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Abstract— In this paper several improvements towards a safer
processing of incremental learning techniques for Takagi-Sugeno
fuzzy models are demonstrated (applicable also partially to
neuro-fuzzy systems or radial basis function networks). The
first group of improvements include stability issues for making
the evolving scheme more robust against faults, steady state
situations and extrapolation occurrence. In the case of steady
states or constant system behaviors a concept of overcoming
the so-called ’unlearning’ effect is proposed by which the
forgetting of previously learned relationships can be prevented.
The concepts regarding fault omittance are demonstrated, as
usually faults in the training data lead to problems in learning
underlying dependencies. An improvement of extrapolation
behavior in the case of fuzzy models when using fuzzy sets
with infinite support is also highlighted. A discussion on the
convergence of the incremental learning scheme to the optimum
in the least squares sense is included as well. The second
group deals with interpretability and quality aspects of the
models obtained during the evolving process. An online strategy
obtaining better interpretable models is presented. This strategy
is feasible for online monitoring tasks, as it can be applied
after each incremental learning step, that is without using prior
data. Interpretability is important, whenever the model itself
or the model decisions should be linguistically understandable.
The quality aspects include an online calculation of local error
bars for Takagi-Sugeno fuzzy models, which can be seen as a
kind of confidence intervals. In this sense, the error bars can be
exploited in order to give feedback to the operator, regarding
fuzzy model reliability and prediction quality. Evaluation results
based on experimental results are included, showing clearly
the impact on the improvement of robustness of the learning
procedure.

Keywords—Takagi-Sugeno fuzzy models, incremental learning,
evolving process, unlearning effect, convergence, extrapolation,
faults, online interpretability, local error bars

I. I NTRODUCTION

Nowadays automatic adaptation techniques and evolving
schemes for data-driven models become more and more an
essential point in industrial processes. This is because real-
time processes should be identified, which possess a dy-
namically changing behavior over time (also called time-
variant processes). Furthermore, some dependencies between
certain system variables may change smoothly or abruptly
whenever new operating conditions or new system states are
triggered. Hence, it is indispensable to adjust the already
trained data-driven models to this newly arising situations.
For online identification tasks, this requires an adaptation

of some model parameters in form of incremental learning
steps with new data. This is because a complete rebuilding
of the models from time to time with all so far recorded
measurements would yield an unacceptable computational
effort. Other requirements to incremental learning includes
refinement of already existing knowledge-based models with
data, preventing a virtual memory overload in case of huge
databases (the data needs to be processed blockwise then) and
an automatic improvement of the accuracy and generalization
capability of models initially trained on only a handful of data.
Quite often a complete evolving mechanism is demanded, as
the inner structure of a model needs to be changed as well.
In these sense, automatic self-evolving data-driven models can
be seen as a step towards computational intelligence [1]. In
order to meet these requirements algorithms for an incremental
and evolving learning scheme of fuzzy models are proposed
in literature, such asDENFIS [2], eTS[3] or FLEXFIS [4].

In this paper several approaches for significantly improving
the process safety when using data-driven evolving fuzzy
systems for online operation modes are demonstrated. In this
sense, some aspects not treated in the approaches mentioned
above may serve as potential extensions in order to obtain
more accurate, more transparent and more stable fuzzy models.
This can be essential in order to yield better or more correct
decisions in online prediction, fault detection or control tasks
based on these models. Moreover, some of the approaches
could be also applicable for other related types of models such
as neuro-fuzzy systems or radial basis function networks. In
fact, for the latter it is demonstrated in [5] that they are similar
to Takagi-Sugeno fuzzy systems. In Section II maintaining the
stability of the models during online training is the central
point to be discussed, in Section III some techniques for
omitting faulty recorded data to be incorporated into the online
trained models are described. Section IV describes a possibility
how to prevent a bad extrapolation behavior, especially in the
case of fuzzy sets with infinite support. Section V deals with
an online improvement of interpretability and transparency
of the models, whereas Section VI treats the quality aspect
by demonstrating how to process local confidence statements
about fuzzy models in incremental manner.

First of all, the definition of a Takagi-Sugeno-Kang fuzzy
system is given as referenced in the sections below. A Takagi-
Sugeno-Kang fuzzy system with multiple input variables



(x1, ..., xp) and a single output variabley can be generally
defined in the following way:

f̂(~x) = ŷ =
C∑

i=1

liΨi(~x) (1)

where

Ψi(~x) =
µi(~x)∑C

j=1 µj(~x)
(2)

are callednormalized membership functions, which normalize
the degrees of rule fulfillment by using a t-norm, i.e.

µi(~x) = T p
j=1µij(xj) (3)

wherexj is the j-th component in current data vector, hence
reflecting the value of thej-th variable andµij the membership
degree ofxj to the fuzzy set describing thej-th premise part
of thei-th rule. The symbolT denotes a t-norm in general. The
li’s are the so-called consequent functions of theC rules and
are defined by multi-dimensional polynomials to an arbitrary
but fixed degree with unknown coefficients. In the case of
Takagi-Sugeno fuzzy systems as a specific form of Takagi-
Sugeno-Kang fuzzy systems the polynomials are reduced to
hyper-planes in thep dimensional space:

li = wi0 + wi1x1 + wi2x2 + ... + wipxp (4)

Note that two types of parameters appear in the Takagi-
Sugeno(-Kang) fuzzy systems: nonlinear ones in the an-
tecedent parts (fuzzy sets) of the rules and linear ones in
the rule consequent functions (4). Both as well as the rule
structure need to be adaptively changed in incremental as
well as evolving manner in order to cope with flexible online
learning demands.

II. I MPROVING THE STABILITY OF THE INCREMENTAL

LEARNING PHASE

A. Overcoming the Unlearning Effect

When performing incremental learning steps of linear rule
consequent parameters in Takagi-Sugeno(-Kang) fuzzy mod-
els [6] [4] (both compared in [7]) respectively neural-fuzzy
inference systems [2] with the help ofrecursive weighted
least squares[8] it may happen that the learning process
get instable over while. This would be the case if the newly
loaded data points or recently recorded measurements stay
(almost) constant for a certain period. To demonstrate this on
a simple practical example see Figure 1, where the first 200
data samples (light dots) are indeed well distributed over the
whole input space, but the next 1300 samples (concentrated in
one big dark dot) are concentrated around the specific point
(1400, 2).
Note: the x-axis denotes rotation speed, where the y-axis
denotes the pressure of the oil. Obviously, the car motor was
steered with a constant rotation speed, the slight noise variance
can be explained by sensor inaccuracies during recording.
This example represents a situation, whenever a process is
in steady state staying at one specific operating condition for
a long time. When doing an initial learning phase with the

Fig. 1. Left: Slight unlearning effect when adapting all rule consequents’ for
each sample at(1400, 2) (dark dot) without forgetting; right: the unlearning
effect prevented when only adapting the significantly firing rules

first 200 points (no matter if in incremental or batch mode)
and performing an adaptation of the fuzzy model with the later
1300 points (in steady state), an undesired ’unlearning’ effect
of already learned relationships outside this small constant
region occurs. This can be recognized in the left image in
Figure 1, where right to the small constant region the shape
of the adapted model (dotted line) tends to be different to
the shape of the original one (solid line), even though no
new measurements were recorded for that area. This is even
worse, when adapting withrecursive weighted least squaresin
the case of incorporating a forgetting factor in order to track
time dependent dynamic relationships, see the left images in
Figure 2. The lower row represents a shift in the trajectory
(dark dots) due to a dynamic evolution of the process, for
which a forgetting of the older learned relationship on the right
part is indispensable (otherwise the model would be inbetween
the light and dark dots due to least squares estimation). The
older learned relationships are unlearned in the case when
all rules are adapted with each sample represented as dark
dots. The reason for these effects is that the parameters of
all linear consequent functions are adapted for each incoming
data sample, no matter which firing degree the rules have. This
means that the consequent parameters are forced to minimize
the error at(1400, 2). This causes the linear consequent hyper-
planes to go through the point(1400, 2), see upper left image
of Figure 2: obviously, the consequent functions (shown as
straight lines) all point to(1400, 2).

A promising strategy to circumvent this problem lies in
the adaptation only of those parameters which corresponds to
significantly active rules, i.e. rules which possess normalized
membership function valuesΨ(~xact) higher than a certain
threshold near0. This guarantees that rules which represent
areas not lying near constant process state remain unchanged.
This is demonstrated in the right images in Figures 1 and 2,
where a threshold of0.1 was used for a reasonable approxima-
tion behavior. In fact, setting this threshold is a crucial point
for a well performing adaptation: if setting it too close to0, the
’unlearning’ effect remains, if setting it too far away from0,
too less new input states are incorporated and the fuzzy system
is not able to represent a reliable prediction model. Especially
for the incremental learning variantFLEXFIS [4] it could be
shown empirically with a lot of various high-dimensional data



Fig. 2. Left: Significant unlearning effect when adapting all rule consequents’
for each sample in steady state (dark dot) with forgetting; right: the unlearning
effect prevented when only adapting the significantly firing rules; the lower
row represents a shift in the trajectory (dark dots) due to a dynamic evolution
of the process; in all figures the dotted light (green) lines represent the updated
models

sets, that a threshold of0.1 did not spoil the convergence to
optimality (see Section II-B) and therefore did not worsen the
prediction accuracy of the fuzzy models significantly.

B. A Note on Convergence to Optimality

With convergence to optimality it is meant that an optimal
or even near optimal parameter solution in the (weighted)
least squares sense should be achieved throughout the learning
phase. Otherwise, the incremental learning approach becomes
quite heuristic. When exploiting therecursive least squares
respectively therecursive weighted least squaresapproach
for incremental learning of linear consequent parameters,
the convergence to optimality in the least squares sense is
guaranteed as long as no adaptation of the nonlinear rules’
premise parts takes place. This is a direct consequence of the
convergence of RLS when choosing appropriate starting values
for the parameter vector (i.e. the zero vector) and the inverse
Hesse matrix (i.e.α times identity matrix) [9]. However, in
most evolving fuzzy systems approaches the premise parts are
adapted as well in order to cope with new operating conditions
and system states. If using therecursive weighted least squares
for locally training the rules’ consequents, the adjoining of
new rules for more flexibility of the fuzzy system does not
violate the convergence to the weighted least squares optimum.
Whenever fuzzy sets are shifted or newly set within a premise
part of one or more rules, it could disturb the convergence
of the consequent parameters, depending on the degree of
the shifts. In the case of exploiting a modified (incremental)
version of vector quantization for premise part adaptation (as
carried out inFLEXFIS) it could be shown in [10] that this
disturbance has an intensity, such that a convergence to a

Fig. 3. Left: approximation obtained by incorporating faulty points into the
training algorithm (solid line), right: faulty points omitted

near optimality which is close to the real optimality can be
achieved. Furthermore, it could be evaluated empirically that
the more data samples an online data buffer contains, the closer
the optimum can be reached.

It should be noticed that in fact the least squares measure
on the training set is not the best performing one with respect
to approximizing the true generalized prediction error on
unseen data. But, it triggers not too complicated optimization
problems to be solved, especially for incremental learning
techniques. Moreover, for linear parameters even an analytical
solution exists. When adding some penalty terms incorporating
the model complexity [11] or extending it by the so-calledin-
sample error[12], the optimization problem immediately be-
comes quite complex. Therefore, the least squares optimization
function is a quite commonly used function which is going to
be optimized when learning from data, especially in the case
for regression respectively function approximation tasks. This
is also true for the most common evolving variants of neural
networks, neuro-fuzzy models and fuzzy systems. However,
this should not prevent us to develop incremental learning
techniques for these kind of models which act on optimization
functions giving a better representation of the generalized
prediction error. This would be a promising starting point for
future improvements of evolving mechanisms.

III. T OWARDS OUTLIER AND FAULT OMITTANCE

Opposed to noise in the data, which usually occurs when-
ever sensors are used for recording measurements (sensor
inaccuracies white noise), process or system faults have a
much more intense appearance in the measurement. Faults
can arise for instance due to interface defects, sensor over-
heatings or broken parts at a test object (e.g. broken pipes)
and is usually characterized by an unpermitted deviation of at
least one variable of the system from acceptable or standard
behavior. Hence it is obvious that the incorporation of faulty
measurement into the offline as well as online data-driven
model training process can spoil the model in a way such that
it leads to an incorrect approximation of the real underlying
dependency, see Figure 3: the left image shows a wrongly
approximated relationship (solid line) when faulty data points
are incorporated into the training process, the right image
shows a correct approximation (again solid line) achieved
on the basis of filtered data, i.e. data where the faults were
filtered in a preliminary step. In the batch modelling (offline)
case several strategies exist for outlier and fault omittance,



such asrobustfit [13], pre-processing with aMahalanobis-
distance based [14] or aprincipal componentbased [15]
classifier. They all underlie the assumption that data samples
representing faulty situations can be clearly distinguished
from data samples representing non-faulty ones (usually with
respect to their density and distribution), when looking at the
complete amount of available data at once.

In the case of online learning, the fault problem is more
complicated. This is because it is very hard to differ between
a new operating condition and a fault, whenever measurements
are newly recorded or loaded sample-wise or block-wise. In
FLEXFIS [10] a strategy for procrastination of rule evolution
is demonstrated: whenever a new sample comes in which lies
far away from the previously estimated clusters (representing
local areas), a new cluster is born immediately, but not a
new rule and hence no new fuzzy sets. Is is waited for more
data points appearing in the same region until a new rule
is set. This is based on the assumption that the more data
points in a new region occur the more likely it gets that
they denote a new operating condition and no fault. With this
strategy the incorporation of isolated outliers into the fuzzy
model can be prevented. IneTS [3] this outlier omittance
is done implicitly, as long as no new rule is set, when a
data point has not enough potential, i.e. is not surrounded
by a more or less dense data cloud. The precarious thing
is that the assumption mentioned above is not always true,
especially when a systematic error within the system occurs
as for example in the case as visualized in Figure 3. In such
cases the following possible strategies may help:

• The newly gathered local area is compared with respect
to its range of influence, density and number of data
points with the other already obtained local areas so
far. If completely different, a fault is more likely than a
new operating condition, as various operating conditions
usually possess more similar ranges, densities etc. In this
case no new rule (or neuron) would be incorporated into
the (neuro)-fuzzy model, as long as the newly gathered
area does not fit to the other ones.

• Filtering of dynamic measurements with signal analysis
methods in intelligent sensors, which also effects a filter-
ing or ’cleaning’ of stationary measurements which are
elicited through averaging of dynamic ones: this is quite
promising, as usually faulty points cause a more distinct
anormal behavior in the one-dimensional signal curves as
new operating conditions.

• The exploitation of analytical and knowledge-based mod-
els in a complete fault detection framework [16] for
delivering a fault detection statement for any loaded
or online recorded data point. This statement can be
taken as input for the incremental learning method and
reacted upon it such that points classified as faulty are
not incorporated into the adaptation process.

IV. I MPROVING THE EXTRAPOLATION BEHAVIOR

When doing adaptation of premise parts in Takagi-Sugeno
fuzzy models with the usage of fuzzy sets with infinite support

Fig. 4. A fuzzy partition where inner sets are broader than outer ones,
especially compare the two right most sets

(especially with the most common Gaussian sets) it usually
happens that not all fuzzy sets possess the same width. This
is due to the nature of online data streams or measurements,
where local areas (which are projected onto the axes to form
the fuzzy sets) reflect different system behaviors with different
ranges. This can lead to nasty extrapolation effects, when the
outer most set is not the broadest one, as a kind of reactivation
of an inner membership function in the extrapolation region
is caused. This is due to the nature of the Gaussian fuzzy
sets which tend faster to zero if the width is tinier For
demonstrating this on the basis of an example, consider the
two right most fuzzy sets in the partition visualized in the right
image in Figure 4, i.e. the sets described by

e−
1
2 ( x−2.46

0.361 )2

e−
1
2 ( x−2.97

0.2 )2

so Gaussian fuzzy sets with center=2.46 and width=0.361
respectively center=2.97 and a smaller width of0.2. Then the
membership degree of the first fuzzy set gets obviously higher
than the second one if

(
x−2.46
0.361

)
≤
(

x−2.97
0.2

)
. After resolution

it turns out that this is the case whenx greater or equal
3.6, so anx lying in the ’extrapolation region’ of the fuzzy
system. So concluding, inner sets can be reactivated, which is
a precarious thing, as an outer most set usually stands for the
most confidential information in the case of extrapolation as
it is the nearest one. In order to ensure a safe extrapolation
the outer most sets can be simply kept at the membership
degree one for the second half of the Gaussian fuzzy set. In
this sense, the two outer most fuzzy sets for input dimension
j are described in the following way:

µ(right)j =

{
e
− 1

2 (
x−c(right)j

σ(right)j
)2

x ≤ c(right)j

1 otherwise

for the right most fuzzy set and

µ(left)j =

{
e
− 1

2 (
x−c(left)j

σ(left)j
)2

x ≥ c(left)j

1 otherwise

for the left most fuzzy set, wherec(right)j resp. c(left)j

denotes the center of the right resp. left most fuzzy set and
σ(right)j resp.σ(left)j the width of these sets. This triggers
automatically a safe zero order extrapolation as stated in [17].
In order to overcome a partially defined fuzzy set with two
parts (which is not always easy to handle), the right resp. left
most set can be transferred to one-fold sigmoid fuzzy sets,
defined by:

µij(xj) =
1

1 + e(−aij(xj−bij))
(5)



This can be achieved by the following transfer formulas for
the parametersa andb:

a(right)j = − ln 0.01
σ(right)j

b(right)j = c(right)j − σ(right)j (6)

for the right most fuzzy set and

a(left)j =
ln 0.01
σ(left)j

b(left)j = c(left)j + σ(left)j (7)

for the left most fuzzy set, substitutingaij andbij in 5. This
kind of transformation ensures that the position of inflection
point of the Gaussian fuzzy set is equal to those of the sigmoid
function (formula forb in both equations) and that at the center
position of the Gaussian set the value of the sigmoid function
is almost 1 (namely 0.99). Note, that in the case of fuzzy sets
with finite support (for instance triangular shaped sets) the
reactivation of inner sets can not occur, but the problem of
extrapolation still remains, if the outer ones are not extended
appropriately (as they are not defined on new regions). Hence,
also for these kind of sets the above transformation strategy
is a quite promising approach for safer predictions.

V. A N OTE ON (ONLINE) INTERPRETABILITY

To deliver interpretable models is usually an important
issue, especially when the model should be readable and
understandable for the experts in order to check the plausibility
of the model. This guarantees a safer processing further on,
as then the model becomes a grey box model (opposed to
a pure black box model, where nothing can be interpreted
inside). Another requirement is that the model decisions are
understandable and can therefore be traced back: for instance
consider a fault monitoring system, where the reason for a
fault should be found. With the help of a transparent fuzzy
model, a couple of linguistic rules can be extracted which were
violated. Based on these violated rules a reason can be found
much more easier. Whenever fuzzy models are trained from
data, the interpretability usually suffers. This is because fuzzy
sets and rules are flexibly adapted, changed and projected from
the high-dimensional space to the one-dimensional one. This
mostly leads to strongly overlapping fuzzy sets and redundant
rules, as two rules can move together over while, especially
in the incremental learning phase. Furthermore, an optimistic
parameter setting (which has to be carried out in advance) may
lead to too many fuzzy sets and rules for the actual process,
such that the fuzzy model is quite difficult to understand.

An important issue is that the rule consequents are inter-
pretable. For Takagi-Sugeno fuzzy systems this means that
the linear hyperplanes should snuggle along the surface. This
yields a good interpretation in the field of control and dynamic
systems, as from the steepness of the hyperplanes the current
behavior of the dynamic (control) systems can be gathered
(e.g. when all linear parameters except the intercept are
statistically not different from 0 someone can conclude that

Fig. 5. A sinusoidal relationship (left) approximated with global approach
(middle) and local one (right), the consequent functions as straight lines

the system is in constant state). The snuggling along the
surface can be achieved when usingrecursive weighted least
squares(for local learning), but not with usualrecursive least
squares(for global learning), see Figure 5. There, the function
sin(x2) + x + ε1, with ε1 a normally distributed random
noise withσ = 0.1 (left image), is approximated once with
global approach (middle image), once with the local one (right
image): in the case of the global approach a ’break out’ of the
consequent functions can be observed, whereas for the local
one more or less interpretable local behaviors can be obtained
directly from the consequent functions. It should be noticed
that this snuggling in the case of RWLS is only guaranteed,
when choosingα times identity matrix withα big for the
starting value of the inverse Hesse matrix.

With fuzzy set merging and rule base simplification tech-
niques it is possible to reduce superfluous information and
make the fuzzy system more transparent. Various approaches
for that task exist in literature, such asorthogonal least squares
[18], [19], singular value decomposition and QR with column
pivoting method[20], [21] for detecting and eliminating redun-
dant rules, merging of narrow and close fuzzy sets due to their
model values [22] or fuzzy set merging and rule simplification
through similarity measures [23] [24]. However, most of the
proposed techniques (especially for rule reduction) require the
complete data set at once and hence are not applicable in
fast online identification processes. In [23] after fuzzy set
merging and rule simplification the consequent parameters
of the linear hyper-planes need to be re-estimated with the
complete data set. This can be prevented, when exploiting
the fact that when usingrecursive weighted least squaresthe
consequent functions tend to snuggle along the surface and
hence reflect local linear approximations which are very close
to the real approximation (e.g. see right image in Figure 5).
In this case, a merging ofq rules consequent functions can be
reliably carried out by:

w(new)j =
w1jk1 + ... + wqjkq

k1 + ... + kq
, ∀j = 0, ..., p (8)

wherewij is the linear parameter in the consequent of theith
redundant rule with respect to thej dimension andki is the
amount of data points belonging to the cluster corresponding
to the ith redundant rule (local area). Thus, the parameters of
the new rule consequent are defined as a weighted average
of the consequent parameters of the redundant rules, with the
weights representing the relevancy of the rules. This merging
strategy can obviously be applied in online mode as it does not



require any prior training data. It should be noticed, that from
the fuzzy logical point of view the merging formula (8) should
be only carried out for those rules, whose consequent functions
are not significantly more dissimilar than their (redundant)
antecedent parts (otherwise contradicting rules are present). A
dissimilarity measure between a pair of consequent functions
can be obtained through a normalized angle between two linear
hyperplanes (normalized with the degree ofπ/2 as maximal
non-similar):

φ =
2
π

arccos

(∣∣∣∣∣ ~aT~b

|~a||~b|

∣∣∣∣∣
)

(9)

with a and b the normal vectors of the hyperplanes, i.e.
a = (wh1 wh2 ... whp − 1)T andb = (wi1 wi2 ... wip − 1)T

for the hth and ith rules. A dissimilarity measure between
the antecedent parts of two rules can be obtained through one
minus the minimal Jaccard index [23] between two corresp.
fuzzy sets (i.e. fuzzy sets for the same input variable) in the
antecedent parts of the rule pair. If the rules are conflicting i.e.
the dissimilarity degree in the consequent parts is higher than
in the antecedent parts, either no merging is performed or the
more reliable rule is kept and the other deleted. A merging of
the inverse Hesse matrices belonging to the redundant rules
is required, too, in order to not disturb the convergence to
the optimum significantly (see Section II-B). This is quite
a difficult task and could not be solved till now. Indeed, a
setting back of the inverse Hesse matrix of the new (merged)
rule to αI is possible, but this would lead to a much worse
convergence of the algorithm. A possibility to circumvent
this problem would be the 2-layer fuzzy model building
strategy: the original fuzzy model is kept as it is (so nothing
is modified) and processed further through the incremental
learning process, whereas the linguistically improved fuzzy
model is just for the purpose of visualization to the operator.

VI. L OCAL ERRORBARS FORTAKAGI -SUGENO FUZZY

SYSTEMS

Local error bars are for the purpose of processing confidence
regions surrounding the trained models. These confidence
regions provide an insight, how trustful a model within a
certain region is. In this sense, useful and not so useful
dependencies between certain system variables can be gathered
automatically from data and shown to the operators. Error
bars are also quite often applied in industrial processes,
when models’ decisions are weighted with their confidence
for online monitoring tasks. For instance in fault detection
applications, a residual between a new incoming point and
already trained models can be compared against the error bars.
This deviation is then used in order to gain a final decision if
the current point is faulty or not [16].

For the online evolving mechanism of data-driven models,
the error bars need to be updated as well, as models quite often
change too strongly over time (see Section I). It is well-known
[25] that error bars for linear models, i.e. models possessing
only linear parameters, which were obtained by solving the

least squares optimization function can be calculated due to
the following formula:

ŷ ±
√

diag(cov{ŷ}) (10)

whereŷ the estimated output value and

cov{ŷ} = Xactcov{ŵ}XT
act (11)

with
cov{ŵ} = σ2(XT X)−1

where the noise varianceσ can be estimated by

σ̂2 =
2
∑N

i=1(yi − ŷi)2

N − deg

where N the number of data points,deg the number of
degrees of freedom (=the number of parameters in the linear
case),X the regression (training data) matrix,Xact the matrix
containing the actual data points for which the error bars
should be calculated andw the estimated linear parameters.
If Xact contains only one single point thediag operation in
(10) is not necessary. Note that the smaller the number of data
points and/or the higher the noise in the data, the higher the
noise variance gets. Obviously, when adapting linear models
with recursive (weighted) least squaresapproach, the error
bars can be updated as well after each adaptation step. For
this, σ is updated withm new points by

σ̂2(new) =
(N − deg(old))σ̂2(old) +

∑N+m
i=N (yi − ŷi)2

N − deg(new)
(12)

(wheredeg(new) the new number of parameters, if changed
in the model) and the new covariance of the linear parameters,
cov{ŵ}, calculated due to this updatedσ and due to the
inverse matrix(XT X)−1 updated byrecursive (weighted)
least squares. For new incoming points stored inXact up-
to-date error bars fitting to the actual updated model can be
elicited then.

In case of Takagi-Sugeno fuzzy systems the usage of the
error bars as in (10) can be exploited if the linear consequent
functions are trained withrecursive weighted least squares
approach (for local learning and more flexibility during online
evolution [6] [4]). This is underlined due to the fact that the lin-
ear hyperplanes then snuggle along the surface as also pointed
out in Section V and hence yield a good approximation of the
model with linear pieces. In this sense, it is reliable to calculate
error bars for each rule consequent function separately and
then connect them with weights to form an overall error bar
for the fuzzy model. Obviously, the membership degrees of
each rule are a feasible choice for a rule weight as first, the
degrees are getting smaller at the borders of each rule and
second the same weighting of linear consequent actions is done
when inferencing through Takagi-Sugeno fuzzy systems, see
(1). Thus, in case ofC rules the error bar of a Takagi-Sugeno
fuzzy model at a specific position~xact can be calculated by

ŷ ±
µ1(~xact)

√
cov{ŷ1}+ ... + µC(~xact)

√
cov{ŷC}

µ1(~xact) + ... + µC(~xact)
(13)



where ŷi the estimated value of theith rule consequent
function, for whichcov is calculated as in (11) by using the
linear parameters and inverse weighted matrix(XT

i QiXi)−1

corresponding to theith rule (which were both updated in
incremental mode byrecursive weighted least squaresbefore),
and µi(~xact) denotes the membership degree of the actual
point to theith rule.

VII. C ONCLUSION AND OUTLOOK

In this paper several issues for improving the evolving
mechanisms of fuzzy systems by process safety enhancements
were treated. All of the aspects were discussed and it was
clearly pointed out, where the enhancements lie. The feasi-
bility of some techniques and approaches were underlined
based on data examples. It should be noticed that some of
these approaches, i.e. convergence to optimality (Section II-
B), some parts of outlier and fault omittance (Section III) and
most of the interpretability aspects discussed in Section V are
already integrated in the incremental training variant for fuzzy
systemsFLEXFIS [4] and hence could be also validated for
high-dimensional real-recorded measurement data in industrial
projects. A special attention was given to Takagi-Sugeno fuzzy
systems, but a lot of the aspects should be also applicable
to kindred types of data-driven models such as other types
of fuzzy systems (e.g. Mamdani fuzzy systems or fuzzy
classification models), neuro-fuzzy systems or radial basis
function networks. In this sense, it was intended to show
potentials for increasing process safety when using data-driven
evolving models.

ACKNOWLEDGEMENTS

The author thanks Dr. Plamen Angelov for valuable discus-
sions and comments on the manuscript of this paper.

REFERENCES

[1] P. Angelov and N. Kasabov, “Evolving computational intelligence sys-
tems,” in Proceedings of the 1st International Workshop on Genetic
Fuzzy Systems, Granada, Spain, 2005, pp. 76–82.

[2] N. K. Kasabov and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,”IEEE
Trans. on Fuzzy Systems, vol. 10, no. 2, pp. 144–154, 2002.

[3] P. Angelov and D. Filev, “Flexible models with evolving structure,”
International Journal of Intelligent Systems, vol. 19, no. 4, pp. 327–
340, 2004.

[4] E. Lughofer and E. Klement, “FLEXFIS: A variant for incremental
learning of Takagi-Sugeno fuzzy systems,” inProceedings of FUZZ-
IEEE 2005, Reno, Nevada, U.S.A., 2005, pp. 915–920.
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Abstract

Detecting the trajectories of single proteins in a living cell is a challenging problem in wide-field
microscopy. The task of manually identifying the proteins in the image sequenceis tedious and
hard to replicate. The automation of the task has to deal with the low signal-to-noise ratio, the
autofluorescence of the cell, the small size of tracked features, the specific Poisson noise etc. A
pre-processing denoising step might considerably improve the detection ofsingle proteins and
their tracking.
In this paper we describe and compare denoising algorithms that preservefine details. Detection of
fine details is based on thèa trous wavelet decomposition and the performance of the algorithm
is improved via wavelet coefficient denoising. Results on simulated and realimage sequences are
presented.



1 Description of the problem 1

Introduction

One approach to understand biological processes at the cellular level isbased on the study of
protein trajectories in the living cell. Fluorophores are attached via an antibody to the proteins
of interest and the detection of the photons emitted by each fluorophore offers information on the
position of the corresponding protein. In order to collect statistically meaningful data, the detected
protein trajectories have to be long and reliable. To achieve these goals a compromise between the
quality of the signal and the bleaching time of the fluorophores has to be reached. The compromise
is controlled via the illumination time. A shorter illumination time leads to lower signal-to-noise
ratio in the image sequence, on the other hand it also means that the fluorophore bleaches slower.
In order to be able to visualize the moving protein widefield microscopy techniques have to be
used. Although the quality of images is lower than in the confocal case, the probability that the
protein stays within the field of view is considerably higher. Details on the imagingof single
molecules can be found in [6, 11, 9].
The tracking of proteins is performed manually, but the process is tedious and hard to replicate,
raising the need for the automatization of the task.

1 Description of the problem

Typically the images contain on one hand a background profile due to the autofluorescence of the
cell and on the other hand the signal due to the fluorophore-tagged proteins. Only the signal due
to single proteins is of interest.
Due to the small sizes of one fluorophore,s ¿ p wherep is the size corresponding to one pixel,
(in our settingp = 200nm), the fluorophore is equivalent to a point source. Hence the pattern of
interest in these image sequences is the image of a point source through the optical system, the
point spread function (PSF) of the system. Although the exact form of thePSF of a diffraction
limited optical system with circular aperture is the Airy pattern:

PSF(r) = 2

(

J1(πfcr)

πfcr

)

(1)

whereJ1 is the Bessel function of the first kind andfc the cutoff frequency, a good approximation
can be achieved with a two-dimensional Gaussian [4]:

G(r) = e
−

(

r
2

2σ2

)

(2)

A pre-processing denoising step can be used to improve the single protein detection and there-
fore tracking. Since the interest lies in finding trajectories of single molecules, the fine structures,
corresponding to point source fluorophores, have to be preservedduring denoising. These struc-
tures are small, bright, circular spots (representing quantized Gaussianswith σ ∈ [0.8, 1.4] pixels).
The motion of the single molecules (Brownian, directed, etc.) makes the task even more difficult.
However the motion between to successive frames is assumed small (usually less than two pixels).
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2 Spot detection and denoising

Due to the quantum nature of light the images are corrupted by Poisson noise. Hence the Anscombe
transform was applied as a pre-processing step. After applying the Anscombe transform the inten-
sity values appear as corrupted by Gaussian noise:

T{f(x, y)} = 2

√

f(x, y) +
3

8
(3)

2.1 Theà trous wavelet transform

A robust spot detection is based on theà trous wavelet decomposition described in [10]. It
was successfully used in [7] to detect fluorescent spots in microscopy images. It is a simple,
non-decimated wavelet transform based on successive convolutions with B-spline-based kernels,
resulting in low-passed filtered imagesfi(x, y). The wavelet coefficientsWi correspond to the dif-
ference of two successive low-pass filtered images. The algorithm is briefly described in Appendix
A.

After performingN steps of the transform, the following relation holds:

f(x, y) = fN (x, y) +
N

∑

i=1

Wi(x, y) (4)

The wavelet coefficients corresponding to smaller scales (Wi, i < k, k = 3 ∨ 4) detect the sin-
gle molecules. SincefN (x, y) corresponds roughly to the background due to autofluorescence,
ignoring this level is equivalent to removing the background.

The coefficients in a wavelet plane are mainly due to noise, so the robust estimation of the
mean and standard deviation of these coefficients gives the estimated parameters of the noise. The
medianm of wi,j , wherewi,j are the wavelet coefficients corresponding toWi, robustly estimates
µ and the median absolute deviationMAD

MAD =
median|wi − m|

0.6745
(5)

is the robust estimator ofσ.

Figure 1: One frame of the protein image sequence
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In order to detect spots, the coefficients are thresholded in the following way:

Wi(x, y) = 0 if
Wi(x, y) − m

MAD
< 3. (6)

Spots are found in the locations for whichWi(x, y) > 0, i = 1, 2, . . . p , wherep is chosen
depending on the scale of the features to be detected. The result of the thresholding in a real
protein image is shown in figure 2.

Figure 2: Recombination of denoised and thresholded wavelets

The performance of the algorithm was tested on artificial sequences and on microscopy images
containing bright static structures imaged at decreasing illumination time (the numberof structures
is equal, but unknown in each frame and for each illumination time). The resultsare presented in
table 1. The robustness of the results is remarkable, however in the challenging case of protein
tracking 3D information might improve the 2D spot detection.

Table 1: Result of spot detection viàa trous wavelet method. The ground truth is the same for
all illumination times. The results are computed for ten frames/illumination time. The wavelet
coefficients of the smallest scaleWi were discarded.

Illumination time (in ms) Mean spot number Variance in spot number

50 18.9 1.655

10 18.5 1.611

1 16.7 4.455

0.5 17.3 3.344

0.3 17.7 8.011

0.15 14.9 6.766

2.2 Denoising the wavelet coefficients

In order to achieve an improvement of the spot detection algorithm we try to exploit correlations
between the wavelet coefficients of succesive frames, based on the assumption that signal is cor-
related in successive scales and frames, while noise is not.
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The simplest approach to denoise wavelet coefficients is by averaging in timeif their value is
similar. If their value is not similar, then no averaging is performed. This behaviour is achieved
by a modified version of the bilateral filtering [12], called spatial-tonal convolution [13]. It is well
known that in the case of Gaussian noise the least squares error is minimizedby the average of
the sample. By selecting the sample via a Gaussian window, the problem becomesminimizing the
functional

F (u(x)) :=

∫

Ω

(f(y) − u(x))2 Gs(x − y) dy. (7)

The solution is simply a convolution with thed-dimensional Gaussian:

u0(x) =

∫

Ω
f(y)Gs(x − y) dy
∫

Ω
Gs(x − y) dy

= (f ∗ Gs) (x) (8)

whereu is the original, noiseless image,f the input image,Gs is a d-dimensional (d ∈ 2, 3)
Gaussian window. In the case of windows containing spatial structure as well as movement over
time of the small structures (fluorescent proteins), averaging might not hold the best results. The
method described in [13], replaces the windowed least squares by robust estimators, which are
less sensitive to outliers (in this case, the fine structure). The problem becomes minimizing:

E(u) :=

∫

ρ (f(y) − u(x))Gs(x − y) dy (9)

The minimum is achieved when
∫

φ (f(y) − u(x)) Gs(x − y) dy = 0 (10)

whereφ = ρ′.

Choosingρτ (p) = 1 − exp(− p2

2τ2 ), whereτ controls the similarity of two intensity values
whose difference isp, results in

φτ (p) =
dρτ (p)

dρ
=

p

τ2
exp

(

−
p2

2τ2

)

(11)

and substitutingφt in 10 yields:

u(x) =

∫

Rd f(y)Gτ (f(y) − u(x))Gs(x − y) dy
∫

Rd Gτ (f(y) − u(x))Gs(x − y) dy
(12)

which can be solved using fixed point iteration:ui+1 = F (ui) until convergence or a maximum
number of iterations is reached. However the method is computationally expensive and the results
are often too blurred.

A related but more efficient method is anisotropic diffusion [8, 2, 1]. As described in [5], the
transformed imageu is the solution of the diffusion equation

∂tu = div(D(|∇u|2) |∇u|) (13)

with initial condition:
u(x, 0) = f(x).
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The diffusivityD is chosen as:

D(|∇u|2) =
1

1 + |∇u|2 /k2

which has small values for large gradients. In order to cope with the motion ofproteins one can
apply it either as a first denoising step before theà trous wavelet transform or alternatively each
wavelet scale can be diffused and then thresholded as described above. The latter combines the
isotropic feature detection in2D (the à trous wavelet transform) with the detection of motion of
small features in time (through diffusion). Results for both approaches are considered in the next
section.

3 Results

The algorithm was tested on artificial images, with known ground truth as well as on real se-
quences. Artificial sequences were created based on 20 Brownian motion trajectories with a diffu-
sion coefficientD = 2. Each sequence contains 20 frames and each framek consists of a smooth
background profile and 20 particles. The image of a particlei is obtained via a spatial Gaussian
distribution ofNi photon counts ( in the most challenging sequenceNi is drawn from a Gaussian
distribution with mean150 and standard deviation 20). The images are corrupted by Poisson noise
and Gaussian noise (of mean 0 and standard deviation 0.008).

The results of the spot detection algorithm without any wavelet coefficientaveraging is pre-
sented in table 2. Since the wavelet coefficients for the smallest scale,W1 are the most contam-
inated by noise, it is possible to ignore the whole scale as a denoising step. However, if only the
small support inW1 has to be corrected (often the coefficients have a small shift compared to the
other wavelet planes) the problem is solved by a morphological dilation ofW1 .

Table 2: Result of spot detection viàa trous wavelet method in synthetic sequence (20 frames
with 20 sots/frame) .W1 represents the smallest scale.

Method Mean spot number Variance in spot number
With W1 33.2 14.168

WithoutW1 8.65 4.976
DilatedW1 23.75 17.144

For wavelet coefficient correction, two kinds of error measures wereconsidered: the mean
square error as a measure for denoising and the number of false positives and false negatives,
respectively, for the error in protein detection.

The best algorithms proved to be the combination of anisotropic diffusion with the à trous
wavelet transform. In table 3 a comparison of the mean square error (perpixel, averaged over
the 20 frames) is presented, in the case of denoising via anisotropic diffusion and denoising by
diffusion of each wavelet coefficient. The second approach produces better mean square error
values. This is due mainly to a better denoising of the background, separated from the details of
the image via the wavelet transform.
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Table 3: Mean square error (k = 30, λ = 0.1)

Method 2 iterations 3 iterations 4 iterations
Anisotropic diffusion and wavelet denoising 7.1223 5.7551 6.1351

Diffusion of wavelet coefficients 7.4492 3.5985 2.6590

The difference between the original wavelet and the diffused wavelet ispresented in figure 3.
As expected, the variance in the wavelet plane is decreasing, since the variance of the mean is
inversely proportional with the number of samples used and averaging the coefficients reduces the
range as well. As can be seen in the tables 4 and 5 an improvement in the detection (decrease in the
number of undetected spots) can be achieved by an increase in computation. The computational
complexity of the second algorithm is the complexity of the first multiplied by the number of
wavelet scales.

In the case of the algorithm consisting of denoising the wavelet coefficientsvia spatial-tonal
convolution the mean and variance of the detected spot numbers were 19.71and 6.2198, respec-
tively (comparable to the results obtained via diffusion). The drawbacks of the method were its
high computational complexity (even if the considered neighborhood was only in time and not in
space), the high number of false positives (on average 4 per frame) and the shift which appeared
in the position of the detected spot compared to the original location.

Original wavelet

−20 0 20 40
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200
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400

Diffused wavelet

−5 0 5 10
0

200

400

600

Figure 3: OriginalW1 and diffusedW1 and the corresponding histograms

Results for real images for the3D anisotropic diffusion, a3D version of adaptive mean filter
[3], 3D spatial tonal convolution are presented in Figures 4 and 5.
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Table 4: Detection error.W1 ignored (Wavelet coefficient threshold =3σ) FP means false posi-
tives, FN means false negatives.

Method FP mean FP variance FN mean FN variance
Diffusion followed by wavelet detection 2.95 2.2475 3.15 3.0275

Diffusion of wavelet coefficients 0.75 1.0875 3.5 3.95

Table 5: Detection error.W1 dilated (Wavelet coefficient threshold =2.5σ) FP means false posi-
tives, FN means false negatives.

Method FP mean FP variance FN mean FN variance
Diffusion followed by wavelet detection 0.8 0.66 4.85 4.72

Diffusion of wavelet coefficients 1.3 1.31 3.25 2.78

4 Conclusion and future work

In the paper several methods for denoising microscopy images with preservation of fine structure
were presented. The best performance was achieved for the diffusion and the subsequent thresh-
olding of à trous wavelet coefficients. The parameters of the algorithms (the number of iteration
for the diffusion equation,k, λ, as well as the number of wavelet scales used ) were adjusted em-
pirically. It would be desirable to study the effect of these parameters on the performance of the
algorithms and if possible tune them automatically. Further performance comparisons are planned
with other denoising and detection algorithms.

Appendix A

The kernelK0 used for the low-pass filtering is generated by the B-spline of order 3:

K0 =













1

256

1

64

3

128

1

64

1

256
1

64

1

16

3

32

1

16

1

64
3

128

3

32

9

64

3

32

3

128
1

64

1

16

3

32

1

16

1

64
1

256

1

64

3

128

1

64

1

256













Ki is obtained fromKi−1 by inserting a line and column of zeros between each line and
column of the previous kernel.

// A trous wavelet transform

// Input: image f0, number of computed wavelet levels N

function Atrous(f0, N)
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Figure 4: Denoising results on real images: Anisotropic diffusion and adaptive mean filter

Figure 5: Denoising results on real images: Spatial-tonal convolution and spatial-tonal convolution
applied to wavelet coefficients

f[0] = f0

for i = 1 to N

f[i] = f[i-1] * K[i-1]

W[i] = f[i-1] - f[i]

end

return W

Note

This work will be presented at the 30th annual workshop of the Austrian Association for Pattern
Recognition (OAGM/AAPR), 2006.
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DIC-Image Restoration with integrational
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Abstract

Automatic analysis of Differential Interference Contrast (DIC) im-
ages is often afflicted with difficulties due to the pseudo 3D- profile
of the objects. A previous computational image transformation and
restoration based on the modelling of the interference image formation
can turn them into an appearance allowing a processing with conven-
tional segmentation algorithms. We demonstrate the advantages of
the use of phase-only filter, especially spiral phase filter against in-
tegrational approaches as an essential pre-processing step for further
automated cell population analysis. The final assignment of fluores-
cently labelled subcellular structures to the corresponding DIC imaged
yeast cells can be eased and automated by the developed software tool.

1 Introduction
Live cell imaging provides important information for functional analy-
sis of proteins and organelles in living cells and have been applied
to a wide range of biological specimens including the yeast, Saccha-
romyces cerevisiae, [12]. Fluorescence microscopy has got a key posi-
tion and lots of sophisticated cutting edge techniques provide excellent
images of the marked structures. However, avoiding multiple staining
the registration of the cells and sub-cellular structures the imaging is
partly realized by a combination of fluorescence and classical micro-
scopic techniques. Due to the low absorbance of the unstained cells,
phase contrast microscopy is still a method of choice producing illus-
trative images. For our application, the entire yeast cell populations
are automatically registered by Differential Interference Contrast mi-
croscopy (DIC) and simultaneously, a confocal fluorescence microscope
images the fluorescently marked substructures. Image processing for

∗Department of Knowledge-Based Mathematical Systems, FLLL Linz-Hagenberg, Jo-
hannes Kepler University Linz, A- 4040 Linz, Austria

†SFB Biomembrane Research Center Institute of Molecular Biosciences, Department
of Biochemistry, University Graz, Schubertstrasse 1, A- 8010 Graz, Austria
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these purposes has to fulfil various tasks: automated cell recognition
in DIC scans and their morphological description, the detection of
sub-cellular structures, the mutual assignment of these structures to
their related cells as well as the characterization of pattern formation,
[13]. For the automated analysis of fluorescence images numerous soft-
ware tools exist, however, they often fail for a direct application on
phase contrast images which are very sensitive to the optical settings
of the microscope and background inhomogeneities which often results
in halos and other disturbing artefacts. By this reason the analysis
of phase contrast images, especially DIC images, is complicated and
the cell counting and mutual assignment of subcomponents to DIC
imaged cell populations is often still done manually by the biologists
till nowadays. In this paper we mainly consider the task of automated
analysis of DIC cell scans, based on a previous DIC image transfor-
mation. This image conversion step enables an easier segmentation by
standard segmentation methods in the following and further influences
a correct assignment and characterization of fluorescently labelled par-
ticle patterns inside these cells. Although in this special application
the specimens are given by yeast cells, Fig. 1, and a shape model could
be additionally used under circumstances, we don’t want to restrict
us to a particular shape of the objects in scope to be of any use for
biological varying cell types and modifications.

Figure 1: DIC image of Saccaromyces cerevisiae cell population

2 Transformation Methods

2.1 DIC Image Formation
DIC microscopy [11] is a type of phase contrast microscopy, which
allows visualizing transparent or weak absorbing objects as commonly
assumed for cells. Zernikes phase contrast microscope [3] measures the
phase difference ∆ϕ between the diffracted and the propagating wave.
In contrast to that, in DIC microscopy the phase difference between
two waves, which are slightly displaced by a shear τ propagating the
biological object under a distance |τ |, gives a measure for the gradient
∇θz of the optical path length θ projected onto the shear direction
eτ . (Assumed a propagating of the both waves parallel to the optical

2



axis ez we will further denote θ = θz). The DIC shear direction eτ ,
which is commonly diagonal, parallel or orthogonal to the scanning
movement, determines the direction of the resulting intensity gradient,
and |τ | gives the resolution of the DIC imaging.

∆ϕ(x, y) =
2π

λ
〈∇θ(x, y), τ〉 (1)

Usually, an additional bias retardation ϕ0 between the two waves
is introduced by optical components, which modifies the intensity dis-
tribution. A bias ϕ0 = π/2 results in a by human eye easily inter-
pretable pseudo 3D-profile but leads to difficulties for automated image
processing. Hence, the shadow-like appearance of a biological object
imaged by a DIC microscope is a result of interference between the two
waves and not of illumination. Standard image processing segmenta-
tion methods able to detect edges [16] or threshold- based methods
[15] tends to fail directly applied to the DIC images due to the very
nature of the image formation process resulting in no contrast perpen-
dicular to the shear direction and in the same mean intensity as the
background for homogeneous area.

2.2 Line Directed Methods
The measured intensity I in the DIC image, (s.App.A),

I(x, y) = 2I0(1− cos ϕ) = 2I0(1− cos(ϕ0 + ∆ϕ(x, y))), (2)

can be linearized. Assuming weak phase objects ∆ϕ � π and a bias
retardation of ϕ0 = π/2, we get a relative intensity difference ∆I to
the background intensity

∆I(x, y) ∼ ∆ϕ(x, y) ∼ 〈∇θ(x, y), τ〉 . (3)

Integration of (3), i.e. summing up the relative intensity changes
in DIC shear direction, could theoretically be used for retrieving θ,
but leads to an accumulation of noise and scattering artefacts. An
iterative line integration method by exponential averaging is proposed
by [10] to reduce these artefacts. In [1] the 1D-Hilbert Transform (HT),
(s.App.B), is applied for better visualisation of biological structures.
For 2D-signals this transform can be performed in shear direction as
partial Hilbert Transform, [4]. In [8] we tested a method based on
an Iterative Hilbert Transform (IHT) algorithm for further contrast
enhancement, mentioning that all these iterative integration methods
require finding a compromise between object enhancement and noise
amplification, which is in particular inherent in all the tested line-
directed transformations. Hence, as stopping criteria for the number
of iterations we used the energy reduction.

2.3 Isotropic Phase Filters
The Radial Hilbert Transform (RHT), which can be expressed by a
spiral phase filter (SPF) in Fourier domain (u, v) as

H(u, v) = exp(iφ(u, v)) with φ(u, v) = arctan(u, v), (4)
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is described for four DIC- images recorded with two different shear
and bias values for exact phase reconstruction in [2]. However, in case
of living biological objects a repeated scanning is mostly impossible.
Because SPF can be used [9] to produce a shaded appearance of ho-
mogenous intensity objects, (s.App C), we apply the SPF inversely to
our DIC-images to transform them for a more homogenous appear-
ance of the entire cell. Based on the complex relation H−1 = H∗

in Fourier space between RHT and Inverse RHT we perform the spi-
ral phase filtering reversely by a multiplication with exp(−iφ) on the
Fourier transform (FT) of DIC image. By inverse Fourier transform
and considering the real part only, we get the reconstructed image.

3 Results

3.1 Line Directed Methods
Although the linearization of (2) and the straight forward line inte-
gration of (3)is a mathematically easy way it gives insufficient results,
Fig. 2a. Further it can not reflect the nonlinearity of the DIC image
formation. A previous correction of the DIC image intensity by the in-
verse function to (2) results in a slight contrast improvement, Fig. 2b,
however, the heavy streaking artefacts are still obvious.

Figure 2: a: Integrated DIC image, b: Integrated DIC image corrected for
the non-linear characteristic of the DIC microscope

Applying the Hilbert Transform these artefacts are reduced com-
pared to the previous integration, with higher number of iterations in
case of the iterative realisation they are slightly amplified, Fig. 3a,b.
Under circumstances this can reduce the performance of further image
segmentation

3.2 Phase Filtering
In compare to the integrational methods we investigated several phase
filters, applying them directly to the FT of the recorded DIC cell scans.
The arguments of these complex filter functions are shown in Fig. 4.

Compared to directional HT method, Fig. 2, it can be seen that
spiral phase filtering prevents streaking artefacts, Fig. 5. On the other
hand, the contrast to the background is lowered in case of spiral phase
filtering for the registered yeast cells. That could be improved by
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Figure 3: a: DIC image after applying a 1D- Hilbert Transform, b: DIC
image after Iterative Hilbert Transform, 4 iterations

Figure 4: a: Spiral phase filter mask with an angular transfer function be-
tween 0 and 2π, b: Modified spiral phase filter with an mirrored angular
phase transfer function, c: Combined phase filter mask with a spiral phase
region in the centre

using two DIC images (Img1, Img2) recorded simultaneously in two
orthogonal shear directions for reconstruction. Constructing a complex
image of both Img = Img1+iImg2 and applying on it the spiral phase
filter would improve the contrast and reduce the slight halo effects.
Such a DIC microscope has been patented recently [17], but is to the
authors’ knowledge not yet commercially available.

Figure 5: a: DIC image after filtering with the spiral phase mask , s. Fig. 4a,
b: DIC image after filtering with the modified spiral phase mask, s. Fig. 4b,
c: DIC image after filtering with combined phase mask, s. Fig. 4c

Meanwhile, as a compromise a modified spiral filter by mirroring
the half of the spiral filter, Fig. 4b, and a combined filter, with an
angular phase transfer function in the central part and a linear phase
step in the outer region, Fig. 4c, are suggested. In case of the combined
filter a smooth transition between the regions must be guaranteed to
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prevent ringing artefacts. Furthermore, it needs a careful tuning of
the filter range according to the spatial frequencies of the objects. The
orientation of the spiral filter is independent of the shear, but as a
complex filter is applied an orientation orthogonal to the DIC shear
direction enables us to consider the real part of the filtered result only.
Here we performed the filter in 45◦ direction according to the fixed
diagonal shear direction.

3.3 Image Segmentation and Assignment of subcel-
lular Components
By application of a spiral phase filter the histogram of the image is
changed to a bimodal distribution, Fig. 6. Hence, a threshold-based
segmentation can be performed.

Figure 6: Histogram of the original and the spiral filtered images

We further tested segmentation by local adaptive thresholding,
Fig. 7, wavelet decompositions or region growing methods.

Figure 7: Result after segmentation by a local adaptive threshold applying
a phase filtering previously. Cell separation was performed by watershed
algorithm

Finally, after detection and localization of the fluorescently labelled
sub-cellular components by a connected component algorithm using the
Amira software package [14], the subcellular structures are assigned to
the related yeast cells by mutual matching of positions, Fig. 8.

4 Conclusions
Phase filters are used as a fast and easily realizable transformation
of the DIC imaged cell scans applying them as filter in Fourier do-
main. Spiral phase filter prevent streaking artefacts in the background
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Figure 8: Assignment of fluorescently marked sub-cellular structures to yeast
cells in the DIC scan

compared to previously tested, line-directed methods. Because for an
exact image and path length resoration at least two DIC images with
different shears or three images with different bias retardations are
necessary the reconstruction with phase filters is not a quantitative
one. But the following automated processing of the transformed DIC
images can be eased by applying phase filters previously, as directional
phase filters or as spiral filters. Finally, standard methods can be used
for segmentation of these transformed images.

5 References
[1]Arnison MR, Cogswell CJ, Smith NI, Fekete PW, Larkin KG. 2000.
Using the Hilbert transform for 3D visualization of differential inter-
ference contrast microscope images. J Microsc 199: 79-84.

[2]Arnison MR, Larkin KG, Shepphard CJR, Smith NI, Cogswell
CJ. 2004. Linear phase imaging using differential interference contrast
microscopy. J. Microsc 214:7-12.

[3]Born M, Wolf E. 2005. Principles of Optics-7th ed. Cambridge
University press. p.472

[4] Bülow T, Sommer G. Das Konzept einer zweidimensionalen
Phase unter Verwendung einer algebraisch erweiterten Signalrepräsen-
tation, Mustererkennung 1997. Tagungsband, 19. DAGM-Symposium.
p. 351-358.

[5]Davis JA, McNamarra DE, Cottrell DM. 2000. Image processing
with the radial Hilbert transform: theory and experiments. Optics
Letters. 25(5): 99-101

[6]Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. 2005. Spiral
phase contrast imaging in microscopy. Optics Express 13(3): 689-694

[7]Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. 2005. Inter-
ference imaging with a spatial spiral phase filter. Optical Design and
Engineering. Proc. SPIE 5962: 59621F-1-5

[8]Heise B, Sonnleitner A, Klement EP.2005. DIC Image recon-
struction on Large Cell Scans. J Microscopy Research and Technique.
66:312-320

[9]Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. 2005. Shadow
effects in Spiral Phase Contrast Microscopy. Physical Review Letters.
June: 233902-1-4

7



[10]Kam Z. 1998. Microscopic differential interference contrast im-
age processing by line integration (LID) and deconvolution. Bioimag-
ing 6: 166-176.

[11]Murphy D.2001. Differential interference contrast (DIC) mi-
croscopy and modulation contrast microscopy. Fundamentals of Light
Microscopy and Digital Imaging. Wiley-Liss, New York, p. 153-168.

[12]Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S,
Fields S, Kohlwein SD. 2005. The spatial organization of lipid synthesis
in the yeast Saccharomyces cerevisiae derived from large scale green
fluorescent protein tagging and high resolution microscopy. Mol Cell
Proteomics.4 (5): 662-72.

[13]Ohtani M, Saka A, Sano F, Ohya Y, Morishita S. 2004. De-
velopment of image processing program for yeast cell morphology. J
Bioinform Comput Biol 1(4): 695-709.

[14]Software Package Amira 3.1 Mercury Computer Systems. Ltd.
USA., www.amiravis.com

[15]Young D, Gray AJ. 1997. Semi-automatic boundary detection
for identification of cells in DIC microscope images. IEE 6th Int. Conf.
on Image Processing and its Applications, Dublin, Ireland, 1:346-350.
IEEE Conference Publication No. 443.

[16]Young D, Gray AJ. 1996. Cell identification in Differential In-
terference Contrast microscope images using edge detection, British
Machine Vision Conference, BMVA Press, 1, p.133-142.

[17]0050152030, United States Patent Application

A Phase difference
For a small shear distance, we can approximate the optical path differ-
ence ∆θ between the two waves by the gradient projected to the shear
τ :

∆θ(x, y) = θ(x, y)− θ(x− τx, y − τy) = 〈∇θ(x, y), τ〉 (5)

which correspnds for a wavelength λ to a phase shift ∆ϕ, Fig. 9,

ϕ(x, y) = ϕ0(x, y) + ∆ϕ(x, y) with ∆ϕ(x, y) =
2π

λ
〈∇θ(x, y), τ〉 (6)

and results finally in an intensity distribution I(x, y) by the inter-
ference of the two propagating waves

I(x, y) = 2I0 [1− cos(ϕ(x, y))] (7)

where I0 is the intensity of each of both incident waves.

B Hilbert Transform
The 1D- Hilbert Transform of a function f(x) in the spatial domain is
defined by

fH(x) = H {f(x)} = f(x) ∗ 1
πx

=
1
π

∫ ∞

∞

f(x′)
(x− x′)

dx′ (8)
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Figure 9: Illustration of phase shift by path length difference

A 2D-iterative realization of the directional HT in Fourier domain ap-
plied in diagonal direction to the image Img can be performed by

Hp
α = F−1

−i sgn(u− v)
α

α + p
(
|u− v|2 + |u + v|2

)1/2
F {Img}


(9)

where α denotes a smoothing parameter, p the number of iteration,
(u, v) the spatial frequencies.

C Radial Hilbert Transform
The RHT can be seen as a 2D- generalization of the 1D- HT, [5]. Spi-
ral phase filters are used both, in image processing for computational
Fourier filtering, and as the optical counterpart in Fourier optics for
the visualization of phase objects, e.g. realized by a Spatial Light Mod-
ulator (SLM), [6, 7]. There a SLM is inserted at the focal plane in the
light path of a Spiral Phase Contrast microscope to create a shadowing
effect on the phase objects, [9].
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1 Introduction and Motivation

Support Vector Machines show a very promising performance when classifying difficult-structured
multi-dimensional data. Recently, Support Vector Machines have been applied to many challeng-
ing problems like face recognition, text categorization, hand-written character recognition, image
classification, object tracking [2], face detection [9], or biosequences analysis. The intention of
this paper is to provide results on utilization of support vector machine technology to raw image
data analysis.

Object classification/recognition in digital image processing is a very challenging process
where many various methods can be applied to achieve a respectable performance. However,
most of these techniques require a kind of feature selection and a model-based evaluation of these
features. Based on this evaluation the final classification/recognition is made. In contrast to that,
the performance of Support Vector Machines (SVMs) is not necessarily dependent on a correct
selection and implementation of feature extraction algorithms, as the complete input data (e.g. im-
age data) is used during classification/recognition. This is in particular helpful if it is very difficult
to select meaningful features or if lots of object types have to be differentiated.

2 Case Study Environment

The Support Vector Machine will be used with raw image data in a concrete case study: the
detection of a soccer ball in video sequences. The tasks of the SVM in this case study are defined
by the following points:

localize the soccer ball in the full image

or find the best candidate among a set of preselected objects

The images possibly containing a soccer ball have a resolution of 352x288 pixels, consist of
3 color channels (24bit RGB) and are either grabbed from a real-time frame grabber or extracted
from video data. The approximate size of the soccer ball in the complete image is about 12x12
pixels (ranging from 8x8 when it is further away to 15x15 when the ball is very close to the
camera). In general the observed target object (i.e. the soccer ball) can be described as follows:

surrounded by a rather constant light environment

rigid object with a view angle invariant shape (a ball)

object often is subject to occlusion

the small object can appear anywhere in the full image

Before we are going into detail in how to solve the problem described above, we will give an
introduction on support vector machines:
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2.1 Support Vector Machines

Support vector machines are a machine learning tool for binary classification. Multi-class vari-
ations exists, but in its basic form it is used for two classes. Now, let us consider such a binary
classification problem. We are given empirical data (x1, y1), . . . , (xm, ym) ∈ X ×{±1}, where X
is some non-empty set (domain) from which pattern xi are taken. The yi are the so-called labels,
which determine the affiliation of the pattern to one of the two classes. In the task of learning we
want to generalize to unseen data points. Given a pattern x ∈ X we want to predict the corre-
sponding y ∈ {±1}, therefore estimating a function f : X → {±1}. One attempt to solve this
problem is to introduce a hyperplane that optimally separates the two data point classes.

Vapnik et al. [3] considered the class of hyperplanes in some dot product spaceH,

〈w,x〉+ b = 0 w ∈ H, b ∈ R (1)

corresponding to the decision function

f(x) = sgn(〈w,x〉+ b), (2)

which will be the basis for our support vector learning algorithm. If the dataset is separable then
the data will be correctly classified if yi(〈w,xi〉+b) > 0 ∀i with data points xi (i = 1, . . . ,m)
and corresponding labels yi = ±1. The relation is invariant to a positive rescaling , so we define a
canonical hyperplane with 〈w,x〉+ b = 1 for the closest point on one side and 〈w,x〉+ b = −1
on the other. The normal vector for the separating hyperplane is w

||w|| , and the margin is given
by the projection of x1 − x2 onto this vector (see Figure 1). Which leads to a margin of 1

||w|| . To
maximize the margin leads to the quadratic problem:

minimize g(w) =
||w||2

2
(3)

subject to the constrains:
yi(〈w,xi〉+ b) ≥ 0 ∀i (4)

Such a constrained optimization problem can be dealt with by introducing Lagrange multipliers
αi ≥ 0 and a minimization of the primal Lagrangian [7]:

L(w, b, α) =
||w||2

2
−

m∑
i=1

αi(yi(〈w,xi〉+ b)− 1). (5)

With the Karush-Kuhn-Tucker (KKT) complementarity conditions and taking the derivatives
with respect to w and b we receive the Wolfe dual [12]:

maximize W (α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj 〈xi,xj〉 (6)

subject to the constrains
αi ≥ 0 (7)

m∑
i=1

αiyi = 0. (8)
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Figure 1: The margin γ is the perpendicular distance between the separating hyperplane and the
closest data points (support vectors). x1 and x2 are such support vectors.

Everything so far was formulated within a dot product (inner product) space, so we will per-
form a substitution with symmetric kernels of the shape

k(x, x′) :=
〈
x,x′〉 =

〈
Φ(x),Φ(x′)

〉
, (9)

where the kernel k is a function

k : X × X → R
(x, x′) 7→ k(x, x′). (10)

and the map Φ, representing the patterns as vectors in some dot product space H (feature space),
is given by

Φ : X → H
x 7→ x := Φ(x). (11)

The name kernel is derived from integral operator theory, which underpins much of the theory of
the relation between kernels and their corresponding feature spaces. We will give now 2 examples
of commonly used kernels, the Gaussian radial basis function(RBF) kernel:

k(x, x′) = e−γ||x−x′||2 ,

where γ > 0, and the homogeneous polynomial kernel:

k(x, x′) =
〈
x, x′〉d

,

with d ∈ N.

The substitution with (9) is referred to as kernel trick – one of the most important steps within
SVMs. With such a choice of kernel the data can become separable in feature space despite being
non-separable in the original input space. The Wolfe dual can be reformulated now:

maximize W (α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjk(xi,xj) (12)
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with the new constrains from (7) and (8). After the optimal values of αi have been found the
decision function is based on the sign of:

f(z) =
m∑

i=1

yiαik(z,xi) + b, (13)

with bias b given by solving the primal constrains.

Only the points closest to the found maximal margin hyperplane have αi > 0 and these points
are called the support vectors. All other points have αi = 0. This means that the evaluation of
the decision function depends solely on the points closest to the hyperplane. They are the most
informative patterns of the data.

2.2 Soft Margin SVM

To deal with the non-separable case (for example noise in the training data) the so-called soft
margin is introduced to reduce the effect of outliers. The so-called slack variables ξi, i = 1, . . . ,m
are used within the constrains [6], which then become

〈w,xi〉+ b ≥ +1− ξi for yi = +1
〈w,xi〉+ b ≤ −1 + ξi for yi = −1 (14)

ξi ≥ 0 ∀i.

The sum
∑

i ξi is an upper bound for the number of training errors. To assign an extra cost for
errors, the objective function is changed to minimize ||w||2/2+C

∑
i ξi, where C is a to be chosen

parameter. The resulting difference in the Wolfe dual is only the new box constraint 0 ≤ αi ≤ C,
the αi have an upper bound.

3 Basic Approach

One thing to keep in mind is that SVMs are supposed to work on data that is based on record sets
that all have a constant dimension. This implies that a SVM ideally is used to classify images
that all have the same size. In order to provide this input data to the SVM, a simple but effective
window-shift algorithm was utilized that cuts out lots of small image parts (SVM thumbnails) of
the current image and passes this data on to the SVM which then can decide whether the SVM
thumbnail contains a soccer ball or not. In order to keep the amount of the SVM thumbnails
small and improve performance, only the parts of the image that have a significant difference to
the background image are taken as a basis for the window-shift algorithm (moving objects – the
foreground). In figure 2 the window-shift algorithm can be seen in action.

3.1 The window-shift algorithm

As the average size of the soccer ball ranges within 8-15 pixel in diameter, a SVM thumbnail size
of 16x16 pixels was chosen. The window-shift algorithm creates all these SVM thumbnail images
by shifting a 16x16 pixel wide window over all foreground objects. If the foreground object is
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Figure 2: Every part of the image that is in the foreground is treated with the window-shift al-
gorithm producing lots of tiny SVM thumbnail images that then can be analyzed by the Support
Vector Machine.

bigger than 16x16 pixels, the algorithm shifts this window only by 8 pixels, creating overlapping
SVM thumbnail images as a consequence. This is important in order to be able to recognize a ball
that otherwise sometimes may be distributed over two different thumbnail images and, as a result
would not be detected in any of the created thumbnail images.

Other SVM applications that process raw images (e.g. [9]) often apply additional image process-
ing algorithms such as histogram equalization or blob-scaling to the SVM thumbnails to further
improve the overall performance of the SVM. In order not to distort the original performance of the
underlying SVM, no additional image processing algorithms were applied on the SVM thumbnail
images in this case study.

4 Case Study in Soccer Ball Detection

The used testing framework for our case study was the support vector framework LIBSVM [5],
an implementation widely in use.

The following steps have been performed to test SVMs on the problem of soccer ball detection
(see also Figure 3):

1. Collection of samples for soccer ball and non-soccer ball images.

2. Conversion of images to raw data: the gray scale images are converted to normalized one
dimensional data vectors.

3. Determination of optimal parameters: a grid search is performed to find the optimal value
for the soft margin (parameter C) and the kernel (in our case RBF Kernel with parameter
γ).

4. Training of SVM on training data with optimal parameters.
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5. Testing of resulting SVM on test images/video with unknown soccer ball positions

A detailed description of the most important steps is given in the following sections.

Figure 3: The case study workflow.

4.1 Creating the Learning Data Set

Due to the nature of the object that had to be detected in this case study (i.e. the soccer ball),
only gray scale image data was used for SVM classification. This also had the advantage that the
dimensionality of the input model file decreased by the factor of 3 (from RGB data to gray scale
images). The data vector was rescaled/normalized from [0, 255] to a [0, 1], as SVMs work best on
normalized data.

4.1.1 Creating non-soccer ball SVM thumbnails

For training purposes, we have selected 50 video frames that did not contain a visible soccer
ball and stored theses frames as a sequence of bitmap images. This sequence of bitmap images
was the input data for the window-shift algorithm as described in section 3.1. We additionally
incorporated some code that caused the window-shift algorithm to store each of the created SVM
thumbnail images as a tiny bitmap. With this configuration we immediately received a large data
basis that could server as non-soccer ball examples for the SVM training process.

4.1.2 Creating soccer ball SVM thumbnails

Efficiently creating many suitable soccer ball SVM thumbnails is a little bit more time consum-
ing than creating non-soccer ball SVM thumbnails. This time we could not use the convenient
window-shift algorithm that stores each of the created SVM thumbnails as this would have im-
plied to manually select about 20-30 soccer balls out of a SVM thumbnail data basis of about
7000. This clumsy approach additionally would not have ensured that enough different soccer ball
SVM thumbnail images would have been generated.

A more systematic way of generating soccer ball SVM thumbnails is depicted in figure 4.
This method, that will be referred to as "Snake-Windowing" from now on, generates lots of SVM
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Figure 4: With a snake-like movement of the 16x16 thumbnail window over a single image several
independent SVM thumbnail images can be generated. This procedure ensures that the SVM
finally is trained to be rather location invariant, so that it does not matter whether the soccer ball
appears at the lower right or at the upper left in a SVM thumbnail image.

thumbnail images out of one single image that contains the object to be detected. As the position
of the target object within the SVM thumbnail window should not be a decisive factor when the
SVM classifies input data, the SVM also has to be trained that way: This means that as many as
possible soccer balls that are located at all possible locations within the SVM thumbnail window
should be learned. Snake-Windowing exactly provides this data basis in an efficient way.

4.2 Finding optimal parameters

Choosing the right SVM kernel with the right parameters has a major influence on the overall
performance of the trained SVM. In our test case we concentrated on the RBF kernel (which are
a good choice to start with, as it has the best generalization behavior). there are basically two
parameters: C and γ. As the value of these parameters is not known in advance, some kind of
parameter search must be done. A exhaustive "grid-search" on C an γ was performed using cross-
validation. The SVM was trained on the give soccer ball data set with various different parameter
settings (pairs of (C, γ)), and the resulting SVM with the best cross-validation accuracy rate was
chosen for the test cases. Basically are tried and the one with the best cross-validation accuracy is
picked. It is a very straightforward approach, but gives good results after a reasonable time. The
parameter search needs a lot of computational power. It took about 10 hours to find the optimal
parameters for our SVM training data set which consisted of about 7500 record sets. Figure 5
shows a diagram of such a grid search.

5 Results and Conclusion

To our surprise, the quality of the obtained SVM dramatically exceeded our expectation. The final
SVM showed a very good generalization behavior, robustly classified soccer balls even when the
circumstances were tricky. Considering that up to now not a lot of time was spent in order to
optimize the SVM, the results are very promising: The classification performance mostly is better
than 99%. Figures 6-7 show a few example images.
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Figure 5: The generated output image after the grid search for optimal parameters for C and γ in
the soccer ball training data set.

The performance concerning speed of the current SVM implementation is not overwhelming,
but still acceptable. In our case study the SVM had to classify about 120 SVM thumbnail images
per image. When processing a live video the SVM could process about 7 frames per second (using
an Intel Pentium D820 with 2x2.8 GHZ). As tuning the SVM implementation concerning speed
was not a relevant aspect of this research, there is still plenty of room to incorporate further speed
improvements.

5.1 Further Work

This case study showed a very straight forward approach in using SVMs in image processing. A
lot of improvements in terms of computational speed and detection rate are possible.

To improve the performance a combination of tracking methods with the detection of soccer
balls is thinkable. This will decrease the search area for the SVM classifier. It might also be
possible that the detection need not be called on every frame, but only after a given number or
when the tracking seems to be unsecure.

A performance boost and an increase of the detection rate can also be achieved by feature
selection for soccer images (for example wavelet transformation) and image preprocessing (his-
togram equalization,...).

Tests with other kernels should to be performed. The polynomial kernel is know for its good
behavior in image processing.

Modifying the training data itself (removing the background) can increase the detection rate.
Irrelevant data within images (background behind object) is replaced by a pair of images with
white and black background (see [10]).

Techniques from face detection and detection of humans could be applied. For example in [8]
a method is applied that, for a given SVM, creates a set of so-called reduced set vectors (RSVs)
that approximate the decision function (introduced in [4]). A special decomposition algorithm is
shown that guarantees global optimality and allows to train SVMs on very large data sets. In [11]
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Figure 6: 2 samples of a successful ball detection. The orange rectangles mark all investigated
SVM thumbnail images. The yellow rectangle shows the SVM thumbnail image with the highest
soccer ball reliability. On the right: even with major distortions (hand touching the ball) a correct
classification is found.

SVMs are trained with dense optical flow patterns to detect humans in outdoor surveillance. A lot
of unpredictable influences (light, clothing, size, etc.) complicate detection of a humans, therefore
patterns of human motion are to be discovered. Another optic-flow based tracker is presented
in [1]. These improvements could also be applied to soccer ball detection.
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2 2 Preliminaries

1 Introduction

Lexicographic composition is a fundamental construction principle for ordering relations. The
most important feature of this construction is that the composition of two linear orderings again
yields a linear ordering. Given two orderings ≤1 and ≤2 on non-empty domains X1 and X2,
respectively, the lexicographic composition is an ordering ≤′ on the Cartesian product X1 ×X2,
where (x1,x2)≤′ (y1,y2) if and only if

(x1 = y1∧ x2 ≤2 y2)∨ (x1 6= y1∧ x1 ≤1 y1). (1)

Rewriting x1 6= y1 ∧ x1 ≤1 y1 as x1 <1 y1 (i.e. the strict ordering induced by ≤1) and taking into
account that x1 = y1∨x1 6= y1 is a tautology and that≤1 is reflexive, we obtain that (1) is equivalent
to

(x1 ≤1 y1∧ x2 ≤2 y2)∨ x1 <1 y1. (2)

The study of fuzzy orderings can be traced back to the early days of fuzzy set theory [12,
17, 18, 22]. Partial fuzzy orderings in the sense of Zadeh [22], however, have severe shortcom-
ings that were finally resolved by replacing the crisp equality by a fuzzy equivalence relation,
thereby maintaining the well-known classical fact that orderings are obtained from preorderings
by factorization [1, 3, 4, 11, 14].

In [2, 4], several methods for constructing fuzzy orderings are presented, including Cartesian
products. How to transfer lexicographic composition to the fuzzy framework, however, remained
an open problem. The reason why this remained an open issue for a relatively long time is that
there was no meaningful concept of strict fuzzy ordering in the similarity-based framework so far.
As this issue is solved by [5] now, we are able to give a solution in this paper. Detailed proofs are
omitted, as they are long and technical. Details are available from the author upon request (and
the reader is also referred to upcoming publications).

2 Preliminaries

For simplicity, we consider the unit interval [0,1] as our domain of truth values in this paper. Note
that most results, with only minor and obvious modifications, also hold for more general structures
[11, 13, 14, 15]. The symbols T , T̃ , etc., denote left-continuous t-norms [16]. Correspondingly, T

→

denotes the unique residual implication of T . Furthermore, we denote the residual negation of T
with NT (x) = T

→
(x,0).

Definition 1. A binary fuzzy relation E : X2 → [0,1] is called fuzzy equivalence relation1 with
respect to T , for brevity T -equivalence, if the following three axioms are fulfilled for all x,y,z∈ X :

1. Reflexivity: E(x,x) = 1

2. Symmetry: E(x,y) = E(y,x)

3. T -transitivity:
T (E(x,y),E(y,z)

)
≤ E(x,z)

1Note that various diverging names for this class of fuzzy relations appear in literature, like similarity relations,
indistinguishability operators, equality relations, and several more [7, 15, 20, 22]
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Definition 2. A binary fuzzy relation L : X2 → [0,1] is called fuzzy ordering with respect to T and
a T -equivalence E : X2 → [0,1], for brevity T -E-ordering, if it fulfills the following three axioms
for all x,y,z ∈ X :

1. E-reflexivity: E(x,y)≤ L(x,y)

2. T -E-antisymmetry:
T

(
L(x,y),L(y,x)

)
≤ E(x,y)

3. T -transitivity:
T (L(x,y),L(y,z)

)
≤ L(x,z)

Definition 3. A fuzzy relation R : X2 → [0,1] is called strongly complete if max(L(x,y),L(y,x)) =
1 for all x,y ∈ X [6, 12, 17]. R is called T -linear if NT (L(x,y))≤ L(y,x) for all x,y ∈ X [6, 14].

Definition 4. A binary fuzzy relation S : X2 → [0,1] is called strict fuzzy ordering with respect to
T and a T -equivalence E : X2 → [0,1], for brevity strict T -E-ordering, if it fulfills the following
axioms for all x,x′,y,y′,z ∈ X :

1. Irreflexivity: S(x,x) = 0

2. T -transitivity:
T (S(x,y),S(y,z)

)
≤ S(x,z)

3. E-extensionality:
T (E(x,x′),E(y,y′),S(x,y))≤ S(x′,y′)

As already mentioned above, it is of vital importance for lexicographic composition how to
“strictify” a given fuzzy ordering. The following theorem summarizes the most important facts.

Theorem 5. [5] Consider a T -equivalence E : X2 → [0,1] and a T -E-ordering L : X2 → [0,1].
Then the following fuzzy relation is a strict T -E-ordering on X:

S(x,y) = min(L(x,y),NT (L(y,x)))

If T does not have zero divisors, the equality S(x,y) = min(L(x,y),NT (E(y,x))) holds. Moreover,
S is monotonic w.r.t. L in the following sense (for all x,y,z ∈ X).

T (L(x,y),S(y,z))≤ S(x,z)
T (S(x,y),L(y,z))≤ S(x,z)

S is the largest strict T -E-ordering contained in L that fulfills this kind of monotonicity.

For intersecting T -transitive fuzzy relations, the concept of domination between t-norms is of
vital importance [9, 16, 19].

Definition 6. A t-norm T1 is said to dominate another t-norm T2 if, for every quadruple (x,y,u,v)∈
[0,1]4, the following holds:

T1
(
T2(x,y),T2(u,v)

)
≥ T2

(
T1(x,u),T1(y,v)

)
Lemma 7. [9] Consider two t-norms T1 and T2. The T2-intersection of any two arbitrary T1-
transitive fuzzy relations is T1-transitive if and only if T2 dominates T1.
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Figure 1: Cut view of a lexicographic composition of a crisp linear ordering and a fuzzy ordering
according to Proposition 8

3 Starting the Easy Way: One Crisp and One Fuzzy Ordering

Let us first consider the case where the primary ordering is crisp and the secondary ordering is
fuzzy. As the strict ordering is only needed for the primary ordering, we do not need to take any
strict fuzzy ordering into account.

Proposition 8. Let us consider a crisp ordering L1 : X2
1 →{0,1} and a T -E2-ordering L2 : X2

2 →
[0,1] (with E2 : X2

2 → [0,1] being a T -equivalence). Then the fuzzy relation L : (X1×X2)2 → [0,1]
defined as

L((x1,x2),(y1,y2)) =


1 if x1 6= y1 and

L(x1,y1) = 1,

L2(x2,y2) if x1 = y1,

0 otherwise,

is a fuzzy ordering w.r.t. T and the T -equivalence Ẽ : (X1×X2)2 → [0,1] defined as

E((x1,x2),(y1,y2)) =

{
E2(x2,y2) if x1 = y1,

0 otherwise.

Note that, if both components L1 and L2 are crisp orderings, then L as defined above is equiv-
alent to the constructions (1) and (2).

Example 9. Consider X1 = X2 = [0,4], let L1 be the classical linear ordering of real numbers, and
assume that L2 is defined as follows:

L2(x,y) = max(min(1− x+ y,1),0)

It is well-known that L2 is a fuzzy ordering with respect to the Łukasiewicz t-norm TL(x,y) =
max(x+y−1,0) and the TL-equivalence E2(x,y) = max(1−|x−y|,0). Figure 1 shows a cut view
of the fuzzy ordering L that is obtained when applying the construction from Proposition 8. The
cut view has been obtained by plotting the value L((2,2),(y1,y2)) as a two-dimensional function
of y1 and y2.

The following proposition clarifies in which way linearity of the two component orderings L1
and L2 is preserved by the construction in the previous proposition.
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Proposition 10. Let us make the same assumptions as in Proposition 8. If L1 is a crisp linear
ordering and L2 is strongly complete, then L is also strongly complete. If L1 is a crisp linear
ordering and L2 is T -linear, then L is also T -linear.

4 Lexicographic Composition of Two Non-Trivial Fuzzy Orderings

The results of the previous section have been known to the author since 1998, but they were not
published so far, as they cannot be considered a full-fledged solution of the problem. So let us
now consider the general case, where both components are fuzzy orderings without any further
assumptions so far. The following theorem gives a general construction inspired by the classical
construction (2).

Theorem 11. Consider two T -equivalences E1 : X2
1 → [0,1], E2 : X2

2 → [0,1], a T -E1-ordering
L1 : X2

1 → [0,1], and a T -E2-ordering L2 : X2
2 → [0,1]. Moreover, let T̃ be a t-norm that dominates

T . Then the fuzzy relation LexT̃ ,T (L1,L2) : (X1×X2)2 → [0,1] defined as

LexT̃ ,T (L1,L2)((x1,x2),(y1,y2)) =

max
(
T̃ (L1(x1,y1),L2(x2,y2)),

min(L1(x1,y1),NT (L1(y1,x1)))
)

is a fuzzy ordering w.r.t. T and the T -equivalence CartT̃ (E1,E2) : (X1 ×X2)2 → [0,1] defined as
the Cartesian product of E1 and E2:

CartT̃ (E1,E2)((x1,x2),(y1,y2)) =
T̃ (E1(x1,y1),E2(x2,y2))

Note that, if L1 is a crisp ordering, then LexT̃ ,T (L1,L2) defined as in Theorem 11 coincides
with the fuzzy relation L defined in Proposition 8. Consequently, if both components L1 and L2
are crisp orderings, then LT̃ is equivalent to the constructions (1) and (2).

Example 12. Consider again the domain X = [0,4] and consider the following three fuzzy rela-
tions on X :

L3(x,y) = max(min(1− 1
2(x− y),1),0)

L4(x,y) = min(exp(y− x),1)
L5(x,y) = min(exp(3(y− x)),1)

L3 is a TL-E3-ordering with E3(x,y) = max(1− 1
2 |x−y|,0). L4 is a TP-E4-ordering2 with E4(x,y) =

exp(−|x−y|) and, since TL ≤ TP, a TL-E4-ordering as well. L5 is a TP-E5-ordering with E4(x,y) =
exp(−3|x− y|) and a TL-E5-ordering as well. Thus we can define the following fuzzy relations
from the fuzzy orderings L2 (from Example 9), L3, L4, and L5:

La = LexTM,TL(L2,L2)
Lb = LexTL,TL(L3,L2)
Lc = LexTP,TL(L4,L2)
Ld = LexTP,TL(L5,L5)

2with TP denoting the product t-norm
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Theorem 11 then ensures that all these four fuzzy relations are fuzzy orderings with respect to
the Łukasiewicz t-norm TL and TL-equivalences defined as the corresponding Cartesian prod-
ucts. Figure shows cut views of the four lexicographic compositions, where we keep the first
argument vector constant (we choose (x1,x2) = (2,2)) and plot the value L∗((2,2),(y1,y2)) as a
two-dimensional function of y1 and y2.

Now the question arises whether the lexicographic composition of two linear fuzzy orderings
is again linear. Note that there are several notions of linearity of fuzzy orderings [6]. Let us first
consider strong completeness.

Example 13. All fuzzy orderings considered in Examples 9 and 12 were strongly complete. Note,
however, that none of the lexicographic compositions defined in Example 12 is strongly complete.
To demonstrate that, consider the plots in Figure 3. These two plots show the values

max
(
La((2,2),(y1,y2)),La((y1,y2),(2,2))

)
max

(
Ld((2,2),(y1,y2)),Ld((y1,y2),(2,2))

)
as two-dimensional functions of y1 and y2. If La and Ld were strongly complete, these two func-
tions would have to be the constant 1, which is obviously not the case. The same is true for the
two other lexicographic compositions Lb and Lc.

After this negative answer, let us relax the question a bit and attempt the question whether the
lexicographic composition of two strongly complete fuzzy orderings is T -linear.

Proposition 14. Let us make the same assumptions as for Theorem 11. If L1 and L2 are strongly
complete fuzzy orderings and the residual negation NT is involutive (i.e. NT (NT (x)) = x holds for
all x ∈ [0,1]), then the fuzzy ordering

LexT̃ ,T (L1,L2)

is T -linear.

Note that Proposition 14 also proves that all the four lexicographic compositions defined in
Example 12 are TL-linear.

The proof of Proposition 14 does not work if we do not assume that NT is an involution. The
question arises, of course, whether this condition is not only sufficient, but also necessary. The
answer is that this is the case, as the following example demonstrates.

Example 15. Consider a left-continuous t-norm for which a value z∈]0,1[ exists such that NT (NT (z)) 6=
z. Since NT (NT (z)) ≥ z always holds, we can infer that, in this case, NT (NT (z)) > z must hold.
Now let us consider two simple strongly complete fuzzy orderings on the sets X1 = {a,b} and
X2 = {c,d}, respectively:

L1 a b
a 1 1
b z 1

L2 c d
c 1 1
d 0 1

Then we can infer the following for any choice of T̃ :

LexT̃ ,T (L1,L2)((a,d),(b,c)) = NT (L1(b,a))

= NT (z)
LexT̃ ,T (L1,L2)((b,c),(a,d)) = L1(b,a) = z
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Figure 2: Cut views of the four lexicographic compositions from Example 12
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Hence we obtain that

NT
(
LexT̃ ,T (L1,L2)((a,d),(b,c))

)
= NT (NT (z)) > z

= LexT̃ ,T (L1,L2)((b,c),(a,d)),

which shows that LexT̃ ,T (L1,L2) is not T -linear.

Note that the condition of involutiveness in particular excludes all t-norms without zero di-
visors. Therefore, lexicographic compositions of non-trivial (i.e. non-crisp) fuzzy orderings with
respect to the popular minimum and product t-norms are problematic, if not meaningless. The rea-
son for this is simple. As shown in [5], the only strict fuzzy ordering included in a fuzzy ordering
that is strictly greater than zero (e.g. like L4 and L5 from Example 12) is the trivial zero relation.
When it comes to lexicographic composition, the strict fuzzy ordering induced by the first com-
ponent relation plays a crucial role. If it vanishes, no meaningful lexicographic composition that
preserves linearity properties can be expected. As an example, see Figure 4. It shows a cut view
of the fuzzy ordering LexTP,TP(L5,L2). It is easy to see that LexTP,TP(L5,L2) is nothing else but the
Cartesian product of L5 and L2, which is of course not TP-linear.

The final and most important question is whether the lexicographic composition of two T -
linear fuzzy orderings is again T -linear. Strong completeness always implies T -linearity [6], thus,
strongly complete fuzzy orderings are a sub-class of T -linear fuzzy orderings (no matter which
T we choose). If the involutiveness of NT is a necessary condition for meaningful results in
Proposition 14, there is no point in considering a t-norm that does not induce an involutive negation
any further.
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Theorem 16. Let us again make the same assumptions as for Theorem 11. If L1 and L2 are
T -linear fuzzy orderings and the residual negation NT is involutive, then the fuzzy ordering

LexTM,T (L1,L2)((x1,x2),(y1,y2)) =
max(min(L1(x1,y1),L2(x2,y2)),

min(L1(x1,y1),NT (L1(y1,x1))))

is T -linear.

Obviously, Theorem 16 does not allow any choice of the aggregating t-norm T̃ as in the origi-
nal construction in Theorem 11, but enforces the choice of the minimum t-norm (i.e. T̃ = TM). This
is not an arbitrary restriction, but a necessary condition, as the following example demonstrates.

Example 17. Consider an arbitrary left-continuous t-norm T that induces a strong negation NT

and assume that T̃ < TM. Then there exists a y ∈]0,1[ such that T̃ (y,y) < y. Now let us consider
the following two fuzzy relations:

L1 a b
a 1 y
b 1 1

L2 c d
c 1 y
d NT (y) 1

It is easy to see that L1 and L2 are T -linear fuzzy orderings with respect to T and some T -
equivalences (the exact definition of them is not important at this point). Now we can compute:

LexT̃ ,T (L1,L2)((a,c),(b,d))

= max(T̃ (y,y),min(y,NT (1)) = T̃ (y,y)
LexT̃ ,T (L1,L2)((b,d),(a,c))

= max(T̃ (1,NT (y)),min(1,NT (y))
= NT (y)

If LexT̃ ,T (L1,L2) was linear, the following inequality would be fulfilled:

NT
(
LexT̃ ,T (L1,L2)((b,d),(a,c))

)
≤ LexT̃ ,T (L1,L2)((a,c),(b,d))

However, we obtain:

NT
(
LexT̃ ,T (L1,L2)((b,d),(a,c))

)
= NT (NT (y)) = y > T̃ (y,y)
= LexT̃ ,T (L1,L2)((a,c),(b,d))

Therefore, LexT̃ ,T (L1,L2) can never be T -linear if T̃ < TM. This example, therefore, justifies the
assumptions of Theorem 16.
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5 Conclusion

In this paper, we have introduced an approach to lexicographic composition of similarity-based
fuzzy orderings. This construction, in principle, works for all choices of t-norms. However, the
essential property of lexicographic compositions—that the lexicographic composition of linear
orderings is again a linear ordering on the product domain—is only maintained if the underlying t-
norm T induces an involutive negation (in particular, including nilpotent t-norms and the nilpotent
minimum). This once more confirms the viewpoint that such t-norms are most adequate choices
in fuzzy relations theory, fuzzy preference modeling and related fields [5, 6, 8, 10, 21].

Acknowledgements

The author gratefully acknowledges support by the Austrian Government, the State of Upper Austria, and
the Johannes Kepler University Linz in the framework of the Kplus Competence Center Program. Support
by COST Action 274 “TARSKI” is also gratefully acknowledged.

References
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