows how
the averaged estimated bitflip probability 1

N

∑N
i=1 P

esti
bf (t) approaches its critical value for the

case of the above network and one that started in the ordered regime (K = 10, µ = 0, σ2 = 0.01).
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Figure 5: Time evolution of the performance with activated SOC rule (4). A The plot shows the
memory capacity MC (see Fig. 3 on the 3-bit parity task averaged over 25 networks (± standard
deviation as errorbars) evaluated at the indicated time steps. At each evaluation time step the
network weights were fixed and the MC was measured as in Fig. 3 by training the corresponding
readouts from scratch. The networks were initialized in the chaotic regime. B Same as in A but
for K = 10 and networks initialized in the ordered regime.

Since critical dynamics are better suited for infomation processing (see Fig. 3) it is expected that
the performance on the 3-bit parity task improves due to SOC. This is confirmed in Fig. 5 which
shows how the memory capacity MC (defined in Fig. 3) grows for networks that were initialized
in the chaotic and ordered regime respectively.

7 Discussion
We developed a mean-field theory for input-driven networks which allows to determinate the po-
sition of the transition line between ordered and chaotic dynamics with respect to the parameters
controlling the network connectivity and input statistics. Based on this theory we proposed a
complexity measure (called NM -separation) which assumes its highest values at the critical line
and shows a clear correlation with the computational power for real-time time-series processing.
These results provide further evidence for the idea of “computation at the edge of chaos” [1] and
support the hypothesis that dynamics near the critical line are a general property of input driven
dynamical systems which support complex real-time computations.

Furthermore we have shown that a rule for synaptic scaling is able to adjust the weights of a
network towards critical dynamics. In fact we have shown that networks adjusted by this rule
show also enhanced computational capabilities. Hence combining task-specific optimization pro-
vided by (supervised) learning rules allows a system to gather task specific information while
self-organizing its dynamics towards criticality in order to be able to react flexible to incoming
signals.
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Abstract— Fuzzy ordered classifiers were used to assign fuzzy
labels to river sites expressing their suitability as a habitat for a
certain macro-invertebrate taxon, given up to three abiotic prop-
erties of the considered river site. The models were built using
expert knowledge and evaluated on data collected in the Province
of Overijssel in the Netherlands. Apart from a performance
measure for crisp classifiers common in the aquatic ecology
domain, the percentage of correctly classified instances (% CCI),
two performance measures for fuzzy (ordered) classifiers are
introduced in this paper: the percentage of correctly fuzzy
classified instances (% CFCI) and the average deviation (AD).
Furthermore, results of an interpretability-preserving genetic
optimization of the linguistic terms are presented.

I. I NTRODUCTION

Habitat suitability models describe which abiotic conditions
are appropriate for a certain taxon or species to establish a
population. In this study macro-invertebrates are considered,
small animals living in aquatic ecosystems who can still be
observed with the naked eye and whose abundances are a mea-
sure for biological water quality [1]. Habitat suitabilitymodels
are meant to support decisions in river management, therefore
Mamdani-Assilian models are appropriate model types as they
allow for interpretability and uncertainty estimation by the
end-user, as well as straightforward incorporation of new
knowledge [2], [3].

As this modelling problem asked for a model that gives a
shaded indication to what degree a certain river site is suitable
as habitat for a certain macro-invertebrate taxon, we optedfor
fuzzy classifiers, instead of classical models with crisp outputs
or crisp classifiers. A more detailed description of the habitat-
suitability models, built using expert knowledge, is givenin
Section II.

In Section III the EKOO data set [4] on which the mod-
els were evaluated is discussed. The three measures used
to evaluate the models, percentage of correctly classified
instances (% CCI), percentage of correctly fuzzy classified
instances (% CFCI) and average deviation (AD) are presented
in Section IV. Section V deals with the different aspects of
the optimization of the linguistic terms: the selection of the
models to be optimized, the properties of the genetic algorithm
and the obtained results. Finally, conclusions and furtherwork
are summarized in Section VI.

II. H ABITAT SUITABILITY MODELS

For 86 macro-invertebrate taxa, habitat suitability models
were built using expert knowledge, which comprises:

• the selection of variables,
• the assignment of linguistic values and corresponding

membership functions to all variables and,
• the construction of rule bases.

The selected input variables should be of high ecological
importance for the macro-invertebrate taxa under study as well
as for the whole macro-invertebrate community and should be
of importance for river management. Furthermore, knowledge
about their influence on macro-invertebrates should be avail-
able and, of course, the variables should be included in the
EKOO data set. With these criteria in mind, six variables were
selected: two variables related to the dimension of the river,
stream width and stream velocity, and four variables related to
human impact (caused by agricultural activities), ammonium
concentration, nitrate concentration, phosphate concentration
and conductivity. For each macro-invertebrate taxon, four
different models were constructed, an A-model, an N-model,
a P-model and a C-model, containing stream width, stream
velocity and either ammonium concentration (A), nitrate con-
centration (N), phosphate concentration (P) or conductivity (C)
as input variables. The occurrence of some macro-invertebrate
taxa is independent of the stream width. In these models
stream width is not included and only two input variables are
used. To all variables three to five linguistic values are as-
signed, defined by trapezoidal membership functions forming
a Ruspini partition [5].

The abundance is used as output variable, as the EKOO data
set contains the number of sampled individuals of the 86 taxa
and it can be considered proportional to a sites suitabilityto
establish a population. As neither a crisp abundance value,nor
a crisp classification seemed in this case appropriate as model
output, we opted for a fuzzy classification. Four linguistic
values were assigned to the variable abundance:absent, low,
moderate and high. They are defined by the membership
functions shown in Fig. 1. The model outputymodel is a set
of four values ranging between 0 and 1 and summing up
to 1: {(absent, A1(ymodel)), (low, A2(ymodel)), (moderate,
A3(ymodel)), (high, A4(ymodel))}.
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Fig. 1. Definition of the fuzzy abundance classes through membership
functions

All constructed rule bases were complete and contained
rules of the following type:

IF width IS upper course stream

AND velocity IS low

AND nitrate concentration IS eutrophic

THEN abundance IS absent

If two adjacent linguistic values of a variable yield the same
model output for all combinations of linguistic values of the
other input variables the corresponding rules are merged and
a new linguistic value is introduced described by the convex
hull of the membership functions of the original linguistic
values. The minimum t-norm was applied for the conjunction.
For each linguistic abundance value, the maximum fulfilment
degree of the rules containing the linguistic abundance value
in their consequent is determined. Finally, the model output is
obtained by normalizing these maximum fulfilment degrees.

III. EKOO DATA SET

The EKOO data set contains values for 445 sites in running
waters in the Province of Overijssel in the Netherlands for
abiotic parameters, as river width, dissolved oxygen concen-
tration, pH, ammonium concentration, as well as the number of
sampled individuals of several macro-invertebrate taxa. Hours
of field work and meticulous determination in the lab of the
sampled animals were needed to obtain this data set, which
makes it a large data set in its domain, but unfortunately
still rather small for model evaluation and certainly for model
identification purposes. Apart from being sparse, the data hold
another awkward property typical to their origin: they are
characterized by high variability due to for instance seasonal
variations, weather differences at sampling moment and dif-
ferent sediments. This results in data holding similar river
conditions but completely different registered abundances, i.e.
in ambiguous data. Furthermore, for all 86 taxa considered in
this study at a vast majority of the 445 sites no individuals
were recorded, as illustrated forProasellus meridianusand
Plectronemia conspersain Fig. 2.
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Fig. 2. Distribution of the data points among crisp abundances classes
absent, low, moderate and high for (a) Proasellus meridianusand (b)
Plectronemia conspersa(see Eq. (1) for the exact defuzzification procedure)

IV. EVALUATION OF FUZZY ORDERED CLASSIFIERS

A. Format of the reference output

In order to compare the output obtained with the fuzzy
ordered classifiers with the information in the EKOO data set,
model and reference output should have the same format. In
this study the membership degrees of the crisp abundances
values in the data set to the linguistic abundance values are
used as reference output.

B. Three performance measures

In this section three performance measures applied in this
study are introduced. In the formulae below,N is the number
of data points,n the number of fuzzy classes,Ai(ydata,j)
the membership degree of thejth output to theith linguistic
output value andAi(ymodel,j) the membership degree to
ith linguistic output value obtained as model output for the
jth input of the data set.

1) Percentage of correctly classified instances:In aquatic
ecology, the percentage of correctly classified instances
(% CCI), is used as a standard to compare the performance
of crisp classifiers. Correctly classified data points have a
contribution of 1 to the global performance, while data points
assigned to a wrong class have a contribution of 0. In order to
be able to compare our fuzzy classifiers with crisp classifiers
in literature, the outputs were defuzzified and the % CCI was
calculated as follows:

% CCI =
100

N

N
∑

j=1

(

1−

1

2

n
∑

i=1

∣

∣

∣

∣

Acrisp,i(ydata,j) − Acrisp,i(ymodel,j)

∣

∣

∣

∣

)

(1)

with

Acrisp,i(y) =

{

1 if i = min{k|Ak(y) =
n

max
l=1

Al(y)},

0 otherwise.

2) Percentage of correctly fuzzy classified instances:As
we were dealing with fuzzy classifiers, we defined a new
performance measure inspired by the % CCI and similar to
the measure presented in [6]: the percentage of correctly fuzzy
classified instances (% CFCI). If the model output is identical
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Fig. 3. Comparison of the % CFCI-values to (a) the % CCI- and (b)AD-
values

to the reference output, the data point has a contribution of
1 to the global performance. As long as there are classes
to which both model output and reference output have a
non-zero membership degree, the corresponding data point
has a positive contribution. Only if there exists no class to
which both model output and reference output have a non-
zero membership degree, the corresponding data point has a
contribution of 0 to the global performance.

% CFCI=
100

N

N
∑

j=1

(

1−
1

2

n
∑

i=1

∣

∣

∣

∣

Ai(ydata,j)−Ai(ymodel,j)

∣

∣

∣

∣

)

.

3) Average deviation:The % CFCI has the advantage that it
can be understood intuitively. However, it is not an appropriate
objective function for the optimization of an ordered fuzzy
classifier, as % CFCI is not sensitive for the position of the
classes were the wrong classification occurs. Therefore another
performance measure for fuzzy classifiers with an ordered set
of classes is introduced, returning the average deviation (AD)
between the position of the class obtained with the model and
the position of the class stored in the reference data set. The
AD varies from 0 ton − 1 and is calculated as follows:

AD =
1

N

N
∑

j=1

n−1
∑

i=1

∣

∣

∣

∣

i
∑

k=1

Ak(ydata,j) −

i
∑

k=1

Ak(ymodel,j)

∣

∣

∣

∣

.

C. Model performance

In Fig. 3 the three performance values obtained for the four
models of the 86 macro-invertebrate taxa are plotted. One
sees that similar values are obtained for % CCI as for its
fuzzy alternative, % CFCI, and that AD tends to decrease
with increasing % CFCI. The % CFCI of the A-, N-, P-
and C-models of all taxa are shown in Fig. 4. For almost all
taxa, higher % CFCI-values are obtained for models including
nitrate or phosphate concentration as input variable than for
those including ammonium concentration or conductivity.

V. OPTIMIZATION OF THE LINGUISTIC TERMS

A. Model selection

As mentioned in Section III, the EKOO data set is charac-
terized by ambiguous data as well as by a highly non-uniform
distribution of the data among the four abundance classes

absent, low, moderate and high. As the more different
phenomena described by the model are included in a data set,
the more appropriate the data set is for optimization, data sets
with the most uniform distribution among the crisp abundance
classes were selected for optimization. As a measure for the
uniformity of the distribution, entropy was used:

entropy = −
1

log
2
n

n
∑

i=1

pi · log
2
pi

with

pi =
1

N

N
∑

j=1

Acrisp,i(ydata,j)

pi · log
2
pi = 0, if pi = 0

The entropy is 1 for a uniform distribution and 0 if all
data points are assigned to the same abundance class. For
Proasellus meridianusandPlectronemia conspersa, of which
the data point distributions are shown in Fig. 2, respectively an
entropy of 0.834 and 0.322 is obtained. In Fig. 5 the entropy
of the data distribution among the abundance classes for the
86 macro-invertebrate taxa is plotted as a function of the
% CFCI of the A-model of the corresponding taxon. The figure
gives an insight into the obtained values for the performance
measures. One can see that agood performance according to
the values of the performance measure often coincides with a
low entropy. Thesegoodperforming models are all models of
macro-invertebrate taxa of which no individuals were collected
at almost all 445 sampled sites and which are therefore not
really evaluated by the data set. The twelve models selected
for optimization are indicated with a box.

B. Properties of the genetic algorithm

During the optimization, the membership functions of the
input variables were searched with a genetic algorithm [7].
Two optimizations were carried out: a bounded and a free
optimization. During the bounded optimization the kernelsof
the optimized membership functions are always subsets of the
0.5-cuts of the corresponding original membership functions
(as illustrated in Fig. 6), whereas during the free optimization
only the number of membership functions is fixed for each
input variable.

During the search, each obtained model was evaluated
on each of the 445 data points, using a weighted average
deviation (wAD) in which the weights guarantee that each
region of the input space defined by the 0.5-cuts of the
membership functions defined by the expert has the same
contribution to the fitness:

wAD =

N
∑

j=1

wj ·

n−1
∑

i=1

∣

∣

∣

∣

i
∑

k=1

Ak(ydata,j) −

i
∑

k=1

Ak(ymodel,j)

∣

∣

∣

∣

with

wj =
1

Nj · nregions

.
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Fig. 5. Entropy and % CFCI of the 86 models including the ammoniumconcentration as in input variable. The 12 models selected for optimization are
indicated with a box.
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parameters during the bounded simulation

In the definition of the weightswj , Nj is the number of data
points in the same region of the input space as thejth input
of the data set andnregions is the number of regions in which
the input space is divided.

The membership function parameters were coded as binary
strings of respectively 7 and 10 bits per parameter for re-
spectively the bounded and free optimization. A population
contained 100 individuals and each generation parents were
selected by tournament selection and recombined using uni-
form crossover (crossover probability = 0.95) and mutation
(mutation probability = (length binary string)−1). Furthermore,
elitism was applied in the algorithm. The genetic algorithm
was stopped if only small improvements of the fitness of the
best individual (4 fitness< 0.001) were obtained during the
last 50 consecutive generations or if the 1000th generation



was reached. Hundred repetitions were carried out for each
optimization and the model with the highest % CFCI among
the 100 candidate models was retained as result of the opti-
mization.

C. Optimization results

The results obtained for the twelve selected models are sum-
marized in Fig. 7. One expects the model obtained through free
optimization to have a higher % CFCI than the corresponding
model obtained through bounded optimization, which on its
turn is expected to score better than the original model. This
is indeed the case for all optimized A- and C-models and all
P-models, except forPhysa fontinalis. However, forAnisus
vortex, Erpobdella octoculata, Gammarus pulex, Glossiphonia
heteroclita, Physa fontinalisandRadix peregrathe order of the
% CFCI-values of the original, bounded and freely optimized
N-models does not agree the expected order. Three reasons
can be given for these anomalous results. First of all, the
values taken by the membership function parameters in the
optimized models are restricted to a limited set of values due
to the use of binary coding. Furthermore, the ambiguity of
the data can be blamed and finally, the fact that the original
models including nitrate concentration scored best among the
four original models of these taxa, could indicate lack of room
for further optimization of these models.

In Figs. 8 and 9 the results obtained for the A-model
of Proasellus meridianusare shown. Note that the member-
ship function describing the oligosaprobic (includingα,β-
oligosaprobic) conditions in the original model has such a
small support that it can hardly be noticed. In Fig. 8 one
sees that the membership functions of the velocity value
low and theoligosaprobic conditions are extended towards
higher velocities and ammonium concentrations respectively.
The membership functions in Fig. 8(c) no longer reflect the
meaning given by the experts to the linguistic values. During
the bounded optimization the extension is however limited by
the constraints described in Section V-B. As shown in Fig. 9,
by extension of the support of these linguistic values, more
data points and in particular more data points belonging to
the abundance class Absent, fire the rule

IF vel IS low AND ammon IS oligotrophic

THEN abundance IS absent ,

instead of the rules

IF vel IS low AND ammon IS β − mesotrophic

THEN abundance IS low ,

IF vel IS moderate AND ammon IS oligotrophic

THEN abundance IS low ,

IF vel IS moderate AND ammon IS β − mesotrophic

THEN abundance IS moderate ,

which results in a better score for the used fitness wAD as
well as for the other performance measures % CCI, % CFCI
and AD.
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Fig. 9. Distribution of the data points among the different subregions of
the input space defined by 0.5-cuts of the membership functionsof (a) the
original model, (b) the model obtained through bounded optimization and (c)
free optimization of the A-model ofProasellus meridianus
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Fig. 8. Membership functions of (a) the original model, (b) themodel obtained through bounded optimization and (c) free optimization of the A-model of
Proasellus meridianus

VI. CONCLUSIONS

In this study fuzzy ordered classifiers were used to clas-
sify river sites according to their suitability as a habitatfor
macro-invertebrates. The classifiers were evaluated usingdata
collected in the Province of Overijssel in the Netherlands.
Two performance measures were introduced in this paper: the
percentage of correctly fuzzy classified instances, % CFCI,for
ordered and not-ordered fuzzy classification, and the average
deviation, AD, for ordered fuzzy classification. Due to its
ambiguity, the available data set was not found appropriate
for a purely data-driven model identification, expert knowledge
was a prerequisite to build interpretable models. One type of
interpretability-preserving data-driven optimization was intro-
duced and applied using a genetic algorithm.
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Abstract— In this paper a new algorithm for the incremental
learning of specific data-driven models, namely so-called Takagi-
Sugeno fuzzy systems, is introduced. The new open-loop learning
approach includes not only adaptation of linear parameters
in fuzzy systems appearing in the rule consequents, but also
sample mode adaptation of premise parameters appearing in
the membership functions (i.e. fuzzy sets) together with a rule
learning strategy. In this sense the proposed method is applicable
for fast model training tasks in various industrial processes,
whenever there is a demand of online system identification in
order to apply models representing nonlinear system behaviors
to system monitoring, online fault detection or open-loop control.
An evaluation of the incremental learning algorithm is included
at the end of the paper, where a comparison between conven-
tional closed-loop modelling methods for fuzzy systems and the
incremental learning method (also called adaptation in open-
loop) demonstrated in this paper is made with respect to model
qualities and computation time. This evaluation will be based
on high dimensional data coming from an industrial measuring
process as well as from a known source in the internet, which
should underline the usage of the new method for fast online
identification tasks.

Index Terms— Incremental learning, sample mode adaptation,
Takagi-Sugeno fuzzy systems, rule learning, model qualities,
online identification

I. I NTRODUCTION

Nowadays Takagi-Sugeno fuzzy systems play an important
role for system modelling and identification tasks, as they
possess the behavior to be capable for approximating any
nonlinear dependency to a certain degree of accuracy between
some physical, chemical or medical variables occurring in
the real world. They are also applied in applications areas
such as system analysis (as they gain linguistic interpretable
models in form of rule bases and therefore may yield a
better understanding of some underlying system behaviors),
prediction, control (as they provide a good interpretation about
local behaviors of a control system through observing the
steepness of the hyper-planes in different directions), fault
detection or simply simulation. A specific task is the so-
called online identification of Takagi-Sugeno fuzzy systems,
where this type of fuzzy systems should be trained in an
incremental manner, i.e. stepwise with newly loaded data
points without taking into account the former loaded ones.
Opposed to a re-building of the systems from time to time by
sending all the data measured so far into a conventional closed-
loop training algorithm, the incremental learning approach
guarantees a fast training of the fuzzy systems, which can

be indispensable within an online system. Other requirements
to incremental learning includes refinement of already existing
knowledge-based models with data (the achieved models are
then also calledgrey box models), preventing a virtual memory
overload in the case of a very huge amount of data (e.g.
a database containing four million measurements and 100
different continuous variables) and improving process security
by preventing extrapolation to new operating conditions and
by filling large interpolation holes. The last point is essential
when a re-building from time to time is impossible due to
computational performance reasons and an initially built fuzzy
system does not cover the complete region of the input space
sufficiently.

As Takagi-Sugeno fuzzy systems and a special case of them,
the so-called Sugeno fuzzy systems, possess linear parameters
in the rule consequent functions (see Section II for a detailed
definition), a recursive algorithm as it is also applied for ARX
and ARMAX regression models [1] is quite often applied in
literature [2], [3], [4] and will be also described shortly in
Section III as it acts as an important part within the complete
incremental learning approach of fuzzy systems demonstrated
throughout this paper. However, as it will be also demonstrated
in Section III, the adaptation of the linear rule consequent
parameters alone is not satisfactory, as it is not capable to
incorporate a description about new system behaviors or new
operating conditions by means of additional fuzzy sets and
rules in the input space. A possibility to overcome this draw-
back is demonstrated in [5], where a batch mode adaptation
strategy within a sliding window including the last few 100
data points is carried out. An extension of this approach to
sample mode adaptation is stated in [6]. An alternative to
this approach is presented in [7], Section 14.6.2, by applying
the closed-loop training methodLOLIMOT = LOcal LInear
MOdel Tree [8], which ensures nicely interpretable fuzzy
partitions. However, this approach lacks of being capable for
incorporating new operating conditions represented by new
incoming data appearing outside the prior estimated range. In
[4] it is described thatlazy learning[9] is a good alternative
to the adaptation of nonlinear parameters in a fuzzy system.
However, its outcome is a kind of local approximator as it only
uses the nearest local points for building up a model, so no
global model yielding an interpretation of the entire process
behavior is achieved.

In this paper a new approach for the incremental learning of
Takagi-Sugeno fuzzy systems is demonstrated, which exploits



open-loop capable clustering methods for online training of
fuzzy partitions as well as rule bases, with the possibility
of adjoining new fuzzy sets and rules whenever there is a
demand for it due to the nature of the newly loaded data.
This online training strategy for the nonlinear part is combined
with the recursive adaptation of linear parameters appearing
in the rule consequents to a complete data-driven incremental
learning algorithm. In doing so, it is practicable for taking into
account each new incoming data point separately for the model
building process and therefore feasible for online learning
and identification tasks of various industrial processes, where
models should be up-to-date as fast as possible.

II. PROBLEM STATEMENT

A. Definition of a Takagi-Sugeno Fuzzy System

The product t-norm together with Gaussian functions leads
to some favorable properties, namely steady differentiable
models, equivalency to radial basis functions neural networks
[10], [11], favorable interpolation properties due to infinite
support and an easy extraction of the parameters for the
Gaussian fuzzy sets (which is for instance not the case for
sigmoidal functions, which also possess infinite support). Due
to these reasons, this combination is taken into account,
leading to the specific case of the Takagi-Sugeno fuzzy system
with multiple input variables(x1, ..., xp) and a single output
variabley defined by

f̂(~x) = ŷ =
C∑

i=1

liΨi(~x) (1)

with the basis functions

Ψi(~x) =
e
− 1

2

∑p
j=1

(xj−cij)2

σ2
ij∑C

k=1 e
− 1

2

∑p
j=1

(xj−ckj)2

σ2
kj

(2)

and consequent functions

li = wi0 + wi1x1 + wi2x2 + ... + wipxp (3)

This special form of a Takagi-Sugeno fuzzy system is also
calledFBFN (i.e. Fuzzy Basis Function Networks).

B. What to adapt?

When inspecting the formulation of a Takagi-Sugeno fuzzy
system as in (1) we have to realize that principally three
different kinds of components may be adapted in open loop
manner:
• Consequent Parameters: they appear in the rules conse-

quents as output weights (wi0, wi1, ..., wip)
• Premise Parameters: they appear in the input membership

functions as centers (cij) and widths (σij)
• Rule Base: this concerns not only the amount of rules

given by the summation limitC in (1), but also the num-
ber of fuzzy sets per input dimension, which influences
the amount of rules and readability of the whole system.

Consequent parameters are linear parameters, premise param-
eters are nonlinear ones, hence two completely different ap-
proaches for adaptation are described in the following sections

within this section. Within all approaches the adjustment of the
parameters should be carried out in a way such that previously
learned relationships should not be forgotten while approx-
imating new relationships (described by the new incoming
points) as narrow as possible, meaning that the approximation
function obtained by an incremental learning approach should
not cause a significantly worse quality than an approximation
obtained from closed-loop model building.

III. A DAPTATION OF RULES’ CONSEQUENTS

A. Global Estimation and Adaptation of Rules’ Consequents

The goal of global least squares estimation is, to minimize
the error between the measured valuesyk and the estimated
values ŷk of the output variable, wherek = 1, ..., N and
N the number of available data points. This leads us to the
following minimization problem when applying the quadratic
distance error measure to the Takagi-Sugeno fuzzy system as
formulated in (1):

J =
N∑

k=1

(y(k)−
C∑

i=1

liΨi(~x(k)))2 = min
~w

! (4)

which can be uniquely solved by derivation the objective
function after all linear parameters and solving the resulting
linear equation system, when taking into account, thatŷ can be
rewritten asR~w, where ~w contains all the linear parameters
for all rules to be estimated and the matrixR denotes the
regression matrix containing the regressors

~ri(k) = [Ψi(~x(k))x1(k)Ψi(~x(k)) . . . xp(k)Ψi(~x(k))]

for all C rules andk = 1, . . . , N data points, wherexi(k)
is the ith column of the row vector~x in point k. Setting the
derivative with respect to the linear parameter vector~w to 0,
the parameters can be obtained by

~̂w = (RT R)−1RT ~y (5)

The great drawback of this method is that all data samples
(~x(1), y(1)), (~x(2), y(2)), ..., (~x(N), y(N)) have to be sent
into the algorithm at once, otherwise it is not working. A
recursive formulation of the LS method for estimating linear
consequent parameters, the so-calledrecursive least squares
(RLS)[1], [12] overcomes this drawback as it calculates a new
update for the linear parameters~w each time a new data point
comes in. The basic idea of theRLSalgorithm is to compute
the new parameter estimatê~w(k + 1) at time instantk + 1
by adding some correction vector to the previous parameter
estimate~̂w(k) at time instantk, leading finally to the following
recursive estimator for the linear rule consequent parameters:

~̂w(k+1) = ~̂w(k)+P (k+1)~r(k+1)(y(k+1)−~rT (k+1) ~̂w(k))
(6)

with P (k + 1) the inverse Hesse matrix(RT R)−1 at time in-
stancek+1. Note, that the amount of correction is proportional
to the prediction error.

The RLS algorithm requires the inversion of the Hesse
Matrix H or P , respectively, hence the complexity is still
O(M3), with M being the number of degrees of freedom or
the number of parameters, respectively, soM = C(p+1) with



C the number of rules andp the input dimension. Utilizing a
specific matrix-inversion theorem, the inversion of the Hesse
Matrix can be avoided and the computational complexity
reduced toO(M2). The following formulas are obtained for
RLS:

~̂w(k + 1) = ~̂w(k) + γ(k)(y(k + 1)− ~rT (k + 1) ~̂w(k)) (7)

with the correction vector

γ(k) = P (k+1)~r(k+1) =
P (k)~r(k + 1)

1 + ~rT (k + 1)P (k)~r(k + 1)
(8)

P (k + 1) can be computed recursively by:

P (k + 1) = (I − γ(k)~rT (k + 1))P (k) (9)

B. Local Estimation and Adaptation of Rules’ Consequents

Opposed to the global estimation, for the local approach
M separate local estimations and consequently adaptations are
carried out for thep+1 parameters of each local linear model,
hence for each rule. A local linear model with the output~̂yi =
[ŷi(1) ŷi(2) ... ŷi(N)]T

~̂yi = Ri ~wi (10)

where ~wi the linear parameter vector andRi the regression
matrix for theith rule, which just contains all regressor values
of the original data points and is therefore the same for all
rules, is valid only in the region where the associatedbasis
function Ψi(.) is close to 1, which will be the case close to
the center ofΨi(.) Consequently, it is straightforward to apply
a weighted least squares optimization where the weighting
factors are denoted by thebasis functionvalues, i.e.

Ji =
N∑

k=1

Ψi(~x(k))e2
i (k) −→ min

wi

(11)

whereei(k) = y(k) − ŷi(k) represent the local linear model
error in thekth point, whose solution leads to the so-called
weighted least squaresapproach

~̂wi = (RT
i QiRi)−1RT

i Qi~y (12)

with Qi the weighting matrix for theith rule containing its
basis function values at each data point.

The deduction of the open-loop version of theweighted
least squares, the so-calledrecursive weighted least squares
= RWLS is the same as in the previous section for the least
squares approach, leading to the following update formulas for
the linear consequent parameters of theith rule:

~̂wi(k + 1) = ~̂wi(k) + γ(k)(y(k + 1)−~rT (k + 1) ~̂wi(k)) (13)

γ(k) =
Pi(k)~r(k + 1)

1
Ψi(~x(k+1)) + ~rT (k + 1)Pi(k)~r(k + 1)

(14)

Pi(k + 1) = (I − γ(k)~rT (k + 1))Pi(k) (15)

with Pi(k) = (Ri(k)T Qi(k)Ri(k))−1 the inverse weighted
inverse Hesse matrix and~r(k + 1) = [1 x1(k + 1) x2(k +
1) . . . xp(k + 1)]T the regressor values of thek + 1th data
point, which is the same for alli rules.

Fig. 1. Incorrect adapted model (dashed light line) due to new incoming
data points (dark dots)

Based on a detailed comparison between the global and
local approach it turned out that local approach is superior
to global one in many aspects such as numerical stability
(as dealing with inversion of smaller matrices), computational
performance, the bias error when approximating from data
with medium and high noise levels and transparency of the
consequent functions (hyper-planes). Adaptation of the linear
consequents alone is feasible whenever small holes in the
original data set appear which are closed with new data.
However, in practical situations there can be two main reasons,
that this strategy fails, namely if data holes at the initial
generation are too wide in order to guarantee enough flexibility
of the fuzzy model later on or if operating conditions trigger
data points in until then unexplored regions in the input space
This fact is underlined when inspecting Figure 1 where the
adaptation process, namely to extend the already generated
models (solid lines) in the direction where the new incoming
data points (dark dots) lie, fails, which is demonstrated by the
dashed lines in both images.

IV. A DAPTATION OF PREMISE PARAMETERS AND RULE

LEARNING

Vector quantization is exploited in an open-loop variant and
combined with the idea of ART-networks, i.e. to take into
account the distance of newly loaded points to all the cluster
centers generated so far. This distance is compared with a so-
called vigilance parameter and if it is greater a new cluster is
set, if this is not the case, the nearest cluster (also called winner
neuroncwin) is updated for a new incoming point with respect
to its width σwin,j by exploiting recursive variance formula
[13] for each dimensionj:

kiσ
2
win,j = (ki−1)σ2

win,j +ki∆c2
win,j +(cwin,j−xkj)2 (16)

where∆cwin,j is the distance of the old prototype to the new
prototype of the winner neuron in thejth dimension andkwin

is the amount of data points lying nearest to clustercwin and
can therefore be simply updated through counting. The center
of the winner neuron is updated by

~c
(new)
win = ~c

(old)
win + η(~x− ~c

(old)
win ) (17)

with η the learning gain. A favorable choice ofη with respect
to a kind of convergence of the incremental learning algorithm
over data samples (see next section) is given by

ηwin =
0.5

kwin
(18)



From the clusters the fuzzy sets are extracted by projection
and the rules are obtained by simply connecting fuzzy sets
belonging to one cluster with a t-norm. Hence, in the case a
new cluster is born, automatically a new rule (theC + 1th) is
born:

RuleC+1 :IF x1 IS µ(C+1)1 AND x2 IS µ(C+2)j AND...

AND xp IS µ(C+1)p THEN

w(C+1)0 + w(C+1)1x1 + ... + w(C+1)pxp

with µ(C+1)j described byc(C+1)j andσ(C+1)j set to:

c(C+1)j = xkj ∀j ∈ {1, ..., p}
σ(C+1)j = ε ∗ range( ~xj) ∀j ∈ {1, ..., p} (19)

and where the linear weightsw(C+1)j are set initially to 0 for
start values toRWLS. From this point of view, a cluster update
always belongs to a rule update. For details about this learning
strategy of the antecedent part in a Takagi-Sugeno fuzzy
system and evaluation results with respect to a performance
comparison on 2-dimensional data withconventional genfis2
(as implemented in MATLAB [14], [15]) refer to [16].

V. I NREMENTAL LEARNING OF TAKAGI -SUGENO FUZZY

MODELS

The connection of the premise parameter and rule structure
innovation algorithm as demonstrated in IV with the adaptation
approaches for linear consequent parameters as described in
III is carried out in sample mode manner. Hereby, we have to
consider about three important points, namely the choice of the
adaptation approach for the rule consequents, the eventuality
of adaptation from scratch and the way how to connect. For the
adaptation of rules consequents we choose the local approach,
as it possesses a lot of advantages among the global one, see
Section III. Regarding to adaptation from scratch we have to
realize that there is one hitch when trying to build up the rule
structures and fuzzy sets from scratch: usually in the case of
a complete automatic data-driven generation of fuzzy models,
the ranges of the input variables are not known or available.
This makes the learning approaches for premise parameters
and rules not applicable as a data normalization has to be
carried out with the exploitation of the ranges of the input
variables. In this sense, a significant amount of data points is
important in order to be able to achieve a good first estimate of
the ranges. From first glance, it looks straightforward to con-
nect the two different approaches, hence either first to adapt the
premise parameters and then second to adapt the consequent
parameters of the rule which corresponds to the winner neuron
or vice versa. However, when performing this straightforward
connection, an instability of the linear consequent adaptation
part may arise. This is due to the fact that a modification in the
clusters causes a change in the projected fuzzy sets, which has
an influence onto the already estimated consequent parameters
as well as inverse Hesse matrix, such that correction terms
should be incorporated before performing the local adaptation
for the next (k+1th) data point. These correction terms will be
denoted as~δ(k+1) for the linear parameters and∆(k+1) for
the inverse Hesse matrix. In the case of setting a new cluster

and hence a new rule triggering new fuzzy sets by projection,
the already estimated parameters as well as the inverse Hesse
matrices are not disturbed as for all other rules theweighted
recursive least squaresis carried out separately. With these
considerations we obtain the following incremental learning
algorithm for Takagi-Sugeno fuzzy systems:

Algorithm 1: FLEXFIS: Incremental Learning of
Takagi-Sugeno fuzzy systems

1) Collectk sufficient data points in order to yield a correct
and stable approximation.

2) From these collectedk data points generate an initial
fuzzy model withgenfis2 extended, hence with VQ-ART
instead of subtractive clustering and local estimation
approach for rules’ consequents instead of global one

3) Take the next incoming data point (online case) or fetch
out a data sample from a data matrix randomly or
ordered (offline case):~xk+1

4) Normalize cluster centers and widths as well as the
current data point due to the ranges from the previous
cycle This has the effect that new incoming data points
lying significantly outside the already estimated range
cause certainly a new rule.

5) Calculate the distance of the selected data point to all
cluster centers by using a predefined distance measure.
Here, Euclidian is used.

6) Elicit the cluster center which is closest to the data point
by taking the minimum over all calculated distances→
winner neuroncwin

7) If ‖~xk+1 − cwin‖A ≥ ρ with A the Euclidian norm
a) Increase the number of clusters (i.e. rules)C, hence

C = C + 1
b) Start a new cluster at thek+1th point, hence~cC =

~xk+1.
c) Set the width of the new cluster to zero, hence

~σC = ~0
d) Transfer cluster centers and widths back to original

range with respect to each dimensionj, hence

cij = cij(max(~xj)−min(~xj)) + min(~xj)
σij = σij(max(~xj)−min(~xj)) (20)

e) Set the centers and widths of the new fuzzy sets
(in all input dimensions) as in (19)

f) Set the linear consequent parameter~̂wC of the new
rule C to ~0

g) Set the inverse Hesse matrix(RT
CQCRC)−1 of the

new rule toαI with α a positive big integer.
8) Else

a) Update thep center components of the winner
neuroncwin by using the update formula in (17)
with the choice of an adaptiveη as described in
(18)

b) Update thep width components of winner neuron
cwin by using variance update formula in (16)

c) Transfer all the cluster centers and widths back to
original range as in (20)

d) Project winner neuron onto the axis to update the
antecedent part of the rule belonging to the winner



neuron
e) Correct the linear parameter vector of consequent

functions and the inverse Hesse matrix of the to
the winner neuron corresponding rule by

~̂wwin(k) = ~̂wwin(k) + ~δwin(k + 1)
Pwin(k) = Pwin(k) + ∆win(k + 1) (21)

9) Update the ranges of all input and output variables
10) Perform weighted recursive least squares as in (13) and

(15) for allC rules, achieving parameter vectors~̂wC(k+
1) and inverse Hesse matricesPC(k +1). Here all rules
has to be taken into account as in the case if Gaussian
fuzzy sets always all rules fire to a certain degree.

11) If the data matrix still contains uncovered data (offline
case) or new incoming data points are still available
(online case) setk = k + 1 and goto step 3, otherwise
stop

In this form, the incremental learning algorithm is directly
applicable, with the exception that one point is still missing:
how to estimate the correction vectors and matrices in (21) in
order to guarantee stable adaptation. Obviously, these correc-
tion terms depend on the change extent of the winner neuron
and influences all previously evaluated weighting entries and
therefore can be only calculated by reusing the firstk points
again. This leads to the loss of the benefit to be applicable for
fast online identification processes, as the linear parameters
have to be re-estimated in each learning step. Nevertheless, a
bound to these correction terms can be given, which is not
proven here:

Lemma 1:Let ~δi with i = 1, ...C be the correction vector
for the independent linear parameter estimations of theC
rules, then

lim
ki→∞

~δi(ki) = ~0 (22)

i.e. the sequence of correction vectors for all rules tends to 0.
The same can be stated for the correction terms of the inverse
Hesse matrix. As the correction terms are bounded, it is
guaranteed that the algorithm does not ’break out’, when
setting the correction vectors artificially to~0, which has to be
done for empirical tests as they cannot be calculated explicitly.
Whenever the if-path in step 7 is entered, indeed, a new rule is
set and therefore the fuzzy model extended, but after a while
also for this rule the algorithm will converge again. So, when
taking into account that at some time instance the whole input
range is filled up with data sufficiently enough, hence the
complete possible input domain is acquired with fuzzy sets and
rules, this leads to the overall convergence of the algorithm.
Moreover, the largerk gets for the initial generation of fuzzy
models as described in step 2 of algorithm 1, the smaller the
correction vector values get for the adaptation process. In this
sense, for an online identification system the choice of the
initial number of data points is a matter of a tradeoff between
stability and an early applicability of fuzzy models generated
by the algorithm.

When applyingFLEXFISto the data as visualized in Figure
1 a correct approximation of the data can be obtained, which
is shown in Figure 2.

Fig. 2. Comparison of fuzzy models obtained with Algorithm 1 (dotted
lines), andextended genfis2in closed-loop (solid lines)

TABLE I

COMPARISON OFFUZZY MODEL BUILDING METHODS WITH RESPECT TO

QUALITY AND COMPUTATION SPEED

Method Quality Quality Tr. Time Tr. Time
Training Test online 1 online 2

up-to-date up-to-date
every 100 p. each point

FMCLUST 0.9272 0.849 62m 41s Not poss.
ANFIS 0.9110 0.842 >genfis2 Not poss.
genfis2 conv. 0.9080 0.810 38m 31s Not poss.
genfis2 ext. 0.9110 0.844 34m 13s Not Poss.
genfis2 ext.c. a. 0.8319 0.818 3m 10s 3m 10s
FLEXFIS 0.8712 0.836 4m 36s Not poss.
batch mode 100
FLEXFIS 0.8411 0.829 10m 57s 10m 57s
sample mode

VI. EVALUATION ON HIGH DIMENSIONAL DATA

A comparison of the closed-loop as well as open-loop
variant of FLEXFIS with some widely known closed-loop
generation methods of Takagi-Sugeno fuzzy systems will be
investigated on high dimensional data sets. This comparison
will include the following closed-loop generation methods:
FMCLUST[3], ANFIS[2], [17] andgenfis2 conventional[14],
[15]. Note: with genfis2 conventionalit is meant thegenfis2
approach as implemented in MATLAB’s fuzzy logic toolbox,
with genfis2 extendedthe closed-loop variant ofFLEXFIS,
i.e. local estimation of rules’ consequents and VQ-ART as
clustering method.

In Table I a comparison of these methods based on high
dimensional measurement data from an diesel engine recorded
at an engine test bench is made. The comparison includes
average model qualities of 62 trained up-to-5-dimensional
MISO (i.e. Multiple Input, Single Output) fuzzy models on the
training data set containing 1810 samples as well as a complete
fresh fault-free test data set containing 136 samples. Originally
the training data set as well as the test data set contained 80
measurement channels, where 18 channels were completely
neglected as input and target channels due to missing data
or containing too many outliers. For each of the remaining
channels, a fuzzy model was tried to be built up by a subset of
the others, which was selected by applying a variable selection
technique described in [18]. An overallr-squared-adjusted
which averages all ther-squared-adjustedvalues of all fuzzy
models gives the overall qualities of the methods. Usually,
closed-loop modelling methods achieve higher averager-



TABLE II

MODEL ACCURACY OF DIFFERENT METHODS WHEN APPLYING TO

auto-mpgDATA FROM UCI REPOSITORY

Method Corr. Coeff.
FMCLUST 0.917
ANFIS 0.730
genfis2 conv. 0.855
genfis2 ext. 0.916
genfis2 ext. conv. adapt 0.210
FLEXFISsample mode 0.912

squared-adjustedvalues than open-loop methods, which is
underlined in Table I. This is because closed-loop methods
always get in the complete information about the underlying
dependencies to be approximated as all data points are sent
into the algorithm. However, the obtained qualities on the
training set of the withFLEXFIS adapted fuzzy models is
surprisingly good, as it triggers only a 4.4% decrease when
applying batch mode adaptation, respectively a 7.7% decrease
when applying sample mode adaptation instead of closed-
loop modelling. Moreover, for the qualities on a fresh test
set (third column), adaptation approaches can even compete
with generation approaches. Column 4 demonstrates clearly,
that when models are demanded to be up-to-date after each
newly recorded 100 points, all the closed-loop modelling
methods take an almost 10 times higher computation speed
than FLEXFIS in batch mode adaptation. This makes them
hardly applicable in fast identification processes and even
totally inapplicable for online identification tasks, where fuzzy
models have to be up-to-date for each single point (column 5).

Comparing FLEXFIS in sample mode with the sample
adaptation of the rules consequent parameters alone, denoted
as ’genfis2 extended, c. a.’ in Table I, it has to be realized
that especially for this data set the adaptation of consequent
parameters is sufficient, as the quality of the models do not
suffer significantly; moreover, it is three times faster than
FLEXFIS in sample mode. The reason for this lies in the
good distribution and density of the firstk data points sent
into initial model training. This circumstance can immedi-
ately change, when applying a different measurement plan,
where the measurements are recorded in a different order. For
instance, data from a BMW-diesel engine were recorded in
an ascending order with respect to the two main influencing
channels at an engine test bench, namely rotation speed and
torque. In this case it turned out that the sample mode
adaptation of the rules consequent parameters alone is useless,
as it delivered an average model quality over 32 models of only
0.67 on fresh test data.

In table II model quality results on theauto-mpgdata from
the UCI-repository1 are shown. The data concerns city-cycle
fuel consumption in miles per gallon and consists of eight
attributes including one class attribute (target channel), namely
the so-called ’miles per gallon’, and seven input attributes,
Five input dimensions were enough to describe the relationship
significantly, the results are shown in Table II:FMCLUST,
genfis2 extendedand FLEXFIS show almost similar results

1http://www.ics.uci.edu/ mlearn/MLRepository.html

with respect to approximation accuracy on fresh test and are
even slightly better than the best method demonstrated in
[19] (LAPOC-VS), which achieves a correlation coefficient
of between 0.89 and 0.90.ANFIS and genfis2 extendedwith
conventional adaptation are more or less forgettable.

VII. C ONCLUSION

Concluding, in this paper a new method (FLEXFIS) was
introduced which is feasible to train Takagi-Sugeno fuzzy
models in offline as well as online mode. The applicability and
performance of this method in industrial processes was demon-
strated due to high dimensional data, where the evaluation re-
sults were compared with those of closed-loop approaches for
training Takagi-Sugeno fuzzy systems due to approximation
accuracy and computational effort. The results ofFLEXFIS
were pretty good as almost the same model qualities could
be achieved in comparison with the closed-loop modelling
methods, whereasFLEXFISpossesses an incremental learning
mechanism, which makes it possible to update the models
during an online process whenever they have to.
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Quantitative Analysis of Microarray Images 
Leila Muresan, Bettina Heise, Jan Kybic, Erich Peter Klement 

  
Abstract—The goal of quantitative analysis of microarrays is to 

determine the strength of the hybridization for every element of the 
array (spot). Since new technology allows the detection of the signal 
at single molecule level, new methods for analysis are necessary. A 
detection error of 10% is considered acceptable. In this paper we 
discuss three approaches to single peak detection inside the spots of 
the arrays, and compare the results we obtain on simulated and real 
images. These approaches are: global thresholding, an adaptive filter 
combined with local thresholding, and the third algorithm, we 
propose, is a statistical background estimation based method 
combined with clustering, which produces comparable results to well 
known algorithms, without having to perform the manual adjustment 
of the parameters. 
 

Keywords—Peak detection, local threshold, adaptive filter, 
noise, statistical outlier detection, clustering 

I. INTRODUCTION 
ROM an image processing point of view, the task of 
quantitative microarray analysis consists of recognizing 

and counting single peaks in fluorescence images. (According 
to biological terminology, the elements of the microarray are 
called spots, and the bright signals inside them peaks. Peaks 
are diffraction limited point-like objects). Due to the 
development of an ultra-sensitive microarray platform, based 
on a combination of anti-adsorptive thin glass slides and the 
Cytoscout® ([3], [6]) detection at single molecule level 
becomes possible. At this level, the current techniques [4], 
based on the computation of the mean intensity for an array 
element, are obsolete. More sensitive and accurate methods 
are required.  

Among the challenges of this task we identify the 
robustness to noise, to different concentration of 
oligonucleotides (resulting in different densities of the peaks 
to be detected) and the total automation of the procedure. To 
one pixel of a commercial scanner correspond 400 pixels for 
the new technique. This leads to a considerable increase in the 
size of the images that have to be analyzed (the size of one 
image is approximately 8GB). The size of the images and the 
high density of peaks makes the peak counting task practically 
impossible for a human operator. Also, an efficient  
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automatized method should not be computationally too 
expensive. The results are tested on real as well as simulated 
data, since ground truth for this kind of images is not 
available. 

As real test images we used 16-bit scans of arrays 
hybridized with different concentrations of oligonucleotides 
(0.08, 0.8 and 8 amol/80 µl ) resulting in different peak 
densities in the peak.  

For simulations, we generated images containing various 
numbers of peaks, and added a percentage of Gaussian and/or  
Poisson noise. 

 

 
 

Fig 1. Oligonucleotide microarray peak with single molecule sensitivity 
(concentration: 0.8 amol/ 80 µl)  

 
A pre-processing step in the scan analysis consists in 

detecting a region of interest, around the position of every 
single array element. Each such region will be analyzed 
separately. 

II. PEAK DETECTION BY THRESHOLDING 
As a first approach, a global threshold method was used to 

convert greyscale images into binary images, and count 
subsequently the resulting blobs. As all the microarray images 
in our test dataset show a Poisson-like histogram, the triangle 
algorithm [9] seems suitable for a fast automated thresholding. 

However, as a drawback of all global threshold methods, 
changing illumination profile causes background variations, 
which result in an overlap of the intensity distributions for 
background and foreground, making accurate peak detection 
impossible. Noise may further deteriorate the results.  

In order to minimize these effects, in the second approach, 
we combine a local thresholding method with a previously 
applied local adaptive smoothing filter [5]. This filter reduces 
the noise in the original image xO(i, j) without affecting the 

F 

 1

mailto:leila.muresan@jku.at
mailto:bettina.heise@jku.at
mailto:ep.klement@jku.at


 

peaks, as described by Eq.1, 
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where ml is the mean intensity value in a local neighbourhood 
l of pixel (i, j), the variance in the same neighbourhood is 
denoted σl

2, while σn
2 denotes the variance of the noise, 

estimated by 2

,
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σσ , the mean of all local 

variances in the image.  
 

The original image xO(i, j) as well as the filtered image 
xAF(i, j) are binarized, according to the local adaptive 
threshold [8], as written in Eq. 2 : 
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where k is a constant and is adapted to the imaging conditions.  
Finally,  pixels, which are found in both the original image 

xO and the filtered image xAF  by the local threshold, and 
which are additionally local maxima in both images, are 
regarded as valid peaks (Fig. 2). The results for different 
concentrations are summarized in Table II.A. Although the 
results of the local adaptive threshold are acceptable and the 
method has relatively low complexity, an appropriate 
estimation of the factor k is necessary, causing  additional 
adaptation efforts for changing concentration and SNR. For 
this reason, the use of statistical methods for background 
estimation is justified. 

 

 
Fig 2. Results of the adaptive filter and local thresholding method for the 

detail image in fig.1 (k = 1.5, window size = 5) 
 

III. PEAK DETECTION BASED ON STATISTICAL BACKGROUND 
ESTIMATION 

The basic idea is to compute, for each image, certain 
features, which are sensitive to occurrence of peaks and 
subsequently, try to find a normally distributed model of the 
background, for each of these features. The peaks will 
represent outliers for these normal distributions, and by 
combination of outliers  for different features, we try to 
eliminate false positives (assuming that noise is uncorrelated 
among the features). The method is suitable when sufficient 
background knowledge is available (the peaks represent less 

than a few percents of the background, which in real images 
usually is the case).  

A. Features for peak detection 
The features which are thought to be sensitive to occurrence 

of peaks are: 
1. the variance of a 5 × 5 neighborhood, 
2. the mean value of a 3 × 3 neighborhood (after 

applying the top-hat operation to the image, with a 
large structuring element, in order to eliminate the 
background), 

3. the discrepancy and modified discrepancy value 
(described below), 

4. the sum of the positive difference between the 
intensity value of the 4 (or 8 neighborhood) of a pixel 
and the mean value m of the 5 × 5 neighborhood: 
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5. the result of Laplace filter. 
 

The discrepancy norm  on Dx |||| nR is defined [2] as a 
mapping 

∑
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Considering that ideal peaks show a radial symmetric 
appearance and are more or less size restricted in our images 
by 5 x 5 pixels, the sequence X of the regarded pixels over 
which we calculate the discrepancy D(i, j) was chosen in the 
following way: 
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starting repeatedly in the central point (i, j),. Subtracting the 
mean value m of X , the modified radial discrepancy DR. is:  

|)(|max
1

mxD
i

i
n

R −= ∑
=≤≤≤

β

αβα
,       (6.) 

 
For reduction of computing time only local maxima were 
considered as central points. 

An analysis of "sensitivity" of each feature (the sensitivity to 
peaks, to the dimension of the chosen neighborhood, to noise) 
seems to be necessary. 

B. Outlier detection 
In order to detect outliers in every computed feature, we 

shall use the “modified z-score method”, for normal 
distributions. Let zij be the value of a feature at pixel (i,j) 
(described in section A). The distribution of the feature for the 
background is standardized, using robust estimators, and then 
outliers are detected. The method consists of the following 
steps [7]: 
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1. Compute the median m of the zij  
2. Compute the median MAD of mzij −  

3. If the following inequality holds:  

t
MAD

mzij >
−

⋅6745.0            (7.)  

then zij is an outlier with respect to the feature z. 
 

The effect of the threshold t in Eq. 7 will be discussed 
below. However one should keep in mind that, in case of 
normal distribution, 99.7 % of the data is closer to the mean 
than 3σ, where σ is the standard deviation of the distribution 
and for outlier detection, usually a value of  t = 3.5 is chosen. 

For variance, the distribution is χ2 and not the normal one. 
Either a transformation of the x-axis, or further investigation 
of closeness to normal distribution are necessary. 

C. Counting peaks 
Since, in practice, the result still contains a lot of 

background data, some further steps are necessary. In order to 
select only the data related to the peaks, clustering algorithms 
are applied. Since the appearance of the peaks shows a great 
variability, (due to background variance, focus etc.) it seems 
more reasonable to divide the candidates, instead of two, into 
three categories: rejected candidates, weak candidates, strong 
candidates. We tested two clustering algorithms: fuzzy c-
means and Gustafson-Kessel. 

The Gustafson-Kessel (see [1]) method provides better results, 
since it is sensitive to the size and form of the clusters. 

IV. RESULTS 
In Table 1, we present the number of peak candidates, 

found as a result of outlier detection for the features 1 and 2 
(variance and mean). The test images contain 100, 500 and 
1000 peaks, respectively. The background intensity is a tenth 
of the mean peak intensity, and Poisson noise was added. 

Since the variation is less than 10%, no further processing 
is necessary. 

TABLE I 
NUMBER OF PEAKS SELECTED AS OUTLIERS FOR DIFFERENT THRESHOLD 

VALUES (FEATURES: VARIANCE AND MEAN). 
THE RESULTS VARY LESS THAN 10% 

Detected peak candidates Generated 
peaks 

t = 3.5  t = 3.0 t= 2.5 
100 95 99 109 

500 503 521 546 
1000 961 988 1021 

 
In real images, peaks show a great variability, the features 

change if the peak is defocused, and the SNR of the recorded 
images is low. In order to minimize these negative effects, we 
lower the outlier detection threshold to t = 3, introducing some 
background elements.  

 
 

  
a) GK clustering using mean and variance as 

features 
b) GK clustering using mean, variance and volume 

estimation as features 

  
c) GK clustering using mean, variance and 

discrepancy as features 
d) GK clustering using mean, variance and Laplace 

filter value as features 

Fig 3. Detail of clustering result (GK clustering with different features) for microarray image having 
concentration 0.8 amol/80 µl. The three resulting clusters are: □ – clear peak, ◊ - peak out of focus, ○ -  

rejected peak candidate 
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TABLE II 

A) NUMBER OF PEAKS IN MICROARRAY IMAGES USING ADAPTIVE FILTER AND 
LOCAL THRESHOLDING (K = 1.5) 

Concentration 
(amol / 80 µl) Detected peaks 

0.08 101 
0.8 875 
8 3808 

 
B) NUMBER OF PEAKS IN MICROARRAY USING DIFFERENT FEATURE 

COMBINATIONS AND GK CLUSTERING 
 (C1  REJECTED, C2  DEFOCUSED, C3  FOCUSED OBJECTS) 

Detected peaks Concentration 
(amol / 80 µl) Features 

t = 3.5  t = 3.0 
  C1 C2 C3 C1 C2 C3

1, 2, 3 104 44 27 141 58 30 
1, 2, 4 98 54 23 109 74 46 
1, 2, 5 105 46 24 145 56 28 0.08 

1, 2 107 48 20 152 56 21 
1, 2, 3 503 560 158 553 610 175 
1, 2, 4 503 530 188 585 561 192 
1, 2, 5 532 493 196 596 543 199 0.8 

1, 2 578 531 112 645 566 127 
1, 2, 3 4409 1032 1040 4566 1132 1081
1, 2, 4 3365 1267 1849 3048 2647 1084
1, 2, 5 3118 2408 955 3218 2573 988 8 

1, 2 3258 2556 667 3535 2628 616 

 
After performing a clustering in three classes, in order to 

reflect the characteristics of wide-field fluorescence 
microscopy imaging, (focused objects, defocused objects and 
noise), the class of candidates least resembling to the assumed 
model is discarded as the elements introduced by noise. The 
weak candidates represent mainly defocused objects, while the 
best are accepted as valid peaks. The results of the Gustafson-
Kessel clustering for three different concentrations are 
summarized in Table II.B. The three numbers represent the 
cardinality of each cluster (the first is the number of rejected 
peaks, while the second and the third represent the cluster of 
defocused and focused peaks, respectively). In the “Features” 
column, the features used for clustering are enumerated 
(denoted as in III.A). The set of peaks corresponding to 
focused and defocused objects varies little with the features 
used for clustering, the most significant differences occurring 
at very high concentrations. 

V. CONCLUSIONS 
The task of peak counting for very large images, with little 

signal cannot accommodate human intervention. The last 
method presented in the paper produces comparable results to 
well known algorithms, without having to perform the usual 
adjustment of the parameters. The results of this method can 
be used in a further analysis of peaks. Nevertheless, additional 
tests are necessary as well as an analysis of the sensitivity to 
different peak concentration, SNR and varying imaging 
conditions, and improvement of the algorithm time-
complexity by using a sub-sample of the original data.  
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Abstract: The concept of priority is often used in real time systems. Priority t-norms are used to

capture this concept. System called pFCSP uses priority t-norms. It captures and implements

the concept of priority. Using this system we can broaden the query language FSQL with queries

that can handle priority. In our model priority reasoning which has theoretical background is

incorporated giving us yet another dimension in knowledge acquisition through data mining.

Keywords: priority t-norm, fuzzy relational databases, FSQL, pFCSP

1 Introduction

Priority is most often viewed as the importance level of an object. The
concept of priority is often used in real time systems.

FSQL is a query language which implements fuzzy queries and it
is an upgrade of standard SQL. Most often it is implements on fuzzy
databases and supports fuzzy notions i.e. high, low, large small etc.
(see [1, 5])

In this paper a proposition for including priority into FSQL will be
given. The theoretic background will be the axiomatic framework of
pFCSP’s (prioritized fuzzy constraint satisfaction problems). pFCSP’s
were introduced by Dubois, and an axiomatic framework was given in
[4]. pFCSP is actually a FCSP (fuzzy constraint satisfaction problem)
in which the notion of priority is introduced. One of the key factors in
that implementation are priority t-norms. They are introduced in such a
way that the smallest value (usually the value with the biggest priority)
has the largest impact on the result given by priority t-norm.
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We will give an axiomatic framework for pFCSP and also some sys-
tems which satisfy this framework thus justifying its cause.

Finally, we will show what type of queries can be included into
FSQL and sketch the implementation idea avoiding technicalities.

2 Priority t-norms

In to order to introduce priority into FCSP (fuzzy constraint satisfaction
problem) priority t-norms are used. When it is necessary to satisfy all
the constrains a t-norm is used to aggregate the degree of satisfaction
of each one of the constrains. PFCSP (prioritized fuzzy constraint sat-
isfaction problem ) is designed in such a way that the constraint with
the largest priority is more likely to have a smaller value. Definition
of priority t-norms is such that the increase of the smallest value (most
often the value of the constraint with the highest priority) has a bigger
impact i.e. gives larger values of the general satisfaction degree than
an increase on any other components. More details on PFCSP, axioms,
instantiation and validation is given in [4]. Priority t-norms are defined
in the next definition.

Definition 1 A t-norm is called a priority t-norm if the following con-
dition holds for all a1

�
a2 in � 0 � 1 � and δ such that a2 � δ � 1:

T � a1 � δ � a2 ��� T � a1 � a2 � δ �

3 pFCSP - Prioritized Fuzzy Constraint Satisfaction
Problem

Definition 2 A fuzzy constraint satisfaction problem (FCSP) is defined
as a 3-tuple � X � D � C f � where:

1. X 	�
 xi � i 	 1 � 2 ��
�
�
�� n � is a set of variables.

2. D 	�
 di � i 	 1 � 2 ��
�
�
�� n � is a finite set of domains. Each domain di
is a finite set containing the possible values for the corresponding
variable xi in X.

3. C f is a set of fuzzy constrains. That is,
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C f 	�
 R f � µR f
i

: � ∏
x j � var � R f

i �
d j ��� � 0 � 1 � � i 	 1 � 2 ��
�
�
 n �

Definition 3 In a FCSP � X � D � C f � , given a compound label vx of all
variables X, the global satisfaction degree for the compound label vx is
defined as

α � vX � 	�� 
 µR f
i
� vvar � R f � � �R f � C f �

where � is an aggregation operator on the unit interval. A solution
of FCSP is a compound label vX such that

α � vX � � α0

where α0 is called a solution threshold which is usually predeter-
mined.

If all constrains in FCSP have to be satisfied a t-norm is used for � .
If at least one of the constrains has to be satisfied a t-conorm is used.

In order to introduce the concept of priority into FCSP the following
an axiomatic framework is given in [4]. The sytems conists of 5 axioms.

4 FSQL

4.1 Fuzzy Relational Databases and FSQL

In order to expand classical relational databases to model impression
fuzzy relational databases (FRDB) are introduced. Many models dating
up to 1982 of FRDB have been studied.

Classical databases store only precise information. For example if a
persons height is not known but it is known that a person is a tall person
classical databases cannot store this information. On the other hand
FRDB through the concept of linguistic labels can have the value tall
for attribute height. Besides storing imprecise values FRDB through
FSQL can answer a broader set of queries. Take for example queries:
I need students of medium height that have good marks in PE or Give
me people with average salaries and small housing capacity etc.
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4.2 Incorporating priority queries into FSQL

In the previous section we have introduced pFCSP who can handle pri-
ority. Also, the a concrete pFCSP which uses TL and Sp or any Frank
t-norm and t-conorm can easily be implemented. For example, our sys-
tem can handle calculations of type: Is it better to have fair GPA and
excellent physical condition or good GPA and good physical condition
if you want to teach PE in a high school. This concept can be easily
incorporated into FRDB. For example queries of type:

SELECT * FROM Students
WHERE GPA FEQ Good WITH priority HIGH
AND MathGrade GEQ 7 WITH priority MEDIUM
AND Sex EQ Male WITH priority LOW
SORT DESC
These type of queries add a new dimension to FRDB. They allow us

to choose based not only on aggregated values of all attributes but also
taking onto account the importance (priority) of a particular attribute.
Someone would argue that instead of priority we can use crisp thresh-
olds for each attributes giving higher thresholds to the more important
attributes but this would lead to a crisp join of α cuts which could not
lead us to the proper answer. In our model priority reasoning which has
theoretical background is incorporated giving us yet another dimension
in knowledge acquisition through data mining.

There are many technical and implementations details to be done in
order for this concept to be implemented but we hope that they will be
solved and we will have a pFSQL i.e. FSQL that can handle priority
queries.
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1 String parsing 1

In theory there is no difference between
theory and practice. In practice there is.

- Yogi Berra

1 String parsing

As a first example, lets look at the processing of strings (which can be “viewed” as a container of
characters). Suppose we want to split up a string such as

One sentence with five words.

into its five single wordsOne, sentence, with, five, andwords – the later without the period.
Again, a picture can help to understand our goal – see FIGURE 1. Note that this picture in some
sense looks like the “inverse” of the chain view picture.

 ,  ,

FIGURE 1: Parsing does not modify the containers’ contents, but modifies the structure.

The first trial I undertook some time ago looked like LISTING 1.

string s( "One sentence with five words." ) ;

typedef transform_view< string , boost : : function1<bool ,char> >
TrueIffBlankView ;

TrueIffBlankView view( s, bind2nd( equal_to<char >() , ' ' ) ) ;

TrueIffBlankView : : const_iterator b = view.begin ( ) ;
TrueIffBlankView : : const_iterator e;

while ( ( e = find ( b, view.end() , true ) ) != view.end() )
{

cout << string ( s .begin ( ) + (b−view.begin ( ) ) ,
s .begin ( ) + (e−view.begin ( ) ) ) << endl ;

b = e + 1;
}

L ISTING 1: Writes the five words to the screen.

Wait, what’s happening here? We use the transform view to iterate over the string; each time the
transform views’ function returns true – which means that the iterator points to a blank in between
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words – we send the string formed from betweenb ande to the standard output. That’s not very
elegant, and in fact we can go much further than that.

To do so, lets write down what parsing means. Given a string, which we treat as a container of
characters, here’s the strategy:

1. Place breaking marks at certain locations – for instance, blanks, commas, periods, etc.
That’s what a filter view can do: given a “is a character indicating a break”-predicate, it
only returns (pointers to) those characters.

2. Form new strings which hold exactly the text between two breaking marks. That might be
the task of a transform view which is initialized with some string generating function. Since
a transform view can only hold a unary function, we have to add another view:

3. Pair together two consecutive (pointers to) breaking marks. Each such pair describes the
range of a string, stretching from the pairs’ first member up to the pairs’ second member.
Pairing together might be done with the help of a neighbour view.

Summarizing, we have got to deal with three different views: First, a filter view filters out only
those characters which indicate a breaking location. Second, a neighbour view pairs together
consecutive such locations together into ranges. Third, a transform view takes such ranges and
creates string out of them.

struct isBreakingCharacter
: public std : : unary_function< char , bool >

{
bool operator ( ) ( char ch ) const
{

return ( isalnum( ch ) == 0 ) ;
}

} ;

L ISTING 2: Break if character is not alpha-numeric.

Assuming that we have two functions (or rather function objects), namely,isBreakingCharacter()
which tells us whether we should break at a certain character or not (compare LISTING 2, and
constructString () which constructs strings out of ranges, we can define the exact view types. Note
that LISTING 3 shows very clearly how one view is stacked upon the other.

Using these type definitions, writing the working code is relatively straight-forward. Unfortu-
nately, there’s just one further detail which has to be observed: the first breaking character appears
somewhere after the beginning of the string. In our case, the first blank isafter the word “One”.
Consequently, the first pair of consecutive characters subsumes the blank afterOne and that after
sentence; which means that the first constructed string is “sentence” – we missed the first word!
As a workaround, lets insert a blank at the front of the sentence; finally, we can parse the string as
shown in LISTING 4.

It is noteworthy – and a little bit disappointing – that even this relatively simple task requires not
only to stack three different views upon each other, but also some non-intuitive hacks. Partly, this
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typedef f i l ter_view< string , isBreakingCharacter >
OnlyCharsAtBreakView;

typedef neighbour_view< OnlyCharsAtBreakView, 2 >
PairTogetherView;

typedef transform_view< PairTogetherView, constructString >
ConstructStringsView ;

L ISTING 3: Definition of the three views.

std : : string s( "One sentence with five words." ) ;

OnlyCharsAtBreakView onlyAtBreak( s ) ;

/ / HACK Inserts break point at front of s to get the f i r s t word as well :
onlyAtBreak .domain( ) . insert ( (std : : string : : size_type)0 , 1, ' ' ) ;

PairTogetherView : : difference_type consecutivePairs( 0, 1 ) ;
PairTogetherView pairTogether( onlyAtBreak , consecutivePairs ) ;

ConstructStringsView result ( pairTogether ) ;

L ISTING 4: The final code.

is so because views only allow local operations; for algorithms which require non-local data – and
parsing is such an operation –, we have to apply certain tricks.

On the other hand, this examples also demonstrates the “pros” of using views: for instance, up to
the last line, where the final viewresult is constructed, we did just that: constructing views. We
did not have any other computations due to lazy evaluation.

Out of curiosity, I’d like to advance this example a little bit further. Sometimes it is desirable to
keep a certain part of the text “as is” although it contains breaking characters. A simple possibility
to tell the algorithm that it should left this part unchanged is to surround this part with so called
escape characters– typically, quotes, brackets and the like. Suppose we have got

A sentence "for demonstration purposes only" with nine words.

This sentence should be split up intosix parts: namely,A, andsentence; the fragment"for
demonstration purposes only" should be kept as a whole; then,with, nine, andwords.

One solution might be to extend functionisBreakingCharacter() as shown in LISTING 5: an inter-
nal stateinsideQuotes is added to the function object which keeps records of whether it is currently
inside or outside a matching pair of quotes.

One possible drawback of this straight-forward implementation is that it assumes that the string
is parsed from left to right. This is a general danger when working with functions that have an
internal state. Note however that a filter iterator already is forward only, so this assumption does
not impose any further restriction.



2 Signal processing 4

struct isBreakingCharacter
: public std : : unary_function< char , bool >

{
isBreakingCharacter ( )

: insideQuotes( false )
{ }

bool operator ( ) ( char ch )
{

i f ( ch == '\"' )
{

insideQuotes = ! insideQuotes ;
return false ;

}
else

return ( ! insideQuotes && ( isalnum( ch ) == 0 ) ) ;
}

private :
bool insideQuotes ;

} ;

L ISTING 5: Breaks at non-alphanumeric charactersoutsidequotes.

2 Signal processing

2.1 Sampling

To be able to apply signal processing algorithms, we first need adiscretesignal. Hence, the
starting example to demonstrate the application of views in the signal processing domain is to
down-sample a continuous signal into a discrete one.

FIGURE 2: Continuous signal is sampled to obtain a discrete one.

Suppose we have a formula which describes the given signal. Sure enough, we can put this gener-
ating function into afunction_view and already get a discrete signal with step width 1. To sample
the signal with another sampling rates, say, with step width 2, we could either
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1. manually iterate through thefunction_view with step 2,

2. use astep_iterator with step width 2 to iterate through thefunction_view, or

3. wrap apermutation_view with an appropriate re-indexing scheme around thefunction_view.

The later case is shown in LISTING 6. Note that due to the “laziness” of views, the generating
function is not called until the value is actually fetched. Thus, either the sampled view itself can
be used, or, as shown in LISTING 6, we decide to copy the sampled signal into another container
such as avector.

typedef boost : : view : : function_view< GenerateSignal > SignalFunction ;
typedef boost : : view : : permutation_view<

SignalFunction , std : : vector<int > > SamplingView;

/ / Samples in reverse order , and only every second value .
std : : vector<int > indices ;
for ( int i = 0; i < 64; ++i )

{ indices .push_back( 2∗(63− i ) ) ; }

SignalFunction signalF( 0, 64 ) ;
SamplingView sampledF( signalF , indices ) ;

std : : vector<double > signal ( sampledF. size () ) ;
std : : copy( sampledF.begin( ) , sampledF.end() , signal .begin ( ) ) ;

L ISTING 6: Sampling a continuous signal.

2.2 Windowing

One of the most important tools to analyse a (discrete and periodic) signal is the Discrete Fourier
Transform (DFT), which converts the given signal into its frequency domain representation. In or-
der to avoid some unwanted effects such as spectral leakage [Smi97], the signal is often multiplied
with a window function before calculating its DFT.

There exists a multitude of different window functions; one of the most popular is theHamming
window. Given a discrete signal of lengthN , the Hamming window is described by the formula

w[k] = 0.54− 0.46 cos
2πk

N + 1
for k = 0, . . . , N.

We might now implement this operation in terms of the data/view model: first of all, the signal
itself is assumed to be stored in a container, such as a STL vector. The Hamming window can
be represented by a function view. The element-wise multiplication of the signal with this view
requires a transform view with multiplication as its transformation function.

Since this is a binary function, and since a transform view can only operate on a single container
with a unary function, another in-between mechanism is necessary which glues together these
two containers (or rather, the container and the view) to form another container holding pairs of
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typedef std : : vector<double > Signal ;
typedef boost : : view : : function_view<HammingWindow> HammingView;

typedef boost : : tupple : : container_tuple<Signal , HammingView> SignalPairs ;
typedef boost : : view : : transform_view<SignalPairs , Multiplication>

WindowedSignal;

L ISTING 7: Signal container and window view combined.

elements. Thus, once again, an intermediate view which pairs elements together is necessary; this
time, however, pairs do not consist of elements from the same container (as it was the case in the
last example), but of corresponding elements of two containers of the same size. As outlined in
[Ric02], acontainer_tuple of size 2 does exactly this, and it does not make any difference that one
of its arguments is not a container, but a function view.

Using the two functions (or rather function objects)HammingWindow which calculates the Ham-
ming function, andMultiplication which multiplies the two coefficients of a pair, LISTING 7 shows
all types necessary to accomplish our task. Assuming thatN = 64, these types can then be used
to construct the necessary views, as shown in LISTING 8.

Signal signal ;
/ / F i l l signal with data .

HammingView hamming( 0, 64, HammingWindow( 64 ) ) ;
SignalPairs sigPairs ( signal , hamming ) ;
WindowedSignal windowed( sigPairs ) ;

L ISTING 8: Multiplies a signal with a Hamming window function

3 Image iteration

Iteration is inherently a one-dimensional concept. Returning once again to our famous loop,

for ( int i = 0; i != N; ++i )
result [ i ] = function ( source[ i ] ) ;

how can we extend that basic mechanism to two- (or more) dimensional data? Using indices and
operator [], this seems really quite trivial:

for ( int j = 0; j != M; ++j )
for ( int i = 0; i != N; ++i )

result [ i ] [ j ] = function ( source[ i ] [ j ] ) ;

Assuming that an image is stored as avector of vector of pixels, i.e. as
vector< vector<PixelType> > – which is not a common way of storing images – our loop reads like
this:

vector< vector<PixelType> >:: i terator row;



3 Image iteration 7

vector<PixelType>:: i terator col ;

for ( row = image.begin ( ) ; row != image.end( ) ; ++row )
for ( col = row.begin ( ) ; col != row.end( ) ; ++col )

/ / uses ∗col

Of course, if the image was stored as one large chunk of data in memory – and thatis most often the
case –, one might as well apply apply one-dimensional iteration. However, structure information
is lost that way. For instance, if we wanted to process a rectangular section of the image only, this
kind of representation would be rather troublesome.

3.1 Two-dimensional iteration

As an example how to implement two-dimensional image iteration, I present the VIGRA image
processing software package [Köt]. As described in the manual, and in more detail in [Köt99]
and [Köt00], VIGRA employs two-dimensional iteration. As Ullrich Köethe points out this “is
not directly possible using operator overloading.” Instead, a nested classImageIterator is created
which contains the structures to iterate both in horizontal and vertical direction. This allows to
iterate in both directions independently, as shown in LISTING 10.

class ImageIterator {
public :

/ / . . .

class MoveX {
/ / data necessary to navigate in X direction

public :
/ / navigation function applies to X−coordinate
void operator ++();
/ / . . .

} ;

class MoveY {
/ / data necessary to navigate in Y direction

public :
/ / navigation function applies to Y−coordinate
void operator ++();
/ / . . .

} ;

MoveX x; / / x−view to navigation data
MoveY y; / / y−view to navigation data

} ;

L ISTING 9: Outline of two-dimensional image iterator. From [Köt00].
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ImageIterator i ( . . . ) ;
++i .x ; / / move in x direction
++i .y ; / / move in y direction

L ISTING 10: Iteration in two dimensions. From [Köt00].

3.2 Matrix view

In this presentation, I’d like to develop another approach. Remember that a view can change
the appearance of a container. So why not looking for a view which attaches a two-dimensional
“look” to a one-dimensional container?! More precisely, we strive for a view which wraps a
one-dimensional container and provides some kind of iterator that allows two different types of
iteration:

inner (horizontal) iteration: proceeds from one pixel to the next between a givenbegin/end
pair which delimits the current row.

outer (vertical) iteration: moves thebegin/end pair from one row to the next.

FIGURE 3: Iteration over an image: whereas the outer loop iterates over rows (given as begin/end-
pairs), the inner loop iterates over pixels.

Such a structure is what I’d like to call amatrix view. FIGURE 3 depicts the situation once again.
Translated to code, the two nested loops to iterate over the complete image (or over a rectangular
part of it) will read something like this:

/ / Outer loop advances from one row to the next
for ( MatrixView : : i terator row = view.begin ( ) ; row != view.end( ) ; ++row )
{

/ / Inner loop advances from one pixel to the next
for ( PixelIterator pixel = row. f i r s t ( ) ; pixel != row. last ( ) ; ++pixel )
{

/ / use ∗pixel
}

}
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4 Image processing and enhancement

Now that we found a suitable way how to iterate over a two-dimensional image, and therefore
provide a way how to treat an image as a view, the next question I want to raise is: which image
processing algorithms can be re-formulated in terms of the data/view model?

Definitely, not every algorithm can be transformed. As an example, consider the connected compo-
nents algorithm, which determines the component a pixel is contained in within a (binary) image.
This algorithm obviously requires global image information; since views operate on a local level,
this algorithm is not suitable for use with the data/view model.

On the other hand, if we restrict ourselves to “local operations”, a re-formulation might be pos-
sible and useful. For instance, pixel-wise operations are ideally suited for the use of views; such
operations could be, for instance,

colour-to-colour or colour-to-grey scale conversions

calculation of the negative image

brightness, contrast, saturation, or colour enhancements.

Also operations which consists essentially of a re-ordering of pixels are candidates for a re-
formulation. Typical simple examples are if one wants to

rotate an image left or right, or

flip an image vertically or horizontally.

Many image processing algorithms are “local” in the sense that they only require a small neigh-
bourhood around the current pixel to work on. Examples are

local filter operations such as blur or sharpen

most edge detection algorithms.

Another such function which is calculated using a3 × 3 neighbourhood, and which I’d like to
consider in greater detail in the next subsection, is thediscrepancy norm[BBK96].

One question arises when working with such functions: How to deal with image boundaries? In
principle, there are two ways how to proceed at the boundaries where the neighbourhood exceeds
the image borders vertically or horizontally:

1. Ignore such pixels completely. For instance, for a3×3 neighbourhood, all pixels in the top-
most and bottom-most row and in the left-most and right-most column would be skipped.

2. Wrap the neighbourhood around the image boundaries.

For the later approach, using a cyclic iterator which wraps around containers might be useful.
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4.1 Image segmentation with the discrepancy norm

Among the multitude of algorithms to detect edges in images, there are some approaches that
utilize fuzzy reasoning. More precisely, for each pixel in the image some suitable classification
numbers are calculated; then, these numbers are used as input values to a fuzzy system which
contains the rules describing the “edginess” and which decides whether the pixel is an edge pixel
or not.

This mechanism can be either supervised, as described in [Ara00], or unsupervised, as is the
approach using the discrepancy norm presented in [BBK96]. This approach has the additional
advantage that it does not only separate between edge and non-edge pixels, but does a classification
for each pixel whether it lies in a “Homogeneous”, “Edge”, “Halftone”, or “Picture” area.

The approach of [BBK96] is based on the discrepancy norm:

4.1. DEFINITION.

The mapping

‖.‖D : Rn −→ R,

~x 7−→ max
1≤a≤b≤n

∣∣∣∣∣
b∑

i=a

xi

∣∣∣∣∣
is called thediscrepancy normonRn.

Since this formula would requireO(n2) operations to calculate, the following formula is more
practical to use:

4.2. THEOREM.

Let Xj :=
∑j

i=1 xi denote the partial sums for1 ≤ j ≤ n. Then, for all~x ∈ Rn,

‖~x‖D = max
1≤b≤n

Xb − min
1≤a≤n

Xa

holds.
PROOF.
See [BBK96]. 2

Time for some definitions: we work with either grey level or RGB images of dimensionW ×H,
where each of the three colour bands has 1 byte, i.e. 8 bits, of information. More formally, this
reads as:

4.3. DEFINITION.



4 Image processing and enhancement 11

A W ×H matrix of the form

(v(i, j)), i = 0, . . . ,W − 1, j = 0, . . . ,H − 1

is called an 8 bit grey level image of widthW and heightH. Its entriesv(i, j) ∈
{0, . . . , 255} are called pixels at(i, j).
A W ×H matrix of the form

((r(i, j), g(i, j), b(i, j))), i = 0, . . . ,W − 1, j = 0, . . . ,H − 1

is called a 24 bit RGB colour image of widthW and heightH. Its entries

p(i, j) := (r(i, j), g(i, j), b(i, j)) ∈ {0, . . . , 255}3

are called RGB pixels at(i, j), wherer(i, j) represents the red,g(i, j) the green, andb(i, j)
the blue portion of the pixel.

4

51

32

678

FIGURE 4: Enumeration of pixels within the3× 3 neighbourhood.

In order to calculate the discrepancy norm for a given3 × 3 neighbourhood of a pixel, the
neighbouring pixels have to be enumerated such that they form a tuple of size eight. This is
done as shown in FIGURE 4, that is, we define an enumeration mappingli,j : {1, . . . , 8} −→
0, . . . ,W − 1× 0, . . . ,H − 1 which maps1 7→ (i, j − 1), 2 7→ (i− 1, j − 1) and so on.

Then we define

e(i, j) := ‖v(l(.))− (v̄, . . . , v̄)‖D

for the grey level case, and

e(i, j) := ‖r(l(.))− (r̄, . . . , r̄)‖D

+ ‖g(l(.))− (ḡ, . . . , ḡ)‖D

+
∥∥b(l(.))− (b̄, . . . , b̄)

∥∥
D

for the RGB colour case, wherēv, r̄, ḡ, andb̄ denote the mean values, i.e.v̄ = v(l(1))+···+v(l(8))
8

and so on.

In FIGURE 5, several different neighbourhoods and the corresponding values ofe(i, j) are shown.
For the grey level case – which might be easily generalized to the colour case – we might observe
the following:

OBSERVATION 1. e(i, j) is zero in a completely homogeneous area.
All eight entries of the neighbourhood being equal meansv(l(1)) = v(l(2)) = . . . = v(l(8)) = v̄,
which implies‖v(l(.))− (v̄, . . . , v̄)‖D = ‖(0, . . . , 0)‖D = 0.
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OBSERVATION 2. e(i, j) is relatively low when pixel values alternate between black and white,
as is the case in half-tone, “chequerboard-like” areas.
Assume that there is ana such that the pixels at(i − 1, j), (i, j − 1), (i + 1, j) and(i, j + 1) —
the “white” pixels of the chequerboard—have a value ofv̄ + a, whereas the black pixels have a
value ofv̄ − a. Thene(i, j) = ‖(v̄ + a, v̄ − a, v̄ + a, v̄ − a, . . .)− (v̄, . . . , v̄)‖D; sincemax Xb =
max(a, a − a, a − a + a, . . .) = a andminXb = min(a, a − a, a − a + a, . . .) = 0, their sum is
e(i, j) = a.

OBSERVATION 3. e(i, j) has its maximum if the neighbourhood has a sequence of black pixels
followed by another sequence of white pixels, as shown in the right-most example of FIG-
URE 5.
Assume that there is ana such that the first four pixels have a value ofv̄ − a, the second consec-
utive four one of̄v + a. Thene(i, j) = ‖(a, a, a, a,−a,−a,−a,−a)‖D; sincemax Xb = 4a and
minXb = 0, e(i, j) = 4a.

0.0 510.0

FIGURE 5: Several different neighbourhoods around the central pixel.e(i, j) increases from left
to right.

Out of these facts we can conclude thate(i, j) indeed serves as an indicator to which degree the
pixel is lying at or near an edge. Additionally, as tests in [BBK96] indicate, it is more robust w.r.t.
noise than other conventional edge detectors.

4.2 Image enhancement

Image enhancement covers several different tasks such as removing or smoothing out noise while
preserving or enhancing edges. In the past, the most common approach was to design a filter as
sophisticated as possible which performed the enhancement on the complete image.

In recent years, another approach was investigated [CK95]. Instead of using one filter for the whole
image, a filter bank with several filters of different characteristics is created. Then, a mechanism
has to be developed which decides for each pixel which filter to apply, or, more generally, how
to weigh each filter in the filter bank [CK95]. Fuzzy reasoning turned out to be a suitable filter-
selecting mechanism; hence, we will follow that approach in this presentation.

4.3 Implementation of the enhancement view

The previous presentation of an image segmentation algorithm and its use to enhance images is
independent from and not limited to our data/view model. Sure enough, however, I’d like to
present this example as a final demonstration of the capabilities of the data/view model.
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The first step in order to do this is to create or load an image and to “wrap it around” its boundaries;
for this, I used a window view due to its internal usage of a cycle iterator.

In the next step, we have to form the neighbourhood of pixels around the central current pixel.
Since we do not only want to calculatee(i, j) out of this neighbourhood, but also apply a filter
onto it, the complete3× 3 area is passed to the neighbour view, as shown in LISTING 11.

typedef boost : : view : : neighbour_view<WrappedImage, 9> View3x3;
View3x3: : difference_type mask3x3( −stride−1, −stride , −stride+1,

−1, 0, +1,
+stride−1, +stride , +stride+1 ) ;

View3x3 view3x3( wrappedImage, mask3x3 ) ;

L ISTING 11: The “image enhancement view” operates on a3× 3 neighbourhood.

The implementation of the function computing the discrepancy norm of the neighbourhood is
relatively straight-forward. The only point to watch is that, although its input values are all integer
values in the range{0, . . . , 255}, the computation has to be done with floating point precision to
avoid rounding errors.

The calculated discrepancy norm and the variation are then taken as input for another function
which determines the segmentation type of the area. This function wraps a very simple fuzzy
system as described in [BBK96] with two input variables, one output variable, and five rules to
decide between one of the four different types.

The final step is to use the computed segmentation type in order to decide which filter to take. The
function object which combines all these steps is shown in LISTING 12.

What is left is to use this function object. Another view, namely a transform view, does take our
ImageEnhancer function and applies it to the wrapped neighbour view. In code, this needs just
another two lines:

typedef boost : : view : : transform_view<View3x3, ImageEnhancer> EnhancedView;
EnhancedView enhancedView( view3x3 ) ;

FIGURE 6: Original image, segmentation, and enhanced image.
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struct ImageEnhancer:
public std : : unary_function< boost : : tupple : : n_fold_tuple<uchar,9 >:: type ,

uchar >
{

result_type operator ( ) ( const argument_type& u ) const
{

/ / Reorder neighbourhood elements as shown in FIGURE 4.
boost : : tupple : : n_fold_tuple<uchar,8 >:: type arg(

u.get3 ( ) , u.get0 ( ) , u.get1 ( ) , u.get2 ( ) ,
u.get5 ( ) , u.get8 ( ) , u.get7 ( ) , u.get6 ( ) ) ;

double dnorm = discrepancyNorm( arg ) ;
double var = variance( arg ) ;

AreaType areaType = determineAreaType( dnorm, var ) ;

switch ( areaType )
{
case Homogeneous: return f i l te rP ixe l ( u, ident ) ;

break ;
case Edge: return f i l te rP ixe l ( u, sharpen ) ;

break ;
case Halftone : return f i l te rP ixe l ( u, blur ) ;

break ;
case Picture : return f i l te rP ixe l ( u, smooth ) ;

break ;
}

}
} ;

L ISTING 12: First the type of the neighbourhood is determined; then, an enhancing filter is selected
accordingly.

The computations are relatively fast and take about 0.5 seconds for an768×576 grey-level image.
FIGURE 6 shows one example of a “noisy” image, its segmentation, and the computed enhanced
image where the unwanted “chequerboard” artefacts are removed.

References

[Ara00] Kaoru Arakawa,Fuzzy rule-based edge detection using multiscale edge images, IEICE
Trans. FundamentalsE83-A (2000), 291–300.

[BBK96] P. Bauer, U. Bodenhofer, and E. P. Klement,A fuzzy algorithm for pixel classification
based on the discrepancy norm, Proc. FUZZ-IEEE’96, vol. III, 1996, pp. 2007–2012.

[CK95] YoungSik Choi and Raghu Krishnapuram,Image enhancement base on fuzzy logic, Pro-
ceedings of the 1995 International Conference on Image Processing (ICIP ’95), vol. 1,
October 1995, pp. 167–170.



References 15

[Köt] Ullrich Köthe, VIGRA - Vision with Generic Algorithms, Cognitive Systems Group,
University of Hamburg, Germany.

[Köt99] , Reusable software in computer vision, Handbook on Computer Vision and
Applications (B. Jähne, H. Haußecker, and P. Geißler, eds.), vol. 3, Acadamic Press,
1999.

[Köt00] , STL-Style Generic Programming with Images, C++ Report Magazine12
(2000), no. 1.

[Ric02] Roland Richter,Tuples in C++ - a generative approach, Tech. Report FLLL-TR-0214,
Fuzzy Logic Lab Linz, 2002.

[Smi97] Steven W. Smith,The scientist & engineer’s guide to digital signal processing, 1st ed.,
California Technical Pub., 1997.


	SamingerMaes.pdf
	Introduction
	Self-dual aggregation operators
	Properties of aggregation operators
	Final Remarks

	MuresanHeiseKybicKlement.pdf
	INTRODUCTION
	Peak detection by thresholding
	Peak detection based on statistical background estimation
	Features for peak detection
	Outlier detection
	Counting peaks

	Results
	Conclusions

	Richter.pdf
	String parsing
	Signal processing
	Sampling
	Windowing

	Image iteration
	Two-dimensional iteration
	Matrix view

	Image processing and enhancement
	Image segmentation with the discrepancy norm
	Image enhancement
	Implementation of the enhancement view



