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Preface

Aggregation is an important tool in any discipline where the fusion of different pieces of information
is of interest and as such relates to several fields of applied and pure mathematics, of operations
research, computer science, and many other applied fields like economics and finance, pattern
recognition and image processing, or data fusion. Also inside mathematics “aggregation” is used
to denote different processes and models in various subfields like matrix algorithms, population
dynamics, partial differential equations, risk theory, reasoning under uncertainty, social choice,
group preference modelling, and multi-criteria decision making.

Aggregation functions focus on special subclasses of aggregation problems, namely those which
can be formally expressed by a function taking arbitrary but finitely many arguments and map-
ping them to a single value being representative for the set of arguments or some of its aspects.
Arguments and representative value are from the same domain, most often a bounded lattice or
some numerical scale. Means are prototypical examples of representative values resulting from an
aggregation process carried out by an aggregation function.

This habilitation thesis is a collection of refereed articles published (or accepted) in scientific
journals and edited volumes. Its focus is set on problems of constructions (and existence) and
of characterizations of aggregation functions with an emphasis on particular types of functional
equations and inequalities. The aggregation functions dealt with operate on a bounded lattice
and fulfill additional monotonicity and boundary conditions. Several of the aggregation functions
investigated have their roots in probabilistic metric spaces, more specifically, in case that the
bounded lattice is simply the unit interval, some of these functions have been introduced as trian-
gular norms or copulas. As such the classes of aggregation functions discussed relate to algebra,
many-valued logics, and probability theory as well as to applications fields like, e.g., multicriteria
decision making and preference modelling.

The collection of articles is preceded by this introductory part outlining the overall structure
of the thesis and giving all necessary definitions, notions, investigated problems and some of the
results in a condensed and therefore reduced way. The first chapter contains an introduction to
aggregation functions and their properties, moreover, a detailed outline of the contents of thesis,
its structure, and full referential details of the included articles. The articles are combined into
three parts. Part I focusses on construction and characterizations results for special semigroup
operations as well as bivariate copulas and quasi-copulas. Part II deals with aggregation functions
on the unit interval, especially with t-norms, and discusses the functional inequality of dominance.
Part III contains two contributions relating to application problems in the context of preference
modelling and decision making touching again construction and characterization problems and
functional equations.
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Bodenhofer, Petr Cintula, Tomasa Calvo, Martina Daňková, Didier Dubois, Fabrizio Durante,
János Fodor, Michel Grabisch, Ulrich Höhle, Balasubramaniam Jayaram, Koen Maes, Jean-Luc
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Chapter 1

Introduction

1.1 Aggregation — an approximation

“Aggregation” is used in everyday life and in mathematics in very different contexts. According
to the Oxford Advanced Learner’s Dictionary [154] “aggregate” bears the following meanings,
expressing that aggregation in general relates to a process during which a group of items (numbers,
amounts, results) is merged into a total:

aggregate

noun : 1 a total number or amount made up of smaller amounts that are collected
together 2 (technical) sand or broken stone that is used to make concrete or for building
roads, etc. in (the) ’aggregate’ (formal) added together as a total or single amount
on ’aggregate’ (sport) when the scores of a number of games are added together: They
won 4–2 on aggregate.

adj.: (economics or sports) made up of several amounts that are added together to form
a total number: aggregate demand/investment/turnover.

verb: (formal or technical) to put together different items, amounts, etc. into a single
group or total I aggregation noun.

Database queries in Zentralblatt and MathSciNet for articles published more recently than 2007
and having the word “aggregation” listed in the title, yield more than hundred publications each
and show that also inside mathematics aggregation is spread over different areas and is used to
denote a variety of different processes and mathematical models. The topics of aggregation range
from various fields, like matrix algorithms, population dynamics, and partial differential equations
over risk theory to reasoning under uncertainty and, to a larger extent, to social choice, group
preference modelling, and multi-criteria decision making. It is therefore necessary to clarify which
kind of aggregation models will be discussed in the present thesis.

Mathematically speaking, its focus is set on aggregation processes which can be expressed by
a function

A :
⋃

n∈N
Dn → D (1.1)

mapping arbitrary, but finitely many arguments from a set D to an object in D which is rep-
resentative for the set of arguments itself or for one of its aspects. The actual set D as well as
the function A and their additional properties clearly depend on the application resp. the model
currently being investigated. One of the most prominent fields of applications of such aggregation
processes comprise, e.g., multi-criteria decision problems and group preference processes. Also in
economics and statistics, various sorts of means are frequently used for determining indices and
values representing a given set of data points or some of its aspects. Clearly, means and their
generalizations are also aggregation functions in the meaning introduced above.

1



2 Chapter 1. Introduction

Related problems

The major research lines in aggregation can roughly be divided into the following categories (com-
pare also [194]):

Constructions (and existence): Problems of this category refer to questions of constructions
and existence of aggregation functions allowing to model the theoretical demands and needs
of a (practical) aggregation problem.

As one of the most famous results w.r.t. the existence of an appropriate aggregation function,
we may quote Arrow’s (im)possibility theorem [11]. The application setting Arrow is dealing
with is group preference modelling and he investigates the following problem:

Provided that there are at least three alternatives which are ordered according to the
preferences of at least two individuals, does there exist a social welfare function such that
the social ordering of alternatives fulfills the following conditions?

(1) Among all the alternatives there is a set S of three alternatives such that, for any set
of individual orderings T1, . . . , Tn of the alternatives in S, there is an admissible set of
individual orderings R1, . . . , Rn of all the alternatives such that, for each individual i,
xRiy if and only if xTiy for x, y ∈ S. (This condition allows that the a priori
knowledge about the occurrence of individual orderings is incomplete).

(2) Let R1, . . . , Rn and R′1, . . . , R
′
n be two sets of individual ordering relations, R and R′

the corresponding social orderings, and P and P ′ the corresponding social preference
relations. Suppose that for each i the two individual ordering relations are connected
in the following ways: for x′ and y′ distinct from a given alternative x, x′R′iy

′ if and
only if x′Riy

′; for all y′, xRiy
′ implies xR′iy

′; for all y′, xPiy
′ implies xP ′iy

′. Then,
if xPy, xP ′y. (The social ordering shall respond positively, at least not negatively,
to alterations and enhancements of individual values; sometimes this property is
referred to as monotonicity).

(3) Let R1, . . . , Rn and R′1, . . . , R
′
n be two sets of individual orderings and let C(S) and

C′(S) be the corresponding social choice functions. If, for all individuals i and all x
and y in a given environment S, xRiy if and only if xR′iy, then C(S) and C′(S) are
the same (independence of irrelevant alternatives).

(4) The social welfare function is not to be imposed. A social welfare function is said
to be imposed, if, for some pair of distinct alternatives x and y, xRy for any set of
individual orderings R1, . . . , Rn, where R were the social ordering corresponding to
R1, . . . , Rn, i.e., some preferences are taboo and can not be influenced by the group
members.

(5) The social welfare function is not to be dictatorial. A social welfare function is said
to be dictatorial, if there exists an individual i such that, for all x and y, xPiy implies
xPy regardless of the orderings R1, . . . , Rn of all individuals other than i, where P
is the social preference relation corresponding to R1, . . . Rn.

Note that by a social welfare function Arrow means (see Definition 4 in [11])

... a process or rule which, for each set of individual orderings R1, . . . , Rn for alternative
social states (one ordering for each individual), states a corresponding social ordering of
alternative social states, R.

Further note that orderings in the sense of Arrow are connected and transitive relations on
the set of alternatives. Therefore, Arrow is considering an aggregation problem in the above
sense, i.e., he is looking for some function A :

⋃
n∈N D

n → D such that

R = A(R1, . . . , Rn)

with D being the set of all possible orderings over the set of alternatives, Ri the individual
orderings, and R the social order.



1.1. Aggregation — an approximation 3

Arrow showed that, for three alternatives and at least two individuals, there is no social
welfare function fulfilling all the demanded conditions at the same time. If there are at least
three alternatives which the members of the society are free to order in arbitrary way, then
every social welfare function satisfying Conditions 2 (monotonicity) and 3 (independence of
irrelevant alternatives) and yielding a social ordering must be either imposed or dictatorial.
Problems of construction refer, beside the existence of an appropriate aggregation function,
also to modifications, adoptions, extensions, and restrictions of existing aggregation func-
tions to new ones, like, e.g., the introduction of weights into a given aggregation process,
transformations, composed aggregation, or constructions like ordinal sums (see, e.g., [23]).
Typical related questions would be whether the procedures applied yield again an aggregation
function of a particular type fulfilling the theoretical and practical demands imposed.

Characterizations: Characterization problems aim at a most comprehensive and exhaustive
description of the aggregation function used. They also touch problems of finding equivalent,
but possibly more expressive, descriptions of aggregation functions in order to allow an easy
decision about the applicability of the aggregation function in different application settings
and to allow for an additional understanding of the aggregation procedure.
As an example let us mention two classical characterization results for quasi-arithmetic
means, i.e., functions Mf :

⋃
n∈N [a, b]n → [a, b], [a, b] ⊆ R, such that

Mf (x1, . . . , xn) = f−1

(
f(x1) + . . .+ f(xn)

n

)

with f : [a, b]→ [a, b] a continuous and strictly increasing function.
The first characterization has been provided in 1930 by Kolmogoroff [121] and at the same
time by Nagumo [139] and reads as follows:

A continuous, strictly increasing function M :
⋃

n∈N [a, b]n → [a, b] is symmetric, idempo-
tent, i.e., fulfills, for all x ∈ [a, b],

M(x, ..., x) = x,

is decomposable, i.e., for all n ∈ N, for all k ∈ {1, . . . , n}, and all xi ∈ [a, b], i ∈ {1, . . . , n},
M(x1, . . . , xk, xk+1, . . . , xn) = M(M(x1, . . . , xk), . . . ,M(x1, . . . , xk)︸ ︷︷ ︸

k times

, xk+1, . . . , xn),

and fulfills M(x) = x for all x ∈ [a, b] if and only if there exists a continuous, strictly
increasing function f on [a, b] such that M = Mf .

In [1], Aczél gave another characterization result for binary quasi-arithmetic means (compare
also [2]):

A continuous, strictly increasing function M : [a, b]2 → [a, b] is symmetric, idempotent,
and bisymmetric, i.e., for all xij ∈ [a, b], i, k ∈ {1, 2},

M(M(x11, x12),M(x21, x22)) = M(M(x11, x21),M(x12, x22))

if and only if there exists a continuous, strictly increasing function f on [a, b] such that

M(x1, x2) = f−1
(

f(x1)+f(x2)
2

)
.

These examples illustrate, that characterization results provide different viewpoints on the
same aggregation function. Moreover, most often, functional equations and inequalities are
instrumental in the description of relevant properties.

Selection and optimization: The last main group of problems in aggregation processes relates
to the selection of a particular aggregation function possibly from a class of aggregation
functions determined by a parameter set, i.e., refers to choosing an appropriate class of
functions, to optimizing a parameter set, or to fitting (parameters of) functions to a given
set of input-output data pairs.
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1.2 Focus of the thesis

The focus of the present thesis is set on problems of constructions (and existence), of characteriza-
tions of aggregation functions with an emphasis on particular types of functional equations. The
aggregation procedures investigated restrict to those being expressible by aggregation functions,
i.e., to the aggregation of arbitrary but finitely many arguments. Mathematically speaking, we
restrict to aggregation processes which can be described by a function of type (1.1). Aggregation
of infinitely many arguments and (finite as well as infinite) aggregation by (generalized) integrals
are not in the focus of this thesis.

In all cases considered in this thesis, we will assume that (D,∧,∨, 0, 1) is a bounded lattice.
Since each bounded lattice is also a bounded poset and since most often the order aspect is of prior
interest in our investigations we use the notation (D,≤, 0, 1) only. The order aspect allows us to
formulate monotonicity and boundary conditions for A. We briefly summarize a few basic notions
and properties of aggregation functions acting on bounded lattice which will be of relevance in
later investigations:

Definition 1.1. Consider a bounded lattice (L,≤, 0, 1). A function A :
⋃
n∈N L

n → L is called an
aggregation function on L if the following conditions are fulfilled, for all n ∈ N and for all xi, yi ∈ L,
i ∈ {1, . . . , n}:

(i) A(x1, . . . , xn) ≤ A(y1, . . . , yn), whenever xi ≤ yi, for all i ∈ {1, . . . , n},

(ii) A(x1) = x1,

(iii) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

If L = [0, 1], we refer to A :
⋃
n∈N[0, 1]n → [0, 1] simply as an aggregation function.

Note that every aggregation function A on a lattice L can be represented by a family (A(n))n∈N
of n-ary aggregation functions on L, i.e., by functions A(n) : Ln → L given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn)

where A(1) = idL and, for n ≥ 2, each A(n) is non-decreasing in each argument and satisfies
A(n)(0, . . . , 0) = 0 and A(n)(1, . . . , 1) = 1. Usually, the aggregation function A on L and the
family (A(n))n∈N of n-ary aggregation functions on L are identified with each other.

Note that depending on the application setting and therefore for corresponding lattices, other
notions for aggregation functions can be found in the literature, e.g., in operations research and
reliability theory, L = {0, . . . ,M} and represents different states of a system (component), aggre-
gation functions being referred to as structure functions (see, e.g., [16], and also [123]). In social
choice theory, L = 2X where A ∈ L represents the set of propositions that a group accepts, the
corresponding aggregation process is more specifically called judgment aggregation (see, e.g., [51]).
In many-valued logics L is interpreted as the lattice of truth values (e.g., [0, 1], some discrete chain,
or the diamond lattice, see also Chapter 2). In decision theory, L = [0, 1] might serve as the range
of monotone and normalized set functions modelling the importance or evaluation of subsets of the
involved criteria by individuals or a group of individuals, the aggregation function involved being
referred to as consensus function (compare, e.g., [55, 71, 124, 197]).

Definition 1.2. Consider a bounded lattice (L,≤, 0, 1) and an aggregation function A :
⋃
n∈N L

n →
L on L.

(i) A is called symmetric (or, depending on the application context, also commutative, anony-
mous, or neutral) if, for all n ∈ N and for all xi ∈ L, i ∈ {1, . . . , n},

A(x1, . . . , xn) = A(xα(1), . . . , xα(n)) (1.2)

for all permutations α = (α(1), . . . , α(n)) of {1, . . . , n}.
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(ii) A is called associative if, for all n,m ∈ N and all xi, yj ∈ L with i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn),A(y1, . . . , ym)). (1.3)

(iii) A is called bisymmetric if, for all n,m ∈ N and all xi,j ∈ L with i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

A(m)

(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)

= A(n)

(
A(m)(x1,1, . . . , xm,1), . . . ,A(m)(x1,n, . . . , xm,n)

)
. (1.4)

(iv) An element e ∈ L is called neutral element of A if, for all n ∈ N, for all xi ∈ L, i ∈ {1, . . . , n},
and each j ∈ {2, . . . , n− 1} it holds that

A(x1, . . . , xj−1, e, xj+1 . . . , xn) = A(x1, . . . , xj−1, xj+1, . . . , xn) (1.5)

as well as A(e, x2, . . . , xn) = A(x2, . . . , xn) and A(x1, . . . , xn−1, e) = A(x1, . . . , xn−1).

(v) An element a ∈ L is called annihilator of A if, for all n ∈ N, for all xi ∈ L, i ∈ {1, . . . , n},
and each j ∈ {2, . . . , n− 1}, it holds that

A(x1, . . . , xj−1, a, xj+1, . . . , xn) = a (1.6)

as well as A(a, x2, . . . , xn) = A(x1, . . . , xn−1, a) = a.

(vi) An element d ∈ [0, 1] is called an idempotent element of A, if A(d, . . . , d) = d for all n ∈ N.
We will abbreviate the set of idempotent elements by I(A) = {d ∈ L | A(d, . . . , d) = d}. In
case that I(A) = L, the aggregation function is called idempotent.

Because of (1.3), associative aggregation functions A on L are completely characterized by
their binary aggregation functions A(2) on L since all n-ary, n > 2, aggregation functions A(n) can
be constructed by the recursive application of the binary aggregation function A(2). Associative
and symmetric aggregation functions on L are also bisymmetric. On the other hand, bisymmetric
aggregation functions on L with some neutral element are associative and symmetric.

Definition 1.3. Consider two bounded lattices (L1,≤1, 01, 11) and (L2,≤2, 02, 12) and a order
reversing or order preserving lattice isomorphism ϕ : L2 → L1. Further let A be an aggregation
function on L1. Then the isomorphic transformation Aϕ is defined by

Aϕ(x1, . . . , xn) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn))

and is an aggregation function on L2. If for two aggregation functions A, B, on possibly different
bounded lattices, there exists a lattice isomorphism ϕ such that A = Bϕ or Aϕ = B, then we refer
to A and B as isomorphic aggregation functions.
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For binary (aggregation) functions on the unit interval we introduce the following additional
properties:

Definition 1.4. Consider a binary (aggregation) function A(2) : [0, 1]2 → [0, 1].

(i) A(2) is called 2-increasing (or, depending on the application context, also supermodular,
superadditive, quasi-monotone, or fulfilling moderate growth) if, for all x1, x2, y1, y2 ∈ [0, 1]
with x1 ≤ x2 and y1 ≤ y2,

∆y1,y2
x1,x2

(A(2)) = A(2)(x1, y1)−A(2)(x1, y2)−A(2)(x2, y1) + A(2)(x2, y2) ≥ 0. (1.7)

The expression ∆y1,y
′
2

x1,x2(A(2)) is called the A(2)-volume of the rectangle [x1, x2]× [y1, y2].

(ii) A(2) is 1-Lipschitz if, for all x1, y1, x2, y2 ∈ [0, 1],

|A(2)(x1, y1)−A(2)(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|. (1.8)

For more details and thorough expositions on different aspects of aggregation functions see
the edited volumes [24, 93] and the monographs [12, 92, 194]. Several aggregation functions on
(special) lattice structures have also been investigated in [A01, A02, A03] and, e.g., in [36, 42,
44, 47, 102, 171, 200].

1.3 Outline of the thesis

The focus of the present thesis is set on problems of constructions (and existence), of characteriza-
tions of aggregation functions with an emphasis on particular types of functional equations. The
schematic structure of the thesis is the following:

Part I, entitled “Aggregation Functions: Constructions and Characterizations”, is dedicated to
constructions and characterizations results for two classes of functions. First for triangular norms
and triangle functions which are both ordered Abelian semigroups acting on a bounded lattice
whose top element serves also as the neutral element of the semigroup operation. Triangular
norms are well-known concepts for modelling the evaluation of conjunctions in many-valued logics
(see the monographs [8, 112, 113] for thorough expositions). Triangle functions are a necessary
tool for an appropriate formulation of the triangle inequality in probabilistic metric spaces (see
also [181]). Whereas triangular norms act on a bounded lattice of truth values, in classical cases
most often the unit interval, the interpretation of the underlying domain of triangle functions
is different. Triangle functions are defined on a subset of distribution functions, called distance
distribution functions. W.r.t. the usual pointwise order of [0, 1]-valued functions, the set of distance
distribution functions with its greatest and smallest element constitutes again a bounded lattice.

The second class of functions discussed in Part I relates to (binary) copulas and quasi-copulas.
For both classes of functions the underlying lattice is the closed unit-interval equipped with the
standard order. Copulas are functions which join multivariate distribution functions with their
univariate marginal distribution functions (see also [108, 140]). In fact, according to Sklar’s the-
orem [187], for each random vector (X1, , . . . , Xn) there is a copula C (uniquely defined when-
ever all Xi, i ∈ {1, . . . , n}, are continuous) such that the joint distribution function FX1,...,Xn

of
(X1, . . . , Xn) may be represented, for all xi ∈ R, i ∈ {1, . . . , n}, by

FX1,...,Xn(x1, . . . , xn) = CX1,...,Xn(FX1(x1), . . . , FXn(xn))),

where, for all i ∈ {1, . . . , n}, FXi is the distribution function Xi. It is worth noting that the copula
C completely captures the dependence structure of the random vector (X1, . . . , Xn).

Quasi-copulas characterize operations on distribution functions induced by operations on ran-
dom variables defined on the same probability space [9, 82]. It is clear, that copulas and quasi-
copulas are of interest in statistics and probability theory, however, more recently they also become
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more important in, e.g., finance [26, 130], hydrology [155], preference modelling [48, 49, 50] and
also in many-valued logics [98].

For both classes of functions — triangular norms and triangle functions as well as bivariate
copulas and quasi-copulas — construction and characterizations problems are investigated in this
thesis.

The roots of all these functions can be traced back to the fields of probabilistic metric spaces,
earlier called statistical metric spaces. It has been the investigation of products of such spaces
which brought a special functional inequality, called dominance, to the fore. Several results on
dominance have been achieved in the framework of probabilistic metric spaces (compare also,
e.g., [6, 68, 190, 191], but also [180] and [8, 181] and the references therein), but several problems
remained open and of interest for many years.

Part II, entitled “Aggregation Functions: Dominance — A Functional Inequality”, focusses
on the functional inequality of dominance. Especially, dominance between triangular norms and
the question whether it constitutes a transitive and therefore also an order relation has been of
interest for many years. The results presented in Part II show the contributions to the (negative)
solution of this long open problem and provide several results for tools and techniques showing that
dominance, although not transitive in general, is transitive on several (parameterized) subsets of
triangular norms. The articles and results included discuss dominance between t-norms, copulas,
quasi-copulas, and conjunctors. Note that in [171], we have turned back to the roots of dominance
and discuss functional equations and inequalities, among which also dominance, between triangle
functions and operations on distance distribution functions.

Part III — “Aggregation and Decision Modelling: Two Case Studies” — finally focusses on two
application problems arising in the context of preference modelling and decision making touching
again construction and characterization problems as well as special functional equation.

The first article contains representation and construction results for so-called self-dual and
N -invariant aggregation functions unifying and extending two existing characterization results for
self-dual aggregation functions. Self-dual aggregation functions are important in aggregating [0, 1]-
valued relations which express individual intensities for a preference between two alternatives. In
order to rule out incomparability, it is often required that the degree to which some alternative a is
preferred to some alternative b should be in some sense complementary to the degree to which b is
preferred to a. This naturally leads to the use of reciprocal preference relations Ri, i.e., relations for
which Ri(a, b) +Ri(b, a) = 1 for all alternatives a, b. Aggregating such preference relations Ri into
a collective group preference relation R by preserving reciprocity demands self-dual aggregation
functions.

The second article touches the problem of two-step aggregation procedures in multi-person
multi-criteria decision problems. Several alternatives are evaluated by several criteria and by
several experts. Aggregating partial results first w.r.t. the criteria and than by experts should lead
to the same result as aggregating first w.r.t. the experts’ judgements and than by combining partial
results w.r.t. the evaluation criteria, i.e., the final result shall not depend on the order in which
the single aggregation steps are performed. The aggregation functions involved have to commute
in order to guarantee this demand. Commuting is expressed as a functional equation between the
aggregation functions involved and denotes a special case of the generalized bisymmetry equation
which is of relevance also in consistent aggregation in economy (compare also [3, 4, 5, 128]). The
article shows several properties and a characterization result for such functions, in particular if one
of the aggregation functions involved is symmetric, associative, and has a neutral element which is
not a boundary element of the unit interval. Such functions, called uninorms, are also relevant in
bipolar decision making in which the level of neutrality splits the evaluation scale into a positive
and a negative part, such that the presented results are also interesting for bipolar decision making.

Finally, we would like to stress that the following chapters are intended to give a rough overview
on the basic notions, the problems investigated, and the nature of the achieved results. Since
it is not possible to touch all aspects and results in full detail, unless repeating the included
contributions completely, the contents of these introductory parts do provide only a carefully
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chosen, but restricted selection of the results contained in the articles. In some cases the most
important findings have been quoted, in other cases we have decided to restrict to special cases only
illustrating the nature of the general results without discussing their complexity and generality to
the full extent. Throughout the chapters we have tried to outline which approach has been applied.
Nevertheless, we kindly invite the reader to still draw his/her attention to the attached original
contributions containing all details, additional aspects and proofs.

1.4 List of included articles

Part I. Aggregation Functions: Constructions and Characterizations

Triangular norms and triangle functions — two special semigroups

A01. S. Saminger. On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and
Systems, vol. 157, no. 10, pp. 1403–1416, 2006.

A02. S. Saminger-Platz, E.P. Klement, R. Mesiar. On extensions of triangular norms on
bounded lattices. Indagationes Mathematicae, vol. 19, no. 1, pp. 135–150, 2008.

A03. S. Saminger-Platz, C. Sempi. A primer on triangle functions I. Aequationes Mathemat-
icae, vol. 76, pp. 201–240, 2008.

Copulas and quasi-copulas — aggregation functions reflecting dependence structures

A04. J.J. Quesada-Molina, S. Saminger-Platz, C. Sempi. Quasi-copulas with a given sub-
diagonal section. Nonlinear Analysis, vol. 69, pp. 4654–4673, 2008.

A05. F. Durante, S. Saminger-Platz, P. Sarkoci. On representations of 2-increasing binary
aggregation functions. Information Sciences, vol. 178, pp. 4634–4541, 2008.

A06. F. Durante, S. Saminger-Platz, P. Sarkoci. Rectangular patchwork for bivariate copulas
and tail dependence. (accepted for publication in Communications in Statistics —
Theory and Methods).

Part II. Aggregation Functions: Dominance — A Functional Inequality

Dominance between ordinal sums — on the (non-)transitivity of dominance of t-norms

A07. S. Saminger, B. De Baets, H. De Meyer. On the dominance relation between ordinal
sums of conjunctors. Kybernetika, vol. 42, no. 2, pp. 337–350, 2006.

A08. S. Saminger, P. Sarkoci, B. De Baets. The dominance relation on the class of continuous
ordinal sum t-norms. In H.C.M. de Swart, E. Or lowska, M. Roubens, and G. Schmidt,
editors, Theory and Applications of Relational Structures as Knowledge Instruments II,
Springer, pp. 337–357, 2006.

Dominance between continuous Archimedean t-norms — easy-to-check conditions

A09. S. Saminger-Platz, B. De Baets, H. De Meyer. A generalization of the Mulholland
inequality for continuous Archimedean t-norms. Journal of Mathematical Analysis and
Applications, vol. 345, pp. 607–614, 2008.

A10. S. Saminger-Platz, B. De Baets, H. De Meyer. Differential inequality conditions for dom-
inance between continuous Archimedean t-norms. (accepted for publication in Mathe-
matical Inequalities & Applications).

A11. S. Saminger-Platz. The dominance relation in some families of continuous Archimedean
t-norms and copulas. (accepted for publication in Fuzzy Sets and Systems,
doi:10.1016/j.fss.2008.12.009).
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Part III. Aggregation and Decision Modelling: Two Case Studies

A12. K. Maes, S. Saminger, B. De Baets. Representation and construction of self-dual ag-
gregation operators. European Journal of Operation Research, vol. 177, pp. 472–487,
2007.

A13. S. Saminger-Platz, R. Mesiar, D. Dubois. Aggregation operators and commuting. IEEE
Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1032–1045, 2007.
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Constructions and Characterizations
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Chapter 2

Triangular norms and triangle
functions
Two special semigroups

2.1 Triangular norms on bounded lattices

Triangular norms on the unit interval

Triangular norms (briefly t-norms) on the unit interval were first introduced in the context of prob-
abilistic metric spaces [178, 180, 182], based on some ideas by Menger [131] aiming at an extension
of the triangle inequality for such spaces. Later on, they turned out to be indispensable tools
for the interpretation of the conjunction in many-valued logics [10, 86, 87, 97, 103], in particular
in fuzzy logics where the unit interval serves as set of truth values. Further, triangular norms
on the unit interval play an important role in various further fields like decision making [72, 94],
statistics [140], as well as the theories of non-additive measures [118, 147, 188, 198] and cooperative
games [22]. The formal definition of t-norms on the unit interval reads as follows:

Definition 2.1. A binary operation T : [0, 1]2 → [0, 1] is called a triangular norm (briefly t-norm)
if the following conditions are fulfilled, for all x, y, z ∈ [0, 1],

(i) T (x, z) ≤ T (y, z) whenever x ≤ y, (monotonicity)

(ii) T (x, y) = T (y, x), (commutativity)

(iii) T (x, T (y, z)) = T (T (x, y), z), (associativity)

(iv) T (x, 1) = x. (neutral element)

In other words, a t-norm T is a commutative, associative aggregation function with neutral
element 1, or a t-norm T turns [0, 1] into an ordered Abelian semigroup with neutral element 1.

Triangular norms on the unit interval and their properties have been studied extensively. In the
sequel, we restrict to those properties only which will be necessary for a complete understanding of
the following parts. Thorough overviews on triangular norms on the unit interval (including proofs,
further details and references) can be found in the monographs [8, 113], the edited volume [112]
and the articles [115, 116, 117].

It is an immediate consequence that, due to the boundary and monotonicity conditions as well
as the commutativity, any t-norm T fulfills, for all x ∈ [0, 1],

T (0, x) = T (x, 0) = 0, (2.1)
T (1, x) = x. (2.2)

13
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Figure 2.1: 3D plots of the four basic t-norms TM, TP, TL, and TD.

Therefore, all t-norms coincide on the boundary of the unit square [0, 1]2.

Example 2.2. The most prominent examples of t-norms on the unit interval are the minimum
TM, the product TP, the  Lukasiewicz t-norm TL and the drastic product TD (see also Figure 2.1).
They are given by:

TM(x, y) = min(x, y), (2.3)
TP(x, y) = x · y, (2.4)
TL(x, y) = max(x+ y − 1, 0), (2.5)

TD(x, y) =

{
0, if (x, y) ∈ [0, 1[2 ,
min(x, y), otherwise.

(2.6)

Obviously, the basic t-norms TM, TP and TL are continuous, whereas the drastic product TD

is not. Note that for a t-norm T its continuity is equivalent to the continuity in each component
(see also [113, 115]), for arbitrary x0, y0 ∈ [0, 1] both the vertical section T (x0, )̇ : [0, 1]→ [0, 1] and
the horizontal section T (,̇y0) : [0, 1]→ [0, 1] are continuous functions in one variable.

The comparison of two t-norms is done pointwisely, i.e., if, for all x, y ∈ [0, 1], it holds that
T1(x, y) ≥ T2(x, y), then we say that T1 is stronger than T2 and denote it by T1 ≥ T2. For each
t-norm T it holds that TD ≤ T ≤ TM. Moreover, the four basic t-norms are ordered in the following
way: TD < TL < TP < TM.

Ordinal sum t-norms are based on a construction for semigroups which goes back to A.H. Clif-
ford [29] (see also [30, 100, 150]) based on ideas presented in [31, 111]. It has been successfully
applied to t-norms in [74, 125, 179].

Definition 2.3. Consider an at most countable index set I. Let (]ai, bi[)i∈I be a family of non-
empty, pairwise disjoint open subintervals of [0, 1] and let (Ti)i∈I be a family of t-norms. Then the
function T : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

T (x, y) =

{
ai + (bi − ai)Ti( x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2
,

min(x, y), otherwise.
(2.7)

is called the ordinal sum and will be denoted by (〈ai, bi, Ti〉)i∈I .

Note that according to the fact that all [ai, bi] ⊆ [0, 1] and all ai as well as bi are ordered by the
natural order on R there exists a linearly ordered index set (J,�), J 6= ∅ and a family of intervals
[aj , bj ] such that [0, 1] = ⊕j∈J [aj , bj ], i.e., [0, 1] = ∪j∈J [aj , bj ] and aj1 ≤ aj2 whenever j1 � j2 for
all j1, j2 ∈ J . On each [aj , bj ] associative operations ∗j can be defined either as isomorphic, in fact
affine, transformations of the corresponding t-norms or by the minimum such that the ordinal sum
of t-norms is indeed an ordinal sum of semigroups in the original sense of Clifford [29]. Moreover,
note that an ordinal sum of t-norms yields again a t-norm, which is the (largest) extension of
t-norms acting on the subintervals [ai, bi] (see also Fig. 2.2).
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Figure 2.2: Example of an ordinal sum t-norm T = (〈a1, b1, T1〉, 〈a2, b2, T2〉, 〈a3, b3, T3〉).

It is further remarkable that the concept of ordinal sums of semigroups did not only provide
a method for constructing new triangular norms from given ones, but also led to a representation
of continuous triangular norms as (trivial or non-trivial) ordinal sums of isomorphic images of
the product and the  Lukasiewicz t-norm [125, 137, 180] (see also Remark 4.6 later). Note that a
full characterization of all, also non-continuous, t-norms is not yet known. For more results on
triangular norms and ordinal sums see, e.g., [106, 112, 113, 114].

Triangular norms on bounded lattices

Many-valued logics are usually based on a bounded lattice (L,≤, 0, 1) of truth values [86, 97,
126, 149, 189, 193], not necessarily being a chain (compare [13, 33, 58, 86]). In [83, 85] the unit
interval was already replaced by a bounded lattice, stimulating some investigations in topology
[84, 101, 104, 152] and logic [70, 102]. In all these cases, the conjunction is interpreted by some
triangular norm on L. Since the structure of t-norms is known for some special cases only it
was quite natural to study triangular norms from a more general viewpoint and on bounded
lattices [37, 109, 200], including special cases such as discrete chains [129], product lattices [36, 107],
or the lattice L∗ = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1} [43, 45, 46] .

Triangular norms on a bounded lattice (L,≤, 0, 1) (see also [37]) are defined in analogy to trian-
gular norms on the unit interval (compare Definition 2.1), fulfilling monotonicity, commutativity,
associativity, and having neutral element 1. Therefore, a t-norm T on a bounded lattice (L,≤, 0, 1)
turns L into an ordered Abelian semigroup with neutral element 1.

Note that the structure of the lattice L heavily influences which and how many t-norms on L
can be defined. However, for each, non-trivial, lattice L there exist at least two t-norms, i.e., the
minimum TLM(x, y) = x ∧ y and the drastic product

TLD(x, y) =
{
x ∧ y, if 1 ∈ {x, y},
0, otherwise,

which are always the greatest and smallest possible t-norms on the lattice L. Observe that up to
the trivial cases when |L| ≤ 2, we always have TLD 6= TLM. In case that |L| = 2, there is a unique
t-norm on L which is, in fact, the standard boolean conjunction. Finally, if |L| = 1, there is only
one binary operation on L. Although in many of the cases mentioned before the lattices of truth
values involved tend to be distributive, no additional assumptions on the lattice structure apart
from its boundedness are imposed.

2.1.1 Problem statements

Inspired by the investigations and results on ordinal sums of t-norms on the unit interval, the
following problems have been formulated:
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Can strongest and weakest extensions of t-norms on bounded (complete) sublattices be found?

Does an ordinal sum construction, similar to the one for ordinal sum t-norms on [0, 1], yield
again a t-norm independently of the choice of the sublattices and the choice of t-norms on
these sublattice?

In case that not, for which lattices are such arbitrary choices possible?

2.1.2 Main Results

The article [A01], entitled “On ordinal sums of triangular norms on bounded lattices”,
addresses all these questions for the case of a strongest extension T of t-norms Ti acting on subin-
tervals ([ai, bi])i∈I of a bounded lattice (L,≤, 0, 1) and discusses such extensions for the particular
case of L being a product lattice and for the case of L = L∗ as introduced above. In the article
“On extensions of triangular norms on bounded lattices” [A02] these results are further
extended to strongest and weakest extensions of a t-norm acting on a (complete) sublattice, not
necessarily being a subinterval, of L to a t-norm acting on L . We summarize a few of the most
relevant results, but refer for proofs, further details and results to the original contributions.

The approach for the strongest extension is inspired by the ideas of Clifford and by the concepts
for ordinal sum t-norms on the unit interval. More precisely, consider a bounded lattice (L,≤, 0, 1),
a bounded sublattice (S,≤, a, b) of L, and a t-norm TS : S2 → S on S. Then the extension
TLTS : L2 → L of TS to an operation on L is defined by

TLTS (x, y) =

{
TS(x, y), if (x, y) ∈ S2,

x ∧ y, otherwise.
(2.8)

Obviously, TLTS as defined by (2.8) is commutative and has neutral element 1. In case that it
yields a t-norm it is the strongest possible extension of TS on S to L. Since S is also a sublattice
of ([a, b] ,≤, a, b) with [a, b] = {x ∈ L | a ≤ x ≤ b}, we have

TLTS = TL
T

[a,b]
T S

,

i.e., we may first extend TS to [a, b] via (2.8) and repeat the same procedure to extend T [a,b]

TS to L.
Because of

T
[a,b]

TS = TLTS |[a,b]2 ,

a necessary condition for TLTS to be a t-norm is that T [a,b]

TS is a t-norm. Therefore, without loss
of generality we may restrict ourselves first to sublattices of L having the same bottom and top
element as L.

Proposition 2.4. [A02, Proposition 2.1] Let (L,≤, 0, 1) be a bounded lattice and (S,≤, 0, 1) a
bounded sublattice of L. The following are equivalent:

(i) For arbitrary t-norm TS : S2 → S on S, the operation TLTS is a t-norm on L.

(ii) For all (x, y) ∈ (S \ {1})× (L \S) we have x∧ y ∈ {0, x} and for all (x, y) ∈ (L \S)2 it holds
that x ∧ y ∈ S ⇒ x ∧ y = 0.

Note that condition (ii) equivalently expresses that for all x ∈ S \ {1} and for all y ∈ L \ S
either x ∧ y = 0 or x ≤ y is fulfilled and for all x ∈ S \ {0, 1} and all y, z ∈ L \ S, such that x ≤ y
and x ≤ z, also y ∧ z ∈ L \ S.

In [A01], the second extension step, i.e., the case of S being a subinterval [a, b] of the bounded
lattice (L,≤, 0, 1) has been treated extensively, revealing a series of necessary and sufficient condi-
tions, in particular incomparability conditions, for the lattice in order to guarantee that TL

T [a,b] is
indeed a t-norm extending arbitrary t-norm T [a,b] acting on a fixed subinterval [a, b] to L:
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Theorem 2.5. [A01, Theorem 4.8] Consider some bounded lattice (L,≤, 0, 1) and a subinterval
[a, b] of L. Then the following are equivalent:

(i) For arbitrary t-norm T [a,b] on [a, b], the operation TL
T [a,b] defined by (2.8) is a t-norm on L.

(ii) For all x ∈ L it holds that

(a) if x is incomparable to a, then it is incomparable to all u ∈ [a, b[,

(b) if x is incomparable to b, then it is incomparable to all u ∈ ]a, b].

Note that condition (ii) can be further equivalently expressed by the fact that for all maximal
chains C ⊆ L connecting 0 and 1, it holds that,

]a, b[ ∩ C 6= ∅ ⇒ [a, b] ⊆ C,

or, compare also [A02, Proposition 3.1], that for all x ∈ L,

{x ∈ L | ∃y ∈ ]a, b[ : x ≤ y or y ≤ x} = [0, a] ∪ [a, b] ∪ [b, 1] .

In [A01], the necessary and sufficient conditions are illustrated by several examples and the
results are applied to product lattices and to L = L∗ showing that the strongest extension as
introduced above is, up to some trivial cases, not an appropriate way to create t-norms on product
lattice resp. on L∗. Moreover, only special lattices allow for an arbitrary choice of the sublattice
as well as the t-norm involved:

Theorem 2.6. [A01, Theorem 4.9] Consider a bounded lattice (L,≤, 0, 1). Then the following are
equivalent:

(i) For arbitrary interval [a, b] and arbitrary t-norm T [a,b] on [a, b], the operation TL
T [a,b] defined

by (2.8) is a t-norm on L.

(ii) For all x, y ∈ L it holds that {x ∧ y, x ∨ y} ⊆ {0, 1, x, y}.

(iii) L is a horizontal sum of chains.

Based on the results obtained for S being a subinterval of L, the following statement can be
made:

Corollary 2.7. [A02, Corollary 3.2] Let (L,≤, 0, 1) be a bounded lattice, (S,≤, a, b) a bounded
sublattice of L and TS : S2 → S a t-norm on S. Assume that for each (x, y) ∈ (S \{b})×([a, b]\S)
we have x∧ y ∈ {a, x}, that for each (x, y) ∈ ([a, b] \S)2 it follows that x∧ y ∈ S implies x∧ y = a,
and that, in case ]a, b[ 6= ∅, condition (ii) in Theorem 2.5 holds. Then TLTS is a t-norm on L.

In both articles [A01, A02], also the cases of several sublattices resp. subintervals as well
as further properties of the t-norms involved like, e.g., the intermediate value property and the
relationship to residuated lattices are discussed and investigated.

However, by the previous results it becomes already obvious that the strongest extension of
arbitrary t-norms on arbitrary sublattices leads to rather restrictive demands on the underlying
lattices. Quite different is the situation when looking for the weakest possible extension of some
TS on some (complete) sublattice S.

Definition 2.8. [A02, Definition 6.1] Let (L,≤, 0, 1) be a bounded lattice, (S,≤, a, b) a com-
plete and bounded sublattice, and TS a t-norm on the corresponding sublattice S. Then define
TS∪{0,1} : (S ∪ {0, 1})2 → (S ∪ {0, 1}) by

TS∪{0,1}(x, y) =





x ∧ y, if 1 ∈ {x, y},
0, if 0 ∈ {x, y},
T (x, y), otherwise.

(2.9)
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Further define WL
TS : L2 → L by

WL
TS (x, y) =

{
x ∧ y, if 1 ∈ {x, y},
TS∪{0,1}(x∗, y∗), otherwise,

(2.10)

with x∗ = sup{z | z ≤ x, z ∈ S ∪ {0, 1}} for all x ∈ L.

Proposition 2.9. [A02, Propositions 6.3, 6.4] Let (L,≤, 0, 1) be a bounded lattice and assume
some complete, bounded sublattice (S,≤, a, b). Let TS be a t-norm on the corresponding sublattice
S. Then WL

TS : L2 → L defined by (2.10) is a t-norm on L and it is the smallest possible t-norm
extension of TS on L.

For t-norms on several sublattices the weakest extension is defined by in the following way:

Definition 2.10. [A02, Defintion 6.5] Let (L,≤, 0, 1) be a bounded lattice and I some index set.
Further, let (Si,≤, ai, bi)i∈I be a family of complete and bounded sublattices of L such that the
family (]ai, bi[)i∈I consists of pairwise disjoint subintervals of L. Finally, let (TSi)i∈I be a family
of t-norms on the corresponding sublattices Si. Then define WL

TSi
: L2 → L by

WL
TSi (x, y) =

{
x ∧ y, if 1 ∈ {x, y},
TSi∪{0,1}(x∗i , y

∗
i ), otherwise,

(2.11)

with x∗i = sup{z | z ≤ x, z ∈ Si ∪ {0, 1}} and define W : L2 → L by

W (x, y) = sup
i∈I

WL
TSi (x, y). (2.12)

Note that, by definition, W is a symmetric and monotone operation on L which has neutral
element 1. However, further restrictions on the family of sublattices have to be applied in order to
guarantee that W is indeed an extension of arbitrary t-norms TSi on the sublattices Si.

Proposition 2.11. [A02, Proposition 6.6] Let (L,≤, 0, 1) be a bounded lattice and I some index
set. Further, let (Si,≤, ai, bi)i∈I be a family of complete and bounded sublattices of L such that
the family (]ai, bi[)i∈I consists of pairwise disjoint subintervals of L. Further assume that for all
i, j ∈ I with i 6= j it holds that

(i) if x ∈ Sj then x∗i /∈ Si \ {ai, bi}, i.e., x∗i ∈ {0, ai, bi},

(ii) if x ∈ Sj \ {bj} and x∗i = ai, then (aj)∗i ≥ ai, and

(iii) if x ∈ Sj \ {bj} and x∗i = bi, then (aj)∗i = bi.

Then for all t-norms TSi on Si and for all t-norms TSj on Sj with i 6= j it holds that WL
TSi

(x, y) ≤
TSj (x, y) for all (x, y) ∈ S2

j and WL
TSj

(x, y) ≤ TSi(x, y) for all (x, y) ∈ S2
i , i.e.,

WL
TSi |Sj

2 ≤ TSj and WL
TSj |Si

2 ≤ TSi .

Moreover, W given by (2.12) is a monotone and symmetric extension of each TSi , i.e., W |S2
i

=
TSi for all i ∈ I, which has neutral element 1.

It is also shown in [A02] that, although associativity of W can not be proven in general, for
several important cases, like Cartesian products and ordinal sums of bounded sublattices, or L
being a chain, also the associativity of W holds, i.e., that the construction indeed yields again a
t-norm on L.
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2.2 Triangle functions

From a historical point of view, triangle functions were introduced by Šerstnev in [183, 196] in his
definitive formulation of the triangle inequality in probabilistic metric spaces (see, e.g., [176] for a
historical introduction to these spaces). Triangle functions constitute an important class of binary
operations on a subspace of distribution functions, namely distance distribution functions which
form the basic objects in the discussion of probabilistic metric spaces (see [180] and [181] and the
references therein for an extensive discussion of such spaces). We briefly recall the definition of
distance distribution functions and of triangle functions as introduced by Šerstnev:

Definition 2.12. A function F : R → [0, 1], with R denoting the extended real line, is called a
distance distribution function if it is non-decreasing, left-continuous on R, and fulfills F (∞) = 1,
and F (0) = 0. The set of all distance distribution functions will be denoted by ∆+.

The elements of ∆+ are partially ordered by the usual pointwise order

F ≤ G if and only if F (x) ≤ G(x) for all x ∈ R.

Moreover, (∆+,≤, ε∞, ε0) is a bounded lattice with bottom and top element given, for all x ∈ R,
by

ε∞(x) =

{
1, if x =∞,
0, otherwise,

and ε0(x) =

{
1, if x > 0,
0, otherwise.

Definition 2.13. A triangle function is a binary commutative and associative operation on ∆+

which is non-decreasing in each argument and has neutral element ε0.

In fact, triangle functions are triangular norms on the special bounded lattice (∆+,≤, ε∞, ε0).

2.2.1 Problem statement, results and additional remarks

Similar as in the case of t-norms on the unit interval a full characterization of all triangle functions
is not yet known. Already in 1983, in [180] several open problems have been formulated focusing
on a clarification of the structure of triangle functions in general resp. for special subclasses. We
briefly quote a few of them:

Problem 7.9.1: [...] In particular determine all continuous triangle functions and, if possible,
find a representation corresponding to the one given in Theorems 5.3.81 and 5.4.1.2.

Problem 7.9.5: [...] Suppose that T is a continuous t-norm. To what extent does the
structure of T determine the structure of τT,L

3? In particular, if T is an ordinal sum, is
τT,L an ordinal sum?

Problem 7.9.6: Find conditions on T on L that are both necessary and sufficient (rather
than merely sufficient) for τT,L to be a triangle function. [...]

Partial answers to these problems can be found in the literature (see also Chapter 7 in the notes
of [181] and the references therein). However, several of the proofs of these results are not always
easily accessible. Moreover, additional and new results clarifying further properties of triangle
functions could be achieved in collaboration with Carlo Sempi.

The article [A03], entitled “A primer on triangle functions I”, contains all these results.
Since, as its title already indicates, it has also been the intention to offer not only new results,
but also a handy reference for an (updated and extended) introduction to triangle functions we
refrain from quoting single results from this forty pages contribution but refer directly to the

1Representation of continuous t-norms on some real-valued interval [a, e] as minimum, continuous Archimedean
t-norm, or ordinal sums thereof.

2Representation of continuous Archimedean t-norms on some real-valued interval [a, e] by means of generators.
3Denoting a special class of triangle functions based on a t-norm T and an operation L.
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original article. Note that the first part of the primer mainly focusses on constructions of triangle
functions, important subclasses and their properties. Functional equations and inequalities are
extensively treated in the second part entitled “A primer on triangle functions II”, submitted to
Aequationes Mathematicae in Spring 2008.

However, a few additional remarks w.r.t. the concept of strongest and weakest extensions of
t-norms on bounded lattices, as discussed in the previous section, can and should be made:

The set E+ of step functions, i.e., of distance distribution functions εa : R→ [0, 1], a ∈ [0,∞],
for a <∞, being defined by

εa(x) =

{
0, if x ≤ a,
1, otherwise,

forms an important (complete) sublattice (E+,≤, ε∞, ε0) of the lattice (∆+,≤, ε∞, ε0), i.e., it
allows to embed the real line into probabilistic metric spaces.

Since E+ is a complete sublattice and, due to Proposition 2.9, the weakest extension W∆+

τE

of some triangle function τE acting on E+ as defined by (2.10) yields indeed a triangle function
on ∆+. However, for the strongest extension as defined by (2.8), the incomparability conditions of
Proposition 2.4 are not fulfilled, i.e., the strongest extension yields not a triangle function ∆+ for
arbitrary triangle functions on E+. Similar arguments hold for the strongest and weakest extension
of triangle functions acting on some subinterval [εa, εb] ⊂ ∆+, a, b ∈ ]0,∞[, to a triangle function
on ∆+.



Chapter 3

Bivariate copulas and
quasi-copulas
Aggregation functions reflecting dependence structures

Copulas were first introduced by Sklar in 1959 in [187]. Bivariate copulas are functions that join
bivariate distribution functions with their univariate marginal distribution functions. Moreover,
the copula of a random pair (X,Y ) completely captures the dependence structure of (X,Y ) due
to Sklar’s theorem [187] which states that for each random vector (X,Y ) there is a copula CX,Y
(uniquely defined whenever X and Y are continuous), such that the joint distribution function
FX,Y of (X,Y ) may be represented by

FX,Y (x, y) = CX,Y (FX(x), FY (y))

with FX and FY the marginal distribution functions of X and Y , respectively.
In addition, every copula is the restriction of a bivariate distribution function to the unit square

whose marginals are uniform on [0, 1] (see [108, 140] for a thorough introduction to copulas). We
introduce (bivariate) copulas as special classes of binary aggregation functions:

Definition 3.1. A binary aggregation function C : [0, 1]2 → [0, 1] is called a copula if it is
2-increasing and has neutral element 1.

Note that every copula C has also annihilator 0, i.e., C(x, 0) = C(0, x) = 0 for every x ∈ [0, 1].
Moreover, they are 1-Lipschitz and for every copula C it holds that TL ≤ C ≤ TM. Therefore, in
the fields of copulas, TL and TM are also referred to as the Fréchet-Hoeffding bounds of copulas,
most often denoted by W resp. M . Note that also TP is a copula, in the framework of copulas
usually denoted by Π and referred to as the independence copula. We follow the notation W , Π,
M throughout this section. Note also that an associative copula is also a (continuous) t-norm on
[0, 1] and that 1-Lipschitz t-norms are copulas (see, e.g., [113]).

Quasi-copulas were introduced by Alsina et al. in [9] and characterized by Genest et al. in [82];
they characterize binary operations on distribution functions induced by operations on random
variables defined on the same probability space.

Definition 3.2. A binary aggregation function Q : [0, 1]2 → [0, 1] is called a quasi-copula, if it is
1-Lipschitz, has neutral element 1 and annihilator 0.

Every copula is a quasi-copula, however not every quasi-copula is also 2-increasing, i.e., a
copula. Such quasi-copulas are usually referred to as proper quasi-copulas. Note that also for
every quasi-copula Q it holds that W ≤ Q ≤M .

21
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Copulas and quasi-copulas are of considerable interest in several fields of applications, for
instance, in finance [26, 130], hydrology [155], but also preference modelling [48, 49, 50] and, due
to the close relationship between copulas and t-norms, also in many-valued logics [98]. Therefore,
having at one’s disposal a large number of examples of (quasi-)copulas is of great practical and
theoretical interest.

During the last few years several researchers have focussed their attention on new methods
for constructing families of bivariate copulas and quasi-copulas with desirable properties and a
stochastic interpretation. Some of these approaches have been devoted to copulas and quasi-copulas
with given values along specified sections or subsets of the unit square, like, e.g., diagonals [60, 61,
69, 75, 141], horizontal, vertical, or affine sections connecting opposite sides of the unit square [62,
119, 120], or grid structures [34, 185]. Additionally, best-possible bounds for the functions thus
constructed [76, 119, 142, 143] have been investigated.

3.1 Problem statements and results

Quasi-copulas with a given sub-diagonal section

In the spirit mentioned above, in [A04] “Quasi-copulas with a given sub-diagonal section”
we studied (quasi-)copulas with a given sub-diagonal section, i.e., with given values along an
affine section with slope one connecting perpendicular sides of the unit square. More precisely the
following problems have been tackled:

Given a sub-diagonal δx0 , i.e., an function being admissible for serving as a sub-diagonal
section of a copula (for more details see [A04, Section 2]), does there exist a copula or a
quasi-copula Qδx0

whose sub-diagonal section δQx0
coincides with δx0 , i.e., for which δQx0

= δx0?

Given a sub-diagonal δx0 , if Qδx0
denotes the set of all quasi-copulas whose sub-diagonal

sections coincide with δx0 , what are the best-possible bounds for Qδx0
?

The first question has been answered by a series of constructions for (quasi-)copulas with a
given sub-diagonal section, relevant aspects being:

W -ordinal sums (see Section 3 in [A04]) allowing to determine (quasi-)copulas with a given
sub-diagonal section from (quasi-)copulas with a given diagonal section,

patchwork resp. splicing techniques for obtaining new quasi-copulas from two given (quasi-
)copulas, all coinciding in the corresponding subdiagonal section (see Section 4 in [A04]),
and

symmetrization techniques for obtaining symmetric quasi-copulas with a given sub-diagonal
section (see Section 5 in [A04]).

Some of these constructions allow to obtain also new copulas from given ones [A04, Section 3],
in other cases sufficient (and necessary) conditions for yielding a copula could be provided [A04,
Theorem 5, Corollary 7, Corollary 8]. In Section 7 in [A04] the construction of a symmetric copula
with a given sub-diagonal section is proven for particular cases of sub-diagonals. Although all these
constructions allow to find (quasi-)copulas Q with a given subdiagonal section δQx0

, only the lower
bound of the set of all quasi-copulas Qδx0

coinciding in their sub-diagonal section can be obtained
by these methods. Note that the lower bound is not only a quasi-copula but also a copula. In [A04,
Section 8], also the existence and structure of the upper bound, being a quasi-copula, is proven.
For the readers’ convenience we summarize the result on upper and lower bounds of Qδx0

:
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Figure 3.1: Sub-domains of [0, 1]2.

Theorem 3.3. [A04, Theorems 13,14] Consider x0 ∈ ]0, 1[ and a sub-diagonal δx0 . We distinguish
the following sub-domains of the unit square (see also Fig. 3.1):

TU (x0) = {(u, v) ∈ [0, 1]2 | u− x0 ≤ v},
TL(x0) = {(u, v) ∈ [0, 1]2 | u− x0 ≥ v},
S2(x0) = [x0, 1]× [0, 1− x0] .

Then the copula Bδx0
: [0, 1]2 → [0, 1] and the quasi-copula Gδx0

: [0, 1]2 → [0, 1] defined by

Bδx0
(u, v) =

{
mx0(u, v)− hx0(u, v), if (u, v) ∈ S2(x0),
max(u+ v − 1, 0), otherwise,

Gδx0
(u, v) =

{
min(u, v,M ′x0

(u, v)− qx0(u, v)), if (u, v) ∈ TU (x0),
min(m′x0

(u, v),M ′x0
(u, v)− qx0(u, v)), otherwise,

where

mx0(u, v) = max(min(u− x0, v), 0), Mx0(u, v) = min(max(u− x0, v), 1− x0),
m′x0

(u, v) = min(u− x0, v), M ′x0
(u, v) = max(u− x0, v),

and

hx0(u, v) = min(t− δx0(t) | t ∈ [mx0(u, v),Mx0(u, v)]),
qx0(u, v) = max(t− δx0(t) | t ∈ [mx0(u, v),Mx0(u, v)]),

are the smallest resp. greatest (quasi-)copula whose sub-diagonal section at x0 coincides with δx0 ,
i.e., Bδx0

≤ Q ≤ Gδx0
for all Q ∈ Qδx0

.

2-increasing (aggregation) functions

Several of the already mentioned constructions with given values along sections or subsets relate
or at least touch the problem of determining binary 2-increasing functions on a rectangular subset
of the unit square with prescribed marginal behavior. In case of grid construction methods, as
introduced by De Baets and De Meyer [34], the rectangular substructure of the domain and the
fixed values are obvious. In case of copulas with a given horizontal and/or vertical section [62, 120]
the underlying domain is split into two resp. four rectangles, the values of the copulas along all
its margins of the subset being determined either by the boundary conditions of a copula or the
corresponding sections. Similarly the gluing method of Siburg and Stoimenov for binary copulas
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leads to a distinction of two subrectangles of the unit square [185]. But also in case of affine
sections connecting perpendicular sides of the unit square, like it is the case for (quasi-)copulas with
a given sub-diagonal section (see also Fig. 3.1), symmetrization techniques lead to subrectangles
resp. subsquares of the unit square where the behavior of the copula is determined by its marginal
behavior w.r.t. that subdomain.

Although binary 2-increasing functions with given margins acting on some rectangular subdo-
main of the unit square appear in all these fields, a full investigation and characterization of such
functions had not been undertaken before. First results had been achieved in [63] where 2-increasing
aggregation functions, acting on [0, 1]2, had been investigated leading to some constructions and
special properties.

However, a full characterization of all binary 2-increasing functions with given upper as well as
upper and lower margins has been achieved later independently by Saminger-Platz, at that time on
a sabbatical leave at Lecce university, and by Durante together with Sarkoci in Linz. The results
are published in the co-authored article [A05], entitled “On representations of 2-increasing
binary aggregation functions”, and we briefly recall the most important theorems contained
therein providing characterizations of 2-increasing aggregation functions with given upper resp.
upper and lower margins (for further constructions, properties and bounds as well as proofs and
examples see additionally [A05]).

Note that the 2-increasingness property has been introduced for binary (aggregation) functions
only, such that in this section we restrict to binary aggregation functions only, denoting them
simply by A. Its corresponding margins are, for all a, b ∈ [0, 1], given by the functions haA,
vbA : [0, 1]→ [0, 1], defined, for all x, y ∈ [0, 1], by

haA(x) = A(x, a) and vbA(y) = A(b, y).

Theorem 3.4. [A05, Theorem 10] Consider a binary, 2-increasing aggregation function A with
upper margins h1

A and v1
A, then there exists a copula C such that A(x, y) = C(h1

A(x), v1
A(y)) for all

x, y ∈ [0, 1].

Theorem 3.5. [A05, Theorem 17] Consider a binary 2-increasing aggregation function A with
margins h0

A, h1
A, v0

A, v1
A such that λA = VA([0, 1]2) > 0. Then there exists a copula C such that

A(x, y) = λAC (ϕ1(x), ϕ2(y)) + h0
A(x) + v0

A(y) (3.1)

with

ϕ1 : [0, 1]→ [0, 1], ϕ1(x) = 1
λA

(
h1
A(x)− h0

A(x)− h1
A(0)

)
,

ϕ2 : [0, 1]→ [0, 1], ϕ2(y) = 1
λA

(
v1
A(y)− v0

A(y)− v1
A(0)

)
.

Note that for a binary 2-increasing aggregation function A, λA = VA([0, 1]2) = 0 is equivalent
to the fact that A is a modular function, i.e., A(x, y) = hA0 (x) + vA0 (y) = hA1 (x) + vA1 (y)− 1 for all
x, y ∈ [0, 1] (compare also [63, Propositions 2.3, 3.6]).

Although the previous theorems might look very basic at first sight, they are of considerable
value. In particular Theorem 3.5 allows to obtain a full characterization of continuous, binary,
2-increasing and non-decreasing functions with given margins and acting on some rectangular
subdomain of the unit square as shown in the article “Rectangular patchwork for bivariate
copulas and tail dependence” [A06].

Theorem 3.6. [A06, Theorem 2.1] Consider a binary 2-increasing function F : [a1, a2]×[b1, b2]→
[c1, c2], continuous and non-decreasing in each argument, with margins hb1F , hb2F , va1

F , and va2
F and

RanF = [c1, c2]. Put λF = VF ([a1, a2]× [b1, b2]). If λF = 0, then

F (x, y) = hb1F (x) + va1
F (y)− hb1F (a1).
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If λF > 0, then there exists a unique copula C such that

F (x, y) = λFC

(
ϕF1 (x)
λF

,
ϕF2 (y)
λF

)
+ hb1F (x) + va1

F (y)− hb1F (a1), (3.2)

with

ϕF1 (x) = VF ([a1, x]× [b1, b2]) = hb2F (x)− hb2F (a1)− hb1F (x) + hb1F (a1),

ϕF2 (y) = VF ([a1, a2]× [b1, y]) = va2
F (y)− va2

F (b1)− va1
F (y) + va1

F (b1).

Based on this characterization it is possible to obtain a full characterization of rectangular
patchworks of copulas and to allow a different viewpoint on many of the constructions of copulas
mentioned above with given grid structure resp. given horizontal and/or vertical sections. By a
rectangular patchwork we denote the following construction:

Definition 3.7. Consider a copula C, a family (Ri)i∈I of subrectangles of [0, 1]2 such thatRi∩Rj ⊆
∂Ri∩∂Rj whenever i 6= j, i.e., Ri and Rj have common points just on their boundaries. Moreover,
for every i ∈ I, let us consider a continuous mapping Fi : Ri → [0, 1], which is non-decreasing in
each argument, such that C = Fi on ∂Ri. We call the function F : [0, 1]2 → [0, 1] defined, for all
x, y ∈ [0, 1], by

F (x, y) =

{
Fi(x, y), if (x, y) ∈ Ri,
C(x, y), otherwise,

(3.3)

the patchwork of (Fi)i∈I into the copula C.

Moreover, the function F is a copula if and only if, for all i ∈ I, Fi is 2-increasing on Ri [34].
Note that one of the oldest rectangular patchwork construction for copulas are ordinal sums of
copulas (see [140]), a construction already encountered in Section 2.1 on triangular norms.

Ordinal sums of copulas are defined in an analogous way to ordinal sums of t-norms. In terms
of rectangular patchwork they are obtained by considering C to be equal to M , every Ri to be a
square of the type [ai, bi]

2, where 0 ≤ ai < bi ≤ ai+1 < bi+1 ≤ 1 and the functions Fi being all
affine isomorphic transformations of copulas.

The rectangular patchwork in combination with the result obtained in Theorem 3.6 allows to
construct new copulas:

Theorem 3.8. [A06, Theorem 2.2] Consider a family of copulas (Ci)i∈I and a family of rectangles
(Ri =

[
ai1, a

i
2

]
×
[
bi1, b

i
2

]
)i∈I of [0, 1]2 such that Ri ∩Rj ⊆ ∂Ri ∩ ∂Rj, for every i 6= j.

Consider further a copula C and put λi = VC(Ri). Then the function C̃ : [0, 1]2 → [0, 1] defined,
for every x, y ∈ [0, 1], by

C̃(x, y) =





λiCi

(
VC(

[
ai1, x

]
×
[
bi1, b

i
2

]
)

λi
,
VC(

[
ai1, a

i
2

]
×
[
bi1, y

]
)

λi

)

+hb
i
1
C (x) + v

ai
1
C (y)− hb

i
1
C (ai1), if (x, y) ∈ Ri with λi 6= 0,

C(x, y), otherwise,

is a copula. We denote such a copula C̃ by (〈Ri, Ci〉)Ci∈I .

Note that by the construction, the rectangles Ri are not bound to a particular shape or position
within the unit square, like, e.g., squares along the main diagonal as it is the case for ordinal sum
copulas. Moreover, copulas Ci allow to distribute the mass λi, assigned to the rectangle Ri by C,
differently on Ri. Choosing Ci = W resp. Ci = M for all i ∈ I leads therefore to the smallest resp.
largest copula coinciding on the margins of all Ri and being equal to C on [0, 1]2 \∪i∈IRi. Clearly,
every copula C can be represented as a rectangular patchwork (〈[0, 1]2, C〉)C , however, in general
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this representation is not unique. Moreover, for M , Π, and W it holds that (〈Ri, C〉)Ci∈I = C for
all families of rectangles (Ri)i∈I and C ∈ {M,Π,W}.

In [A06], but also [64] it is illustrated how several constructions like, e.g., W -ordinal sums,
copulas with given horizontal and/or vertical sections, and binary glued copulas can be interpreted
as rectangular patchwork copulas. Moreover, several additional aspects like, e.g., copulas with dif-
ferent tail dependencies or absolutely continuous copulas with given diagonal section, are discussed
and illustrated by examples in [A06].



Part II

Aggregation Functions:

Dominance — A Functional Inequality
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Chapter 4

Preliminaries

4.1 Motivation

In 1942, Karl Menger introduced the concept of probabilistic (originally denoted as statistical)
metric spaces [131], in which the distance between two objects p and q is characterized by a
probability distribution function, more precisely by a distance distribution function, Fpq rather
than by a real number. For any positive number x, the value Fpq(x) is interpreted as the probability
that the distance between p and q is less than x. The metric in such spaces has been defined in
analogy to the axioms of (pseudo-)metric spaces, and the most disputable axiom has been the
probabilistic analogue of the triangle inequality (see also, e.g., [177, 180, 181] for more details on
the historic developments). Its actual variant goes back to Šerstnev [182, 183] and reads as follows,
for all objects p, q, r,

Fpr ≥ τ(Fpq, Fqr)

with τ being a triangle function (see Definition 2.13). During the investigation of topological
aspects of probabilistic metric spaces, products and quotients of such spaces have been touched
(e.g., [6, 68, 190, 191]) such that the property of dominance came to the fore. In [190], Tardiff
introduced the notion of a σ-product of two probabilistic metric spaces with σ some triangle
function. He further showed that the σ-product of two probabilistic metric spaces under the triangle
function τ is again a probabilistic metric space under τ if and only if σ dominates τ (σ � τ), i.e.,
if, for all distance distribution functions F1, F2, G1, G2 ∈ ∆+, the following inequality is fulfilled

σ(τ(F1, G1), τ(F2, G2)) ≥ τ(σ(F1, F2), σ(G1, G2)).

Therefore, dominance constitutes a binary relation on the class of all triangle functions [190], and
this notion was soon generalized to operations on an arbitrary partially ordered set [180] and
therefore also for t-norms.

Dominance is further instrumental for the preservation of a variety of properties most often
expressed by some inequality, during (dis-)aggregation processes and when construction fuzzy
(equivalence and order) relations on product spaces (for particular examples and details see also [17,
18, 19, 35, 50, 157, 163]). The dominance property was therefore introduced also in the framework
of aggregation functions where it enjoyed further development.

In addition, dominance has an additional interpretation in aggregation processes, in particular
in two-step evaluation procedures of given data matrices as will be illustrated immediately. It is
worth mentioning that, besides these application points of view, the property of dominance turned
out to be an interesting mathematical notion per se, since it constitutes a binary relation on a set
of operations defined by a functional inequality of the operations involved. In the next sections we
will illustrate various aspects of the discussion on dominance — in the framework of aggregation
functions as well as in particular for t-norms.
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4.2 Definitions, properties, and problems

The definition of dominance between binary operations on a partially ordered set as introduced by
Schweizer and Sklar [180] reads as follows:

Definition 4.1. Consider a partially ordered set (P,≤) and two associative binary operations f, g
on P with common neutral element e. Then f dominates g (f � g), if, for all x, y, u, v ∈ P ,

f(g(x, y), g(u, v)) ≥ g(f(x, u), f(y, v)).

Note that f and g need not be monotone and as such need not be (binary) aggregation functions.
However, Schweizer and Sklar indicated already in [180] that due the common neutral element,
dominance implies an ordering between the operations involved (choose y = u = e). That the
converse is in general not true as has been shown by Tardiff in [192].

Dominance between aggregation functions

Since associativity, contrary to monotonicity, is not a defining property of aggregation functions,
let us look at the definition of dominance in the framework of aggregation functions (compare
also [163]:

Definition 4.2. Consider two aggregation functions A,B on a bounded lattice (L,≤, 0, 1). Then
A dominates B (A� B), if, for all n,m ∈ N and for all xij ∈ L with i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
it holds that

A
(
B(x11, . . . , xm1), . . . ,B(x1n, . . . , xmn)

)
≥ B

(
A(x11, . . . , x1n), . . . ,A(xm1, . . . , xmn)

)
. (4.1)

In Fig. 4.1, dominance between two aggregation functions A and B is illustrated. It shows
that dominance can be interpreted in a nice way in two-step aggregation procedures: Arguments
(xij), given as a data matrix, shall be evaluated in two steps. The evaluation along the rows
shall be carried out by A whereas the evaluation along the columns is done by B. In the first
aggregation step partial results, either ai’s or bi’s, are computed which are then mapped to final
values b = A(b1, . . . , bn) resp. a = B(a1, . . . , am). If A dominates B, then b ≥ a, i.e., independently
of the actual arguments xij . An evaluation first by columns and then by rows will always lead to a
greater result than aggregating first rows and then columns. The aggregation procedure depends
on the “agenda” in which the aggregation steps are carried out, however, dominance among the
aggregation functions involved at least guarantees that the results will always be ordered in a
given way. Clearly, it is also of interest to determine for which aggregation functions A and B the
final results are the same for arbitrary arguments. Such operations are called to commute with
each other and are discussed in Chapter 8 with an emphasis on (bipolar) decision making in a
multi-criteria multi-person decision problem.

A −→
B x11, . . . , x1n → a1

↓
...

...
...

xm1, . . . , xmn → am
↓ . . . ↓
b1 bn b ≥ a

Figure 4.1: Dominance in two-step aggregation procedures.
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Related problems

As mentioned already earlier, dominance constitutes a binary relation on the set of all aggregation
functions on a bounded lattice. As such the following questions arise naturally:

Which additional properties does dominance have as a binary relation on the set of all
aggregation functions?

Which properties does it have for special subclasses of aggregation functions? In particular
when does it constitute a reflexive, antisymmetric, transitive, i.e., an order relation?

For a given aggregation function A, how does the set of dominated resp. dominating aggre-
gation functions look like?

Several properties of dominance, in particular constructions of dominating functions, in case of
aggregation functions on [0, 1] have been investigated in [163] and in case of aggregation functions
on ∆+ in [171]. A characterization of the set of dominating aggregation functions for the four basic
t-norms is provided in [163].

Since later on we will focus on dominance between commutative and associative aggregation
functions with a common neutral element, we briefly summarize relevant results (compare also [163,
180]):

Proposition 4.3. Consider two aggregation functions A, B on a bounded lattice (L,≤, 0, 1).

If A resp. B are associative, then A dominates B if and only if A(2) dominates B resp. A
dominates B(2). If both A and B are associative, then A dominates B if and only if A(2)

dominates B(2), i.e., if, for all x, y, u, v ∈ L,

A(B(x, y),B(u, v)) ≥ B(A(x, u),A(y, v)).

Assume that A resp. B possess neutral elements eA resp. eB. Then A� B implies eA ≥ eB.
If eA = eB, then dominance implies ordering, i.e., A� B implies A ≥ B.

A dominates itself if and only if it is bisymmetric.

Consider a bounded lattice (K,≤K , 0K , 1K). Then the following are equivalent:

(i) A dominates B.

(ii) Aϕ dominates Bϕ for all order preserving isomorphisms ϕ : L→ K.

(iii) Aϕ is dominated by Bϕ for all order reversing isomorphisms ϕ : L→ K.

4.3 On the transitivity of dominance

Summarizing the basic properties, dominance constitutes a reflexive relation on any set of asso-
ciative and symmetric aggregation functions. Moreover, it is also antisymmetric in case there is
common neutral element. The question whether dominance is also transitive, and therefore an
order relation, has been of interest for many years:

Already in 1983, in [180, Problem 12.11.3] Schweizer and Sklar pose the following open
problem for binary associative operations on a partially ordered set (P,≤) with common
neutral element e ∈ P :

Is the relation “dominates” always transitive? If not, under which conditions is it transi-

tive?

In 2003, in [7, Problem 17] Alsina, Frank and Schweizer formulate the question in a more
explicit way for t-norms:
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Is the dominance relation transitive, hence a partial order, on the set of all t-norms? If

not, for what subsets is this the case?

A counterexample for the first problem, has been shown by Sherwood and has been published
in 2006 in [8]:

Example 4.4. Consider a linearly ordered set P = {0, 1, 2}, 0 < 1 < 2, and the binary operations
F,G,H on P defined by the following tables

F 0 1 2
0 0 1 2
1 1 0 2
2 2 2 2

G 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

H 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

Then F,G,H are commutative, associative operations with common neutral element 0 and fulfill

H � G and G� F but H 6� F.

Note that F is not increasing in each argument, and therefore not an aggregation function.
A counterexample for dominance between aggregation functions (on the unit interval) has been
found by Saminger and published in 2005 in [157]:

Example 4.5. Consider aggregation functions on the unit interval, in particular, the weakest
aggregation function Aw, given by,

Aw(x1, . . . , xn) =

{
1, if x1 = . . . = xn = 1,
0, otherwise,

the minimum min and the arithmetic mean M. Then

Aw � min and min�M but Aw 6�M.

Dominance between triangular norms

Recall that, because of the properties of t-norms, dominance is already a reflexive and antisym-
metric relation on the set of t-norms. Moreover, it holds that for all t-norms T

TM � T and T � TD.

The question on the transitivity of dominance in particular for t-norms remained unanswered for
quite some time. Several results on dominance in special families of t-norms had been achieved, by
applying different proof techniques, and had been published until 2005 (see, e.g., [A07] and [113,
173, 184]). Fig. 4.2 provides a condensed and brief overview of these results. As is clear from
the corresponding Hasse-diagrams these partial results supported the conjecture that dominance
would indeed be transitive, either due to its rare occurrence within the family considered or due
to its abundant occurrence, in accordance with the parameter of the family. Finally, in 2006, the
conjecture was disproved by Sarkoci [175]: dominance is not transitive on the class of (continuous)
t-norms. The counterexample was found among ordinal sum t-norms and was based on properties
of dominance proven in the more general framework of aggregation functions with neutral element
1 ([A07]).

Although the long open problem is now answered to the negative, the question for which subsets
of t-norms dominance still constitutes an order relation remains open. Of particular interest are
continuous t-norms, for which a complete characterization in terms of ordinal sums and continuous
Archimedean t-norms is available (see also Section 2.1). We briefly summarize the most important
and relevant facts and notions on continuous t-norms:
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Family of t-norms Tλ � Tµ Hasse- Reference
if and only if diagram

Schweizer-Sklar (TSS
λ )λ∈[−∞,∞] λ ≤ µ Sherwood, 1984

[184]

Aczél-Alsina (TAA
λ )λ∈[0,∞]

λ ≥ µDombi (TD
λ )λ∈[0,∞] Klement et al., 2000

Yager (TY
λ )λ∈[0,∞] [113]

Frank (TF
λ )λ∈[0,∞] λ = 0, λ = µ, µ =∞ . . .

Sarkoci, 2005

Hamacher (TH
λ )λ∈[0,∞] [173]

Mayor-Torrens (TMT
λ )λ∈[0,1] λ = 0, λ = µ

. . .

Saminger et al., 2005

Dubois-Prade (TDP
λ )λ∈[0,1] [159]

Figure 4.2: Dominance in selected families of t-norms.

Remark 4.6 (Representation of continuous t-norms (see also [113, 125, 137, 180])). A t-norm T is
continuous if and only if it is uniquely representable as an ordinal sum of continuous Archimedean
t-norms, i.e., there exist an index set I, a family (]ai, bi[)i∈I of non-empty pairwise disjoint
open subintervals of [0, 1], a family (Ti)i∈I of continuous Archimedean t-norms such that T =
(〈ai, bi, Ti〉)i∈I (see Definition 2.3).

Therefore, for arbitrary continuous t-norm T exactly one of the following cases holds:

(i) T is the minimum TM, i.e., I = ∅,
(ii) T is a continuous Archimedean t-norm (|I| = 1), i.e., there exists a continuous strictly

decreasing function t : [0, 1]→ [0,∞] fulfilling t(1) = 0 such that

T (x, y) = t(−1)(t(x) + t(y))

for all x, y ∈ [0, 1]. The function t is referred to as the additive generator of the t-norm T and
the function t(−1) : [0,∞]→ [0, 1], defined, for all x ∈ [0,∞], by t(−1)(x) = t−1(min(t(0), x))
denotes the pseudo-inverse of t. In case that t(0) =∞, then T is strict, i.e., there exists an
order isomorphism ϕ : [0, 1] → [0, 1] such that Tϕ = TP. For t(0) < ∞, T is nilpotent, i.e.,
there exists an order isomorphism ϕ : [0, 1]→ [0, 1] such that Tϕ = TL.

(iii) T is a non-trivial ordinal sum with strict or nilpotent summand t-norms, i.e., I 6= ∅ and no
]ai, bi[ equals ]0, 1[.

Since TM dominates all t-norms, the problem of dominance between continuous t-norms can
be reduced to the following cases: dominance between ordinal sum t-norms, between continu-
ous Archimedean t-norms as well as between ordinal sum t-norms and continuous Archimedean
t-norms. For all cases the following problems are relevant:

Find, if possible, necessary and/or sufficient conditions for dominance between t-norms of
the corresponding classes.

If possible, formulate the conditions in such a way that they can be checked easily, i.e., based
on the ordinal sum structure or on the basis of the additive generators involved.

In the following two chapters we provide answers to these questions, giving an overview on the
most important findings of the articles [A07–A11].
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Chapter 5

Dominance between ordinal sums
On the (non-)transitivity of dominance between t-norms

5.1 Problem statement

As outlined in the previous chapter, dominance between ordinal sum operations, in particular
ordinal sum t-norms, is of interest for clarifying the structure of dominance between continuous
t-norms. In [A07], entitled “On the dominance relationship between ordinal sums of
conjunctors”, the dominance relation between ordinal sums of conjunctors has been investigated.
Note that conjunctors are aggregation functions with neutral element 1 and are also referred to as
semicopulas [66]. For any conjunctor C it holds that TD ≤ C ≤ TM. Clearly, t-norms are asso-
ciative and commutative conjunctors, quasi-copulas are 1-Lipschitz conjunctors, and copulas are
2-increasing conjunctors. Therefore, the results on dominance between ordinal sums of conjunctors
are valid also for ordinal sums of t-norms and (quasi-)copulas.

Throughout this chapter we consider C1 = (〈ai, bi, C1,i〉)i∈I and C2 = (〈aj , bj , C2,j〉)j∈J to be
two ordinal sum conjunctors defined in complete analogy to ordinal sums of t-norms, i.e., I and J
being at most countable index sets, (]ai, bi[)i∈I resp. (]aj , bj [)j∈J families of pairwise disjoint open
subsets of [0, 1], and (C1,i)i∈I resp. (C2,j)j∈J families of conjunctors, such that, for all x, y ∈ [0, 1],

C1(x, y) =

{
ai + (bi − ai)C1,i( x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2
,

min(x, y), otherwise,
(5.1)

and for C2 accordingly.
Since TM dominates all conjunctors we may additionally assume that I 6= ∅ 6= J . Note that

I and J might, in general, be different (see also Fig. 5.1). In case that I 6= J , we additionally
assume that the summand operations C1,i and C2,j are all ordinally irreducible, i.e., have them-
selves no other ordinal sum representation than (〈0, 1, C1,i〉) resp. (〈0, 1, C2,j〉). Therefore, the
representations of C1 and C2 based on their summand carriers ]ai, bi[ resp. ]aj , bj [ and summand
operations C1,i resp. C2,j are the finest possible ordinal sum representations of C1 resp. C2. For
continuous ordinal sum t-norms this means that all summand operations involved are continuous
Archimedean t-norms. Note that the present representation covers dominance between non-trivial
continuous ordinal sum t-norms as well as dominance between an ordinal sum t-norm and a con-
tinuous Archimedean t-norm, in the latter case it holds that either |I| = 1 or |J | = 1 and the
corresponding summand t-norm being continuous Archimedean.

Based on these notions we can pose the following problem statement which has been investigated
in [A07]:

For two ordinal sum conjunctors C1 = (〈ai, bi, C1,i〉)i∈I and C2 = (〈aj , bj , C2,j〉)j∈J ,
provide necessary and sufficient conditions such that C1 dominates C2.
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C1

a1,1 b1,1
a1,2 b1,2

a1,3 b1,3

C2

a2,1 b2,1
a2,2 b2,2

C1

a1,1 b1,1

C2

a2,1 b2,1
a2,2 b2,2

(a) (b)

Figure 5.1: Examples of two ordinal sum conjunctors C1 and C2 differing in their summand carriers.

5.2 Main results

If C1 and C2 coincide in their summand carriers, i.e., I = J , but differ only in their summand
operations, which in this case need not be ordinally irreducible, then the following holds:

Proposition 5.1. [A07, Proposition 4] Consider two ordinal sum conjunctors C1 = (〈ai, bi, C1,i〉)i∈I
and C2 = (〈ai, bi, C2,i〉)i∈I . Then C1 dominates C2 if and only if, for all i ∈ I, C1,i dominates
C2,i, i.e., all summand operations must be in the corresponding dominance relationship.

We now consider the case that I 6= J and assume w.l.o.g. that C1 and C2 are represented
by ordinally irreducible summand operations only. Since all conjunctors are bounded from above
by TM and, because of the common neutral element, dominance implies ordering, it holds imme-
diately that if C1 dominates C2, then C1(x, y) = TM(x, y) whenever C2(x, y) = TM(x, y) [A07,
Proposition 5]. Geometrically speaking, if an ordinal sum conjunctor C1 dominates an ordinal sum
conjunctor C2, then it must necessarily consist of more regions where it acts as TM than does C2.
Two such cases are displayed in Fig. 5.1 (a) and (b).

Corollary 5.2. [A07, Corollary 1] Consider two ordinal sum conjunctors C1 = (〈a1,i, b1,i, C1,i〉)i∈I
and C2 = (〈a2,j , b2,j , C2,j〉)j∈J with ordinally irreducible summand operations only. If C1 domi-
nates C2 then for all i ∈ I there exists some j ∈ J such that [a1,i, b1,i] ⊆ [a2,j , b2,j ].

Note that each [a2,j , b2,j ] can contain several or even none of the summand carriers [a1,i, b1,i]
(see also Fig. 5.1 (a) and (b)). Hence, for each j ∈ J , we can consider the subset IJ of I

Ij = {i ∈ I | [a1,i, b1,i] ⊆ [a2,j , b2,j ]} . (5.2)

Based on these notions and due to Proposition 5.1, dominance between two ordinal sum con-
junctors can be characterized in the following way:

Proposition 5.3. [A07, Proposition 6] Consider two ordinal sum conjunctors C1, C2, i.e., C1 =
(〈a1,i, b1,i, C1,i〉)i∈I and C2 = (〈a2,j , b2,j , C2,j〉)j∈J , with ordinally irreducible summand operations
only. Then C1 dominates C2 if and only if

(i) I = ∪j∈JIj,

(ii) Cj1 � C2,j for all j ∈ J with Cj1 = (〈ϕj(a1,i), ϕj(b1,i), C1,i〉)i∈Ij
and ϕj : [a2,j , b2,j ]→ [0, 1],

ϕj(x) = x−a2,j

b2,j−a2,j
.

As a consequence of Proposition 5.3, the study of dominance between ordinal sum conjunctors
can be reduced to the study of dominance of an ordinal sum conjunctor over a single ordinally
irreducible conjunctor.
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0 < λ ≤
1

2
1

TL

0 < λ ≤
1

2
1

TL

TL

0 1

TL

Figure 5.2: Three ordinal sum t-norms based on TL only violating, for λ ∈ ]0, 0.5], the transitivity
of the dominance relation (compare also [175] and [A08]).

Idempotent elements

Idempotent elements allow to formulate a necessary and easy-to-check condition for dominance
between conjunctors. Recall that we denote the set of idempotent elements of a conjunctor C by
I(C), i.e., I(C) = {x ∈ [0, 1] | C(x, x) = x}.
Proposition 5.4. [A07, Proposition 7] If a conjunctor C1 dominates a conjunctor C2, then the
following hold:

(i) I(C2) ⊆ I(C1),

(ii) I(C1) is closed under C2.

As shown by Sarkoci (see [172, 174] and [A08]), in case of ordinal sum t-norms where all sum-
mand operations are exclusively equal to TL, the necessary condition turns into a characterization
allowing to determine counterexamples to the conjecture of the transitivity of dominance on the
set of continuous ordinal sum t-norms.

Example 5.5. [175, Section 3] Consider the three t-norms T1 = (〈0, 0.5, TL〉), T2 = (〈0, 0.5, TL〉,
〈0.5, 1, TL〉) and T3 = TL (see also Fig. 5.2). Then T1 can be expressed as the ordinal sum t-norm
(〈0, 0.5, TL〉, 〈0.5, 1, TM〉) and therefore, based on Proposition 5.1, T1 dominates T2 since TL � TL

and TM � TL. T2 dominates T3 since its set of idempotent element, namely I(T2) = {0, 0.5, 1}, is
closed under T3. However, T1 does not dominate T3 = TL. To see this choose x = u = 0.75 and
y = v = 0.5, then

T1(T3(x, y), T3(u, v)) = T1(0.25, 0.25) = 0,
T3(T1(x, u), T1(y, v)) = T3(0.75, 0.5) = 0.25.

Therefore, T1 � T2 and T2 � T3, but T1 6� T3.

5.3 Additional remarks

The results presented in the previous section focus on ordinal sums of conjunctors. In [A07] addi-
tional results on dominance among conjunctors, not necessarily being ordinal sums, are presented.
Moreover, first proofs for dominance in the family of Mayor-Torrens and Dubois-Prade t-norms are
formulated. The contribution [A08], entitled “The dominance relation on the class of con-
tinuous t-norms from an ordinal sum point of view”, provides, among others, an overview
on the ordinal sum results in terms of t-norms, different proofs for dominance in the family of
Mayor-Torrens and Dubois-Prade t-norms, additional results on families of ordinal sum t-norms
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based on TL resp. TP only as well as a counterexamples to the transitivity of dominance for ordinal
sums involving either only TL or TP. Moreover, a geometrical interpretation of the dominance of
some t-norm T over TL resp. TP is offered.



Chapter 6

Dominance between continuous
Archimedean t-norms
Easy-to-check conditions

6.1 Problem statement

Due to the representation of continuous Archimedean t-norms by continuous additive generators
(see also Remark 4.6 (ii)), dominance between continuous Archimedean t-norms can be expressed
in terms of their additive generators, invoking another functional inequality, the (generalized)
Mulholland inequality. Already in 1984, Tardiff [192] showed the relationship between the Mul-
holland inequality and dominance among two strict t-norms. The Mulholland inequality, intro-
duced by Mulholland in 1950 [138], is a generalization of the Minkowski inequality and has been
studied, mainly, independently from the context of dominance in the framework of functional
equations [105, 138, 191, 192]: Mulholland, already in [138], proved some necessary and a suffi-
cient condition for a continuous, strictly increasing function h : [0,∞[ → [0,∞[ with h(0) = 0 to
fulfill the inequality. Tardiff, in [192], showed a different sufficient condition, and in 2002, Jar-
czyck and Matkowski clarified the relationship between the two sufficient conditions, showing that
Tardiff’s condition implies that of Mulholland [105] (see also [A09, Section 4] for an overview on
the corresponding relevant conditions). It is remarkable that, although the relationship between
the Mulholland inequality and dominance between two strict t-norms has been known since years,
these properties have hardly ever been used for proving or disproving dominance between strict
t-norms, one exception being the case when the Mulholland inequality turns into the Minkowski
inequality leading to the dominance relationship in the families of Aczél-Alsina, Dombi, and Yager
t-norms [113]. Moreover, it is clear that the Mulholland inequality and its various corresponding
sufficient and necessary conditions are applicable for the case of strict t-norms only. Therefore, the
following problems have been investigated:

Provide an equivalent description of dominance between two continuous Archimedean t-norms
in terms of their additive generators (generalized Mulholland inequality).

Formulate, if possible, sufficient and necessary conditions for some function h to fulfill the
generalized Mulholland inequality.

In this case, find in addition equivalent easy-to-check-conditions of the sufficient and necessary
conditions in terms of the additive generators involved to apply the achieved results for
proving or disproving dominance between continuous Archimedean t-norms.

39
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In the contribution “A generalization of the Mulholland inequality for continuous
Archimedean t-norms” [A09] the first two questions have been investigated and solved. Note
that the sufficient and necessary conditions for a function h to fulfill the generalized Mulholland
inequality have been proven independently of the context of dominance and are therefore valid for
a larger class of functions than needed for the solution to the dominance problem.

The third problem of easy-to-check conditions and their applications has been studied and
solved in the article “Differential inequality conditions for dominance between continuous
Archimedean t-norms” [A10] in which also the strength of the conditions has been demonstrated
by several results. New results on dominance in families of t-norms and copulas as well as a
comprehensive overview on the conditions are provided in the contribution “The dominance
relation in some families of continuous Archimedean t-norms and copulas” [A11]. We
briefly quote the most relevant findings in the following sections, however refer for proofs, more
details and additional results to the articles mentioned before.

6.2 The generalized Mulholland inequality

Let us first introduce the equivalent formulation of dominance between two continuous Archimedean
t-norms by means of their additive generators:

Theorem 6.1. [A09, Theorem 1] Consider two continuous Archimedean t-norms T1 and T2 with
additive generators t1 and t2. Then T1 dominates T2 if and only if the function h : [0,∞]→ [0,∞]
defined by h = t1 ◦ t(−1)

2 fulfills, for all a, b, c, d ∈ [0, t2(0)],

h(−1)(h(a) + h(c)) + h(−1)(h(b) + h(d)) ≥ h(−1)(h(a+ b) + h(c+ d)) . (6.1)

with h(−1) : [0,∞]→ [0,∞] the pseudo-inverse of the non-decreasing function h, given by h(−1) =
t2 ◦ t(−1)

1 .

Note that, for two additive generators t1, t2, the function h fulfills h(0) = 0 and is constant on
[t2(0),∞], i.e., h(x) = t1(0) for all x ∈ [t2(0),∞]. In case that T2 is strict, then necessarily T1 has
to be strict (otherwise it leads to a contradiction to the dominance relationship resp. the induced
order) and therefore t2(0) = ∞ and h being a strictly increasing bijection with h(−1) being the
standard inverse h−1 of h.

In case some function h : [0,∞] → [0,∞] fulfills (6.1), for all a, b, c, d ∈ [0,∞], we say that
it fulfills the generalized Mulholland inequality. For the investigation of some function h to fulfill
the generalized Mulholland inequality properties like convexity, the geometric convexity, and the
logarithmic convexity of a function showed up to be most relevant.

Definition 6.2. A function h : [0,∞[ → [0,∞[ is called geometric convex (geo-convex for short)
on ]0, t[, with t ∈ ]0,∞[, if, for all x, y ∈ ]0, t[,

h(
√
xy) ≤

√
h(x)h(y) .

It is called logarithmic convex (log-convex for short) on ]0, t[ if the function log ◦h : [0,∞[ →
[−∞,∞[ is convex on ]0, t[.

For a continuous function h such that h(]0,∞[) ⊆ ]0,∞[, its geo-convexity on ]0, t[ is equivalent
to the convexity of the function log ◦h ◦ exp on ]−∞, log(t)[. Clearly, if h(0) = 0, then the geo-
convexity holds also on [0, t[. Further, if h is strictly increasing, then its log-convexity on ]0, t[
implies its geo-convexity on ]0, t[.

Based on these notions we can formulate the sufficient and necessary conditions for a function
h to fulfill the generalized Mulholland inequality:
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Theorem 6.3. [A09, Theorem 6] Consider a function h : [0,∞] → [0,∞] and some fixed value
t ∈ ]0,∞[ such that

(i) h is continuous and strictly increasing on [0, t] as well as convex on ]0, t[,

(ii) h(0) = 0 and h(x) ≥ h(t) whenever x ≥ t,
(iii) h is geo-convex on ]0, t[.

Define the functions g : [0,∞]→ [0,∞] and H : [0,∞]2 → [0,∞] by

g(x) =

{
h−1(x), if x ∈ [0, h(t)] ,
t, otherwise,

(6.2)

H(x, y) = g(h(x) + h(y)). (6.3)

Then the following inequality holds, for all a, b, c, d ∈ [0,∞],

H(a+ b, c+ d) ≤ H(a, c) +H(b, d). (6.4)

Proposition 6.4. [A09, Proposition 9] Consider a function h : [0,∞] → [0,∞] and some fixed
value t ∈ ]0,∞[ such that

(i) h is continuous and strictly increasing on [0, t] as well as convex on ]0, t[,

(ii) h(0) = 0 and h(x) ≥ h(t) whenever x ≥ t,
(iii) h is differentiable on ]0, t[ and h′ is geo-convex on ]0, t[.

Define the function g : [0,∞] → [0,∞] by (6.2) and the function H : [0,∞]2 → [0,∞] by (6.3).
Then the following inequality holds, for all a, b, c, d ∈ [0,∞],

H(a+ b, c+ d) ≤ H(a, c) +H(b, d).

Proposition 6.5. [A09, Proposition 10] Consider a function h : [0,∞] → [0,∞] and some fixed
value t ∈ ]0,∞[ such that

(i) h is continuous and strictly increasing on [0, t],

(ii) h(0) = 0 and and h(x) ≥ h(t) whenever x ≥ t.
Define the function g : [0,∞]→ [0,∞] by (6.2) and the function H : [0,∞]2 → [0,∞] by (6.3). If
H fulfills (6.4), for all a, b, c, d ∈ [0,∞], then h is convex on ]0, t[.

For two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2, the
corresponding function h : [0,∞] → [0,∞], defined by h = t1 ◦ t(−1)

2 is continuous and strictly
increasing on [0, t2(0)]. It fulfills h(0) = 0 as well as h(x) = h(t2(0)) = t1(0) for all x ≥ t2(0).
Moreover, it holds that H(x, y) = h(−1)(h(x) + h(y)), in accordance with Theorem 6.1. There-
fore and by taking into account that the log-convexity of h implies its geo-convexity, the above
results can be restated for dominance between continuous Archimedean t-norms (see also [A09,
Propositions 11–13] and [A10, Propositions 3–5]):

Proposition 6.6. Consider two continuous Archimedean t-norms T1 and T2 with additive gener-
ators t1 and t2 and define the function h : [0,∞] → [0,∞] by h = t1 ◦ t(−1)

2 . Then the following
hold:

(i) If h is convex on ]0, t2(0)[ and log- or geo-convex on ]0, t2(0)[, then T1 dominates T2.

(ii) If h is differentiable and convex on ]0, t2(0)[ and if h′ is log- or geo-convex on ]0, t2(0)[, then
T1 dominates T2.

(iii) If T1 dominates T2, then h is convex on ]0, t2(0)[.

The relationships between the sufficient conditions for dominance are summarized in Fig. 6.1.
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Consider two continuous Archimedean t-norms T1 and T2 with additive generators
t1 and t2. If the function

h : [0,∞]→ [0,∞] , h = t1 ◦ t(−1)
2

is convex on ]0, t2(0)[ and . . .

h′ exists and h′ exists and
h′ is log-convex on ]0, t2(0)[ =⇒ h′ is geo-convex on ]0, t2(0)[

=⇒

h is log-convex on ]0, t2(0)[ =⇒ h is geo-convex on ]0, t2(0)[

=⇒

h fulfills (6.1)
for all a, b, c, d ∈ [0, t2(0)]⇐

⇒

T1 � T2

Figure 6.1: Sufficient conditions for dominance between two continuous Archimedean t-norms T1

and T2.

6.3 Easy-to-check conditions

Although the, sufficient as well as necessary, conditions can be visualized easily, concrete proofs
might become cumbersome, in particular for two members of a parametric family, because h is a
composed function of an additive generator and the pseudo-inverse of another additive generator.
Therefore, we aim at equivalent conditions expressed directly by the additive generators involved
which could be achieved in case the additive generators have derivatives of sufficiently high order.
The corresponding conditions, therefore, offer local descriptions of the corresponding properties
of h. Again we summarize the most important results and refer for proofs and further details
to [A10, Section 4]:

In the sequel, T1 and T2 denote two continuous Archimedean t-norms with continuous additive
generators t1 and t2. Then the function h : [0,∞]→ [0,∞], h = t1 ◦ t(−1)

2 is continuous and strictly
increasing on ]0, t2(0)[, h(0) = 0 and h(]0, t2(0)[) ⊆ ]0, t1(0)[. Moreover, we assume that t1 and t2
are sufficiently often (i.e., once, twice or three times) differentiable.

Proposition 6.7. [A10, Proposition 6] The function h is convex on ]0, t2(0)[, i.e., h′′(x) ≥ 0, for
all x ∈ ]0, t2(0)[, if and only if, for all u ∈ ]0, 1[,

t′1(u)t′′2(u)− t′′1(u)t′2(u) ≥ 0.

Proposition 6.8. [A10, Proposition 7] The function h is log-convex on ]0, t2(0)[, i.e.,

h(x)h′′(x)− h′2(x) ≥ 0,

for all x ∈ ]0, t2(0)[, if and only if, for all u ∈ ]0, 1[,

t′1
2(u)t′2(u) + t1(u)

(
t′1(u)t′′2(u)− t′′1(u)t′2(u)

)
≥ 0.

Proposition 6.9. [A10, Proposition 8] The function h is geo-convex on ]0, t2(0)[, i.e.,

h(x)h′(x) + x
(
h(x)h′′(x)− h′2(x)

)
≥ 0,



6.4. Further results 43

for all x ∈ ]0, t2(0)[, if and only if, for all u ∈ ]0, 1[,

t′1
2(u)− t1(u)t′′1(u)
t1(u)t′1(u)

≥ t′2
2(u)− t2(u)t′′2(u)
t2(u)t′2(u)

.

Corollary 6.10. [A10, Corollary 10] The function h′ is log-convex on ]0, t2(0)[, i.e., for all x ∈
]0, t2(0)[,

h′(x)h′′′(x)− h′′2(x) ≥ 0,

if and only if, for all u ∈ ]0, 1[,

t′1
2(u)

(
2t′′2

2(u)− t′2(u)t′′′2 (u)
)
≥ t′2

2(u)
(
t′′1

2(u)− t′1(u)t′′′1 (u)
)

+ t′1(u)t′′1(u)t′2(u)t′′2(u).

Corollary 6.11. [A10, Corollary 11] The function h′ is geo-convex on ]0, t2(0)[, i.e., for all
x ∈ ]0, t2(0)[,

h′(x)h′′(x) + x
(
h′(x)h′′′(x)− h′′2(x)

)
≥ 0,

if and only if, for all u ∈ ]0, 1[,

t2(u)
(
t′1(u)t′2(u)

(
t′′′1 (u)t′2(u)− t′′′2 (u)t′1(u)

)

−
(
t′′1(u)t′2(u)− t′′2(u)t′1(u)

)(
2t′1(u)t′′2(u) + t′′1(u)t′2(u)

))

≥ t′1(u)t′2
2(u) (t′1(u)t′′2(u)− t′′1(u)t′2(u)) .

6.4 Further results

Since these new conditions allow to investigate dominance among strict or nilpotent as well as be-
tween strict and nilpotent t-norms, they have been applied for proving resp. disproving dominance
in various families of t-norms resp. Archimedean copulas but also for dominance between members
of different families of t-norms:

In Section 5.1 of [A10] another proof for dominance between members of the family of Schweizer-
Sklar t-norms is provided. In Section 6 of [A10] and in [161] the dominance relation between
members of the family of Dombi t-norms and Yager t-norms resp. Aczél-Alsina t-norms have been
investigated.

Proposition 6.12. Consider the families of Dombi t-norms (TD
λ )λ∈[0,∞], of Yager t-norms

(TY
µ )µ∈[0,∞], and of Aczél-Alsina t-norms (TAA

µ )µ∈[0,∞]. For all λ, µ ∈ [0,∞], it holds that TD
λ

dominates TY
µ if and only if λ ≥ µ. For all λ, µ ∈ [0,∞] with µ ≤ 1 ≤ λ, it follows that TD

λ

dominates TAA
µ .

In Section 5.2 of [A10] the dominance relationship between members of the family of Sugeno-
Weber t-norms has been studied.

Proposition 6.13. Consider the family of Sugeno-Weber t-norms (TSW
λ )λ∈[0,∞]. For all λ, µ ∈

[0,∞] such that either λ ≤ min(1, µ), or 1 < λ ≤ µ ≤ t∗, with t∗ = 6.00914 denoting the second
root of log2(t)+log(t)− t+1 = 0, it holds that TSW

λ � TSW
µ . On the other hand, if TSW

λ � TSW
µ ,

then λ ≤ µ.

Moreover, note that dominance is not a linear order on the class of Sugeno-Weber t-norms,
since, e.g., neither TSW

51 dominates TSW
101 nor TSW

101 dominates TSW
51 .

In [A11, Section 5] the dominance relation in five additional families of t-norms resp. Archi-
medean copulas is laid bare, i.e., proving that dominance constitutes an order relation on all these
families. All families are taken from the book on associative functions by Alsina et al. [8] and
the corresponding notations refer to the ones used in this book. The results are summarized in
Fig. 6.4 providing the corresponding Hasse diagram and an indication by which sufficient condi-
tion the result has been achieved. Note that all these families of t-norms contain subfamilies of
(Archimedean) copulas (see also [140]).
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Family of t-norms Tλ � Tµ Hasse- Condition
if and only if diagram

(T 8
λ )λ∈[0,∞] λ ≤ µ log-convexity of h′

(T 15
λ )λ∈[0,∞] λ ≤ µ geo-convexity of h

(T 22
λ )λ∈[0,∞] λ ≤ µ geo-convexity of h′

(T 23
λ )λ∈[0,∞] λ ≤ µ geo-convexity of h

. . .(T 9
λ )λ∈[0,∞] λ =∞, λ = µ, µ = 0

Figure 6.2: Results on dominance in five additional families of t-norms [A11].

6.5 Concluding remarks

Summarizing the results in this part we can say that dominance is not a transitive and therefore
not an order relation on the class of all (continuous) t-norms. However, there are several families
of (continuous Archimedean) t-norms and (Archimedean) copulas for which dominance is an order
relation, either due to the rare or abundant occurrence of a dominance relationship between its
members. For more details see the articles included in this thesis.

Apart from the framework of t-norms and copulas, several properties of dominance for aggrega-
tion functions on [0, 1], in particular constructions of dominating functions and characterizations
of the set of aggregation functions dominating one of the four basic t-norms, have been investi-
gated in [163]. In [171] dominance is, among other functional (in)equalities, like, e.g., convexity or
Cauchy’s equation, discussed for aggregation functions on ∆+ resp. for triangle functions.
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Decision Modelling

The last part focusses on two case studies of aggregation functions in the field of decision making.
It has been already mentioned in Chapter 1 that decision making and preference modelling form
an important field of application for aggregation procedures, leading to problems of existence,
construction and characterization of aggregation functions, involving functional equations and
inequalities.

In this spirit we emphasize, in the following two chapters, the application setting and the ap-
pearance of the related, mathematical, problems for the aggregation functions involved. We will
rather focus on the discussion of the results than on an exhaustive presentation of all the results of
the articles “Representation and construction of self-dual aggregation operators” [A12]
and “Aggregation operators and commuting” [A13] . The articles touch problems of ag-
gregation in decision making — the first one mainly addresses representation and construction
problems whereas the second one focusses on a functional equation arising in (bipolar) decision
making. Before turning to concrete details, let us illustrate the general application setting:

A basic constituent in any preference and decision problem is a set of alternatives A, which we
assume to be finite and stable, i.e., to remain the same during the whole investigation. Note that
depending on the application setting A is also referred to as the set of actions or the choice set
(see also [148]).

The alternatives are evaluated w.r.t. some criteria or attributes. Note that the notion of “cri-
terion” or “attribute” should rather be thought of in an abstract way. Since the evaluation of
alternatives by different members of a jury leading to a final group decision can be identified with
a decision problem of a single decision maker, namely the jury, who evaluates the alternatives
w.r.t. several criteria, e.g., each member of the jury being responsible for or providing different
viewpoints. Therefore, evaluations by means of different criteria or by means of different members
of a jury are often identified with each other in the literature, i.e., in group preference modelling
the alternatives are evaluated by experts forming a jury, in multicriteria decision problems the
alternatives are evaluated by a set of criteria in its original sense of meaning. In the sequel, we as-
sume that the set of “criteria” is finite, moreover, that they are all of the same type, i.e., providing
(valued) preferences or numerical values from the same scale.

Note that the determination of the set of criteria is a non-trivial task. If possible, it should,
e.g., represent all important aspects of the application problem and as such the set of criteria
should be complete. Redundancies should be avoided and the set of criteria shall be as minimal as
possible in order to keep the complexity as low as possible (see also [110, 153]). Moreover, aspects
of independence, of ambiguity, or of different importance and interaction of criteria have also to
be mentioned and taken into account when modelling the preference or decision problem at hand.

According to Vincke ([195], see also [148]), a multicriteria decision problem is a situation in
which, having defined a set of alternatives A and a consistent family of criteria G on A, one wishes

to determine a subset of actions considered to be best w.r.t. G (choice, selection problem),

to divide A into subsets according to some norm (sorting, classification problem),

to rank the actions of A from best to worst (ranking problem),

or a mixture thereof.
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In all these settings, aggregation of evaluations w.r.t. single criteria for obtaining a final decision
is a major task, one of the interesting and challenging aspects being the modelling of the consistency
of the family of criteria. Consistency in case of preference modelling might relate to the modelling
of a rational behaviour of each expert (and most often also of the whole commission), leading to
additional demands on the (valued) preference structure expressing the expert’s opinion over the
different alternatives as well as to the aggregation procedure applied. Such a situation will be in
the focus of the following chapter dealing with reciprocal relations and their aggregation.

On the other hand, problems arise if the set of criteria corresponds to a multi-step evaluation
procedures. Irrelevancy of the order by which evaluations are carried out and its consequence for
the aggregation functions involved are discussed in the last chapter.

Further, it has to be mentioned that modelling dependencies or compensation effects between
different criteria asks for aggregation procedures involving capacities (fuzzy measures) resp. bipolar
capacities (see, e.g., [57, 88, 89, 90, 91, 95, 96]). Clearly, preservation of additional properties
of these capacities resp. bi-capacities during the aggregation process applied leads to additional
demands for the aggregation function applied. We briefly touch this aspects in the last chapter.
Note that additional and more detailed results on decomposable bi-capacities and their aggregation
can be found, e.g., in [156, 162].



Chapter 7

Self-dual aggregation functions
Aggregating reciprocal relations

In many decision problems, the question arises how to determine a collective decision, preference
or opinion, based on several individual decisions, preferences or opinions. One possible strategy is
simply to carry out an aggregation process based on the experts’ decisions, preferences or opinions
which is usually done by some aggregation function.

In preference modelling, [0, 1]-valued relations R are used to express the individual intensity of
preference (compare also [20, 72] and the references therein). Consider a finite set of alternatives
A = {a1, . . . , am} and n experts. The opinion of expert k is represented by a relation Rk : A2 →
[0, 1], such thatRk(ai, aj) expresses the degree to which expert k prefers alternative ai to alternative
aj . In order to avoid inconsistent preferences it is often required that the degree to which xi is
preferred to xj is in some sense complementary to the degree to which xj is preferred to xi. The
latter can be obtained by using reciprocal preference relations Rk, i.e., Rk(xi, xj) +Rk(xj , xi) = 1
(see, e.g., [27, 78, 79, 81]). In this case two alternatives xi and xj are indifferent to expert k if
Rk(xi, xj) = Rk(xj , xi) = 1

2 .
Note that reciprocal relations are known under various names such as ipsodual relations or

probabilistic relations [52]. Moreover, they appear in various fields such as, e.g., game theory [41,
40, 52, 67], voting theory [78, 144], psychological studies on preference [52] and the comparison of
random variables [38, 39].

The determination of a collective preference relation R from the individual preferences Rk is
carried out by an aggregation function A, i.e., for all alternatives ai, aj ∈ A,

R(ai, ak) = A(R1(ai, ak), . . . , Rn(ai, ak)).

Note that when aggregating reciprocal relations Rk : A2 → [0, 1], the commutativity of the ag-
gregation function involved expresses the equal treatment of all judgements during the aggregation
process (no weights are assigned to the different experts). Moreover, a neutral element gives an
expert the opportunity to abstain from the decision process without influencing it, whereas an
annihilator allows to model veto situations.

As introduced in Section 1.2 aggregation functions A can be transformed by means of monotone
bijections ϕ : [0, 1]→ [0, 1], i.e., the function Aϕ :

⋃
n∈N[0, 1]n → [0, 1], is defined, for all n ∈ N and

all xi ∈ [0, 1], i ∈ {1, . . . , n}, by

Aϕ(x1, . . . , xn) = ϕ−1
(
A(ϕ(x1), . . . , ϕ(xn))

)

and is an aggregation function on [0, 1].
If for some fixed ϕ : [0, 1] → [0, 1] it holds that A = Aϕ we say that A is invariant w.r.t. ϕ

(see, e.g., [135, 145]). A particularly important transformation is induced by N : [0, 1] → [0, 1],
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N (x) = 1 − x, also referred to as the standard negation in the framework of many-valued logics.
The transformation Ad = AN is called the dual aggregation function of A. Aggregation functions
invariant with respect to N are referred to as self-dual aggregation functions (see also [23, 186]).

It was soon recognized that the collective preference relation R as introduced above is itself
reciprocal if and only if A is a self-dual aggregation function [78, 80, 81], i.e., for all xi ∈ [0, 1],
i ∈ {1, . . . , n}

A(x1, . . . , xn) = AN (x1, . . . , xn) = 1−A(1− x1, . . . , 1− xn) (7.1)

Examples of self-dual aggregation functions are the arithmetic mean and all weighted means, as
well as quasi-arithmetic means Mf for which the strictly monotone, continuous function f : [0, 1]→
[−∞,∞] fulfills f(1 − x) = 1 − f(x). Recall that quasi-arithmetic means Mf are, for all n ∈ N
and for all xi ∈ [0, 1], i ∈ {1, . . . , n}, defined by Mf (x1, . . . , xn) = f−1( 1

n (f(x1) + . . . , f(xn))).
Note that any self-dual and commutative binary aggregation function A necessarily satisfies

A(x, 1− x) = 1
2 for all x ∈ [0, 1] such that no t-norm is self-dual.

Various names for self-dual aggregation functions comprise, e.g., neutral [79] or reciprocal ag-
gregation functions [78, 80, 81]. Continuous, commutative and self-dual aggregation functions
have been referred to as symmetric sums [56, 72, 186]. Dombi [53] has investigated strictly in-
creasing, associative symmetric sums on ]0, 1[. Idempotent symmetric sums have been discussed
by Dubois [54].

7.1 Problem statement and results

Therefore, self-dual aggregation functions have been of interest for many years and have been
studied from different perspectives. It is remarkable that two different characterizations of self-
dual aggregation functions have been provided — one by Calvo et al. in [23] inspired by the results
on symmetric sums by Silvert [186] and another one by Garćıa-Lapreseta et al. in [80] based on
the arithmetic mean. We briefly quote these two results:

Proposition 7.1. [23, 80] An aggregation function A is self-dual if and only if one of the following
properties holds:

there exists an aggregation function B such that

A(x1, . . . , xn) =
B(x1, . . . , xn)

B(x1, . . . , xn) + 1−BN (x1, . . . , xn)

with convention 0
0+0 = 1

2 ,

there exists an aggregation function B such that

A(x1, . . . , xn) =
B(x1, . . . , xn) + BN (x1, . . . , xn)

2
.

What has been striking is that both expressions are of the form

A(x1, . . . , xn) = C(B(x1, . . . , xn),BN (x1, . . . , xn)) (7.2)

for some binary operation C characterizing aggregation functions being invariant w.r.t. the stan-
dard negation N . One of the aims of the article [A12] “Representation and construction of
self-dual aggregation operators” has therefore been to extend these result for other invariant
aggregation functions, moreover to determine other binary operations C being admissible for en-
abling a full characterization of these functions. More precisely, the following problems have been
addressed in [A12]:

Is it possible to find a characterization similar to (7.2) for aggregation functions A which
are invariant w.r.t. an involutive negation, i.e., w.r.t. an order-reversing bijection N : [0, 1]→
[0, 1] additionally fulfilling N(N(x)) = x?
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In case, characterize the binary operations C which enable a full characterization of all
N -invariant aggregation functions, i.e., for which it holds that an n-ary operation A is
N -invariant if and only if there exists an aggregation function B such that A = CB,N with
CB,N being defined, for all x1, . . . , xn ∈ [0, 1], by

CB,N (x1, . . . , xn) = C(B(x1, . . . , xn),BN (x1, . . . , xn)). (7.3)

Both questions could be answered to the positive, the main result being the following:

Theorem 7.2. [A12, Theorem 1] Consider an involutive negation N . A binary operation C
enables a full characterization of all N -invariant aggregation functions if and only if the following
conditions hold:

(i) C is a binary aggregation function,

(ii) C(x, y) = N(C(N(y), N(x)), for all x, y ∈ [0, 1],

(iii) there exists a non-decreasing function f : [0, 1] → [0, 1] such that f(0) = 0, f(1) = 1 and
C(f(x), N(f(N(x))) = x for all x ∈ [0, 1].1

Note that A = CA,N if and only if C is idempotent, i.e., C(x, x) = x for all x ∈ [0, 1]. In
that case, it is sufficient to choose f = id[0,1]. Moreover, there exists no binary operation C which
enables a characterization of N -invariant aggregation functions for all involutive negations N , i.e.,
the admissibility of C depends on the particular choice of the negation N .

For the standard negation N and therefore for the characterization of self-dual aggregation
functions, the above theorem can be rephrased in the following way:

Theorem 7.3. Consider a binary aggregation function C fulfilling

(i) C(x, y) + C(1− y, 1− x) = 1, for all x, y ∈ [0, 1],

(ii) there exists a non-decreasing function f : [0, 1] → [0, 1] such that f(0) = 0, f(1) = 1 and
C(f(x), 1− f(1− x)) = x for all x ∈ [0, 1].

Then an aggregation function A is self-dual if and only if there exists an aggregation function B
such that A = CB,N , i.e., for all x1, . . . , xn ∈ [0, 1],

A(x1, . . . , xn) = C(B(x1, . . . , xn), 1−B(1− x1, . . . , 1− xn)).

Note that for C(x, y) = x
x+1−y , with the convention 0

0 = 1
2 , the previous theorem is just the

characterization of self-dual aggregation functions as shown in [23, 186], for C(x, y) = x+y
2 it turns

out to be the characterization shown in [80]. Another example for an admissible operation C would
be C(x, y) = med(x, y, 0.5).

7.2 Further results

Once C is fixed for a particular involutive negation N and in accordance with Theorem 7.2, CB,N
as defined by (7.3) is an N -invariant aggregation function for arbitrary aggregation function B.
Therefore, having at one’s disposal admissible operations C allows to construct N -invariant ag-
gregation functions A from arbitrary aggregation functions B, in particular allows to construct

1Note that Theorem 2 in [A12] seems to give an equivalent formulation of Theorem 1, namely of condition
(iii). Unfortunately, it contains a small mathematical inaccuracy which, however, does not influence or weaken all
following results contained in the article. The inaccuracy refers to condition (3) given as “C reaches every element
of [0, aN [” which should be replaced by “The graph of C contains an non-decreasing (w.r.t. three space coordinates)
curve whose z-coordinate reaches every number in [0, aN [”. This minor mistake had been indicated to the editors
of the journal already in Oct, 2006, however, the final version of the article could not be updated anymore.
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self-dual aggregation functions A relevant for the aggregation of reciprocal relations in group pref-
erence modelling.

Additionally we can state that to every N -invariant aggregation function A there corresponds
at least one aggregation function B such that A = CB,N . Moreover note, for some N -invariant
A, there might even exist operations B, i.e., not necessarily aggregation functions, such that
A = CB,N . However, the admissibility of B resp. B are intrinsically bound to C as well as to N .
Therefore, in [A12, Section 4], minimal conditions for operations B ensuring that A = CB,N is a
self-dual aggregation function have been studied for the two special cases of C(x, y) = x

x+1−y and
C(x, y) = x+y

2 .
Since for some given C and an involutive negation N , several aggregation functions B resp.

operations B might generate the same N -invariant aggregation function A, in [A12, Section 5]
the equivalence classes of operations determining the same N -invariant aggregation function are
studied and illustrated again for the cases of C(x, y) = x

x+1−y and C(x, y) = x+y
2 with arbitrary

involutive negation N .



Chapter 8

Commuting aggregation functions
Agenda independent two-step aggregation procedures

In various applications where information fusion or multicriteria evaluation is needed, an aggre-
gation process is carried out as a two-step procedure whereby several local aggregation steps are
performed in parallel and then the results are merged into a global result. It may happen that in
practice the two steps can be exchanged because there is no reason to perform either of the steps
first. For instance, in a multi-person multi-criteria decision problem, each alternative is evaluated
by a matrix of ratings where, e.g., the rows represent evaluations by persons and the columns
represent evaluations by criteria (see also Section 4.2). One may, for each row, merge the ratings
according to each column with some aggregation function A and form as such the global rating
of each person, and then merge the experts’ opinions using another aggregation function B. On
the other hand, one may decide first to combine the ratings in each column using the aggregation
function B, thus forming the global ratings according to each criterion, and then merge these
social evaluations across the criteria by the aggregation function A. The problem is that it is not
guaranteed that the results of the two procedures will be the same, while one would expect them
to be so in any sensible approach. When the two procedures yield the same results the aggregation
functions A and B are said to commute.

Definition 8.1. Consider two aggregation functions A and B. Then we say that A(n) commutes
with B(m), if for all xij ∈ [0, 1], i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, it holds that

A(n)

(
B(m)(x11, . . . , xm1), . . . ,B(m)(x1n, . . . , xmn)

)

= B(m)

(
A(n)(x11, . . . , x1n), . . . ,A(n)(xm1, . . . , xmn)

)
. (8.1)

If A(n) commutes with B(m), for all n,m ∈ N, then A commutes with B.

Clearly, the property of commuting is related to dominance, i.e., two aggregation functions
commute if and only if they dominate each other. Further, any aggregation function commuting
with itself is bisymmetric and vice versa. For two associative aggregation functions, commuting
between their binary operations is necessary and sufficient for their commuting in general.

Moreover, commuting as expressed by (8.1) is a special case of the so-called generalized bisym-
metry equation as introduced and discussed in [4, 5] and plays a key role in consistent aggregation
(see, e.g., [3]). Commuting aggregation functions are further relevant, e.g., in utility theory [55],
but also in extension theorems for functional equations, e.g., [146]. Moreover, the commuting
property is instrumental in the preservation of some property during an aggregation process, in
particular of some form of additivity resp. decomposability when aggregating set functions, in par-
ticular capacities, also known as fuzzy measures (compare also [25, 28, 147]), or bipolar capacities
resp. bi-capacities (see [88, 89, 90, 91, 95]). Bi-capacities extend the concept of capacities, acting

53



54 Chapter 8. Two-step aggregation processes

most often on the unit interval, to capacities acting on pairs of disjoint sets taking values on some
bipolar scale, usually [−1, 1]:

Definition 8.2. Consider some finite universe X and denote by Q(X) = {(A,B) ∈ P(X)×P(X) |
A ∩B = ∅} the set of all disjoint pairs of subsets of X.

A set function m : P(X) → [0, 1] is called a capacity (or fuzzy measure) on X if it fulfills
m(∅) = 0, m(X) = 1, and m(A) ≤ m(B) whenever A ⊆ B (monotonicity) .

A function v : Q(X) → R is a bi-capacity if v(∅, ∅) = 0, and A ⊆ B implies that v(A,C) ≤
v(B,C) and v(C,A) ≥ v(C,B) for all C ∈ P(X \ B). Furthermore, v is normalized if
v(X, ∅) = 1 and v(∅, X) = −1.

Depending on the application setting, several additional properties for capacities, like, e.g.,
S-decomposability [198], k-additivity [136, 133, 134], k-maxitivity [132], and for bi-capacities, like,
e.g., S-decomposability [88], U -decomposability [162], C-decomposability [77] k-additivity [90, 162,
77], additivity and of CPT type [88, 89] have been introduced, on the one hand expressing a special
structure of the (bi-)capacity but also reducing the complexity necessary for the definition of the
(bi-)capacity itself.

Properties like the S-decomposability or U -decomposability of (bi)-capacities can be expressed
by some functional equation involving a t-conorm S resp. a uninorm U . Preserving these properties
during aggregation processes naturally relates to the property of commuting between the aggre-
gation function imposed and the operation used for expressing the corresponding decomposition
property (compare also, e.g., [55, 156]).

Note that t-conorms and uninorms belong, as t-norms, to the class of commutative and asso-
ciative aggregation functions with neutral element. For t-conorms it holds that the neutral element
e equals 0, for t-norms it holds that e = 1 and for uninorms we have e ∈ ]0, 1[ [199]. Indeed the
neutral element of the uninorm separates the unit interval into a bipolar evaluation scale with a
positive [0, e[ and a negative part ]e, 1] (compare also [57]).

8.1 Problem statement and results

Commuting aggregation functions are therefore relevant in two-step aggregation procedures and
in the preservation of properties during aggregation processes. For special cases of aggregation
functions like, e.g., for weighted arithmetic means, results on commuting exist for many years in
connection with the problem of consensus functions for probabilities [124], more recently also for
t-norms and conorms in connection with generalized utility theory [55]. However, a more general
treatment has still been missing. Therefore, the following problems have been investigated in the
article “Aggregation operators and commuting” [A13]:

Reveal as much as possible about the structure of commuting aggregation functions.

Investigate in particular aggregation functions which are commuting with t-norms, t-conorms
resp. uninorms.

On the structure of commuting aggregation functions

First of all, it could be shown that there do not exist different aggregation functions which commute
with each other and possess both some neutral element:

Proposition 8.3. [A13, Proposition 22] Consider two aggregation functions A and B with neutral
elements ea resp. eb. If A commutes with B then ea = eb and therefore also A = B.
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Note that this expresses in particular that t-norms, t-conorms, and uninorms never commute
with each other, up to the trivial case that, due to their commutativity and associativity, they
commute with themselves. Therefore, any aggregation function commuting with any of these
functions necessarily may not have a neutral element. For the application setting of a two-step
evaluation procedure carried out by two different aggregation functions this means that the experts
can express their neutrality w.r.t. one of the steps applied only.

Moreover, it could be shown that commuting between two aggregation functions heavily relates
to unary functions being distributive over one of the two aggregation functions involved. On the
one hand, such functions can be constructed from commuting aggregation functions, on the other
hand they allow to construct commuting operations. Therefore, functions being distributive over
an aggregation function had been studied:

For an n-ary aggregation function A(n) the set of all non-decreasing functions f : [0, 1]→ [0, 1]
distributing with A(n) is denoted by FA(n) . Note that, since A(1) is the identity mapping, FA(1)

is the set of all non-decreasing functions f : [0, 1] → [0, 1] which is abbreviated simply by F .
Therefore,

FA(n) = {f ∈ F | f(A(n)(x1, . . . , xn)) = A(n)(f(x1), . . . , f(xn))}.
Evidently, FA = ∩n∈NFA(n) denotes the set of all functions f ∈ F that are distributive over

the aggregation function A. Note that FA(n) , n ∈ N, as well as FA contain at least the following
functions

0 : [0, 1]→ [0, 1], x 7→ 0,
1 : [0, 1]→ [0, 1], x 7→ 1,
id : [0, 1]→ [0, 1], x 7→ x

and are therefore not empty for arbitrary aggregation function A.
In [A13, Section III] several properties of FA and FA(n) have been revealed and examples for

important aggregation functions like, e.g., different kinds of means, provided. We briefly quote
just a few of the results:

Proposition 8.4. [A13, Propositions 7–9, 11]

The set FA is maximal in case of lattice polynomials only.

If A(n) commutes with some B(m), then fd,i,A(n) : [0, 1]→ [0, 1] defined, for all x ∈ [0, 1], by

fd,i,A(n)(x) = B(m)(

i-th position

d, . . . , d,
↓
x, d, . . . , d)

with i ∈ {1, . . . ,m} and d some idempotent element of A(n), fulfills, fd,i,A(n) ∈ FA(n) .

For a bisymmetric aggregation function A it holds that FA(n) is closed under A(n), i.e., for
all fi ∈ FA(n) , i ∈ {1, . . . , n}, also the function g : [0, 1]→ [0, 1] defined, for all x ∈ [0, 1], by
g(x) = A(n)(f1(x), . . . , fn(x)) fulfills g ∈ FA(n) .

In case A is associative, it holds that f ∈ FA if and only if FA(2) .

Operations commuting with bisymmetric aggregation functions

Based on the investigation of distributive functions the structure of operations commuting with
some bisymmetric aggregation function could be revealed. The main two results read as follows:

Proposition 8.5. [A13, Proposition 18] Let A be a bisymmetric aggregation function. Then, for
all n ∈ N and all fi ∈ FA, the n-ary operation B : [0, 1]n → [0, 1] defined by

B(x1, . . . , xn) = A(f1(x1), . . . , fn(xn))

commutes with A.
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Note that B need not be an aggregation function in general. If for n = 1, f1 = id ∈ FA and
for n > 1, the functions fi ∈ FA, i ∈ {1, . . . , n}, are chosen such that

B(0, . . . , 0) = A(f1(0), . . . , fn(0)) = 0,
B(1, . . . , 1) = A(f1(1), . . . , fn(1)) = 1

then B is also an n-ary aggregation function.
In case that A is bisymmetric and possesses also a neutral element, i.e., it is also associative

and commutative and therefore either a t-norm, a t-conorm, or a uninorm, the above construction
turns into a characterization:

Proposition 8.6. [A13, Proposition 21] Let A be a bisymmetric aggregation function with neutral
element e. Then an n-ary operation B : [0, 1]n → [0, 1] commutes with A if and only if there exist
fi ∈ FA, i ∈ {1, . . . , n}, such that

B(x1, . . . , xn) = A(f1(x1), . . . , fn(xn)).

As mentioned earlier in Section 2.1, a full characterization of t-norms is still not available.
The same applies to t-conorms and even the more for uninorms. Since the characterization of the
set of unary functions distributing with any of these operations heavily depends on the structure
of the underlying operation, only special cases of operations have been treated further in [A13],
namely continuous t-norms, continuous t-conorms, and particular classes of uninorms. Note that,
due to the results quoted above on associative aggregation functions and their set of distributive
functions, it suffices to investigate functions f which distribute over a binary operation ∗ with
∗ denoting either a t-norm, a t-conorm, or a uninorm, such that f ∈ F∗ is equivalent to the fact
that f fulfills a Cauchy like equation, i.e., for all x, y ∈ [0, 1],

f(x ∗ y) = f(x) ∗ f(y). (8.2)

For continuous t-conorms (8.2) has been solved by Benvenuti et al. in [15] and as such by
duality also for continuous t-norms (note that if T is a t-norm, then S, defined, for all x, y ∈ [0, 1],
by S(x, y) = 1 − T (1 − x, 1 − y) is a t-conorm and vice versa). In [A13, Section V] the results
on functions distributing over a continuous t-conorm resp. continuous t-norm are summarized and
illustrated for basic t-(co)norms.

Section VI in [A13] extensively discusses the case of uninorms. First the general structure
of functions f commuting with some uninorm U is discussed showing that the set of idempotent
elements of U (notice that {0, e, 1} ⊆ I(U)) and the range of some f ∈ FU play a special role, in
particular whether e ∈ Ranf or not. After these general considerations two important classes of
uninorms resp. functions being distributive over uninorms of these classes are investigated. Several
examples illustrate the general structure of functions f distributing with such uninorms.

Note that a uninorm U can be interpreted as a combination of some t-norm T and some
t-conorm S, i.e.,

U(n)(x1, . . . , xn) = U(2)(T (min(x1, e), . . . ,min(xn, e)), S(max(x1, e), . . . ,max(xn, e)))

with T some t-norm acting on [0, e] and S some t-conorm acting on [e, 1]. Such created uninorms
cover a large class of aggregation functions since on the remainder of their domains they can
be chosen such that the monotonicity and associativity condition are not violated, but otherwise
arbitrarily. However, due to its properties, any uninorm U fulfills

min(x, y) ≤ U(x, y) ≤ max(x, y)

whenever min(x, y) ≤ e and e ≤ max(x, y) for all x, y ∈ [0, 1], giving rise to the particular classes
UT,S,min, UT,S,max of uninorms, the first special subclasses of uninorms discussed in [A13].
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Note further that there exists no uninorm which is continuous on the whole domain [73].
Therefore, the second important subclass of uninorms investigated in [A13] are uninorms generated
by some additive generator which are continuous on the whole domain up to the points (0, 1) and
(1, 0). A uninorm U : [0, 1]2 → [0, 1] is called a generated uninorm with additive generator h where
h : [0, 1]→ [−∞,∞] is a monotone bijection such that

U(x, y) = h−1(h(x) + h(y)),

with convention +∞+(−∞) = −∞. Note that the neutral element e of such a generated uninorm
is given by h−1(0) = e. For both special classes of uninorms, distributive functions f ∈ FU are
investigated and illustrated by several examples as well examples of commuting operations provided
in Section VI of [A13].
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gorzewski, and O. Hryniewicz, editors, Soft methods for handling variability and imprecision
, Adv. Soft Comput., pages 349–356, Berlin, 2008. Springer.

[65] F. Durante, S. Saminger-Platz, and P. Sarkoci. On representations of 2-increasing binary
aggregation functions. Information Sciences, 178:4534–4541, 2008.

[66] F. Durante and C. Sempi. Semicopulæ. Kybernetika, 41:315–238, 2005.

[67] B. Dutta and J. Laslier. Comparison functions and choice correspondences. Soc. Choice
Welfare, 16:513–532, 1999.

[68] R.J. Egbert. Products and quotients of probabilistic metric spaces. Pacific J. Math., 24:437–
455, 1968.
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Abstract

Ordinal sums have been introduced in many different contexts, e.g., for posets, semigroups, t-norms, copulas, aggregation opera-
tors, or quite recently for hoops. In this contribution, we focus on ordinal sums of t-norms acting on some bounded lattice which is
not necessarily a chain or an ordinal sum of posets. Necessary and sufficient conditions are provided for an ordinal sum operation
yielding again a t-norm on some bounded lattice whereas the operation is determined by an arbitrary selection of subintervals as
carriers for arbitrary summand t-norms. By such also the structure of the underlying bounded lattice is investigated. Further, it is
shown that up to trivial cases there are no ordinal sum t-norms on product lattices in general.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Triangular norm; Ordinal sum; Horizontal sum; Bounded lattice

1. Introduction

Triangular norms were originally studied in the framework of probabilistic metric spaces [39–42] aiming at an exten-
sion of the triangle inequality and following some ideas of Menger [33]. Later on, they turned out to be interpretations
of the conjunction in many-valued logics [1,16–18,22], in particular in fuzzy logics, where the unit interval serves as
set of truth values.

Since triangular norms are special compact semigroups, the concept of ordinal sums in the sense of Clifford [5]
provided a method to construct new triangular norms from given ones, but also led to the remarkable representation of
continuous triangular norms as ordinal sums of isomorphic images of the product and the Łukasiewicz t-norm [31,34].
For more results on triangular norms and ordinal sums see, e.g., [24,28–30].

In [13,15] the unit interval was replaced by some more general structure, i.e., a bounded lattice, stimulating some
investigations in topology [14,20,23,37] and logic [12,21]. Therefore, it was quite natural to study triangular norms
on bounded lattices [8,10,26,43], including special cases such as discrete chains [32] or the lattice L∗ = {(x, y) ∈
[0, 1]2 | x + y�1} [11] for which also ordinal sum operations have been provided. It is worth mentioning that ordinal
sum operations have also been introduced in the frameworks of, e.g., copulas [35], aggregation operators [9] or general
algebraic structures such as hoops [3,4]. As such several types of ordinal sums are known in the literature and since
many of these profit from or are based on a close relationship between the ordinal sum operation and the structure of
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the underlying lattice, it seemed quite natural to investigate this relationship in more detail, especially for t-norms on
bounded lattices by also taking into account the concept of ordinal sums of posets (see, e.g., [2]).

Therefore, we will focus our considerations on ordinal sum t-norms on bounded lattices which are defined through
their restrictions to subintervals of the lattice and the lattice-infimum as such reflecting a kind of plug-in strategy
for building new operations. On the other hand we investigate which types of lattices are appropriate candidates for
allowing an arbitrary selection of the subintervals as well as an arbitrary selection of the corresponding t-norms but
guaranteeing that the ordinal sum operation yields again a t-norm on the lattice. Therefore, we will concentrate in this
contribution on ordinal sum t-norms built from summand t-norms only, although other summand operations could also
be taken into account (compare also, e.g., [24,30]).

Note that due to the results of Clifford [5], see also [6,19,27], we know that an ordinal sum of semigroups (as
introduced in [5]) whose carriers are (bounded) lattices is again a semigroup with a carrier equal to the ordinal sum
(in the sense of Birkhoff [2]) of the summand lattices. However, conversely, a straightforward application of Clifford’s
ordinal sum theorem to subsets of some fixed lattice L requires L to be an ordinal sum of its sublattices. But, and as
we will show later, there exist ordinal sum t-norms on bounded lattices which are not an ordinal sum of some of their
sublattices, i.e., ordinal sum t-norms on bounded lattices need not be ordinal sums in the sense of Clifford.

We investigate the problem by the following steps. The next section is dedicated to an overview on relevant concepts
of ordinal sums, namely, ordinal sums in the sense of Birkhoff, in the sense of Clifford, as well as ordinal sums of
t-norms on the unit interval. Section 3 briefly deals with t-norms on bounded lattices and introduces ordinal sum
t-norms. In Section 4 we investigate such t-norms with one summand only first on some fixed subinterval then on
an arbitrary subinterval revealing necessary and sufficient conditions concerning the underlying lattice. We close this
section with a discussion about ordinal sum t-norms on product lattices. Subsequently, we generalize the results to
ordinal sum t-norms with arbitrarily many summands in Section 5 and close this contribution by a short summary and
further perspectives.

2. On some types of ordinal sums

2.1. Ordinal sums in the sense of Birkhoff

In [2], Birkhoff provides a definition for building the ordinal sum X ⊕ Y of two disjoint posets X, Y . Due to the
associativity of this construction we immediately extend this concept to families of pairwise disjoint posets for some
linearly ordered index set (I, �I ), I �= ∅. Note that ordinal sums of disjoint posets in the sense of Birkhoff are also
referred to as linear sums of posets [7].

Definition 2.1. Consider a linearly ordered index set (I, �I ), I �= ∅ and a family of pairwise disjoint posets
(Xi, � i )i∈I . The ordinal sum

⊕
i∈I Xi is defined as the set

⋃
i∈I Xi equipped with the following order �

x�y :⇔ (∃i ∈ I : x, y ∈ Xi ∧ x� iy) ∨ (∃i, j ∈ I : x ∈ Xi ∧ y ∈ Xj ∧ i ≺I j). (1)

If necessary, we will refer to such ordinal sums as ordinal sums in the sense of Birkhoff explicitly.

Since the order relation for elements from different summand carriers is inherited from the linearly ordered index set,
ordinal sums formally minimize the number of incomparable elements of a poset with carrier

⋃
i∈I Xi which extends

the posets (Xi, � i ). As such ordinal sums of posets are in general not symmetric, i.e., X ⊕ Y �= Y ⊕ X.
Note that based on the linear order of the index set (I, �I ) and the order � on

⋃
i∈I Xi defined by (1) the condition

of pairwise disjointness can be even relaxed.

Lemma 2.2. Consider some linearly ordered index set (I, �I ) and a family of posets (Xi, � i )i∈I . If for all i, j ∈ I

with Xi ∩ Xj = A �= ∅ it holds that (A, � i ) = (A, � j ), Xi = (Xi \ A) ⊕ A, Xj = A ⊕ (Xj \ A), and for each
k ∈ I either k�I i ≺I j or i ≺I j�I k, then there exists some index set K and a family of pairwise disjoint posets
(Xk, �k)k∈K such that

• for each k ∈ K there exists some i ∈ I with Xk ⊆ Xi and
• the ordinal sum

⊕
k∈K Xk is isomorphic to the poset (

⋃
i∈I Xi, �) where � is defined by (1).
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Note that the strategy just described focusses on the union of the carriers and an order compatible with the order of
the underlying posets. Another possible way for introducing ordinal sums of non pairwise disjoint sets is to replace
each Xi by (i, Xi) and thus creating isomorphic but pairwise disjoint sets for which the ordinal sum construction in
the sense of Birkhoff can be applied. We will follow our approach since it does not lead to multiple copies of elements
common in several posets. Especially, for two intervals which overlap in at most one point we introduce the following
concept of ordinal sums of intervals.

In case that (X, �X) has a smallest and a largest element, aX resp. bX, we denote X by [aX, bX] = {x ∈ X |
aX �Xx�XbX} and use notions of other types of intervals accordingly.

Definition 2.3. Consider a linearly ordered index set (I, �), I �= ∅ and a family of intervals ([ai, bi])i∈I such that
for all i, j ∈ I with i ≺ j either [ai, bi] and [aj , bj ] are disjoint or bi = aj . The ordinal sum

⊕
i∈I [ai, bi] is the set⋃

i∈I [ai, bi] equipped with the order � defined by

x�y :⇔ (∃i ∈ I : x, y ∈ [ai, bi] ∧ x� iy) ∨ (∃i, j ∈ I : x� ibi ∧ aj � j y ∧ i ≺ j).

If necessary, we refer to this kind of ordinal sum as ordinal sum of intervals.

So far, we have discussed ordinal sums of posets focussing on the preservation or the construction of an order
relation on the union of sets. We now turn to ordinal sums of semigroups and therefore shifting the focus from orders
to operations.

2.2. Ordinal sums in the sense of Clifford

In [5], see also [6,19,27], ordinal sums have been introduced in the context of abstract semigroups aiming at a
construction of a new semigroup from a given family of semigroups. The basic idea is to extend an ordinally ordered
system of non-overlapping semi-groups into a single semigroup whose carrier equals the union of the original carriers.

Definition 2.4 (Clifford [5]). Let (I, �), I �= ∅ be a linearly ordered index set, (Xi)i∈I a family of pairwise disjoint
sets, and (Gi)i∈I with Gi = (Xi, ∗i ) a family of semigroups. Put X = ⋃

i∈I Xi and define the binary operation ∗ on
X by

x ∗ y =
⎧⎨
⎩

x ∗i y if (x, y) ∈ Xi × Xi,

x if (x, y) ∈ Xi × Xj and i ≺ j,

y if (x, y) ∈ Xi × Xj and i  j.

Then we say that (X, ∗) is the ordinal sum of all (Xi, ∗i )i∈I . If necessary, we refer to this type of ordinal sum as ordinal
sum in the sense of Clifford.

Proposition 2.5 (Clifford [5]). With all the assumptions of the previous definition the ordinal sum (X, ∗) is also a
semigroup, i.e., ∗ is an associative operation on X.

Note that ordinality in the sense of Clifford refers to the linear order of the index set I involved. The elements of
some Xi , i ∈ I , need not fulfill any special order relation. On the other hand, taking into account that equality is an
order relation on any set we immediately can state the following corollary.

Corollary 2.6. Any ordinal sum in the sense of Clifford can be expressed as an associative operation on an ordinal
sum of a family of sets in the sense of Birkhoff.

The semigroup operation ∗ on X is linked to the order structure of the index set and therefore also to the order of
the deduced ordinal sum in the sense of Birkhoff.

Similar as in the case of ordinal sums of Birkhoff the condition of disjointness can be and has been relaxed in the
case of ordinal sums in the sense of Clifford.
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Proposition 2.7 (Clifford [5]). Let (I, �), I �= ∅ be a linearly ordered set, (Xi)i∈I a family of sets, and (Gi)i∈I with
Gi = (Xi, ∗i ) a family of semigroups.

Assume that for all i, j ∈ I with i ≺ j the sets Xi and Xj are either disjoint or that Xi ∩ Xj = {xij }, where xij is
both the unit element of Gi and the annihilator of Gj , and where for each k ∈ I with i ≺ k ≺ j we have Xk = {xij }.
Put X = ⋃

i∈I Xi and define the binary operation ∗ on X by

x ∗ y =
⎧⎨
⎩

x ∗i y if (x, y) ∈ Xi × Xi,

x if (x, y) ∈ Xi × Xj and i ≺ j,

y if (x, y) ∈ Xi × Xj and i  j.

Then (X, ∗) is a semigroup.

2.3. Ordinal sums of t-norms on the unit interval

We now concentrate on a special class of semigroups with carrier [0, 1], namely t-norms which are commutative
semigroups, non-decreasing in each coordinate and having 1 as neutral element.

Definition 2.8. Let (]ai, bi[)i∈I be a family of pairwise disjoint open subintervals of [0, 1] and let (Ti)i∈I be a family
of t-norms. Then the ordinal sum T = (〈ai, bi, Ti〉)i∈I : [0, 1]2 → [0, 1] is given by

T (x, y) =
⎧⎨
⎩

ai + (bi − ai)Ti

(
x − ai

bi − ai

,
y − ai

bi − ai

)
if (x, y) ∈ [ai, bi]2 ,

min(x, y) otherwise.

If necessary, we refer to this type of ordinal sums as ordinal sums of t-norms.

Note that some differences to previous definitions can be stressed:

• The carrier of the ordinal sum is the unit interval [0, 1] which in general need not equal the union of all [ai, bi], i ∈ I

of the family of intervals involved.
• The members of the family of t-norms (Ti)i∈I are not acting on the subdomains [ai, bi], but on [0, 1].

According to the fact that all [ai, bi] ⊆ [0, 1] and all ai as well as bi are ordered by the natural order on R an
index set J , J �= ∅ and a family of intervals [aj , bj ] can be found such that [0, 1] = ⊕

j∈J [aj , bj ] (see also [29]).
On each [aj , bj ] associative operations ∗j can be defined either as isomorphic, in fact linear, transformations of the
corresponding t-norms or by the minimum such that in this case the ordinal sum of t-norms is just an ordinal sum in the
sense of Clifford. Note that such an ordinal sum of t-norms yields again a t-norm. Moreover, any continuous triangular
norm on the unit interval is an ordinal sum of t-norms in the sense above where each summand t-norm is isomorphic
either to the product or the Łukasiewicz t-norm [31,34].

3. Triangular norms on bounded lattices

Extensions of triangular norms on lattices in the framework of fuzzy sets and fuzzy logic (see also [13,15,18]) always
require the top resp. bottom element of L to play the role of a neutral element resp. of an annihilator. Therefore, we
concentrate on bounded lattices L only with top and bottom elements, denoted by 1 and 0, respectively, in the sequel.

Definition 3.1. Consider some bounded lattice (L, ∧, ∨, 1, 0) and denote by �L the corresponding lattice order. A
binary operation T : L2 → L is called a triangular norm (t-norm) on L if the following conditions are fulfilled for all
x, y, z ∈ L:

(i) T (x, y) = T (y, x), (commutativity)
(ii) T (x, z)�LT (y, z) whenever x�Ly, (monotonicity)
(iii) T (x, 1) = x, (neutral element)
(iv) T (x, T (y, z)) = T (T (x, y), z). (associativity)
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Note that the structure of the lattice L heavily influences which and how many t-norms on L can be defined. However,
for each lattice L there exist at least two t-norms, i.e., the minimum T L

M(x, y) = x ∧ y and the drastic product

T L
D (x, y) =

{
x ∧ y if 1 ∈ {x, y},
0 otherwise,

which are always the greatest and smallest possible t-norms on that lattice L. Observe that up to the trivial cases when
|L|�2, we always have T L

D �= T L
M. In case that |L| = 2, there is a unique t-norm on L which is, in fact, the standard

boolean conjunction. Finally, if |L| = 1, there is only one binary operation on L.
Classical t-norms are then just t-norms on the lattice ([0, 1], ∧, ∨, 1, 0). The intervals [ai, bi], i ∈ I , used as

carriers for the ordinal sum of t-norms are subintervals with bottom element ai and top element bi . The isomorphic
transformations of t-norms are t-norms on these subintervals in the sense of the definition above.

We turn to ordinal sums of t-norms on an arbitrary lattice L. Since each of its summands is described by a sublattice Li

of L and a t-norm Ti acting on that sublattice, the sublattice has to possess a largest element acting as the neutral element
of the t-norm involved and a smallest element acting as its annihilator. Moreover, monotonicity of the final operation
should be provided such that appropriate candidates for such sublattices are intervals [a, b] = {x ∈ L | a�Lx�Lb}
with a�Lb (see also [38]). Therefore, we define ordinal sums of t-norms on lattices in the following way.

Definition 3.2. Consider some lattice (L, ∧, ∨, 0, 1) and some linearly ordered index set I . Further, let (]ai, bi[)i∈I

be a family of pairwise disjoint subintervals of L and (T [ai ,bi ])i∈I a family of t-norms on the corresponding intervals
([ai, bi])i∈I . Then the ordinal sum T = (〈ai, bi, T

[ai ,bi ]〉)i∈I : L2 → L is given by

T (x, y) =
{

T [ai ,bi ](x, y) if x, y ∈ [ai, bi] ,

x ∧ y otherwise.
(2)

In the sequel we concentrate on conditions such that an operation T : L2 → L defined by Eq. (2) is a t-norm on the
lattice L.

4. Ordinal sums with one summand only

4.1. Ordinal sums with one summand only on some fixed subinterval

Consider some bounded lattice (L, ∧, ∨, 1, 0) and fix some subinterval [a, b] = {x ∈ L | a�Lx�Lb}, with �L

the lattice order. Further assume a t-norm T [a,b] on [a, b]. Then T : L2 → L defined by

T (x, y) =
{

T [a,b](x, y) if x, y ∈ [a, b] ,

x ∧ y otherwise.
(3)

is an ordinal sum (〈a, b, T [a,b]〉) of T [a,b] on L with one summand only.
By this the following questions arise quite naturally:

• For which lattices L is T defined by Eq. (3) a t-norm for arbitrary t-norms T [a,b] on [a, b]?
• If T defined by Eq. (3) is a t-norm for arbitrary t-norms T [a,b] on [a, b], what do we know about the structure of the

underlying lattice L?
• Do we end up with the same answers to the previous two questions?

4.1.1. From lattices to t-norms
The following lemma provides a partial answer to the first question.

Lemma 4.1. Consider some lattice (L, ∧, ∨, 1, 0) and a subinterval [a, b] of L. If L is an ordinal sum of intervals
such that L = [0, a] ⊕ [a, b] ⊕ [b, 1], then T : L2 → L defined by Eq. (3) is a t-norm for arbitrary t-norm T [a,b]

on [a, b].
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Fig. 1. T-norms on some special lattice (Example 4.2).

Proof. Note that due to the structure of the lattice as ordinal sum of intervals, it holds that for all x /∈ [a, b] either
x�La or b�Lx is fulfilled. The latter conditions are equivalent to x ∧ a = x or x ∧ b = b, respectively.

If [a, b] = {a, b}, the t-norm T [a,b] on [a, b] is necessarily T
[a,b]

M , implying T = T L
M. Therefore, we assume that

]a, b[ �= ∅, i.e., there exists some u ∈ L such that a <L u <L b.
Commutativity holds due to the commutativity of ∧ and T [a,b]. It is also straightforward to show that 1 is the

neutral element of T . The preservation of associativity is a direct consequence of Clifford’s theorem on ordinal sums
of semigroups (see also Proposition 2.7).

Finally, monotonicity is preserved due to the monotonicity of T [a,b] on [a, b] and of ∧ on the lattice L in all cases
but two, i.e., if z ∈ [a, b] and either x ∈ [a, b] or y ∈ [a, b] with x�Ly. First assume that x ∈ [a, b] and y /∈ [a, b].
Since y�Lx it follows that y >L b, then

T (x, z) = T [a,b](x, z)�LT
[ai ,bi ]
M (x, z)�Lz = y ∧ z = T (y, z).

Secondly, if x <L a and y, z ∈ [a, b] then

T (x, z) = x ∧ z = x�La�LT [a,b](y, z) = T (y, z).

Therefore, T defined by Eq. (3) is a t-norm independently of the choice of T [a,b] on [a, b]. �

The previous proposition only provides a sufficient and not a necessary condition for T being a t-norm, as the
following example shows.

Example 4.2. Consider the bounded lattice (L, ∧, ∨, 0, 1) with L = {0, x, a, u, 1} as shown in Fig. 1, further the
subinterval [a, b] = [a, 1] = {a, u, 1} and the operation T as defined by Fig. 1. It can be easily checked that T is
defined by Eq. (3) and is, moreover, a t-norm although L is not an ordinal sum of intervals.

4.1.2. From t-norms to the structure of the lattice
Before turning to necessary and sufficient conditions for T defined by Eq. (3) being a t-norm we prove some basic

lemmata revealing insight into the structure of the underlying lattice. Note that throughout this section we consider
some bounded lattice (L, ∧, ∨, 0, 1) and a fixed subinterval [a, b] of L.

Lemma 4.3. Assume that T defined by Eq. (3) is a t-norm for arbitrary T [a,b] on [a, b] and choose x ∈ L arbitrarily.
If there exists some u ∈ [a, b[ such that x�Lu then x ∈ [0, a] or x ∈ [a, b], i.e., x is comparable to a.

Proof. Assume that T defined by Eq. (3) is a t-norm for arbitrary T [a,b] on [a, b] and let x ∈ L and u ∈ [a, b[ such
that x�Lu, i.e., x ∧ u = x. If u = a the proposition is trivially fulfilled, therefore we demand that u ∈ ]a, b[.

Assume that x is incomparable to a. By such x is not contained in [a, b], i.e., x /∈ [a, b]. Due to the associativity of
T and the fact that T is also a t-norm for T [a,b] = T

[a,b]
D the following equality must hold

a ∧ x = T (a, x) = T (T [a,b](u, u), x) = T (T (u, u), x)

= T (u, T (u, x)) = T (u, u ∧ x) = T (u, x) = x,

being equivalent to x�La and contradicting the assumption of incomparability of x to a. �
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Note that the previous lemma is equivalent to the following corollary focusing on the incomparability to a.

Corollary 4.4. Assume that T defined by Eq. (3) is a t-norm for arbitrary T [a,b] on [a, b] and let x ∈ L arbitrarily. If
x is incomparable to a, then x is also incomparable to all u ∈ [a, b[.

We now turn to the incomparability with the top element b of the subinterval.

Lemma 4.5. Assume that T defined by Eq. (3) is a t-norm for arbitrary T [a,b] on [a, b]. If some x ∈ L is incomparable
to b then x is incomparable to all u ∈ ]a, b].

Proof. Consider some lattice (L, ∧, ∨, 0, 1) and a subinterval [a, b]. Assume that T defined by Eq. (3) is a t-norm for
arbitrary T [a,b] on [a, b]. Let x ∈ L be incomparable to b and therefore x /∈ [a, b].

Suppose that there exists some u ∈ ]a, b] to which x can be compared. If x�Lu, also x�Lu�Lb contradicting the
incomparability to b. Therefore, let x�Lu from which we can conclude that

b�Lb ∧ x�Lb ∧ a = a,

i.e., b ∧ x ∈ [a, b], even b ∧ x ∈ [a, b[ since b ∧ x = b would lead to a contradiction to the incomparability of b and
x. Since T is a t-norm also for T [a,b] = T

[a.b]
D and is therefore associative the following equation is fulfilled

u = T [a,b](b, u) = T (b, x ∧ u) = T (b, T (x, u))

= T (T (b, x), u) = T (b ∧ x, u) = T [a,b](b ∧ x, u) = a

contradicting that u ∈ ]a, b] and showing that x has to be incomparable to all u ∈ ]a, b] in case that it is incomparable
to b. �

Note that the previous lemma also implies that if x is incomparable to b and there exists some u ∈ [a, b] to which x

can be compared, it follows necessarily that u = a.
Lemma 4.1 shows that if the underlying lattice can be described as an ordinal sum of intervals, any ordinal sum with

summands according to these intervals is again a t-norm. Corollary 4.4 and Lemma 4.5 already indicate that from the
fact that T defined by Eq. (3) is a t-norm for some fixed subinterval [a, b] of L we can draw some conclusions about the
structure of the underlying lattice L. The following corollary states under which conditions the lattice L even fulfills
L = [0, a] ⊕ [a, b] ⊕ [b, 1]. It is an immediate consequence of the previous lemmata resp. a consequence of Theorem
4.8 proven later.

Corollary 4.6. Consider some lattice (L, ∧, ∨, 0, 1) and a subinterval [a, b]. Assume that T defined by Eq. (3) is a
t-norm for arbitrary T [a,b] on [a, b]. If for all x ∈ L there exist some u ∈ ]a, b[ such that x can be compared with u,
then L = [0, a] ⊕ [a, b] ⊕ [b, 1].

Remark 4.7. Example 4.2 shows that there exist ordinal sum t-norms on lattices L which are not ordinal sums of
intervals, i.e., L �= [0, a] ⊕ [a, b] ⊕ [b, 1]. Note that those x ∈ L \ [0, a] ⊕ [a, b] ⊕ [b, 1] are incomparable to all
u ∈ ]a, b[. They are further at most comparable to either a or b, but not to both at the same time (see also Fig. 2).

Fig. 2. Lattice cases.
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4.1.3. Necessary and sufficient conditions
The following theorem provides necessary and sufficient conditions for an ordinal sum being a t-norm and providing

insight into the structure of the underlying lattice.

Theorem 4.8. Consider some bounded lattice (L, ∧, ∨, 0, 1) and a subinterval [a, b] of L. Then the following are
equivalent:

(i) The ordinal sum T : L2 → L defined by Eq. (3) is a t-norm for arbitrary T [a,b] on [a, b].
(ii) For all x ∈ L it holds that

(a) if x is incomparable to a, then it is incomparable to all u ∈ [a, b[,
(b) if x is incomparable to b, then it is incomparable to all u ∈ ]a, b].

Proof. Consider a bounded lattice (L, ∧, ∨, 0, 1) and a subinterval [a, b] of L. The necessity follows directly from
Lemma 4.5 and Corollary 4.4.

For proving the sufficiency, the claim is trivially fulfilled if [a, b] = {a, b}, since then T = T L
M. Therefore, we

assume that ]a, b[ �= ∅, i.e., there exists some u ∈ L such that a <L u <L b.
Commutativity holds due to the commutativity of ∧ and T [a,b]. It is also straightforward to show that 1 is the neutral

element of T .
Monotonicity: Monotonicity is preserved due to the monotonicity of T [a,b] on [a, b] and the monotonicity of ∧ on the

lattice L in all cases but one, namely if x /∈ [a, b] and y ∈ [a, b] with x�Ly. We have to show that T (x, z)�LT (y, z)

is fulfilled for all z ∈ [a, b] and x, y as described just before.
If x < a and y, z ∈ [a, b] it holds that

T (x, z) = x ∧ z�La ∧ z = a�LT [a,b](y, z) = T (y, z).

In case that x is incomparable to a and therefore to all v ∈ [a, b[ it follows necessarily that y = b. Moreover, it holds
for all z ∈ [a, b] that

T (x, z) = x ∧ z�Lz = T [a,b](b, z) = T (y, z).

Further if x < a or x incomparable to a, y ∈ [a, b], but z /∈ [a, b] T (x, z)�LT (y, z) due to the monotonicity of ∧.
Associativity: Associativity holds trivially if all arguments are either from [a, b] or from L\ [a, b]. For the remaining

possibilities we distinguish the following two cases:
Case 1: Suppose that exactly one argument involved is from [a, b]. We assume x ∈ [a, b] and y, z /∈ [a, b].
If y ∧ z ∈ [a, b[, necessarily y ∧ z = a. Then we can conclude that

T (x, T (y, z)) = T (x, y ∧ z) = T (x, a) = a

= x ∧ a = x ∧ y ∧ z = T (T (x, y), z).

All other cases can be shown analogously or are fulfilled due to the associativity of ∧.
Case 2: Suppose that exactly two elements involved are from the subinterval [a, b]. We choose x, y ∈ [a, b] and

z /∈ [a, b]. It can be easily verified that in case that either x or y are equal to one of the boundaries of [a, b] associativity
of T is fulfilled due to the associativity and monotonicity of ∧. Therefore, we assume that x, y ∈ ]a, b[.

In case that x�Lz or y�Lz, z is comparable to all [a, b] and fulfills necessarily z�Lb. Moreover,

T (T (x, y), z) = T (x, y) ∧ z = T (x, y) = T (x, y ∧ z) = T (x, T (y, z)).

Similarly, if x�Lz or y�Lz, z is comparable to all [a, b] and z�La such that

T (T (x, y), z) = T (x, y) ∧ z = z = x ∧ z = T (x, y ∧ z) = T (x, T (y, z)).

In case that z is incomparable to x and y it holds that u ∧ z = a ∧ z for all u ∈ [a, b[.

T (T (x, y), z) = T (x, y) ∧ z = a ∧ z

= x ∧ a ∧ z = T (x, y ∧ z) = T (x, T (y, z)).

The remaining cases can be shown analogously such that associativity is proven. �



S. Saminger / Fuzzy Sets and Systems 157 (2006) 1403 –1416 1411

4.2. Ordinal sums with one summand on arbitrary subintervals

The previous results deal with t-norms on some fixed subinterval. How does L look like if T defined by Eq. (3) is a
t-norm not only for arbitrary t-norms T [a,b] but also for arbitrary subintervals [a, b]?

Recall that a bounded poset (X, � , 0, 1) is called a horizontal sum of the bounded posets ((Xi, � i , 0, 1))i∈I if
X = ⋃

i∈I Xi with Xi ∩ Xj = {0, 1} whenever i �= j , and x�y if and only if there is an i ∈ I such that {x, y} ⊆ Xi

and x� iy (compare, e.g., horizontal sums of effect algebras [36]).

Theorem 4.9. Let (L, ∧, ∨, 0, 1) be a bounded lattice. Then the following are equivalent:

(i) for any [a, b] ⊆ L and any t-norm T [a,b] the ordinal sum operation T on L given by (3) is a t-norm on L,
(ii) for all x, y ∈ L: {x ∧ y, x ∨ y} ⊆ {0, 1, x, y},

(iii) L is a horizontal sum of chains.

Proof. The equivalence of (ii) and (iii) is obvious.
(i)⇒(ii): Assume that T defined by Eq. (3) is a t-norm for an arbitrary subinterval [a, b] and an arbitrary t-norm

T [a,b] on [a, b]. Consider some x, y ∈ L being incomparable and further fulfilling x ∨ y = z �= 1. Applying Corollary
4.4 to [x, 1] we get a contradiction since y is incomparable to x but comparable to z ∈ [x, 1[ due to y�Lx ∨ y = z.
Similarly, Lemma 4.5 leads to a contradiction if x ∧ y = z �= 0 for some incomparable x, y, ∈ L. In case that x, y ∈ L

are comparable we clearly get {x ∧ y, x ∨ y} = {x, y}.
(ii)⇒(i): Up to the trivial case where a = 0 and b = 1, i.e., [a, b] = L, we get in all other cases that [a, b] is a proper

subchain of L. If some x ∈ L is incomparable to a then necessarily a �= 0 and x belongs to another subchain Li of L

such that Li ∩ [a, b[ = ∅. Therefore, x is also incomparable to all u ∈ [a, b[. Analogously, we can argue about some
x being incomparable to b such that condition (ii) of Theorem 4.8 is fulfilled for each subinterval [a, b] of L and thus
showing that T is a t-norm on L. �

The theorem shows under which condition a kind of plug-in strategy for building t-norms can be applied. Provided
that the lattice is describable as a disjoint union of chains with some common bottom and top element we can choose
any subinterval of the lattice and plug-in arbitrary t-norm on that subinterval such that the final operation is still a
t-norm on the original lattice.

Example 4.10. Consider the lattice L = {0, a, b, c, 1} as displayed in Fig. 3 then the following cases can be distin-
guished:

• For any interval [u, v] which consists of at most of two elements T [u,v] is clearly T
[u,v]

M and as such T = T L
M trivially

a t-norm.
• For any [u, v] ⊇ {a, b} and for any t-norm T [u,v] on [u, v], T is a t-norm on L.
• The only subintervals leading to contradictory results are [a, 1] and [b, 1]. We illustrate this for the subinterval [a, 1].

There are only two t-norms on [a, 1]. For T [a,1] = T
[a,1]

M also T = T
[0,1]

M . For T [a,1] = T
[a,1]

D we get

T (T (c, c), b) = T (a, b) = 0 �= b = T (c, b) = T (c, T (c, b)),

and therefore associativity is violated.

Fig. 3. Lattice discussed in Example 4.10.
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Table 1
Triangular norms on {0, 1} × {0, 1}
T (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,0) (0,0) (0,0)
(0,1) (0,0) � (0,0) (0,1)
(1,0) (0,0) (0,0) � (1,0)
(1,1) (0,0) (0,1) (1,0) (1,1)

with � ∈ {(0, 0), (0, 1)}

Example 4.11. Consider the poset

L = {(−1, −1), (1, 1), (−x, 1 − x), (x, x − 1) | x ∈ ]0, 1[}
equipped with the product order on R2. It is a lattice with top element (1, 1) and bottom element (−1, −1). Moreover,
it is a suitable candidate for defining ordinal sum t-norms (〈a, b, T [a,b]〉) for arbitrary subintervals [a, b] and arbitrary
t-norms T [a,b] on [a, b], since removing the top and the bottom element leads to two disjoint chains of incomparable
elements.

4.3. Ordinal sums on special bounded lattices

Motivated by the last example we may ask whether there are ordinal sum t-norms on product lattices with the order
on the product lattice being defined coordinate-wisely. Taking into account Theorem 4.9 we know that subintervals
of the product lattice and t-norms on it can be chosen arbitrarily if and only if the product lattice without top and
bottom element is a disjoint union of chains. In fact, these are just product lattices which are either isomorphic to a
chain, i.e., all factor lattices are singletons up to one which forms a chain, or they are isomorphic to the product lattice
{0, 1} × {0, 1}, i.e., all factors are singletons up to two containing exactly two elements.

In the first case any t-norm on the quite trivial product lattice acts as a corresponding t-norm on the chain. In the second
case, there exists no subinterval of the product lattice containing more than two elements besides the product lattice
itself. Therefore there exist only four different t-norms on {0, 1} × {0, 1} which are displayed in Table 1. Note that the
values of T ((0, 1), (0, 1)) and T ((1, 0), (1, 0)) can be chosen independently of each other. Due to the incomparability
of the involved elements monotonicity is not violated.

We have seen by the previous remark that ordinal sum t-norms consisting of a summand with an arbitrary subinterval
as well as an arbitrary t-norm on the subinterval are possible just for very trivial product lattices. Therefore, is it possible
to build an ordinal sum t-norm on a more complex product lattice taking into account not arbitrary but some special
subinterval?

Proposition 4.12. Consider some lattices (Li, ∧i , ∨i , 0i , 1i ), i ∈ {1, . . . , n}, n ∈ N, n�2 with |Li | > 1 for all i and
the corresponding product lattice L = ∏n

i=1 Li . The order on the product lattice is defined coordinate-wisely, i.e.,
(a1, . . . , an)�L(b1, . . . , bn) if and only if ai �Li

bi for all i ∈ {1, . . . , n}. An interval [a, b] = ∏n
i=1 [ai, bi] and an

arbitrary t-norm T [a,b] on that interval lead to an ordinal sum t-norm T on L as defined by Eq. (3) if and only if either
[a, b] = L or ]a, b[ = ∅.

Proof. Assume lattices (Li, ∧i , ∨i , 0i , 1i ) as given above and the corresponding product lattice L as well as some
interval [a, b] = ∏n

i=1 [ai, bi]. If [a, b] = L or ]a, b[ = ∅, the ordinal sum T : L2 → L defined by Eq. (3) is clearly

a t-norm for arbitrary T [a,b] on [a, b]. Note once again that in the latter case the only t-norm on [a, b] is T
[a,b]

M and as
such T = T L

M.
In order to show the necessity assume that [a, b] fulfills [a, b] �= L and ]a, b[ �= ∅ and that T : L2 → L defined

by Eq. (3) is a t-norm for arbitrary T [a,b]. Due to the structure of [a, b] there necessarily exists some k ∈ {1, . . . , n}
such that [ak, bk] �= Lk and some u = (u1, . . . , un) ∈ ]a, b[ and that there exist further some l, m ∈ {1, . . . , n} not
necessarily different from each other or from k such that the following conditions are fulfilled:

• 0k <Lk
ak or bk <Lk

1k due to the fact that [ak, bk] �= Lk ,
• al <Ll

ul and um <Lm bm because of u being an interior element of [a, b].
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We assume first that 0k <Lk
ak and recall that a, u, b and some arbitrary x ∈ L are given by

b = (b1, . . . , bk, . . . , bl, . . . , bm, . . . , bn),

u = (u1, . . . , uk, . . . , ul, . . . , um, . . . , un),

a = (a1, . . . , ak, . . . , al, . . . , am, . . . , an),

x = (x1, . . . , xk, . . . , xl, . . . , xm, . . . , xn),

We distinguish different cases for k, l and m and show that for all possibilities we find two elements of L contradicting
the incomparability conditions of Theorem 4.8.

k �= l: Choose x ∈ L such that xk = 0k , xl = ul and xi = ai for all i ∈ {1, . . . , n} \ {k, l}. Since 0k <Lk
ak �Lk

uk ,
as well as xl = ul >Ll

al and ui �Li
ai = xi , x is incomparable to a but fulfills x�Lu with u ∈ ]a, b[ leading to a

contradiction to Theorem 4.8.
k = l �= m: We select two elements x and y from L in the following way:

x = (a1, . . . ak−1, 0k, ak+1, . . . , am−1, bm, am+1, . . . , an),

y = (a1, . . . ak−1, ak, ak+1, . . . , am−1, bm, am+1, . . . , an)

then y ∈ ]a, b[ since ak <Lk
bk and am �Lm

um <Lm bm = ym. Furthermore, x�Ly although x is incomparable to a

because of am <Lm xm and xk = 0k <Lk
ak and as such contradicting again Theorem 4.8.

k = l = m: Note that in this case 0k <Lk
ak <Lk

uk <Lk
bk �Lk

1k form a sub-chain of Lk . Since the number n of
lattices involved in the product lattice is at least two, n�2, we know that there exists some further j ∈ {1, . . . , n} such
that [aj , bj ] ⊆ Lj with |Lj | > 1.

Assume that aj �= bj , i.e., aj <Lj
bj . We choose x, y ∈ L by

x = (a1, . . . ak−1, 0k, ak+1, . . . , aj−1, bj , aj+1, . . . , an),

y = (a1, . . . ak−1, ak, ak+1, . . . , aj−1, bj , aj+1, . . . , an),

then again y ∈ ]a, b[, x�Ly but x being incomparable to a leading to a contradiction to Theorem 4.8.
If aj = bj then either 0j <Lj

aj or bj <Lj
1j . In the first case, we build x, y ∈ L by

x = (a1, . . . ak−1, uk, ak+1, . . . , aj−1, 0j , aj+1, . . . , an),

y = (a1, . . . ak−1, uk, ak+1, . . . , aj−1, uj , aj+1, . . . , an),

then y ∈ ]a, b[, x�Ly but x being incomparable to a. In the second case, choose x, y ∈ L by

x = (a1, . . . ak−1, uk, ak+1, . . . , aj−1, 1j , aj+1, . . . , an),

y = (a1, . . . ak−1, uk, ak+1, . . . , aj−1, bj , aj+1, . . . , an),

then y ∈ ]a, b[, x�Ly but x being incomparable to b such that both cases contradict Theorem 4.8.
In case that bk <Lk

1k , elements x, y ∈ L contradicting the incomparability conditions of Theorem 4.8 can be
constructed in an analogous way. �

Note that the previous proposition just provides insight why the method of building ordinal sum t-norms is, up to
some trivial cases, not appropriate for creating t-norms on product lattices. However, there exist several other ways for
defining t-norms on such lattices, e.g., [8,25].

Remark 4.13. Similar arguments hold for the case of t-norms on the lattice (L∗, ∧, ∨, 0L∗ , 1L∗) with L∗ = {(x1, x2) |
(x1, x2) ∈ [0, 1]2 ∧ x1 + x2 �1}, the join and the meet operation defined as follows:

(x1, x2) ∧ (y1, y2) = (min(x1, y1), max(x2, y2)),

(x1, x2) ∨ (y1, y2) = (max(x1, y1), min(x2, y2))

for arbitrary (x1, x2), (y1, y2) ∈ L∗, and bottom and top element given by 0L∗ = (0, 1) resp. 1L∗ = (1, 0).
As one can see immediately the removal of the bottom and top element from the lattice does not lead to a disjoint

union of chains expressing that no ordinal sum t-norm in the sense of Definition 3.2 can be built on L∗. Moreover, if
some subinterval is fixed, elements contradicting the incomparability condition of Theorem 4.8 can in general be found
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similar as before in the case of product lattices. Surely there exist other strategies for defining t-norms on L∗ being
inspired by a kind of plug-in strategy, i.e., by using transformations and projections of t-norms on L∗ as been carried
out in, e.g., [11].

5. Ordinal sums with more summands

Theorems 4.8 and 4.9 deal with ordinal sums with one summand either based on some arbitrary or fixed subinterval.
We now extend these results to ordinal sums with more summands (see Definition 3.2) and end up again with a close
relationship between the structure of the underlying lattice and the operation defined on that lattice.

Proposition 5.1. Consider some bounded lattice (L, ∧, ∨, 0, 1) and some linearly ordered index set (I, �), I �= ∅.
Then the following are equivalent:

(i) The ordinal sum T as defined by Eq. (2) is a t-norm for arbitrary families of pairwise disjoint subintervals
(]ai, bi[)i∈I and for arbitrary t-norms T [ai ,bi ] on the corresponding [ai, bi].

(ii) L is a horizontal sum of chains.

Proof. Consider some bounded lattice (L, ∧, ∨, 0, 1) and some linearly ordered index set (I, �), I �= ∅. If T defined
by Eq. (2) is a t-norm for arbitrary summands, then for sure also for only one arbitrary summand leading to L being a
horizontal sum of chains due to Theorem 4.9.

On the other hand, suppose that L is a horizontal sum of chains. We want to show that T : L2 → L defined by

T (x, y) =
{

T [ai ,bi ] if x, y ∈ [ai, bi] ,

x ∧ y otherwise,

is a t-norm for an arbitrary family ([ai, bi])i∈I and arbitrary t-norms T [ai ,bi ] on [ai, bi]. Note that the family of
subintervals is such that all members are pairwise disjoint regarding their interiors, i.e., up to boundary elements.
Commutativity of T is preserved because of the commutativity of ∧ in L and T [ai ,bi ] on [ai, bi]. Furthermore, the
neutral element of T is obviously 1, leaving associativity and monotonicity to be proven.

Monotonicity: We have to show that whenever x�Ly holds then T (x, z)�LT (y, z) for all z ∈ L. Consider some
x, y ∈ L and assume that x�Ly. If x = 0 or y = 1 the inequality is trivially fulfilled for arbitrary z ∈ L.

Therefore, suppose that x, y ∈ L \ {0, 1}. Since L \ {0, 1} is a disjoint union of chains and x�Ly by assumption, x

and y have to belong to one of theses chains, i.e., x, y ∈ C∗ for some chain C∗ ⊆ L \ {0, 1}.
For all z ∈ L \ C∗ the above inequality is trivially fulfilled since T (x, z) = 0 = T (y, z) due to the incomparability

of x and z, resp. y and z.
If z ∈ C∗ ∪ {0, 1} monotonicity can be proven analogously to Lemma 4.1 by describing C∗ ∪ {0, 1} as an ordinal

sum of intervals in the following way: Choose a = ∧{ai | i ∈ I, ai ∈ C∗} and b = ∨{bi | i ∈ I, bi ∈ C∗}. Then
C∗ ∪ {0, 1} = [0, a] ⊕ [a, b] ⊕ [b, 1] is an ordinal sum of intervals and T acts as an ordinal sum t-norm with one
summand on that domain.

Associativity: We have to prove that T (x, T (y, z)) = T (T (x, y), z) is fulfilled for arbitrary x, y, z ∈ L. If one of
the arguments is equal to 0 or 1 the equality is trivially fulfilled, such that we assume x, y, z ∈ L \ {0, 1} arbitrarily. In
case that all three arguments belong to the same chain C∗ associativity can be shown again analogously to Lemma 4.1
by describing C∗ as an ordinal sum of intervals as mentioned before. In case that at least one of the arguments is from
some other sub-chain associativity is trivially fulfilled since T (x, T (y, z)) = 0 = T (T (x, y), z). �

In case that L is a chain, the previous propositions show immediately that the subintervals and the t-norms on them
can be chosen arbitrarily up to the fact that the subintervals have to have pairwise disjoint interiors. In any case T

defined by Eq. (2) is surely a t-norm on L. The previous proposition emphasizes again the special role of the so-called
horizontal sum in case that the family of subintervals can be chosen arbitrarily.

In case that the family of subintervals is fixed we get the following necessary and sufficient conditions, being in fact
a direct generalization of Theorem 4.8.
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Proposition 5.2. Consider some bounded lattice (L, ∧, ∨, 0, 1), some linearly ordered index set (I, ≤), I �= ∅ and a
family of pairwise disjoint subintervals (]ai, bi[)i∈I of L. Then the following are equivalent:

(i) The ordinal sum T : L2 → L defined by Eq. (2) is a t-norm for arbitrary T [ai ,bi ] on [ai, bi].
(ii) For all x ∈ L and for all i ∈ I it holds that

(a) if x is incomparable to ai , then it is incomparable to all u ∈ [ai, bi[,
(b) if x is incomparable to bi , then it is incomparable to all u ∈ ]ai, bi].

Proof. Fix some bounded lattice (L, ∧, ∨, 0, 1) and a family of pairwise disjoint subintervals (]ai, bi[)i∈I of L w.r.t.
some linearly ordered index set I . The necessity of the proposition is a direct result of Theorem 4.8 since by assumption
that T is a t-norm for arbitrary T [ai ,bi ] on [ai, bi] we can choose T [ai0 ,bi0 ] arbitrarily for some i0 ∈ I and for all other
i �= i0 we define T [ai ,bi ] = T

[a,b]
M fulfilling the necessary conditions of Theorem 4.8.

For proving the sufficiency assume that T is defined by Eq. (2) and all x ∈ L fulfill the incomparability conditions
for all i ∈ I . Commutativity again holds due to the commutativity of ∧ and all T [ai ,bi ], i ∈ I as well as 1 is clearly
the neutral element of T . Monotonicity is fulfilled in most cases due to the monotonicity of ∧. The remaining cases
can be proven analogously to the proof of Theorem 4.8. Similarly, regarding associativity, note that T (T (x, y), z) =
T (x, T (y, z)) = x ∧y ∧ z is fulfilled up to the case where at least two elements involved are from the same subinterval
[ai, bi], which in turn can be proven analogously to the proof of Theorem 4.8. �

Remark 5.3. Remember that in case of ordinal sum t-norms on the unit interval with summands based on some fixed
family of subintervals ([ai, bi])i∈I , the unit interval could be described as an ordinal sum of some family ([aj , bj ])j∈J

being a covering of ([ai, bi])i∈I .
In the case of ordinal sum t-norms on some lattice L w.r.t. some fixed family of subintervals ([ai, bi])i∈I there

exists a family of chains (Cj )j∈J , pairwise disjoint up to their boundaries, not necessarily forming a covering of
([ai, bi])i∈I , such that all [ai, bi] and L itself can be constructed by applying either the ordinal sum or the horizontal
sum construction principle to these chains resp. such built intervals consecutively. We would like to illustrate this by
the following examples. As such we denote by C1∪̇hC2 the horizontal sum built as the disjoint union of C1 and C2
with identifying their bottom and top elements.

• The lattice L discussed in Example 4.2, see also Fig. 1 is describable by C1 = {0, a, u, 1} and C2 = {0, x, 1} through
L = C1∪̇hC2.

• Lattice L discussed in Example 4.10, see also Fig. 3 is equal to

({0, a, c}∪̇h{0, b, c}) ⊕ {c, 1}.
Note that for any t-norm T [0, c] on [0, c], T defined by (3) is a t-norm on L.

• Similarly {0, 1}2 is equivalent to

{(0, 0), (0, 1), (1, 1)}∪̇h{(0, 0), (1, 0), (1, 1)}.
Note that building new ordinal or horizontal sum of the previous lattices and keeping the corresponding t-norms on the
sublattices leads again to a t-norm on the such constructed lattice.

6. Conclusion

We have investigated the ordinal sum construction principle for building t-norms on bounded lattices. We have shown
that the structure of the underlying lattice has quite an influence on how such ordinal sum t-norms can be determined.
It turned out that lattices built as ordinal and horizontal sums of chains are the most important and appropriate ones.
Further that there exist no t-norms on product lattices constructed through the proposed ordinal sum construction
principle except for some trivial cases regarding the t-norms or the lattices involved. Note that we have focused on
subintervals of the bounded lattice as the carriers of the summand t-norms. Further investigations of sublattices, not
necessarily being a subinterval, as summand carriers are discussed in [38].
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[36] Z. Riečanová, Pastings of MV-effect algebras, Internat. J. Theoret. Phys. 43 (2004) 1875–1883.
[37] S.E. Rodabaugh, The Hausdorff separation axiom for fuzzy topological spaces, Topology Appl. 11 (1980) 319–334.
[38] S. Saminger, E.P. Klement, R. Mesiar, On an extension of triangular norms on bounded lattices, Submitted for publication.
[39] B. Schweizer, A. Sklar, Espaces métriques aléatoires, C.R. Acad. Sci. Paris Sér. A 247 (1958) 2092–2094.
[40] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960) 313–334.
[41] B. Schweizer, A. Sklar, Associative functions and statistical triangle inequalities, Publ. Math. Debrecen 8 (1961) 169–186.
[42] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.
[43] D. Zhang, Triangular norms on partially ordered sets, Fuzzy Sets and Systems 153 (2) (2005) 195–209.



Indag. Mathem., N.S., 19 (1), 135–150 March, 2008

On extensions of triangular norms on bounded lattices

by Susanne Saminger-Platz a, Erich Peter Klement a and Radko Mesiar b,c

a Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, A-4040 Linz,
Austria
b Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak
University of Technology, Bratislava, Slovakia
c Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic

Communicated by Prof. M.S. Keane

ABSTRACT

Smallest and largest possible extensions of triangular norms on bounded lattices are discussed. As such
ordinal and horizontal sum like constructions for t-norms on bounded lattices are investigated. Necessary
and sufficient conditions for the lattice guaranteeing that the extension is again a t-norm are revealed.

1. INTRODUCTION

Many-valued logics are usually based on a bounded lattice (L,�,0,1) of truth
values [17,18,25,31,36,37], not necessarily being a chain (a first attempt in this
direction is described in [17, Section 15.2], compare [4,12] and also the para-
consistent logic in [8]). In such a case, the conjunction is interpreted by some
triangular norm on L. The structure of t-norms (fulfilling the intermediate value
property) is known in some special cases only (closed real intervals, especially the
unit interval, finite chains), see [3,21]. In this paper we are interested in the problem
of extending a t-norm acting on a (complete) sublattice of L to a t-norm acting
on L, discussing the largest and smallest possible extensions. Although in many of
the before mentioned cases the lattices involved tend to be distributive we will not
make any additional assumptions on the lattice structure except for its boundedness.

Let (L,�,0,1) be a bounded lattice. An operation T :L2 → L which turns L into
an ordered abelian semigroup with neutral element 1 will be called a triangular
norm or, briefly, a t-norm on L [10]. In fact, (T ,L) is a commutative integral

E-mails: susanne.saminger-platz@jku.at (S. Saminger-Platz), ep.klement@jku.at (E.P. Klement),
mesiar@math.sk (R. Mesiar).

135



l-monoid [20] (compare also Examples 1.1–1.4 of commutative semigroups in [16])
if and only if T :L2 → L is a triangular norm on L additionally fulfilling T (x, y ∨
z) = T (x, y) ∨ T (x, z) for all x, y, z ∈ L.

Note that the structure of the lattice L heavily influences which and how many
t-norms on L can be defined. However, on each bounded lattice L with |L| > 2 there
are at least two t-norms, the minimum ∧ and the drastic product TD

L defined by

TD
L(x, y) =

{
x ∧ y if 1 ∈ {x, y},
0 otherwise,

which are also the greatest and smallest t-norms on the lattice L (if |L| = 2 then
∧ and TD

L coincide with the standard boolean conjunction).
Now consider a bounded sublattice (S,�, a, b) of L and a t-norm T S :S2 → S

on S. We are investigating the strongest and weakest possible extension of T S

leading to a t-norm T on the lattice L.
Inspired by ideas of Clifford [7] (in the context of ordinal sums of abstract

semigroups) and [14,24,29,34,35] (ordinal sums of t-norms on the unit interval),
define the binary operation T L

T S :L2 → L by

T L
T S (x, y) =

{
T S(x, y) if (x, y) ∈ S2,

x ∧ y otherwise.
(1.1)

More recently, similar constructions (towers of irreducible hoops [1,6]) have been
applied to characterize BL-chains [18]. Evidently, T L

T S is an extension of T S .
Moreover, if T L

T S is a t-norm then it clearly is the strongest t-norm extending T S .
In the following sections we shall investigate under which conditions, starting

from an arbitrary t-norm T S on some sublattice S, the extension T L
T S always is a

t-norm on L. We will show that the arbitrariness of the choice of T S on S, for
T L

T S to be always a t-norm on L, leads to some restrictions on the structure of the
sublattice S. As a consequence also to restrictions on the structure of L, in case
that not only any choice of T S but also any choice of S shall be admissible. Based
on these results we further discuss the strongest extension of families of arbitrary
t-norms on some corresponding families of arbitrary sublattices and a few further
properties of triangular norms. Finally, we turn to the determination of the smallest
possible extension WL

T S of a t-norm T S on a bounded and complete sublattice S.

2. S AND L WITH COMMON BOTTOM AND TOP ELEMENTS

Fix a bounded lattice (L,�,0,1) and consider a bounded sublattice (S,�, a, b) of
L and a t-norm T S :S2 → S on S. Obviously, T L

T S as defined by (1.1) is commutative
and has neutral element 1. Since S is also a sublattice of ([a, b],�, a, b) with
[a, b] = {x ∈ L | a � x � b}, we have

T L
T S = T L

T
[a,b]
T S

,
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i.e., we may first extend T S to [a, b] via (1.1) and repeat the same procedure to
extend T

[a,b]
T S to L. Because of

T
[a,b]
T S = T L

T S |[a,b]2 ,

a necessary condition for T L
T S to be a t-norm is that T

[a,b]
T S is a t-norm. Therefore,

without loss of generality we may restrict ourselves first to sublattices of L having
the same bottom and top element as L.

Proposition 2.1. Let (L,�,0,1) be a bounded lattice and (S,�,0,1) a sublattice
of L. The following are equivalent:

(i) For all (x, y) ∈ (S \ {1}) × (L \ S) we have x ∧ y ∈ {0, x} and for all (x, y) ∈
(L \ S)2 it holds that x ∧ y ∈ S ⇒ x ∧ y = 0.

(ii) For each t-norm T S :S2 → S on S, the operation T L
T S is a t-norm on L.

Proof. To show necessity assume that condition (i) is fulfilled. It is immediate to
see that T L

T S defined by (1.1) is commutative and has neutral element 1. Since for
each t-norm T we additionally have T (x, y) � x ∧ y, for the monotonicity of T L

T S

it suffices to check if T L
T S (x, y) � T L

T S (x∗, y) for x � x∗ in case x /∈ S, x∗ ∈ S, and
y ∈ S \ {1}.

If x∗ �= 1, then, because of condition (i), x∗ ∧ x = x ∈ {0, x∗} ⊂ S, contradicting
the assumption x /∈ S. Therefore, x∗ = 1, and we can conclude T L

T S (x, y) = x ∧ y ∈
{0, y}, T L

T S (x∗, y) = T S(x∗, y) = y, and, obviously, T L
T S (x, y) � y = T L

T S (x∗, y).
For proving the associativity, i.e., T (x,T (y, z)) = T (T (x, y), z), it is obvious that

it holds whenever either all x, y, z ∈ S or all x, y, z ∈ L \ S as well as if 0 ∈ {x, y, z}
or 1 ∈ {x, y, z}. Therefore, let us first assume that x, y /∈ S and z ∈ S \ {0,1}. Then,
x ∧ z ∈ {0, z}, y ∧ z ∈ {0, z}, and if x ∧ y ∈ S then x ∧ y = 0 such that in all cases it
follows

T
(
x,T (y, z)

) = x ∧ y ∧ z = T
(
T (x, y), z

)
.

Similar arguments can be applied in case x, z /∈ S and y ∈ S \ {0,1} resp. y, z /∈ S

and x ∈ S \ {0,1}.
In case that only one element involved is element of the sublattice, let us first

assume that x /∈ S and y, z ∈ S \ {0,1}, then x ∧ y ∈ {0, y}, x ∧ z ∈ {0, z}, y ∧ z ∈
S \ {1}, and x ∧ T (y, z) ∈ {0, T (y, z)}. Then the following can be argued: If x ∧ y ∧
z = 0 then associativity is trivially fulfilled. Otherwise, if x ∧ y ∧ z = y ∧ z > 0,
such that T (x, y) = y and therefore T (T (x, y), z) = T (y, z) and T (x,T (y, z)) =
x ∧ T (y, z) = T (y, z) since T (y, z) � y = x ∧ y � x. Analogous arguments can be
applied for proving the case z /∈ S and x, y ∈ S \ {0,1}. Finally, it remains to show
associativity for y /∈ S and x, z ∈ S \ {0,1}. If x ∧ y ∧ z = 0, then again it is trivially
fulfilled. Otherwise, necessarily x ∧ y = x and y ∧ z = z, such that

T
(
x,T (y, z)

) = T (x, y ∧ z) = T (x, z) = T (x ∧ y, z) = T
(
T (x, y), z

)
.
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Conversely, assume that T L
T S is t-norm for each t-norm T S on S and fix some

(x, y) ∈ (S \ {1}) × (L \ S) such that x ∧ y /∈ {0, x}.
If x ∧ y ∈ S consider the t-norm T S on S given by

T S(u, v) =
{

0 if (u, v) ∈ ([0, x] ∩ S)2 \ {(x, x)},
u ∧ v otherwise,

and we obtain T L
T S (T L

T S (x, x), y) = x ∧ y �= 0 = T L
T S (x,T L

T S (x, y)).
If x ∧ y /∈ S then

T L

TD
S

(
T L

TD
S (x, x), y

) = 0 �= x ∧ y = T L

TD
S

(
x,T L

TD
S (x, y)

)
.

Moreover, fix some (x, y) ∈ (L \ S)2 such that x ∧ y = z ∈ S \ {0}. Then

T L

TD
S

(
T L

TD
S (x, y), z

) = T L

TD
S (z, z)

= 0 < z = T L

TD
S (x, z) = T L

TD
S

(
x,T L

TD
S (y, z)

)
.

Since in all cases the associativity is violated, this proves that (ii) implies (i). �
Note that condition (i) equivalently expresses that for all x ∈ S \ {1} and for all

y ∈ L \ S either x ∧ y = 0 or x � y is fulfilled and for all x ∈ S \ {0,1} and all
y, z ∈ L \ S, such that x � y and x � z, also y ∧ z ∈ L \ S.

3. EXTENSION OF T-NORMS ON AN ARBITRARY INTERVAL

First consider a fixed subinterval [a, b] of a bounded lattice (L,�,0,1) and an
arbitrary t-norm T [a,b] on [a, b]. We want to check under which conditions on the
interval [a, b] (and on the lattice L) the operation T L

T [a,b] constructed by (1.1) will
be a t-norm on L (see also Theorem 4.8 in [33]). Recall that the open interval
]a, b[ is defined by [a, b] \ {a, b}. Moreover, if ]a, b[= ∅, then T [a,b] = ∧ and also
T L

T [a,b] = ∧ clearly being a t-norm on L, so without loss of generality we can restrict
in the sequel to subintervals [a, b] with ]a, b[ �= ∅ only.

Proposition 3.1. Let (L,�,0,1) be a bounded lattice and [a, b] a subinterval of
L with ]a, b[ �= ∅. The following are equivalent:

(i) {x ∈ L | ∃y ∈]a, b[: x � y or x � y} = [0, a] ∪ [a, b] ∪ [b,1].
(ii) For each t-norm T [a,b] : [a, b]2 → [a, b] on [a, b], the operation T L

T [a,b] is a
t-norm on L.

Proof. Note that condition (i) expresses that whenever some lattice element x, not
necessarily from [a, b], is comparable to an interior element of the subinterval, then
it must be comparable to both boundaries of the subinterval, i.e., to a as well as to b.

Now assume that condition (i) is fulfilled. For the monotonicity of T L
T [a,b] it

suffices to check the case x /∈ [a, b], {y, z} ⊆ [a, b] and x � y. If x < a then

T L
T [a,b](x, z) = x ∧ z � a ∧ z = a � T [a,b](y, z) = T L

T [a,b](y, z).
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If x and a are incomparable, then x /∈ [0, a] ∪ [a, b] ∪ [b,1], i.e., x is incomparable
to all u ∈ [a, b[, such that y = b and

T L
T [a,b](x, z) = x ∧ z � z = T [a,b](y, z) = T L

T [a,b](y, z).

Similarly, the associativity of T L
T [a,b] can be checked case by case. We illustrate the

case of x ∈ L being incomparable to a and y, z ∈ [a, b]. We prove the associativity
for this case by a series of properties:

Since x is incomparable to a, it is incomparable to all u ∈ [a, b[ and therefore it
follows that, necessarily x ∧ v /∈ [a, b] for all v ∈ [a, b].

Further, for all v ∈ [a, b[ it holds that x∧v = x∧a: If v = a, this is obviously true,
therefore assume that v ∈]a, b[ . In order to guarantee that x ∧ v /∈ [a, b] it follows
from x ∧ v � v < b that necessarily x ∧ v � a and further x ∧ v � a ∧ x � v ∧ x due
to the monotonicity and the idempotency of ∧.

Based on these properties we can now conclude for the associativity of some
x ∈ L being incomparable to a and some y, z ∈ [a, b] with y ∧ z ∈ [a, b[:

T
(
x,T (y, z)

) = x ∧ T (y, z) = x ∧ a = x ∧ a ∧ z

= T (x ∧ a, z) = T (x ∧ y, z) = T
(
T (x, y), z

)
.

If y = z = b, then T (x,T (y, z)) = T (x, b) = x ∧ b = T (x ∧ b, b) = T (T (x, y), z)

which concludes the case. The remaining cases for showing the associativity of T

can be checked analogously, thus showing that (i) implies (ii). Clearly, T L
T [a,b] is

commutative and has 1 as a neutral element.
Conversely, let x ∈ L be incomparable to b and comparable to some u ∈]a, b[ ,

i.e., x � u, which implies b ∧ x ∈]a, b[ . Then

u = TD
[a,b](b,u) = T L

TD
[a,b](b, x ∧ u)

= T L

TD
[a,b]

(
b,T L

TD
[a,b](x,u)

) = T L

TD
[a,b]

(
T L

TD
[a,b](b, x), u

)
= T L

TD
[a,b](b ∧ x,u) = TD

[a,b](b ∧ x,u) = a

contradicting u ∈]a, b[ and showing that the incomparability of x to b implies
the incomparability to all elements of ]a, b[ . In complete analogy we can show
that the incomparability of x to a implies the incomparability to all elements of
]a, b[ by proving a contradiction to T (T (u,u), x) = T (u,T (u, x)) in case that x is
comparable to some u ∈]a, b[ , i.e., in case x � u and choosing T [a,b] = TD

[a,b],
thus completing the proof that (ii) implies (i). �
Corollary 3.2. Let (L,�,0,1) be a bounded lattice, (S,�, a, b) a bounded
sublattice of L and T S :S2 → S a t-norm on S. Assume that for each (x, y) ∈
(S \ {b}) × ([a, b] \ S) we have x ∧ y ∈ {a, x}, that for each (x, y) ∈ ([a, b] \ S)2

it follows that x ∧ y ∈ S implies x ∧ y = a, and that, in case ]a, b[ �= ∅, condition (i)
in Proposition 3.1 holds. Then T L

T S is a t-norm on L.
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Note that the conditions in Proposition 3.1 heavily depend on the interval [a, b]
and on the lattice L. Now we look for conditions on L only guaranteeing that for
each subinterval each t-norm can be extended to a t-norm on L.

Recall that a bounded poset (X,�,0,1) is called a horizontal sum of the bounded
posets ((Xi,�i ,0,1))i∈I if X = ⋃

i∈I Xi with Xi ∩Xj = {0,1} whenever i �= j , and
x � y if and only if there is an i ∈ I such that {x, y} ⊆ Xi and x �i y (compare, e.g.,
horizontal sums of effect algebras [32]). A non-trivial example of a bounded lattice
which is a horizontal sum of chains is given by

L = {(−1,−1), (1,1), (−x,1 − x), (x, x − 1) | x ∈]0,1[ }

equipped with the product order on R2.

Proposition 3.3 ([33]). Let (L,�,0,1) be a bounded lattice. The following are
equivalent:

(i) L is a horizontal sum of chains.
(ii) For all x, y ∈ L: {x ∧ y, x ∨ y} ⊆ {0, x, y,1}.

(iii) For each subinterval [a, b] of L and each t-norm T [a,b] : [a, b]2 → [a, b]
on [a, b], the operation T L

T [a,b] is a t-norm on L.

4. T-NORMS ON HORIZONTAL SUMS OF CHAINS

Until now we have considered one subinterval of the bounded lattice (L,�,0,1)

only. However, Proposition 3.3 can be generalized to a system of pairwise disjoint
intervals.

Definition 4.1. Let (L,�,0,1) be a bounded lattice and I some index set. Further,
let ( ]ai, bi[ )i∈I be a family of pairwise disjoint subintervals of L and (T [ai ,bi ])i∈I

a family of t-norms on the corresponding intervals [ai, bi]. Then the ∧-extension
T :L2 → L, denoted T = (〈[ai, bi], Ti〉)i∈I , is given by

T (x, y) =
{

T [ai ,bi ](x, y) if (x, y) ∈ [ai, bi]2,

x ∧ y otherwise.
(4.1)

Corollary 4.2 ([33]). Let (L,�,0,1) be a bounded lattice. The following are
equivalent:

(i) L is a horizontal sum of chains.
(ii) For each family of pairwise disjoint subintervals ( ]ai, bi[ )i∈I of L and for each

family of t-norms (T [ai ,bi ])i∈I on the corresponding intervals [ai, bi] the ∧-ex-
tension (〈[ai, bi], Ti〉)i∈I defined by (4.1) is a t-norm on L.

As an immediate consequence of Corollary 4.2 we obtain the ordinal sum
construction [14,24,29,34,35] for t-norms on the unit interval (see also [22] for
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a full investigation of the relationship with the concept of Clifford [7]) and on any
chain.

Moreover, applying consecutively Proposition 2.1 and Corollary 4.2 we obtain
the following general result:

Proposition 4.3. Let (L,�,0,1) be a bounded lattice which is a horizontal sum
of some family (Lk)k∈K of chains, and let (Si,�, ai, bi)i∈I be a family of bounded
sublattices such that the sets S∗

i,k defined by S∗
i,k =]ai, bi[∩Lk are pairwise disjoint.

If for each i ∈ I and for each (x, y) ∈ (Si \ {bi}) × ([ai, bi] \ Si) we have x ∧ y ∈
{ai, x}, then for each family (T Si )i∈I of t-norms on the corresponding sublattices Si

the function T L :L2 → L given by

T (x, y) =
{

T Si (x, y) if (x, y) ∈ Si
2,

x ∧ y otherwise,

is a t-norm on L.

Proof. If for all i ∈ I and all k ∈ K , S∗
i,k = ∅, it follows that Si = {0,1} for all

i ∈ I and therefore T = ∧. Otherwise, assume that for some i ∈ I and for some
k ∈ K , S∗

i,k �= ∅. It remains to show that for all (x, y) ∈ ([ai, bi] \ Si)
2 it follows that

x ∧ y ∈ Si implies x ∧ y = ai .
In case ai �= 0 or bi �= 1, for any (x, y) ∈ (S∗

i,k \ Si)
2 it follows that x ∧ y ∈ {x, y}

such that x ∧ y /∈ Si . In case ai = 0 and bi = 1 it might be that x ∈ S∗
i,k \ Si ⊂

[ai, bi] \ Si and y ∈ S∗
i,l \ Si ⊂ [ai, bi] \ Si with k �= l, however, then x ∧ y = 0 =

ai ∈ Si follows immediately. Because of Proposition 2.1 we can further conclude
that T |([ai ,bi ]∩Lk)2 is a t-norm on the bounded sublattice (subinterval) ([ai, bi] ∩
Lk,�, ai, bi) of L. Notice that in case ai = 0 and bi = 1, [ai, bi] ∩ Lk = Lk and
otherwise [ai, bi] ∩ Lk = [ai, bi]. �

The special structure of horizontal sums allows us to represent each t-norm as the
∧-extension of its restrictions to the summands:

Proposition 4.4. Let (L,�,0,1) be a bounded lattice which is a horizontal sum
of some family (Lk)k∈K of bounded lattices. Then a binary operation T :L2 → L is
a t-norm on L if and only if T = (〈Lk,T |Lk

2〉)k∈K .

Proposition 4.4 allows us to give a representation of certain types of t-norms on
horizontal sums of chains, thus generalizing the representation theorem [19,24,29,
30] of continuous t-norms on the unit interval and of t-norms on finite chains [26]
fulfilling the intermediate value property by means of additive generators. Recall
that a t-norm T :L2 → L on L fulfills the intermediate value property if it satisfies
that for all x, y, z ∈ L with x � y and for each u ∈ [T (x, z), T (y, z)], there is a
v ∈ [x, y] such that T (v, z) = u.

Corollary 4.5. Let (L,�,0,1) be a bounded lattice which is a horizontal sum
of bounded chains (Ck)k∈K , where each chain Ck is either finite or isomorphic to
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a non-trivial compact subinterval of the real line. If T :L2 → L is a t-norm on L

fulfilling the intermediate value property, then there exist a family (Si,�, ai, bi)i∈I

of subchains of L satisfying the hypothesis of Proposition 4.3 and a family of
continuous, strictly decreasing real-valued functions (ti :Si → [0,∞])i∈I satisfying
ti (bi) = 0 such that for each (x, y) ∈ L2

T (x, y) =
{

t−1
i (min(ti(x) + ti (y), ti(ai))) if (x, y) ∈ Si

2,

x ∧ y otherwise.

Proof. From Proposition 4.4 we know T = (〈Ck,T |Ck
2〉)k∈K . If Ck is finite then

the t-norm T |Ck
2 fulfills the intermediate value property, and the existence of the

subchains Si of Ck and the functions ti :Si → [0,∞] with the desired properties
follows from [26,27]. If Ck is isomorphic to a non-trivial compact subinterval of
the real line, then (Ck, T |Ck

2) is isomorphic to an I -semigroup [13], and the result
follows from [29] (compare also [21,30]). �

Due to the well-known structure of t-norms on the real unit interval and on finite
chains fulfilling the intermediate value property (in the latter case such t-norms
are uniquely determined by their non-trivial idempotent elements), we are able to
construct all such t-norms on bounded lattices which are horizontal sums of non-
trivial compact subintervals of the real line and finite chains [21,26,29].

As an immediate consequence, the number of t-norms on a finite lattice L which
is a horizontal sum of chains which fulfill the intermediate value property is given
by 2|L|−2 (compare the result of [26] for divisible t-norms on finite chains). Observe
that the minimum ∧ always satisfies the hypothesis of Corollary 4.5 (the index set I

being empty in this case) whereas, e.g., for L = {0, 1
3 , 2

3 ,1} the drastic product TD
L

does not fulfill the intermediate value property.
Further note that in Corollary 4.5 the hypothesis that the infinite chains involved

there be isomorphic to non-trivial compact subintervals of the real line cannot
be relaxed, in general. Take the chain (L,�) with L =]0,1[2 ∪{(0,0), (1,1)}
and � being the lexicographic order. Then the function T :L2 → L given by
T ((x1, y1), (x2, y2)) = (x1y1, x2y2) is a t-norm which fulfills the intermediate value
property and is not representable as a ∧-extension of some t-norm possessing an ad-
ditive generator since the semigroup (L\ {(0,0)}, T |(L\{(0,0)})2) is Archimedean and
cancellative, but has anomalous pairs (e.g., (0.5,0.6) and (0.5,0.5)), compare [2,28]
and see [15] for the corresponding notions and related results. Moreover, take the
chain (L,�) with L = {−1} ∪ [0,1] and � the standard order on the real line. Then
the function T :L2 → L defined by

T (x, y) =
{

x + y − 1 if x + y � 1,

−1 otherwise,

is an Archimedean t-norm fulfilling the intermediate value property but with no
additive generator.
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5. FURTHER PROPERTIES

A lattice (L,0,1,�) equipped with some t-norm T :L2 → L is called divisible
[20] if for all x, y ∈ L with y � x there exists some z ∈ L such that y = T (x, z)

(compare also the natural ordering of groupoids in [15]). Note that the divisibility
of a t-norm T is, in general, a weaker property than its intermediate value property
as the following example shows.

Example 5.1. Consider the bounded lattice (L,�,0,1) with L = {0,1, a, b, c, d, e}
as displayed and define T :L2 → L by

T 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 0 0 0 0 0 a

b 0 0 0 0 0 a b

c 0 0 0 a a b c

d 0 0 0 a 0 a d

e 0 0 a b a d e

1 0 a b c d e 1

Then T is a t-norm on L which is divisible but does not fulfill the intermediate value
property (it suffices to choose for x = b, y = e and z = c).

However, for chains the intermediate value property and divisibility coincide.
Moreover, the intermediate value property of a t-norm T on a lattice L which is a
horizontal sum is equivalent to the intermediate value property of T restricted to
the summands of L. Thus the requirement of the intermediate value property for T

in Corollary 4.5 can be relaxed to divisibility.
Further note that in many-valued logics, the algebraic background is mostly a

residuated lattice (L,0,1,�,∗,→), where ∗ :L2 → L is a t-norm on L. The t-norm
∗ modelling the conjunction operator and the operator → :L2 → L modelling the
implication operator form adjoint operators linked to each other by the adjunction
relation

x ∗ y � z if and only if x � y → z

for all x, y, z ∈ L. Note that a such residuated lattice is divisible if and only if

x ∗ (x → y) = x ∧ y(5.1)

for all x, y ∈ L [20]. Observe that (5.1) is preserved by ordinal sums. However,
this is not more true for horizontal sums of chains. To see this, consider any finite
bounded lattice (L,0,1,�). Choosing ∗ = ∧, then (L,0,1,�,∧,→) is residuated
if and only if it is distributive, i.e., it does not contain as a sublattice a non-trivial
5-point horizontal sum [5,23]. Thus the only non-trivial horizontal sum of chains
which yields a residuated lattice (L,0,1,�,∧,→) is the four-point diamond lattice
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which is also the product of two chains with two elements. Note that for this
lattice all t-norms T fulfill the intermediate value property and therefore divisibility,
but (5.1) is only fulfilled for ∗ = ∧.

6. WEAKEST POSSIBLE EXTENSION

It was mentioned already in the beginning that the ∧-extension of some t-norm T S

on some bounded sublattice S as given by (1.1) is the strongest possible extension of
T S . We have shown that guaranteeing that the ∧-extension is a t-norm independent
of the choice of the t-norm T S (and the sublattice S) demands rather restrictive
conditions on the underlying lattice. Quite different is the situation when looking
for the weakest possible extension of T S on some single sublattice S.

Definition 6.1. Let (L,�,0,1) be a bounded lattice, (S,�, a, b) a complete and
bounded sublattice, and T S a t-norm on the corresponding sublattice S. Then define
T S∪{0,1} : (S ∪ {0,1})2 → (S ∪ {0,1}) by

T S∪{0,1}(x, y) :=
⎧⎨
⎩

x ∧ y if 1 ∈ {x, y},
0 if 0 ∈ {x, y},
T (x, y) if (x, y) ∈ S2.

(6.1)

Further define WL
T S :L2 → L by

WL
T S (x, y) :=

{
x ∧ y if 1 ∈ {x, y},
T S∪{0,1}(x∗, y∗) otherwise,

(6.2)

with x∗ = sup{z | z � x, z ∈ S ∪ {0,1}}.

Lemma 6.2. Let (L,�,0,1) be a bounded lattice and assume some complete,
bounded sublattice (S,�, a, b). Let T S be a t-norm on the corresponding sublat-
tice S. Then T S∪{0,1} : (S ∪ {0,1})2 → (S ∪ {0,1}) defined by (6.1) is a t-norm on
S ∪ {0,1}. Moreover, it is the unique t-norm extension of T S from S to S ∪ {0,1}.

Proof. In case {0,1} ⊆ S, then T S∪{0,1} = T S . Moreover, clearly this “extension”
is unique. For all other cases, it is immediate that T S∪{0,1} = T

S∪{0,1}
T S , i.e., T S∪{0,1}

coincides with the strongest possible extension provided by means of (1.1) such
that indeed T S∪{0,1} is a t-norm. For any extension T ′ of T S to the sublattice S ∪
{0,1} which is also a t-norm it holds that T ′(x, y) = T S(x, y) for any (x, y) ∈ S2.
Moreover, T ′(x,0) = T ′(0, x) = 0 = T S∪{0,1}(x,0) = T S∪{0,1}(0, x) for any x ∈ S ∪
{0,1}, and T ′(x,1) = T ′(1, x) = x = T S∪{0,1}(x,1) = T S∪{0,1}(1, x) for any x ∈ S ∪
{0,1}, showing that T S∪{0,1} is the unique and as such the weakest and strongest
possible t-norm extension of T S on S ∪ {0,1}. �
Proposition 6.3. Let (L,�,0,1) be a bounded lattice and assume some complete,
bounded sublattice (S,�, a, b). Let T S be a t-norm on the corresponding sublat-
tice S. Then WL

T S :L2 → L defined by (6.2) is a t-norm on L.
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Proof. First note that in case some x is smaller or incomparable to all elements
of S, then x∗ = 0. If x is greater than some element in S, then x∗ ∈ S since S is a
complete sublattice. Moreover, if x ∈ S, then x∗ = x ∈ S. Since in any case x∗ � x

it is guaranteed that WL
T S is well defined.

Moreover, for any x, y ∈ L \ {0,1} it holds that WL
T S (x, y) ∈ S ∪ {0,1} and

therefore WL
T S (x, y)∗ = WL

T S (x, y). It is immediate to see that WL
T S has neutral

element 1 and that it is symmetric.
Let us next focus on its monotonicity. Therefore, assume some x, x′, y ∈ L such

that x � x′ and let us show T (x, y) � T (x′, y). Since x � x′, also x∗ � (x′)∗.
Whenever 1 ∈ {x, y}, monotonicity is trivially fulfilled. Therefore, assume that
x′ = 1 but x �= 1 and y �= 1, then

WL
T S (x, y) = T S∪{0,1}(x∗, y∗) � x∗ ∧ y∗ � y = WL

T S (1, y).

And, finally, for all other x, x′, y ∈ L it holds that

WL
T S (x, y) = T S∪{0,1}(x∗, y∗) � T S∪{0,1}((x′)∗

, y∗) = WL
T S

(
x′, y

)
.

It remains to prove associativity, i.e., WL
T S (x,WL

T S (y, z)) = WL
T S (WL

T S (x, y), z)

for all x, y, z ∈ L. Whenever all x, y, z ∈ S, 1 ∈ {x, y, z}, or 0 ∈ {x∗, y∗, z∗},
this holds immediately. However, for all remaining cases, we have WL

T S (x, y) =
T S∪{0,1}(x∗, y∗) = T S∪{0,1}(x∗, y∗)∗, such that

WL
T S

(
WL

T S (x, y), z
) = T S∪{0,1}(T S∪{0,1}(x∗, y∗), z∗)
= T S∪{0,1}(x∗, T S∪{0,1}(y∗, z∗)) = WL

T S

(
x,WL

T S (y, z)
)

proving associativity and thus that WL
T S is indeed a t-norm on L. �

Proposition 6.4. Let (L,�,0,1) be a bounded lattice and assume some complete,
bounded sublattice (S,�, a, b). Let T S be a t-norm on the corresponding sublat-
tice S. Then WL

T S :L2 → L defined by (6.2) is the smallest possible t-norm extension
of T S on L.

Proof. Assume that T ′ is a t-norm extension of T S on L. For all (x, y) ∈ (S ∪
{0,1})2, T ′(x, y) = WL

T S (x, y). Next, consider that either x /∈ S ∪ {0,1} or y /∈ S ∪
{0,1}, then x∗ � x and y∗ � y, and further

T ′(x, y) � T ′(x∗, y∗) = T S∪{0,1}(x∗, y∗) = WL
T S (x, y)

such that WL
T S is indeed the smallest possible t-norm extension of T S on L. �

So far we have considered one complete sublattice S of the bounded lattice
(L,�,0,1) only. Next, we aim at a generalization in case of families of complete
sublattices and corresponding t-norms.
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Definition 6.5. Let (L,�,0,1) be a bounded lattice and I some index set. Further,
let (Si,�, ai, bi)i∈I be a family of complete and bounded sublattices of L such that
the family ( ]ai, bi[ )i∈I consists of pairwise disjoint subintervals of L. Finally, let
(T Si )i∈I be a family of t-norms on the corresponding sublattices Si . Then define
WL

T Si
:L2 → L by

WL

T Si
(x, y) :=

{
x ∧ y if 1 ∈ {x, y},
T Si∪{0,1}(x∗

i , y∗
i ) otherwise,

(6.3)

with x∗
i = sup{z | z � x, z ∈ Si ∪ {0,1}} and define W :L2 → L by

W(x,y) := sup
i∈I

WL

T Si
(x, y).(6.4)

Note that, by definition, W is a symmetric and monotone operation on L which
has neutral element 1. However, further restrictions on the family of sublattices
have to be applied in order to guarantee that W is indeed an extension of arbitrary
t-norms T Si on the sublattices Si .

Proposition 6.6. Let (L,�,0,1) be a bounded lattice and I some index set.
Further, let (Si,�, ai, bi)i∈I be a family of complete sublattices of L such that the
family ( ]ai, bi[ )i∈I consists of pairwise disjoint subintervals of L. Further assume
that for all i, j ∈ I with i �= j it holds that

(i) if x ∈ Sj then x∗
i /∈ Si \ {ai, bi}, i.e., x∗

i ∈ {0, ai, bi},
(ii) if x ∈ Sj \ {bj } and x∗

i = ai , then (aj )
∗
i � ai , and

(iii) if x ∈ Sj \ {bj } and x∗
i = bi , then (aj )

∗
i = bi .

Then for all t-norms T Si on Si and for all t-norms T Sj on Sj with i �= j it holds
that WL

T Si
(x, y) � T Sj (x, y) for all (x, y) ∈ S2

j and WL

T
Sj

(x, y) � T Si (x, y) for all

(x, y) ∈ S2
i , i.e.,

WL

T Si
|Sj

2 � T Sj and WL

T
Sj

|Si
2 � T Si .

Moreover, W given by (6.4) is a monotone and symmetric extension of each T Si ,
i.e., W |

S2
i

= T Si for all i ∈ I , which has neutral element 1.

Proof. Without loss of generality fix some t-norms T Si , T Sj on Si resp. Sj with
i, j ∈ I , i �= j , and let (x, y) ∈ S2

j . Then x∗
i , y∗

i ∈ {0, ai, bi}. If x∗
i = 0 or y∗

i = 0, it

follows immediately that WL

T Si
(x, y) = 0 � T Sj (x, y). If x∗

i = bi or y∗
i = bi , then

(aj )
∗
i = bi such that

WL

T Si
(x, y) � bi � aj � T Sj (x, y).

Finally, for x∗
i = y∗

i = ai , necessarily (aj )
∗
i � ai , such that we can conclude

WL

T Si
(x, y) = ai � (aj )

∗
i � aj � T Sj (x, y).
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Therefore, for all j ∈ I and for all (x, y) ∈ S2
j ,

sup
i∈I,i �=j

WL

T Si
(x, y) � T Sj (x, y)

and moreover, since WL

T
Sj

|Sj
2 = T Sj , W(x,y) = supi∈I WL

T Si
(x, y) = T Sj (x, y)

showing that W is indeed an extension of T Sj . �
Further note that the supremum of arbitrary t-norms on a lattice L need not be a

t-norm in general, compare also [11]. However, for particular and important classes
of lattices the operation W as defined by (6.4) is associative, i.e., is a t-norm.

Example 6.7. Let (Li,�,0i ,1i ), i ∈ {1, . . . , n}, n ∈ N, be arbitrary complete and
bounded lattices and consider their product lattice L = ∏n

i=1 Li . Then for each i ∈
{1, . . . n}, Si = {(01, . . . , xi, . . . ,0n) | xi ∈ Li} is a complete and bounded sublattice
of L. Moreover, for each t-norm Ti on Li , the function T Si :S2

i → Si defined by

T Si (x,y) = (
01, . . . , Ti(xi, yi), . . . ,0n

)

denotes a t-norm on Si . Therefore, W :L2 → L as defined by (6.4) can be computed
as

W(x,y) = sup
i=1,...,n

WL

T Si
(x,y) = (

T1(x1, y1), . . . , Tn(xn, yn)
)

and is a t-norm on L for arbitrary t-norms Ti on Li .

Example 6.8. Let (L,�,0,1) be a bounded lattice. Further, let ( ]ai, bi[ )i∈I be
a family of pairwise disjoint, non-empty subintervals of L with (I,�) a linearly
ordered index set such that

• ({[ai, bi[ | i ∈ I }) ∪ {{1}} forms a partition of L and
• whenever i ≺ j then x � y for all x ∈ [ai, bi] and for all y ∈ [aj , bj ],

i.e., L is a so-called ordinal sum of partially ordered sets ([ai, bi[,�), i ∈ I , and
({1},�), see e.g. [9]. Let J be a finite subset of I , i.e., J = {i1, . . . , in} ⊆ I for
some n ∈ N, such that i1 < i2 < · · · < in and as a consequence ai1 < ai2 < · · · < ain .
Additionally define ain+1 := 1.

Finally, let (T
[aij

,bij
]
)ij ∈J be a family of t-norms on the corresponding intervals

[aij , bij ]. Then, ([aij , bij ],�)ij ∈J forms a family of complete and bounded sublat-
tices of L for which the requirements of Proposition 6.6 hold such that W defined
by (6.4) can be computed as

W(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∧ y if 1 ∈ {x, y},
T

[aij
,bij

]
(x, y) if (x, y) ∈ [aij , bij ]2,

x ∧ y ∧ bij if aij � x ∧ y < aij+1 and bij � x ∨ y < 1,

0 if x < ai1 or y < ai1 .
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Moreover, W is associative, i.e., a t-norm on L.

Remark 6.9. Note that for J = I , it holds that ai1 = 0 and, for all ij ∈ J , bij = aij+1

and therefore x ∧ y ∧ bij = x ∧ y whenever x ∧ y ∈ [aij , bij ] and bij � x ∨ y. As a
consequence, for J = I , the weakest extension W and the strongest extension T as
defined by (4.1) of t-norms (T [ai ,bi ])i∈I on corresponding intervals [ai, bi] coincide.

In case J � I , always W �= T such that the present example provides another
way of obtaining t-norms on chains, in particular on [0,1], which extend t-norms
(T [ai ,bi ])i∈I on corresponding intervals [ai, bi]. Note further that for L = [0,1],
the weakest extension W is right-continuous whenever all (T [ai ,bi ])i∈I are right-
continuous.

In case of chains the previous result can even be strengthened.

Proposition 6.10. Let (L,�,0,1) be a chain. Further, let ( ]ai, bi[ )i∈I be a family
of pairwise disjoint, non-empty subintervals of L and (T [ai ,bi ])i∈I a family of
t-norms on the corresponding subintervals with (I,�) a linearly ordered index set.
Then W defined by (6.4) is associative, i.e., a t-norm on L.

Proof. From Proposition 6.6 we can conclude that W is a monotone and symmetric
extension of each T [ai ,bi ] which has neutral element 1. Next choose arbitrary
x, y, z ∈ L. In case 1 ∈ {x, y, z} the associativity of W holds trivially, therefore
assume that 1 /∈ {x, y, z}. In case x ∧ y ∧ z ∈ [ai, bi] for some i ∈ I we can conclude
that

W
(
W(x,y), z

) = T [ai ,bi ](T [ai ,bi ](x ∧ bi, y ∧ bi), z ∧ bi

)
= T [ai ,bi ](x ∧ bi, T

[ai ,bi ](y ∧ bi, z ∧ bi)
)

= W
(
x,W(y, z)

)
.

If m = x ∧ y ∧ z ∈ L \ ⋃
i∈I [ai, bi], then for all i ∈ I such that bi < m it holds that

WL

T [ai ,bi ]
(
WL

T [ai ,bi ](x, y), z
) = WL

T [ai ,bi ]
(
x,WL

T [ai ,bi ](y, z)
) = bi.

If ai > m, then WL

T [ai ,bi ](W
L

T [ai ,bi ](x, y), z) = WL

T [ai ,bi ](x,WL

T [ai ,bi ](y, z)) = 0. As a
consequence W(W(x,y), z) = W(x,W(y, z)) = sup{bi | bi < m}. �

Proposition 6.10 can further be extended to horizontal sums of chains.

Corollary 6.11. Let (L,�,0,1) be a bounded lattice which is a horizontal sum
of some family (Lk)k∈K of chains. Further, let ( ]ai, bi[ )i∈I be a family of pairwise
disjoint, non-empty subintervals of L and (T [ai ,bi ])i∈I a family of t-norms on the
corresponding intervals [ai, bi]. Then, for any k ∈ K , W |

L2
k

is a t-norm on Lk and

of the form as described in Proposition 6.10. In case x ∈ Lk \ {1} and y ∈ Ll \ {1}
with k �= l, W(x,y) = 0, and in case 1 ∈ {x, y}, W(x,y) = x ∧ y, such that W is
also a t-norm on L.
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Summary. This primer aims at providing an overview of existing concepts and facts about
triangle functions as they have been presented in [41]. Moreover, it contains new results on
triangle functions and proofs for results not easily available. In this first part we present the
most important classes of triangle functions, based on the recent notions of semicopula, quasi-
copula, as well as the more traditional ones of t-norm, copula and (generalized) convolution. We
close this part by listing some basic results needed for the applications (inequalities, aspects of
stability and invariance of subspaces) and outlining a few open questions.
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1. Introduction

Triangle functions constitute an important class of binary operations on a subspace
of distribution functions. From a historical point of view, they were introduced
by Šerstnev in [47, 48] in his definitive formulation of the triangle inequality in
probabilistic metric spaces (see for a historical introduction to these spaces [35]).

The aim of the present primer is to collect and select known results about
these functions, to provide proofs for results not easily available and to add new
results; in this way we hope to help the reader to find her/his way in the existing
literature, and to provide a handy reference when needed. More than twenty
years have elapsed since the publication of the book Probabilistic Metric Spaces
by Schweizer and Sklar [41], in which a whole chapter, the seventh, was devoted
to triangle functions; the notes added by the authors in the second edition of
this fundamental reference only point to corrections and to works published in
the meantime. The present one seems to be a good time for writing a work like
this one, since, on the one hand, the revived interest in the theory of probabilistic
metric and normed spaces has necessarily brought triangle functions to the fore;
on the other hand, the paper [36] by Schweizer seems to be the harbinger of new
applications in a vast field such as that of fuzzy sets and related areas. In order
to keep the length within reasonable bounds we split this primer into two parts of
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which the present one mainly deals with the known classes of triangle functions.
In the second part we intend to discuss duality, conjugate transforms, functional
equations and inequalities for triangle functions, in particular dominance.

The first part of this primer is devoted to a thorough introduction of basic
notions and principles; triangle functions in general and particular classes of these
constitute the middle and main part of this primer. Finally, a few selected topics
related to triangle functions will be discussed.

2. Preliminaries and notation

In this section we collect some of the preliminaries that are needed in the sequel
and fix the notation.

Definition 2.1. A distribution function (briefly a d.f.) F is a function from the
extended reals R into [0, 1] such that

(a) it is increasing1;
(b) it is left-continuous on R;
(c) F (−∞) = 0 and F (∞) = 1.
The set of all d.f.’s will be denoted by ∆. The subset of ∆ consisting of

proper d.f.’s, namely of those elements F such that ℓ+F (−∞) = F (−∞) = 0 and
ℓ−F (+∞) = F (+∞) = 1 will be denoted by D. Here, for a function ϕ : R → R,
we have used the notations

ℓ−ϕ(t) := lim
s→t
s<t

ϕ(s) and ℓ+ϕ(t) := lim
s→t
s>t

ϕ(s).

A distance distribution function (briefly, d.d.f.) is a d.f. F such that F (0) = 0.
The set of all d.d.f.’s will be denoted by ∆+, while D+ := D ∩∆+ will denote the
set of proper d.d.f.’s.

For a d.f., or a d.d.f., F the set of its points of discontinuity will be denoted
by D(F ). It is well-known that D(F ) is, at most, countable, card(D(F )) ≤ ℵ0. A
d.f. or a d.d.f. F may be decomposed as the sum of a continuous function Fc and
of a discrete function Fd, i.e., for all x ∈ R,

F (x) = Fc(x) + Fd(x).

Among d.f.’s the following will be met again and again:

εa(x) :=

{
0, x ≤ a,

1, x > a,

1 The reader should be warned that by the term increasing we mean increasing in the weak
sense, often termed non-decreasing.
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where a is any number in [−∞, +∞[, while for a = +∞,

ε∞(t) :=

{
0, t < +∞,

1, t = +∞.

The d.f. εa belongs to ∆+ if, and only if, a is positive, a ≥ 0. In the sequel, we
refer to functions of type εa as step functions.

The following family of d.f.’s in ∆+ will also be needed; for s ∈ ]0, 1[,

Vs(x) :=





0, x ≤ 0,

s, x ∈ ]0, +∞[ ,
1, x = +∞.

(2.1)

The elements of ∆ are partially ordered by the usual pointwise order

F ≤ G if, and only if, F (x) ≤ G(x) for all x ∈ R.

In this order ε−∞ is the maximal element, while ε∞ is the minimal element.
The restriction to ∆+ of the order just introduced on ∆ has now ε0 as the

maximal element, while the minimal element is still ε∞.
Moreover, if F is in ∆ and A is a subset of R, then

sup{F (x) | x ∈ A} = F (sup{x | x ∈ A})
because of the left-continuity of F .

The supremum of any set of d.f.’s is again a d.f., whereas the infimum need not
be, since left-continuity might not be preserved.

For a d.f. F ∈ ∆ its (left-continuous) quasi-inverse F∧ is defined by

F∧(x) := sup{t | F (t) < x}.

The sets ∆, ∆+, D and D+ can all be made into metric spaces by the introduc-
tion of several topologically equivalent distances. As is traditional, we shall select
the Sibley metric (see [49]), which is called the modified Lévy metric in [41].

Definition 2.2. If F and G be d.f.’s, i.e., F, G ∈ ∆, and h is in ]0, 1], denote by
(F, G; h) the condition

∀x ∈
]
− 1

h
,

1
h

[
F (x − h)− h ≤ G(x) ≤ F (x− h) + h.

The Sibley distance is the function dS : ∆×∆ → [0, 1] defined by

dS(F, G) = inf{h | both (F, G; h) and (G, F ; h) hold}. (2.2)

That (2.2) defines a bona fide metric on ∆ was proved in [49] (see also [34]). We
keep denoting by dS the restriction of the Sibley metric to ∆+, since no possible
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confusion may arise. It was proved in [49] that dS metrizes the topology of weak
convergence for d.f.’s in ∆: a sequence (Fn)n∈N of d.f.’s or of d.d.f.’s, converges
weakly to a d.f. (respectively to a d.d.f.) F if

lim
n→+∞

Fn(x) = F (x)

at every point x ∈ R at which F is continuous. Notice that this definition requires
that also the limit function F is a d.f. or, respectively a d.d.f..

Although it is not the “right” metric on ∆, we shall mention the Lévy metric
dL, which is defined on D by

dL(F, G) := inf{h > 0 : both (F, G; h) and (G, F ; h) hold} (2.3)

where, for F and G in ∆, (F, G; h) denotes the condition

∀ x ∈ R F (x− h)− h ≤ G(x) ≤ F (x + h) + h.

See, for instance, [26] for a proof of the fact that dL is indeed a metric on ∆
and that it metrizes the weak convergence of d.f.’s belonging to D. The spaces
(D, dL) and (D+, dL) are not compact, while so are both (∆, dS) and (∆+, dS).

Moreover, it follows immediately form their respective definitions that, for any
two d.f.’s F and G in ∆,

dS(F, G) ≤ dL(F, G).

3. Operations on the range or on the domain of (distance) distri-
bution functions

We adopt from [41, Section 7.1] the definitions of the sets of operations T and L.
The first set of operations, T, deals with operations on the unit interval, which is
the range of (distance) distribution functions, whereas the second class deals with
operations on the extended positive real line, R+ := [0, +∞], which is the domain
of every d.d.f.. However, in order to take into consideration also recent advances,
we modify the notation of [41]. In the language that has come into use after the
publication of the book [41], the elements of T are called semicopulæ (see [8, 9])
or conjunctors (see [7, 13, 33]).

Definition 3.1. A semicopula is a function S : [0, 1]2 → [0, 1] that satisfies the
following two conditions:

(S1) S is increasing in each place, viz., for every s ∈ [0, 1], the functions t 7→
S(t, s) and t 7→ S(s, t) are increasing;

(S2) for every t ∈ [0, 1], S(t, 1) = S(1, t) = t.

We shall denote by S (rather than T) the set of all semicopulas. Note that
a semicopula need be neither commutative nor associative. Moreover, because of
isotony and the fact that 1 serves as neutral element, any semicopula S ∈ S has
also 0 as its unique null element.
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Vice versa, the set of all binary operations S∗ on [0, 1] that are increasing in
each place and which have 0 as the neutral element will be denoted by S∗. We
will refer to its elements as co-semicopulas.

Further we distinguish the following subclasses of semicopulas:

Definition 3.2. A quasi-copula is a function Q : [0, 1]2 → [0, 1] that satisfies the
following conditions:

(Q1) Q is increasing in each place;
(Q2) Q satisfies the Lipschitz condition, i.e., for all a, b, c, d ∈ [0, 1],

|Q(a, b)−Q(c, d)| ≤ |a− c|+ |b− d|; (3.1)

(Q3) for every t ∈ [0, 1], Q(t, 1) = Q(1, t) = t.

Quasi-copulas were introduced in [2] and characterized in [12]; the set of quasi-
copulas will be denoted by Q.

Since it will be needed later, we further provide the definition of a copula, which
was introduced by Sklar ([50], see also [31, 51]).

Definition 3.3. A copula is a function C : [0, 1]2 → [0, 1] that satisfies the
following conditions:

(C1) for every t ∈ [0, 1], C(0, t) = C(t, 0) = 0 and C(1, t) = C(t, 1) = t;
(C2) C is 2-increasing, i.e., for all s, s′, t and t′ in [0, 1], with s ≤ s′ and t ≤ t′,

C(s′, t′)− C(s′, t)− C(s, t′) + C(s, t) ≥ 0. (3.2)

It follows from the definition that every copula C is increasing in each place
and that it satisfies the Lipschitz condition (3.1). As a consequence, every copula
C is a quasi-copula, but there are quasi-copulas that are not copulas; these will
be called proper. If C denotes the set of all copulas, we can write

C ⊂ Q ⊂ S.

In the sequel, the notion of t-norm will often be needed. This concept was
introduced in a slightly different form by Menger in [27] and in its definitive form
in [37, 38]. To this class of operations are devoted the important monographs [1,
17], see also [18, 19, 20, 16].

Definition 3.4. A triangular norm or, briefly, a t-norm is a function T : [0, 1]2 →
[0, 1] that satisfies the following conditions:

(T1) T is commutative, i.e., T (s, t) = T (t, s) for all s and t in [0, 1];
(T2) T is associative, i.e., T (T (s, t), u)=T (s, T (t, u)) for all s, t and u in [0, 1];
(T3) T is increasing, i.e., T (s, t) ≤ T (s′, t) for all t ∈ [0, 1] whenever s ≤ s′;
(T4) T satisfies the boundary condition T (1, t) = t for every t ∈ [0, 1].
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Notice that by virtue of its commutativity, any t-norm T is increasing in each
place. Moreover, since a t-norm is obviously a semicopula, any t-norm T has 0 as
its unique null element. The set of all t-norms will be denoted by T .

The most important t-norms are the minimum M , the product Π, the  Luka-
siewicz t-norm W and the drastic product D given by

M(x, y) := min{x, y} = x ∧ y,

Π(x, y) := x y,

W (x, y) := max{0, x + y − 1},

D(x, y) :=

{
min{x, y}, max{x, y} = 1,

0, otherwise.

In the literature these t-norms are often called TM, TP, TL and TD, respectively.
Of these t-norms, M , Π and W are also copulas, while D is not. It has been

shown by Moynihan ([29, Theorem 3.1], see also [41, Theorem 6.3.2], that a t-
norm is a copula if, and only if, it satisfies the Lipschitz condition. Vice versa,
any associative copula is a (continuous) t-norm (see also [17, Corollary 9.9]).

Proposition 3.1. If a quasi-copula Q is a t-norm, then it is an associative sym-
metric2 copula.

Proof. A quasi-copula Q is a t-norm if, and only if, it is commutative and associa-
tive. Then, if Q fulfils these two properties, i.e., if it is a t-norm, it satisfies also,
by definition, the Lipschitz condition (3.1). But following Moynihan’s result, it is
therefore a (symmetric) copula. �

Corollary 3.2. No proper quasi-copula is a t-norm.

Further, from a function f : [0, 1]2 → [0, 1], in particular, for a t-norm, for a
quasi-copula, or for a copula, two other functions, also from [0, 1]2 into [0, 1], are
defined, namely

f∗(s, t) := 1− f(1− s, 1− t), (3.3)

and
f(s, t) := s + t− f(s, t). (3.4)

If f is a t-norm T , then T ∗ is called the t-conorm3 of T , while if it is a copula C,
then C is called the dual copula of C [31]. A dual copula is not a copula because
it is not 2-increasing. We shall denote the corresponding sets of co-functions, resp.

2 The two terms “symmetric” and “commutative” are here equivalent; we shall use the word
“symmetric” only when speaking of copulas or quasi-copulas
3 We should like to point out that in many books and publications related to t-norms, corre-
sponding t-conorms are denoted by S. However, since in our case S serves as a symbol for a
semicopula, we shall denote t-conorms by T ∗.
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duals, accordingly; for instance, the set of all co-semicopulas by S∗, the set of all
dual semicopulas S.

The following simple result is sometimes useful.

Lemma 3.3. For a function f : [0, 1]2 → [0, 1] the following statements are equiv-
alent:

(a) f satisfies the Lipschitz condition (3.1);
(b) f is increasing, in the sense that f(s′, t′) ≥ f(s, t) for all s, t,s′, t′ in [0, 1]

with s ≤ s′ and t ≤ t′.

We now turn to the other set of operations, which we denote by L as in [41].

Definition 3.5. The class L is the set of all binary operations on R+ such that
(L1) L is onto, i.e., Ran L = R+;
(L2) L is increasing in each place;
(L3) L is continuous on R+ × R+, except possibly at the points (0,∞) and

(∞, 0).
Additional properties may be required of elements of L:
(LS) L is strictly increasing in the following sense

for all u1, u2, v1, v2∈R+ with u1 < u2, v1 < v2 : L(u1, v1)<L(u2, v2). (3.5)

(L0) L has 0 as its neutral element.
(LB) For every x ∈ [0,∞[ the set Ax = {(u, v) | L(u, v) = x} is bounded.

Example 3.1. Examples of operations in L are the minimum, the maximum, the
sum, and

Kα(x, y) := (xα + yα)1/α (α > 0).

Notice also that the minimum satisfies condition (LS) but neither condition (L0)
nor condition (LB), the maximum, the sum, and Kα for α ≥ 1 satisfy (LS), (L0)
and (LB).

4. Triangle functions

Since the introduction of Probabilistic Metric Spaces (=PM spaces) first, and, then
of Probabilistic Normed Spaces (=PN spaces) (see [3, 4, 21, 22, 24, 41, 45, 46])
binary operations on ∆+ have been the object of great interest, especially triangle
functions, namely continuous (i.e., topological) semigroups on ∆+.

Definition 4.1. A triangle function is a binary operation on ∆+ that is commu-
tative, associative, and increasing in each place and has ε0 as identity. Explicitly,
a triangle function τ satisfies the following conditions, for all F , G and H in ∆+:

(TF1) τ(F, G) = τ(G, F );
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(TF2) τ (τ(F, G), H) = τ (F, τ(G, H));
(TF3) if F ≤ G, then τ(F, H) ≤ τ(G, H);
(TF4) τ(ε0, F ) = τ(F, ε0) = F .

Moreover, a triangle function is continuous if it is continuous in the metric space
(∆+, dS).

For every triangle function τ and for every F ∈ ∆+, one has

ε∞ ≤ τ(ε∞, F ) ≤ τ(ε∞, ε0) = ε∞, (4.1)

so that ε∞ is the null element of τ .
The order on ∆+ induces an order on the set of triangle functions

τ1 ≤ τ2 ⇐⇒ ∀F, G ∈ ∆+ ∀x ∈ R+ τ1(F, G)(x) ≤ τ2(F, G)(x).

Many examples of triangle functions will be encountered in the next sections.
Since the result of applying a triangle function to a pair (F, G) of d.d.f.’s is

again a d.d.f., the simplest way of constructing a triangle function is to compute
the value at x directly from the values F and G taken at the same point x; such
operations will be investigated in Sections 5 and 6.

A second possibility is to associate a pair of numbers (u, v) with the given
argument x, i.e., (u, v) ∼ x, and to evaluate the d.d.f.’s involved at u resp. v.
Formally, assume that two d.d.f.’s F and G are given; then consider a structure of
the following form:

ΘA,∼,Ω(x) = Ω(u,v)∼x{A(F (u), G(v))}, (4.2)

where A represents a rule on how to combine F (u) and G(v), ∼ the relationship
between (u, v) and x. Of course, several (u, v) might be related to x; therefore,
ΘA,∼,Ω(x) will have to be determined from the set {A(F (u), G(v)) | (u, v) ∼ x},
which we denote by means of the operation Ω. Although it is simple to pose the
following question, the answer to it will prove to be a real challenge:

For which classes of A, ∼ and Ω is ΘA,∼,Ω an operation resp. a
triangle function on ∆+?

In Sections 7 through 9 we shall deal with some operations of this type and
provide a partial answer to the above question.

And finally, we shall turn to a third class of operations involving integrals and
measures in Section 10.

5. Pointwise induced triangle functions

As mentioned above, operations on ∆+ can be induced pointwise by operations
on [0, 1] (see Definition 7.1.3 in [41]).
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Definition 5.1. Let f be a mapping from [0, 1]2 to [0, 1]; for every pair of d.d.f.’s
F and G and for every x ∈ R+, the function Πf : ∆+ ×∆+ → [0, 1]R+ is defined,
by

Πf (F, G)(x) = f(F (x), G(x)). (5.1)

If Πf maps ∆+×∆+ into ∆+, i.e., Πf (∆+×∆+) ⊂ ∆+, then Πf will be referred
to as the operation pointwise induced by f on ∆+. If it is also a triangle function,
we shall speak of the triangle function pointwise induced by f .

It is of particular interest to investigate for which operations f , Πf yields a
binary operation on ∆+, or, even, a triangle function. It was already mentioned
in [41] that a left-continuous t-norm is an appropriate choice for getting a triangle
function; however, this result can be strengthened. But, before proceeding, the
definition of left-continuity will be needed.

Definition 5.2 ([41, Definition 7.1.6]). A binary operation f on [0, 1] that is in-
creasing in each place is said to be left-continuous if

f(x, y) = sup{f(u, v) | 0 < u < x, 0 < v < y}
for all x and y in ]0, 1].

The following basic result for increasing functions will play an important role.
Its proof is only a slight modification of that in [15] or [17, Proposition 1.22].

Lemma 5.1. A binary operation f on [0, 1] that is increasing in each place is
left-continuous if, and only if, it is left-continuous in each place.

Now we are ready to turn to the characterization of the triangle functions ΠT .

Theorem 5.2. Let T be a function from [0, 1]2 into [0, 1]. Then ΠT defined
by (5.1) is a triangle function if, and only if, T is a left-continuous t-norm.

We shall prove this result by means of a series of lemmata.

Lemma 5.3. Let T be a function from [0, 1]2 into [0, 1]. If T is a left-continuous
t-norm, then ΠT is a triangle function.

Proof. The left-continuity of T guarantees that ΠT is a binary operation on ∆+.
Further, the associativity and commutativity of T imply that also ΠT is associative
and commutative. It remains to verify that ε0 is the neutral element of ΠT . If
x > 0, then

ΠT (F, ε0)(x) = T (F (x), ε0(x)) = T (F (x), 1) = F (x),

while, for x = 0, ΠT (F, ε0)(0) = ΠT (F (0), ε0(0)) = T (0, 0) = 0 = F (0). �
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Lemma 5.4. Let T be a function from [0, 1]2 into [0, 1]. If ΠT is a triangle
function, then T is a t-norm.

Proof. Assume that ΠT is a triangle function. Then one has to show that the
function T : [0, 1]2 → [0, 1] that induces ΠT through (5.1) is indeed commutative,
associative, increasing in each component and has 1 as its neutral element.

Choose s and t arbitrarily in ]0, 1]. Then, for every real a > 0,

T (s, t) = T (Vs(a), Vt(a)) = ΠT (Vs, Vt)(a) = ΠT (Vt, Vs)(a) = T (t, s),

which proves the commutativity of T for s, t ∈ ]0, 1]. When s = 0 and t is in ]0, 1],
then

T (0, t) = T (ε∞(a), Vt(a)) = ΠT (ε∞, Vt)(a) = 0
= ΠT (Vt, ε∞)(a) = T (Vt(a), ε∞(a)) = T (t, 0).

This also proves that T (0, t) = T (t, 0) = 0 for every t ∈ [0, 1]. Further, one can
prove, in a completely analogous manner, that T is associative and increasing as
ΠT is also associative and increasing.

Finally, put s = 1 and notice that s = 1 = ε0(a) so that

T (1, t) = T (ε0(a), Vt(a)) = ΠT (ε0, Vt)(a) = Vt(a) = t,

which shows that 1 is the neutral element of T . Thus T is indeed a t-norm
whenever ΠT is a triangle function. �

Lemma 5.5. Let T be a t-norm. If ΠT is a triangle function, then T is left-
continuous.

Proof. We shall prove this result by contradiction. Assume, if possible, that ΠT is
a triangle function and that T is not left-continuous. Because of Lemma 5.1, it is
possible to study left-continuity for only one place, say the first one. Then there
exists a sequence (xn)n∈N of elements of [0, 1] and some y0 ∈ [0, 1] such that

sup
n∈N

{T (xn, y0)} < T

(
sup
n∈N

xn, y0

)
. (5.2)

Without loss of generality, it can be assumed that xn 6= 0 for all n ∈ N. Indeed,
if xn = 0 for all n ∈ N, then equality would hold in (5.2). Therefore, there exists
at least some natural n such that xn 6= 0; thus, by eliminating from (xn)n∈N all
zero elements (and by repeating elements if there are only finitely many non-zero
elements left), another sequence can be constructed which again fulfils inequality
(5.2). Therefore, we may assume that for (xn)n∈N, xn 6= 0 for all n ∈ N.

Now consider the two d.d.f.’s U and Vy0 , where U is the d.f. of a random
variable uniformly distributed on (0, 1).

U(x) =





0, x ≤ 0,

x, x ∈ ]0, 1] ,
1, x > 1.
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Since, by assumption, ΠT is a triangle function, ΠT (U, Vy0) is a d.d.f., say G, i.e.,

G = ΠT (U, Vy0) .

However, G cannot belong to ∆+. In fact, consider the sequence (xn)n∈N intro-
duced above and notice that the left-continuity of both U and Vy0 yields

sup
n∈N

G(xn) = sup
n∈N

T (U(xn), Vy0(xn)) = sup
n∈N

T (xn, y0)

< T

(
sup
n∈N

xn, y0

)
= T

(
U

(
sup
n∈N

xn

)
, Vy0

(
sup
n∈N

xn

))
= G

(
sup
n∈N

xn

)

so that G is not left-continuous on ]0,∞[; therefore ΠT is not a triangle function.
This contradicts the assumption and concludes the proof. �

Corollary 5.6. If T is a left-continuous t-norm, then the triangle function ΠT

is sup-preserving on ∆+, in the sense that, if (Fn)n∈N is a sequence of d.d.f.’s
such that supn∈N Fn = F , then, for every G ∈ ∆+,

sup
n∈N

ΠT (Fn, G) = ΠT

(
sup
n∈N

Fn, G

)
(5.3)

Proof. For every x > 0, one has, because of the left-continuity of T ,

sup
n∈N

ΠT (Fn, G)(x) = sup
n∈N

T (Fn(x), G(x)) = T

(
sup
n∈N

Fn(x), G(x)
)

= T (F (x), G(x)) = ΠT (F, G)(x) = ΠT

(
sup
n∈N

Fn, G

)
(x),

which proves (5.3). �

A triangle function that can be expressed as a function of the values of F and
G at x, but cannot be reconducted to the type introduced in Definition 5.1 was
introduced by Ying in [52]. Let a be in R+ and T be a left-continuous t-norm,
then, see [52, Theorem 1], a triangle function τa,T is defined via

τa,T (F, G)(x) := min {T (F (x), G(a ∨ x)) , T (F (a ∨ x), G(x))} , (5.4)

which may also be written in the form

τa,T (F, G)(x) = max {T (F (x), G(x)) , min{T (F (a), G(x)) , T (F (x), G(a))} .

6. Pointwise induced operations and aggregation operators

Let us turn back to Definition 5.1 and ask which properties are required of a
function f in order that Πf is a binary operation, but not necessarily a triangle
function, on ∆+. Are any functions f : [0, 1]2 → [0, 1] appropriate candidates?
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Theorem 6.1. Let A be a mapping from [0, 1]2 into [0, 1]. Then ΠA defined
by (5.1) is a binary operation on ∆+ if, and only if, A is a left-continuous binary
aggregation operator.

Again we provide the proof in two steps, which we state as lemmata. Recall
that a binary aggregation operator A : [0, 1]2 → [0, 1] is defined by the following
properties:

(A1) A(0, 0) = 0 and A(1, 1) = 1,
(A2) A(u1, v1) ≤ A(u2, v2) for all u1, u2, v1 and v2 in [0, 1] with u1 ≤ u2 and

v1 ≤ v2.

Lemma 6.2. Let A be a mapping from [0, 1]2 into [0, 1]. If A is a left-continuous
binary aggregation operator, then ΠA defined by (5.1) is a binary operation on ∆+.

Proof. We have to show that, for arbitrary F and G in ∆+, ΠA(F, G) belongs
to ∆+. Let F and G be arbitrary d.d.f.’s. By Definition 5.1, it is clear that
ΠA(F, G) is indeed a function from R into [0, 1]. It is also increasing, since for all
x and y in R with x ≤ y,

ΠA(F, G)(x) = A(F (x), G(x)) ≤ A(F (y), G(y)) = ΠA(F, G)(y).

Moreover,

ΠA(F, G)(0) = A(F (0), G(0)) = A(0, 0) = 0,

ΠA(F, G)(+∞) = A (F (+∞), G(+∞)) = A(1, 1) = 1.

For every sequence (xn)n∈N of elements of R+, the left-continuity of A, F and G
together with Lemma 5.1 implies

sup
n∈N

ΠA(F, G)(xn) = sup
n∈N

A(F (xn), G(xn)) = A

(
sup
n∈N

F (xn), sup
n∈N

G(xn)
)

= A

(
F

(
sup
n∈N

xn

)
, G

(
sup
n∈N

xn

))
= ΠA(F, G)

(
sup
n∈N

xn

)
,

which establishes the left-continuity of ΠA(F, G). �

Lemma 6.3. Let A be a mapping from [0, 1]2 into [0, 1]. If ΠA defined by (5.1) is
a binary operation on ∆+, then A is a left-continuous binary aggregation operator.

Proof. Let ΠA be a binary operation on ∆+. Then necessarily,

ΠA(F, G)(0) = 0 and ΠA(F, G)(+∞) = 1

for all F and G in ∆+, so that one also has A(0, 0) = 0 and A(1, 1) = 1.
In order to show that A is increasing in each place, let u1, u2, v1 and v2 be

in [0, 1] and satisfy the conditions u1 ≤ u2 and v1 ≤ v2. Then choose a and b in
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]0, +∞[ with a < b. Define two d.d.f.’s F and G by

F (x) =





0, x ≤ 0,

u1, x ∈ ]0, a] ,
u2, x ∈ ]a, b] ,
1, x > b,

if u1 < u2, and by F = Vu1 when u1 = u2. Similarly

G(x) =





0, x ≤ 0,

v1, x ∈ ]0, a] ,
v2, x ∈ ]a, b] ,
1, x > b,

if v1 < v2, and by G = Vv1 when v1 = v2.
Therefore,

A(u1, v1) = A(F (a), G(a)) ≤ A(F (b), G(b)) = A(u2, v2).

In the same manner as in the proof of Lemma 5.5 it can be shown that A is
left-continuous in each place. �

As a consequence of the previous results, the only admissible operations on [0, 1]
guaranteeing that ΠA is indeed a binary operation on ∆+ are left-continuous binary
aggregation operators. Analogous arguments can be applied when extending this
result to n-ary operations on ∆+ induced by some n-ary aggregation operator A
on [0, 1] that is left-continuous in each place.

Further we remark that in [2] the authors studied pointwise induced operations
on ∆+; however, this study was restricted to operations induced by corresponding
operations on the underlying random variables. It turned out that the induced
operations on ∆+ correspond only in very few cases to operations on random
variables on the same probability space (namely when the induced operation is
related to some quasi-copula). We quote the main result from [2].

Theorem 6.4. Suppose that Φ is a binary operation on ∆+ such that Φ = Πϕ

for some binary operation ϕ from [0, 1]2 into [0, 1] and that it is derivable from
a function f on random variables defined on a common probability space. Then
precisely one of the following holds:

(1) f = max and ϕ is a quasi-copula;
(2) f = min and ϕ is the dual of a quasi-copula;
(3) f and ϕ are trivial, i.e., in the sense that they are the projections onto

either the first or the second coordinate.

Next we turn to some operations on ∆+ following (4.2) introduced in Section 4.
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7. Operations involving semicopulas

Definition 7.1 (compare also [41, Definition 7.2.1]). Let f be a mapping from
[0, 1]2 to [0, 1] and let L belong to L; the function τf,L : ∆+ × ∆+ → [0, 1]R+

is defined, for every pair F and G of d.d.f.’s and for every x ∈ R+, by

τf,L(F, G)(x) = sup{f(F (u), G(v)) | L(u, v) = x}. (7.1)

If L denotes the sum, then its index is usually omitted, and we simply write τf .

Again, we have provided the definition in its most general form. As will be seen
later, the appropriate choice for f will be a semicopula. In [41] these operations
have in fact been introduced for semicopulas and have been denoted by τT,L (with
T being a semicopula, not necessarily a t-norm).

Notice that the operation τf,L, where f is a function from [0, 1]2 to [0, 1] and
L is in L, may be represented according to the structure introduced in Section 3,
i.e.,

τf,L = Θf,=L,sup

where by ((u, v) =L x) we mean (L(u, v) = x).

7.1. Operations on ∆+

The following sufficient conditions on f and L ensure that τf,L is a binary operation
on ∆+; they were presented in [41, Lemma 7.2.3], however, we state it an slightly
different way.

Lemma 7.1. Let S be a left-continuous semicopula and let L ∈ L satisfy condi-
tion (LS) of Definition 3.5. Then τS,L is a binary operation on ∆+.

It is easily seen that τS,max = ΠS for any semicopula S. Following Theorem 6.1
we know that S has to be left-continuous in order to guarantee that τS,max is
a binary operation on ∆+. Moreover, it has to be a left-continuous t-norm if
τS,max is to be a triangle function. Thus one might be lead to conjecture that the
semicopula involved must necessarily be left-continuous; however, as the following
example shows, this need not be the case.

Example 7.1 ([41, p. 100]). Consider the drastic product D, which is not left-
continuous, and the standard summation, then

τD(F, G)(x) = max {F (max{0, x−G∧(1)}), G(max{0, x− F∧(1)})} . (7.2)

It is a triangle function and therefore, in particular, a binary operation on ∆+.
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Moreover, τD is not continuous on (∆+, dS). If Fn is the exponential distribu-
tion of parameter 1/n, Fn ∼ Γ(1, 1/n), namely, for x ∈ R+,

Fn(x) = 1− e−x/n,

then (Fn)n∈N converges weakly to ε0, but (τD(Fn, Fn))n∈N does not converge
weakly to ε0 = τD(ε0, ε0), since τD(Fn, Fn) = ε∞ for every n ∈ N.

Further, it might be conjectured that f in Definition 7.1 has to be a semicopula
in order to guarantee that τf,L given by (7.1) is an operation on ∆+. However,
this also need not be the case as the following example shows.

Example 7.2. Consider the function f : [0, 1]2 → [0, 1], f(x, y) = max{x− y, 0},
which is increasing in its first and decreasing in its second argument, and thus
not a semicopula. Choose L = max. Then, for every x ∈ R+, the set L(x) =
{(u, v) | L(u, v) = x} contains at least the points (x, 0), (0, x). Since f attains
its maximum whenever the first argument becomes as large as possible and the
second as small as possible, we can conclude that for any d.d.f.s F, G ∈ ∆+

τf,L(F, G)(x) = sup{f(F (u), G(v)) | max{u, v} = x} = f(F (x), G(0)) = F (x),

i.e., τf,L(F, G) = F is nothing else than the projection on the first coordinate.
Notice that the same result is achieved if, instead of L = max, any other operation
L ∈ L fulfilling (L0) and (LS) is chosen. Clearly, τf,L(F, G) is again a d.d.f. and
is continuous on (∆+, dS).

If τf,L is a binary operation on ∆+ for an arbitrary L ∈ L, the boundary
conditions for a d.d.f. suffice to imply some necessary conditions on f .

Lemma 7.2. Let f be a function from [0, 1]2 to [0, 1] and let L ∈ L. If τf,L is a
binary operation on ∆+, then f(0, 0) = 0 and sup{f(1, 0), f(0, 1), f(1, 1)} = 1.

Let us next turn to the question whether, whenever τf,L is a binary operation
on ∆+, the continuity of some of the d.d.f.’s affects the continuity of τf,L(F, G)
as a d.d.f.. Moynihan gave the following result on the continuity of the triangle
function τT (F, G), where L is replaced by standard addition and T is a t-norm.

Theorem 7.3 ([28, Theorem 1.1]). If T is a continuous t-norm and if either F
or G is continuous, then τT (F, G) is continuous.

We now extend this theorem for functions τS,L where S is a continuous semi-
copula and L is commutative and associative, fulfilling (LS) and (L0) of Defini-
tion 3.5. The choice of S guarantees that τS,L is indeed a binary operation on
∆+ (see Lemma 7.1). The proof is adapted from that of Moynihan’s theorem,
the main difference being that, while the sum on R+ is the restriction of a group
operation, and hence subtraction and a limited cancellativity are allowed, this is
not so with a generic semigroup operation like L.



216 S. Saminger-Platz and C. Sempi AEM

For all A and B subsets of R+ and for every L ∈ L, let L(A, B) denote the set

L(A, B) := {L(u, v) | u ∈ A, v ∈ B}.
We first show a relationship between the set of points of discontinuity of all

d.d.f.s involved.

Theorem 7.4. Let S be a continuous semicopula, let L be commutative, associa-
tive and let it fulfil both (LS) and (L0) of Definition 3.5. For any given F and G
in ∆+, let H be the d.d.f. defined by H := τS,L(F, G). Then

D(H) ⊂ L (D(F ), D(G)) . (7.3)

Proof. Let ε > 0 be given arbitrarily. In view of the uniform continuity of S on
the unit square [0, 1]2, there exists η = η(ε) > 0 such that

|S(a1, b1)− S(a2, b2)| < ε,

whenever |a1 − a2| < η and |b1 − b2| < η.
Since what we are going to say below is true if both D(F ) and D(G) are finite

(or empty), there is no loss of generality in assuming that both D(F ) and D(G)
contain a countable infinity of points; then there exist two subsets Ã and B̃ of N
such that D(F ) = {xi | i ∈ Ã} and D(G) = {yj | j ∈ B̃}. Since both

∑

i∈Ã

[
ℓ+F (xi)− F (xi)

]
≤ 1 and

∑

i∈B̃

[
ℓ+G(yj)−G(yj)

]
≤ 1,

there are finite subsets A ⊂ Ã and B ⊂ B̃ such that
∑

i∈Ã\A

[
ℓ+F (xi)− F (xi)

]
≤ η

2
and

∑

i∈B̃\B

[
ℓ+G(yj)−G(yj)

]
≤ η

2
.

Thus, if x > y and Fd(x) ≥ Fd(y) + η/2, then there exists xi ∈ D(F ) with i ∈ A
such that y ≤ xi < x. Similarly, if Gd(x) > Gd(y) + η/2, then there exists
yj ∈ D(G) with j ∈ B such that y ≤ yj < x.

Assume, now, x /∈ L(D(F ), D(G)). As A and B are finite sets, there exists
δ > 0 such that the closed interval [x − δ, x + δ] contains no point of the type
L(xi, yj) with i ∈ A and j ∈ B. The continuous parts Fc and Gc are uniformly
continuous; thus, there exist γ > 0 such that

|Fc(t)− Fc(s)| < η

2
and |Gc(t)−Gc(s)| < η

2
whenever |t− s| < γ.

Since L is continuous, there exists ρ > 0 such that |L(u′, v′) − L(u, v)| < δ
whenever |u′ − u| < ρ and |v′ − v| < ρ.

Take now h with 0 < h < min{γ, δ, ρ} and choose u and v such that L(u, v) = x.
If

Fd(u + h)− Fd(u) < η/2, (7.4)
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then

|F (u + h)− F (u)| ≤ |Fc(u + h)− Fc(u)|+ |Fd(u + h)− Fd(u)| < η,

from which
|S(F (u + h), G(v)) − S(F (u), G(v)) | < ε.

Therefore,
H(x) ≥ S(F (u), G(v)) > S(F (u + h), G(v)) − ε. (7.5)

If, on the other hand,
Fd(u + h)− Fd(u) ≥ η/2, (7.6)

it was seen above that there is a point xi ∈ D(F ) with i ∈ A and xi ∈ [u, u + h[.
But then, one would necessarily have Gd(v + h) − Gd(v) < η/2, for, otherwise,
there would be yj ∈ B with j ∈ B and yj ∈ [v, v + h[. The isotony of L would
then yield

L(u, v) ≤ L(xi, yj) < L(u + h, v + h),

or, because of the continuity of L,

x ≤ L(xi, yj) < L(u, v) + δ = x + δ,

which contradicts the definition of δ. Therefore,

|G(v + h)−G(v)| ≤ |Gc(v + h)−Gc(v)|+ |Gd(v + h)−Gd(v)| < η,

whence
|S(F (u), G(v + h))− S(F (u), G(v)) | < ε,

so that,
H(x) ≥ S(F (u), G(v)) > S(F (u), G(v + h))− ε. (7.7)

Finally, there are h′ < δ and h′′ < δ such that L(u + h, v) = L(u, v) + h′ = x + h′

and L(u, v + h) = L(u, v) + h′′ = x + h′′. Therefore, it follows from (7.5) that

H(x) ≥ sup {S(F (u + h), G(v)) | L(u, v) = x} − ε

≥ sup {S(F (u + h), G(v)) | L(u, v) = x and (7.4) holds} − ε

= sup {S(F (s), G(t)) | L(s, t) = x + h′} − ε = H(x + h′)− ε,

while it follows from (7.7) that

H(x) ≥ sup {S(F (u), G(v + h)) | L(u, v) = x} − ε

≥ sup {S(F (u), G(v + h)) | L(u, v) = x and (7.6) holds} − ε

= sup {S(F (s), G(t)) | L(s, t) = x + h′′} − ε = H(x + h′′)− ε.

The last two inequalities yield, for every t ≤ min{h′, h′′},
H(x) ≥ H(x + t)− ε.

This implies that H is right-continuous and, hence, continuous at x, since it is
also left-continuous, like any d.d.f.. Therefore x does not belong to D(H); this
completes the proof. �
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The following corollary is an immediate consequence of the previous theorem.

Corollary 7.5. In the same assumptions as in Theorem 7.4, if F and G are in
∆+ and if at least one of them is continuous, then so is also τS,L(F, G).

On the other hand, if τS,L(F, G) is a continuous d.d.f. independently of the
choice of F and G, then, for some operations L, also the semicopula S involved is
continuous.

Lemma 7.6. Let S be a semicopula and let L ∈ L satisfy conditions (LS) and
(L0) of Definition 3.5. Then if τS,L(F, G) is a continuous d.d.f. for arbitrary
F, G ∈ ∆+, then S is also continuous.

Proof. Let S be a semicopula. Let x be any strictly positive real number and let
(xn)n∈N be any sequence of positive real numbers converging to x. By recourse to
Lemma 5.1 it suffices to prove that for every y0 > 0 one has

lim
n→+∞

S(xn, y0) = S(x, y0). (7.8)

Put
zn := L(xn, y0) and z := L(x, y0).

Notice that, as a consequence of properties (LS) and (L0) of Definition 3.5, one
has

sup {u | ∃v : L(u, v) = x} = x.

Therefore, if U is the uniform d.f. on (0, 1),

τS,L(U, Vy0)(zn) = sup
(u,v):L(u,v)=zn

S (U(u), Vy0(v))

= sup
(u,v):L(u,v)=zn

S (U(u), Vy0(y0)) = S (U(xn), y0) = S(xn, y0).

A similar argument yields

τS,L (U, Vy0) (z) = S (U(x), Vy0 (y0)) = S(x, y0).

Thus, since τS,L(U, V ) is continuous, one has

lim
n→+∞

S(xn, y0) = lim
n→+∞

τS,L (U, Vy0) (zn) = τS,L (U, Vy0) (z) = S(x, y0).

This concludes the proof. �
Finally, we quote a result showing that continuous semicopulas provide a suf-

ficient condition for the continuity of the binary operations τS,L on ∆+ on the
metric space (∆+, dS).

Theorem 7.7 ([41, Theorem 7.2.8]). Let S be a function from [0, 1]2 to [0, 1] and
let L ∈ L satisfies condition (LB) of Definition 3.5. If S is a continuous semi-
copula, then τS,L is uniformly continuous on the metric space (∆+, dS).
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7.2. Triangle functions

From now on we assume that τf,L is indeed an operation on ∆+. Requiring
additional properties for τf,L restricts the choice of the function f . The cases
when L ∈ L fulfils the conditions (L0) and (LS) will first be examined; later on L
will be assumed to be commutative and associative.

Theorem 7.8. Let S be a function from [0, 1]2 to [0, 1] and let L ∈ L satisfy
conditions (LS) and (L0) of Definition 3.5. If τS,L is binary operation on ∆+

that fulfils (TF3) and (TF4), then S is a semicopula.

Proof. For arbitrary s and t in [0, 1] and for all u and v in ]0,∞[, one has

S(s, t) = S (Vs(u), Vt(v)) .

Moreover, since conditions (LS) and (L0) of Definition 3.5 together imply that,
for any x > 0, the set L(x) = {(u, v) | L(u, v) = x} is a curve that connects the
points (x, 0) and (0, x), which, in its turn, implies that this curve contains points
different from its end-points, the set L(x) contains some point (u∗, v∗) with u∗ > 0
and v∗ > 0. Therefore, for all 0 < x < ∞,

τS,L(Vs, Vt)(x) = sup{S(Vs(u), Vt(v)) | L(u, v) = x}
= sup{S(0, t), S(s, 0), S(s, t) | L(u, v) = x}
= max{S(0, t), S(0, s), S(s, t)}

is again a d.d.f. of type (2.1).
Choose t and x arbitrarily in [0, 1] and ]0,∞[ respectively, and s = 0. Then,

Vs = ε∞. Moreover, since τS,L fulfils (TF3) and (TF4) and has therefore ε∞ as
null element,

0 ≤ S(0, t) = S(V0(0), Vt(x)) = S(ε∞(0), Vt(x))
≤ sup{S(ε∞(u), Vt(v)) | L(u, v) = x} = τS,L(ε∞, Vt)(x) = ε∞(x) = 0,

so that S(0, t) = 0 for all t ∈ [0, 1]. An analogous argument proves that also
S(t, 0) = 0 for all t ∈ [0, 1]. In particular S(0, 1) = S(1, 0) = 0.

Next choose s = 1, so that V1 = ε0, and let t and x be arbitrary points from
]0, 1] and ]0,∞[ respectively. As 0 is the null element of S and τS,L has, because
of (TF4), ε0 as its neutral element, the following equalities hold

τS,L(V1, Vt)(x) = sup{S(0, 1), S(0, t), S(1, t)} = sup{0, S(1, t)}
τS,L(V1, Vt)(x) = τS,L(ε0, Vt)(x) = Vt(x) = t.

Since S(1, t) ≥ 0, it follows that S(1, t) = t for all t ∈ ]0, 1]. By applying an
analogous argument and by taking into account that S(0, 1) = S(1, 0) = 0, it
follows that 1 is the neutral element of S.

It remains to show that S is increasing in each place; this will be proved
explicitly only for the first place, the proof for the other one being completely
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analogous. If S(s, t) = 0 then S(s′, t) ≥ S(s, t) for all s′ with s′ ≥ s. Therefore,
assume S(s, t) > 0 and let s′ ≥ s. The isotony of τS,L yields, for all x with
0 < x ≤ 1,

S(s, t) = τS,L(Vs, Vt)(x) ≤ τS,L(Vs′ , Vt)(x) = S(s′, t),

which proves that s 7→ S(s, t) is increasing for every t ∈ [0, 1]. Therefore, S is a
semicopula. �

In view of this result one can immediately conclude that f must be a semicopula
whenever τf,L is a triangle function.

Corollary 7.9. Let S be a function from [0, 1]2 to [0, 1] and let L ∈ L satisfy
conditions (LS) and (L0) of Definition 3.5. If τS,L is a triangle function, then S
is a semicopula.

Moreover, the associativity and commutativity of τS,L induce the corresponding
properties on the semicopula S involved so that S has to be a t-norm.

Lemma 7.10. Let T be a function from [0, 1]2 to [0, 1] and let L ∈ L satisfy the
conditions (LS) and (L0) of Definition 3.5. If τT,L is a triangle function, then T
is a t-norm.

Proof. Let s ∈ ]0, 1[ be arbitrary. As a consequence of Theorem 7.8 T is a semi-
copula; furthermore, for all x ∈ ]0, 1[,

τT,L(Vs, Vt)(x) = T (s, t).

Fix s and t in ]0, 1[. Since τT,L is commutative, one has, for all x ∈ ]0,∞[,

T (s, t) = τT,L(Vs, Vt)(x) = τT,L(Vt, Vs)(x) = T (s, t),

which establishes the commutativity of T .
As for its associativity, consider s, t, w and x in ]0, 1[. Then simple calculations

lead to

τT,L(τT,L(Vs, Vt), Vw)(x) = T (T (s, t), w),
τT,L(Vs, τT,L(Vt, Vw))(x) = T (T (t, w), s).

Thus T (T (t, w), s) = T (t, T (w, s)). If 1 or 0 appears among the inputs s, t and
w, then the associativity condition holds trivially on account of the boundary
conditions of T . Therefore, T is a t-norm. �

When τT,L is a triangle function T is necessarily a t-norm. It is natural to
ask for sufficient conditions. It is already known from Lemma 7.1 that the left-
continuity of the t-norm T ensures that τT,L is a binary operation on ∆+. When
L ∈ L fulfils (L0) and (LS) and is also associative and commutative, τT,L is a
triangle function.
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Theorem 7.11 ([41, Theorem 7.2.4]). Let T be a function from [0, 1]2 to [0, 1]
and let L ∈ L satisfy conditions (LS) and (L0) of Definition 3.5. If T is a left-
continuous t-norm and if, in addition, L is commutative and associative, then τT,L

is a triangle function.

As was seen by Example 7.1 the left-continuity of a semicopula S is not neces-
sary for τS to be a triangle function, but it may affect the continuity of the triangle
function τS on the metric space (∆+, dS).

Since condition (L0) implies that L also fulfils condition (LB), the following
corollary on the continuity of triangle functions is an immediate consequence of
Theorems 7.7 and 7.11.

Corollary 7.12 ([41, Corollary 7.2.9]). Let T be a function from [0, 1]2 to [0, 1]
and let L ∈ L fulfil conditions (LS) and (L0) of Definition 3.5. If T is a continuous
t-norm and L is commutative and associative, then the triangle functions τT,L is
uniformly continuous on the metric space (∆+, dS).

When L is commutative and associative and satisfies (LS) and (L0), one can
prove a result analogous to Theorem 5.2 thus strengthening the result of The-
orem 7.11. Notice that similar results under conditions for L that are slightly
different from those listed in Definition 3.5 were obtained by Ying in [53].

Theorem 7.13. Let T be a function from [0, 1]2 to [0, 1] and let L ∈ L. If L is
commutative, associative and satisfies condition (L0) of Definition 3.5, the follow-
ing statements are equivalent:

(a) τT,L is a continuous triangle function;
(b) L satisfies condition (LS) and T is a continuous t-norm.

Proof. The proof of the implication (b) =⇒ (a) is a direct consequence of Theo-
rem 7.11 and Corollary 7.12. Thus only the converse implication has to be proved.
We first prove that L satisfies condition (LS).

Assume, if possible, that there exist numbers u1, u2, v1, v2 in R+, with 0 <
u1 < u2 and 0 < v1 < v2, such that L(u1, v1) = L(u2, v2). Then, by definition of
τT,L,

τT,L (εu1 , εv1) (L(u1, v1)) = sup {T (εu1(u), εv1(v)) | L(u, v) = L(u1, v1)}
≥ T (εu1(u2), εv1(v2)) = T (1, 1) = 1.

Therefore L(u1, v1) > 0, since, otherwise τT,L (εu1 , εv1) (0) = 0.
For every y ∈ ]0, L(u1, v1)[, the relationship L(u, v) = y implies either u < u1

or v < v2, or both. Since

τT,L (εu1 , εv1) (y) = sup {T (εu1(u), εv1(v)) | L(u, v) = y} ,



222 S. Saminger-Platz and C. Sempi AEM

one has τT,L (εu1 , εv1) (y) = 0 and, as a consequence,

sup
y<L(u1,v1)

τT,L (εu1 , εv1) (y) = 0 < 1 = τT,L (εu1 , εv1) (L(u1, v1)) ,

so that τT,L (εu1 , εv1) is not left-continuous. Thus L satisfies (LS).
As a consequence of Lemma 7.10, T is known to be a t-norm. It remains to

show that it is also continuous; this is done in the following lemma which provides
a slightly more general result since fewer restrictions are imposed on L. �

Lemma 7.14. Let S be a commutative semicopula and let L ∈ L satisfy condi-
tions (LS) and (L0) of Definition 3.5. If τS,L is a continuous triangle function,
then S is also continuous.

Proof. Let S be a commutative semicopula. Let x be any strictly positive real
number and let (xn)n∈N be any sequence of positive real numbers converging to x.
By recourse to Lemma 5.1 it suffices to prove that, for every y0 > 0, one has that,
for every ε > 0, some n ∈ N exists such that, for all m ≥ n,

|S(x, y0)− S(xm, y0)| < ε. (7.9)

Notice that since S takes values in the unit interval, the inequality is trivially
fulfilled for any ε ≥ 1. We shall therefore restrict our considerations to ε < 1 only.

Next we associate with each xn the d.d.f. Vxn defined by (2.1) and select sim-
ilarly Vx and G = Vy0 through (2.1). Therefore, we get a sequence of d.d.f.’s
(Vxn)n∈N which converges to Vx pointwise, i.e., Vxn(u) −→ Vx(u) for all u ∈ R+

and, as a consequence, converges also weakly, i.e. for any δ > 0 there exists
some n ∈ N such that, for all m ≥ n, |Vx(u) − Vxm(u)| < δ, and, even more,
dS(Vxm , Vx) < δ.

Now choose ε such that 0 < ε < 1. Since τS,L is uniformly continuous on the
metric space (∆+, dS), it follows that there exists some γ > 0 such that

dS(τS,L(Vxn , G), τS,L(Vx, G)) < ε, whenever dS(Vxn , Vx) < γ.

Note that dS(G, G) < γ is trivially fulfilled. Since (Vxn )n∈N is a convergent se-
quence of d.d.f.’s, one can choose n∗ ∈ N such that |Vx(u) − Vxm(u)| < γ for
all u ∈ R+ and also dS(Vxm , Vx) < γ for all m ≥ n∗. Choose such an m ≥ n∗

arbitrarily and fix it for the rest of the proof.
Assume first that dS(τS,L(Vxm , G), τS,L(Vx, G)) > 0; then there exists some

0 < h∗ < ε such that, for all u ∈ ]0, 1/h∗[,

τS,L(Vxm , G)(u) ≤ τS,L(Vx, G)(u + h∗) + h∗,

τS,L(Vx, G)(u) ≤ τS,L(Vxm , G)(u + h∗) + h∗

are fulfilled. Now choose u∗ with 0 < u∗ ≤ min{ 1
ε , 1 − ε}. Then necessarily

u∗ + h∗ < 1. Because of properties (L0) and (LS) and because of the fact that
u∗ > 0, there exists a pair (u, v) with u∗ ≥ u > 0 and u∗ ≥ v > 0 such that
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L(u, v) = u∗. Therefore,

τS,L(Vxm , G)(u∗) = sup{S(Vxm(u), G(v)) | L(u, v) = u∗}
= sup{S(0, y0), S(xm, 0), S(xm, y0)}
= S(xm, y0) = τS,L(Vxm , G)(u∗ + h∗),

τS,L(Vx, G)(u∗) = S(x, y0) = τS,L(Vx, G)(u∗ + h∗),

and, as a consequence,

S(xm, y0)− ε < S(xm, y0)− h∗ ≤ S(x, y0) ≤ S(xm, y0) + h∗ < S(xm, y0) + ε,

namely
|S(x, y0)− S(xm, y0)| < ε.

When dS(τS,L(Vxm , G), τS,L(Vx, G)) = 0, τS,L(Vxm , G) = τS,L(Vx, G) since dS is a
metric on ∆+. Choosing an arbitrary v∗ ∈ ]0, 1[ leads to

S(xm, y0) = τS,L(Vxm , G)(v∗) = τS,L(Vx, G)(v∗) = S(x, y)

so that |S(x, y0)−S(xm, y0)| < ε is trivially fulfilled. Therefore, for arbitrary ε > 0
there exists n = n(ε) ∈ N such that for any m ≥ n, |S(x, y0) − S(xm, y0)| < ε,
which proves the continuity of the semicopula S. �

8. Operations involving co-semicopulas

Definition 8.1 (compare also [41, Definition 7.3.1]). Let S∗ be a co-semicopula
and let L belong to L; a function τ∗S∗,L : ∆+ ×∆+ → [0, 1]R+ is defined for every
pair F and G of d.d.f.’s and for every x ∈ R+ by

τ∗S∗,L(F, G)(x) = inf{S∗(F (u), G(v)) | L(u, v) = x}. (8.1)

If L is the sum, then this index is usually omitted, and we write simply τ∗S∗ .

The notation adopted here is slightly different from that of the book [41]. The
choice of a co-semicopula S∗ in the above definition guarantees that, for all F and
G in ∆+, the function τ∗S∗,L(F, G) is increasing on R+, satisfies τ∗S∗,L(F, G)(0) =
0 and at least τ∗S∗,L(F, G)(∞) ≤ 1. Since every co-semicopula is an increasing
function, also τ∗S∗,L is increasing on ∆+ in each argument (see also [41, Lemma
7.3.2]). It was shown in [41, Lemma 7.3.7] that, for every co-semicopula S∗,
τ∗S∗,min = ΠS∗ . Theorem 6.1 ensures that S∗ has to be left-continuous in order to
guarantee that τS∗,min is indeed a binary operation on ∆+.

We present the proof of the following results, since they do not appear explicitly
in [41]; our Lemma 8.1 slightly differs from Lemma 7.3.3 in [41]. It demands an
additional condition on L namely (L0), which, in our opinion, is essential for
proving the result. There is no proof of this result in [41] where the reader is only
referred to a modification of the proof of Theorem 5.1 in [34], and this, in its turn,
deals only with the special case L = +.
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Lemma 8.1. If S∗ is a left-continuous co-semicopula and L satisfies conditions
(LS) and (L0) of Definition 3.5, then τ∗S∗,L is a binary operation on ∆+.

Proof. Let S be a left-continuous semicopula. Then S(u, v) := 1−S∗(1− u, 1− v)
is the right-continuous semicopula associated with S∗. We show that τS∗,L sends
∆+ ×∆+ into ∆+. To this end, let F and G be arbitrary d.d.f.’s and define

VF,G(x) := sup {S(1− F (u), 1−G(v) | L(u, v) = x} ;

then
τ∗S∗,L(F, G)(x) = 1− VF,G(x).

We now have to show that 1 − VF,G is a d.d.f., namely, that (i) VF,G(x) is in
[0, 1] for every x > 0, (ii) V (0) = 1, (iii) VF,G is decreasing, and (iv) VF,G is left-
continuous. The proof of (i) and (ii) is trivial, since S is an operation on [0, 1] and
L is increasing in each coordinate and fulfils L(0, 0) = 0. As for (iii), let δ > 0 be
given and let x1 and x2 be such that x2 > x1. Then, there exist u2 and v2 with
L(u2, v2) = x2 such that

0 ≤ VF,G(x2)− S(1− F (u2), 1−G(v2)) < δ.

Because of properties (LS) and (L0) of Definition 3.5, there exist u1 and v1 such
that

L(u1, v1) = x1, u1 ≤ u2, v1 ≤ v2.

Therefore,

VF,G(x1) ≥ S (1− F (u1), 1−G(v1))
≥ S (1− F (u2), 1−G(v2)) > VF,G(x2)− δ.

The arbitrariness of δ > 0 implies VF,G(x1) ≥ VF,G(x2).
In order to establish (iv), the left-continuity of τ∗S∗,L(F, G) at an arbitrary point

x0 > 0, notice that there is nothing to prove if VF,G(x0) = 1; therefore assume
VF,G(x0) < 1, and suppose, if possible, that VF,G is not left-continuous at x0; then,
there exist η > 0 and a sequence of points (xn)n∈N increasing to x0 such that, for
all n ∈ N,

VF,G(xn) ≥ VF,G(x0) + 2η.

It follows from the definition of τ∗S∗,L(F, G), that, for every n ∈ N, there exist
some un and vn such that L(un, vn) = xn and

VF,G(xn) ≥ S (1− F (un), 1−G(vn)) ≥ VF,G(x0) + η. (8.2)

Thus, since xn ≤ x0 for every n, condition (L0) of Definition 3.5 implies that the
sequences (un)n∈N and (vn)n∈N are bounded and, as a consequence, contain con-
vergent subsequences (un(k))k∈N and (vn(k))k∈N. We may choose these sequences
to be monotone. Set

u0 := lim
k→+∞

un(k) and v0 := lim
k→+∞

vn(k).
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Since L(un(k), vn(k)) = xn(k), the continuity of the function L yields

L(u0, v0) = x0. (8.3)

We now distinguish three cases:
Case 1. The sequences (un(k))k∈N and (vn(k))k∈N increase to u0 and v0 respec-

tively. Since F and G are left-continuous and S is right-continuous, the sequence
(
S

(
1− F (un(k)), 1−G(vn(k))

))
k∈N

decreases to S (1− F (u0), 1−G(v0)). But then the definition of τ∗S∗,L and equa-
tions (8.2) and (8.3) yield

VF,G(x0) ≥ S (1− F (u0), 1−G(v0)) ≥ VF,G(x0) + η,

which is impossible.
Case 2. The sequences (un(k))k∈N and (vn(k))k∈N decrease to u0 and v0 respec-

tively; this cannot happen since L(un(k), vn(k)) = xn(k) < x0.
Case 3. One of the two sequences, say (un(k))k∈N, increases, while the other

one, (vn(k))k∈N, decreases. Then the sequence
(
1− F

(
un(k)

))
k∈N decreases to

1−F (u0), while the sequence
(
1−G

(
vn(k)

))
k∈N increases to 1− ℓ+G(v0). Since,

for every k ∈ N,

1− ℓ+G(vn(k)) ≤ 1− ℓ+G(v0) ≤ 1−G(v0),

we have

S
(
1− F (un(k)), 1−G(v0)

)
≥ S

(
1− F (un(k)), 1 −G(vn(k))

)
≥ VF,G(x0) + η.

Let k go to +∞ in order to obtain

VF,G(x0) ≥ S (1− F (u0), 1−G(v0)) ≥ VF,G(x0) + η.

This is again a contradiction, so that VF,G is indeed left-continuous at x0. There-
fore τ∗S∗,L(F, G) = 1 − VF,G belongs to ∆+, i.e. τ∗S∗,L is indeed an operation
on ∆+. �

We can now state the formal theorem that gives conditions under which τ∗S∗,L

is a triangle function.

Theorem 8.2. If T ∗ is a continuous t-conorm and if L ∈ L is commutative,
associative and satisfies properties (LS) and (L0) of Definition 3.5, then τ∗T∗,L is
a triangle function.

Proof. First, because of Lemma 8.1 we know that τ∗T∗,L is already a binary op-
eration on ∆+. Therefore, only the properties of triangle functions remain to be
checked. Let F be an arbitrary d.d.f.; then

τ∗T∗,L(F, ε0)(x) = inf {T ∗(F (u), ε0(v)) | L(u, v) = x} = T ∗ (F (x), 0) = F (x),

so that τ∗T∗,L(F, ε0) = F for every F ∈ ∆+ and property (TF4) is satisfied.
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Properties (TF1) and (TF3) are easy consequences of the properties of T ∗

and L. Before proving the associativity of τ∗T∗,L, we notice that a t-conorm is also
associative, as is easily checked.

Let F , G and H be in ∆+; then

τ∗T∗,L

(
τ∗T∗,L(F, G), H

)
(x) = inf

{
T ∗

(
τ∗T∗,L(F, G)(u), H(v)

)
| L(u, v) = x

}

= inf
L(u,v)=x

T ∗
(

inf
L(s,t)=u

T ∗ (F (s), G(t)) , H(v)
)

= inf
L(u,v)=x

inf
L(s,t)=u

T ∗ (T ∗ (F (s), G(t)) , H(v))

= inf
L(L(s,t),v)=x

T ∗ (F (s), T ∗ (G(t), H(v)))

= inf
L(s,L(t,v))=x

T ∗ (F (s), T ∗ (G(t), H(v)))

= inf
L(s,w)=x

T ∗
(

F (s), inf
L(t,v)=w

T ∗ (G(t), H(v))
)

= inf
L(s,w)=x

T ∗
(
F (s), τ∗T∗,L(G, H)(w)

)
= τ∗T∗,L

(
F, τ∗T∗,L(G, H)

)
(x),

where in the second line we have used the continuity of T ∗, in the fourth one the
associativity of T ∗, in the fifth line that of L. This concludes the proof. �

Finally, we mention a result showing that under the assumptions of Theorem 8.2
τ∗S∗,L is not only a triangle function, but even more, it is continuous on the metric
space (∆+, dS).

Lemma 8.3 ([41, Corollary 7.3.9]). If T ∗ is a continuous t-conorm and if L ∈ L
is commutative, associative and fulfils both (LS) and (L0) of Definition 3.5, then
the triangle function τ∗T∗,L is uniformly continuous on the metric space (∆+, dS).

9. Operations involving quasi-copulas

Definition 9.1 ([41, Definition 7.5.1]). Let Q be a quasi-copula and let L belong
to L; a function ρQ,L : ∆+ ×∆+ → [0, 1]R+ is defined, for every pair F and G of
d.d.f.’s and for every x ∈ R+, by

ρQ,L(F, G)(x) = inf{Q (F (u), G(v)) | L(u, v) = x}
where Q is defined by (3.4).

Also in this case we have abstained from introducing ρ for a more general
class of operation, since the resemblance of this definition with Definition 8.1 is
obvious. More precisely, we can state that functions of type ρQ,L are completely
covered by Definition 8.1. To see this, notice that every quasi-copula Q fulfils the
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1-Lipschitz property. As a consequence, Q is increasing in each argument (see also
Lemma 3.3). Moreover, Q has neutral element 0, since

Q(u, 0) = u + 0−Q(u, 0) = u = Q(0, u).

Therefore, Q is a co-semicopula. Now it immediately follows that, for every quasi-
copula Q,

ρQ,L = τ∗
Q,L

. (9.1)

Although, the operations ρQ,L can be subsumed as particular cases of operations
of the type τ∗S∗,L, it is reasonable to consider them separately. In particular, for
those L ∈ L that are so called “composition laws”, the operations ρC,L are of
importance in the generalized theory of information of Kampé de Fériet and Forte
(see also [14, 39]).

We are now in a position to rephrase Theorem 7.5.2 and Corollary 7.5.3 in [41].
We shall also give the proof of this latter result (see Corollary 9.2, below)4 since
the proof in [41] refers to a modification of the proof of Theorem 5.1 in [34].

Lemma 9.1 ([41, Theorem 7.5.2]). Let Q be a quasi-copula and let L ∈ L satisfy
(LS). Then ρQ,L is a binary operation on ∆+.

Corollary 9.2 ([41, Corollary 7.5.3]). If Q is a symmetric quasi-copula, if L is
also commutative and satisfies properties (LS) and (L0) in Definition 3.5, and if
both Q and L are associative, then ρQ,L is a triangle function.

Proof. Since Q is a symmetric quasi-copula, Q is a symmetric continuous co-
semicopula. Moreover, the associativity of Q implies that Q is a continuous t-
conorm; therefore, all the assumptions of Theorem 8.2 are fulfilled. �

Similarly one proves

Lemma 9.3. If Q is a symmetric quasi-copula, if L is commutative and satis-
fies properties (LS) and (L0) in Definition 3.5, and if both Q and L are associa-
tive, then the triangle function ρQ,L is uniformly continuous on the metric space
(∆+, dS).

As a consequence of previous examples and Equation (9.1), we can immediately
conclude (compare also [41, Lemma 7.5.4]) that, for every quasi-copula Q,

ρQ,max = τ∗
Q,max

= Πmin and ρQ,min = τ∗
Q,min

= ΠQ.

4 The reader ought to be alerted to the fact that its correct statement can be found in the errata
in the Dover edition of the book [41].
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10. Operations involving copulas

In analogy with convolution ∗, i.e., the function ∗ : ∆+ × ∆+ → ∆+ defined by
(F ∗G)(0) := 0, (F ∗G)(∞) := 1 and

(F ∗G)(x) :=
∫

[0,x[

F (x− t) dG(t) (10.1)

for arbitrary F, G ∈ ∆+, the following class of operations σC,L was introduced by
Sklar in [51].

Definition 10.1 ([41, Definition 7.4.1]). Let C be a copula and L belong to L; a
function σC,L : ∆+ ×∆+ → ∆+ is defined, for every pair F and G of d.d.f.’s and
for every x ∈ R+, by

σC,L(F, G)(0) := 0, σC,L(F, G)(∞) := 1

and
σC,L(F, G)(x) :=

∫

L(x)

dC(F (u), G(v)) (10.2)

for all x ∈ ]0, +∞[, where

L(x) = {(u, v) | u, v ∈ R+, L(u, v) < x}.
If L is the sum, then we drop L in σC,L and simply write σC .

The integral in (10.2) is just the Lebesgue–Stieltjes H-measure of the set L(x)
where H(u, v) = C(F (u), G(v)) for all u, v ∈ R. The operation σC,L has a proba-
bilistic interpretation (see [40, Theorem 4]): if X and Y are positive real-valued
random variables on a probability space (Ω,A, P ), having d.f.’s FX and FY , and
if C is their copula, then the d.f. FL(X,Y ) of the random variable L(X, Y ) is given
by

FL(X,Y )(t) =
∫

{(u,v)∈R+:L(u,v)≤t}

dC (FX(u), FY (v)) = σC,L(F, G)(t).

In order to avoid possible misunderstandings, we notice that if the d.f.’s FX and
FY of the random variables X and Y are continuous the copula C of X and Y
is unique. Otherwise, the given pair of random variables uniquely defines a sub-
copula on Ran FX × Ran FY , rather than a copula; it is then possible to use a
bilinear interpolation (see [6, 31]) in order to single out a unique copula. Therefore
one can speak of the copula of the random variables X and Y .

For every copula C and for every L ∈ L, σC,L is a binary operation on ∆+ (see
also Theorem 4.2 in [10] and Theorem 7.4.2 in [41]). Moreover, σC,L is increasing
in each argument on ∆+ × ∆+. Therefore, one of the properties of a triangle
function is already satisfied by σC,L. The other properties will now be examined.
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The first ones of these were derived in [11] by Frank who extended his previous
results of [10] dealing with the particular case L = +.

Lemma 10.1 ([11, Theorem 2.1]). Let C be a copula and L ∈ L. Then σC,L has
ε0 as its neutral element if, and only if, L fulfills (L0) of Definition 3.5.

Lemma 10.2 ([11, Theorem 2.2]). Let C be a copula and L ∈ L. If σC,L is com-
mutative, then also L is commutative. Vice versa, if C and L are commutative,
then so is σC,L.

Finally, we turn to associativity. If σC,L is associative, then also L has neces-
sarily to be associative (compare [11, Theorem 2.3]). Therefore, when σC,L is a
triangle function, L must necessarily have neutral element 0, and must be both
commutative and associative. Moreover, by definition, it is increasing and continu-
ous in each of its arguments. Therefore, it is reasonable to consider, in particular,
functions L ∈ L for which there exists some continuous and strictly increasing
function h : R+ → R+ such that

L(u, v) = h−1(h(u) + h(v)). (10.3)

Such functions have no idempotent elements different from 0 and ∞. Therefore,
e.g., max is not covered by this approach, since any element of R+ is an idempotent
element of max. We shall therefore consider this case separately.

The following theorem provides sufficient conditions that ensure that σC,L is
associative.

Theorem 10.3 ([11, Theorem 4.4]). Let C be a copula and let L ∈ L have the
form L(u, v) = h−1(h(u) + h(v)) where h : R+ → R+ is continuous and strictly
increasing. Then σC,L is associative if, and only if, C is a (trivial or non-trivial)
ordinal sum of product t-norms, i.e., either C is the minimum or there exist some
index set I 6= ∅ and some corresponding family (]ai, bi[)i∈I of pairwise disjoint
subintervals of the unit interval, such that

C(x, y) =

{
ai + 1

bi−ai
(x− ai)(y − ai), if (x, y) ∈ [ai, bi]

2
,

min{x, y}, otherwise.

Ordinal sums of products are not only copulas but also t-norms. Therefore,
the triangle functions of the preceding theorem coincide with those induced by a
specific class of t-norms; moreover, the class of admissible copulas is rather small.
Choosing h to be the identity mapping leads again to the standard convolution
(10.1), which is then equal to σΠ. When L equals the minimum or the maximum
σC,L can be computed directly (see also [41]):
• σC,max = ΠC : since max(x) = [0, x[× [0, x[,

σC,max(F, G)(x) =
∫

[0,x[×[0,x[

dC(F (u), G(v)) = C(F (x), G(x)) = ΠC(F, G)(x).
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• σC,min = ΠC : since min(x) =
(
[0, x[× R+

)
∪

(
R+ × [0, x[

)
,

σC,min(F, G)(x) =
∫

min(x)

dC(F (u), G(v))

= PH

(
[0, x[× R+

)
+ PH

(
R+ × [0, x[

)
− PH ([0, x[× [0, x[)

= F (x) + G(x) − C(F (x), G(x)) = C(F (x), G(x)) = ΠC(F, G)(x).

Lemma 10.4. For a copula C, σC,max is a triangle function if, and only if, C is
a continuous t-norm.

Proof. It follows from Theorem 5.2 that σC,max = ΠC is a triangle function, if, and
only if, C is a left-continuous t-norm. As a consequence C has to be associative
and therefore a continuous t-norm. �

Lemma 10.5. For no copula C is σC,min a triangle function.

Proof. It follows again from Theorem 5.2 that σC,min = ΠC is a triangle function,
whenever, if possible, C is a left-continuous t-norm. However, since 1 is the unique
null element of C this is never the case. Therefore, σC,min, thanks to the continuity
of C (and therefore also of C), is a binary operation on ∆+, but never a triangle
function. �

Notice that this result also follows immediately from the fact that min has
neutral element 1 and not 0 as demanded by Lemma 10.1. Therefore, any σC,min

is a binary operation on ∆+ but not a triangle function.

11. Inequalities

Interesting inequalities hold among the operations τf,L, τ∗S∗,L, ρQ,L and σC,L that
have been introduced in the previous sections (see [30, 41]).

Theorem 11.1 ([41, Theorem 7.2.12]). If L1 and L2 are functions in L with L1 ≤
L2, and S1 and S2 are in S with S1 ≤ S2, then

τS1,L2 ≤ τS2,L1 .

In particular, if Q is a quasi-copula, i.e., Q ∈ Q, then

τW,L2 ≤ τQ,L2 ≤ τQ,L1 ≤ τM,L1 ;

if, moreover, L satisfies property (L0) of Definition 3.5, then L ≥ max and

τS,L ≤ ΠS ≤ ΠM

for every S ∈ S.
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Theorem 11.2 ([41, Theorem 7.5.5]). Let Q be a quasi-copula and let L satisfy
condition (LS) of Definition 3.5. Then

τW,L ≤ τQ,L ≤ ρQ,L ≤ ρW,L;

moreover, if C is a copula, then

τC,L ≤ σC,L ≤ ρC,L.

Theorem 11.3 ([41, eq. (7.4.10)]). Let C belong to C and L to L, then σC,L2 ≤
σC,L1 whenever L1 ≤ L2.

Some of the previous results can be strengthened if Q = M .

Theorem 11.4 ([41, Theorem 7.5.6]). If F and G are in D+, namely if they are
proper d.d.f.’s, then, for every L ∈ L,

τM,L(F, G) = ρM,L(F, G). (11.1)

If, in addition, L has +∞ as its null element and is continuous on all of R2

+, then
(11.1) holds for all F and G in ∆+.

We provide an example in order to show that the equality in (11.1) need not
hold if F and G are not in D+, and L does not have +∞ as a null element. To
this end, consider the d.d.f.’s Vs and Vt defined in (2.1), with s < t and choose
L = Π, i.e., the product, for which +∞ is not a null element, since 0 · (+∞) = 0.
Then, for every x ∈ ]0, +∞[,

τM,Π(Vs, Vt)(x) = sup
uv=x

M (Vs(u), Vt(v)) = M(s, t) = s,

while
ρM,Π(Vs, Vt)(x) = inf

uv=x
M (Vs(u), Vt(v)) = max{s, t} = t > s.

The following result is a direct consequence of Theorems 11.2 and 11.4.

Theorem 11.5 ([41, Corollary 7.5.7]). If L ∈ L has +∞ as its null element, is
continuous on all of R2

+ and satisfies condition (LS) of Definition 3.5, then

τM,L = ρM,L = σM,L. (11.2)

A comparison of Definitions 8.1 and 9.1 yields

Corollary 11.6 ([41, Corollary 7.5.8]). For every L ∈ L,

τ∗W∗,L = ρW,L, τ∗Π∗,L = ρΠ,L, τ∗M∗,L = ρM,L.

Therefore, under the hypotheses of Theorem 11.4,

τ∗M∗,L = τM,L.
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12. The stability of D+

In different questions concerning PN spaces, for instance in the study of bound-
edness, it is relevant to know when the space D+ of proper d.d.f.’s is stable under
a triangle function τ , or, equivalently, when a triangle function τ is a binary op-
eration on the set D+ of proper d.d.f.’s, namely when

τ
(
D+ ×D+

)
⊆ D+. (12.1)

Not every triangle function τ satisfies (12.1). For instance, take τ = τD, where
τD is given by (7.2). If Φ+ is the d.f. of the random variable |X | where X has the
standard normal law, X ∼ N(0, 1), so that Φ+(0) = 0 and, if x > 0,

Φ+(x) =
1
2

+
1√
2 π

∫ x

0

exp
(
−t2/2

)
dt;

thus Φ∧+(1) = +∞. Then, for every x > 0,

τD(Φ+, Φ+)(x) = max{Φ+(0), Φ+(0)} = 0,

namely τD(Φ+, Φ+) = ε∞, which is not in D+ while Φ+ is.
Sufficient conditions for (12.1) are provided by the following theorem.

Theorem 12.1. If one of the following conditions holds:
(a) τ = ΠT for some left-continuous t-norm T ;
(b) τ = τT,L for some left-continuous t-norm T and for some L ∈ L;
(c) τ = σC,L for some copula C and for some L ∈ L such that property (LS)

of Definition 3.5 is satisfied;
(d) τ is the convolution ∗;
(e) ρC,L, where C is an associative and symmetric copula and L satisfies prop-

erty (LS) of Definition 3.5,
then the set D+ is stable under τ , i.e., τ (D+ ×D+) ⊆ D+.

Proof. Let F and G be d.f.’s belonging to D+, i.e., such that

lim
t→+∞

F (t) = lim
t→+∞

G(t) = 1.

(a) If τ = ΠT for some left-continuous t-norm T , then

ΠT (F, G) (t) = T (F (t), G(t)) −−−−→
t→+∞

T (1, 1) = 1,

so that also ΠT (F, G) belongs to D+.
(b) In view of the definition of τT,L, one has, for every x > 0, for all u and v

such that L(u, v) = x, and for every pair of d.d.f.’s (F, G),

τT,L(F, G)(x) ≥ T (F (u), G(v)) .

Now, let x tend to +∞ in order to obtain, for all u and v in R+,

ℓ−τT,L(F, G)(+∞) ≥ T (F (u), G(v)) .
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Letting u and v go to +∞ yields, because T , F and G are all left-continuous,

ℓ−τT,L(F, G)(+∞) ≥ T (F (u), G(v)) −−−−−−−−−−→
u→+∞,v→+∞

T (1, 1) = 1.

Thus, τT,L(F, G) is in D+.
(c) We have already stated that, if X and Y are positive real-valued random

variables on a probability space (Ω,A, P ), having d.f.’s FX and FY , if C is their
copula, then the d.f. FL(X,Y ) of the random variable L(X, Y ) is given by

FL(X,Y )(t) =
∫

{(u,v)∈R+:L(u,v)≤t}

dC (FX(u), FY (v)) .

But, since both X and Y are real-valued, both

P (X < +∞) = 1 and P (Y < +∞) = 1,

or, equivalently,

lim
t→+∞

FX(t) = 1 and lim
t→+∞

FY (t) = 1

hold. On account of property (LS) of Definition 3.5, also L(X, Y ) is a.c. finite,
viz. P (L(X, Y ) < +∞) = 1, or, equivalently,

1 = lim
t→+∞

FL(X,Y )(t) = lim
t→+∞

∫

{(u,v)∈R+:L(u,v)≤t}

dC (FX(u), FY (v)) ,

which proves the assertion.
(d) This is a particular case of the previous one, when C = Π and L is the

sum, or equivalently, when the two (continuous) random variables X and Y are
independent and the operation acting on them is the sum.

(e) Since L satisfies property (LS) of Definition 3.5, the relationship L(u, v) =
+∞ holds if, and only if, at least one between u and v, say v, equals +∞. There-
fore, for every u > 0,

ℓ−ρC,L(F, G)(+∞) = inf
u∈R+

{F (u) + 1− C(F (u), 1)} = 1,

which concludes the proof. �

13. Multiplications

A multiplication is a binary operation on ∆ rather than on ∆+; it generalizes the
notion of triangle function. The name and the concept itself were introduced by
Schweizer in [34].

Definition 13.1. A multiplication on ∆ is a binary operation on ∆ that is com-
mutative, associative, increasing in each place, and whose restriction to ∆+ is a
triangle function.
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The main properties of multiplications are collected in the results below. In
the following Theorems the definition of the operations ΠT , of τT , and of τ∗T∗ is
extended from ∆+ ×∆+ to ∆×∆ (see [34]).5

Theorem 13.1 ([34]). Let T be a t-norm; the function ΠT defined by (5.1) for
all F and G in ∆ is an order-preserving multiplication on ∆. If T is continuous,
then ΠT is jointly continuous on the metric space (∆, dS).

It should be noticed that, when considered as a binary operation on ∆, rather
than on ∆+, the d.f. ε0 is not an identity for ΠT . The identity in the (contin-
uous) semigroup (∆, ΠT ) is ε−∞, the d.f. identically equal to 1 on R, while the
(continuous) semigroup (D, ΠT ) has no identity.

Theorem 13.2 ([34]). Let T be a t-norm; the function τT defined by (7.1) for
all F and G in ∆ is an order-preserving multiplication on ∆ that has ε0 as an
identity. If T is continuous, then τT is jointly continuous on the metric space
(D, dS).

It is easily shown that the multiplication τT is not continuous on (∆, dS).

Example 13.1. Consider the sequences of d.f.’s (Fn)n∈N and (Gn)n∈N, where,
for every n ∈ N, Fn = εn and Gn = G, this latter being the d.f. defined by
G(−∞) = 0, G(+∞) = 1 and, for x ∈ R, by G(x) = 1/2. Then the two sequences
converge weakly to ε∞ and to G, respectively, namely

lim
n→+∞

dS (Fn, ε∞) = 0, and lim
n→+∞

dS (Gn, G) = 0.

On the other hand, for every x ∈ R,

τT (ε∞, G) (x) = sup {T (ε∞(u), 1/2) | (u, v) : u + v = x} = 0,

i.e., τT (ε∞, G) = ε∞, while, for every n ∈ N,

τT (Fn, Gn) (x) = sup {T (εn(u), 1/2) | (u, v) : u + v = x} = 1/2.

Thus, the sequence (τT (Fn, Gn))n∈N does not converge weakly to ε∞.

Theorem 13.3 ([34]). Let T be a t-norm; the function τ∗T∗ defined by (8.1) for
all F and G in ∆ is an order-preserving multiplication on ∆ that has ε0 as an
identity. If T ∗ is continuous, then τ∗T∗ is jointly continuous on the metric space
(D, dS).

Like τT , also the multiplication τ∗T∗ is not continuous on (∆, dS). In order to
see this, consider the following example.

5 In this section, whenever we refer to equations (7.1) and (8.1), we take L to be the sum, and
then we allow it to be defined on R2 rather than on R2

+.
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Example 13.2. Consider the sequences (Fn)n∈N and (Gn)n∈N where, for every
n ∈ N, Fn = ε−n while Gn is the same d.f. as in the previous example. Then the
two sequences converge weakly to ε−∞ and to G, respectively, namely

lim
n→+∞

dS (Fn, ε−∞) = 0, and lim
n→+∞

dS (Gn, G) = 0.

But, for every x ∈ R, one has

lim
n→+∞

τ∗T∗ (ε−n, G) (x) = 1/2 6= 1 = τ∗T∗ (ε−∞, G) (x).

Definition 13.2. The convolution between d.f.’s of ∆ is defined, for all F and
G in ∆, and for every x ∈ R, by

(F ∗G)(x) =
∫

R

F (x− y) dG(y). (13.1)

All the spaces ∆, D, ∆+ and D+ are stable under convolution (see [34, Theorem
9.1 (i)]).

Theorem 13.4 ([34]). The convolution defined on ∆ × ∆ by (13.1) is an order-
preserving multiplication on ∆ that has ε0 as an identity. It is jointly continuous
on the metric spaces (D, dS), (∆+, dS) and (D+, dS) but not on (∆, dS).

The proof of the continuity of the convolution on the spaces (∆+, dS) and
(∆, dL) can be found in Theorems 7.2 and 9.1 (viii) of [34]; that it is continuous
on the space (D, dS) follows from the fact that onD the Sibley and the Lévy metrics
dS and dL are both topologically equivalent to the topology of weak convergence.
Thus, it suffices to prove that ∗ is not continuous on (∆, dS). To this end, consider
the same sequences (Fn)n∈N and (Gn)n∈N of the Example 13.1. Then

Fn ∗Gn = εn ∗Gn = Gn ∗ εn = Gn = G and ε∞ ∗G = ε∞;

as a consequence, the sequence (Fn ∗Gn)n∈N does not converge to ε∞.

14. The subset of step functions

We consider in this section the subsets of ∆+ and of ∆ consisting of the two-valued
d.f.’s, the two values necessarily being 0 and 1; these two subsets are respectively

E+ :=
{
εa : a ∈ R+

}
⊂ ∆+ and E :=

{
εa : a ∈ R

}
⊂ ∆.

In some questions regarding PM and PN spaces it is of some interest to study
the result of the application of a triangle function or of a multiplication τ to
pairs of the type (εa, εb). In the following theorem we summarize the results
when the multiplication considered belongs to one of the types studied in the
preceding section. The proof consists in a straightforward computation based on
the definition.
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Theorem 14.1. Let a and b belong to R. Then
(a) for every t-norm T ,

ΠT (εa, εb) = εa∨b;

(b) if T and L satisfy the assumptions of Theorem 7.13,

τT,L(εa, εb) = εL(a,b);

(c) if T ∗ and L satisfy the assumptions of Theorem 8.2,

τ∗T∗,L(εa, εb) = εL(a,b);

(d) if Q and L satisfy the assumptions of Corollary 9.2,

ρQ,L(εa, εb) = εL(a,b),

(e) if C and L satisfy the assumptions of Theorem 10.3

σC,L(εa, εb) = εL(a,b),

(f) εa ∗ εb = εa+b.
In all cases, E+ is stable under the triangle function τ considered,

τ(E+ × E+) ⊆ E+.

Example 14.1. If D is the drastic t-norm, then

τD(εa, εb) = εa+b.

Example 14.2. Let τk,T be the triangle function of (5.4), and assume, with-
out loss of generality, a < b. A simple calculation shows that, if k ≤ b, then
τk,T (εa, εb) = εa+b, while τk,T (εa, εb) = εb if k > b. In either case, E+ is stable
also under the triangle functions of this family.

In [44] the following result was proved.

Lemma 14.2. The spaces E and E+ are homeomorphic to R and to R+ respec-
tively.

Theorem 14.3. Let T be a continuous t-norm, let L be commutative, associative
and fulfil both (LS) and (L0) of Definition 3.5, then the topological semigroups
(R+, L) and (∆+, dS , τT,L) are homeomorphic.

Proof. The assertion follows from Theorem 14.1, from Lemma 14.2 and the fact
that L is a semigroup operation on R+. �

A similar proof establishes

Theorem 14.4. Let T ∗ be a continuous t-conorm, let L be commutative, associa-
tive and fulfil both (LS) and (L0) of Definition 3.5, then the topological semigroups
(∆+, dS , τ∗T∗,L) and (R+, L) are homeomorphic.
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15. A few questions

The reader should refer to the problem section (Section 7.9) of the book [41] by
Schweizer and Sklar and to the notes to Chapter 7 in the Dover edition of that
book in order to have a list of open problems on triangle functions. The problems
presented there touch also aspects not yet covered in the present paper, but which
will be the object of the second part.

1. Are there triangle functions different from the types we have listed and briefly
presented above? Having at one’s disposal a great variety of possible triangle
functions would be of great theoretical interest, and would also enrich the collection
of tools available to researchers for the applications.

2. To the best of the authors’ knowledge, triangle functions have hitherto been
used and discussed almost exclusively in the theory of PM and PN spaces. Par-
ticular examples of triangle functions, especially of the type ΠT and τT,L with L
some basic operation on the real line, also appear in, e.g., the treatment of fuzzy
numbers or in information theory (compare also [32]), but are not in the focus of
the investigation therein. However, even in the theories of PM and PN spaces,
the triangle functions considered belong to the family τT and, in the case of PN
spaces, also to the family τ∗T∗ , where T is a continuous t-norm and T ∗ its associ-
ated t-conorm. Is there room in these theories for triangle functions of the type
τT,L, with L ∈ L different from the sum? If yes, what is the meaning of the binary
operation L?

3. It has been shown (see Theorem 12.1) that for all the families of triangle
functions considered the inclusion

τ(D+ ×D+) ⊆ D+

holds. The one example we have where this inclusion is not respected is of a
discontinuous triangle functions, viz. τD; this leads to the following question: If
the triangle function τ is continuous on (∆+, dS), does the above inclusion hold?
Notice, however that the inclusion (12.1) may hold even for a discontinuous triangle
function. In fact, let a ∈ R+ and let T be a left-continuous t-norm, then the
triangle function τa,T of (5.4) is not continuous, but the above inclusion holds for
it.

4. In Section 14 it was proved that the subset of E+ ⊂ ∆+ of step functions is
stable under the triangle functions ΠT , τT,L, τ∗T∗,L, ρQ,L, σC,L, and, even, under
τD and τa,T , namely under all the triangle functions considered in the present
paper. Then

(a) is E+ stable under any triangle function τ?
(b) If τ belongs to any of the classes of triangle functions studied in this paper

are there other subsets A of ∆+ that are stable under τ in the sense that

τ(A ×A) ⊆ A?
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Abstract

As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-)
copula Q, max{x + y − 1, 0} ≤ Q(x, y) ≤ min{x, y} for all x, y ∈ [0, 1]. Sharper bounds hold when the (quasi-)copulas take
prescribed values, e.g., along their diagonal or horizontal resp. vertical sections. Here we pursue two goals: first, we investigate
construction methods for (quasi-)copulas with a given sub-diagonal section, i.e., with prescribed values along the straight line
segment joining the points (x0, 0) and (1, 1 − x0) for x0 ∈ ]0, 1[. Then, we determine the best-possible bounds for sets of quasi-
copulas with a given sub-diagonal section.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Quasi-copula; Copula; Sub-diagonal (section)

1. Introduction

Copulas and quasi-copulas play an important role in many applications. Copulas were first introduced by Sklar in
1959 in [23]. The copula of a random pair (X, Y ) completely captures the dependence structure of (X, Y ); moreover,
every copula is the restriction to the unit square of a bivariate distribution function whose marginals are uniform on
[0, 1]. Quasi-copulas were introduced by Alsina et al. in [2] and characterized by Genest et al. in [13]; they characterize
operations on distribution functions induced by operations on random variables defined on the same probability space.

Moreover, copulas and quasi-copulas are of considerable interest in other fields also, like e.g., many-valued logics
and preference modelling, mainly because associative copulas are also continuous triangular norms (see, e.g., [1,3,4,
9,14,15,21,22]) often, but not only, used for modelling many-valued conjunctions. Therefore, having at one’s disposal
a large number of examples of (quasi-)copulas is of great practical and theoretical interest. During the last few years
several investigations have been devoted to constructing copulas and quasi-copulas with given values along specified
sections and to determining the best-possible bounds for the functions thus constructed (see [6–8,10–12,16,19,20]).
In this spirit we study quasi-copulas with a given sub-diagonal section.

∗ Corresponding author at: Institut für Wissensbasierte Mathematische Systeme, Johannes Kepler Universität Linz, A–4040 Linz, Austria. Tel.:
+43 70 2468 9195; fax: +43 70 2468 1351.

E-mail addresses: jquesada@ugr.es (J.J. Quesada-Molina), susanne.saminger-platz@jku.at, susanne.saminger@unile.it (S. Saminger-Platz),
carlo.sempi@unile.it (C. Sempi).

0362-546X/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2007.11.021



J.J. Quesada-Molina et al. / Nonlinear Analysis 69 (2008) 4654–4673 4655

2. Preliminaries

Before discussing the main results we summarize a few basic notions and properties that will be useful later on.

2.1. Basic operations

Definition 1 ([23]). A copula C is a function from [0, 1]2 into [0, 1] with the following properties:

(a) C(0, u) = C(u, 0) = 0 and C(1, u) = C(u, 1) = u for every u ∈ [0, 1];
(b) for all u, u′, v and v′ in [0, 1] with u ≤ u′ and v ≤ v′

∆v,v′

u,u′(C) := C(u′, v′)− C(u′, v)− C(u, v′)+ C(u, v) ≥ 0. (1)

The expression ∆v,v′

u,u′(C) is called the C-volume of the rectangle
[
u, u′

]
×
[
v, v′

]
. The set of copulas will be denoted

by C.

It follows immediately from the definition that every copula C is increasing in each place, i.e., for every v ∈ [0, 1],
the functions u 7→ C(u, v) and u 7→ C(v, u) are both increasing,1 and that it satisfies the Lipschitz condition, i.e., for
all u, u′, v and v′ in [0, 1],

|C(u′, v′)− C(u, v)| ≤ |u′ − u| + |v′ − v|. (2)

Definition 2 ([2,13]). A quasi-copula Q is a function from [0, 1]2 into [0, 1] with the following properties:

(a) Q(0, u) = Q(u, 0) = 0 and Q(1, u) = Q(u, 1) = u for every u ∈ [0, 1];
(b) Q is increasing in each place, i.e., u 7→ Q(u, v) and u 7→ Q(v, u) are both increasing functions;
(c) Q satisfies the Lipschitz condition (2) for all u, u′, v, v′ in [0, 1].

The set of quasi-copulas will be denoted by Q.

Every copula is also a quasi-copula, but there are quasi-copulas that are not copulas; these latter ones will be
called proper quasi-copulas. Therefore the inclusion C ⊂ Q is strict. A quasi-copula Q is called symmetric if
Q(u, v) = Q(v, u) for all u, v ∈ [0, 1].

The most important copulas are the minimum M , the product Π , and the copula W , which are given by

M(u, v) := min{u, v}, Π (u, v) := u v, W (u, v) := max{0, u + v − 1}.

The copulas M and W are also known as the Fréchet–Hoeffding bounds for copulas and quasi-copulas, since
W ≤ Q ≤ M for any quasi-copula Q; and Π is also known as the independence copula (for more details on copulas
and quasi-copulas we refer to [18]).

Definition 3. Given a quasi-copula Q and x0 ∈ [0, 1], the sub-diagonal section δQ
x0 of Q at x0 is the function

δ
Q
x0 : [0, 1− x0]→ [0, 1− x0] defined by

δQ
x0
(t) := Q(x0 + t, t). (3)

When x0 = 0 we omit the index and refer to δQ as the diagonal section of Q.

Sub-diagonals may be defined as functions fulfilling particular properties.

Definition 4. Given x0 ∈ [0, 1], a sub-diagonal δx0 is a function from [0, 1− x0] into [0, 1− x0] with the following
properties:

(DS1) δx0(1− x0) = 1− x0;

1 We use the term increasing in the weak sense, viz. a function ϕ is increasing if ϕ(u1) ≤ ϕ(u2) whenever u1 < u2; when the strict inequality
holds, we say that the function is strictly increasing.
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Fig. 1. Sub-domains of [0, 1]2.

(DS2) 0 ≤ δx0(t) ≤ t , for every t ∈ [0, 1− x0];
(DS3) 0 ≤ δx0(t

′)− δx0(t) ≤ 2 (t ′ − t), for every t, t ′ ∈ [0, 1− x0] with t ≤ t ′.

When x0 = 0 we again omit the index and simply speak of a diagonal.

The sub-diagonal section of any quasi-copula is a sub-diagonal. In fact the conditions specified above, are
easy consequences of the properties of a quasi-copula. Condition (DS2) follows immediately from the inequality
Q(x, y) ≤ M(x, y) that holds for all x and y in [0, 1], whereas condition (DS3) expresses the 2-Lipschitz condition
and the isotony of any sub-diagonal section. Since W ≤ Q, it follows from (3) that, for all t ∈ [0, 1− x0],

δQ
x0
(t) ≥ max{x0 + 2t − 1, 0}.

The sub-diagonal section at x0 of a copula C has a simple probabilistic meaning. If C is the restriction to the unit
square of the distribution function of two random variables X and Y with uniform distribution on (0, 1), then

δC
x0
(t) = C(x0 + t, t) = P (max{X − x0, Y } < t).

2.2. Further notions and basic properties

For a given x0 ∈ [0, 1] we distinguish the following sub-domains of the unit square (see also Fig. 1):

TU (x0) := {(u, v) ∈ [0, 1]2 | u − x0 ≤ v}; TL(x0) := {(u, v) ∈ [0, 1]2 | u − x0 ≥ v};

S1(x0) := [0, x0]× [1− x0, 1] ; S2(x0) := [x0, 1]× [0, 1− x0] ;
SL(x0) := [0, x0]2

; SU (x0) := [1− x0, 1]2
; D(x0) := SL(x0) ∪ SU (x0).

If x0 ≥ 0.5, then SL(x0) and SU (x0) are not disjoint, while S1(x0) and S2(x0) always have in common just the single
point (x0, 1− x0) independently of the choice of x0.

We further introduce two functions mx0 : [0, 1]2 → [0, 1− x0] and Mx0 : [0, 1]2 → [0, 1− x0] through

mx0(u, v) := max{min{u − x0, v}, 0}; (4)
Mx0(u, v) := min{max{u − x0, v}, 1− x0}. (5)

One has (u, v) ∈ TL(x0) if and only if mx0(u, v) = u−x0 and Mx0(u, v) = v. The truncation by 0 resp. 1−x0 ensures
that δx0 (or any function derived from it) may be applied to mx0(u, v) resp. Mx0(u, v) for arbitrary (u, v) ∈ [0, 1]2.
Notice that

mx0(u, v) = min{u − x0, v}, Mx0(u, v) = max{u − x0, v},

for all (u, v) ∈ S2(x0).
Associated with a sub-diagonal δx0 we consider the function δ̂x0 defined by

δ̂x0 : [0, 1− x0]→ [0, 1− x0] , δ̂x0(t) := t − δx0(t). (6)
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It is immediate to see that any δ̂x0 fulfills the following properties, which are all consequences of (DS1)–(DS3):

(HD1) δ̂x0(0) = δ̂x0(1− x0) = 0;
(HD2) |δ̂x0(t

′)− δ̂x0(t)| ≤ |t
′
− t | for every t, t ′ ∈ [0, 1− x0];

(HD3) 0 ≤ δ̂x0(t) ≤ min{t, 1− x0 − t} for every t ∈ [0, 1− x0].

Property (HD2) implies that the function t 7→ t + δ̂x0(t) is increasing.
The following functions will also be needed:

qx0 : [0, 1− x0]→ [0, 1− x0] , qx0(u, v) := max
{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]}
; (7)

hx0 : [0, 1− x0]→ [0, 1− x0] , hx0(u, v) := min
{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]}
; (8)

kx0 : [0, 1− x0]→ [0, 1− x0] , kx0(u, v) :=
1
2
δx0(mx0(u, v))+

1
2
δx0(Mx0(u, v)); (9)

allowing to determine the maximum and the minimum of δ̂x0 on some sub-domains.

2.3. Problem statements and known results

The first and natural problem that arises, and which will be investigated in the next sections, is the following one:
Given a sub-diagonal δx0 , does there exist a copula or a quasi-copula Q whose sub-diagonal section δQ

x0 coincides with
δx0 , i.e., for which δQ

x0 = δx0? As will be seen, we shall answer this question in the positive by constructing several
quasi-copulas with the required property. A second question is then: Given a sub-diagonal δx0 , ifQδx0

and Cδx0
denote,

respectively, the set of all the quasi-copulas and of all the copulas whose sub-diagonal sections coincide with δx0 , what
are the best-possible bounds for Qδx0

? We shall show later how to construct lower and upper bounds for Qδx0
.

The answers to the questions put above are already known for the particular case of x0 = 0, i.e., for diagonal
(quasi-)copulas. We briefly recall the main results (see also [19,20]).

Theorem 1. Consider a diagonal δ and define Bδ , Kδ and Aδ as functions from [0, 1]2 into [0, 1] by

Bδ(u, v) := min{u, v} −min{δ̂(t) | t ∈ [min{u, v},max{u, v}]}; (10)

Kδ(u, v) := min{u, v,
δ(u)+ δ(v)

2
}; (11)

Aδ(u, v) := min{u, v,max{u, v} −max{δ̂(t) | t ∈ [min{u, v},max{u, v}]}}; (12)

for every u, v ∈ [0, 1]. Then the following statements hold:

(a) Bδ and Kδ are symmetric copulas; Aδ is a symmetric quasi-copula.
(b) For every quasi-copula Q with δQ

= δ the following inequalities hold:

Bδ ≤ Q ≤ Aδ;

(c) Cδ ≤ Kδ for every symmetric copula Cδ ∈ Cδ .
Therefore, for the case x0 = 0, best-possible bounds as well as constructions are already known. For more details

on how to determine also non-symmetric (quasi-)copulas we refer to [6,20]. As a consequence, in what follows we
shall restrict our considerations to x0 ∈ ]0, 1[.

We also mention that, by well-known transformations of (quasi-)copulas, and as a consequence of our results,
(quasi-)copulas with prescribed values on other preassigned line segments can be constructed. More precisely, given
a (quasi-)copula Q, the functions Q′, Q′′, and Q′′′ from [0, 1]2 into [0, 1] defined by

Q′(u, v) := u − Q(u, 1− v);
Q′′(u, v) := v − Q(1− u, v);

Q′′′(u, v) := u + v − 1+ Q(1− u, 1− v);
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are (quasi-)copulas (compare also [16,18]). Therefore, for a given x0 ∈ ]0, 1[, a given sub-diagonal δx0 , and a quasi-
copula Q ∈ Qδx0

, Q′ is a quasi-copula with prescribed values along the straight line segment joining the points (x0, 1)
and (1, x0), determined by corresponding values of δx0 . Analogously, the values of Q′′ (resp. Q′′′) are prescribed by
δx0 for the line segment joining the points (1 − x0, 0) and (0, 1 − x0) (resp. (1 − x0, 1) and (0, x0)). Thus, such
(quasi-)copulas, either with given opposite super-diagonal section (Q′), opposite sub-diagonal section (Q′′), or super-
diagonal section (Q′′′), can be constructed, and their respective bounds can be determined.

3. From diagonal to sub-diagonal (quasi-)copulas

Bilinear transformations of quasi-copulas with given diagonals may be used to construct quasi-copulas with a
prescribed sub-diagonal section. From a geometrical viewpoint the idea is to rescale and shift a given quasi-copula so
that it is defined on S2(x0) rather than on the whole unit square and to fill the gaps on [0, 1]2 \ S2(x0) in an appropriate
way. Because of the transformation and shifting process, the value of the new quasi-copula at the point (x0, 1 − x0)

must be equal to 0. Following the results of [17] such a quasi-copula Q may be represented as a W -ordinal sum, i.e.,
there exist quasi-copulas Q1 and Q2 such that

Q(u, v) =


x0 Q1

(
u
x0
,

x0 + v − 1
x0

)
, if (u, v) ∈ S1(x0),

(1− x0) Q2

(
u − x0

1− x0
,

v

1− x0

)
, if (u, v) ∈ S2(x0),

W (u, v), otherwise.

(13)

Note that Q is indeed again a quasi-copula and will be denoted by (〈0, x0, Q1〉, 〈x0, 1, Q2〉)
W .

Moreover, if Q1 and Q2 are copulas, then Q also is a copula [17].

Proposition 2. For x0 ∈ ]0, 1[, let δx0 be a sub-diagonal. Consider an arbitrary quasi-copula Q1 and a quasi-copula
Q2 ∈ Qδ̃ , δ̃: [0, 1] → [0, 1] being the diagonal defined by

δ̃(t) :=
δx0((1− x0)t)

1− x0
. (14)

Then the W -ordinal sum Q = (〈0, x0, Q1〉, 〈x0, 1, Q2〉)
W defined by (13) is a quasi-copula that fulfills δQ

x0 = δx0 , i.e.,
Q ∈ Qδx0

.

Proof. It suffices to prove that, for every x0 ∈ ]0, 1[, δ̃ is indeed a diagonal and that Q(t + x0, t) = δx0(t) for all
t ∈ [0, 1− x0]. Since (1 − x0)̃δ(t) = δx0((1 − x0)t) it follows immediately from properties (DS1) and (DS2) that
δ̃(1) = 1 and 0 ≤ δ̃(t) ≤ t for all t ∈ [0, 1]. Moreover, since δx0 fulfills (DS3), it can be easily seen that, for all t and
t ′ in [0, 1] with t ≤ t ′,

0 ≤ δ̃(t ′)− δ̃(t) =
1

1− x0

(
δx0

(
(1− x0)t ′

)
− δx0((1− x0)t)

)
≤ 2(t ′ − t).

Now assume that t ∈ [0, 1− x0]; then (t + x0, t) ∈ S2(x0) and

Q(t + x0, t) = (1− x0) Q2

(
t

1− x0
,

t
1− x0

)
= (1− x0) δ̃

(
t

1− x0

)
= δx0(t)

so that indeed Q belongs to Qδx0
. �

Corollary 3. For every x0 ∈]0, 1[ and for every sub-diagonal δx0 , there exist a quasi-copula Q and a copula C that
belong to Qδx0

and to Cδx0
, respectively.

Although bilinear transformations already provide a rich tool for constructing sub-diagonal (quasi-)copulas, a few
remarks are in order. If the original (quasi-)copula was symmetric with respect to the main diagonal, then some
symmetry is inherited by the (quasi-)copula thus constructed. However, this construction does not necessarily yield
symmetric sub-diagonal (quasi-)copulas. Moreover, although, as we shall see in Section 8, this method allows us to
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determine the best-possible lower bound of (quasi-)copulas with a given sub-diagonal section, the largest possible
sub-diagonal (quasi-)copula cannot be found by means of W -ordinal sums. The reason is that transforming the
boundary conditions of the (quasi-)copula involved implies rather restrictive conditions on the new function, i.e.,
it forces the resulting operation to coincide with the lower Fréchet–Hoeffding bound W on [0, x0] × [0, 1− x0] and
on [x0, 1]× [1− x0, 1]. To illustrate this fact, let us apply the previous results to sub-diagonals provided by the largest
and smallest possible (quasi-)copulas and by choosing Q1 and Q2, respectively, to be the largest and the smallest
possible quasi-copulas.

Example 1. Given x0 ∈ ]0, 1[, consider the smallest sub-diagonal δW
x0
(t) := max{x0 + 2t − 1, 0}. Then δ̃W is given

by δ̃W (t) = max{2t − 1, 0}, the diagonal section of the quasi-copula W . Choose Q1 = W and Q2 = Bδ̃W given by
(10); this yields

Q2(u, v) = min{u, v} −min{t − δ̃W (t) | t ∈ [min{u, v},max{u, v}]}
= min{u, v} −min{t, 1− t | t ∈ [min{u, v},max{u, v}]}
= min{u, v} −min{min{u, v}, 1−max{u, v}}
= max{0,min{u, v} +max{u, v} − 1}
= max{0, u + v − 1} = W (u, v).

Therefore, the corresponding W -ordinal sum Q defined by (13) is the lower Fréchet–Hoeffding bound W and belongs
to QδW

x0
.

Example 2. Given x0 ∈ ]0, 1[, consider the largest sub-diagonal δM
x0
(t) := t . Then δ̃M is given by δ̃M (t) = t , the

diagonal section of the quasi-copula M . Choose Q1 = M and Q2 = Aδ̃M given by (12); this yields

Q2(u, v) = min
{

u, v,max{u, v} −max{t − δ̃M (t) | t ∈ [min{u, v},max{u, v}]}
}

= min{u, v,max{u, v}} = M(u, v).

Therefore, the W -ordinal sum Q defined by (13) is given by

Q(u, v) =

min{u, v + x0 − 1}, if (u, v) ∈ S1(x0),

min{u − x0, v}, if (u, v) ∈ S2(x0),

W (u, v), otherwise,

which differs from the upper Fréchet–Hoeffding bound M .

4. From sub-diagonal quasi-copulas to new sub-diagonal quasi-copulas

New quasi-copulas and copulas having a prescribed sub-diagonal section may be obtained by adapting the
construction introduced in [6] and called splice in [20].

Definition 5. Let A and B be quasi-copulas or copulas with the same sub-diagonal section at x0, i.e., δA
x0
= δB

x0
. The

splice A�x0 B of A and B at x0 is defined via(
A�x0 B

)
(u, v) :=

{
A(u, v), if (u, v) ∈ TU (x0),

B(u, v), if (u, v) ∈ TL(x0).
(15)

Theorem 4. Let A and B be two (quasi-)copulas having the same sub-diagonal section δx0 at x0, i.e. A, B ∈ Qδx0
.

Then the splice A�x0 B defined by (15) is a quasi-copula belonging to Qδx0
, A�x0 B ∈ Qδx0

.

Proof. Assume that A and B are (quasi-)copulas in Qδx0
. Then the boundary conditions for a (quasi-)copula are

automatically satisfied by A�x0 B; it is also clear that its sub-diagonal section coincides with δx0 . Therefore, one
has to prove that A�x0 B is increasing in each place and satisfies the Lipschitz condition; to this end, it is enough to
prove, that, if u1 − x0 ≤ v and u2 − x0 > v for v ∈ [0, 1], then

0 ≤ (A�x0 B)(u2, v)− (A�x0 B)(u1, v) ≤ u2 − u1.
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Now

(A�x0 B)(u2, v)− (A�x0 B)(u1, v) = B(u2, v)− A(u1, v)

= B(u2, v)− δx0(v + x0, v)+ δx0(v + x0, v)− A(u1, v)

= B(u2, v)− B(v + x0, v)+ A(v + x0, v)− A(u1, v) ≥ 0.

The same argument also yields

(A�x0 B)(u2, v)− (A�x0 B)(u1, v) ≤ u2 − (v + x0)+ (v + x0)− u1 = u2 − u1

which proves the assertion. �

Theorem 5. Let A and B be two copulas having the same sub-diagonal section δx0 at x0, A, B ∈ Cδx0
and fulfilling,

for all (u, v) ∈ TL(x0),

A(u, v) = A(v + x0, u − x0) and B(u, v) = B(v + x0, u − x0).

Then the splice A�x0 B defined by (15) is a copula belonging to Cδx0
, A�x0 B ∈ Cδx0

.

Proof. Assume that A and B are copulas in Cδx0
. We already know from Theorem 4 that A�x0 B is a quasi-copula.

In order to prove that A�x0 B is also 2-increasing, it suffices to verify this property for every square whose diagonal
lies on the segment joining the points (u, u − x0) and (v, v − x0), namely for every square [u, v]× [u − x0, v − x0],
u, v ∈ [x0, 1] with u < v. Now, we have

∆u−x0,v−x0
u,v

(
A�x0 B

)
=
(

A�x0 B
)
(u, u − x0)+

(
A�x0 B

)
(v, v − x0)−

(
A�x0 B

)
(u, v − x0)−

(
A�x0 B

)
(v, u − x0)

= A(u, u − x0)+ A(v, v − x0)− A(u, v − x0)− B(v, u − x0)

= B(u, u − x0)+ B(v, v − x0)− A(u, v − x0)− B(v, u − x0)

≥ min{VA([u, v]× [u − x0, v − x0]), VB([u, v]× [u − x0, v − x0])} + |B(u, v − x0)− A(u, v − x0)| ≥ 0,

which concludes the proof. �

Notice that, even when A and B are symmetric (quasi-)copulas, their splice A�x0 B need not be symmetric. In
fact, if there is a point (u, v) with u ∈ ]x0, 1[ and v ∈ ]0, u − x0[ such that A(u, v) 6= B(u, v), then(

A�x0 B
)
(u, v) = B(u, v) 6= A(u, v) = A(v, u) =

(
A�x0 B

)
(v, u).

Similarly if (u, v) is such that u ∈]0, 1− x0[, v ∈]u + x0, 1[ and A(u, v) 6= B(u, v), then(
A�x0 B

)
(u, v) = A(u, v) 6= B(u, v) = B(v, u) =

(
A�x0 B

)
(v, u).

In either case, A�x0 B is not symmetric.

5. Symmetrization of quasi-copulas

As mentioned above, the (quasi-)copulas constructed by W -ordinal sums or by the splicing method are, in general,
not symmetric. Below we present a method for obtaining a symmetric quasi-copula starting from a non-symmetric
(quasi-)copula. Notice that this method may be applied to arbitrary (quasi-)copulas.

Proposition 6. Let Q be any (quasi-)copula. Then the functions Q∗ and Q∗ from [0, 1]2 into [0, 1] defined by

Q∗(u, v) := Q(max{u, v},min{u, v}), (16)
Q∗(u, v) := Q(min{u, v},max{u, v}) (17)

are symmetric quasi-copulas.
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Proof. It is obvious that, for any (quasi-)copula Q,

Q∗(u, v) =
{

Q(u, v), if u ≥ v,
Q(v, u), otherwise, Q∗(u, v) =

{
Q(u, v), if u ≤ v,
Q(v, u), otherwise,

which immediately shows that Q∗ and Q∗ fulfill the boundary conditions and are increasing since Q is increasing
in each argument. The Lipschitz property of Q∗ and Q∗ follows immediately from the corresponding property of Q
when u, u′, v, v′ determine a rectangle completely contained either below or above the main diagonal of [0, 1]2. When
u = v and u′ = v′ we can conclude that

|Q∗(u′, u′)− Q∗(u, u)| = |Q∗(u′, u′)− Q∗(u, u)| = |Q(u′, u′)− Q(u, u)| ≤ 2 |u′ − u|.

In all other cases the rectangle
[
u, u′

]
×
[
v, v′

]
can be decomposed into smaller rectangles belonging to the previous

types, so that an application of the triangle inequality establishes the Lipschitz property for Q∗ and Q∗. Since max
and min are symmetric, so are Q∗ and Q∗; this concludes the proof. �

The previous operations can also be obtained through a splicing along the main diagonal for x0 = 0. Originally the
corresponding approach was introduced in order to obtain non-symmetric operations with given diagonals (see also
[6,20]); however, it can also be applied to obtain symmetric ones. More precisely, since for any (quasi-)copula Q also
Qt defined by Qt (u, v) := Q(v, u) is a (quasi-)copula, it immediately follows that, for x0 = 0,

Q∗(u, v) = (Qt
�0 Q)(u, v) and Q∗(u, v) = (Q�0 Qt )(u, v).

When Q is a symmetric (quasi-)copula, then Q = Qt and therefore Q∗ = Q = Q∗. Moreover, the results in [6,20]
allow us to state the following corollaries.

Corollary 7. Let C be a copula. Then C∗ is a copula if and only if 2 C(u, v) ≤ C(u, u)+C(v, v) for all u, v ∈ [0, 1]
with u ≤ v, and C∗ is a copula if and only if 2 C(u, v) ≤ C(u, u)+ C(v, v) for all u, v ∈ [0, 1] with u ≥ v.

Corollary 8. Let C be a copula with diagonal section δ. If, for all u, v ∈ [0, 1],

max(C(u, v),C(v, u)) ≤ Kδ(u, v),

where Kδ is given by (11), then C∗ and C∗ are copulas.

Before turning to examples of symmetric quasi-copulas with a given sub-diagonal section at x0, we introduce some
new notions in complete analogy to Q∗. Therefore, for x0 ∈ ]0, 1[ and a sub-diagonal δx0 , define functions m∗x0

, M∗x0
,

q∗x0
, h∗x0

, k∗x0
from [0, 1]2 into [0, 1− x0] by

m∗x0
(u, v) := mx0(max{u, v},min{u, v});

M∗x0
(u, v) := Mx0(max{u, v},min{u, v});

q∗x0
(u, v) := qx0(max{u, v},min{u, v});

h∗x0
(u, v) := hx0(max{u, v},min{u, v});

k∗x0
(u, v) := kx0(max{u, v},min{u, v}).

Notice that m∗x0
(u, v) ≥ 0 and M∗x0

(u, v) ≤ 1− x0, for all (u, v) in [0, 1]2 \ D(x0).

6. Examples of symmetric sub-diagonal quasi-copulas

Proposition 9. For x0 ∈ ]0, 1[ and for a sub-diagonal δx0 , the function B∗δx0
from [0, 1]2 into [0, 1] defined by

B∗δx0
(u, v) :=

{
m∗x0

(u, v)− h∗x0
(u, v), if (u, v) ∈ [0, 1]2 \ D(x0),

W (u, v), otherwise,
(18)

is a symmetric quasi-copula belonging to Qδx0
.
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Proof. We shall show that B∗δx0
is the symmetrization of the W -ordinal sum Bδx0

given by (〈0, x0,W 〉, 〈x0, 1, Bδ̃〉)
W

with δ̃ defined by (14). Recall that

Bδ̃(u, v) = min{u, v} −min{t − δ̃(t) | t ∈ [min{u, v},max{u, v}]},

and that the W -ordinal sum Bδx0
is given by

Bδx0
(u, v) =

(1− x0) Bδ̃

(
u − x0

1− x0
,

v

1− x0

)
, if (u, v) ∈ S2(x0),

W (u, v), otherwise.

By simple calculations and by taking into account that, for all (u, v) in S2(x0),

mx0(u, v) = min{u − x0, v}, Mx0(u, v) = max{u − x0, v},

(1− x0) δ̃(t) = δx0((1− x0)t), hx0(u, v) = min
{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]}
,

it can be shown that indeed, for all (u, v) ∈ S2(x0),

(1− x0) Bδ̃

(
u − x0

1− x0
,

v

1− x0

)
= mx0(u, v)− hx0(u, v)

and, therefore,

Bδx0
(u, v) =

{
mx0(u, v)− hx0(u, v), if (u, v) ∈ S2(x0),

W (u, v), otherwise. (19)

Moreover, since Bδ̃ and W are copulas, Bδx0
also is a copula. Its sub-diagonal section coincides with δx0 because of

Proposition 2.
The symmetrization of Bδ̃ is given, for all (u, v) ∈ [0, 1]2, by

B∗δx0
(u, v) = Bδx0

(max{u, v},min{u, v}).

If (max{u, v},min{u, v}) belongs to S2(x0), or, equivalently, if (u, v) is in [0, 1]2 \ D(x0), then B∗δx0
(u, v) =

Bδx0
(max{u, v},min{u, v}) = m∗x0

(u, v)− h∗x0
(u, v) for all (u, v) in [0, 1]2 \ D(x0).

Finally, if (u, v) is in D(x0), then W (max{u, v},min{u, v}) = W (u, v). Therefore, B∗δx0
may be rewritten as

B∗δx0
(u, v) =

{
m∗x0

(u, v)− h∗x0
(u, v), if (u, v) ∈ [0, 1]2 \ D(x0),

W (u, v), otherwise.

It follows from Propositions 2 and 6 that B∗δx0
is indeed a quasi-copula whose sub-diagonal section at x0 coincides

with δx0 , i.e., B∗δx0
∈ Qδx0

. �

We show, by means of an example that B∗δx0
is, in general, a proper quasi-copula; to this end, we shall show that

one may as well have ∆v,v
u,u(B∗δx0

) < 0, for some u and v with u < v.

Example 3. Let x0 < 1/3 and consider the diagonal section δΠx0
of the product copula Π ; then

δΠx0
(t) = t (x0 + t) and δ̂Πx0

(t) = t (1− x0)− t2.

For the values of x0 considered, choose u and v greater than (1− x0)/2 so that δ̂Πx0
is a decreasing function; this allows

to calculate explicitly

∆v,v
u,u(B

∗
δx0
) = u − v − (1− x0)v + v

2
− (1− x0)u + u2

+ 2 (1− x0)u − 2u2

= u − v − (1− x0)(v − u)+ v2
− u2

= (v − u) (−1− (1− x0)+ u + v) = (v − u) (−2+ x0 + u + v) < 0,

since u < v < 1− x0.
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By considerations analogous to those carried out in Proposition 9 it is possible to obtain the following two
symmetric quasi-copulas, which, as shall be shown later, are again, in general, proper quasi-copulas.

Proposition 10. For x0 ∈ ]0, 1[ and a sub-diagonal δx0 , the functions K ∗δx0
and A∗δx0

from [0, 1]2 into [0, 1] defined
by

K ∗δx0
(u, v) :=

{
min{m∗x0

(u, v), k∗x0
(u, v)}, if (u, v) ∈ [0, 1]2 \ D(x0),

W (u, v), otherwise,
(20)

and

A∗δx0
(u, v) :=

{
min{m∗x0

(u, v),M∗x0
(u, v)− q∗x0

(u, v)}, if (u, v) ∈ [0, 1]2 \ D(x0),

W (u, v), otherwise,
(21)

are symmetric quasi-copulas, and they both belong to Qδx0
.

Proof. In complete analogy with the proof of Proposition 9, it can be shown that K ∗δx0
is the symmetrization of

the W -ordinal sum Kδx0
= (〈0, x0,W 〉, 〈x0, 1, K δ̃〉)

W and that A∗δx0
is the symmetrization of the W -ordinal sum

Aδx0
= (〈0, x0,W 〉, 〈x0, 1, Aδ̃〉)

W with δ̃ given by (14). It therefore follows from Propositions 2 and 6, that both the
operations are indeed quasi-copulas whose sub-diagonal sections at x0 coincide with δx0 . �

While the W -ordinal sum Kδx0
is not only a quasi-copula but also a copula, the quasi-copula K ∗δx0

is, in general, a
proper quasi-copula, as is A∗δx0

.

Example 4. Let x0 be in ]0, 1[ and let δM
x0

be the diagonal section at x0 of the upper Fréchet–Hoeffding bound M ,
i.e., δM

x0
(t) = t for all t ∈ [0, 1− x0]. Given an arbitrary square [u, v]2

⊆ [0, 1]2 with u < v < u + x0, a simple
calculation leads to

∆v,v
u,u(K

∗
δx0
) = K ∗δx0

(v, v)+ K ∗δx0
(u, u)− K ∗δx0

(u, v)− K ∗δx0
(v, u)

= min
{
v − x0,

1
2
(δx0(v − x0)+ δx0(v))

}
+min

{
u − x0,

1
2
(δx0(u − x0)+ δx0(u))

}
− 2 min

{
v − x0,

1
2
(δx0(v − x0)+ δx0(u))

}
= min

{
v − x0, v −

x0

2

}
+min

{
u − x0, u −

x0

2

}
− 2 min

{
v − x0,

u + v − x0

2

}
= (v − x0)+ (u − x0)− 2 (v − x0) = −(v − u) < 0,

since v < u + x0 implies v − x0 < (u + v − x0)/2.

Example 5. As in Example 4, let x0 be in ]0, 1[, let δM
x0

be the diagonal section at x0 of the upper Fréchet–Hoeffding
bound M , δM

x0
(t) = t , and consider the square [u, v]2

⊆ [0, 1]2 with u < v < u + x0. Since δ̂M
x0
(t) = 0 for every

t ∈ [0, 1− x0] a simple calculation leads to

∆v,v
u,u(A

∗
δx0
) = A∗δx0

(v, v)+ A∗δx0
(u, u)− 2 A∗δx0

(u, v)

= min{v − x0, v} +min{u − x0, u} − 2 min{v − x0, u}

= (v − x0)+ (u − x0)− 2 (v − x0) = −(v − u) < 0.

The previous examples have shown how to construct symmetric sub-diagonal quasi-copulas. However, as shown
above, these quasi-copulas are usually proper. Therefore, it is natural to ask whether there exist symmetric sub-
diagonal copulas. The following section answers this question in the positive, at least when x0 has a restricted range.
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7. A symmetric sub-diagonal copula

We now turn to the construction of a copula C , rather than a quasi-copula, with a prescribed sub-diagonal section
δC

x0
at x0 with x0 ∈ [0, 1/2]. While the copula thus constructed is symmetric, it is not a symmetrization of a W -ordinal

sum; as a consequence, the properties of a copula have to be proved directly.

Theorem 11. For x0 ∈ [0, 1/2] and for a sub-diagonal δx0 , such that the funtion f : [x0, 1− x0] → [0, 1− x0],
f (u) := δx0(u)− δx0(u − x0) is increasing, the function Cδx0

from [0, 1]2 into [0, 1] defined by

Cδx0
(u, v) :=

min{u, v, k∗x0
(u, v)}, if (u, v) ∈ [0, 1]2 \ D(x0),

min{k∗x0
(x0, u), k∗x0

(x0, v)}, if (u, v) ∈ SL(x0),

min{Ax0(u, v), Ax0(v, u)}, if (u, v) ∈ SU (x0),

(22)

where

Ax0(u, v) := u + k∗x0
(v, 1− x0)− (1− x0), (23)

is a symmetric copula whose sub-diagonal section at x0 equals δx0 , namely Cδx0
∈ Cδx0

.

Proof. Clearly the segment connecting the points (x0, 0) and (1, 1− x0) lies entirely in the set [0, 1]2
\ D(x0), so that

Cδx0
(x0 + t, t) = min{x0 + t, t, k∗x0

(x0 + t, t)}

= min
{

t,
1
2

(
δx0(t)+ δx0(t)

)}
= min{t, δx0(t)} = δx0(t),

because of (DS2). Thus, the last assertion in the statement of the theorem is proved.
Now, we shall prove that Cδx0

is actually a copula. While the first of the boundary conditions of Definition 1 is
easily verified, the second one needs some argument. Assume, first, that v < 1− x0. The 2-Lipschitz condition (DS3)
yields

1
2
δx0(1− x0)−

1
2
δx0(v) ≤ (1− x0)− v,

or, equivalently, because of (DS1),

v ≤
1
2
(1− x0)+

1
2
δx0(v) = k∗x0

(1, v);

thus, Cδx0
(1, v) = v. Assume, next, that v ≥ 1− x0. Notice that, as a consequence of the 2-Lipschitz condition (DS3),

Ax0(u, v) ≤ Ax0(v, u) if and only if u ≤ v. Therefore,

Cδx0
(1, v) = Ax0(v, 1) = v + k∗x0

(1, 1− x0)− (1− x0) = v.

Since Cδx0
satisfies the boundary conditions, it remains to prove that it is 2-increasing, namely that it satisfies condition

(b) of Definition 1. There are several cases to be considered.
Case 1: Consider a rectangle [u1, u2] × [v1, v2] that is entirely contained either in the triangle TL(x0) or in the
trapezoidal area bounded by the straight lines u = x0, v = 1− x0, v = u and v = u − x0. Then,

∆v1,v2
u1,u2

(Cδx0
) = Cδx0

(u1, v1)− Cδx0
(u1, v2)+ Cδx0

(u2, v2)− Cδx0
(u2, v1)

= min{v1, k∗x0
(u1, v1)} −min{v2, k∗x0

(u1, v2)}

+ min{v2, k∗x0
(u2, v2)} −min{v1, k∗x0

(u2, v1)}, (24)

since vi ≤ u j for all i, j ∈ {1, 2}.
We shall consider several subcases:

(a) v1 ≤ k∗x0
(u1, v1) ≤ k∗x0

(u2, v1):

∆v1,v2
u1,u2

(Cδx0
) = min{v2, k∗x0

(u2, v2)} −min{v2, k∗x0
(u1, v2)} ≥ 0

since δx0 is increasing.
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(b) k∗x0
(u1, v1) < v1 ≤ k∗x0

(u2, v1), then the following possibilities may be distinguished:
(b1) Notice that it is not possible to have k∗x0

(u1, v1) < v1 and v2 < k∗x0
(u1, v2), at the same time, because these

two inequalities together imply

v2 − v1 < k∗x0
(u1, v2)− k∗x0

(u1, v1) =
1
2

(
δx0(v2)− δx0(v1)

)
,

which contradicts (DS3). Therefore, the following cases remain:
(b2) If k∗x0

(u1, v2) ≤ v2 < k∗x0
(u2, v2), then, invoking the 2-Lipschitz property (DS3), we have

∆v1,v2
u1,u2

(Cδx0
) = k∗x0

(u1, v1)− k∗x0
(u1, v2)+ v2 − v1

= v2 − v1 −
1
2

(
δx0(v2)− δx0(v1)

)
≥ 0.

(b3) v2 ≥ k∗x0
(u2, v2) ≥ k∗x0

(u1, v2):
∆v1,v2

u1,u2
(Cδx0

) = k∗x0
(u1, v1)− k∗x0

(u1, v2)+ k∗x0
(u2, v2)− v1

=
1
2
δx0(u2 − x0)+

1
2
δx0(v1)− v1 = k∗x0

(u2, v1)− v1 ≥ 0.

(c) k∗x0
(u2, v1) < v1; then, one necessarily has v2 ≥ k∗x0

(u2, v2), since, otherwise, the inequalities v1 > k∗x0
(u2, v1)

and v2 < k∗x0
(u2, v2) would imply

v2 − v1 < k∗x0
(u2, v2)− k∗x0

(u2, v1) =
1
2

(
δx0(v2)− δx0(v1)

)
,

which contradicts (DS3). Then

∆v1,v2
u1,u2

(Cδx0
) = k∗x0

(u1, v1)− k∗x0
(u2, v1)+ k∗x0

(u2, v2)− k∗x0
(u1, v2) = 0.

As a consequence, in this case one always has ∆v1,v2
u1,u2(Cδx0

) ≥ 0.

Case 2: Consider a square [u1, u2]× [u1 − x0, u2 − x0], with u1 ≥ x0 ≥ u2 − u1. Then

∆u1−x0,u2−x0
u1,u2

(Cδx0
) = δx0(u2 − x0)+ δx0(u1 − x0)−min

{
u1, u2 − x0, k∗x0

(u1, u2 − x0)
}

− min
{
u2, u1 − x0, k∗x0

(u2, u1 − x0)
}

=
1
2
δx0(u2 − x0)+

1
2
δx0(u1 − x0)−min

{
u1 − x0, k∗x0

(u2, u1 − x0)
}
≥ 0,

since k∗x0
(u2, u1 − x0) =

1
2 δx0(u2 − x0)+

1
2 δx0(u1 − x0).

Case 3: Consider a square [u, v]× [u, v] ⊆ [0, 1]2
\ D(x0) such that v − u ≤ x0, i.e., x0 ≤ u ≤ v ≤ 1− x0. Then

∆v,v
u,u(Cδx0

) = min{v, k∗x0
(v, v)} +min{u, k∗x0

(u, u)} − 2 min{u, k∗x0
(u, v)}

=
1
2

(
δx0(v − x0)+ δx0(v)

)
+

1
2

(
δx0(u − x0)+ δx0(u)

)
− δx0(v − x0)− δx0(u)

=
1
2

((
δx0(v)− δx0(v − x0)

)
−
(
δx0(u)− δx0(u − x0)

))
≥ 0,

since u 7→ δx0(u)− δx0(u − x0) is increasing.
Case 4: Consider a rectangle [u1, u2] × [v1, v2] ⊆ SL(x0) such that u1 ≥ v2, i.e., 0 ≤ v1 ≤ v2 ≤ u1 ≤ u2 ≤ x0.
Notice that

min{k∗x0
(x0, u), k∗x0

(x0, v)} =
1
2
δx0(min{u, v}) =

1
2
δx0(v).

Then

∆v1,v2
u1,u2

(Cδx0
) =

1
2
δx0(v2)+

1
2
δx0(v1)−

1
2
δx0(v2)−

1
2
δx0(v1) = 0.

Case 5: Consider a square [u, v]× [u, v] ⊆ SL(x0). Then

∆v,v
u,u(Cδx0

) = k∗x0
(x0, v)+ k∗x0

(x0, u)− 2 k∗x0
(x0, u)

= k∗x0
(x0, v)− k∗x0

(x0, u) =
1
2

(
δx0(v)− δx0(u)

)
≥ 0.



4666 J.J. Quesada-Molina et al. / Nonlinear Analysis 69 (2008) 4654–4673

Case 6: Consider a square [u1, u2] × [v1, v2] ⊂ SU (x0) such that u1 ≥ v2, i.e., 1 − x0 ≤ v1 ≤ v2 ≤ u1 ≤ u2 ≤ 1.
Then

∆v1,v2
u1,u2

(Cδx0
) = v2 +

1
2
δx0(u2 − x0)+ v1 +

1
2
δx0(u1 − x0)

−

(
v2 +

1
2
δx0(u1 − x0)

)
−

(
v1 +

1
2
δx0(u2 − x0)

)
= 0.

Case 7: Consider a square [u, v]× [u, v] ⊆ SU (x0). Then

∆u,v
u,v(Cδx0

) = Ax0(v, v)+ Ax0(u, u)− 2 Ax0(u, v)

= v − u −
(
k∗x0
(v, 1− x0)− k∗x0

(u, 1− x0)
)

= v − u −
1
2

(
δx0(v − x0)− δx0(u − x0)

)
≥ 0,

because of (DS3).
Taking into account that Cδx0

is symmetric, any rectangle in [0, 1]2 having vertices in more than one of the regions
considered may be decomposed into the union of a finite number of rectangles considered in the previous cases, one
sees that its Cδx0

-volume is non-negative. This concludes the proof. �

Note that the requirement that the function f in the statement of Theorem 11 is increasing is satisfied by the sub-
diagonal sections at x0 of many important copulas. We only mention W , Π , M , the family of Frank copulas, all the
copulas introduced by Durante in [5], and hence in particular the family of Cuadras–Augé copulas. However, not every
copula has a sub-diagonal section at x0 for which the above condition is satisfied. For instance, if C is the following
shuffle of M ,

C(u, v) =


min{u, v}, if min{u, v} ≤

1
2
,

max
{

1
2
, u + v − 1

}
, otherwise,

and x0 =
1
4 , then u 7→ δC

x0
(u)− δC

x0
(u − x0) is decreasing for u ∈

[
1
2 ,

5
8

]
.

8. The set Qδx0
and its bounds

Let us now turn to the second problem stated in Section 2. Given a sub-diagonal δx0 , we have seen that the sets
Qδx0

and Cδx0
are not empty. Moreover, the following result, whose proof is immediate, can be stated.

Theorem 12. The sets Qδx0
and Cδx0

are both convex and compact, where compactness is meant in the sense of the
natural topology of these spaces, namely the topology of the L∞-norm, or, equivalently, of uniform convergence on
the unit square [0, 1]2.

We now study the best-possible bounds for Qδx0
.

Theorem 13. For x0 ∈ ]0, 1[ and a sub-diagonal δx0 , the copula Bδx0
defined by (19) is the smallest (quasi-)copula

whose sub-diagonal section at x0 coincides with δx0 , viz. Bδx0
≤ Q for every quasi-copula Q in Qδx0

.

Proof. In the proof of Proposition 9 it has already been shown that Bδx0
is a copula and, consequently, a quasi-copula,

and that the relationship Bδx0
∈ Cδx0

⊂ Qδx0
holds.

Let Q be any (quasi-)copula having δx0 as its sub-diagonal section at x0. Obviously, one has Bδx0
(u, v) ≤ Q(u, v)

at every point (u, v) that does not belong to S2(x0). Then, take (u, v) ∈ S2(x0) and assume, first, that v > u − x0;
thus Bδx0

(u, v) = (u − x0)− δ̂x0(t
∗), where t∗ is such that

δ̂x0(t
∗) := min

t∈[u−x0,v]
δ̂x0(t).
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We recall (see [13, Proposition 3]) that a quasi-copula satisfies inequality (1) whenever at least one of u, u′, v or v′ is
equal to either 0 or 1. This inequality for Q applied to the rectangle

[
u, t∗ + x0

]
×
[
t∗, 1

]
yields

0 ≤ t∗ + x0 − u + Q(u, t∗)− Q(t∗ + x0, t∗) = t∗ − (u − x0)+ Q(u, t∗)− δx0(t
∗),

so that

Bδx0
(u, v) = (u − x0)− δ̂x0(t

∗) = δx0(t
∗)−

(
t∗ − (u − x0)

)
≤ Q(u, t∗) ≤ Q(u, v).

A similar argument holds when v ≤ u − x0. This concludes the proof. �

Theorem 14. For x0 ∈ ]0, 1[ and a sub-diagonal δx0 , the function Gδx0
from [0, 1]2 into [0, 1] defined by

Gδx0
(u, v) :=

{
min{u, v,M ′x0

(u, v)− qx0(u, v)}, if (u, v) ∈ TU (x0),

min{m′x0
(u, v),M ′x0

(u, v)− qx0(u, v)}, if (u, v) ∈ TL(x0),
(25)

where m′x0
(u, v) = min{u − x0, v}, M ′x0

(u, v) = max{u − x0, v}, and qx0 is defined by (7), is a quasi-copula such
that its sub-diagonal section at x0 coincides with δx0 . Moreover Q ≤ Gδx0

, for every quasi-copula Q in Qδx0
.

We shall prove this theorem by recourse to a series of propositions and lemmata. But, before doing this, we note
that the function Gδx0

may be written in the equivalent manner

Gδx0
(u, v) =

{
min{u, v − qx0(u, v)}, if (u, v) ∈ TU (x0),

min{v, u − x0 − qx0(u, v)}, if (u, v) ∈ TL(x0).
(26)

We first prove that Gδx0
takes values only in the unit interval.

Lemma 15. For x0 ∈ ]0, 1[, for a sub-diagonal δx0 , and for all (u, v) ∈ [0, 1]2,

M ′x0
(u, v)− qx0(u, v) ≥ 0.

Proof. Choose (u, v) arbitrarily in [0, 1]2 and set qx0(u, v) = δ̂x0(t
∗) for some t∗ in

[
mx0(u, v),Mx0(u, v)

]
. From

(HD3) we get

qx0(u, v) = δ̂x0(t
∗) ≤ t∗ ≤ Mx0(u, v) ≤ M ′x0

(u, v),

namely the assertion. �

Lemma 16. For x0 ∈ ]0, 1[ and for a sub-diagonal δx0 , the function Gδx0
defined by (25) satisfies, for every u ∈ [0, 1],

Gδx0
(u, 0) = Gδx0

(0, u) = 0 and Gδx0
(u, 1) = Gδx0

(1, u) = u.

Proof. If (u, v) is in TU (x0) and either u = 0 or v = 0, it follows immediately that Gδx0
(u, 0) = Gδx0

(0, v) = 0
since M ′x0

(u, v)−qx0(u, v) ≥ 0 for arbitrary u and v as shown before. It remains to consider the case (u, v) ∈ TL(x0)

and v = 0, i.e., u ≥ x0 and v = 0. Then it follows that m′x0
(u, 0) = 0, so that Gδx0

(u, 0) = 0.
Next, take either u = 1 or v = 1. If u = 1 and v ≥ 1− x0, then, from (26), Gδx0

(1, v) = v − qx0(1, v) = v, since
qx0(1, v) = 0. If u = 1 and v < 1− x0, then, from (26), Gδx0

(1, v) = min{v, 1− x0} = v.
Now assume that v ≤ 1− x0. Because of (HD3), we know that

δ̂x0(t) ≤ min{t, 1− x0 − t} ≤ 1− x0 − t

for every t ∈ [v, 1− x0] and, as a consequence, δ̂x0(t) ≤ 1 − x0 − v or, equivalently, v ≤ 1 − x0 − δ̂x0(t) for every
t ∈ [v, 1− x0]. Since the inequality holds for all t ∈ [v, 1− x0], it can be concluded that

v ≤ 1− x0 −max{δ̂x0(t) | t ∈ [v, 1− x0]} = Mx0(1, v)− qx0(1, v),

which also shows that in this case Gδx0
(1, v) = min{v,Mx0(1, v)− qx0(1, v)} = v.

Next assume that v = 1. Then, for every choice of u, (u, 1) belongs to TU (x0), and Mx0(u, 1) = 1 − x0, and
mx0(u, 1) = max{0, u − x0} so that

Gδx0
(u, 1) = min{u, 1−max{δ̂x0(t) | t ∈ [max{0, u − x0}, 1− x0]}}.
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Consider first u ≥ x0; then we also have mx0(u, 1) = u−x0. Because of (HD3), we again know that δ̂x0(t) ≤ 1−x0−t
for every t ∈ [0, 1− x0]. We can therefore conclude that, for all t ≥ u − x0,

δ̂x0(t) ≤ 1− x0 − t ≤ 1− x0 − (u − x0) = 1− u

or, equivalently, that u ≤ 1− δ̂x0(t) for all t ∈ [u − x0, 1− x0] and, in particular,

u ≤ 1−max{δ̂x0(t) | t ∈ [u − x0, 1− x0]},

so that Gδx0
(u, 1) = u.

If u ≤ x0, then mx0(u, 1) = 0 and

1−max{δ̂x0(t) | t ∈ [0, 1− x0]} ≥ 1−max{t | t ∈ [0, 1− x0]} +min{δx0(t) | t ∈ [0, 1− x0]}
= 1− (1− x0)+ δx0(0) = x0 ≥ u;

thus finally also in this case Gδx0
(u, 1) = u. �

Proposition 17. For x0 ∈ ]0, 1[ and a sub-diagonal δx0 , the function Gδx0
defined by (25) is increasing in each place

and satisfies the Lipschitz property (2).

Proof. In order to show the isotony and the Lipschitz property of Gδx0
it suffices to prove that Gδx0

is increasing and
Lipschitz separately on TU (x0) and TL(x0). The proof for the other cases can be split into several steps dealing only
with the situations mentioned before and, then, by applying either basic summation or the triangle inequality. We shall
therefore distinguish four different cases and, for each case, prove that Gδx0

is increasing and satisfies the Lipschitz
property.
Case 1: Let both (u1, v) and (u2, v) be in TU (x0) with u1 ≤ u2, i.e., u1 − x0 ≤ u2 − x0 ≤ v. Then

mx0(u1, v) = max{0, u1 − x0} ≤ max{0, u2 − x0} = mx0(u2, v);

Mx0(u1, v) = min{1− x0, v} = Mx0(u2, v).

Therefore, one has qx0(u1, v) ≥ qx0(u2, v). Also recall that, for every point (u, v) ∈ TU (x0),

Gδx0
(u, v) = min{u, v − qx0(u, v)}.

We show first that, for every v, u 7→ Gδx0
(u, v) is increasing. If Gδx0

(u2, v) = u2, then

Gδx0
(u2, v)− Gδx0

(u1, v) = u2 −min{u1, v − qx0(u1, v)} ≥ u2 − u1 ≥ 0.

If Gδx0
(u2, v) = v − qx0(u2, v), then

Gδx0
(u2, v)− Gδx0

(u1, v) = v − q(u2, v)−min{u1, v − qx0(u1, v)}

≥ v − qx0(u2, v)− v + qx0(u1, v) ≥ 0.

Now we turn to the Lipschitz property. If Gδx0
(u1, v) = u1, then

Gδx0
(u2, v)− Gδx0

(u1, v) = min{u2, v − qx0(u2, v)} − u1 ≤ u2 − u1.

If Gδx0
(u1, v) = v − qx0(u1, v), then

Gδx0
(u2, v)− Gδx0

(u1, v) ≤ v − qx0(u2, v)− v + qx0(u1, v) = qx0(u1, v)− qx0(u2, v);

thus it remains to show that qx0(u1, v)− qx0(u2, v) ≤ u2 − u1.
If qx0(u1, v) = qx0(u2, v) there is nothing to prove; therefore, assume that qx0(u1, v) > qx0(u2, v), which in turn

means that mx0(u2, v) > mx0(u1, v) ≥ 0 and mx0(u2, v) = u2−x0. This also means that there exist t ′ and t ′′ fulfilling

mx0(u1, v) ≤ t ′ < mx0(u2, v) ≤ t ′′ ≤ Mx0(u2, v)

so that qx0(u1, v) = δ̂x0(t
′) and qx0(u2, v) = δ̂x0(t

′′). Moreover δ̂x0(t
′′) ≥ δ̂x0(t) for every t ∈

[
mx0(u2, v),Mx0(u2, v)

]
,

in particular for t = mx0(u2, v) = u2 − x0, since qx0(u2, v) is the maximum of δ̂x0 on the same interval. Taking into
account that δ̂x0 also is Lipschitz (see property (HD2)) one has

qx0(u1, v)− qx0(u2, v) = δ̂x0(t
′)− δ̂x0(t

′′) ≤ δ̂x0(t
′)− δ̂x0(u2 − x0)

≤ u2 − x0 − t ′ ≤ u2 − x0 − mx0(u1, v) ≤ u2 − x0 − (u1 − x0) ≤ u2 − u1,
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which proves the assertion in this case.
Case 2: Let (u, v1) and (u, v2) belong to TU (x0) with v1 ≤ v2, i.e., u − x0 ≤ v1 ≤ v2. In this case we have

mx0(u, v1) = max{0, u − x0} = mx0(u, v2);

Mx0(u, v1) = min{1− x0, v1} ≤ min{1− x0, v2} = Mx0(u, v2).

Therefore, one has qx0(u, v1) ≤ qx0(u, v2) and, for all (u, v) in TU (x0), Gδx0
(u, v) = min{u, v − qx0(u, v)}.

For the isotony of Gδx0
, let us first assume that Gδx0

(u, v2) = u; then

Gδx0
(u, v2)− Gδx0

(u, v1) = u − Gδx0
(u, v1) ≥ u − u = 0.

If Gδx0
(u, v2) = v2 − qx0(u, v2), then

Gδx0
(u, v2)− Gδx0

(u, v1) ≥ v2 − qx0(u, v2)− (v1 − qx0(u, v1)) = (v2 − v1)− (qx0(u, v2)− qx0(u, v1)).

Therefore it suffices to prove that v2 − v1 ≥ qx0(u, v2) − qx0(u, v1). This latter inequality is trivially fulfilled when
qx0(u, v2) = qx0(u, v1). As in the previous case, if qx0(u, v2) > qx0(u, v1), then Mx0(u, v1) = v1 < 1− x0 and there
exist t ′ and t ′′ with mx0(u, v1) ≤ t ′ ≤ v1 < t ′′ ≤ Mx0(u, v2) such that

qx0(u, v2) = δ̂x0(t
′′) > δ̂x0(t

′) = qx0(u, v1).

Then

0 ≤ qx0(u, v2)− qx0(u, v1) = δ̂x0(t
′′)− δ̂x0(t

′) ≤ δ̂x0(t
′′)− δ̂x0(v1)

≤ t ′′ − v1 ≤ Mx0(u, v2)− v1 ≤ v2 − v1

because of the Lipschitz property (HD2) of δ̂x0 and of the fact that qx0(u, v1) is the maximum of δ̂x0 on the interval[
mx0(u, v1),Mx0(u, v1)

]
.

As for the Lipschitz property of Gδx0
, if Gδx0

(u, v1) = u, then clearly,

Gδx0
(u, v2)− Gδx0

(u, v1) = Gδx0
(u, v2)− u ≤ u − u = 0 ≤ v2 − v1.

For Gδx0
(u, v1) = v1 − qx0(u, v1) it follows that

Gδx0
(u, v2)− Gδx0

(u, v1) ≤ v2 − qx0(u, v2)− (v1 − qx0(u, v1))

= v2 − v1 − (qx0(u, v2)− qx0(u, v1)) ≤ v2 − v1,

since qx0(u, v2)− qx0(u, v1) ≥ 0.
Case 3: Let (u1, v) and (u2, v) belong to TL(x0), with u1 ≤ u2, i.e., v ≤ u1 − x0 ≤ u2 − x0. In this case

mx0(u1, v) = v = mx0(u2, v);

Mx0(u1, v) = u1 − x0 ≤ u2 − x0 = Mx0(u2, v).

Therefore, one has qx0(u1, v) ≤ qx0(u2, v) and, for all (u, v) ∈ TL(x0), Gδx0
(u, v) = min{v, u − x0 − qx0(u, v)}.

For the isotony, if Gδx0
(u2, v) = v, then Gδx0

(u2, v) − Gδx0
(u1, v) ≥ v − v = 0. If Gδx0

(u2, v) = u2 − x0 −

qx0(u2, v), then

Gδx0
(u2, v)− Gδx0

(u1, v) ≥ u2 − u1 − (qx0(u2, v)− qx0(u1, v)).

If qx0(u2, v) = qx0(u1, v), it is immediate that Gδx0
(u2, v) − Gδx0

(u1, v) ≥ 0. For the case qx0(u2, v) > qx0(u1, v),

there are necessarily t ′ and t ′′ such that v ≤ t ′ ≤ u1 − x0 < t ′′ ≤ u2 − x0 and, moreover, qx0(u2, v) = δ̂x0(t
′′) and

qx0(u1, v) = δ̂x0(t
′). By an argument analogous to that of the previous case, we can conclude that

qx0(u2, v)− qx0(u1, v) = δ̂x0(t
′′)− δ̂x0(t

′) ≤ δ̂x0(t
′′)− δ̂x0(u1 − x0)

≤ t ′′ − (u1 − x0) ≤ u2 − x0 − (u1 − x0) = u2 − u1,

so that indeed Gδx0
is increasing in its first argument on TL(x0).

For the Lipschitz property, if Gδx0
(u1, v) = v, then

Gδx0
(u2, v)− Gδx0

(u1, v) ≤ v − v = 0 ≤ u2 − u1.
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If Gδx0
(u1, v) = u1 − x0 − qx0(u1, v), then

Gδx0
(u2, v)− Gδx0

(u1, v) ≤ u2 − u1 − (qx0(u2, v)− qx0(u1, v)) ≤ u2 − u1.

Case 4: Finally, let (u, v1) and (u, v2) be in TL(x0), with v1 ≤ v2, i.e., v1 ≤ v2 ≤ u − x0. In this case

mx0(u, v1) = v1 ≤ v2 = mx0(u, v2) and Mx0(u, v1) = u − x0 = Mx0(u, v2).

Therefore, one has qx0(u, v1) ≥ qx0(u, v2). Moreover, if qx0(u, v1) > qx0(u, v2), then there exist t ′ and t ′′ with
v1 ≤ t ′ < v2 ≤ t ′′ ≤ u − x0 such that qx0(u, v1) = δ̂x0(t

′) and qx0(u, v2) = δ̂x0(t
′′). An argument analogous to those

of the previous cases again yields

0 ≤ qx0(u, v1)− qx0(u, v2) = δ̂x0(t
′)− δ̂x0(t

′′) ≤ δ̂x0(t
′)− δ̂x0(v2) ≤ v2 − t ′ ≤ v2 − v1.

Notice that, for all (u, v) ∈ TL(x0), Gδx0
(u, v) = min{v, u − x0 − qx0(u, v)}.

For the isotony, if Gδx0
(u, v2) = v2, then Gδx0

(u, v2) − Gδx0
(u, v1) ≥ v2 − v1 ≥ 0. Otherwise, Gδx0

(u, v2) −

Gδx0
(u, v1) ≥ qx0(u, v1)− qx0(u, v2) ≥ 0.

As for the Lipschitz property, if Gδx0
(u, v1) = u − x0 − qx0(u, v1), then

Gδx0
(u, v2)− Gδx0

(u, v1) ≤ qx0(u, v1)− qx0(u, v2) ≤ v2 − v1.

Otherwise, Gδx0
(u, v2)− Gδx0

(u, v1) ≤ v2 − v1 follows immediately.
In conclusion, in all the cases, we are able to show that Gδx0

is increasing and satisfies the Lipschitz property. �

Lemma 18. Let x0 be in ]0, 1[ and let δx0 be a sub-diagonal. Then the sub-diagonal section at x0 of the quasi-copula
Gδx0

defined by (25) equals δx0 , i.e., Gδx0
∈ Qδx0

.

Proof. Let t be in [0, 1− x0]. Then

mx0(t + x0, t) = m′x0
(t + x0, t) = t = Mx0(t + x0, t) = M ′x0

(t + x0, t).

As a consequence, qx0(t + x0, t) = δ̂x0(t) = t − δx0(t) and

Gδx0
(t + x0, t) = min{t, t − (t − δx0(t))} = min{t, δx0(t)} = δx0(t),

which proves the assertion. �

Proposition 19. For a given x0 ∈ ]0, 1[ and a given sub-diagonal δx0 , Gδx0
is the largest quasi-copula whose sub-

diagonal section at x0 coincides with δx0 , namely, Q ≤ Gδx0
for every Q ∈ Qδx0

.

Proof. Let Q be a quasi-copula in Qδx0
. For (u, v) ∈ [0, 1]2 consider the following two cases. Assume first that

(u, v) ∈ TU (x0), i.e., v ≥ u − x0. In this case

Gδx0
(u, v) = min{u, v − qx0(u, v)};

qx0(u, v) = max
{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]}
;

mx0(u, v) = max{0, u − x0};

Mx0(u, v) = min{1− x0, v}.

Since Q(u, v) ≤ min{u, v}, it remains to prove that Q(u, v) ≤ v − qx0(u, v). For every t ∈ [max{0, u − x0},

min{1− x0, v}], the Lipschitz property yields

Q(u, v)− Q(u, t) ≤ v − t or, equivalently, Q(u, v) ≤ v − t + Q(u, t).

Since a quasi-copula is increasing,

Q(u, v) ≤ v − t + Q(u, t) ≤ v − t + Q(x0 + t, t) = v − t + δx0(t) = v − δ̂x0(t)

for all t ∈
[
mx0(u, v),Mx0(u, v)

]
, and, hence,

Q(u, v) ≤ v −max
{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]}
= v − qx0(u, v).

Combining both the inequalities leads to Q(u, v) ≤ Gδx0
(u, v).
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Assume, now, that (u, v) ∈ TL(x0), and, thus, v ≤ u − x0. Since Q(u, v) ≤ min{u, v} ≤ v, only Q(u, v) ≤
u − x0 − qx0(u, v) has to be shown.

As in the previous case, the Lipschitz property and the isotony of Q yield, for every t ∈
[
mx0(u, v),Mx0(u, v)

]
=

[v, u − x0],

Q(u, v) ≤ u − (t + x0)+ Q(t + x0, v) ≤ u − x0 − t + Q(t + x0, t)

= u − x0 − t + δx0(t) = u − x0 − δ̂x0(t).

Therefore, Q(u, v) ≤ u − x0 − max{δ̂x0(t) | t ∈ [v, u − x0]} = u − x0 − qx0(u, v), so that Q(u, v) ≤ Gδx0
(u, v),

which concludes the proof. �

The following examples show that, on the one hand, Gδx0
is, in general, a proper quasi-copula, and, on the other

hand, that it is the largest possible quasi-copula with a given sub-diagonal section at x0.

Example 6. Take x0 = 0.3 and consider the sub-diagonal section at 0.3 of the independence copula Π , δΠx0
(t) =

0.3 · t + t2, whence δ̂Πx0
(t) = 0.7 · t − t2. After an easy calculation, one sees that the Gδx0

-volume of the square
[0.55, 0.65]× [0.25, 0.35] equals

∆0.25,0.35
0.55,0.65(Gδx0

) = −0.1 < 0.

Example 7. For x0 ∈ ]0, 1[, consider the largest sub-diagonal, δx0(t) = t , which is the sub-diagonal section at x0 of
the copula M . Then δ̂x0(t) = 0 and qx0(u, v) = 0. Therefore,

Gδx0
(u, v) =

{
min{u, v}, if (u, v) ∈ TU (x0),

min{v, u − x0}, if (u, v) ∈ TL(x0);

however, if (u, v) ∈ TL(x0), then min{v, u − x0} = v = min{u, v}. Therefore, Gδx0
(u, v) = M(u, v) for all

u, v ∈ [0, 1].

9. Comparison with diagonal copulas

What we have presented in the previous sections ought to be compared with the work of Fredricks and Nelsen [10,
11], who introduced the notion of diagonal copula, namely of a copula with a given diagonal section. Since the sub-
diagonal section at x0 coincides with the diagonal section when x0 = 0, namely δ0 = δ, one can prove the following
result.

Theorem 20. (a) If B∗δx0
is the quasi-copula given in Proposition 9, then, for all (u, v) in [0, 1]2,

lim
x0→0

B∗δx0
(u, v) = min{u, v} −min{t − δ(t) | t ∈ [min{u, v},max{u, v}]}, (27)

namely the Bertino copula.
(b) If Cδx0

is the copula given by (22), then, for all (u, v) in [0, 1]2,

lim
x0→0

Cδx0
(u, v) = min

{
u, v,

1
2
(δ(u)+ δ(v))

}
. (28)

Proof. Since every (quasi-)copula satisfies the same boundary conditions, in either case, one may consider only
points (u, v) of the open unit square ]0, 1[2. But then, every such point (u, v) belongs to the set ]0, 1[2 \ D(x0),
when x0 is small enough, precisely, when x0 < min{u, v}; thus, since every (quasi-)copula is continuous, one
has

lim
x0→0

B∗δx0
(u, v) = lim

x0→0

(
mx0(u, v)−min

{
δ̂x0(t) | t ∈

[
mx0(u, v),Mx0(u, v)

]})
= min{u, v} −min{t − δ(t) | t ∈ [min{u, v},max{u, v}]},



4672 J.J. Quesada-Molina et al. / Nonlinear Analysis 69 (2008) 4654–4673

and

lim
x0→0

Cδx0
(u, v) = lim

x0→0
min

{
u, v, Ax0(u, v)

}
= min

{
u, v,

1
2
(δ(u)+ δ(v))

}
,

which proves the assertion. �
The limits as x0 tends to 0 of the quasi-copula B∗δx0

and of the copula Cδx0
are respectively equal to the smallest

and the largest copula having δ as their diagonal section.
For the quasi-copulas of Section 6, one has respectively

lim
x0→0

K ∗δx0
(u, v) = min

{
u, v,

1
2
δ(min{u, v})+

1
2
δ(max{u, v})

}
= Kδ(u, v),

and

lim
x0→0

A∗δx0
(u, v) = min {u, v,min{u, v} −max{t − δ(t) | t ∈ [min{u, v},max{u, v}]}}

= Aδ(u, v).

Finally, for the largest quasi-copula in Qx0 , one has

lim
x0→0

Gδx0
(u, v) = Aδ(u, v).

Notice that the limit as x0 tends to 0 of the quasi-copula K ∗δx0
is again the diagonal copula C of Fredricks and

Nelsen. On the other hand A∗δx0
defines a proper quasi-copula that also has δx0 as its diagonal section.
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and Moment Problems, Kluwer, Dordrecht, 1997, pp. 129–136.

[12] G.A. Fredricks, R.B. Nelsen, The Bertino family of copulas, in: C.M. Cuadras, J. Fortiana, J.A. Rodrı́guez-Lallena (Eds.), Distributions with
Given Marginals and Statistical Modelling, Kluwer, Dordrecht, 2002, pp. 81–91.

[13] C. Genest, J.J. Quesada Molina, J.A. Rodrı́guez Lallena, C. Sempi, A characterization of quasi-copulas, J. Multivariate Anal. 69 (1999)
193–205.

[14] E.P. Klement, R. Mesiar (Eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam, 2005.
[15] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, in: Trends in Logic. Studia Logica Library, vol. 8, Kluwer, Dordrecht, 2000.
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In this paper, we provide two different representations of 2-increasing binary aggregation
functions by means of their lower and upper margins and a suitable copula.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Aggregation is an important tool in any discipline where the fusion of different pieces of information is of interest. Aggre-
gation functions take arbitrarily but finitely many inputs from the unit interval and map them to a representative value in
the unit interval [1,3,4,23]. As such they are successfully applied in, e.g., multicriteria decision making where each alterna-
tive is evaluated with respect to a fixed set of criteria, each of the single scores expressed by a number from the unit interval,
and finally being aggregated to a global score of the alternative [13]. Similar approaches can be found in the fields of pref-
erence modelling [10] or utility theory [6]. Further applications comprise, but are clearly not limited to, computer-assisted
assessment [18] and flexible database queries [2]. Particular classes of binary aggregation functions have been investigated
in the framework of many-valued logics [11,12] or probability distribution functions, in particular copulas [16].

In this contribution we focus on the class of 2-increasing binary aggregation functions and their representations [7]. The
most prominent and most studied examples thereof are copulas [16], whose importance in statistics and probability theory
is well-known, but which also attracted attention from the fields of aggregation [8]. Further synonyms for the 2-increasing
property are the property of supermodularity [17], quasi-monotonicity or lattice superadditivity [14] indicating that 2-
increasing functions are of interest also in other fields related to pure and applied mathematics, like the theory of majoriza-
tion [14], especially stochastic orders [15,20], capacities [5], and several other problems arising in economics [17,22].

The idea of our investigation originated from the celebrated Sklar’s theorem [21], which allows to represent every bivariate
probability distribution function F : R2 ! ½0;1� in the form Fðx; yÞ ¼ CðF1ðxÞ; F2ðyÞÞ, where

� F1 and F2 are the upper margins of F, obtained as limits of Fðx1; x2Þ when xi tends to þ1 for i ¼ 1;2,
� C is a copula, i.e., a bivariate distribution function on [0,1]2 whose univariate marginal distribution functions are uniformly

distributed on [0,1].
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Along the same lines of thoughts we investigate whether it is possible to use copulas also for the representation of arbi-
trary, not necessarily (right- or left-) continuous 2-increasing aggregation functions in terms of all their margins, i.e., by
allowing also their lower margins to be taken into account.

Basic preliminaries and facts about 2-increasing aggregation functions are summarized in Section 2. Section 3 is devoted
to the representation of 2-increasing aggregation functions with given upper margins. Section 4 provides another represen-
tation result when both lower as well as upper margins are given.

2. Preliminaries

Let us recall some basic notions that we will use in the sequel.

Definition 1. A (binary) aggregation function is a function A : ½0;1�2 ! ½0;1� satisfying the following properties:

(i) Að0;0Þ ¼ 0 and Að1;1Þ ¼ 1,
(ii) Aðx1; y1Þ 6 Aðx2; y2Þ for all x1; x2 2 ½0;1� and for all y1; y2 2 ½0;1� with x1 6 x2 and y1 6 y2.

The class of all aggregation functions will be denoted by A.

Definition 2. An aggregation function A is 2-increasing if, for every rectangle R � ½0;1�2, R ¼ ½x1; x2� � ½y1; y2� with
x1; x2; y1; y2 2 ½0;1�, x1 6 x2, and y1 6 y2,

VAðRÞ :¼ Aðx1; y1Þ þ Aðx2; y2Þ � Aðx1; y2Þ � Aðx2; y1ÞP 0: ð1Þ

The class of all 2-increasing aggregation functions will be abbreviated by A2.

Note that the value VAðRÞ is often referred to as the A-volume of R.

Definition 3. A 2-increasing aggregation function C : ½0;1�2 ! ½0;1� is called a copula if it has neutral element 1, i.e.,
Cðx;1Þ ¼ Cð1; xÞ ¼ x for all x 2 ½0;1�. We will denote the set of all copulas by C.

Note that every copula C also has annihilator 0, i.e., Cðx;0Þ ¼ Cð0; xÞ ¼ 0 for every x 2 ½0;1�. Moreover, for every copula C
and for every ðx; yÞ 2 ½0;1�2, we have

TLðx; yÞ ¼ maxðxþ y� 1;0Þ 6 Cðx; yÞ 6 minðx; yÞ ¼ TMðx; yÞ: ð2Þ

Both, TL and TM, are copulas, also referred to as the Fréchet–Hoeffding bounds.

Definition 4. Given some A 2A2, the margins of A are the functions hA
0, hA

1, vA
0, and vA

1 from [0,1] to [0,1] defined
by

hA
0ðxÞ :¼ Aðx;0Þ; hA

1ðxÞ :¼ Aðx;1Þ;
vA

0ðyÞ :¼ Að0; yÞ; vA
1ðyÞ :¼ Að1; yÞ:

We shall refer to hA
1 and vA

1 as upper margins, and hA
0 and vA

0 as lower margins.

Vice versa, we introduce a set of margins as a set of four increasing functions that are admissible for serving as a set of
margins of some aggregation function A 2A2.

Definition 5. A set M ¼ fh0;h1; v0; v1g where hi : ½0;1� ! ½0;1� and vi : ½0;1� ! ½0;1�, i ¼ 1;2, is called a set of margins if the
following conditions are fulfilled:

(M1) h0ð0Þ ¼ v0ð0Þ, h0ð1Þ ¼ v1ð0Þ, h1ð0Þ ¼ v0ð1Þ, h1ð1Þ ¼ v1ð1Þ,
(M2) for all x0 P x with x0; x 2 ½0;1� and for all y0 P y with y0; y 2 ½0;1�,

h1ðx0Þ þ h0ðxÞP h1ðxÞ þ h0ðx0Þ;
v1ðy0Þ þ v0ðyÞP v1ðyÞ þ v0ðy0Þ:

A few properties of a set of margins can be immediately derived: because of (M2) it holds that

h1ðx0Þ � h0ðx0ÞP h1ðxÞ � h0ðxÞ; v1ðy0Þ � v0ðy0ÞP v1ðyÞ � v0ðyÞ

for all x0 P x and y0 P y, expressing the fact that the functions ðh1 � h0Þ and ðv1 � v0Þ are increasing. Therefore, it also holds
that, for all x 2 ½0;1�, and for all y 2 ½0;1�

h1ð1Þ � h0ð1ÞP h1ðxÞ � h0ðxÞP h1ð0Þ � h0ð0Þ ¼ v0ð1Þ � v0ð0ÞP 0;

v1ð1Þ � v0ð1ÞP v1ðyÞ � v0ðyÞP v1ð0Þ � v0ð0Þ ¼ h0ð1Þ � h0ð0ÞP 0:
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As a consequence we can conclude that for all x and y in [0,1]

h1ðxÞP h0ðxÞ þ h1ð0Þ � h0ð0Þ ¼ h0ðxÞ þ v0ð1Þ � v0ð0ÞP h0ðxÞ;
v1ðyÞP v0ðyÞ þ v1ð0Þ � v0ð0Þ ¼ v0ðyÞ þ h0ð1Þ � h0ð0ÞP v0ðyÞ:

Clearly, the margins of any A 2A2 form a set of margins. The set of all 2-increasing aggregation functions coinciding on a
given set of margins M ¼ fh0;h1; v0; v1g will be denoted by AM

2 , i.e.,

AM
2 :¼ fA 2A2jhA

0 ¼ h0;h
A
1 ¼ h1; vA

0 ¼ v0; vA
1 ¼ v1g:

Further, note that C ¼A
f0;id;0;idg
2 �A2 with 0 : ½0;1� ! ½0;1�, 0ðxÞ ¼ 0 and id : ½0;1� ! ½0;1�, idðxÞ ¼ x.

Definition 6. A function A : ½0;1�2 ! ½0;1� is modular if the A-volume of each sub-rectangle of the unit square vanishes, i.e.,
VAðRÞ ¼ 0 for all rectangles R � ½0;1�2.

Clearly, modular aggregation functions form a proper subclass of A2. These functions are known to have a simple repre-
sentation [7, Proposition 3.6] as the following proposition shows.

Proposition 7. Let A 2A2. Then A is modular if and only if Aðx; yÞ ¼ hA
0ðxÞ þ vA

0ðyÞ ¼ hA
1ðxÞ þ vA

1ðyÞ � 1 holds for all x; y in [0,1].

In view of the last result, every modular aggregation function can be represented by means of its upper as well as lower
margins. Therefore, the case of modular aggregation functions will not be treated in the sequel.

3. 2-Increasing aggregation functions with given upper margins

First, let us note that, by means of some copula C and some functions f : ½0;1� ! ½0;1� and g : ½0;1� ! ½0;1�, we can con-
struct 2-increasing aggregation functions such that their upper margins coincide with f and g.

Proposition 8. Consider a copula C and two increasing functions f ; g : ½0;1� ! ½0;1� such that f ð1Þ ¼ gð1Þ ¼ 1 and
Cðf ð0Þ; gð0ÞÞ ¼ 0. Then the function AC;ðf ;gÞ : ½0;1�2 ! ½0;1� defined by

AC;ðf ;gÞðx; yÞ :¼ Cðf ðxÞ; gðyÞÞ

is a 2-increasing aggregation function. Moreover, f and g are the upper margins of AC;ðf ;gÞ, h
AC;ðf ;gÞ
1 ¼ f and v

AC;ðf ;gÞ
1 ¼ g.

Proof. Since C as well as f and g are increasing, AC;ðf ;gÞ is increasing. Moreover, since C is 2-increasing, it is easy to prove that
AC;ðf ;gÞ is 2-increasing. Further, AC;ðf ;gÞð0;0Þ ¼ Cðf ð0Þ; gð0ÞÞ ¼ 0 and AC;ðf ;gÞð1;1Þ ¼ Cðf ð1Þ; gð1ÞÞ ¼ 1: Finally, it follows that

h
AC;ðf ;gÞ
1 ðxÞ ¼ AC;ðf ;gÞðx;1Þ ¼ Cðf ðxÞ; gð1ÞÞ ¼ Cðf ðxÞ;1Þ ¼ f ðxÞ;

v
AC;ðf ;gÞ
1 ðyÞ ¼ AC;ðf ;gÞð1; yÞ ¼ Cðf ð1Þ; gðyÞÞ ¼ Cð1; gðyÞÞ ¼ gðyÞ;

for all x; y 2 ½0;1�. h

Proposition 8 illustrates that, for given functions f and g, the choice of the copula C involved is not arbitrary, but restricted
by the values of f and g at 0. However, when either f ð0Þ ¼ 0 or gð0Þ ¼ 0, every copula C will lead to a 2-increasing aggregation
function, because Cðf ð0Þ; gð0ÞÞ ¼ 0 is obviously fulfilled.

Corollary 9. Consider two increasing functions f ; g : ½0;1� ! ½0;1� such that f ð1Þ ¼ gð1Þ ¼ 1 and f ð0Þ ¼ 0 or gð0Þ ¼ 0. Then for
every copula C,

AC;ðf ;gÞðx; yÞ ¼ Cðf ðxÞ; gðyÞÞ

is a 2-increasing aggregation function such that h
AC;ðf ;gÞ
1 ¼ f , v

AC;ðf ;gÞ
1 ¼ g.

More interestingly, every 2-increasing aggregation function, can be represented by means of a suitable copula and its
upper margins only.

Theorem 10. Let A be a 2-increasing aggregation function, then there exists a copula C such that Aðx; yÞ ¼ CðhA
1ðxÞ; vA

1ðyÞÞ for all
x; y 2 ½0;1�.

Before proving this theorem, we need some preliminary results. First, we notice that, for any aggregation function A, it
follows immediately that all its margins hA

0, hA
1, vA

0, vA
1 are increasing. Hence, for every s 2 RanðhA

1Þ and every t 2 RanðvA
1Þ,

the (non-empty) sets

ðhA
1Þ
�1ðfsgÞ :¼ fx 2 ½0;1� j hA

1ðxÞ ¼ sg;
ðvA

1Þ
�1ðftgÞ :¼ fy 2 ½0;1� j vA

1ðyÞ ¼ tg;

form intervals. Since they neither need to be open nor closed, their suprema, denoted by s�; t�, and their infima, denoted by
s�; t�, need not be contained in the corresponding sets, however, surely does their arithmetic mean, i.e.,
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1
2 ðs� þ s�Þ 2 ðhA

1Þ
�1ðfsgÞ and 1

2 ðt� þ t�Þ 2 ðvA
1Þ
�1ðftgÞ. Therefore, we can define two functions ðhA

1Þ
� : RanðhA

1Þ ! ½0;1�,
ðvA

1Þ
� : RanðvA

1Þ ! ½0;1� by

ðhA
1Þ
�ðsÞ :¼ 1

2
ðs� þ s�Þ; ðvA

1Þ
�ðtÞ :¼ 1

2
ðt� þ t�Þ:

Lemma 11. Let A be a 2-increasing aggregation function. For arbitrary s 2 RanðhA
1Þ and t 2 RanðvA

1Þ, denote by s0 ¼ ðhA
1Þ
�ðsÞ and

t0 ¼ ðvA
1Þ
�ðtÞ. Then, it holds that

Aðx; yÞ ¼ Aðs0; t0Þ

for all ðx; yÞ 2 ðhA
1Þ
�1ðfsgÞ � ðvA

1Þ
�1ðftgÞ.

Proof. We know that s0; t0 2 ½0;1� and, moreover, that they fulfill hA
1ðs0Þ ¼ s and vA

1ðt0Þ ¼ t. If s0 and t0 are unique, then there is
nothing further to prove. Therefore, without loss of generality, we first assume that y ¼ t0 and that there exist x1; x2 2 ½0;1�
with x1 < x2 and hA

1ðx1Þ ¼ hA
1ðx2Þ ¼ s. Since A is 2-increasing we know that

VAð½x1; x2� � ½t0;1�Þ ¼ Aðx2;1Þ � Aðx1;1Þ þ Aðx1; t0Þ � Aðx2; t0Þ ¼ hA
1ðx2Þ � hA

1ðx1Þ þ Aðx1; t0Þ � Aðx2; t0Þ
¼ Aðx1; t0Þ � Aðx2; t0ÞP 0:

Because A is increasing, Aðx1; t0Þ ¼ Aðx0; t0Þ. Similar arguments can be applied when x ¼ s0 and y1 < y2 with vA
1ðy1Þ ¼ vA

1ðy2Þ. As
a consequence, for all ðx; yÞ 2 ðhA

1Þ
�1ðfsgÞ � ðvA

1Þ
�1ðftgÞ we obtain that Aðx; yÞ ¼ Aðx; t0Þ ¼ Aðs0; t0Þ, which concludes the

proof. h

Proof (Proof of Theorem 10). Let A be a 2-increasing aggregation function with upper margins h1 :¼ hA
1 and v1 :¼ vA

1. Then h1

and v1 are both increasing and fulfill h1ð1Þ ¼ v1ð1Þ ¼ 1.
Define the sets S :¼ Ranðh1Þ [ f0g and T :¼ Ranðv1Þ [ f0g; both are subsets of [0,1] and contain 0 as well as 1. We

introduce a function C0 : S1 � S2 ! ½0;1� by

C 0ðs; tÞ ¼ Aðh�1ðsÞ; v�1ðtÞÞ if ðs; tÞ 2 Ranðh1Þ � Ranðv1Þ;
0 otherwise:

�
ð3Þ

Because of Lemma 11, C0 is well-defined.
Let us now look at the properties of C0. It can be easily seen that DomC0 ¼ S� T . Further, if 0 R R‚ ˇ Ranðh1Þ (resp.

0 R ‚Ranðv1Þ), then C0ð0; tÞ ¼ 0 (resp. C0ðs;0Þ ¼ 0). If 0 2 Ranðh1Þ (resp. 0 2 Ranðv1Þ), then h1ð0Þ ¼ 0 (resp. v1ð0Þ ¼ 0) and
Að0; yÞ ¼ 0 (resp. Aðx; 0Þ ¼ 0) for all y (resp. x) in [0,1]. Therefore, C0ð0; tÞ ¼ Að0; v�1ðtÞÞ ¼ 0 (resp. C0ðs;0Þ ¼ Aðh�1ðsÞ; 0Þ ¼ 0). As a
consequence, for all s 2 S and all t 2 T ,

C 0ðs;0Þ ¼ C0ð0; tÞ ¼ 0:

Moreover, for all s 2 S and for all t 2 T ,

C 0ðs;1Þ ¼ Aðh�1ðsÞ;1Þ ¼ h1 	 h�1ðsÞ ¼ s;

C0ð1; tÞ ¼ Að1; v�1ðtÞÞ ¼ v1 	 v�1ðtÞ ¼ t:

Since A is 2-increasing, it follows that VC0 ð½s1; s2� � ½t1; t2�ÞP 0 for all s1; s2 2 S, s1 6 s2 and for all t1; t2 2 T , t1 6 t2.
In case 0 R Ranðh1Þ \ Ranðv1Þ, for all s1; s2 2 S and t1; t2 2 T , VC0 ð½0; s2� � ½t1; t2�ÞP 0 and VC0 ð½s1; s2� � ½0; t2�ÞP 0 because h1

and v1 are increasing. The function C0 is a subcopula [19, Definition 6.2.2]. Moreover, it holds that for all
ðs; tÞ 2 Ranðh1Þ � Ranðv1Þ, C0ðs; tÞ ¼ Aðh�1ðsÞ; v�1ðtÞÞ or equivalently, for all ðx; yÞ 2 ½0;1�2, Aðx; yÞ ¼ C0ðh1ðxÞ; v1ðyÞÞ.

It is known that, for every subcopula C0 there exists a copula C coinciding with C0 on DomC0 [19, Theorem 6.2.6]. Thus
there exists a copula C fulfilling

Aðx; yÞ ¼ Cðh1ðxÞ; v1ðyÞÞ

for all x; y in [0,1]. h

Note that the proof of Theorem 10 adopts in essence the same ideas as that of Sklar’s theorem. However, while Sklar’s
theorem was formulated for distribution functions which are left-continuous (or right-continuous), we have proven the
analogous result for 2-increasing aggregation functions which need neither be left- nor right-continuous, and, hence, we
have been forced to do several modifications in our proof, especially related to the definition of the functions ðhA

1Þ
� and ðvA

1Þ
�.

Since every copula is continuous, we can state the following corollary.

Corollary 12. Let A be a 2-increasing aggregation function. Then A is jointly continuous on ½0;1�2 if and only if its margins hA
1 and

vA
1 are continuous.

Note that, given A 2A2, the copula C from Theorem 10 is uniquely determined just on RanðhA
1Þ � RanðvA

1Þ, and, hence, dif-
ferent copulas may represent the same aggregation function A, even if A is continuous, as the following example illustrates.
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Example 13. Consider the 2-increasing aggregation function

Aðx; yÞ ¼ 1
4

maxð3xþ 3y� 2;0Þ:

Its upper margins hA
1, vA

1 can be easily computed as hA
1ðxÞ ¼ vA

1ðxÞ ¼ 1
4 ð1þ 3xÞ. For the sake of simplicity we will denote

h :¼ hA
1 ¼ vA

1. Then

Aðx; yÞ ¼ TLðhðxÞ;hðyÞÞ ¼maxðhðxÞ þ hðyÞ � 1;0Þ;

but also Aðx; yÞ ¼ C�ðhðxÞ; hðyÞÞ with C� being the copula given by

C�ðs; tÞ ¼
min s; t � 3

4

� �
; if ðs; tÞ 2 0; 1

4

� �
� 3

4 ;1
� �

;

min s� 3
4 ; t

� �
; if ðs; tÞ 2 3

4 ;1
� �

� 0; 1
4

� �
;

TLðs; tÞ; otherwise:

8><
>:

In particular, C� is the largest and TL is the smallest possible copula such that Aðx; yÞ ¼ CðhðxÞ;hðyÞÞ for some copula C. Note
that for all ðs; tÞ 2 1

4 ;1
� �

� 1
4 ;1
� �

it holds that C�ðs; tÞ ¼ TLðs; tÞ.

The uniqueness of the copula prescribed by Theorem 10 can be obtained for continuous aggregation functions with anni-
hilator 0.

Corollary 14. Let A be a continuous 2-increasing aggregation function with annihilator 0, then there exists a unique copula C such
that

Aðx; yÞ ¼ CðhA
1ðxÞ; vA

1ðyÞÞ

for all x; y 2 ½0;1�.

Proof. We know already that there exists a copula C. Since A has annihilator 0 it follows that hA
1ð0Þ ¼ vA

1ð0Þ ¼ 0 and since A is
continuous also hA

1 and vA
1 are continuous, therefore RanðhA

1Þ ¼ RanðvA
1Þ ¼ ½0;1�. As a consequence C0 defined by Eq. (3) is

uniquely defined on RanðhA
1Þ � RanðvA

1Þ ¼ ½0;1�
2. h

The representation given by Theorem 10 allows us to provide in an easy way pointwise upper and lower bounds of the set
of all 2-increasing aggregation functions with the same upper margins.

Proposition 15. For every A 2A2 with upper margins hA
1 and vA

1 , we have

ATL ;ðhA
1 ;v

A
1Þ
ðx; yÞ ¼ maxðhA

1ðxÞ þ vA
1ðyÞ � 1;0Þ 6 Aðx; yÞ 6 minðhA

1ðxÞ; vA
1ðyÞÞ ¼ ATM ;ðhA

1 ;v
A
1Þ
:

Proof. The result follows immediately from Theorem 10 by considering the inequalities (2) for copulas. h

Notice that, ATL ;ðhA
1 ;v

A
1 Þ
2A2, whereas ATM ;ðhA

1 ;v
A
1Þ

is not necessarily an aggregation function since ATM ;ðhA
1 ;v

A
1Þ
ð0;0Þ might be dif-

ferent from 0.

4. Aggregation functions with given lower and upper margins

Next we consider the set of aggregation functions having prescribed upper and lower margins and we represent every 2-
increasing aggregation function by means of a suitable copula and all its margins.

Lemma 16. Consider an aggregation function A such that k :¼ VAð½0;1�2Þ > 0. Then the function AV : ½0;1�2 ! R defined by

AV ðx; yÞ :¼ 1
k

VAð½0; x� � ½0; y�Þ ¼
1
k

Aðx; yÞ � 1
k
ðhA

0ðxÞ þ vA
0ðyÞÞ ð4Þ

is a 2-increasing aggregation function with annihilator 0 if and only if A is 2-increasing.

Proof. By definition, the function ðx; yÞ# 1
k ðh

A
0ðxÞ þ vA

0ðyÞÞ is modular. Therefore, for any rectangle R � ½0;1�2 we have
VAV ðRÞ ¼ 1

k VAðRÞ. As a consequence, AV is 2-increasing if and only if A is so.
Further, note that AV ðx; yÞ has annihilator 0 and AV ð1;1Þ ¼ 1, regardless of further properties of A; this follows directly

from (4).
Finally, assuming that A is 2-increasing, we have to prove that AV is an aggregation function. First note that AV is 2-

increasing as well. Moreover, 2-increasing binary operations on [0,1] with annihilator 0 are also increasing in each variable
[16, Lemma 2.1.4], and so AV is. h

Theorem 17. Let A be a 2-increasing aggregation function with margins MA ¼ fhA
0;h

A
1; v

A
0; v

A
1g such that

kA ¼ VAð½0;1� � ½0;1�Þ > 0. Then there exists a copula C such that

Aðx; yÞ :¼ kACðu1ðxÞ;u2ðyÞÞ þ hA
0ðxÞ þ vA

0ðyÞ ð5Þ
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with

u1 : ½0;1� ! ½0;1�; u1ðxÞ :¼ 1
kA
ðhA

1ðxÞ � hA
0ðxÞ � hA

1ð0ÞÞ;

u2 : ½0;1� ! ½0;1�; u2ðyÞ :¼ 1
kA
ðvA

1ðyÞ � vA
0ðyÞ � vA

1ð0ÞÞ:

Proof. Let A be a 2-increasing aggregation function with a set of margins MA ¼ fhA
0;h

A
1; v

A
0; v

A
1g such that

kMA ¼ kA ¼ VAð½0;1� � ½0;1�Þ > 0. Then, because of Lemma 16, AV defined by (4) is a 2-increasing aggregation function with
annihilator 0. Because of Theorem 10 there exists a copula C such that

AV ðx; yÞ ¼ CðhAV

1 ðxÞ; vAV

1 ðyÞÞ;

where

hAV

1 ðxÞ ¼
1
kA
ðhA

1ðxÞ � hA
0ðxÞ � hA

1ð0ÞÞ ¼
1
kA

VAð½0; x� � ½0;1�Þ;

vAV

1 ðyÞ ¼
1
kA
ðvA

1ðyÞ � vA
0ðyÞ � vA

1ð0ÞÞ ¼
1
kA

VAð½0;1� � ½0; y�Þ:

Therefore,

Aðx; yÞ ¼ kAAV ðx; yÞ þ hA
0ðxÞ þ vA

0ðxÞ ¼ kAC
VAð½0; x� � ½0;1�Þ

kA
;
VAð½0;1� � ½0; y�Þ

kA

� �
þ hA

0ðxÞ þ vA
0ðxÞ;

which concludes the proof. h

Given a 2-increasing aggregation function A, we can associate two copulas C1 and C2 to A which are determined respec-
tively by Theorems 10 and 17. When A has annihilator 0, C1 ¼ C2; otherwise, these two copulas can be different.

Example 18. Let A be the 2-increasing aggregation function given by

Aðx; yÞ ¼
ffiffiffi
x
p
þ ffiffiffi

y
p� �2

4

having margins hA
0ðxÞ ¼ vA

0ðxÞ ¼ x
4 and hA

1ðxÞ ¼ vA
1ðxÞ ¼

ð
ffiffi
x
p
þ1Þ2
4 , with kA ¼ 1

2. Then A can be represented in the form

Aðx; yÞ ¼ C1ðhA
1ðxÞ; vA

1ðyÞÞ;

where C1 is the copula defined by C1ðx; yÞ ¼ ðmaxð
ffiffiffi
x
p
þ ffiffiffi

y
p � 1;0ÞÞ2. On the other hand, A can be also represented in the form

Aðx; yÞ :¼ kAC2ðu1ðxÞ;u2ðyÞÞ þ hA
0ðxÞ þ vA

0ðyÞ;

where C2ðx; yÞ ¼ xy and

u1ðxÞ ¼ 2ðhA
1ðxÞ � hA

0ðxÞ � hA
1ð0ÞÞ ¼

ffiffiffi
x
p

;

u2ðyÞ ¼ 2ðvA
1ðyÞ � vA

0ðyÞ � vA
1ð0ÞÞ ¼

ffiffiffi
y
p

:

Observe that Theorem 17 also suggests a way how to construct 2-increasing aggregation functions starting from a suit-
able set of margins.

Proposition 19. Let M ¼ fh0;h1; v0; v1g be a set of margins such that h0ð0Þ ¼ v0ð0Þ ¼ 0, h1ð1Þ ¼ v1ð1Þ ¼ 1, and

kM :¼ h1ð1Þ � h0ð1Þ � h1ð0Þ ¼ v1ð1Þ � v0ð1Þ � v1ð0Þ > 0:

Then, for every copula C, the function AC : ½0;1�2 ! ½0;1� defined by

ACðx; yÞ :¼ kMCðu1ðxÞ;u2ðyÞÞ þ h0ðxÞ þ v0ðyÞ ð6Þ

with

u1 : ½0;1� ! ½0;1�; u1ðxÞ :¼ 1
kM
ðh1ðxÞ � h0ðxÞ � h1ð0ÞÞ;

u2 : ½0;1� ! ½0;1�; u2ðyÞ :¼ 1
kM
ðv1ðyÞ � v0ðyÞ � v1ð0ÞÞ;

is a 2-increasing aggregation function. Moreover, AC 2AM
2 .

Proof. Let M ¼ fh0;h1; v0; v1g be a set of margins such that h0ð0Þ ¼ v0ð0Þ ¼ 0, h1ð1Þ ¼ v1ð1Þ ¼ 1, and kM > 0. Because of prop-
erty (M2) it follows that for all x0 P x and all y0 P y,
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h1ðx0Þ � h0ðx0ÞP h1ðxÞ � h0ðxÞP h1ð0Þ;
v1ðy0Þ � v0ðy0ÞP v1ðyÞ � v0ðyÞP v1ð0Þ;

and hence u1 and u2 are increasing functions. Moreover, they fulfill u1ð1Þ ¼ u2ð1Þ ¼ 1 and u1ð0Þ ¼ u2ð0Þ ¼ 0. Therefore, the
function AC : ½0;1�2 ! ½0;1� given by (6) is increasing in each place, since kM > 0 and C as well as all margins are increasing.
Moreover, AC fulfills ACð0;0Þ ¼ h0ð0Þ þ v0ð0Þ ¼ 0 and ACð1;1Þ ¼ kM þ h0ð1Þ þ v0ð1Þ ¼ 1, i.e., AC is an aggregation function.
Since C is 2-increasing, it follows that AC is also 2-increasing. Finally,

ACðx;0Þ ¼ h0ðxÞ þ v0ð0Þ ¼ h0ðxÞ;
ACðx;1Þ ¼ kMu1ðxÞ þ h0ðxÞ þ v0ð1Þ

¼ h1ðxÞ � h0ðxÞ � h1ð0Þ þ h0ðxÞ þ h1ð0Þ ¼ h1ðxÞ;
ACð0; yÞ ¼ v0ðyÞ;
ACð1; yÞ ¼ kMu2ðyÞ þ h0ð1Þ þ v0ðyÞ ¼ v1ðyÞ;

i.e., AC 2AM
2 . h

The upper and the lower bounds of a class of 2-increasing aggregation functions with given margins were obtained by
Durante et al. [7]. Thanks to Theorem 17 this result can be proven in an easier way.

Proposition 20. Let A be a 2-increasing aggregation function with margins M ¼ fhA
0 ;h

A
1; v

A
0; v

A
1g such that kA :¼ VAð½0;1�2Þ > 0.

Then the functions A�, A� from ½0;1�2 to [0,1], defined by

A�ðx; yÞ :¼maxðhA
0ðxÞ þ vA

0ðyÞ;h
A
1ðxÞ þ vA

1ðyÞ � 1Þ;
A�ðx; yÞ :¼minðhA

1ðxÞ þ vA
0ðyÞ � hA

1ð0Þ;h
A
0ðxÞ þ vA

1ðyÞ � hA
0ð1ÞÞ;

for all x; y 2 ½0;1�, are 2-increasing aggregation functions in AM
2 . Further, for every eA 2AM

2 it holds that, for all x; y 2 ½0;1�,

A�ðx; yÞ 6 eAðx; yÞ 6 A�ðx; yÞ: ð7Þ

Proof. The operations A�, A� are 2-increasing aggregation functions in AM
2 because they can be represented by (5) for C ¼ TL

and C ¼ TM, respectively. The bounds (7) are a consequence of Theorem 17 and the inequalities (2). h

5. Concluding remarks

We have discussed the representation of a 2-increasing binary aggregation function in terms of its upper margins as well
as its upper and lower margins. These representations are essentially based on copulas, which have also been used for pro-
viding upper and lower bounds for classes of aggregation functions with common upper (and lower) margins.

In the forthcoming manuscript [9], the authors have used the presented results for obtaining new constructions of bivar-
iate copulas by means of the so-called rectangular patchwork. These methods have been in particular applied for building
statistical models with different dependencies in the tails of the distributions.

The extension of the presented results to the case of n-dimensional aggregation functions, n P 2, with additional prop-
erties like supermodularity or n-increasingness (which are equivalent properties just for n ¼ 2) are clearly of interest. In this
context, the most challenging problem might be the representation of an n-ary aggregation function by means of its (n � 1)-
dimensional margins, similar to the compatibility problem posed for copulas [19].
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Abstract

We present a method for constructing bivariate copulas by changing the val-
ues that a given copula assumes on some subrectangles of the unit square.
Some applications of this method are discussed, especially in relation to the
construction of copulas with different tail dependencies.

Keywords: Copula, exchangeability, sections of copulas, tail dependence.
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1 Introduction
Copulas are functions that join bivariate distribution functions (=d.f.’s) with their univari-
ate marginal d.f.’s (see (Joe, 1997) and (Nelsen, 2006) for a thorough exposition). In
fact, according to Sklar’s theorem (Sklar, 1959), for each random vector (X,Y ) there is
a copula CX,Y (uniquely defined whenever X and Y are continuous) such that the joint
distribution function FX,Y of (X,Y ) may be represented, for all x, y ∈ R, in the form

FX,Y (x, y) = CX,Y (FX(x), FY (y)),

where FX and FY are the d.f.’s ofX and Y , respectively. Relevant applications of this fact
are provided, for instance, in finance (see (Cherubini et al., 2004), (McNeil et al., 2005)
and (Malevergne and Sornette, 2006)) and in hydrology (see (Salvadori et al., 2007)).

Specifically, a (bivariate) copula is a function C : [0, 1]2 → [0, 1] that satisfies the
following properties:

(C1) C(x, 0) = C(0, x) = 0 for all x ∈ [0, 1];

(C2) C(x, 1) = C(1, x) = x for all x ∈ [0, 1];
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(C3) for all x, x′, y, y′ in [0, 1] with x ≤ x′ and y ≤ y′,

VC([x, x′]× [y, y′]) = C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) ≥ 0.

Conditions (C1) and (C2) express the boundary properties of a copula C, (C3) is the 2-
increasing property of C, and VC([x, x′]× [y, y′]) is called the C-volume of the rectangle
[x, x′] × [y, y′]. Classical examples of copulas are M(x, y) = min(x, y), W (x, y) =
max(x + y − 1, 0) and Π(x, y) = xy, expressing, respectively, comonotone, counter-
monotone and independence among two random variables.

In the recent literature, several researchers have focused their attention on new meth-
ods for constructing families of bivariate copulas with desirable properties and a stochas-
tic interpretation. Some of these constructions are obtained by determining the value of a
copula on some subsets of the unit square, like diagonals (see the book by Nelsen (2006)
and recent papers by Durante et al. (2006, 2007a, 2008b), Durante and Jaworski (2008),
Erdely and Gonzáles-Barrios (2006), Klement and Kolesárová (2007), Nelsen et al. (2008),
Quesada-Molina et al. (2008)), horizontal and vertical sections (Klement et al. (2007),
Durante et al. (2007b)), rectangles (see the ordinal sum construction of copulas (Nelsen,
2006), De Baets and De Meyer (2007), Siburg and Stoimenov (2007)). Along these lines
of investigations, we aim at presenting the so-called “rectangular patchwork” construc-
tion, which provides a general frame for all the constructions based on the redefinition of
a known copula on some rectangles in the unit square.

The presented method will be, in particular, applied to the construction of copulas
with a variety of tail dependencies (see (Joe, 1997) and (Zhang, 2008)). Specifically,
we propose a method for constructing copulas with different tail dependencies on the four
corners of the unit square. As stressed by Embrechts et al. (2008), this kind of information
may be used to determine the sub- or super-additivity of quantile-based risk measures like
value-at-risk (see also (McNeil et al., 2005)).

Other two possible applications of the rectangular patchwork include the construction
of copulas with given horizontal section (Klement et al., 2007), and the construction of
copulas with given diagonal section, especially when they are non-symmetric (Erdely and
Gonzáles-Barrios, 2006).

2 Rectangular patchwork for copulas
Let C be a copula. Consider a family {Si}i∈I of closed and connected subsets of [0, 1]2

with boundaries ∂Si such that Si ∩ Sj ⊆ ∂Si ∩ ∂Sj whenever i 6= j, i.e., Si and Sj have
common points just on their boundaries. Moreover, for every i ∈ I, let us consider a
continuous mapping Fi : Si → [0, 1], which is increasing in each place, such that C = Fi
on ∂Si. We call the function F : [0, 1]2 → [0, 1] defined by

F (x, y) =

{
Fi(x, y), (x, y) ∈ Si,
C(x, y), otherwise,

(2.1)

the patchwork of {Fi}i∈I into the copula C.
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0 1
0

1

R1

F1(x, y)

R2

F2(x, y)

R3

F3(x, y)

C(x, y)

Figure 1: An illustration of a rectangular patchwork of {Fi}i=1,2,3 into C.

Essentially, the patchwork construction allows to define a new function F by rear-
ranging the probability mass distribution of C on the sets Si while keeping the mass
distribution untouched elsewhere.

One of the oldest patchwork construction for copulas is the ordinal sum (see Schweizer
and Sklar (1983) and (Nelsen, 2006)), obtained by considering C equal to the copula M
and every Si being a square of the type [ai, ai+1]2, where 0 ≤ ai < ai+1 ≤ 1. Note that
the idea of this method has its roots in the general theory of semigroups (compare also
with the books by Schweizer and Sklar (1983), Klement et al. (2000) and the references
therein).

Another related construction has been considered by Durante et al. (2007a), under the
name diagonal patchwork, and by Nelsen et al. (2008), under the name diagonal splice.
Here, one considers two subsets S1, S2, where S1 = {(x, y) ∈ [0, 1]2 | x ≥ y} and
S2 = {(x, y) ∈ [0, 1]2 | x ≤ y}, and associates to these subsets two functions F1 and F2

that are just restrictions of two copulas to S1 and S2, respectively.
In this paper, we consider the subsets Si = Ri to be arbitrary rectangles contained

in [0, 1]2. Such construction will be denoted as rectangular patchwork of {Fi}i∈I into
C. Note that a rectangular patchwork F satisfies trivially the boundary conditions of a
copula. Moreover, due to the fact that, for all rectangles R1, R2 ⊆ [0, 1]2 having one
edge in common, VF (R1 ∪ R2) = VF (R1) + VF (R2), we can formulate the following
proposition (see also Proposition 7 in (De Baets and De Meyer, 2007)).

Proposition 2.1. Let F be the rectangular patchwork of {Fi}i∈I into the copula C. Then
F is a copula if, and only if, Fi is 2-increasing on Ri for every i ∈ I.

Therefore, an important task in applying the rectangular patchwork is the determina-
tion of suitable 2-increasing functions Fi : Ri → [0, 1] that satisfy Fi = C on ∂Ri. In the
sequel, we will show that any such function Fi can be conveniently represented by means
of some transformations of a suitable copula.

First, fix some notation. Let a1, a2, b1, b2, c1, c2 be in [0, 1] with a1 < a2, b1 < b2
and c1 ≤ c2. Given a function F : [a1, a2]× [b1, b2]→ [c1, c2], the margins of F are the
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functions hFb1 , hFb2 , vFa1
, and vFa2

defined by

hFb1 : [a1, a2]→ [c1, c2] , hFb1(x) := F (x, b1),

hFb2 : [a1, a2]→ [c1, c2] , hFb2(x) := F (x, b2),

vFa1
: [b1, b2]→ [c1, c2] , vFa1

(y) := F (a1, y),

vFa2
: [b1, b2]→ [c1, c2] , vFa2

(y) := F (a2, y).

We shall refer to hFb2 and vFa2
as upper margins, and hFb1 and vFa1

as lower margins. We
suppose that such an F has full range, i.e. F (a1, b1) = c1 and F (a2, b2) = c2.

Theorem 2.1. Let F : [a1, a2]× [b1, b2]→ [c1, c2] be a 2-increasing function, continuous
and increasing in each place, with margins hFb1 , hFb2 , vFa1

, and vFa2
. Let λF = VF ([a1, a2]×

[b1, b2]). If λF = 0, then

F (x, y) = hFb1(x) + vFa1
(y)− hFb1(a1).

If λF > 0, then there exists a unique copula C such that

F (x, y) = λFC

(
ϕF1 (x)
λF

,
ϕF2 (y)
λF

)
+ hFb1(x) + vFa1

(y)− hFb1(a1), (2.2)

with

ϕF1 (x) = VF ([a1, x]× [b1, b2]) = hFb2(x)− hFb2(a1)− hFb1(x) + hFb1(a1),

ϕF2 (y) = VF ([a1, a2]× [b1, y]) = vFa2
(y)− vFa2

(b1)− vFa1
(y) + vFa1

(b1).

The proof of the above Theorem is based on the following result, which has been
shown by Durante et al. (2008c).

Lemma 2.1. Let A : [0, 1]2 → [0, 1] be a 2-increasing function which is continuous,
increasing in each place, satisfying A(0, 0) = 0 and A(1, 1) = 1. Let hA0 , hA1 , vA0 , and
vA1 be the margins of A. If λA = VA([0, 1]× [0, 1]) > 0, then there exists a unique copula
C such that

A(x, y) = λAC

(
ϕA1 (x)
λA

,
ϕA2 (y)
λA

)
+ hA0 (x) + vA0 (y) (2.3)

with

ϕA1 (x) = VA([0, x]× [0, 1]) = hA1 (x)− hA0 (x)− hA1 (0),

ϕA2 (y) = VA([0, 1]× [0, y]) = vA1 (y)− vA0 (y)− vA1 (0).

Proof of Theorem 2.1. Let F : [a1, a2] × [b1, b2] → [c1, c2] be a continuous 2-increasing
function such that F is increasing in each place and has full range. Let hFb1 , hFb2 , vFa1

and
vFa2

be the margins of F . Let λF = VF ([a1, a2]× [b1, b2]).
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If λF = 0, then VF (R) = 0 for every rectangle R ⊂ [a1, a2] × [b1, b2]. In particular, for
every (x, y) ∈ [a1, a2]× [b1, b2], VF ([a1, x]× [b1, y]) = 0. As a consequence,

F (x, y) = hFb1(x) + vFa1
(y)− hFb1(a1).

When λF > 0, we define three linear transformations:

f : [0, 1]→ [a1, a2] , f(x) = a1 + (a2 − a1)x;
g : [0, 1]→ [b1, b2] , g(x) = b1 + (b2 − b1)x;
k : [c1, c2]→ [0, 1], k(x) = x−c1

c2−c1 .

Let A : [0, 1]2 → [0, 1] be the function defined by

A(x, y) = k (F (f(x), g(y))) =
F (a1 + (a2 − a1)x, b1 + (b2 − b1)y)− c1

c2 − c1
.

It is easy to show that A is continuous and increasing in each place with A(0, 0) = 0 and
A(1, 1) = 1, and it satisfies the 2-increasing property, which is in fact preserved by linear
transformations. In view of Lemma 2.1, there exists a unique copula C such that A can
be represented in the form

A(x, y) = λAC

(
ϕA1 (x)
λA

,
ϕA2 (y)
λA

)
+ hA0 (x) + vA0 (y),

with λA = λF
c2−c1 ,

ϕA1 (x) = F (f(x), b2)− F (f(x), b1)− F (a1, b2) + c1,

ϕA2 (y) = F (a2, g(y))− F (a1, g(y))− F (a2, b1) + c1,

hA0 (x) + vA0 (y) = 1
c2−c1 (F (f(x), b1) + F (a1, g(y))− 2c1) .

Now, we have that

A(f−1(x), g−1(y)) = λF
c2−c1C

(
hFb2

(x)−hFb1 (x)−hFb2 (a1)+c1

λF
,
vFa2 (y)−vFa1 (y)−vFa2 (b1)+c1

λF

)

+ 1
c2−c1

(
hFb1(x) + vFa1

(x)− 2c1

)

Since F (x, y) = k−1A(f−1(x), g−1(y)), easy calculations show that F can be explicitly
written as in (2.2).

Thanks to Theorem 2.1, we can speak more specifically of the rectangular patchwork
of the pairs (〈Ri, Ci〉)i∈I into the copula C, where, for every i ∈ I, Ci is the copula
associated to the 2-increasing function Fi : Ri → [0, 1]. This fact is underlined in the
following result that just follows from above considerations.
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Theorem 2.2. Let {Ci}i∈I be a family of copulas and let {Ri =
[
ai1, a

i
2

]
×
[
bi1, b

i
2

]
}i∈I

be a family of rectangles in [0, 1]2 such that Ri ∩ Rj ⊆ ∂Ri ∩ ∂Rj , for every i 6= j.
Let C be a copula and put λi := VC(Ri). Let C̃ : [0, 1]2 → [0, 1] be defined, for every
x, y ∈ [0, 1], by

C̃(x, y) =





λiCi

(
VC([ai1,x]×[bi1,bi2])

λi
,
VC([ai1,ai2]×[bi1,y])

λi

)

+hC
bi1

(x) + vC
ai1

(y)− hC
bi1

(ai1), (x, y) ∈ Ri with λi 6= 0,

C(x, y), otherwise.

Then C̃ is a copula.

We use the notation C̃ = (〈Ri, Ci〉)Ci∈I for indicating the rectangular patchwork of
(〈Ri, Ci〉)i∈I into the copula C.

As a first and easy consequence, note that, by the construction, C̃ is absolutely con-
tinuous (i.e., admits a density), when C and every Ci are absolutely continuous for every
i ∈ I with λi > 0.

Now, note that every copula C can always be represented by means of a rectangu-
lar patchwork, for instance by (〈[0, 1]2, C〉)C ; but, in general, this representation is not
unique. In fact, the copula M can also be represented as the rectangular patchwork of the
type (〈[0, a]× [1− a, 1] , C1〉)M for every a ∈]0, 1

2 [ and for every copula C1. This is due
to the fact that VM ([0, a]× [1− a, 1]) = 0.

Copulas M , Π and W have the curious property that they coincide with their own
patchworks into themselves, i.e., (〈Ri, C〉)Ci∈I = C holds for any system of rectangles
{Ri}i∈I provided C ∈ {M,Π,W}. However, this property does not hold in general.
Consider, for example, the copula C given by the convex combination of the product
copula Π and M . Then C is a copula with a singular component just along the main
diagonal of the unit square. Let us consider the rectangular patchwork C̃ = (〈[1− a, 1]×
[0, a] , C〉)C , with a ∈ ]0, 1

2 [. Then, contrary to C, C̃ has also a probability mass concen-
trated on the diagonal section of the square [1− a, 1]× [0, a], so C̃ 6= C.

Note that, thanks to the uniqueness of the representation given by Theorem 2.1, any
possible copula obtained by rectangular patchwork techniques of some 2-increasing func-
tions can be represented in the form given by Theorem 2.2. Therefore, this method can be
considered as a general frame that contains the constructions of copulas based on plug-in
techniques on rectangles. For instance, an ordinal sum of copulas is simply a rectangu-
lar patchwork of the type (〈[ai1, ai2]2, Ci〉)Mi∈I . In the same way, a W -ordinal sum can be
represented as a rectangular patchwork of the type (〈

[
ai1, a

i
2

]
×
[
1− ai2, 1− ai1

]
, Ci〉)Wi∈I

(see also (De Baets and De Meyer, 2004) and Mesiar and Szolgay, 2004)). Other examples
are the orthogonal grid construction by De Baets and De Meyer (2007) and the (bivariate
version of the) gluing method by Siburg and Stoimenov (2007).

For a given copula C, it is of interest to have a general algorithm for generating
random variates with distribution function C (Nelsen, 2006). Now, just for simplicity,
let consider the rectangular patchwork C̃ = (〈[a1, a2] × [b1, b2], C1〉)C . Provided that
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Figure 2: Sampling 1000 points from a rectangular patchwork of type C̃ =
(〈[0, 0.5]×[0, 0.5], C1〉, 〈[0.5, 1]×[0.5, 1], C2〉)M where: (left) C1 and C2 are Gaus-
sian copulas with parameters −0.3 and 0.3, respectively; (right) C1 is a Clayton
copula with parameter 3.0 and C2 is a Gumbel copula with parameter 3.0.

there are efficient algorithms for generating a random sample from the copulas C and
C1, a simple procedure can also be implemented for sampling from C̃. To this end,
set ϕ1(x) = VC([a1,x]×[b1,b2])

VC([a1,a2]×[b1,b2]) and ϕ2(y) = VC([a1,a2]×[b1,y])
VC([a1,a2]×[b1,b2]) and suppose that these

functions admit inverses.

• ALGORITHM.

1. Generate (u1, u2) from the copula C.

2. Generate (v1, v2) from the copula C1.

3. Set w1 = ϕ−1
1 (v1) and w2 = ϕ−1

2 (v2).

4. If (u1, u2) ∈ [a1, a2]× [b1, b2], then return (w1, w2).
Otherwise, return (u1, u2).

Obviously, the above procedure can also be extended to a rectangular patchwork of
any finite number of copulas.

3 Applications

3.1 Copulas with different tail dependencies
Let C be a copula. For every ai ∈ [0, 1

2 ] (i ∈ {1, 2, 3, 4}), consider the rectangles
R1, R2, R3, R4, given by

R1 = [0, a1]× [0, a1] , R2 = [1− a2, 1]× [0, a2] ,
R3 = [1− a3, 1]× [1− a3, 1] , R4 = [0, a4]× [1− a4, 1] .
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Figure 3: Rectangular patchwork of Example 3.1

For some copulas Ci, i ∈ {1, 2, 3, 4}, let us consider the rectangular patchwork C̃ =
(〈Ri, Ci〉)Ci=1,2,3,4. Different choices of Ci produce, in general, different behaviours of
the copula C̃ on the four corners of the unit square. This geometric fact may be used in
order to construct copulas with different tail dependencies. These coefficients are defined,
for any copula C, in the following way (see, e.g., (Zhang, 2008)):

λ+
U (C) = lim

u→1−

1− 2u+ C(u, u)
1− u , λ+

L (C) = lim
u→0+

C(u, u)
u

λ−U (C) = 1− lim
u→1−

C(1− u, u)
1− u , λ−L (C) = 1− lim

u→0+

C(1− u, u)
u

.

Thus, the tail dependence coefficients of C̃ depend, in general, on the copulas Ci, i =
1, 2, 3, 4.

Example 3.1. Let us consider the product copula Π(u, v) = uv and let the rectangular
patchwork C̃ = (〈Ri, Ci〉)Π

i=1,2,3,4 be given by:

C̃(x, y) =





a2C1

(
x
a ,
y

a

)
, (x, y) ∈ R1,

a2C2

(
x−a
a , ya

)
+ ay, (x, y) ∈ R2,

a2C3

(
x−a
a , y−aa

)
+ ax+ ay − a2, (x, y) ∈ R3,

a2C4

(
x
a ,

y−a
a

)
+ ax, (x, y) ∈ R4,

xy, otherwise,

where a = 1− a. By considering, the lower positive tail dependence coefficient of C̃, we
obtain that

λ+
L (C̃) = a3 lim

u→0+

C1(u, u)
u

= a3λ+
L (C1).
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Figure 4: Sampling 1000 points from a rectangular patchwork of type described by
Example 3.1 where: (left) a = 1

2
, C2 and C4 are Gaussian copulas with parameter

−0.8, C1 = C3 = Π; (right) a = 1
2
, C1 is a Clayton copula with parameter 4.0

and C3 is a Gumbel copula with parameter 3.0, C2 = C4 = Π.

Thus, although Π has lower positive tail dependence coefficient 0, the lower tail depen-
dence coefficient of C̃ takes values from the interval [0, a3], depending on the lower pos-
itive tail dependence coefficient of C1. Roughly speaking, the rectangular patchwork
“adds” some tail dependencies to the copula Π. Analogous considerations hold for the
other coefficients of tail dependence.

Intuitively, for a sufficiently small a > 0, the example shows that it is possible to find
a copula C arbitrarily close to Π (with respect to some Lp-norm) which admits different
behaviour on the tails.

3.2 Copulas with a given horizontal section
Let b ∈ ]0, 1[ be a fixed number. The horizontal b-section of a copula C is the function
hC,b : [0, 1] → [0, 1] given by hC,b(x) = C(x, b). Recently, Klement et al. (2007) stud-
ied the class of all possible copulas C having the same horizontal section at the level b.
Specifically, given an increasing and 1-Lipschitz function h : [0, 1]→ [0, b] such that, for
every t ∈ [0, 1],

max(t+ b− 1, 0) ≤ h(t) ≤ min(t, b),

they investigated the class Ch of all copulas C such that hC,b = h. Actually, a full descrip-
tion of all elements of this class can be obtained by rectangular patchwork techniques.

Let us take a copula C with given horizontal diagonal h at the point b ∈ ]0, 1[. For
example, following Klement et al. (2007), let us consider

C(x, y) =





y h(x)
b , y ≤ b,

(1−y)h(x)+(y−b)x
1−b , otherwise.

(3.1)

Then, any copula C̃ in Ch can be obtained as a rectangular patchwork of the type
(〈Ri, Ci〉)Ci=1,2, where R1 = [0, 1] × [0, b] and R2 = [0, 1] × [b, 1], namely there ex-
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Figure 5: Sampling 1000 points from a copula of type (3.2) with horizontal section
h1/3(t) = t/3, where: (left) C1 and C2 are Gaussian copulas with parameter 0.8
and−0.8, respectively; (right) C1 = Π and C2 is a Gumbel copula with parameter
3.0

ist two copulas C1 and C2 such that

C̃(x, y) =





bC1

(
h(x)
b , yb

)
, (x, y) ∈ R1,

(1− b)C2

(
x−h(x)

1−b , y−b1−b

)
+ h(x), otherwise.

(3.2)

For C1 = C2 = Π, C̃ coincides with C given by (3.1). Moreover, the pointwise lower
bound in Ch can be obtained by taking C1 = C2 = W and the pointwise upper bound in
Ch can be obtained by choosing C1 = C2 = M .

Example 3.2. Let us consider the product copula Π and let R1 = [0, 1] × [0, θ], R2 =
[0, 1]× [θ, 1] for some fixed θ ∈ ]0, 1[. Now let C̃θ = (〈R1,M〉, 〈R2,W 〉)Π. This copula
is given by the expression

C̃θ(x, y) =

{
θM

(
x, yθ

)
, if(x, y) ∈ R1,

(1− θ)W
(
x, y−θ1−θ

)
+ θx, otherwise.

Notice that this family of copulas was treated by Nelsen (2006, Example 3.3) as an ex-
ample of a family of copulas with given prescribed support. In fact, all copulas from this
family distribute the mass along the segments connecting the point (0, 0) with (1, θ) and
(1, θ) with (0, 1). Observe further that C̃θ ∈ Chθ with hθ(x) = θx.

Note that the same procedure can be applied in order to describe the class of all copu-
las with a given horizontal and vertical section (Durante et al., 2007b) as well as to extend
a given sub-copula to a copula in all possible ways (see (Carley, 2002) and (Genest and
Nešlehová, 2007)).

3.3 Copulas with given diagonal section
As already mentioned in the introduction, several methods have been introduced for con-
structing copulas with a given value on the diagonal section. Particular attention has been
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Figure 6: Example of a rectangular patchwork described in Corollary 3.1

laid on constructions that preserve the absolute continuity and/or allow to obtain copulas
which are not necessarily symmetric (see (Erdely and Gonzáles-Barrios, 2006), (Durante
et al., 2007a), and (Durante and Jaworski, 2008)).

Note that, by using the rectangular patchwork, it is not difficult to obtain a large class
of absolutely continuous copulas with the same diagonal section, as the following easy
consequence of Theorem 2.2 shows (compare with Theorem 2.1 by Erdely and Gonzáles-
Barrios (2006)).

Corollary 3.1. Let C be an absolutely continuous copula with diagonal section δC(t) =
C(t, t). Let C̃ be a rectangular patchwork C̃ = (〈Ri, Ci〉)Ci∈I , where every Ci is a
copula and every Ri is contained completely either in {(x, y) ∈ [0, 1]2 | x ≥ y} or in
{(x, y) ∈ [0, 1]2 | x ≤ y}. Then the diagonal section of C̃ equals to δC . Moreover, C̃ is
absolutely continuous if, and only if, Ci is absolutely continuous for every i ∈ I such that
λC(Ri) > 0.

The copula C̃ just obtained are, in general, non-symmetric in the sense that C̃(x, y) 6=
C̃(y, x) for some (x, y) ∈ [0, 1]2. Constructions of non-symmetric copulas are of partic-
ular relevance in view of possible application for building non-exchangeable models (see
(Klement and Mesiar, 2006), (Nelsen, 2007), (Durante et al., 2008a)). In this context the
mapping µ from the set C of all copulas to [0, 1] has been considered as a measure of the
non-symmetry of a copula C,

µ+∞(C) = 3 · max
(x,y)∈[0,1]2

|C(x, y)− C(y, x)|.

Example 3.3. Let us consider the product copula C = Π and let a ∈ [0, 1
2 ]. Consider the

rectangular patchwork C̃ = (〈[0, a] × [1− a, 1] , C1〉, 〈[1− a, 1] × [0, a] , C2〉)Π, where
Π /∈ {C1, C2}. For C1 6= C2, C̃ is not symmetric and its expression is given by:

C̃(x, y) =





a2C1

(
x
a ,

y−a
a

)
+ ax, (x, y) ∈ [0, a]× [1− a, 1] ,

a2C2

(
x−a
a , ya

)
+ ay, (x, y) ∈ [1− a, 1]× [0, a] ,

xy, otherwise,
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where a = 1− a. The measure of non-symmetry for C̃ is, hence, given by

µ+∞(C̃) = 3a2 max
(x,y)∈[0,a]×[1−a,1]

∣∣∣∣C1

(
x

a
,
y − a
a

)
− C2

(
y − a
a

,
x

a

)∣∣∣∣
= 3a2 max

(x,y)∈[0,1]2
|C1(x, y)− C2(y, x)| .

Maximum asymmetry for such a C̃ is, hence, obtained when C1 and C2 are, respectively,
equal to W and M . For such a case, µ+∞(C̃) = 3a2

2 .

Concluding remarks
We have characterized all copulas that can be constructed by means of a rectangular patch-
work, i.e., by redefining the values that a copula assumes on some subrectangles of the
unit square which are disjoint up to their boundaries. We have illustrated how other con-
structions of copulas, like e.g., ordinal sums or bivariate gluing, are particular cases of
rectangular patchwork copulas. The presented results are formulated for the class of bi-
variate copulas only. Extensions to n-dimensional copulas (n ≥ 3) need further inves-
tigations. Note that for the particular case of ordinal sums some multivariate extension
have been provided recently by Mesiar and Sempi (2008).
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KY B ER N ET IK A — V OL U ME 4 2 ( 2 0 0 6 ) , N U MB E R 3 , PA GE S 3 3 7 – 3 5 0

ON THE DOMINANCE RELATION

BETWEEN ORDINAL SUMS OF CONJUNCTORS

Susanne Saminger, Bernard De Baets and Hans De Meyer

This contribution deals with the dominance relation on the class of conjunctors, con-
taining as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main
results pertain to the summand-wise nature of the dominance relation, when applied to
ordinal sum conjunctors, and to the relationship between the idempotent elements of two
conjunctors involved in a dominance relationship. The results are illustrated on some well-
known parametric families of t-norms and copulas.
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1. INTRODUCTION

The dominance relation was introduced in the framework of probabilistic metric
spaces as a binary relation on the class of all triangle functions [25], and was soon
generalized to operations on a partially ordered set [24]. It plays an important role
in the construction of Cartesian products of probabilistic metric spaces (see, e. g.
[24, 25]), but also in the preservation of several properties, most of them expressed by
some inequality, during (dis-)aggregation processes [3, 4, 7, 9, 22, 23]. Therefore, the
dominance property was also introduced in the framework of aggregation operators
where it enjoyed further development [19, 22, 23].

In this paper, we restrict ourselves to a broad class of aggregation operators,
namely those with neutral element 1. They are known as conjunctors and encompass
all quasi-copulas, copulas and t-norms. Our emphasis lies on the dominance relation
between ordinal sums of conjunctors.

In Section 2, we review the various classes of conjunctors considered in this work
and extend the ordinal sum construction and the dominance relation to conjunctors.
In the following section, we briefly discuss the dominance relation between ordinally
irreducible conjunctors. In Section 4, we lay bare the summand-wise nature of
the dominance relation. Finally, we identify interesting properties of the sets of
idempotent elements of two conjunctors connected through the dominance relation
and illustrate the results on some parametric families of t-norms/copulas.
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2. THE DOMINANCE RELATION ON THE CLASS OF CONJUNCTORS

2.1. Conjunctors

In recent years, various classes of binary operators on the unit interval have gained
interest in fuzzy set theory and probability theory. Triangular norms, originally in-
troduced in the field of probabilistic metric spaces, now live a second life as models
for the pointwise intersection of fuzzy sets or as models for the many-valued conjunc-
tion in fuzzy logic. Copulas, and in particular 2-copulas as considered here, connect
the marginal distributions of a random vector into the joint distribution. Weaker
operators, such a quasi-copulas, are appearing frequently in probability theory, as
well as in fuzzy set theory. All of the operators mentioned have two properties in
common: neutral element 1 and monotonicity. We now state the formal definitions.

Definition 1. ([6, 13]) A binary operation C : [0, 1]2 → [0, 1] is called a conjunctor

if it satisfies:

(i) Neutral element 1: for any x ∈ [0, 1] it holds that C(x, 1) = C(1, x) = x .

(ii) Monotonicity: C is increasing in each variable.

Note that any conjunctor C coincides on {0, 1}2 with the Boolean conjunction
and satisfies:

(i’) Absorbing element 0: for any x ∈ [0, 1] it holds that C(x, 0) = C(0, x) = 0 .

The comparison of two conjunctors C1 and C2 is done pointwisely, i. e. if for all
x, y ∈ [0, 1] it holds that C1(x, y) ≤ C2(x, y), then we say that C1 is weaker than
C2, or that C2 is stronger than C1, and denote it by C1 ≤ C2. For any conjunctor
C it holds that TD ≤ C ≤ TM, with

TD(x, y) =

{

0, if (x, y) ∈ [0, 1[2 ,

min(x, y), otherwise,

known as the drastic product, and TM(x, y) = min(x, y).
For a conjunctor C and an order isomorphism ϕ : [0, 1] → [0, 1], i. e. an increasing

bijection, its isomorphic transform is the conjunctor Cϕ : [0, 1]2 → [0, 1] defined by
Cϕ(x, y) = ϕ−1(C(ϕ(x), ϕ(y))). The conjunctors C and Cϕ are then referred to as
isomorphic operations, or also as being isomorphic to each other.

In this paper, we are mainly interested in three particular classes of conjunctors:
the class of triangular norms (t-norms), the class of copulas and the class of quasi-
copulas. Where t-norms have the additional properties of associativity and commu-
tativity, copulas have the property of moderate growth, while quasi-copulas have the
1-Lipschitz property. Note that conjunctors are also known as semi-copulas [11].

Definition 2. ([12]) A conjunctor C : [0, 1]2 → [0, 1] is called a quasi-copula if it
satisfies:

(iii) 1-Lipschitz property: for any x1, x2, y1, y2 ∈ [0, 1] it holds that:

|C(x1, y1) − C(x2, y2)| ≤ |x1 − x2| + |y1 − y2| .
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Definition 3. ([20]) A conjunctor C : [0, 1]2 → [0, 1] is called a 2-copula (copula

for short) if it satisfies:

(iv) Moderate growth: for any x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2

it holds that:

C(x1, y2) + C(x2, y1) ≤ C(x1, y1) + C(x2, y2) .

As implied by the terminology used, any copula is a quasi-copula, and therefore
has the 1-Lipschitz property; the opposite is, of course, not true.

Definition 4. ([15, 24]) A conjunctor C : [0, 1]2 → [0, 1] is called a t-norm if it
satisfies:

(v) Commutativity: for any x, y ∈ [0, 1] it holds that:

C(x, y) = C(y, x) .

(vi) Associativity: for any x, y, z ∈ [0, 1] it holds that:

C(x, C(y, z)) = C(C(x, y), z) .

It is well known that a copula is a t-norm if and only if it is associative; conversely,
a t-norm is a copula if and only if it is 1-Lipschitz (see, e. g. [15, 20]). The three
main continuous t-norms are the minimum operator TM, the algebraic product TP

and the  Lukasiewicz t-norm TL (defined by TL(x, y) = max(x + y − 1, 0)); they are
at the same time associative and commutative copulas. For any quasi-copula C it
holds that TL ≤ C ≤ TM (see, e. g. [12]).

2.2. The ordinal sum construction

The ordinal sum construction appears quite frequently, e. g. in the framework of
partially ordered sets [2] and in the context of algebraic operations and structures
(ordinal sums of semigroups [5], in particular t-norms [14, 16, 21], as well as cop-
ulas [20], and aggregation operators [8]). The aim is always the same, namely the
preservation of properties of the summand operations into the resulting ordinal sum.
Here, we follow a particular approach known as the id-lower ordinal sum [8].

Definition 5. Let (]ai, bi[)i∈I be a family of non-empty, pairwise disjoint open
subintervals of [0, 1] and let (Ci)i∈I be a family of conjunctors. Then the ordinal

sum C = (〈ai, bi, Ci〉)i∈I : [0, 1]2 → [0, 1] is the conjunctor defined by

C(x, y) =

{

ai + (bi − ai) Ci(
x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2
,

min(x, y), otherwise .

Note that each conjunctor Ci is squeezed into the corresponding square [ai, bi]
2

by a linear transformation. The triplets 〈ai, bi, Ci〉 are called the summands of the
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ordinal sum. The intervals [ai, bi] are called the summand carriers, the conjunctors
Ci the summand operations. A conjunctor C that has no ordinal sum representation
different from (〈0, 1, C〉) is called ordinally irreducible. Obviously, TM is not ordinally
irreducible.

The ordinal sum construction is powerful as it preserves a lot of properties, such
as commutativity, (1-Lipschitz) continuity, etc. For instance, an ordinal sum is con-
tinuous if and only if all its summand operations are continuous. Combining various
properties, it holds that the classes of quasi-copulas, copulas and triangular norms
are all closed under the ordinal sum construction. The ordinal sum construction
even allows for the full characterization of continuous t-norms [17].

Proposition 1. A binary operation T : [0, 1]2 → [0, 1] is a continuous t-norm if
and only if it is uniquely representable as an ordinal sum of t-norms that are either
isomorphic to the  Lukasiewicz t-norm TL or to the product TP.

2.3. The dominance relation

The dominance relation was introduced in the framework of probabilistic metric
spaces as a relation between triangle functions which ensures that the Cartesian
product of two probabilistic metric spaces is again a probabilistic metric space of
the same type ([24, 25]). It was generalized to operations on a partially ordered
set [24] and introduced into the framework of t-norms (see also [15]). The dominance
relation is indispensable when refining fuzzy partitions and when building Cartesian
products of fuzzy equivalence and fuzzy order relations [3, 7]. Moreover, it plays
an important role in the preservation of T -transitivity of fuzzy relations involved in
a (dis-)aggregation process [9, 23], giving way to its generalization to aggregation
operators [23].

Definition 6. Consider two conjunctors C1 and C2. We say that C1 dominates

C2, denoted by C1 � C2, if for all x, y, u, v ∈ [0, 1] it holds that

C1(C2(x, y), C2(u, v)) ≥ C2(C1(x, u), C1(y, v)) . (1)

For any two conjunctors C1 and C2 and any order isomorphism ϕ : [0, 1] → [0, 1],
it holds that C1 � C2 if and only if (C1)ϕ � (C2)ϕ (see also [22, 23]). We will refer
to this relationship as the isomorphism property of dominance.

Due to the fact that 1 is the common neutral element of all conjunctors, domi-
nance of one conjunctor by another conjunctor implies their comparability: C1 � C2

implies C1 ≥ C2 (see also [22]). Obviously, the converse does not hold. Consequently,
the dominance relation is antisymmetric on the class of all conjunctors. A conjunc-
tor C for which C � C is said to be self-dominant. Self-dominance is evidently
equivalent with the bisymmetry property [1]

C(C(x, y), C(u, v)) = C(C(x, u), C(y, v)) .



On the Dominance Relation Between Ordinal Sums of Conjunctors 341

Commutativity and associativity clearly imply bisymmetry. Moreover, bisymmetry
together with 1 being the neutral element imply commutativity and associativity.
Hence any t-norm is self-dominant and on the class of all t-norms the dominance
relation is not only antisymmetric, but also reflexive. This is, however, not the case
for the class of copulas.

Example 1. Consider the family of copulas (Cθ)θ∈[0,1] defined by

Cθ(x, y) =











min(x, y − θ), if (x, y) ∈ [0, 1 − θ] × [θ, 1] ,

min(x + θ − 1, y), if (x, y) ∈ [1 − θ, 1] × [0, θ] ,

TL(x, y), otherwise.

The copula C0.5 is the only commutative member of this family (see also [20]). As it
is not associative, it is also not bisymmetric, and does therefore not dominate itself
(choose, e. g. x = 0.5, y = 1, u = v = 0.75).

Before turning to ordinal sums of conjunctors let us recall some basic results about
dominance between (ordinally irreducible) conjunctors, in particular involving the
extreme elements of various subclasses of conjunctors.

3. DOMINANCE BETWEEN (ORDINALLY IRREDUCIBLE) CONJUNCTORS

3.1. Conjunctors

Due to their monotonicity, it is immediately clear that any conjunctor C is domi-
nated by TM. Conversely, since dominance implies comparability, TM is the only
conjunctor dominating TM. On the other hand, it is easily verified that any con-
junctor C dominates the weakest conjunctor TD.

In [23], several methods for constructing dominating aggregation operators from
given ones have been proposed. As a consequence, we can immediately pose the
following lemma.

Lemma 1. Consider conjunctors C1, C2, C3 and C. If Ci � C, for any i ∈
{1, 2, 3}, then also the binary operation C∗ : [0, 1]2 → [0, 1] defined by

C∗(x, y) = C3(C1(x, y), C2(x, y))

dominates C. Moreover, C∗ is a conjunctor if and only if C3 = TM.

3.2. Quasi-copulas and copulas

The strongest (quasi-)copula TM dominates all other conjunctors, in particular all
(quasi-)copulas. However, not all (quasi-)copulas dominate the weakest (quasi-)
copula TL, as the following example demonstrates.
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Example 2. Consider the copula C : [0, 1]2 → [0, 1] defined by

C(x, y) =

{

1
2TL(2x, 2y), if (x, y) ∈

[

0, 1
2

]2
,

TM(x, y), otherwise.

Putting x = y = u = v = 5
8 yields

0=C
(

1
4 , 1

4

)

=C
(

TL

(

5
8 , 5

8

)

, TL

(

5
8 , 5

8

))

<TL

(

C
(

5
8 , 5

8

)

, C
(

5
8 , 5

8

))

=TL

(

5
8 , 5

8

)

= 1
4

and therefore C does not dominate TL. Note that C is an ordinal sum copula and
a member of the Mayor–Torrens family as discussed also later in Section 5.2.2.

However, the 1-Lipschitz property is a necessary condition for a conjunctor to
dominate TL (see also [9, 19]).

Proposition 2. If a conjunctor C dominates TL, then it is a quasi-copula.

P r o o f . Suppose that a conjunctor C dominates TL, i. e. for all x, y, u, v ∈ [0, 1]
it holds that

C(TL(x, y), TL(u, v)) ≥ TL(C(x, u), C(y, v)) . (2)

In order to show that C fulfills the 1-Lipschitz property, it suffices, due to its in-
creasingness, to prove that

C(a, b) − C(a − ε, b − δ) ≤ ε + δ

whenever 0 ≤ ε ≤ a, 0 ≤ δ ≤ b for arbitrary a, b ∈ [0, 1]. We first choose x = a,
y = 1, u = b, v = 1 − δ for some 0 ≤ δ ≤ b with arbitrary but fixed a, b ∈ [0, 1].
Then TL(u, v) = max(u + v− 1, 0) = max(b− δ, 0) = b− δ and hence it follows using
Eq. (2) that

C(a, b − δ) = C(TL(a, 1), TL(b, 1 − δ))

≥ TL(C(a, b), C(1, 1 − δ))

= TL(C(a, b), 1 − δ) = max(C(a, b) − δ, 0)

≥ C(a, b) − δ.

Analogously, by putting x = a, y = 1 − ε, u = b, v = 1 with 0 ≤ ε ≤ a, we can
conclude that C(a − ε, b) ≥ C(a, b) − ε. As a consequence

C(a − ε, b − δ) ≥ C(a − ε, b) − δ ≥ C(a, b) − ε − δ .

Therefore, C is 1-Lipschitz, and thus a quasi-copula. �

3.3. Triangular norms

The class of ordinally irreducible continuous t-norms consists of all continuous Archi-
medean t-norms, i. e. those t-norms that are either isomorphic to the product TP

(called strict t-norms) or to the  Lukasiewicz t-norm TL (called nilpotent t-norms).
The following observations are important, as they imply that it suffices to consider
the t-norms TP and TL in order to understand dominance of a continuous Archime-
dean t-norm T by a conjunctor C:



On the Dominance Relation Between Ordinal Sums of Conjunctors 343

(i) If T is strict, there exists an order isomorphism ϕ : [0, 1] → [0, 1] such that
T = (TP)ϕ, leading to the equivalence C � T ⇔ Cϕ−1 � TP .

(ii) If T is nilpotent, there exists an order isomorphism ϕ : [0, 1] → [0, 1] such that
T = (TL)ϕ, leading to the equivalence C � T ⇔ Cϕ−1 � TL .

We have already seen in Proposition 2 that being a quasi-copula is a necessary
condition for a conjunctor to dominate TL. It is remarkable that the same condition
applies for a conjunctor to dominate TP.

Proposition 3. If a conjunctor C dominates TP, then it is a quasi-copula.

P r o o f . Suppose that a conjunctor C dominates TP, i. e. for all x, y, u, v ∈ [0, 1]
it holds that

C(xy, uv) ≥ C(x, u)C(y, v) . (3)

Again it suffices, due to the increasingness of C, to show that

C(a, b) − C(a − ε, b − δ) ≤ ε + δ

whenever 0 ≤ ε ≤ a, 0 ≤ δ ≤ b for arbitrary a, b ∈ [0, 1]. In case that a = 0 (resp.
b = 0), it holds that ε = 0 (resp. δ = 0), and the inequality is trivially fulfilled.
Therefore, it remains to prove that it holds for arbitrary a, b ∈ ]0, 1]. We first choose
x = a, y = 1 − ε

a
, u = b, v = 1 with 0 ≤ ε ≤ a. Then it follows from Eq. (3) that

C(a − ε, b) ≥ C(a, b)C(1 −
ε

a
, 1) = C(a, b)(1 −

ε

a
) .

Since C ≤ TM it then holds for all 0 < a ≤ 1, 0 ≤ b ≤ 1 and 0 ≤ ε ≤ a that

C(a, b) − C(a − ε, b) ≤ C(a, b)(1 − (1 −
ε

a
)) =

ε

a
C(a, b) ≤ ε .

Similarly, we can conclude from Eq. (3), by choosing x = a, y = 1, u = b, v =
1 − δ

b
with 0 ≤ δ ≤ b, that for all 0 ≤ a ≤ 1, 0 < b ≤ 1 with 0 ≤ δ ≤ b also

C(a, b) − C(a, b − δ) ≤ δ. Hence,

C(a, b) − C(a − ε, b − δ) = C(a, b) − C(a, b − δ) + C(a, b − δ) − C(a − ε, b − δ)

≤ ε + δ

whenever 0 ≤ ε ≤ a, 0 ≤ δ ≤ b for arbitrary a, b ∈ ]0, 1]. Therefore, C is 1-Lipschitz,
and thus a quasi-copula. �

4. DOMINANCE BETWEEN ORDINAL SUM CONJUNCTORS

4.1. Summand-wise dominance

As the ordinal sum construction is generally applicable, it is important to inves-
tigate dominance between two ordinal sum conjunctors in order to gain a deeper
understanding of the dominance relation. In a first proposition we show that if
both ordinal sum conjunctors are based on the same summand carriers, dominance
between these conjunctors is based on the dominance between the corresponding
summand operations.
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Proposition 4. Consider two ordinal sum conjunctors C1 = (〈ai, bi, C1,i〉)i∈I and
C2 = (〈ai, bi, C2,i〉)i∈I . Then C1 dominates C2 if and only if C1,i dominates C2,i for
all i ∈ I.

P r o o f . Suppose that C1 � C2, i. e. for all x, y, u, v ∈ [0, 1] it holds that

C1(C2(x, y), C2(u, v)) ≥ C2(C1(x, u), C1(y, v)) . (4)

We want to show that for all i ∈ I it holds that C1,i � C2,i. Choose arbitrary
x, y, u, v ∈ [0, 1] and some i ∈ I. Since ϕi : [ai, bi] → [0, 1], x 7→ x−ai

bi−ai
is an

increasing bijection, there exist unique x′, y′, u′, v′ ∈ [ai, bi] such that ϕi(x
′) = x,

ϕi(y
′) = y, ϕi(u

′) = u and ϕi(v
′) = v. Since Eq. (4) is fulfilled for all x, y, u, v ∈ [0, 1]

and in particular for x′, y′, u′, v′ ∈ [ai, bi], it can be equivalently expressed as

ϕ−1
i ◦ C1,i(C2,i(ϕi(x

′), ϕi(y
′)), C2,i(ϕi(u

′), ϕi(v
′)))

≥ ϕ−1
i ◦ C2,i(C1,i(ϕi(x

′), ϕi(u
′)), C1,i(ϕi(y

′), ϕi(v
′))) ,

taking into account the ordinal sum structure of C1 and C2. The previous inequality
is in turn equivalent to

ϕ−1
i ◦ C1,i(C2,i(x, y), C2,i(u, v)) ≥ ϕ−1

i ◦ C2,i(C1,i(x, u), C1,i(y, v)) .

Applying ϕi to both sides of the above inequality yields C1,i � C2,i.
Conversely, suppose that for all i ∈ I it holds that C1,i � C2,i, then Eq. (4) is

fulfilled for all x, y, u, v ∈ [ai, bi] due to the isomorphism property. Next, we will make
use of the following observation: for any p, q ∈ [0, 1] such that min(p, q) ∈ [ai, bi] for
some i ∈ I, it holds that

C1(p, q) = C1(min(p, bi), min(q, bi)) .

Now consider arbitrary x, y, u, v ∈ [0, 1] and suppose w.l.o.g. that x = min(x, y, u, v),
then we can distinguish the following cases.

Case 1. Suppose x ∈ [ai, bi] for some i ∈ I. Let y∗ = min(y, bi), u∗ = min(u, bi)
and v∗ = min(v, bi). Note that C1(x, u) = C1(x, u∗). Moreover, if min(y, v) ∈
[ai, bi], then also C1(y, v) = C1(y∗, v∗). As x, y∗, u∗, v∗ all belong to [ai, bi],
the assumption C1,i � C2,i and the increasingness of C1 and C2 imply that

C2(C1(x, u), C1(y, v)) = C2(C1(x, u∗), C1(y∗, v∗))

≤ C1(C2(x, y∗), C2(u∗, v∗))

≤ C1(C2(x, y), C2(u, v)) .

On the other hand, if min(y, v) /∈ [ai, bi], we know that C1(y, v) ≥ bi. Since
C1(x, u∗) ≤ bi it follows that

C2(C1(x, u), C1(y, v)) = C2(C1(x, u∗), C1(y, v))

= min(C1(x, u∗), C1(y, v)) = C1(x, u∗) .
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Due to the increasingness of C1 it holds that

C1(x, u∗) = min(C1(x, u∗), C1(x, v), C1(y, u∗), C1(y, v))

= C1(min(x, y), min(u∗, v))

= C1(C2(x, y), C2(u∗, v))

≤ C1(C2(x, y), C2(u, v)) .

Case 2. If x /∈ [ai, bi] for all i ∈ I, then C1(x, ·) = C2(x, ·) = TM(x, ·). One easily
verifies that C1(y, v) ≥ x and C2(u, v) ≥ x. This leads to

C2(C1(x, u), C1(y, v)) = C2(x, C1(y, v))

= min(x, C1(y, v)) = x = min(x, C2(u, v))

= C1(x, C2(u, v)) = C1(C2(x, y), C2(u, v)) .

This completes the proof that C1 dominates C2. �

4.2. Ordinal sums with different summand carriers

In case the structure of both ordinal sum conjunctors is not the same, we are able
to provide some necessary conditions which lead to a characterization of dominance
between ordinal sum conjunctors in general. Assume that the ordinal sum con-
junctors under consideration are based on two at least partially different families
of summand carriers, i. e. C1 = (〈a1,i, b1,i, C1,i〉)i∈I and C2 = (〈a2,j , b2,j, C2,j〉)j∈J .
W.l.o.g. we can assume that these representations are the finest possible, i. e. that
each summand operation is ordinally irreducible.

Since any conjunctor is bounded from above by TM and dominance implies com-
parability, the following proposition follows immediately.

Proposition 5. If a conjunctor C1 dominates a conjunctor C2, then C1(x, y) =
TM(x, y) whenever C2(x, y) = TM(x, y).

Geometrically speaking, if an ordinal sum conjunctor C1 dominates an ordinal
sum conjunctor C2, then it must necessarily consist of more regions where it acts as
TM than does C2. Two such cases are displayed in Figure 1 (a) and (c). Note that
no dominance relationship between C1 and C2 is possible in a case like illustrated
in Figure 1 (b). Therefore, we can immediately state the following corollary.

Corollary 1. Consider two ordinal sum conjunctors C1 = (〈a1,i, b1,i, C1,i〉)i∈I and
C2 = (〈a2,j , b2,j, C2,j〉)j∈J with ordinally irreducible summand operations only. If
C1 dominates C2 then

(∀i ∈ I)(∃j ∈ J)([a1,i, b1,i] ⊆ [a2,j , b2,j]) . (5)

Note that each [a2,j , b2,j] can contain several or even none of the summand carriers
[a1,i, b1,i] (see also Figure 1 (a) and (c)). Hence, for each j ∈ J we can consider the
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C1

a1,1 b1,1 a1,2 b1,2 a1,3 b1,3

C2

a2,1 b2,1 a2,2 b2,2

C1

a1,1 b1,1 a1,2 b1,2

C2

a2,1 b2,1 a2,2 b2,2

C1

a1,1 b1,1

C2

a2,1 b2,1 a2,2 b2,2

(a) (b) (c)

Fig. 1. Examples of two ordinal sum conjunctors C1 and C2 differing in their summand

carriers.

following subset of I:

Ij = {i ∈ I | [a1,i, b1,i] ⊆ [a2,j , b2,j]} . (6)

Based on these notions and due to Proposition 4, dominance between two ordinal
sum conjunctors can be reformulated in the following way.

Proposition 6. Consider two ordinal sum conjunctors C1 = (〈a1,i, b1,i, C1,i〉)i∈I

and C2 = (〈a2,j , b2,j, C2,j〉)j∈J with ordinally irreducible summand operations only.
Then C1 dominates C2 if and only if

(i) ∪j∈JIj = I,

(ii) Cj
1 � C2,j for all j ∈ J with

Cj
1 = (〈ϕj(a1,i), ϕj(b1,i), C1,i〉)i∈Ij

(7)

and ϕj : [a2,j, b2,j ] → [0, 1], ϕj(x) =
x−a2,j

b2,j−a2,j
.

P r o o f . Under condition (i) it is easily verified that C1 can be equivalently ex-
pressed as an ordinal sum based on the summand carriers of C2 in the following
way

C1 = (〈a2,j , b2,j, C
j
1〉)j∈J

with Cj
1 defined by Eq. (7). With Corollary 1 and Proposition 4, the proposition

now follows immediately. �

Note that due to Proposition 6, the study of dominance between ordinal sum
conjunctors can be reduced to the study of the dominance of a single ordinally
irreducible conjunctor by some ordinal sum conjunctor.
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5. THE ROLE OF IDEMPOTENT ELEMENTS

5.1. A basic result

Before turning to particular families of ordinal sum conjunctors, we will next discuss
the influence of idempotent elements to the property of dominance. We will denote
the set of idempotent elements of some conjunctor C by I(C), i. e.

I(C) = {x ∈ [0, 1] | C(x, x) = x} .

Due to the construction of an ordinal sum conjunctor C, the endpoints of its sum-
mand carriers belong to its set of idempotent elements.

Proposition 7. If a conjunctor C1 dominates a conjunctor C2, then the following
hold:

(i) I(C2) ⊆ I(C1),

(ii) I(C1) is closed under C2.

P r o o f . The inclusion follows immediately from Proposition 5. Next, suppose
that d1, d2 ∈ I(C1), then

C2(d1, d2) = C2(C1(d1, d1), C1(d2, d2))

≤ C1(C2(d1, d2), C2(d1, d2))

≤ TM(C2(d1, d2), C2(d1, d2)) = C2(d1, d2),

showing that C1(C2(d1, d2), C2(d1, d2)) = C2(d1, d2) and therefore C2(d1, d2) ∈
I(C1). �

This proposition has some interesting consequences for the boundary elements
of the summand carriers. Firstly, all idempotent elements of C2 are idempotent
elements of C1, i. e. either boundary elements themselves, elements of some domain
where C1 acts as TM, or isomorphic transformations of idempotent elements of some
summand operation. Secondly, for any two idempotent elements d1 and d2 of C1

also C2(d1, d2) is an idempotent element of C1. Consequently, if C1 is some ordinal
sum that dominates C2 = TP, resp. C2 = TL, and d ∈ I(C1) then also dn ∈ I(C1),
resp. max(nd − n + 1, 0) ∈ I(C1), for all n ∈ N.

Example 3. Consider a conjunctor C with trivial idempotent elements only, i. e.
I(C) = {0, 1}. We are now interested in constructing ordinal sums C1 with sum-
mands based on C which fulfill the necessary conditions for dominating C2 = C as
expressed by Proposition 7. Clearly, C1 = (〈d, 1, C〉) is a first possibility (see Fig-
ure 2 (a)). Adding one further summand to C1, i. e. building C′

1 = (〈a, d, C〉, 〈d, 1, C〉),
demands that a ≥ C2(d, d), since otherwise C2(d, d) /∈ I(C′

1) (see also Figure 2 (b)).
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Fig. 2. Illustrations to Example 3.

5.2. Applications to some parametric families

To conclude, we consider two families consisting of conjunctors with only one sum-
mand but varying boundary elements. All members of these families are t-norms as
well as copulas. We have opted for these families as they involve TP, resp. TL, only
as summand operation.

5.2.1. A family involving TP

The members of the family of Dubois–Prade t-norms [10] are given by TDP

λ =
(〈0, λ, TP〉) for λ ∈ [0, 1]. Obviously, they are ordinal sums with the product as
single summand operation. The case λ = 0 corresponds to TM, the case λ = 1 to
TP. If λ1 ≤ λ2, then TDP

λ1
≥ TDP

λ2
. Therefore, if TDP

λ1
� TDP

λ2
then λ1 ≤ λ2.

If λ1 = 0 or λ1 = λ2, then the dominance property is trivially fulfilled. Therefore,
suppose that 0 < λ1 < λ2. For better readability we denote TDP

λ1
, resp. TDP

λ2
, by T1,

resp. T2. Suppose that T1 dominates T2. For each Ti, i ∈ {1, 2}, its set of idempotent
elements is given by

I(Ti) = {0} ∪ [λi, 1] .

Due to Proposition 7, it holds that T2(λ1, λ1) ∈ I(T1). However,

0 6= T2(λ1, λ1) = λ2 · TP(λ1

λ2

, λ1

λ2

) = λ1

λ2

· λ1 < λ1

due to the strict monotonicity of TP. This leads to a contradiction.
Consequently, the only dominance relationships in the family of Dubois–Prade t-

norms are TM dominating all other members and self-dominance. Hence, there exists
no triplet of pairwisely different t-norms TDP

λ1
, TDP

λ2
and TDP

λ3
fulfilling TDP

λ1
� TDP

λ2

and TDP

λ2
� TDP

λ3
, implying that the dominance relation is (trivially) transitive, and

therefore a partial order, on this family.

5.2.2. A family involving TL

Similarly, the members of the family of Mayor–Torrens t-norms [18] are given by
TDP

λ = (〈0, λ, TL〉) for λ ∈ [0, 1]. Obviously, they are ordinal sums with TL as single
summand operation. The case λ = 0 corresponds to TM, the case λ = 1 to TL.
Again, TMT

λ1
� TMT

λ2
implies λ1 ≤ λ2.
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If λ1 = 0 or λ1 = λ2, then the dominance property is trivially fulfilled. Therefore,
suppose that 0 < λ1 < λ2. We denote TMT

λ1
, resp. TMT

λ2
, by T1, resp. T2. The sets

of idempotent elements are of the following form

I(Ti) = {0} ∪ [λi, 1] .

Due to Proposition 7, it holds that T2(λ1, λ1) ∈ I(T1). Since T2(λ1, λ1) ≤ λ1,
either T2(λ1, λ1) = 0 or T2(λ1, λ1) = λ1. The latter implies that λ1 ∈ I(T2), a
contradiction. Hence, T2(λ1, λ1) = 0 or equivalently λ1 ≤ λ2

2 . Now choose x such
that λ2

2 < x < λ2

2 + λ1

4

and put u = v = y = x, then T1(T2(x, y), T2(u, v)) = 0 and T2(T1(x, u), T1(y, v)) =
2x − λ2 > 0, a final contradiction.

Therefore, also in the Mayor–Torrens family, there exist no other dominance
relationships than TM dominating all other members and self-dominance.
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Abstract. This paper addresses the relation of dominance on the class
of continuous t-norms with a particular focus on continuous ordinal sum
t-norms. Exactly, in this framework counter-examples to the conjecture
that dominance is not only a reflexive and antisymmetric, but also a
transitive relation could be found. We elaborate the details which have
led to these results and illustrate them by several examples. In addition,
to this original and comprehensive overview, we provide geometrical in-
sight into dominance relationships involving prototypical Archimedean
t-norms, the �Lukasiewicz t-norm and the product t-norm.

1 Introduction

The dominance property was originally introduced within the framework of prob-
abilistic metric spaces [42] and was soon abstracted to operations on an arbitrary
partially ordered set [38]. A probabilistic metric space allows for imprecise dis-
tances: the distance between two objects p and q is characterized by a cumulative
distribution function Fpq : R → [0, 1]. The metric in such spaces is defined in anal-
ogy to the axioms of (pseudo-)metric spaces, the most disputable axiom being
the probabilistic analogue of the triangle inequality. For an important subclass
of probabilistic metric spaces known as Menger spaces the triangle inequality
reads as follows: for any three objects p, q, r and for any x, y ≥ 0 it holds that

Fpr(x + y) ≥ T (Fpq(x), Fqr(y)) , (1)

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 334–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where T : [0, 1]2 → [0, 1] is a t-norm, i.e. a binary operation on the unit interval
which is commutative, associative, increasing in both arguments and which has
neutral element 1.

The dominance property plays an important role in the construction of Carte-
sian products of probabilistic metric spaces, as it ensures that the triangle in-
equality holds for the resulting product space provided it holds for all factor
spaces involved [38,42]. Similarly, it is responsible for the preservation of the
T -transitivity property when building fuzzy equivalence or fuzzy order relations
on a product space, i.e. R : X2 → [0, 1], defined by R(x,y) = A(R1(x1, y1), . . . ,
Rn(xn, yn)) with X =

∏n
i=1 Xi, Ri : X2

i → [0, 1] fuzzy relations on Xi being all
T -transitive, i.e.

T (Ri(x, y), Ri(y, z)) ≤ Ri(x, z)

and A some aggregation operator, or when intersecting such fuzzy relations on a
single space, i.e. R(x, y) = T (R1(x, y), . . . , Rn(x, y)) [2,3,8,32]. The dominance
property was therefore introduced in the framework of aggregation operators
where it enjoyed further development, again due its role in the preservation
of a variety of properties, most of them expressed by some inequality, during
(dis-)aggregation processes (see also [9,29]).

Besides these application points of view, the dominance property turned out
to be an interesting mathematical notion per se. Due to the common neutral
element of t-norms and their commutativity and associativity, the dominance
property constitutes a reflexive and antisymmetric relation on the class of all
t-norms. Whether it is also transitive has been posed as an open question already
in 1983 in [38] and remained unanswered for quite some time. Several particular
families of t-norms have been investigated (see, e.g., [17,34,40]) and supported
the conjecture that the dominance relation would indeed be transitive, either
due to its rare occurrence within the family considered or due to its abundant
occurrence, in accordance with the parameter of the family. Several research
teams participating in the EU COST action TARSKI have been studying various
aspects of the dominance relation over the past few years. Finally, the conjecture
was recently rejected [35]: the dominance relation is not transitive on the class
of continuous t-norms and therefore also not on the class of t-norms in general.
The counterexample was found among continuous ordinal sum t-norms.

In this contribution we discuss the dominance relation on the class of contin-
uous t-norms and elaborate the details which have led to the counterexamples
demonstrating the non-transitivity of the dominance relation in the class of
t-norms. First, we provide a thorough introduction of all the necessary proper-
ties and details about t-norms. We then continue with a brief discussion of the
dominance relation on the class of continuous Archimedean t-norms and provide
geometrical insight in two prototypical cases. Subsequently, we turn to continu-
ous ordinal sum t-norms and particular families of such ordinal sum t-norms. The
present contribution provides a comprehensive and original overview of the state-
of-the-art knowledge of the dominance relation on the class of continuous ordinal
sum t-norms and as such depends on results also published in [17,30,31,35].
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2 Triangular Norms

For the reader’s convenience we briefly summarize basic properties of t-norms
which will be necessary for a thorough understanding of the following parts.
Many of the herein included results (including proofs, further details and refer-
ences) can be found in [18,19,20] or in the monographs [1,17].

2.1 Basic Properties

Triangular norms (briefly t-norms) were first introduced in the context of prob-
abilistic metric spaces [36,38,39], based on some ideas already presented in [24].
They are an indispensable tool for the interpretation of the conjunction in fuzzy
logics [14] and, as a consequence, for the intersection of fuzzy sets [46]. Further,
they play an important role in various further fields like decision making [11,13],
statistics [26], as well as the theories of non-additive measures [21,27,41,45] and
cooperative games [4].

Definition 1. A triangular norm (briefly t-norm) is a binary operation T on
the unit interval [0, 1] which is commutative, associative, increasing and has 1 as
neutral element, i.e. it is a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈
[0, 1]:

(T1) T (x, y) = T (y, x),
(T2) T (x, T (y, z)) = T (T (x, y), z),
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z,
(T4) T (x, 1) = x.

It is an immediate consequence that due to the boundary and monotonicity
conditions as well as commutativity it follows that, for all x ∈ [0, 1], any t-norm
T satisfies

T (0, x) = T (x, 0) = 0, (2)
T (1, x) = x. (3)

Therefore, all t-norms coincide on the boundary of the unit square [0, 1]2.

Example 1. The most prominent examples of t-norms are the minimum TM, the
product TP, the �Lukasiewicz t-norm TL and the drastic product TD (see Figure 1
for 3D and contour plots). They are given by:

TM(x, y) = min(x, y), (4)
TP(x, y) = x · y, (5)
TL(x, y) = max(x + y − 1, 0), (6)

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise.
(7)

Since t-norms are just functions from the unit square into the unit interval, the
comparison of t-norms is done in the usual way, i.e. pointwisely.
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Fig. 1. 3D plots (top) and contour plots (bottom) of the four basic t-norms TM, TP,
TL, and TD (observe that there are no contour lines for TD)

Definition 2. Let T1 and T2 be two t-norms. If T1(x, y) ≤ T2(x, y) for all x, y ∈
[0, 1], then we say that T1 is weaker than T2 or, equivalently, that T2 is stronger
than T1, and we write T1 ≤ T2.

Further, t-norms can be transformed by means of an order isomorphism, i.e.
an increasing [0, 1] → [0, 1] bijection, preserving several properties (like, e.g.,
continuity) of the t-norm involved.

Definition 3. Let T be a t-norm and ϕ an order isomorphism. Then the iso-
morphic transform of T under ϕ is the t-norm Tϕ defined by

Tϕ(x, y) = ϕ−1(T (ϕ(x), ϕ(y))) . (8)

Note that the drastic product TD and the minimum TM are the smallest and
the largest t-norm, respectively. Moreover, they are the only t-norms that are
invariant under arbitrary order isomorphisms.

Let us now focus on the continuity of t-norms.

Definition 4. A t-norm T is continuous if for all convergent sequences (xn)n∈N,
(yn)n∈N ∈ [0, 1]N we have

T
(

lim
n→∞

xn, lim
n→∞

yn

)
= lim

n→∞
T (xn, yn) .

Obviously, the basic t-norms TM, TP and TL are continuous, whereas the dras-
tic product TD is not. Note that for a t-norm T its continuity is equivalent
to the continuity in each component (see also [17,18]), i.e. for any x0, y0 ∈
[0, 1] both the vertical section T (x0, ·) : [0, 1] → [0, 1] and the horizontal section
T (·, y0) : [0, 1] → [0, 1] are continuous functions in one variable.



338 S. Saminger, P. Sarkoci, and B. De Baets

The following classes of continuous t-norms are of particular importance.

Definition 5. (i) A t-norm T is called strict if it is continuous and strictly
monotone, i.e. it fulfills for all x, y, z ∈ [0, 1]

T (x, y) < T (x, z) whenever x > 0 and y < z .

(ii) A t-norm T is called nilpotent if it is continuous and if each x ∈ ]0, 1[ is
a nilpotent element of T , i.e. there exists some n ∈ N such that

T (x, . . . , x︸ ︷︷ ︸
n times

) = 0 .

The product TP is a strict t-norm whereas the �Lukasiewicz t-norm TL is a
nilpotent t-norm. Both of them are Archimedean t-norms, i.e. they fulfill for
all (x, y) ∈ ]0, 1[2 that there exists an n ∈ N such that

T (x, . . . , x︸ ︷︷ ︸
n times

) < y .

It is remarkable that continuous Archimedean t-norms can be divided into just
two subclasses — the nilpotent and the strict t-norms [17,18]. Moreover, since
two continuous Archimedean t-norms are isomorphic if and only if they are
either both strict or both nilpotent, we can immediately formulate the following
proposition (see also [17,18]).

Proposition 1. Let T be a t-norm.

– T is a strict t-norm if and only if it is isomorphic to the product TP.
– T is a nilpotent t-norm if and only if it is isomorphic to the �Lukasiewicz

t-norm TL.

Besides the above introduced properties, idempotent elements play an important
role in the characterization of t-norms.

Definition 6. Let T be a t-norm. An element x ∈ [0, 1] is called an idempotent
element of T if T (x, x) = x. We will further denote by I(T ) the set of all
idempotent elements of T . The numbers 0 and 1 (which are idempotent elements
for each t-norm T ) are called trivial idempotent elements of T , each idempotent
element in ]0, 1[ will be called a non-trivial idempotent element of T .

The set of idempotent elements of the minimum TM equals [0, 1] (actually, TM is
the only t-norm with this property) whereas TP, TL, and TD possess only trivial
idempotent elements.

2.2 Ordinal Sum T-Norms

Ordinal sum t-norms are based on a construction principle for semigroups which
goes back to A.H. Clifford [5] (see also [6,15,28]) based on ideas presented
in [7,16]. It has been successfully applied to t-norms in [12,22,37].
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Definition 7. Let (]ai, bi[)i∈I be a family of non-empty, pairwise disjoint open
subintervals of [0, 1] and let (Ti)i∈I be a family of t-norms. The ordinal sum
T = (〈ai, bi, Ti〉)i∈I is the t-norm defined by

T (x, y) =

{
ai + (bi − ai)Ti( x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2 ,

min(x, y), otherwise.

We will refer to 〈ai, bi, Ti〉 as its summands, to [ai, bi] as its summand carriers,
and to Ti as its summand operations or summand t-norms. The index set I is
necessarily finite or countably infinite. It may also be empty in which case the
ordinal sum is nothing else but TM.

Note that by construction, the set of idempotent elements I(T ) of some ordi-
nal sum T = (〈ai, bi, Ti〉)i∈I contains the set M = [0, 1] \ ⋃

i∈I ]ai, bi[. Moreover,
I(T ) = M if and only if each Ti has only trivial idempotent elements. It is
clear that an ordinal sum t-norm is continuous if and only if all of its summand
t-norms are continuous.

In general, the representation of a t-norm as an ordinal sum of t-norms is not
unique. For instance, for each subinterval [a, b] of [0, 1] we have

TM = (∅) = (〈0, 1, TM〉) = (〈a, b, TM〉) .

This gives rise to the following definition.

Definition 8. A t-norm T that has no ordinal sum representation different from
(〈0, 1, T 〉) is called ordinally irreducible.

Note that each continuous Archimedean t-norm, in particular also TP and TL,
has only trivial idempotent elements and is therefore ordinally irreducible. More-
over, there are no other ordinally irreducible continuous t-norms.

Based on the above information, we can now turn to the representation of
continuous t-norms (see also [17,22,25,38])

Theorem 1. A binary operation on the unit interval is a continuous t-norm if
and only if it is an ordinal sum of continuous Archimedean t-norms.

Therefore, continuous t-norms are either:

– strict, i.e. isomorphic to the product t-norm TP,
– nilpotent, i.e. isomorphic to the �Lukasiewicz t-norm TL,
– the minimum TM itself, i.e. I = ∅, or
– non-trivial ordinal sums with strict or nilpotent summand operations, i.e.

I 	= ∅ and no ]ai, bi[ equals ]0, 1[.
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2.3 The Dominance Property for T-Norms

Let us now focus on the dominance relation on the class of t-norms [38,42,44].

Definition 9. We say that a t-norm T1 dominates a t-norm T2, or equivalently,
that T2 is dominated by T1, and write T1 
 T2, if for all x, y, u, v ∈ [0, 1]

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)) . (9)

Due to the fact that 1 is the common neutral element of all t-norms, dominance
of one t-norm by another t-norm implies their comparability (see also [29]), i.e.
T1 
 T2 implies T1 ≥ T2. Similarly to the ordering of t-norms, any t-norm T
is dominated by itself and by TM, and dominates TD, i.e. for any t-norm T it
holds that

TM 
 T, T 
 T, T 
 TD .

As a consequence we can immediately state that dominance is a reflexive and
antisymmetric relation on the class of all t-norms. We will show later that it is
not transitive, not even on the class of continuous t-norms. Hence, the dominance
relation is not a partial order on the set of all t-norms.

Finally, we mention that a dominance relationship between two t-norms is
preserved under isomorphic transformations [32].

Proposition 2. A t-norm T1 dominates a t-norm T2 if and only if (T1)ϕ dom-
inates (T2)ϕ for any order isomorphism ϕ.

3 Continuous Archimedean T-Norms

3.1 Isomorphic Transformations

The problem we study here is to determine whether a first continuous Archime-
dean t-norm T1 dominates a second such t-norm T2. Since dominance is preserved
under isomorphic transformations, this problem can be transformed into one of
the following prototypical problems. Suppose that T1 
 T2:
– If T1 is nilpotent, then T2 has to be nilpotent as well. In that case, there exist

some order isomorphisms ϕ and ψ such that (T1)ϕ = TL and (T2)ψ = TL

leading to
T1 
 T2 ⇔ (T1)ψ 
 TL ⇔ TL 
 (T2)ϕ .

– If T1 is strict, then T2 can be either strict or nilpotent. In both cases, there
exist order isomorphisms ϕ and ψ such that

T1 
 T2 ⇔ (T1)ψ 
 TL ⇔ TP 
 (T2)ϕ

in case T2 is nilpotent, and
T1 
 T2 ⇔ (T1)ψ 
 TP ⇔ TP 
 (T2)ϕ

in case T2 is strict.

Summarizing, it suffices to investigate the classes of t-norms dominating or being
dominated either by TP or by TL. In the next section, we will provide a geo-
metrical interpretation for these particular cases. Necessary as well as sufficient
conditions for aggregation operators (and therefore also t-norms) dominating
one of these t-norms can be found, e.g., in [29,30,32,43].
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3.2 Geometrical Interpretation

The inequality expressing dominance is difficult to grasp since it concerns four
variables involved in various compositions of mappings. Providing an insightful
geometrical interpretation would be more than welcome. We will present such
an interpretation for the two cases discussed above: t-norms dominating or being
dominated either by TL or by TP.

Note that the inequality expressing dominance trivially holds if at least one
of the arguments equals 0. Hence, we can restrict our attention to arguments
x, y, u, v ∈ ]0, 1] only.

Dominance Relationships Involving TL. Let us consider some t-norm T
which dominates TL, i.e. for all x, y, u, v ∈ [0, 1] we have

T (TL(x, u), TL(y, v)) ≥ TL(T (x, y), T (u, v)) . (10)

For any fixed u, v ∈ ]0, 1], we introduce new variables a = TL(x, u) and b =
TL(y, v) ranging over [0, u] and [0, v], respectively. If a = 0 then x + u − 1 ≤ 0;
similarly, if b = 0 then y + v − 1 ≤ 0. In any case, it follows that T (x, y) +
T (u, v) − 1 ≤ 0 and (10) is satisfied trivially as both sides evaluate to 0. On
the other hand, if a, b > 0 then x and y can be recovered from the expressions
x = 1 − u + a and y = 1 − v + b. Using these new variables, the dominance
inequality is transformed into

T (a, b) ≥ TL(T (1 − u + a, 1 − v + b), T (u, v)) (11)

for all u, v ∈ ]0, 1] and all a ∈ [0, u], b ∈ [0, v]. The right-hand side can be
interpreted geometrically in the following way:

– First, the graph of T (1 − u + a, 1 − v + b) as a function of a and b is nothing
else but a translation of the original graph such that the point (1, 1, 1) is
moved to the point (u, v, 1).

– Using TL to combine this function with the value T (u, v) means that this
translated graph is subsequently translated along the direction of the z-axis
such that the original reference point (1, 1, 1) is now located in the point
(u, v, T (u, v)).

– As a consequence, parts of the resulting surface are now located outside the
unit cube. Due to the definition of TL, these parts are simply truncated by
0, i.e. they are substituted by the corresponding parts of the xy-plane.

The fact that T dominates TL means that this translated surface lies below the
original one, and this for any choice of u, v. The situation in which a t-norm T
is dominated by TL has a similar interpretation, the only difference being that
the translated surface should now be above the original one.

In Fig. 2, this geometrical interpretation is illustrated for the case TM 
 TL.
For any choice of u, v (see Fig. 2 (a)) the box [0, u] × [0, v] × [0, TM(u, v)] is
constructed (see Fig. 2 (b)) and the original graph of TM is translated moving
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Fig. 2. Geometrical interpretation of TM dominating TL

the point (1, 1, 1) to the point (u, v, TM(u, v)) (see Fig. 2 (c)). Then the trans-
lated surface is compared with the original one (see Fig. 2 (d)). One can see
immediately that the new surface lies below the original one for any choice of
u, v.

Dominance Relationships Involving TP. The case of a t-norm T dominating
TP has an even simpler geometrical interpretation. First of all, T 
 TP means
that for all x, y, u, v ∈ [0, 1] it holds

T (xu, yv) ≥ T (x, y)T (u, v) .

For any fixed u, v ∈ ]0, 1], we introduce new variables a = xu and b = yv rang-
ing over [0, u] and [0, v], respectively. Using these new variables, the dominance
inequality is transformed into

T (a, b) ≥ T ( a
u , b

v )T (u, v) (12)

for all u, v ∈ ]0, 1] and all a ∈ [0, u], b ∈ [0, v]. The right-hand side can be
interpreted geometrically in the following way.

The graph of T ( a
u , b

v )T (u, v) as a function of a and b is exactly the graph of
T linearly rescaled in order to fit into the box [0, u] × [0, v] × [0, T (u, v)]. This
rescaling is obviously different for any u, v. The fact that T dominates TP means
that this rescaled graph lies below the original graph. The situation in which
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Fig. 3. Geometrical interpretation of TM dominating TP
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a t-norm T is dominated by TP has again a similar interpretation, the only
difference being again that the rescaled graph should now be above the original
one.

In Fig. 3, this geometrical interpretation is illustrated for the case TM 
 TP.
For any choice of u, v (see Fig. 3 (a)) the box [0, u] × [0, v] × [0, TM(u, v)] is
constructed (see Fig. 3 (b)) and the original graph of TM is rescaled in order to
fit into this box (see Fig. 3 (c)). Then the rescaled surface is compared with the
original one (see Fig. 3 (d)). One can see immediately that the new surface lies
below the original one for any choice of u, v.

4 Continuous Non-Archimedean T-Norms

Let us now focus on dominance involving continuous non-Archimedean t-norms,
i.e. involving non-trivial ordinal sums of continuous Archimedean t-norms.

4.1 Summand-wise Dominance

When studying the dominance relationship between two ordinal sum t-norms,
we have to take into account the underlying structure of the ordinal sums.
In case both ordinal sum t-norms are determined by the same family of non-
empty, pairwise disjoint open subintervals, dominance between the ordinal sum
t-norms is determined by the dominance between all corresponding summand
t-norms [30].

Proposition 3. Consider the two ordinal sum t-norms T1 = (〈ai, bi, T1,i〉)i∈I

and T2 = (〈ai, bi, T2,i〉)i∈I . Then T1 dominates T2 if and only if T1,i dominates
T2,i for all i ∈ I.

4.2 Ordinal Sum T-Norms with Different Summand Carriers

In case the structure of both ordinal sum t-norms is not the same, we are able to
provide some necessary conditions which lead to a characterization of dominance
between ordinal sum t-norms in general. Assume that the ordinal sum t-norms T1

and T2 under consideration are based on two at least partially different families of
summand carriers, i.e. T1 = (〈a1,i, b1,i, T1,i〉)i∈I and T2 = (〈a2,j , b2,j, T2,j〉)j∈J .
W.l.o.g. we can assume that these representations are the finest possible, i.e.
that each summand t-norm is ordinally irreducible.

Since for a continuous t-norm T the existence of a non-trivial idempotent
element d is even equivalent to being representable as an ordinal sum T =
(〈0, d, T ′〉, 〈d, 1, T ′′〉) for some summand t-norms T ′ and T ′′ (see also [17]), it is
indeed reasonable to assume that the representations of two continuous t-norms
T1 = (〈a1,i, b1,i, T1,i〉)i∈I and T2 = (〈a2,j , b2,j, T2,j〉)j∈J are such that there exists
no T1,i, resp. T2,j, with a non-trivial idempotent element d ∈ ]a1,i, b1,i[, resp.
d ∈ ]a2,j, b2,j [.
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Necessary Conditions Due to the Induced Order. Since any t-norm is
bounded from above by TM and dominance implies their comparability we im-
mediately can state the following lemma [30].

Lemma 1. If a t-norm T1 dominates a t-norm T2, then T1(x, y) = TM(x, y)
whenever T2(x, y) = TM(x, y).

Geometrically speaking, if an ordinal sum t-norm T1 dominates an ordinal sum
t-norm T2, then it must necessarily consist of more regions where it acts as
TM than T2. Two such cases are displayed in Fig. 4 (a) and (c). Note that no
dominance relationship between T1 and T2 is possible in a case like illustrated
in Fig. 4 (b).

T1

a1,1 b1,1 a1,2 b1,2 a1,3 b1,3

T2

a2,1 b2,1 a2,2 b2,2

T1

a1,1 b1,1 a1,2 b1,2

T2

a2,1 b2,1 a2,2 b2,2

T1

a1,1 b1,1

T2

a2,1 b2,1 a2,2 b2,2

(a) (b) (c)

Fig. 4. Examples of two ordinal sum t-norms T1 and T2 differing in their summand
carriers

Therefore, we can immediately state the following corollary [30].

Corollary 1. Consider the two ordinal sum t-norms T1 = (〈a1,i, b1,i, T1,i〉)i∈I

and T2 = (〈a2,j , b2,j , T2,j〉)j∈J with ordinally irreducible summand t-norms only.
If T1 dominates T2 then

∀i ∈ I : ∃j ∈ J : [a1,i, b1,i] ⊆ [a2,j , b2,j] . (13)

Note that each [a2,j, b2,j ] can contain several or even none of the summand
carriers [a1,i, b1,i] (see also Fig. 4 (a) and (c)). Hence, for each j ∈ J we can
consider the following subset of I:

Ij = {i ∈ I | [a1,i, b1,i] ⊆ [a2,j, b2,j ]} . (14)

Based on these notions and due to Proposition 3, dominance between two
ordinal sum t-norms can be reformulated in the following way [30].
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Proposition 4. Consider two ordinal sum t-norms T1 = (〈a1,i, b1,i, T1,i〉)i∈I

and T2 = (〈a2,j , b2,j, T2,j〉)j∈J with ordinally irreducible summand operations
only. Then T1 dominates T2 if and only if

(i) ∪j∈JIj = I,
(ii) T j

1 
 T2,j for all j ∈ J with

T j
1 = (〈ϕj(a1,i), ϕj(b1,i), T1,i〉)i∈Ij (15)

and ϕj : [a2,j , b2,j] → [0, 1], ϕj(x) = x−a2,j

b2,j−a2,j
.

Note that due to Proposition 4, the study of dominance between ordinal sum t-
norms can be reduced to the study of dominance of a single ordinally irreducible
t-norm by some ordinal sum t-norm. In particular, if all ordinal sum t-norms
involved are just based on a single t-norm T ∗ as summand operation, it suffices
to investigate the dominance of T ∗ by ordinal sum t-norms T = (〈ai, bi, T

∗〉)i∈I .

Example 2. Let us now briefly elaborate the three different cases of ordinal sum
t-norms displayed in Fig. 4 in more detail :

– Consider the ordinal sum t-norms T1 and T2 as displayed in Fig. 4 (a). Due
to Proposition 3, T1 
 T2 is equivalent to showing that T1,1 
 T2,1 and
T 2

1 
 T2,2, where T 2
1 is the ordinal sum t-norm defined by

T 2
1 = (〈ϕ2(a1,2), ϕ2(b1,2), T1,2〉, 〈ϕ2(a1,3), ϕ2(b1,3), T1,3〉) ,

with ϕ2 : [a2,2, b2,2] → [0, 1], ϕ2(x) = x−a2,2
b2,2−a2,2

.
– Having a look at the ordinal sum t-norms T1 and T2 as displayed in Fig. 4 (b),

we immediately see that [a1,1, b1,1] � [a2,1, b2,1] and vice versa, so that

T1(x, y) = TM(x, y) 	= T2(x, y) for some x, y ∈ [a2,1, a1,1] ,

T2(x, y) = TM(x, y) 	= T1(x, y) for some x, y ∈ [b2,1, b1,1] .

Hence, due to Lemma 1, in this case a dominance relationship is impossible.
– On the other hand, for the ordinal sum t-norms T1 and T2 as displayed

in Fig. 4 (c), the dominance of T2 by T1 is still possible. Again, due to
Proposition 3, T1 
 T2 is equivalent to T 2

1 
 T2,2, where T 2
1 is the ordinal

sum t-norm defined by

T 2
1 = (〈ϕ2(a1,1), ϕ2(b1,1), T1,1〉) ,

with ϕ2 : [a2,2, b2,2] → [0, 1], ϕ2(x) = x−a2,2
b2,2−a2,2

.

Necessary Conditions Due to Idempotent Elements. The idempotent
elements play an important role in dominance relationships, as is expressed by
the following proposition [30].

Proposition 5. If a t-norm T1 dominates a t-norm T2, then the following
observations hold:

(i) I(T1) is closed under T2;
(ii) I(T2) ⊆ I(T1).
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Fig. 5. Illustrations to Example 3

Note that for the representation of a continuous ordinal sum t-norm T = (〈ai, bi,
Ti〉)i∈I in terms of ordinally irreducible summand t-norms Ti, the set of idempo-
tent elements is given by I(T ) = [0, 1] \ ⋃

i∈I ]ai, bi[. Therefore, this proposition
has some interesting consequences for the boundary elements of the summand
carriers. Firstly, all idempotent elements of T2 are idempotent elements of T1, i.e.
either endpoints of summand carriers of T1 or elements of some domain where T1

acts as TM. Secondly, for any idempotent elements d1, d2 of T1 we know that also
T2(d1, d2), is an idempotent element of T1. Consequently, if T1 is some ordinal
sum t-norm that dominates T2 = TP, resp. T2 = TL, and d ∈ I(T1) then also
dn ∈ I(T1), resp. max(nd − n + 1, 0) ∈ I(T1), for all n ∈ N.

Example 3. Consider a t-norm T ∗ with trivial idempotent elements only, i.e.
I(T ∗) = {0, 1}. We are now interested in constructing ordinal sum t-norms T1

with summand operations T ∗ which fulfill the necessary conditions for dom-
inating T2 = T ∗ as expressed by Proposition 5. Clearly, T1 = (〈d, 1, T ∗〉) is
a first possibility (see Fig. 5 (a)). Adding one further summand to T1, i.e.
building T ′1 = (〈a, d, T ∗〉, 〈d, 1, T ∗〉), demands that a ≥ T2(d, d), since otherwise
T2(d, d) /∈ I(T ′1) (see also Fig. 5 (b)).

5 Particular Continuous Ordinal Sum T-Norms

We will now focus on particular ordinal sum t-norms with either the �Lukasie-
wicz t-norm or the product t-norm as only summand operation and study the
dominance relationship between such t-norms.

5.1 Ordinal Sum T-Norms Based on TL

According to Proposition 5, the set of idempotent elements of a t-norm T1 domi-
nating a t-norm T2 should be closed under T2 and should contain the idempotent
elements of T2. If we restrict our attention to ordinal sum t-norms with TL as
only summand operation, this proposition can be turned into a characteriza-
tion [33].
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Proposition 6. Consider two ordinal sum t-norms T1 and T2 based on TL, i.e.
T1 = (〈ai, bi, TL〉)i∈I and T2 = (〈aj , bj , TL〉)j∈J . Then T1 dominates T2 if and
only if the following two conditions hold:

(i) I(T1) is closed under T2;
(ii) I(T2) ⊆ I(T1).

Now consider the particular case T2 = TL. Clearly, the second condition is triv-
ially fulfilled and can be omitted. In order to be able to apply the above propo-
sition to this case, we need to understand what it means for a set to be closed
under TL [33].

Lemma 2. A subset S ⊆ [0, 1] is closed under TL if and only if the set

1 − S = {1 − x | x ∈ S}

is closed under truncated addition, i.e. whenever a, b ∈ 1−S also min(a+ b, 1) ∈
1 − S.

Consequently, an ordinal sum t-norm T based on TL dominates TL if and only
if the set of its complemented idempotent elements is closed under truncated
addition. Let us apply this insight to some particular families of ordinal sum
t-norms based on TL.

The Mayor-Torrens Family. The Mayor-Torrens t-norms form a family pa-
rameterized by a single real parameter λ ∈ [0, 1] [23]:

TMT
λ = (〈0, λ, TL〉) .

These t-norms are ordinal sums based on TL with a single summand located in
the lower left corner of the unit square (see also Fig. 6 (a)). In particular, it
holds that TMT

0 = TM and TMT
1 = TL. Note that TMT

λ1
≥ TMT

λ2
if and only if

λ1 ≤ λ2. Hence, TMT
λ1


 TMT
λ2

implies λ1 ≤ λ2.
If λ1 = 0 or λ1 = λ2, then the dominance relationship trivially holds. Suppose

that 0 < λ1 < λ2, then TMT
λ1

dominates TMT
λ2

if and only if TMT
λ∗ = (〈0, λ∗, TL〉)

dominates TL with λ∗ = λ1
λ2

(see also Proposition 4). The set of idempotent
elements of TMT

λ∗ is
I(TMT

λ∗ ) = {0} ∪ [λ∗, 1]

and therefore
1 − I(TMT

λ∗ ) = [0, 1 − λ∗] ∪ {1} .

For a = 1 − λ∗ and b = min(a, 1−a
2 ) it holds that a, b ∈ 1 − I(TMT

λ∗ ), a + b < 1
but a + b 	∈ 1 − I(TMT

λ∗ ). According to Lemma 2 and Proposition 6, there exist
no dominance relationships within the Mayor-Torrens family other than TM

dominating all other members and self-dominance. Hence, there exists no triplet
of pairwisely different t-norms TMT

λ1
, TMT

λ2
and TMT

λ3
fulfilling TMT

λ1

 TMT

λ2
and

TMT
λ2


 TMT
λ3

, implying that the dominance relation is (trivially) transitive, and
therefore a partial order, on this family. The Hasse-diagram of ((TMT

λ )λ∈[0,1],�)
is displayed in Fig. 6 (b).
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TM = TMT
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Fig. 6. Examples of Mayor-Torrens t-norms, Hasse-diagram of ((TMT
λ )λ∈[0,1], �)

The Modified Mayor-Torrens Family. In this paragraph, we consider the
family of t-norms parameterized by a single real parameter μ ∈ [0, 1]:

Tμ = (〈μ, 1, TL〉) .

Contrary to the Mayor-Torrens family, the summands are located in the upper
right corner of the unit square. Hence, T0 = TL and T1 = TM (see also Fig. 7 (a)).
Note that Tμ1 ≥ Tμ2 if and only if μ1 ≥ μ2. Hence, Tμ1 
 Tμ2 implies μ1 ≥ μ2.

If μ1 = 1 or μ1 = μ2, then the dominance relationship trivially holds. Assume
that μ2 < μ1 < 1, then Tμ1 dominates Tμ2 if and only if Tμ∗ dominates TL with
μ∗ = μ1−μ2

1−μ2
. The set of idempotent elements of Tμ∗ is

I(Tμ∗) = [0, μ∗] ∪ {1}

and therefore
1 − I(Tμ∗) = {0} ∪ [1 − μ∗, 1] .

One easily verifies that the latter set is closed under truncated addition. Hence,
within the modified family, it holds that Tμ1 
 Tμ2 whenever μ1 ≥ μ2. In other
words, this family is totally ordered by the dominance relation. The Hasse-
diagram of ((Tμ)μ∈[0,1],�) is displayed in Fig. 7 (b).

Violation of Transitivity. We can now provide counterexamples to the con-
jecture that the dominance relation is transitive on the class of t-norms by con-
sidering ordinal sum t-norms based on TL with two summands. More specifically,
we consider the t-norm Tλ = (〈0, λ, TL〉, 〈λ, 1, TL〉) with parameter λ ∈ [0, 1]. We
will show that for any λ ∈

]
0, 1

2

]
it holds that

TMT
λ 
 Tλ, Tλ 
 TL, TMT

λ 	
 TL (16)

violating the transitivity of the dominance relation.
First, both TMT

λ and Tλ can be understood as ordinal sum t-norms with
the same structure: TMT

λ can be written as (〈0, λ, TL〉, 〈λ, 1, TM〉), hence the
common summand carriers are [0, λ] and [λ, 1] (see Fig. 8).
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TL

TL

TM = T1

TL = T0
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Fig. 7. Examples modified Mayor-Torrens t-norms, Hasse-diagram of ((Tμ)μ∈[0,1], �)

Since TL 
 TL and TM 
 TL, Proposition 3 implies that TMT
λ 
 Tλ for any

λ ∈ [0, 1]. Second, the set of idempotent elements of Tλ is given by I(Tλ) =
{0, λ, 1} and thus

1 − I(Tλ) = {0, 1 − λ, 1} .

This set is closed under truncated addition if and only if 1 − λ ≥ 1
2 . Therefore,

according to Lemma 2 and Proposition 6, it holds that Tλ dominates TL if and
only if λ ∈ [0, 1

2 ]. Finally, in the Mayor-Torrens family it does not hold that
TMT

λ 
 TL = TMT
0 for any λ ∈ ]0, 1[. Combining all of the above shows that

(16) holds if and only if λ ∈
]
0, 1

2

]
.

0 < λ ≤ 1
2 1

TL

0 < λ ≤ 1
2 1

TL

TL

0 1

TL

Fig. 8. Three ordinal sum t-norms based on TL violating the transitivity of the domi-
nance relation. From left to right: TMT

λ , Tλ and TL. Violation of transitivity occurs if
and only if λ ∈

�
0, 1

2

�
.

5.2 Ordinal Sum T-Norms Based on TP

We now turn to ordinal sum t-norms with TP as only summand operation and
start again with a family of t-norms with a single summand in the lower left
corner of the unit square.
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The Dubois-Prade Family. The Dubois-Prade t-norms form a family para-
meterized by a single real parameter λ ∈ [0, 1] [10]:

TDP
λ = (〈0, λ, TP〉) .

The case λ = 0 corresponds to TM, the case λ = 1 to TP. Note that TDP
λ1

≥ TDP
λ2

if and only if λ1 ≤ λ2. Hence, TDP
λ1


 TDP
λ2

implies λ1 ≤ λ2.
If λ1 = 0 or λ1 = λ2, then the dominance relationship trivially holds. There-

fore, suppose that 0 < λ1 < λ2. The set of idempotent elements of TDP
λ1

is given
by

I(TDP
λ1

) = {0} ∪ [λ1, 1] .

It then holds that

0 	= TDP
λ2

(λ1, λ1) = λ2 · TP(λ1
λ2

, λ1
λ2

) = λ1
λ2

· λ1 < λ1

due to the strict monotonicity of TP. Hence, TDP
λ2

(λ1, λ1) /∈ I(TDP
λ1

). According
to Proposition 5, TDP

λ1
does not dominate TDP

λ2
.

Consequently, the only dominance relationships in the Dubois-Prade family
are TM dominating all other members and self-dominance. The dominance rela-
tion is again (trivially) transitive, and therefore a partial order, on this family
(see Fig. 9).

0 λ1 ≤ λ2 1

TP

TP

. . .

TM = TDP
0

(a) (b)

Fig. 9. Examples of Dubois-Prade t-norms, Hasse-diagram of ((TDP
λ )λ∈[0,1], �)

In contrast to dominance between ordinal sum t-norms based on TL, dominance
between ordinal sum t-norms based on TP is not fully understood. The following
lemma provides one way of constructing an ordinal sum t-norm based on TP

dominating TP. It follows immediately from Proposition 5.

Lemma 3. Let λ ∈ ]0, 1[ and m ∈ N. Then the ordinal sum t-norm Tλ,m defined
as

Tλ,m = (〈λn, λn−1, TP〉)n=1,2,...,m

dominates TP.

This simple lemma allows to construct interesting examples.
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The Modified Dubois-Prade Family. Similarly as for the Mayor-Torrens
family, we propose a modification of the Dubois-Prade family, by locating the
single summand in the upper right corner of the unit square. Explicitly, we
consider the family of t-norms parameterized by a single real parameter λ ∈ [0, 1]:

Tλ = (〈λ, 1, TP〉) .

Note that these t-norms are special cases of Lemma 3 as Tλ = Tλ,1. In particular,
T0 = TP and T1 = TM. Note that Tλ1 ≥ Tλ2 if and only if λ1 ≥ λ2. Hence,
Tλ1 
 Tλ2 implies λ1 ≥ λ2.

If λ1 = 1 or λ1 = λ2, then the dominance relationship again trivially holds.
Moreover, due to Lemma 3, the dominance relationship also holds if λ2 = 0, i.e.
Tλ1 
 T0. Consider the case 0 < λ2 < λ1 < 1, then Tλ1 dominates Tλ2 if and
only if (〈λ1−λ2

1−λ2
, 1, TP〉) dominates TP. Thanks to Lemma 3, it then follows that

the modified Dubois-Prade family is totally ordered by the dominance relation
(see Fig. 10 (b)).

0 λ2 ≤ λ1 1

TP

TP

TM = T1

TP = T0

(a) (b)

Fig. 10. Examples modified Dubois-Prade t-norms, Hasse-diagram of ((Tλ)λ∈[0,1], �)

Violation of Transitivity. Also ordinal sum t-norms based on TP allow us to
construct a counterexample demonstrating the non-transitivity of the dominance
relation. Consider the ordinal sum t-norms T1 = (〈1

4 , 1
2 , TP〉, 〈3

4 , 1, TP〉) and T2 =
T 1

2 ,2 (see Lemma 3). It then holds that

T1 
 T2, T2 
 TP, T1 	
 TP

violating the transitivity of the dominance relation (see Fig. 11).
Note that the t-norm T1 can also be written as T1 = (〈1

4 , 1
2 , TP〉, 〈1

2 , 1, T ∗〉)
with T ∗ the member of the modified Dubois-Prade family with parameter λ =
1
2 . Using Proposition 3 and the dominance relationships within the modified
Dubois-Prade family, it follows immediately that T1 
 T2. The dominance rela-
tionship T2 
 TP is an immediate consequence of Lemma 3. Finally, we consider
the set of idempotent elements of T1:

I(T1) =
[
0, 1

4

]
∪

[
1
2 , 3

4

]
.
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0 1
4

1
2

3
4 1

TP

TP

0 1
4

1
2 1

TP

TP

0 1

TP

Fig. 11. Three ordinal sum t-norms based on TP violating the transitivity of the dom-
inance relation

It holds that 5
8 ∈ I(T1), while

TP(5
8 , 5

8 ) = 25
64 	∈ I(T1) .

Proposition 5 then implies that T1 does not dominate TP.

6 Final Remarks

The dominance relation is a reflexive and antisymmetric relation on the class of
t-norms. That it is not transitive and therefore not a partial order was illustrated
by several examples whereas the particular role of ordinal sums dominating either
the �Lukasiewicz t-norm or the product t-norm is remarkable. Note that by the
isomorphism property of dominance these examples can be transformed into
counterexamples involving arbitrary nilpotent resp. strict t-norms. Properties
related to idempotent elements and to the induced order heavily determine the
occurrence of dominance within particular families of t-norms as shown by the
parameterized families in the last section.

Acknowledgement

The support of this work by the EU COST Action 274 (TARSKI: Theory and
Applications of Relational Structures as Knowledge Instruments) is gratefully
acknowledged. The second author was also supported by the grants VEGA
1/3012/06, VEGA 1/2005/05 and APVT-20-046402.

References

1. C. Alsina, M. Frank, and B. Schweizer. Associative Functions: Triangular Norms
and Copulas. World Scientific Publishing Company, Singapore, 2006.

2. U. Bodenhofer. Representations and constructions of similarity-based fuzzy order-
ings. Fuzzy Sets and Systems, 137(1):113–136.



The Dominance Relation on the Class of Continuous T-Norms 353

3. U. Bodenhofer. A Similarity-Based Generalization of Fuzzy Orderings, volume C 26
of Schriftenreihe der Johannes-Kepler-Universität Linz. Universitätsverlag Rudolf
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14. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-
drecht, 1998.

15. K. H. Hofmann and J. D. Lawson. Linearly ordered semigroups: Historic origins
and A. H. Clifford’s influence. volume 231 of London Math. Soc. Lecture Notes,
pages 15–39. Cambridge University Press, Cambridge, 1996.
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It is well known that dominance between strict t-norms is closely related to the
Mulholland inequality, which can be seen as a generalization of the Minkowski inequality.
However, strict t-norms constitute only one part of the class of continuous Archimedean
t-norms, the basic elements from which all continuous t-norms are composed. In this
paper, dominance between continuous Archimedean t-norms is shown to be related
to a generalization of the Mulholland inequality. We provide sufficient and necessary
conditions for its fulfillment.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In 1950, Mulholland presented a generalization of the Minkowski inequality, which later on became known as the Mulhol-
land inequality [13]. In the same contribution, he provided a sufficient condition for its fulfillment by a continuous function
that is strictly increasing on its domain. In 1984, Tardiff demonstrated that this inequality plays an essential role in the
investigation of dominance between strict triangular norms (t-norms for short) and provided a different sufficient condi-
tion [24]. In 2002, Jarczyk and Matkowski clarified the relationship between the two sufficient conditions, showing that
Tardiff’s condition implies that of Mulholland [5].

On the other hand, the dominance relation was originally introduced in the framework of probabilistic metric spaces [22]
and was soon abstracted to operations on a partially ordered set (see, e.g. [20]). The dominance relation, in particular
between t-norms, plays a profound role in various topics, such as the construction of Cartesian products of probabilistic
metric and normed spaces [11,20,22], the construction of many-valued equivalence relations [2,3,25] and many-valued order
relations [1], as well as in the preservation of various properties during (dis-)aggregation processes in flexible querying,
preference modelling and computer-assisted assessment [2,4,14,16]. These applications instigated the study of the dominance
relation in the broader context of aggregation operators [12,14,16].

The dominance relation is an interesting mathematical notion per se. As it constitutes a reflexive and antisymmetric
relation on the class of t-norms, and counterexamples for its transitivity were not readily found, it remained an intriguing
open problem [7,18,20,21,24] for more than 20 years whether or not it was an order relation. Only recently the question was
answered to the negative [17,19]. However, due to its relevance in applications, it is still of interest to determine whether
or not the dominance relation establishes an order relation on some subclasses of t-norms. Of particular importance are the
continuous Archimedean t-norms, as they are the basic elements of which all continuous t-norms are composed. Therefore,

* Corresponding author.
E-mail addresses: susanne.saminger-platz@jku.at (S. Saminger-Platz), bernard.debaets@ugent.be (B. De Baets), hans.demeyer@ugent.be (H. De Meyer).

0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.03.045
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establishing sufficient conditions for dominance between continuous Archimedean t-norms is of interest and constitutes the
main goal of our contribution.

After some brief preliminaries on t-norms, we demonstrate the close relationship between dominance between contin-
uous Archimedean t-norms and a generalization of the Mulholland inequality. A short survey on sufficient conditions for
continuous functions which are strictly increasing on the whole domain is followed by appropriate sufficient and neces-
sary conditions in the more general case. This provides the basis for the investigation of dominance between continuous
Archimedean t-norms in the last section.

2. Continuous Archimedean t-norms

We briefly summarize some basic properties of t-norms for a thorough understanding of this paper (see, e.g. [6–10]).

Definition 1. A t-norm T : [0,1]2 → [0,1] is a binary operation on the unit interval that is commutative, associative, increas-
ing and has 1 as neutral element.

Well-known examples of t-norms are the minimum TM , the product TP and the Łukasiewicz t-norm TL defined by
TM(u, v) = min(u, v), TP(u, v) = u · v and TL(u, v) = max(u + v − 1,0).

Since t-norms are just functions from the unit square to the unit interval, their comparison is done pointwisely: T1 � T2
if T1(u, v) � T2(u, v) for all u, v ∈ [0,1], expressed as “T1 is weaker than T2” or “T2 is stronger than T1.” The minimum TM
is the strongest of all t-norms. Furthermore, it holds that TP � TL .

A continuous t-norm T is Archimedean if and only if for all u ∈ ]0,1[ it holds that T (u, u) < u. The class of continuous
Archimedean t-norms can be partitioned into two subclasses: the class of strict t-norms, which are continuous and strictly
increasing, and the class of nilpotent t-norms, which are continuous and fulfill that for each u ∈ ]0,1[ there exists some n ∈ N
such that

T (u, . . . , u︸ ︷︷ ︸
n times

) = 0.

The product TP is strict, whereas the Łukasiewicz t-norm TL is nilpotent.
Note that for a strict t-norm T it holds that T (u, v) > 0 for all u, v ∈ ]0,1], while for a nilpotent t-norm T it holds that

for any u ∈ ]0,1[ there exists some v ∈ ]0,1[ such that T (u, v) = 0 (each u ∈ ]0,1[ is a so-called zero divisor). Therefore, for
a nilpotent t-norm T1 and a strict t-norm T2 it can never hold that T1 � T2.

Of particular interest in the discussion of continuous Archimedean t-norms is the notion of an additive generator.

Definition 2. An additive generator of a continuous Archimedean t-norm T is a continuous, strictly decreasing function
t : [0,1] → [0,∞] which satisfies t(1) = 0 such that for all u, v ∈ [0,1] it holds that

T (u, v) = t(−1)
(
t(u) + t(v)

)
(1)

with

t(−1)(u) = t−1(min
(
t(0), u

))
(2)

the pseudo-inverse of the decreasing function t .

An additive generator is uniquely determined up to a positive multiplicative constant. Any additive generator of a strict
t-norm satisfies t(0) = ∞, while that of a nilpotent t-norm satisfies t(0) < ∞. In the case of strict t-norms, the pseudo-
inverse t(−1) of an additive generator t coincides with its standard inverse t−1. In any case, the following relationships
between an additive generator t and its pseudo-inverse t(−1) hold

t ◦ t(−1)
∣∣
Ran(t) = idRan(t) and t(−1) ◦ t = id[0,1]. (3)

3. Dominance and related inequalities

Just as triangular norms, the dominance relation finds its origin in the field of probabilistic metric spaces [20,22]. It was
originally introduced for associative operations (with common neutral element) on a partially ordered set [20], and has been
further investigated for t-norms [15,17–19,21,24] and aggregation operators [12,14,16]. We state the definition for t-norms
only.

Definition 3. Consider two t-norms T1 and T2. We say that T1 dominates T2 (or T2 is dominated by T1), denoted by
T1 � T2, if for all x, y, u, v ∈ [0,1] it holds that

T1
(
T2(x, y), T2(u, v)

)
� T2

(
T1(x, u), T1(y, v)

)
. (4)
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Note that any t-norm is dominated by itself and by TM . Since all t-norms have neutral element 1, dominance between
two t-norms implies their comparability: T1 � T2 implies T1 � T2. The converse does not hold, not even for strict t-
norms [24]. Since for a nilpotent t-norm T1 and a strict t-norm T2, it cannot hold that T1 � T2, it also cannot hold that
T1 � T2. Therefore, for a continuous Archimedean t-norm T1 and a strict t-norm T2, T1 � T2 implies that also T1 is strict.

The dominance relation between two continuous Archimedean t-norms can be expressed in terms of their generators.
This was shown for strict t-norms in [24] and is generalized below.

Theorem 1. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . Then T1 dominates T2 if
and only if the function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞] fulfills for all a,b, c,d ∈ [0, t2(0)]
h(−1)

(
h(a) + h(c)

) + h(−1)
(
h(b) + h(d)

)
� h(−1)

(
h(a + b) + h(c + d)

)
(5)

with h(−1) : [0,∞] → [0,∞] the pseudo-inverse of the increasing function h, given by h(−1) = t2 ◦ t(−1)
1 .

Proof. The case of two strict t-norms T1 and T2 was treated by Tardiff [24]. Therefore, we suppose that at least one of the
t-norms involved is nilpotent.

Note also that (4) is trivially fulfilled when 0 ∈ {x, y, u, v}. Hence, the verification of (5) can be restricted to a,b, c,d ∈
[0, t2(0)[ only.

(i) Suppose first that T1 � T2. Expressing (4) in terms of generators and applying the decreasing function t2 to both
sides leads to

h(−1)
[
h
(
t2(x) + t2(y)

) + h
(
t2(u) + t2(v)

)]
� t2 ◦ t(−1)

2

[
h(−1)

(
t1(x) + t1(u)

) + h(−1)
(
t1(y) + t1(v)

)]
,

for all x, y, u, v ∈ [0,1]. Consider a,b, c,d ∈ [0, t2(0)], then the continuity of t2 implies the existence of x = t−1
2 (a) = t(−1)

2 (a),

y = t−1
2 (b) = t(−1)

2 (b), u = t−1
2 (c) = t(−1)

2 (c), v = t−1
2 (d) = t(−1)

2 (d). It then follows that

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2

[
h(−1)

(
h(a) + h(c)

) + h(−1)
(
h(b) + h(d)

)]
.

Denote K = h(−1)(h(a) + h(c)) + h(−1)(h(b) + h(d)). If K � t2(0), then

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2 (K ) = t2 ◦ t(−1)
2 ◦ t2(0) = t2(0) � K .

Otherwise, it holds that

h(−1)
(
h(a + b) + h(c + d)

)
� t2 ◦ t(−1)

2 (K ) = t2 ◦ t−1
2 (K ) = K .

This shows that (5) is fulfilled for all a,b, c,d ∈ [0, t2(0)].
(ii) Conversely, suppose that h fulfills (5) for all a,b, c,d ∈ [0, t2(0)], then

t2 ◦ t(−1)
1

(
t1 ◦ t(−1)

2 (a) + t1 ◦ t(−1)
2 (c)

) + t2 ◦ t(−1)
1

(
t1 ◦ t(−1)

2 (b) + t1 ◦ t(−1)
2 (d)

)
� t2 ◦ t(−1)

1

(
t1 ◦ t(−1)

2 (a + b) + t1 ◦ t(−1)
2 (c + d)

)
.

Consider x, y, u, v ∈ [0,1] and let a = t2(x), b = t2(y), c = t2(u) and d = t2(v). It then follows that

t2 ◦ t(−1)
1

(
t1(x) + t1(u)

) + t2 ◦ t(−1)
1

(
t1(y) + t1(v)

)
� t2 ◦ t(−1)

1

(
t1 ◦ t(−1)

2

(
t2(x) + t2(y)

) + t1 ◦ t(−1)
2

(
t2(u) + t2(v)

))
.

Applying the decreasing function t(−1)
2 to both sides leads to

T2
(
T1(x, u), T1(y, v)

)
� T1

(
T2(x, y), T2(u, v)

)
.

Hence, T1 dominates T2. �
4. The Mulholland inequality

Using the notations of Theorem 1, if T1 and T2 are strict, then t2(0) = ∞, h is strictly increasing and thus h(−1) = h−1.
Inequality (5) then simplifies to

h−1(h(a) + h(c)
) + h−1(h(b) + h(d)

)
� h−1(h(a + b) + h(c + d)

)
, (6)

for all a,b, c,d ∈ [0,∞[ (the inequality is trivially fulfilled when ∞ ∈ {a,b, c,d}). This inequality is known as the Mulholland
inequality and is a generalization of the Minkowski inequality [13].

It is remarkable that functions h fulfilling (6) have been investigated independently from the context of dominance
[5,13,23,24]. A brief overview of the most important findings is given next.

Proposition 2. (See [13].) Consider a continuous, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h fulfills the
Mulholland inequality (6), then it is convex on ]0,∞[.
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Proposition 3. (See [13].) Consider a continuous, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h is convex on
]0,∞[ and log◦h ◦ exp is convex on ]−∞,∞[, then h fulfills the Mulholland inequality (6).

Proposition 4. (See [24].) Consider a differentiable, strictly increasing function h : [0,∞[ → [0,∞[ such that h(0) = 0. If h is convex
on ]0,∞[ and log◦h′ ◦ exp is convex on ]−∞,∞[, then h fulfills the Mulholland inequality (6).

It can be shown that for a continuous function f : [0,∞[ → [0,∞[ such that f (]0,∞[) ⊆ ]0,∞[, it holds that log ◦ f ◦exp
is convex on ]−∞, log(t)[, with t ∈ ]0,∞[, if and only if f fulfills

f (
√

xy ) �
√

f (x) f (y) (7)

for all x, y ∈ ]0, t[. The latter condition is referred to as the geometric convexity of f on ]0, t[ (geo-convexity for short); if
f (0) = 0, then the geo-convexity holds on [0, t[. Moreover, if f is increasing, then the convexity of log◦ f on ]0, t[, called
log-convexity of f , implies its geo-convexity. Jarczyk and Matkowski [5] have investigated the relationship between the
geo-convexity of a function and that of its derivative.

Proposition 5. (See [5].) Consider a differentiable function f : ]0,∞[ → ]0,∞[ such that limx→0 f (x) = 0 and f ′(x) > 0 for all
x ∈ ]0,∞[. If f ′ is geo-convex, then so is f .

Combining the above results leads to the following relationships between the sufficient conditions on h for the fulfillment
of the Mulholland inequality:

h is convex, fulfills h(0) = 0, and . . .

h′ is geo-convex ⇐ h′ is log-convex

⇓
h is geo-convex ⇐ h is log-convex

⇓
h fulfills (6)

5. A generalization of the Mulholland inequality

In this section, we aim at a generalization of the results of Mulholland and Tardiff in order to guarantee their applicability
to the investigation of dominance between two continuous Archimedean t-norms.

5.1. A first sufficient condition

Theorem 6. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0;
(h4) h is convex on ]0, t[;
(h5) h is geo-convex on ]0, t[.

Define the functions g : [0,∞] → [0,∞] and H : [0,∞]2 → [0,∞] by

g(x) :=
{

h−1(x), if x ∈ [0,h(t)],
t, otherwise,

(8)

H(x, y) := g
(
h(x) + h(y)

)
. (9)

Then the following inequality holds for all a,b, c,d ∈ [0,∞]
H(a + b, c + d) � H(a, c) + H(b,d). (10)

Remark 1. Clearly, g is continuous and increasing. Also H is continuous in each argument and increasing. Obviously, it holds
that

H(t, x) = H(x, t) = t, for all x ∈ [0,∞], (11)

H(0, x) = H(x,0) = x, for all x ∈ [0, t]. (12)
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Further, the convexity of h on ]0, t[ is equivalent to the concavity of g on ]0,h(t)[. Since h is increasing and continuous on
[0, t], its convexity on ]0, t[ implies its convexity on [0, t]. As argued before, the geo-convexity of h on ]0, t[ is equivalent to
the convexity of log◦h ◦ exp on ]−∞, log(t)[, which in its turn is equivalent to the concavity of the function log◦ g ◦ exp on
]−∞, log(h(t))[. It is easy to show that in these cases, it also holds that g is concave on ]0,∞[ and log◦ g ◦ exp is concave
on ]−∞,∞[.

Inspired by Mulholland [13], we introduce another function that will be essential in our proof.

Lemma 7. Under the assumptions of Theorem 6, define the function ψ : [0, t] → [0,∞] by

ψ(x) :=
{ h(x)

x , if x > 0,

limy→0+ h(y)
y , if x = 0.

(13)

Then ψ is increasing on [0, t].

Proof. Note that the function ψ is strictly positive on ]0, t] and continuous on [0, t]. Consider 0 < x < x + ε < t , then we
need to show that ψ(x) � ψ(x + ε). Let α = ε

x+ε and β = 1 − α, then the convexity of h on [0, x + ε] implies that

h
(
β(x + ε)

)
� αh(0) + βh(x + ε) = βh(x + ε),

which can be rewritten as h(x) � x
x+ε h(x + ε), and hence ψ(x) � ψ(x + ε). The continuity of ψ then implies that it is

increasing on [0, t]. �
We now turn to the proof of Theorem 6.

Proof of Theorem 6. The proof consists of several cases.

(1) At least one of a,b, c,d belongs to [t,∞].

Since H is increasing, it follows from (11) that H(x, y) = t whenever x � t or y � t . This implies that (10) trivially holds
when one of the arguments is greater than or equal to t .

(2) All of a,b, c,d belong to [0, t[ and a + b < t and c + d < t.

If a = b = 0 or c = d = 0, then (10) holds due to (12). We therefore assume that 0 < a + b as well as 0 < c + d. The proof of
this case is based on the observation that (10) is a consequence of a more general inequality, namely

xψ(a + b) + yψ(c + d) � H(x, y)
h(a + b) + h(c + d)

H(a + b, c + d)
, (14)

for all x, y such that 0 � x � a+b and 0 � y � c+d. Indeed, assume that (14) holds, then expressing it for both (x, y) = (a, c)
and (x, y) = (b,d) and adding side by side leads to

h(a + b) + h(c + d) = aψ(a + b) + cψ(c + d) + bψ(a + b) + dψ(c + d) �
(

H(a, c) + H(b,d)
)h(a + b) + h(c + d)

H(a + b, c + d)
,

which implies (10), since h(a + b) + h(c + d) > 0 and H(a + b, c + d) > 0. We therefore attempt to show (14).
(a) In case x = y = 0, it is trivially fulfilled.
(b) In case x = 0 and y > 0, we need to show that

ψ(c + d) � h(a + b) + h(c + d)

H(a + b, c + d)
.

In case h(a + b) + h(c + d) � h(t), it holds that

h(a + b) + h(c + d)

H(a + b, c + d)
= h(g(h(a + b) + h(c + d)))

H(a + b, c + d)
= ψ

(
H(a + b, c + d)

)
.

Since ψ(c + d) = ψ(H(0, c + d)), the increasingness of H and ψ (see Remark 1 and Lemma 7) imply that ψ(c + d) �
ψ(H(a + b, c + d)) and hence

ψ(c + d) � h(a + b) + h(c + d)

H(a + b, c + d)
.
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In case h(a + b) + h(c + d) > h(t), it holds that H(a + b, c + d) = t = H(t, c + d) and the increasingness of H and ψ imply
again that

ψ(c + d) = ψ
(

H(0, c + d)
)
� ψ

(
H(t, c + d)

) = h(H(t, c + d))

H(t, c + d)
= h(t)

H(a + b, c + d)
<

h(a + b) + h(c + d)

H(a + b, c + d)
.

(c) The case x > 0 and y = 0 is similar to the previous one.
(d) If x > 0, y > 0, and both are such that h(x) + h(y) � h(t), then (14) also trivially holds, since H(x, y) =

H(a + b, c + d) = t , x � a + b, y � c + d and ψ is positive. If h(x) + h(y) < h(t), then we can transform (14) into

xψ(a + b) + yψ(c + d)

H(x, y)
� h(a + b) + h(c + d)

H(a + b, c + d)
= (a + b)ψ(a + b) + (c + d)ψ(c + d)

H(a + b, c + d)
.

It is therefore sufficient to show that the function G : ]0,a + b] × ]0, c + d] → ]0,∞] defined by

G(x, y) := xψ(a + b) + yψ(c + d)

H(x, y)
(15)

attains its maximum at (a + b, c + d). Since h(x) + h(y) < h(t), it holds that H(x, y) = h−1(h(x) + h(y)). This question is
identical to the one positively answered by Mulholland on a subdomain ]0,a + b] × ]0, c + d] of [0,∞[2 [13]. Note that his
way of proving this result initially relies on the existence of the derivative of h, a condition that is later on removed thanks
to the other conditions on h, so that we can conclude that (5) holds whenever all a,b, c,d belong to [0, t[ and a + b < t ,
c + d < t .

(3) All of a,b, c,d belong to [0, t[ and a + b � t or c + d � t.

We first assume that a + b = t and consider the sequence (bn)n∈N with bn := t − a − 1
n . It then holds that a + bn < t , yet

limn→∞ a + bn = a + b = t . However, for any n ∈ N, the previous case implies that

H(a + bn, c + d) � H(a, c) + H(bn,d).

Since H is continuous in each argument, we can further conclude that

H(a + b, c + d) = lim
n→∞ H(a + bn, c + d) � H(a, c) + lim

n→∞ H(bn,d) = H(a, c) + H(b,d).

Next we assume that a + b > t . As a consequence, it holds that

H(a + b, c + d) = H(t, c + d) = H
(
a + (t − a), c + d

) = t

and the increasingness of H implies that

H(a + b, c + d) = H
(
a + (t − a), c + d

)
� H(a, c) + H(t − a,d) � H(a, c) + H(b,d).

The case c + d � t is completely analogous. �
5.2. A second sufficient condition

A careful inspection of the proof of Proposition 5 as provided in [5] shows that it can be generalized as follows.

Lemma 8. Consider a function f : ]0,∞[ → ]0,∞[ with limx→0 f (x) = 0 and such that f is differentiable on [0, t[ with t ∈ ]0,∞[
and f ′(x) > 0 for all x ∈ [0, t]. If f ′ is geo-convex on ]0, t[, then so is f .

Based on this result we can immediately generalize the result of Tardiff [23,24].

Proposition 9. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0;
(h4) h is convex on ]0, t[;
(h6) h is differentiable on ]0, t[ and h′ is geo-convex on ]0, t[.

Define the function g : [0,∞] → [0,∞] by (8) and the function H : [0,∞]2 → [0,∞] by (9). Then the following inequality holds for
all a,b, c,d ∈ [0,∞],

H(a + b, c + d) � H(a, c) + H(b,d).
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5.3. A necessary condition

The convexity of h on ]0,∞[ is a necessary condition for the classical Mulholland inequality to hold, and as such it is
part of each of the known sets of sufficient conditions. A similar observation holds for the generalized Mulholland inequality,
but now the convexity of h on ]0, t[ is a necessary condition.

Proposition 10. Consider a function h : [0,∞] → [0,∞] and some fixed value t ∈ ]0,∞[ such that

(h1) h is continuous on [0, t];
(h2) h is strictly increasing on [0, t] and h(x) � h(t) whenever x � t;
(h3) h(0) = 0.

Define the function g : [0,∞] → [0,∞] by (8) and the function H : [0,∞]2 → [0,∞] by (9). If H fulfills (10) for all a,b, c,d ∈ [0,∞],
then h is convex on ]0, t[.

Proof. As the convexity of h on ]0, t[ is equivalent to the concavity of g on ]0,h(t)[, and g is continuous, it suffices to show
that

g

(
x + y

2

)
� 1

2
g(x) + 1

2
g(y),

for all x, y ∈ ]0,h(t)[. Choose arbitrary x, y ∈ ]0,h(t)[ such that x < y and put a = g(x), b = g(
x+y

2 ) − g(x), c = g(
y−x

2 ) and
d = 0. Note that in each of these cases g coincides with h−1 and that a,b, c,d ∈ ]0, t[. We can therefore compute

h(a) + h(c) = x + y

2
,

h(b) + h(d) = h

(
g

(
x + y

2

)
− g(x)

)
,

h(a + b) = x + y

2
,

h(c + d) = y − x

2
.

Since H fulfills (10) it holds that H(a + b, c + d) � H(a, c) + H(b,d), or explicitly

g(y) = g

(
x + y

2
+ y − x

2

)
� g

(
x + y

2

)
+ g

(
x + y

2

)
− g(x) = 2g

(
x + y

2

)
− g(x). �

6. Dominance between continuous Archimedean t-norms

Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 and the corresponding
function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞]. As mentioned in Section 4, if T1 and T2 are strict, then t2(0) = ∞, h is strictly
increasing, h(−1) = h−1 and dominance between T1 and T2 is equivalent to the Mulholland inequality for h. Recall that if
T2 is strict, then T1 � T2 implies that T1 is strict as well. In case T2 is a nilpotent t-norm, T1 might be a strict or nilpotent
t-norm and the parameters of Theorem 6 and Proposition 9 are given by:

(1) If T1 is strict, then h = t1 ◦ t(−1)
2 , g = t2 ◦ t−1

1 = h(−1) , t = t2(0), and h(t) = ∞.

(2) If T1 is nilpotent, then h = t1 ◦ t(−1)
2 , g = t2 ◦ t(−1)

1 = h(−1) , t = t2(0), and h(t) = t1(0).

Note that in any case, h is continuous, strictly increasing on [0, t2(0)] and fulfills h(0) = 0 as well as h(x) = h(t2(0)) = t1(0)

for all x � t2(0). Moreover, it holds that H(x, y) = h(−1)(h(x)+h(y)), in accordance with Theorem 1. As such we can rephrase
Theorem 6 and Proposition 9 as well as Proposition 10 for the dominance between continuous Archimedean t-norms.

Proposition 11. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If the function h =
t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is convex and geo-convex on ]0, t[, then T1 dominates T2 .

Proposition 12. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If the function h =
t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is differentiable and convex on ]0, t2(0)[, and h′ is geo-convex on ]0, t2(0)[, then T1 dominates T2 .

Proposition 13. Consider two continuous Archimedean t-norms T1 and T2 with additive generators t1 and t2 . If T1 dominates T2 ,
then the function h = t1 ◦ t(−1)

2 : [0,∞] → [0,∞] is convex on ]0, t2(0)[.
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Abstract. Dominance between triangular norms (t-norms) is a versatile relationship. For con-
tinuous Archimedean t-norms, dominance can be verified by checking one of many sufficient
conditions derived from a generalization of the Mulholland inequality. These conditions pertain
to various convexity properties of compositions of additive generators and their inverses. In this
paper, assuming differentiability of these additive generators, we propose equivalent sufficient
conditions that can be expressed as inequalities involving derivatives of the additive generators,
avoiding the need of composing them. We demonstrate the powerfulness of the results by the
straightforward rediscovery of dominance relationships in the Schweizer-Sklar t-norm family,
as well as by unveiling some formerly unknown dominance relationships in the Sugeno-Weber
t-norm family. Finally, we illustrate that the results can also be applied to members of different
parametric t-norm families.

1. Introduction

The dominance relation was originally introduced in the framework of probabilis-
tic metric spaces [23] and was soon abstracted to operations on a partially ordered
set [21]. The dominance relation, in particular between t-norms, plays a profound
role in various topics, such as the construction of Cartesian products of probabilistic
metric and normed spaces [5, 21, 23], the construction of many-valued equivalence
relations [2, 3, 26] and many-valued order relations [1], and in the preservation of
various properties during (dis-)aggregation processes in flexible querying, preference
modelling and computer-assisted assessment [2, 4, 14, 17]. These applications insti-
gated the study of the dominance relation in the broader context of aggregation opera-
tors [12, 14, 17].

Additional to these application aspects, the dominance relation is an interesting
mathematical notion per se. Because of the common neutral element, dominance con-
stitutes a reflexive and antisymmetric relation on the class of t-norms. Since coun-
terexamples for its transitivity were not readily found, it remained an intriguing open
problem [8, 19, 21, 22, 25] for more than 20 years whether or not it was an order rela-
tion. Only recently the question was answered to the negative [18, 20]. However, due
to its relevance in applications, it is still of interest to determine subclasses of t-norms
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on which the dominance relation establishes an order relation. Of particular impor-
tance are continuous Archimedean t-norms, as they are the basic elements of which
all continuous t-norms are composed. Moreover, they can be represented by means of
continuous additive generators.

It was shown in [16], see also [13, 24, 25] for earlier results dealing with strict
t-norms only, that dominance between continuous Archimedean t-norms can be equiv-
alently expressed as a functional inequality involving compositions of the additive gen-
erators (and their inverses) of the corresponding t-norms. This inequality, being a gen-
eralization of the Minkowski inequality, is often referred to as the Mulholland inequal-
ity. Although sufficient and necessary conditions for its fulfilment are already known,
see [13, 16, 24, 25], and can be visualized easily for two t-norms, they have hardly ever
been used for proving resp. disproving dominance between two arbitrary members of a
family or families of t-norms. The aim of the present contribution is to establish easy-
to-check conditions that involve directly the additive generators and their derivatives
(provided they exist).

After a short introduction on t-norms, we summarize the known sufficient and
necessary conditions for dominance. Subsequently, we derive new differential condi-
tions for dominance between continuous Archimedean t-norms and demonstrate their
strength by applying them to some parametric families of triangular norms leading to
new results on dominance between two continuous Archimedean t-norms.

2. Triangular norms and the dominance relation

We briefly summarize some basic properties of t-norms for a thorough understand-
ing of this paper (for further details see, e.g., [7, 8, 9, 10, 11, 15, 17, 18]).

DEFINITION 1. A t-norm T : [0,1]2 → [0,1] is a binary operation on the unit in-
terval that is commutative, associative, increasing and has 1 as neutral element.

Well-known examples of t-norms are the minimum TM, the product TP, the Łuka-
siewicz t-norm TL and the drastic product TD, defined by TM(u,v)= min(u,v), TP(u,v)=
u · v, TL(u,v) = max(u+ v−1,0), and

TD(u,v) =

{
min(u,v), if max(u,v) = 1;

0, otherwise.

Since t-norms are just functions from the unit square to the unit interval, their com-
parison is done pointwisely: T1 ≤ T2 if T1(u,v)≤ T2(u,v) for all u,v ∈ [0,1], expressed
as “T1 is weaker than T2” or “T2 is stronger than T1”. The minimum TM is the strongest
of all t-norms, the drastic product TD is the weakest of all t-norms. Furthermore, it holds
that TP ≥ TL.

Just as triangular norms, the dominance relation finds its origin in the field of prob-
abilistic metric spaces [21, 23]. It was originally introduced for associative operations
(with common neutral element) on a partially ordered set [21], and has been further
investigated for t-norms [15, 19, 20, 25] and aggregation operators [14, 17]. We state
the definition for t-norms only.
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DEFINITION 2. Consider two t-norms T1 and T2. We say that T1 dominates T2 (or
T2 is dominated by T1), denoted by T1 � T2, if for all x,y,u,v ∈ [0,1] it holds that

T1(T2(x,y),T2(u,v))≥ T2(T1(x,u),T1(y,v)) . (1)

Note that every t-norm is dominated by itself and by TM; moreover, it dominates
TD. Since all t-norms have neutral element 1, dominance between two t-norms implies
their comparability: T1 � T2 implies T1 ≥ T2. The converse does not hold, not even for
strict t-norms [8]. Due to the induced comparability it also follows that dominance is
an antisymmetric relation on the class of t-norms.

DEFINITION 3. A t-norm T is called Archimedean if for all u,v∈ ]0,1[ there exists
an n ∈ N such that

T (u, . . . ,u︸ ︷︷ ︸
n times

) < v .

DEFINITION 4.

(i) A t-norm T is called strict if it is continuous and strictly monotone, i.e., for all
u,v,w ∈ [0,1] it holds that

T (u,v) < T (u,w) whenever u > 0 and v < w .

(ii) A t-norm T is called nilpotent if it is continuous and if each u∈ ]0,1[ is a nilpotent
element of T , i.e., there exists some n ∈N such that

T (u, . . . ,u︸ ︷︷ ︸
n times

) = 0 .

A continuous t-norm T is Archimedean if and only if for all u ∈ ]0,1[ it holds that
T (u,u) < u. The class of continuous Archimedean t-norms can be partitioned into two
disjoint subclasses: the class of strict t-norms and the class of nilpotent t-norms. The
product TP is strict, whereas the Łukasiewicz t-norm TL is nilpotent.

Note that for a strict t-norm T it holds that T (u,v) > 0 for all u,v ∈ ]0,1], while for
a nilpotent t-norm T it holds that for every u ∈ ]0,1[ there exists some v ∈ ]0,1[ such
that T (u,v) = 0 (each u ∈ ]0,1[ is a so-called zero divisor). Therefore, for a nilpotent
t-norm T1 and a strict t-norm T2 it can never hold that T1 ≥ T2 and, as a consequence,
never that T1 � T2.

Of particular interest in the discussion of continuous Archimedean t-norms and
dominance between them is the notion of an additive generator.

DEFINITION 5. An additive generator of a t-norm T is a strictly decreasing func-
tion t : [0,1]→ [0,∞] which is right-continuous in 0 and satisfies t(1) = 0 such that for
all u,v ∈ [0,1] it holds that

T (u,v) = t(−1)(t(u)+ t(v))
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with
t(−1)(u) = t−1(min(t(0),u))

the pseudo-inverse of the decreasing function t.

An additive generator is uniquely determined up to a positive multiplicative con-
stant. A t-norm T with additive generator t is continuous if and only if t is continuous.
Continuous Archimedean t-norms are exactly those t-norms with a continuous additive
generator. Any additive generator of a strict t-norm satisfies t(0) = ∞, while that of
a nilpotent t-norm satisfies t(0) < ∞. In the case of strict t-norms, the pseudo-inverse
t(−1) of an additive generator t coincides with its standard inverse t−1. In any case,
the following relationships hold between an additive generator t and its pseudo-inverse
t(−1)

t ◦ t(−1)|Ran(t) = idRan(t) and t(−1) ◦ t = id[0,1] .

3. The generalized Mulholland inequality and related conditions

The dominance relation between two continuous Archimedean t-norms can be ex-
pressed in terms of their generators. This was shown for strict t-norms in [25] and was
generalized as follows in [16].

PROPOSITION 1. Consider two continuous Archimedean t-norms T1 and T2 with
additive generators t1 and t2. Then T1 dominates T2 if and only if the function h =
t1 ◦ t(−1)

2 : [0,∞]→ [0,∞] fulfills for all a,b,c,d ∈ [0,t2(0)] the inequality

h(−1)(h(a)+h(c))+h(−1)(h(b)+h(d))≥ h(−1)(h(a+b)+h(c+d)) , (2)

with h(−1) = t2 ◦ t(−1)
1 : [0,∞]→ [0,∞] the pseudo-inverse of the increasing function h.

Since (1) is trivially fulfilled for arbitrary t-norms T1 and T2 as soon as 0 appears
among the arguments, it suffices to prove that (2) holds for all a,b,c,d ∈ [0,t2(0)[ in
order to show dominance between the continuous Archimedean t-norms considered.

In case some function f : [0,∞] → [0,∞] fulfills (2) for all a,b,c,d ∈ [0,∞], we
say that it fulfills the generalized Mulholland inequality. In [16] (see also [6, 13, 25]),
sufficient and necessary conditions for the generalized Mulholland inequality to hold
for a function f : [0,∞] → [0,∞], which is continuous and strictly increasing on some
subdomain [0, t], with t ∈ [0,∞[, and for which f (0) = 0 holds, have been investigated.
Properties such as the convexity, the geometric convexity, and the logarithmic convexity
of a function showed up to be most relevant.

DEFINITION 6. A function f : [0,∞[ → [0,∞[ is called geometric convex (geo-
convex for short) on ]0,t[, with t ∈ ]0,∞[, if for all x,y ∈ ]0,t[ it holds that

f (
√

xy)≤
√

f (x) f (y) .

It is called logarithmic convex (log-convex for short) on ]0,t[ if the function
log◦ f : [0,∞[→ [−∞,∞[ is convex on ]0,t[.
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For a continuous function f such that f (]0,∞[)⊆ ]0,∞[, its geo-convexity on ]0,t[
is equivalent to the convexity of the function log◦ f ◦ exp on ]−∞, log(t)[. Clearly, if
f (0) = 0, then the geo-convexity holds also on [0,t[. Further, if f is increasing, then its
log-convexity implies its geo-convexity. Moreover, the relationship between the geo-
convexity of a function and that of its derivative can be expressed in the following way.

LEMMA 2. [6, 16] Consider a function f : ]0,∞[ → ]0,∞[ with limx→0 f (x) = 0
and such that f is differentiable on [0,t[, with t ∈ ]0,∞[, and f ′(x) > 0 for all x ∈ ]0,t[.
If f ′ is geo-convex on ]0,t[, then so is f .

Applying these relationships and the results obtained in [16] to the dominance
relation between continuous Archimedean t-norms we can state the following:

PROPOSITION 3. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2. If T1 dominates T2, then the function h = t1 ◦
t(−1)
2 : [0,∞]→ [0,∞] is convex on ]0,t2(0)[.

PROPOSITION 4. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2. If the function h = t1 ◦ t(−1)
2 : [0,∞]→ [0,∞] is con-

vex on ]0, t2(0)[ and log- or geo-convex on ]0,t2(0)[, then h fulfills (2) for all a,b,c,d ∈
[0, t2(0)], i.e., T1 dominates T2.

PROPOSITION 5. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2. If the function h = t1 ◦ t(−1)
2 : [0,∞]→ [0,∞] is dif-

ferentiable and convex on ]0,t2(0)[, and h′ is log- or geo-convex on ]0,t2(0)[, then h
fulfills (2) for all a,b,c,d ∈ [0,t2(0)], i.e., T1 dominates T2.

The relationships between the above sufficient conditions for dominance are sum-
marized in Fig. 3. Corresponding conditions for the subclass of strict t-norms have
already been discussed in [25]. Although these sufficient conditions can be visualized
easily, concrete proofs might become cumbersome, in particular for two members of
a same parametric family, because h is a compound function. In fact, the conditions
mentioned above have never been used for (dis-)proving dominance apart from one
particular case: for proving dominance between members of a family of t-norms whose
additive generators are powers of some basic additive generator. In this case the gen-
eralized Mulholland inequality turns into the Minkowski inequality whose solution is
well known (see [8] for further details).

However, if the additive generators have derivatives of sufficiently high order, the
sufficient conditions expressed as properties of h can be reformulated as equivalent
(differential) conditions on the corresponding additive generators. As such we can pro-
vide localized conditions that are equivalent to the global ones and allow to (dis-)prove
dominance between two continuous Archimedean t-norms.
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Consider two continuous Archimedean t-norms T1 and T2 with addi-
tive generators t1 and t2. If the function

h = t1 ◦ t(−1)
2 : [0,∞]→ [0,∞]

is convex on ]0,t2(0)[ and . . .

h′ exists and h′ exists and
h′ is log-convex on ]0,t2(0)[ ⇒ h′ is geo-convex on ]0, t2(0)[

⇓
h is log-convex on ]0,t2(0)[ ⇒ h is geo-convex on ]0,t2(0)[

⇓
T1 � T2

Figure 1. Sufficient conditions for dominance between two continuous
Archimedean t-norms T1 and T2

4. Differential inequality conditions

Throughout this section, T1 and T2 are two continuous Archimedean t-norms with
continuous additive generators t1 and t2. Then the function

h = t1 ◦ t(−1)
2 : [0,∞]→ [0,∞]

is continuous and strictly increasing on ]0,t2(0)[, h(0) = 0 and h(]0,t2(0)[)⊆ ]0, t1(0)[.
Further, we assume that t1 and t2 are sufficiently often (i.e., once, twice or three times)
differentiable. It then holds in particular that t ′1(u) < 0 and t ′2(u) < 0 for all u ∈ ]0,1[.
For every x∈ ]0,t2(0)[, there exists a unique u∈ ]0,1[ such that x = t2(u) and t−1

2 (x) = u.
The identity

d
dxx = d

dxt2(t
−1
2 (x)) = dt2(u)

du

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx = 1

allows to express the derivatives of h at x in terms of the derivatives of t1 and t2 at
u = t−1

2 (x). Explicitly,

h(x) = t1(t−1
2 (x)) = t1(u)|u=t−1

2 (x) ; (3)

h′(x) = d
dx h(x) = d

dx (t1(t
−1
2 (x))) = dt1(u)

du

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx

= dt1(u)
du · 1

dt2(u)
du

∣∣∣∣∣
u=t−1

2 (x)

= t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
; (4)

h′′(x) = d
dx h

′(x) = d
dx

t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
= d

du
t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx
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= t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′2
2(u)

· 1
dt2(u)

du

∣∣∣∣∣
u=t−1

2 (x)

= t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′2
3(u)

∣∣∣∣
u=t−1

2 (x)
. (5)

Let us now turn to the convexity, the logarithmic and the geometric convexity of h
and its derivative.

PROPOSITION 6. The function h is convex on ]0,t2(0)[, i.e.,

h′′(x)≥ 0 (6)

for all x ∈ ]0, t2(0)[, if and only if

t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)≥ 0 (7)

for all u ∈ ]0,1[.

Proof. Since h′′(x) can be expressed by (5) and t ′2(u) < 0 for all u ∈ ]0,1[, it fol-
lows immediately that

∀x ∈ ]0,t2(0)[ : h′′(x)≥ 0 ⇔ ∀u ∈ ]0,1[ : t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)≥ 0 .

PROPOSITION 7. The function h is log-convex on ]0,t2(0)[, i.e.,

h(x)h′′(x)−h′2(x)≥ 0 (8)

for all x ∈ ]0, t2(0)[, if and only if

t ′1
2(u)t ′2(u)+ t1(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
≥ 0 (9)

for all u ∈ ]0,1[.

Proof. The function h is log-convex on ]0,t2(0)[ if and only if

(log◦h)′′(x) =
h(x)h′′(x)−h′2(x)

h2(x)
≥ 0

for all x ∈ ]0, t2(0)[. Since h(x) > 0 for all x > 0, we can write equivalently

h(x)h′′(x)−h′2(x)≥ 0

for all x ∈ ]0,t2(0)[. Using (3)–(5), the latter turns out to be equivalent to

t1(u) t′′1 (u)t′2(u)−t′′2 (u)t′1(u)
t′2

3(u)
− t′1

2(u)
t′2

2(u)
≥ 0

or also
t ′1

2(u)t ′2(u)+ t1(u)
(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
≥ 0

for all u ∈ ]0,1[.
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PROPOSITION 8. The function h is geo-convex on ]0,t2(0)[, i.e.,

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
≥ 0 (10)

for all x ∈ ]0, t2(0)[, if and only if

t ′1
2(u)− t1(u)t ′′1 (u)

t1(u)t ′1(u)
≥ t ′2

2(u)− t2(u)t ′′2 (u)
t2(u)t ′2(u)

(11)

for all u ∈ ]0,1[.

Proof. First, we show that the geometric convexity of h on ]0, t2(0)[ is equivalent
to Eq. (10) for all x ∈ ]0,t2(0)[. The geometric convexity of h on ]0, t2(0)[ is equivalent
to the convexity of the function χ = log◦h ◦ exp: [−∞, log(t2(0))]→ [−∞, log(t1(0))]
on ]−∞, log(t2(0))[. Since h is twice differentiable, also χ is twice differentiable and

χ ′(v) = h′(ev)
h(ev) ev;

χ ′′(v) =
(

h′(ev)
h(ev)

+ ev h(ev)h′′(ev)−h′(ev)2

h(ev)2

)
ev

=
ev

h(ev)2

(
h′(ev)h(ev)+ ev(h(ev)h′′(ev)−h′(ev)2)

)
.

Since always ev

h(ev)2 > 0, χ ′′(v) ≥ 0 is equivalent to h′(ev)h(ev) + ev(h(ev)h′′(ev)−
h′(ev)2)≥ 0, or, replacing ev by x, to

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
≥ 0 .

Using Eqs. (3)–(5), the validity of Eq. (10) for all x ∈ ]0, t2(0)[ turns out to be
equivalent to

t1(u) · t′1(u)
t′2(u) + t2(u)

(
t1(u) · t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′2
3(u)

− t′1
2(u)

t′2
2(u)

)
≥ 0 ,

or also
t ′1

2(u)− t1(u)t ′′1 (u)
t1(u)t ′1(u)

≥ t ′2
2(u)− t2(u)t ′′2 (u)

t2(u)t ′2(u)

for all u ∈ ]0,1[.

REMARK 9. Investigating the differential formulations of the convexity, log-convexity
and geo-convexity of h, it becomes evident that the log-convexity of h implies its con-
vexity as well as its geo-convexity. Indeed, if h is log-convex, i.e.

t ′1
2(u)t ′2(u)+ t1(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
≥ 0 ,
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it follows that

t1(u)
(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
≥−t ′1

2(u)t ′2(u)≥ 0 ,

since t ′2(u) < 0 for all u ∈ ]0,1[. As t1(u) > 0 for all u ∈ ]0,1[, it must hold that
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)≥ 0 for all u ∈ ]0,1[, i.e., h is convex.

Again assume that h is log-convex, i.e. h(x)h′′(x)−h′2(x)≥ 0 for all x ∈ ]0,t2(0)[.
Since for any such x it holds that x, h(x) and h′(x) are positive, it also holds that

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
≥ 0

for all x ∈ ]0,t2(0)[, i.e. h is geo-convex on ]0, t2(0)[.

Similarly as for Eqs. (3)–(5), for all x ∈ ]0, t2(0)[, the third derivative of h at x can
be expressed as

h′′′(x) = d
dx h

′′(x) = d
du

(
t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′32 (u)

)∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx

= t′32 (u)(t′′′1 (u)t′2(u)−t′′′2 (u)t′1(u))−3t′2
2(u)t′′2 (u)(t′′1 (u)t′2(u)−t′′2 (u)t′1(u))

t′62 (u)
· 1

dt2(u)
du

∣∣∣∣∣
u=t−1

2 (x)

= 1
t′52 (u)

(
3t ′1(u)t ′′2

2(u)− t ′1(u)t ′2(u)t ′′′2 (u)−3t ′′1 (u)t ′2(u)t ′′2 (u)+ t ′′′1 (u)t ′2
2(u)

)∣∣∣
u=t−1

2 (x)
.

Substitution in the corresponding formulas and reshuffling the inequalities leads to the
following corollaries which we state without their easy but tedious and cumbersome
proofs.

COROLLARY 10. The function h′ is log-convex on ]0,t2(0)[, i.e.,

h′(x)h′′′(x)−h′′2(x)≥ 0 (12)

for all x ∈ ]0,t2(0)[, if and only if

t ′1
2(u)

(
2t ′′2

2(u)− t ′2(u)t ′′′2 (u)
)

≥ t ′2
2(u)

(
t ′′1

2(u)− t ′1(u)t ′′′1 (u)
)

+ t ′1(u)t ′′1 (u)t ′2(u)t ′′2 (u) (13)

for all u ∈ ]0,1[.

COROLLARY 11. The function h′ is geo-convex on ]0,t2(0)[, i.e.,

h′(x)h′′(x)+ x
(
h′(x)h′′′(x)−h′′2(x)

)
≥ 0 (14)

for all x ∈ ]0, t2(0)[, if and only if

t2(u)
(
t ′1(u)t ′2(u)

(
t ′′′1 (u)t ′2(u)− t ′′′2 (u)t ′1(u)

)

−
(
t ′′1 (u)t ′2(u)− t ′′2 (u)t ′1(u)

)(
2t ′1(u)t ′′2 (u)+ t ′′1 (u)t ′2(u)

))

≥ t ′1(u)t ′2
2(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
(15)

for all u ∈ ]0,1[.
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5. Dominance within a single parametric family of t-norms

Although the differential inequality conditions look cumbersome at first sight, they
often reduce to easy-to-check inequalities when applied to members of parametric fam-
ilies of t-norms, as we will demonstrate in this and the following section. First, we
consider the family of Schweizer-Sklar t-norms. Although it is known [22] that domi-
nance within this family is accordance with the ordering of the parameters, we provide
an alternative (and easier) proof based on the new differential inequality conditions in
order to illustrate their strength. Second, we examine dominance within the family of
Sugeno-Weber t-norms, leading to relationships not yet established so far, since most of
its members are nilpotent t-norms. We tackle these problems by following the scheme
of sufficient conditions displayed in Fig. 3. We will provide the differential inequality
for the necessary convexity of h as well as the differential inequality corresponding to
the strongest sufficient condition leading to the discovery of a dominance relationship.

5.1. The family of Schweizer-Sklar t-norms

The family of Schweizer-Sklar t-norms (T SS
λ )λ∈[−∞,∞] is given by

T SS
λ (u,v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

TM(u,v), if λ =−∞,

TP(u,v), if λ = 0,

TD(u,v), if λ = ∞,

max(uλ + vλ −1,0)1/λ , if λ ∈ ]−∞,0[∪ ]0,∞[ .

For λ ∈ ]−∞,∞[, T SS
λ is a continuous Archimedean t-norm with additive generator

tSS
λ (u) = 1−uλ

λ , if λ ∈ ]−∞,0[∪ ]0,∞[ , and tSS
0 (u) =− logu , if λ = 0 ,

for all u ∈ [0,1]; parameters λ ∈ ]−∞,0] lead to strict t-norms, while parameters λ ∈
]0,∞[ lead to nilpotent t-norms.

In the sequel of this section, we omit the superscript indicating the family when
discussing properties of additive generators. Since we deal with Schweizer-Sklar t-
norms only, no ambiguity can occur.

Clearly, the derivatives of the additive generators exist and are given, for all λ ∈
]−∞,∞[ and all u ∈ ]0,1[, by:

t ′λ (u) =−uλ−1,

t ′′λ (u) =−(λ −1)uλ−2,

t ′′′λ (u) =−(λ −1)(λ −2)uλ−3 .

The family of Schweizer-Sklar t-norms is ordered according to its parameter:
T SS
λ ≥ T SS

μ if and only if λ ≤ μ . Moreover, since TM dominates every t-norm, and every
t-norm dominates itself as well as TD, it suffices to investigate dominance between two
Schweizer-Sklar t-norms T SS

λ and T SS
μ with parameters−∞< λ < μ < ∞.
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Note that the function h = tλ ◦ t(−1)
μ : [0,∞]→ [0,∞] is continuous, strictly increas-

ing and differentiable on
]
0,tμ(0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tμ(0)

[

and if either h or h′ is log- or geo-convex on
]
0,tμ(0)

[
, then T SS

λ dominates T SS
μ .

Convexity of h. The function h is convex on
]
0, tμ(0)

[
if and only if, for all u ∈ ]0,1[,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u)≥ 0 ⇔
(μ−1)uλ+μ−3− (λ −1)uλ+μ−3 ≥ 0 ⇔

(μ−λ )uλ+μ−3 ≥ 0 ⇔
μ ≥ λ .

Geo-convexity of h′. Substituting the expressions for the derivatives of the additive
generators in (15) shows that the function h′ is geo-convex on

]
0, tμ(0)

[
if and only if,

for all u ∈ ]0,1[,

tμ(u)
(
uλ+μ−2((λ −1)(λ −2)uλ+μ−4− (μ−1)(μ−2)uλ+μ−4)

−
(
(λ −1)uλ+μ−3− (μ−1)uλ+μ−3)(2(μ−1)uλ+μ−3 +(λ −1)uλ+μ−3))

≥−uλ+2μ−3
(
(μ−1)uλ+μ−3− (λ −1)uλ+μ−3

)
,

with rearrangements and simple calculations leading to

tμ(u)μ(μ−λ )≥−uμ(μ−λ ) .

In case μ = 0, the latter condition reduces to 0 ≥ λ , or, equivalently, μ ≥ λ . In case
μ �= 0, the condition reads explicitly

( 1−uμ
μ )μ(μ−λ )≥−uμ(μ−λ ) ⇔

(μ−λ )(1−uμ +uμ)≥ 0 ⇔
μ ≥ λ .

Hence, neither the convexity of h nor the geo-convexity of h′ imposes further re-
strictions on λ and μ .

COROLLARY 12. Consider the family of Schweizer-Sklar t-norms (T SS
λ )λ∈[−∞,∞].

For all λ ,μ ∈ [−∞,∞] it holds that T SS
λ dominates T SS

μ if and only if λ ≥ μ .

We stress that this result is obtained here much more economically than in [22].
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5.2. The family of Sugeno-Weber t-norms

The second family we consider is the family of Sugeno-Weber t-norms. Two argu-
ments support its consideration: first, dominance relationships between two members
of this family have not yet been laid bare; second, it is of particular interest as all but
two of its menbers are nilpotent t-norms.

The family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞] is given by

TSW
λ (u,v) =

⎧
⎪⎨
⎪⎩

TP(u,v), if λ = 0,

TD(u,v), if λ = ∞,

max(0,(1−λ )uv+λ (u+ v−1)), if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[, T SW
λ is a continuous Archimedean t-norm with additive generator

tSW
λ (u) =

{
−(1−λ ) log(λ +(1−λ )u), if λ ∈ [0,∞[\ {1},
1−u, if λ = 1,

for all u ∈ [0,1]; parameters λ ∈ ]0,∞[ lead to nilpotent t-norms (with TSW
1 = TL as

special case), while TSW
0 = TP is the only strict member. Note that, for better readabil-

ity, we again omit the superscript indicating the family when discussing properties of
additive generators.

Clearly, the derivatives of the additive generators exist and are, for all λ ∈ [0,∞[\
{1} and all u ∈ ]0,1[, given by:

t ′λ (u) =− (1−λ )2
λ+(1−λ )u ,

t ′′λ (u) = (1−λ )3

(λ+(1−λ )u)2 ,

t ′′′λ (u) =− 2(1−λ )4

(λ+(1−λ )u)3 ;

in case λ = 1, it holds that t ′1(u) =−1 and t ′′1 (u) = t ′′′1 (u) = 0 for all u ∈ ]0,1[.
The family of Sugeno-Weber t-norms is ordered according to its parameter: T SW

λ ≥
T SW
μ if and only if λ ≤ μ . Moreover, since every t-norm dominates itself as well as TD,

it suffices to investigate dominance between two Sugeno-Weber t-norms TSW
λ and TSW

μ
with parameters 0≤ λ < μ < ∞.

Note that the function h = tλ ◦ t(−1)
μ : [0,∞]→ [0,∞] is continuous, strictly increas-

ing and differentiable on
]
0,tμ(0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tμ(0)

[

and if either h or h′ is log- or geo-convex on
]
0,tμ(0)

[
, then T SW

λ dominates T SW
μ .

Convexity of h. The function h is convex on
]
0, tμ(0)

[
if and only if, for all u ∈ ]0,1[,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u)≥ 0 .

In case λ �= 1 �= μ , the latter inequality is equivalent to

(1−λ )3

(λ+(1−λ )u)2
(1−μ)2

μ+(1−μ)u ≥
(1−λ )2

λ+(1−λ )u
(1−μ)3

(μ+(1−μ)u)2 ⇔
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1−λ
λ+(1−λ )u ≥

1−μ
μ+(1−μ)u ⇔

(1−λ )(μ+(1− μ)u)≥ (1− μ)(λ +(1−λ )u) ⇔
μ ≥ λ .

In case λ = 1, the condition reduces to −t ′′μ(u) ≥ 0 being equivalent to μ ≥ 1 = λ . In
case μ = 1, the condition becomes t ′′λ (u)≥ 0, i.e., λ ≤ 1 = μ . Summarizing, in all cases
h is convex if and only if μ ≥ λ .

Log-convexity of h′. Substituting the expressions for the derivatives of the additive
generators in (13) and applying basic transformations shows that for all λ �= 1 �= μ the
function h′ is log-convex on

]
0,tμ(0)

[
if and only if, for all u ∈ ]0,1[,

(1−λ )5(1−μ)4(μ−λ )
(λ+(1−λ )u)4(μ+(1−μ)u)3 ≥ 0 ⇔ (μ−λ )(1−λ )≥ 0 .

This inequality clearly holds whenever λ < 1 and μ > λ . In case λ = 1 < μ , we obtain
in a similar way the condition

2t ′′μ
2(u)− t ′μ(u)t ′′′μ (u) = 2 (1−μ)6

(μ+(1−μ)u)4 −
2(1−μ)6

(μ+(1−μ)u)4 ≥ 0 ,

which trivially holds. Finally, in case λ < μ = 1, we end up with the following equiva-
lent inequality

t ′′λ
2(u)− t ′λ (u)t ′′′λ (u) =− (1−λ )6

(λ+(1−λ )u)4 ≤ 0 ,

which is also obviously fulfilled.
The above results can be summarized as follows.

COROLLARY 13. Consider the family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞].

For all λ ,μ ∈ [0,∞] such that
λ ≤min(1,μ)

it holds that TSW
λ � T SW

μ .

This means in particular that any Sugeno-Weber t-norm greater than or equal to the
Łukasiewicz t-norm dominates any other, but smaller Sugeno-Weber t-norm. Naturally,
this raises the question whether dominance is also in accordance with the ordering of
the parameters when both t-norms are smaller than the Łukasiewicz t-norm, i.e, when
1 < λ < μ . However, in general this need not be the case as the following example
demonstrates.

EXAMPLE 1. Consider the Sugeno-Weber t-norms T SW
51 and T SW

101 and let x = y =
u = v = 975

1000 . Then T SW
51 (x,x) = 147

160 and T SW
101 (x,x) = 142

160 such that

T SW
51 (T SW

101 (x,x),T SW
101 (x,x)) = 182

1280 < 227
1280 = T SW

101 (T SW
51 (x,x),T SW

51 (x,x)) ,

showing that T SW
51 does not dominate T SW

101 , although λ = 51≤ 101 = μ .
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So far, we have only exploited the log-convexity of h′. Of course, the remaining
sufficient conditions can still be applied. We provide them in two forms: first, after
substituting the expressions for the derivatives of the additive generators, and second,
in their simplest form after applying several transformations. Further, we discuss the
case 1 < λ < μ only in order to gain additional insight into dominance between two
Sugeno-Weber t-norms.

Geo-convexity of h′. The function h′ is geo-convex on
]
0,tμ(0)

[
if and only if, for all

u ∈ ]0,1[,

− (1−λ )5(1−μ)5(μ−λ ) log(μ+(1−μ)u)
(λ+(1−λ )u)4(μ+(1−μ)u)3 ≥− (1−λ )4(1−μ)6(μ−λ )

(λ+(1−λ )u)3(μ+(1−μ)u)4 ⇔

(μ−λ )(1−λ )
(
μ+(1−μ)u

1−μ log(μ +(1− μ)u)− λ+(1−λ )u
1−λ

)
≤ 0 .

In case 1 < λ < μ , we need to show that, for all u ∈ ]0,1[,

μ+(1−μ)u
μ−1 log(μ +(1− μ)u)≤ λ+(1−λ )u

λ−1 . (16)

Note that for all u ∈ [0,1], it holds that the function fu : ]1,∞[→ ]0,∞[, fu(t) = t+(1−t)u
t−1

is decreasing, since d fu
dt (t) =− 1

(t−1)2 < 0. Therefore, for μ ≥ λ it holds that

μ+(1−μ)u
μ−1 ≤ λ+(1−λ )u

λ−1 .

Hence, as long as the factor log(μ + (1− μ)u), which is always positive for μ > 1,
is upper bounded by 1, also (16) follows. This requires that μ +(1− μ)u ≤ e for all
u ∈ ]0,1[, i.e. μ ≤ e. We conclude that h′ is geo-convex at least when 1 < λ < μ ≤ e.

Log-convexity of h. The function h is log-convex on
]
0,tμ(0)

[
if and only if, for all

u ∈ ]0,1[,

− (1−λ )4(1−μ)2

(λ+(1−λ )u)2(μ+(1−μ)u) ≥
(1−λ )3(μ−λ )(1−μ)2 log(λ+(1−λ )u)

(λ+(1−λ )u)2(μ+(1−μ)u)2 ⇔

μ+(1− μ)u+ μ−λ
1−λ log(λ +(1−λ )u)≤ 0 .

As u approaches 1, the left-hand side approaches 1 as well. Therefore, h can never be
log-convex.

Geo-convexity of h. The function h is geo-convex on
]
0,tμ(0)

[
if and only if, for all

u ∈ ]0,1[,
(λ−1)(log(λ+(1−λ )u)+1)

(λ+(1−λ )u) log(λ+(1−λ )u) ≤
(μ−1)(log(μ+(1−μ)u)+1)

(μ+(1−μ)u) log(μ+(1−μ)u) . (17)

In case 1 < λ < μ , we consider the function gu : ]1,∞[→ ]0,∞[,

gu(t) = (t−1)(log(t+(1−t)u)+1)
(t+(1−t)u) log(t+(1−t)u) ,
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which is increasing whenever

dgu
dt (t) = log2(t+(1−t)u)+log(t+(1−t)u)+(t−1)(u−1)(

(t+(1−t)u) log(t+(1−t)u)
)2

is positive for all t ∈ ]1,∞[. Note that for t > 1 it holds that log(t +(1− t)u) > 0 for all
u ∈ ]0,1[, and hence, dgu

dt (t) is positive whenever

p(t) = log2(t)+ log(t)− t +1≥ 0 .

Numerical investigations (using Maple) show that this is the case for 1≤ t ≤ 6.00914
(with 6.00914 denoting the second root of p(t) = 0). Therefore, h is geo-convex at least
when 1 < λ < μ ≤ 6.00914.

Of course, this does not contradict the findings on the geo-convexity of h′. Inter-
estingly, the geo-convexity investigation allows us to extend Corollary 13.

COROLLARY 14. Consider the family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞].

For all λ ,μ ∈ [0,∞] such that

(i) either λ ≤min(1,μ),

(ii) or 1 < λ ≤ μ ≤ 6.00914

it holds that TSW
λ � T SW

μ .

Having in mind the geo-convexity study of h, it is intuitively clear that as λ approaches
1 from the right in (17), even larger values of μ will do (knowing that for λ = 1, μ can
be arbitrarily large). However, this problem becomes numerically intractable.

6. Dominance between two parametric families of t-norms

Finally, we turn to the investigation of dominance between a member of the family
of Dombi t-norms and a member of the family of Yager t-norms. Since (apart from the
limit cases) the Dombi t-norms are strict and the Yager t-norms are nilpotent, it suffices
to investigate when a Dombi t-norm dominates a Yager t-norm. The investigation of
such a mixed case (strict versus nilpotent) is possible thanks to the new conditions
applicable to all continuous Archimedean t-norms.

The family of Dombi t-norms (TD
λ )λ∈[0,∞] is given by

TD
λ (u,v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

TD(u,v), if λ = 0,

TM(u,v), if λ = ∞,
1

1+
((

1−u
u

)λ
+

(
1−v
v

)λ)1/λ , if λ ∈ ]0,∞[ .

For λ ∈ ]0,∞[, TD
λ is a strict t-norm with generator tDλ (u) = ( 1−u

u )λ for all u ∈ [0,1].
The derivatives of the additive generators are, for all λ ∈ ]0,∞[ and all u ∈ [0,1], given
by:

(tDλ )′(u) =− λ (1−u)λ−1

uλ+1 ,
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(tDλ )′′(u) = (λ +1−2u)λ (1−u)λ−2

uλ+2 .

Similarly, the family of Yager t-norms (TY
μ )μ∈[0,∞] is defined by

TY
μ (u,v) =

⎧
⎪⎨
⎪⎩

TD(u,v), if μ = 0,

TM(u,v), if μ = ∞,

max(1− ((1−u)μ +(1− v)μ)1/μ ,0), if μ ∈ ]0,∞[ .

For μ ∈ ]0,∞[, TY
μ is a nilpotent t-norm with additive generator tYμ (u) = (1− u)μ for

all u ∈ [0,1]. The derivatives of the additive generators are, for all μ ∈ ]0,∞[ and all
u ∈ ]0,1[, given by:

(tYμ )′(u) =−μ(1−u)μ−1 ,

(tYμ )′′(u) = μ(μ−1)(1−u)μ−2 .

Note that for both families it holds that the additive generators of the continu-
ous Archimedean members are powers of the basic additive generators tB1 (u) = 1−u

u
and tY1 (u) = 1− u. Investigating dominance within each of these families then turns
the Mulholland inequality into the Minkowski inequality and dominance within each
family is in accordance with the ordering of the parameters (see also [8]), i.e.,

TD
λ1
� TD

λ2
⇔ λ1 ≥ λ2 and TY

μ1
� TY

μ2
⇔ μ1 ≥ μ2 .

We will now investigate for which λ and μ it holds that the Dombi t-norm TD
λ

dominates the Yager t-norm TY
μ . Since for both families the limiting members are

TD and TM, it suffices to consider λ ,μ ∈ ]0,∞[ only. Note that the function h =
tDλ ◦ (tYμ )(−1) : [0,∞] → [0,∞] is continuous, strictly increasing and differentiable on]
0, tYμ (0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tYμ (0)

[
and if either h or h′ is

log- or geo-convex on
]
0,tYμ (0)

[
, then TD

λ dominates TY
μ . For the sake of brevity we

will further omit the indication of the families; λ and μ therefore not only indicate the
specific parameter but also the corresponding family.

Convexity of h. The function h is convex on
]
0, tμ(0)

[
if and only if, for all u ∈ ]0,1[,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u)≥ 0 ⇔

−λμ(μ−1) (1−u)λ+μ−3

uλ+1 +(λ +1−2u)λμ (1−u)λ+μ−3

uλ+2 ≥ 0, ⇔

λμ (1−u)λ+μ−3

uλ+2 (λ +1−u(μ+1))≥ 0, ⇔
λ +1≥ u(μ+1) .

This inequality is fulfilled for all u ∈ ]0,1[ if and only if λ ≥ μ .
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Geo-convexity of h. The function h is geo-convex on
]
0,tμ(0)

[
if and only if, for all

u ∈ ]0,1[,

t ′λ
2(u)− tλ (u)t ′′λ (u)

tλ (u)t ′λ (u)
≥

t ′μ
2(u)− tμ(u)t ′′μ(u)

tμ(u)t ′μ(u)

being equivalent to

(λ − (λ +1−2u)) 1
u(u−1) ≥

(μ−(μ−1))
(u−1) ⇔

2u−1
u(u−1) ≥ 1

(u−1) ⇔
u≤ 1,

which obviously is fulfilled for all u ∈ ]0,1[.

COROLLARY 15. Consider the families of Dombi t-norms (TD
λ )λ∈[0,∞] and of Yager

t-norms (TY
μ )μ∈[0,∞]. For all λ ,μ ∈ [0,∞] it holds that TD

λ dominates TY
μ if and only if

λ ≥ μ .
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[5] B. LAFUERZA GUILLÉN, Finite products of probabilistic normed spaces, Rad. Mat., 13, 1 (2004),

111–117.
[6] W. JARCZYK AND J. MATKOWSKI, On Mulholland’s inequality, Proc. Amer. Math. Soc., 130, 11

(2002), 3243–3247.
[7] Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, edited by E. P. Klement

and R. Mesiar, Elsevier, Amsterdam, 2005.
[8] E. P. KLEMENT, R. MESIAR AND E. PAP, Triangular Norms, Trends in Logic. Studia Logica Library,

vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
[9] E. P. KLEMENT, R. MESIAR AND E. PAP, Triangular norms. Position paper I: Basic analytical and

algebraic properties, Fuzzy Sets and Systems, 143 (2004), 5–26.
[10] E. P. KLEMENT, R. MESIAR AND E. PAP, Triangular norms. Position paper II: General constructions

and parameterized families, Fuzzy Sets and Systems, 145 (2004), 411–438.
[11] E. P. KLEMENT, R. MESIAR AND E. PAP, Triangular norms. Position paper III: Continuous t-norms,

Fuzzy Sets and Systems, 145 (2004), 439–454.



18 S. SAMINGER-PLATZ, B. DE BAETS AND H. DE MEYER

[12] R. MESIAR AND S. SAMINGERN,Domination of ordered weighted averaging operators over t-norms,
Soft Computing, 8 (2004), 562–570.

[13] H. P. MULHOLLAND, On generalizations of Minkowski’s inequality in the form of a triangle inequal-
ity, Proc. London Math. Soc., 51, 2 (1950), 294–307.

[14] S. SAMINGER, Aggregation in Evaluation of Computer-Assisted Assessment, Schriftenreihe der
Johannes-Kepler-Universität Linz, vol. C 44, Universitätsverlag Rudolf Trauner, 2005.
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Abstract

The dominance relation in several families of continuous Archimedean t-

norms and copulas is investigated. On the one hand, the contribution pro-

vides a comprehensive overview on recent conditions and properties of dom-

inance as well as known results for particular cases of families. On the other

hand, it contains new results clarifying the dominance relationship in five

additional families of continuous Archimedean t-norms and copulas.
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1. Introduction

The dominance relation had originally been introduced for triangle func-

tions in the framework of probabilistic metric spaces [47], but was soon ab-

stracted to operations on a partially ordered set [43]. It plays an important

role in constructing Cartesian products of probabilistic metric and normed

spaces (see [24, 43, 47], but also [39] for more recent results on dominance
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between triangle functions resp. operations on distance distribution func-

tions). Dominance, especially between t-norms and copulas, is further cru-

cial in the construction of many-valued equivalence relations [7, 8, 50] and

many-valued order relations [4] as well as in the preservation of various prop-

erties, most of them expressed by some inequalities, during (dis-)aggregation

processes in flexible querying, preference modelling and computer-assisted

assessment [7, 11, 32, 37]. These applications initiated the study of the dom-

inance relation in the broader context of aggregation functions [26, 32, 37].

Besides these application points of view, dominance has been and is still

an interesting mathematical notion. E.g., because of the common neutral

element of t-norms and their commutativity and associativity, dominance

constitutes a reflexive and antisymmetric relation on the class of all t-norms.

Whether the relation is also transitive was of interest already since 1983 (see

also [43]). It has been answered recently to the negative by Sarkoci [41] (see

also [38]) by means of ordinal sum t-norms based on the product or �Luka-

siewicz t-norm. Meaning that the counter examples have been found in the

class of continuous t-norms which form an important subclass of all t-norms.

Obtaining a negative answer has, to some extent, been surprising, since

the study of dominance within families of t-norms has been of interest since

its very beginnings. Several particular families of t-norms, containing also

subfamilies of copulas, had been investigated (see, e.g., [19, 33, 38, 40, 44])

and supported the conjecture that the dominance relation would indeed be

transitive, either due to its rare occurrence within the family considered

or due to its abundant occurrence. Therefore and due to its relevance in

applications, it is still of interest to determine whether on some subclasses

2
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of t-norms dominance constitutes a transitive and as such an order relation.

Particularly interesting are families containing continuous Archimedean t-

norms which in its turn most often contain families of Archimedean copulas

as subclasses. Many such single-parametric families of t-norms and copulas

are listed in the Table 2.6 in the book on associative functions by Alsina et

al. [2], overlapping to a great extent with the families of Archimedean copulas

contained in Table 4.2 in the book on copulas by Nelsen [30].

The aim of the present contribution is to provide results on dominance

for several of these families. We pursue this goal in two steps — on the one

hand by providing a comprehensive survey on those families for which the

dominance relation is already clarified, and on the other hand by proving

new results on dominance for five additional families.

Note that, in this contribution, we restrict to dominance among members

of a single parametric family of t-norms. For results comparing members of

two different families, see, e.g., [34, 36].

The article is organized as follows: In Section 2 some necessary basics on

t-norms and Archimedean copulas are summarized. Section 3 contains basic

properties and relationships on dominance, in particular dominance among

continuous Archimedean t-norms. Section 4 covers the survey on results on

dominance known for some of the families contained in [2, 30]. Finally, we

present new results on dominance for five additional families of t-norms and

copulas. We will close the contribution by a short summary.
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2. Triangular norms and copulas

We briefly summarize some basic properties of t-norms and copulas for a

thorough understanding of this paper (for further details see, e.g., [2, 18, 19,

20, 21, 22, 30, 33, 37, 38, 45]).

Definition 1. A t-norm T : [0, 1]2 → [0, 1] is a binary operation on the

unit interval which is commutative, associative, increasing and has neutral

element 1.

Well-known examples of t-norms are the minimum TM, the product TP,

the �Lukasiewicz t-norm TL and the drastic product TD, defined by TM(u, v) =

min(u, v), TP(u, v) = u · v, TL(u, v) = max(u + v − 1, 0), and

TD(u, v) =

⎧
⎪⎨
⎪⎩

min(u, v), if max(u, v) = 1,

0, otherwise.

T-norms are compared pointwisely: T1 ≤ T2 if T1(u, v) ≤ T2(u, v) for all

u, v ∈ [0, 1], expressing that “T1 is weaker than T2” or “T2 is stronger than

T1”. The minimum TM is the strongest of all t-norms, the drastic product

TD is the weakest of all t-norms.

Definition 2. A t-norm T is called

(i) Archimedean if for all u, v ∈ ]0, 1[ there exists an n ∈ N such that

T (u, . . . , u︸ ︷︷ ︸
n times

) < v .

(ii) A t-norm T is called strict if it is continuous and strictly monotone,

i.e., for all u, v, w ∈ [0, 1] it holds that

T (u, v) < T (u, w) whenever u > 0 and v < w .
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(iii) A t-norm T is called nilpotent if it is continuous and if each u ∈ ]0, 1[

is a nilpotent element of T , i.e., there exists some n ∈ N such that

T (u, . . . , u︸ ︷︷ ︸
n times

) = 0 .

Of particular interest in the discussion of continuous Archimedean t-

norms is the notion of an additive generator.

Definition 3. An additive generator of a t-norm T is a strictly decreasing

function t : [0, 1] → [0,∞] which is right-continuous in 0 and satisfies t(1) = 0

such that for all u, v ∈ [0, 1] it holds that T (u, v) = t(−1)(t(u) + t(v)) with

t(−1)(u) = t−1(min(t(0), u)) the pseudo-inverse of the decreasing function t.

An additive generator is uniquely determined up to a positive multiplica-

tive constant. A t-norm T with additive generator t is continuous if and

only if t is continuous. Continuous Archimedean t-norms are exactly those

t-norms with a continuous additive generator. Any additive generator of

a strict t-norm satisfies t(0) = ∞, while that of a nilpotent t-norm satis-

fies t(0) < ∞. In the case of strict t-norms, the pseudo-inverse t(−1) of an

additive generator t coincides with its standard inverse t−1.

Definition 4. A (bivariate) copula C : [0, 1]2 → [0, 1] is a binary operation

on the unit interval which has neutral element 1 and annihilator 0 and which

is 2-increasing, i.e., for all u, u′, v and v′ in [0, 1] with u ≤ u′ and v ≤ v′

∆v,v′

u,u′(C) := C(u′, v′)− C(u′, v)− C(u, v′) + C(u, v) ≥ 0.

The expression ∆v,v′

u,u′(C) is called the C-volume of the rectangle [u, u′]×[v, v′].

5
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It follows immediately from the definition that every copula C is increas-

ing in each argument, and that it satisfies the Lipschitz condition, i.e., for all

u, u′, v and v′ in [0, 1],

|C(u′, v′)− C(u, v)| ≤ |u′ − u|+ |v′ − v|. (1)

Note that copulas need not be associative or commutative. However, some

t-norms are also copulas and vice versa. More precisely, every associative

copula is a continuous t-norm [19] and, on the other hand, a t-norm is a

copula if and only if it fulfills the Lipschitz condition [27].

The importance of copulas in applications comes from Sklar’s theorem [45],

which allows to represent every bivariate probability distribution function

F : R2 → [0, 1] by F (x, y) = C(F1(x), F2(y)), where F1 and F2 are the up-

per margins of F , obtained as limits of F (x1, x2) when xi tends to +∞ for

i = 1, 2, and C is a copula. The representation is unique whenever F is a

continuous bivariate probability distribution. Note that a copula can also be

seen as a bivariate distribution function whose upper margins are uniformly

distributed on [0, 1].

Several methods for constructing copulas based on different principles

and/or respecting additional properties are already known (see [30] for an

overview, but also [6, 9, 10, 12, 23, 31]). An important subclass are Archimedean

copulas which are closely related to continuous Archimedean t-norms.

Proposition 1. [27, 42] Consider a continuous Archimedean t-norm T with

additive generator t. T is a copula if and only if t is a convex function.

Accordingly, the definition of Archimedean copulas reads as follows (see

also [30]):

6
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Definition 5. Consider a continuous, convex, additive generator ϕ, i.e.,

a continuous, convex, strictly decreasing function ϕ : [0, 1] → [0,∞] with

ϕ(1) = 0. Then a copula C : [0, 1]2 → [0, 1] defined by C(u, v) = ϕ(−1)(ϕ(u)+

ϕ(v)) is called an Archimedean copula.

It is immediate that several families of continuous Archimedean t-norms

generated by a parameterized family of additive generators contain families

of Archimedean copulas as soon as the respective additive generators are

convex. As such, in some cases, different names for the families of (continu-

ous Archimedean) t-norm and the corresponding subfamilies of Archimedean

copulas can be found in the literature.

3. Dominance — basic properties

The dominance relation has its roots in the field of probabilistic metric

spaces [43, 47]. It was originally introduced for associative operations (with

common neutral element) on a partially ordered set [43], and has been further

investigated for t-norms [33, 40, 41, 49] and aggregation functions [32, 37].

We state the definition for t-norms only, for copulas, it is defined accordingly.

Definition 6. Consider two t-norms T1 and T2. We say that T1 dominates

T2 (or T2 is dominated by T1), denoted by T1 � T2, if, for all x, y, u, v ∈ [0, 1],

it holds that

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)) . (2)

Note that every t-norm and every copula is dominated by TM. Moreover,

every t-norm dominates itself and TD. Since all t-norms and copulas have

7
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neutral element 1, dominance between two t-norms resp. two copulas implies

their comparability: T1 � T2 implies T1 ≥ T2. The converse does not hold,

not even for strict t-norms [19]. Due to the induced comparability it also

follows that dominance is an antisymmetric relation on the class of t-norms

and the class of copulas. Associativity and symmetry ensure that dominance

is also reflexive on the class of t-norms.

3.1. Dominance between continuous Archimedean t-norms resp. Archimedean

copulas

It was shown in [35] (see also [28, 48, 49] for earlier results dealing with

strict t-norms only) that dominance between continuous Archimedean t-

norms can be equivalently expressed as a functional inequality involving com-

positions of the additive generators (and their inverses) of the corresponding

t-norms.

Proposition 2. [35] Consider two continuous Archimedean t-norms T1 and

T2 with additive generators t1 and t2. Then T1 dominates T2 if and only if the

function h : [0,∞] → [0,∞], h = t1 ◦ t
(−1)
2 fulfills, for all a, b, c, d ∈ [0, t2(0)],

the inequality

h(−1)(h(a) + h(c)) + h(−1)(h(b) + h(d)) ≥ h(−1)(h(a + b) + h(c + d)) , (3)

with h(−1) : [0,∞] → [0,∞], h(−1) = t2 ◦ t
(−1)
1 , the pseudo-inverse of the

increasing function h. Note that Eq. (3) is referred to as the generalized

Mulholland inequality

Since Eq. (2) is trivially fulfilled for arbitrary t-norms T1 and T2 as soon

as 0 appears among the arguments, it suffices to prove that Eq. (3) holds for

8
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all a, b, c, d ∈ [0, t2(0)[ in order to show dominance between the continuous

Archimedean t-norms considered.

In [35] (see also [17, 28, 49]), sufficient and necessary conditions for the

generalized Mulholland inequality to hold for a function f : [0,∞] → [0,∞],

which is continuous and strictly increasing on some subdomain [0, t], with t ∈
[0,∞[, and for which f(0) = 0 holds, have been investigated. Properties such

as the convexity, the geometric convexity, and the logarithmic convexity of a

function showed up to be most relevant. We do not discuss these properties in

detail but provide, if necessary, corresponding equivalent formulations which

will be relevant for later proofs. More detailed investigations can be found

in [28, 35, 36, 48, 49].

Note that for two continuous Archimedean t-norms T1 and T2 with con-

tinuous additive generators t1 and t2, the function h : [0,∞] → [0,∞], h =

t1 ◦ t
(−1)
2 is also continuous and strictly increasing on ]0, t2(0)[. Moreover,

h(0) = 0 and h(]0, t2(0)[) ⊆ ]0, t1(0)[. Further, we will assume, if necessary,

that t1 and t2 are sufficiently often (i.e., once, twice or three times) differ-

entiable such that t′1(u) < 0 and t′2(u) < 0 for all u ∈ ]0, 1[, and that, for

every x ∈ ]0, t2(0)[, there exists a unique u ∈ ]0, 1[ such that x = t2(u) and

t−1
2 (x) = u.

Summarizing the results on sufficient and necessary conditions for the

fulfillment of the generalized Mulholland inequality and applying the corre-

sponding differential conditions involving the additive generators, as obtained

in [35, 36], we can state the following about the dominance relation between

continuous Archimedean t-norms:

Proposition 3. [35, 36] Consider two continuous Archimedean t-norms T1

9
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and T2 with twice differentiable additive generators t1 and t2. If T1 dominates

T2, then the function h : [0,∞] → [0,∞], h = t1 ◦ t
(−1)
2 is convex on ]0, t2(0)[,

i.e., h′′(x) ≥ 0 for all x ∈ ]0, t2(0)[, or equivalently, for all u ∈ ]0, 1[,

t′1(u)t′′2(u)− t′′1(u)t′2(u) ≥ 0. (4)

Proposition 4. [35, 36] Consider two continuous Archimedean t-norms T1

and T2 with twice differentiable additive generators t1 and t2.

If the function h : [0,∞] → [0,∞], h = t1 ◦ t
(−1)
2 is convex on ]0, t2(0)[

and if either

• h is log-convex on ]0, t2(0)[, i.e., h fulfills h(x)h′′(x) − h′2(x) ≥ 0 for

all x ∈ ]0, t2(0)[ or equivalently, for all u ∈ ]0, 1[,

t′1
2
(u)t′2(u) + t1(u)

(
t′1(u)t′′2(u)− t′′1(u)t′2(u)

)
≥ 0, (5)

or

• h is geo-convex on ]0, t2(0)[, i.e., h fulfills h(x)h′(x)+x
(
h(x)h′′(x)− h′2(x)

)
≥

0 for all x ∈ ]0, t2(0)[ or equivalently, for all u ∈ ]0, 1[,

t′1
2(u)− t1(u)t′′1(u)

t1(u)t′1(u)
≥ t′2

2(u)− t2(u)t′′2(u)

t2(u)t′2(u)
, (6)

then T1 dominates T2.

Proposition 5. [35, 36] Consider two continuous Archimedean t-norms T1

and T2 with three times differentiable additive generators t1 and t2.

If the function h : [0,∞] → [0,∞], h = t1 ◦ t
(−1)
2 is differentiable and con-

vex on ]0, t2(0)[, and if either

10
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• h′ is log-convex on ]0, t2(0)[, i.e., h fulfills h′(x)h′′′(x)− h′′2(x) ≥ 0 for

all x ∈ ]0, t2(0)[, or equivalently, for all u ∈ ]0, 1[,

t′1
2
(u)

(
2t′′2

2
(u)− t′2(u)t′′′2 (u)

)
≥ t′2

2
(u)

(
t′′1

2
(u)− t′1(u)t′′′1 (u)

)

+ t′1(u)t′′1(u)t′2(u)t′′2(u), (7)

• or h′ is geo-convex on ]0, t2(0)[, i.e., h fulfills h′(x)h′′(x)+x (h′(x)h′′′(x)− h′′2(x)) ≥
0 for all x ∈ ]0, t2(0)[ or equivalently, for all u ∈ ]0, 1[,

t2(u)
(
t′1(u)t′2(u)

(
t′′′1 (u)t′2(u)− t′′′2 (u)t′1(u)

)

−
(
t′′1(u)t′2(u)− t′′2(u)t′1(u)

)(
2t′1(u)t′′2(u) + t′′1(u)t′2(u)

))

≥ t′1(u)t′2
2
(u) (t′1(u)t′′2(u)− t′′1(u)t′2(u)) , (8)

then T1 dominates T2.

We will now turn, first, to a brief survey on dominance in families in-

cluding continuous Archimedean t-norms resp. Archimedean copulas. These

families are all included in the before mentioned Table 2.6. in the book

on associative functions by Alsina et al. [2] as well as in Table 4.2 in the

book on copulas by Nelsen [30]. Their properties are discussed in the before

mentioned books at several places, but also in the book on triangular norms

by Klement et al. [19]. After this survey we will turn to new results on

dominance in other families of t-norms resp. copulas as introduced in [2, 30].
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4. Dominance in families of t-norms and copulas — a survey

4.1. The family of Schweizer-Sklar t-norms resp. Clayton copulas

The family of Schweizer-Sklar t-norms (T SS
λ )λ∈[−∞,∞] is given by

T SS
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

TM(u, v), if λ = −∞,

TP(u, v), if λ = 0,

TD(u, v), if λ = ∞,

max(uλ + vλ − 1, 0)1/λ, otherwise.

The family members are continuous Archimedean t-norms for λ ∈ ]−∞,∞[

and copulas for λ ∈ [−∞, 1]. The copulas in this family are also known as

Clayton copulas and have been investigated in [5, 15]. The family members

form a decreasing sequence of t-norms resp. copulas with respect to their

parameter, i.e., T SS
λ ≥ T SS

µ if and only if λ ≤ µ.

The same holds for the dominance relationship, i.e., T SS
λ � T SS

µ if and

only if λ ≤ µ, as was proven first by Sherwood [44] in 1984 invoking gen-

eral proof techniques not referring to particular properties of the dominance

relation between t-norms. For quite some time, his results on the family of

Schweizer-Sklar t-norms remained the only one for dominance in a family of

parameterized t-norms. Note that a different proof for this particular family,

now involving the generalized Mulholland inequality (3), can be found in [36]

(see also [34]). Summarizing, we can say that the dominance relation yields a

linear order on the set of Schweizer-Sklar t-norms resp. on the set of Clayton

copulas.
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4.2. The family of Yager t-norms, of Dombi t-norms, and of Aczél-Alsina

t-norms resp. Gumbel-Hougaard copulas

The family of Yager t-norms (TY
λ )λ∈[0,∞], of Dombi t-norms (TD

λ )λ∈[0,∞],

and of Aczél-Alsina t-norms (TAA
λ )λ∈[0,∞] have in common that they are all

generated by powers of some basic additive generator. Their definitions and

additive generators are, for all λ ∈ [0,∞] resp. λ ∈ ]0,∞[, given as follows:

TY
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TD(u, v), if λ = 0,

TM(u, v), if λ = ∞,

max
(
1− ((1− x)λ + (1− y)λ)1/λ, 0

)
, otherwise,

tYλ (u) = (1− u)λ, for λ ∈ ]0,∞[ ,

TD
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TD(u, v), if λ = 0,

TM(u, v), if λ = ∞,

1

1+
(�

1−u
u

�λ
+
�

1−v
v

�λ)1/λ , otherwise,

tDλ (u) = (1−u
u

)λ, for λ ∈ ]0,∞[ ,

TAA
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TD(u, v), if λ = 0,

TM(u, v), if λ = ∞,

e−((− log u)λ+(− log v)λ)1/λ
otherwise,

tAA
λ (u) = (− log(u))λ, for λ ∈ ]0,∞[ .

The members of the respective families are continuous Archimedean t-norms

for λ ∈ ]0,∞[ and copulas for λ ∈ [1,∞]. As mentioned in [30] and according

to [16] the subfamily of copulas of the family of Aczél-Alsina t-norms is

13
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called the family of Gumbel-Hougaard copulas. The family members form

an increasing sequence of t-norms resp. copulas, i.e., Tλ ≥ Tµ if and only if

λ ≥ µ.

As discussed in [19], the standard Minkowski inequality,

(ap + cp)1/p + (bp + dp)1/p ≥ ((a + b)p + (c + d)p)1/p

being true for all p ∈ [1,∞[, can be applied for proving dominance between

two members of a family generated by positive powers of a basic additive

generators, as it is the case for the family of Yager, Dombi, and Aczél-

Alsina t-norms, respectively. In fact, applying the (generalized) Mulholland

inequality (3) to two members Tλ and Tµ of any of these families yields the

Minkowski inequality with the parameter p equal to µ/λ. Therefore, we can

state the following:

Proposition 6. [19] Consider two members Tλ and Tµ, λ, µ ∈ [0,∞], of

either the family of Yager t-norms (TY
λ )λ∈[0,∞], of Dombi t-norms (TD

λ )λ∈[0,∞],

or Aczél-Alsina t-norms (TAA
λ )λ∈[0,∞]. Then Tλ dominates Tµ if and only if

λ ≥ µ. The dominance relation constitutes a linear order on each of these

families of t-norms resp. copulas.

For results on dominance between members of two different families we

refer to [34, 36].
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4.3. The family of Frank t-norms resp. copulas and of Hamacher t-norms

resp. Ali-Mikhail-Haq copulas

The families of Frank (TF
λ )λ∈[−∞,∞] resp. Hamacher t-norms (TH

µ )µ∈[−∞,1]

are defined by

TF
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

TL(u, v), if λ = −∞,

TP(u, v), if λ = 0,

TM(u, v), if λ = ∞.

− 1
λ

log
(

1 + (e−λu−1)(e−λv−1)
e−λ−1

)
, otherwise,

TH
µ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TD(u, v), if µ = −∞,

0, if µ = 1, u = v = 0,

uv
1−µ(1−u)(1−v)

, otherwise.

The family members are continuous Archimedean t-norms for λ ∈ [−∞,∞[

resp. µ ∈ ]−∞, 1]. The Frank t-norms are all also copulas and have been dis-

cussed in [13, 14, 29]. The Hamacher t-norms are copulas in case µ ∈ [−1, 1]

and they are also called Ali-Mikhail-Haq copulas [1]. The members of each

family form an increasing sequence of t-norms resp. copulas with respect to

their parameter, i.e., TF
λ ≥ TF

µ resp. TH
λ ≥ TH

µ if and only if λ ≥ µ.

It has been shown by Sarkoci in [40] that very rarely a dominance rela-

tionship appears among members of each of the families:

Proposition 7. [40] Consider two members of the family of Frank t-norms

TF
λ1

, TF
λ2

. Then TF
λ1

dominates TF
λ2

if and only if one of the following cases

holds: λ1 = ∞, i.e., TF
λ1

= TM, λ1 = λ2, or λ2 = −∞, i.e., TF
λ2

= TL.
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Consider two members TH
µ1

, TH
µ2

of the family of Hamacher t-norms. Then

TH
µ1

dominates TH
µ2

if and only if one of the following cases holds: µ1 = 1,

µ1 = µ2, or µ2 = −∞, i.e., TH
µ2

= TD.

Note that, because of the rare occurrence of dominance in these families,

transitivity is fulfilled and the dominance relation therefore an order relation

on the corresponding families of t-norms resp. copulas.

4.4. The family of Sugeno-Weber t-norms

The family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞] is defined by

T SW
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TP(u, v), if λ = 0,

TD(u, v), if λ = ∞,

max(0, (1− λ)uv + λ(u + v − 1)), if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[, the Sugeno-Weber t-norms are continuous Archimedean t-

norms [25, 46, 51], for λ ∈ [0, 1] they are also copulas. The members of

the family form a decreasing sequence of t-norms resp. copulas with respect

to their parameter, i.e., TSW
λ ≥ T SW

µ if and only if λ ≤ µ. The results

on dominance among the family members, providing sufficient conditions,

have been investigated in [36] and are based on properties related to the

generalized Mulholland inequality (3).

Proposition 8. [36] Consider the family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞].

For all λ, µ ∈ [0,∞] such that

(i) either λ ≤ min(1, µ),

(ii) or 1 < λ ≤ µ ≤ t∗, with t∗ = 6.00914 denoting the second root of

log2(t) + log(t)− t + 1 = 0,
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it holds that T SW
λ � T SW

µ . On the other hand, if T SW
λ � T SW

µ , then λ ≤ µ.

Note that the members of the family of Sugeno-Weber t-norms are copulas

whenever their parameter is less or equal to 1. Therefore, for any copula

members T SW
λ , T SW

µ of the family, i.e., λ, µ ≤ 1, it holds that T SW
λ dominates

T SW
µ if and only if λ ≤ µ.

5. Dominance in families of t-norms and copulas — new results

We will now turn to new results on dominance for other families of contin-

uous Archimedean t-norms resp. Archimedean copulas. All of these families

have been introduced and discussed in the book on associative functions by

Alsina et al. [2] as well as in the book on copulas by Nelsen [30]. Unfortu-

nately, not all of them have been named, moreover, the numberings of the

families listed in Table 2.6 in [2] and in Table 4.2 in [30] slightly differ. In

the sequel we will therefore stick to the following notation scheme: A family

of t-norms (and copulas) (T x
λ )λ∈I refers to the family 2.6.x of t-norms (and

copulas) as listed in Table 2.6 in [2] with a given parameter range I.

5.1. The family (T 8
λ )λ∈[0,∞]

The family of t-norms (T 8
λ )λ∈[0,∞] and, for λ ∈ ]0,∞], the additive gener-

ators of its members are given by

T 8
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TD(u, v), if λ = 0,

max
(

0, uvλ2−(1−u)(1−v)
λ2−(1−u)(1−v)(λ−1)2

)
, if λ ∈ ]0,∞[ ,

uv
u+v−uv

, if λ = ∞,

17
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tλ(u) =

⎧
⎪⎨
⎪⎩

1−u
1+u(λ−1)

, if λ ∈ ]0,∞[ ,

1−u
u

, if λ = ∞.

These t-norms are continuous Archimedean for λ ∈ ]0,∞]. For λ ∈ [1,∞]

they are also copulas (see also [2]). Moreover, the family is increasing w.r.t.

its parameter [2], i.e., T 8
λ ≥ T 8

µ if and only if λ ≥ µ.

Let us now investigate dominance between two members of this family of

t-norms. Since every t-norm T dominates TD, we can restrict to parameters

λ ∈ ]0,∞] only. In this case its additive generators are continuous and three

times differentiable. The derivatives can be computed, for λ ∈ ]0,∞[, by

t′λ(u) =
−λ

(1 + u(λ− 1))2
, t′′λ(u) =

2λ(λ− 1)

(1 + u(λ− 1))3
, t′′′λ (u) =

−6λ(λ− 1)2

(1 + u(λ− 1))4

and, for λ = ∞, by

t′∞(u) = − 1

u2
, t′′∞(u) =

2

u3
, t′′′∞(u) = − 6

u4
.

Proposition 9. Consider λ, µ ∈ [0,∞]. Then T 8
λ dominates T 8

µ , if and only

if λ ≥ µ.

Proof. Assume arbitrary, but fixed λ, µ ∈ [0,∞]. If T 8
λ dominates T 8

µ , then,

due to the common neutral element, T 8
λ ≥ T 8

µ being equivalent to λ ≥ µ.

For proving sufficiency, assume that λ ≥ µ. Since in case of equality

and for µ = 0 dominance is trivially fulfilled, we additionally assume that

λ > µ > 0 and restrict first to the case of λ 	= ∞. Following Proposition 5,

it suffices to show the convexity of h and the log-convexity of h′ on ]0, 1[ for

proving dominance.
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Because of Proposition 3, the convexity of h is equivalent to Eq. (4) which

reduces to
2λµ(λ− µ)

(1 + u(λ− 1))3(1 + u(µ− 1))3
≥ 0

for all u ∈ ]0, 1[. Since λ, µ > 0 and (1 + u(λ− 1)), (1 + u(µ − 1)) > 0, this

is equivalent to λ ≥ µ which is obviously true.

The log-convexity of h′ is equivalent to Eq. (7) for the additive generators

involved and in turn equivalent to the following expression

2λ2µ2(µ− 1)2

(1 + u(λ− 1))4(1 + u(µ− 1))6
≥ 2λ2µ2(λ− 1)

(1 + u(λ− 1))6(1 + u(µ− 1))5

(
2(µ− 1)(1 + u(λ− 1))− (λ− 1)(1 + u(µ− 1))

)

for all u ∈ ]0, 1[. We introduce the abbreviations a = (1 + u(λ − 1)) and

b = (1 + u(µ − 1)). Note that, since λ, µ ∈ ]0,∞[ and u ∈ ]0, 1[, a, b > 0.

Therefore, the following are equivalent

2λ2µ2(µ− 1)2

a4b6
≥ 2λ2µ2(λ− 1)

a6b5

(
2(µ− 1)a− (λ− 1)b)

)

(µ− 1)2 ≥ (λ− 1)b

a2
(2(µ− 1)a− (λ− 1)b))

(µ− 1)2 − 2(µ− 1)(λ− 1)
b

a
+ (λ− 1)2 b2

a2
≥ 0

(
(µ− 1)− b

a
(λ− 1)

)2

≥ 0.

The last inequality, obviously being true for all u ∈ ]0, 1[, proves the log-

convexity of h′ and therefore, that T 8
λ dominates T 8

µ for λ 	= ∞ and λ > µ.

For λ = ∞ and µ < λ, the convexity of h is equivalent to, using the same

abbreviation as above,

2λa− 2λ(λ− 1)u

a3u3
≥ 0
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for all u ∈ ]0, 1[ which reduces to the tautology 1 ≥ 0. On the other hand,

the log-convexity of h′ on ]0, 1[ is equivalent to

2µ2(µ− 1)2

a6u4
≥ −2u2

a4u6
+

4µ2(µ− 1)

a5u5

for all u ∈ ]0, 1[, which reduces to
(

(µ−1)+ a
u

)2

≥ 0 being obviously fulfilled

for all u ∈ ]0, 1[.

Based on the previous result we can immediately state the following re-

sult:

Corollary 10. The dominance relation is a linear order on the family (T 8
λ )λ∈[0,∞]

of t-norms. It is a linear order on the family (T 8
λ )λ∈[1,∞] of copulas.

5.2. The family (T 9
λ )λ∈[0,∞]

The family of t-norms (T 9
λ )λ∈[0,∞] and, for λ ∈ ]0,∞], the additive gener-

ators of its members are given by

T 9
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TD(u, v), if λ = 0,

uve−λ ln(u) ln(v), if λ ∈ ]0,∞[ ,

TP(u, v), if λ = ∞,

tλ(u) =

⎧
⎪⎨
⎪⎩

ln(1− λ ln(u)), if λ ∈ ]0,∞[ ,

− ln(u), if λ = ∞.

For λ ∈ ]0,∞], the family members are continuous Archimedean t-norms

as well as copulas. Note that according to [16], the family of copulas is also

referred to as the family of Gumbel-Barnett copulas. The family is decreasing

w.r.t. its parameter (see also [2]), i.e., T 9
λ ≥ T 9

µ if and only if λ ≤ µ. We now

investigate whether for some λ, µ, T 9
λ dominates T 9

µ .
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Proposition 11. For all λ, µ ∈ ]0,∞[ with λ 	= µ it holds that neither T 9
µ

dominates T 9
λ nor T 9

λ dominates T 9
µ .

Proof. Consider arbitrary, but fixed λ, µ ∈ ]0,∞[ and assume w.l.o.g that

µ > λ. Since, because of the common neutral element of t-norms, dominance

implies the ordering of the operations involved and the ordering property of

the family, T 9
µ cannot dominate T 9

λ . Therefore, assume that T 9
λ dominates

T 9
µ , i.e.,

T 9
λ (T 9

µ (x, y), T 9
µ (u, v)) ≥ T 9

µ (T 9
λ (x, u), T 9

λ (y, v))

for all x, y, u, v ∈ [0, 1]. Now choose x = e−2/λ ∈ ]0, 1[, then simple computa-

tions yield

T 9
λ (T 9

µ (x, x), T 9
µ (x, x)) = (e−

4
λ2 (λ+µ))2 · e−λ(ln(e

− 4
λ2 (λ+µ)

))2

= e−
8
λ2 (λ+µ) · e−λ(− 4

λ2 (λ+µ))2 = e−
8
λ3 (λ+µ)(3λ+2µ),

T 9
µ (T 9

λ (x, x), T 9
λ (x, x)) = (e−

8
λ )2 · e−µ(ln e

− 8
λ )2 = e−

16
λ2 (λ+4µ).

Since we have assumed that T 9
λ dominates T 9

µ and since ex is strictly increas-

ing it follows that

8
λ3 (λ + µ)(3λ + 2µ) ≤ 16

λ2 (λ + 4µ),

being equivalent to

(λ− µ)2 + µ(µ− λ) ≤ 0

leading to a contradiction with µ > λ. Therefore, T 9
λ does not dominate

T 9
µ .

21



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Proposition 12. For all λ ∈ ]0,∞[ it holds that T 9
∞ = TP dominates T 9

λ .

Proof. Consider an arbitrary, but fixed λ ∈ ]0,∞[. The dominance inequality

T 9
λ (u, v) · T 9

λ (x, y) ≥ T 9
λ (ux, vy) is trivially fulfilled whenever 0 ∈ {x, y, u, v}.

Therefore, assume that all x, y, u, v ∈ ]0, 1]. Then the following are equivalent

T 9
λ (u, v) · T 9

λ (x, y) ≥ T 9
λ (ux, vy),

uvxy · e−λ(ln(u) ln(v)+ln(x) ln(y)) ≥ uvxy · e−λ ln(ux) ln(vy),

ln(u) ln(v) + ln(x) ln(y) ≤ ln(ux) ln(vy),

0 ≤ ln(u) ln(y) + ln(v) ln(x)

with the latter inequality being true for all x, y, u, v ∈ ]0, 1].

Since all t-norms T dominate the weakest t-norm TD = T 9
0 being the

second limiting t-norm of the actual family we can summarize as follows:

Corollary 13. Consider two t-norms T 9
λ , T 9

µ of the family (T 9
λ )λ∈[0,∞]. If T 9

λ

dominates T 9
µ , then either λ = ∞, µ = 0, or λ = µ only. Dominance is a

transitive and therefore an order relation on the family (T 9
λ )λ∈[0,∞] of t-norms

and on the family of Gumbel-Barnett copulas.

5.3. The family (T 15
λ )λ∈[0,∞]

The family of t-norms (T 15
λ )λ∈[0,∞] and, for λ ∈ [0,∞[, the additive generators

of its members are given by

T 15
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uve− ln(u) ln(v), if λ = 0,

e1−((1−ln(u))λ+(1−ln(v))λ−1)
1
λ

, if λ ∈ ]0,∞[ ,

TM(u, v), if λ = ∞,
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tλ(u) =

⎧
⎪⎨
⎪⎩

ln(1− ln(u)), if λ = 0,

(1− ln(u))λ − 1, if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[, the family members are continuous Archimedean t-norms as

well as Archimedean copulas. The family is increasing w.r.t. its parameter

(see also [2]), i.e., T 15
λ ≥ T 15

µ if and only if λ ≥ µ. We now investigate

whether for some given λ and µ, T 15
λ dominates T 15

µ . The derivatives of the

additive generators are given, for λ ∈ ]0,∞[, by

t′λ(u) =
−λ(1− ln(u))λ−1

u
, t′′λ(u) =

λ(1− ln(u))λ−2(λ− ln(u))

u2

and for λ = 0, by

t′0(u) =
−1

u(1− ln(u))
, t′′0(u) =

− ln(u)

u2(1− ln(u))2
.

Proposition 14. Consider λ, µ ∈ [0,∞]. Then T 15
λ dominates T 15

µ if and

only if λ ≥ µ.

Proof. The necessity is readily shown, since dominance implies ordering be-

tween the operations involved. Moreover, since TM dominates any t-norm

and since every t-norm dominates itself, let us assume that ∞ > λ > µ

and consider the case µ > 0. Following Proposition 4, it suffices to show

the convexity and geo-convexity of h on ]0,∞[ for proving dominance. The

convexity of h on ]0,∞[ is accordingly equivalent to

λµ

u3
aλ+µ−3(λ− µ) ≥ 0

for all u ∈ ]0, 1[, where we have introduced the abbreviation a := 1− ln(u).

Since ln(u) ≤ 0 for all u ∈ ]0, 1[ it holds that a ≥ 1 and further since also
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λ, µ > 0 it follows that the inequality is true if and only if λ ≥ µ which is

given by the assumption.

The geo-convexity of h is equivalent to Eq. (6) for the additive genera-

tors involved and can, by simple computations, be reduced to the following

expression
λ− ln(u)(1− aλ)

a (1− aλ) u
≥ µ− ln(u)(1− aµ)

a (1− aµ) u

for all u ∈ ]0, 1[, which is equivalent to

λ

a (1− aλ) u
− ln(u)

au
≥ µ

a (1− aµ) u
− ln(u)

au
.

Since λ > µ, and since a ≥ 1 it holds that 1
1−aλ ≥ 1

1−aµ and indeed, for all

u ∈ ]0, 1[,
λ

a (1− aλ) u
≥ µ

a (1− aµ) u

such that h is geo-convex and, therefore, T 15
λ dominates T 15

µ .

Let us now turn to the case of λ > µ = 0 and prove dominance directly,

i.e., we show that for an arbitrary λ > 0 and for all u, v, x, y ∈ [0, 1]

T 15
λ (T 15

0 (u, v), T 15
0 (x, y)) ≥ T 15

0 (T 15
λ (u, x), T 15

λ (v, y)).

Since this inequality holds whenever 0 ∈ {u, v, x, y}we assume that u, v, x, y ∈
]0, 1]. We use the abbreviations a := 1− ln(u), b := 1− ln(v), c := 1− ln(x),

and d := 1− ln(y) as well as

s := 1− (aλ + cλ − 1)1/λ and t := 1− (bλ + dλ − 1)1/λ.

Then, simple computations yield

T 15
λ (T 15

0 (u, v), T 15
0 (x, y)) = e1−((ab)λ+(cd)λ−1)1/λ

,

T 15
0 (T 15

λ (u, x), T 15
λ (v, y)) = e1−(1−s)(1−t),
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such that dominance of T 15
λ over T 15

0 is equivalent to

(
(ab)λ + (cd)λ − 1

)1/λ ≤
(
(ab)λ + (cd)λ + (aλ − 1)(dλ − 1) + (bλ − 1)(cλ − 1)− 1

)1/λ
.

Since a, b, c, d ≥ 1, it holds that (ab)λ +(cd)λ−1 ≥ 1 and (aλ−1)(dλ−1) ≥ 0

as well as (bλ − 1)(cλ − 1) ≥ 0 such that the inequality always holds which

concludes the proof.

Corollary 15. The dominance relation is a linear order on the family (T 15
λ )λ∈[0,∞]

of t-norms and copulas.

5.4. The family (T 22
λ )λ∈[0,∞]

The family of t-norms (T 22
λ )λ∈[0,∞] and, for λ ∈ [0,∞[, the additive gen-

erators of its members are given by

T 22
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uv
u+v−uv

, if λ = 0,

λ

ln(eλ/u+eλ/v−eλ)
, if λ ∈ ]0,∞[ ,

TM(u, v), if λ = ∞,

tλ(u) =

⎧
⎪⎨
⎪⎩

1−u
u

, if λ = 0,

eλ/u − eλ, if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[ the members are continuous Archimedean t-norms and

Archimedean copulas. The family is increasing w.r.t. its parameter (see

also [2]), i.e., T 22
λ ≥ T 22

µ if and only if λ ≥ µ. We now investigate whether

for some given λ and µ, T 22
λ dominates T 22

µ . The derivatives of the additive

generators are, for λ ∈ ]0,∞[, given by

t′λ(u) = − λ

u2
e

λ
u , t′′λ(u) =

λ

u4
e

λ
u (2u+λ), t′′′λ (u) = −λ

u
e

λ
u

(
6u2 + 6λu + λ2

)
,
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and, for λ = ∞, by

t′∞(u) = − 1

u2
, t′′∞(u) =

2

u3
, t′′′∞(u) = − 6

u4
.

Proposition 16. Consider λ, µ ∈ [0,∞]. Then T 22
λ dominates T 22

µ if and

only if λ ≥ µ.

Proof. Consider arbitrary λ, µ ∈ [0,∞]. If T 22
λ dominates T 22

µ , it follows that

T 22
λ ≥ T 22

µ and equivalently λ ≥ µ. Since TM dominates every t-norm and

since every t-norm dominates itself, let us first assume that ∞ > λ > µ >

0. Following Proposition 5, it suffices to show the convexity of h and the

geo-convexity of h′ on ]0,∞[ for proving dominance. The convexity of h is

equivalent to Eq. (4) which reduces to

λµ

u6
e

λ+µ
u (λ− µ) ≥ 0

for all u ∈ ]0, 1[ which is true whenever λ ≥ µ.

The geo-convexity of h′ is equivalent to Eq. (8) for the additive generators

involved and is in turn equivalent to the conditions

λ2µ3(µ− λ)

u12
e

2(λ+µ)
u

(
e

µ
u − eµ

)
≥ λ2µ3(µ− λ)

u12
e

2λ+3µ
u

e
µ
u − eµ ≤ e

µ
u

−eµ ≤ 0

for all u ∈ ]0, 1[ which holds independently of u.

It remains to show that, for all λ ∈ ]0,∞[, T 22
λ dominates T 22

0 . Also in this

case the convexity of h and geo-convexity of h′ can be equivalently expressed

by the additive generators involved. The convexity of h is equivalent to

λ2

u6
e

λ
u ≥ 0
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and the geo-convexity of h is equivalent to the condition

0 ≥ − λ3

u12
e

2λ
u

for all u ∈ ]0, 1[, both expressions being true for any λ ∈ ]0,∞[ and any

u ∈ ]0, 1[.

Corollary 17. The dominance relation is a linear order on the family (T 22
λ )λ∈[0,∞]

of t-norms and copulas.

5.5. The family (T 23
λ )λ∈[0,∞]

The family of t-norms (T 23
λ )λ∈[0,∞] and, for λ ∈ [0,∞[, the additive gen-

erators of its members are given by

T 23
λ (u, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TP(u, v), if λ = 0,
(

ln(eu−λ
+ ev−λ − e)

)− 1
λ

, if λ ∈ ]0,∞[ ,

TM(u, v), if λ = ∞,

tλ(u) =

⎧
⎪⎨
⎪⎩
− ln(u), if λ = 0,

eu−λ − e, if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[ the members are continuous Archimedean t-norms and

Archimedean copulas. The family is increasing w.r.t. its parameter (see

also [2]), i.e., T 23
λ ≥ T 23

µ if and only if λ ≥ µ. The derivatives of the additive

generators are, for λ ∈ ]0,∞[, given by

t′λ(u) = −eu−λ

u−λ−1λ, t′′λ(u) = eu−λ

u−2(λ+1)λ
(
(λ + 1)uλ + λ

)
,

t′′′λ (u) = −eu−λ

u−3(λ+1)λ
(
3λ(λ + 1)uλ + (λ + 1)(λ + 2)u2λ + λ2

)

and for λ = 0, by t′0(u) = − 1
u
, t′′0(u) = 1

u2 , t′′0(u) = − 2
u3 for all u ∈ [0, 1].
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Proposition 18. Consider λ, µ ∈ [0,∞]. Then T 23
λ dominates T 23

µ if and

only if λ ≥ µ.

Proof. The necessity is readily shown, since dominance implies ordering be-

tween the operations involved. Moreover, since TM dominates any t-norm

and since every t-norm dominates itself, let us first assume that∞ > λ > µ >

0. Following Proposition 4, it suffices to show the convexity and geo-convexity

of h on ]0,∞[ for proving dominance. The convexity of h is equivalent to the

condition

e(u−λ+u−µ)u−2λ−2µ−3λµ
(
(λ− µ)uλ+µ + λuµ − µuλ

)
≥ 0

for all u ∈ ]0, 1[. Since λ > µ and, for all u ∈ ]0, 1[, uµ > uλ it follows that

all summands and factors of the above expression are positive, such that the

inequality holds for all u ∈ ]0, 1[.

The geo-convexity of h is reduced to the equivalent condition

λ + 1 +
eλ

uλ+1(e− eu−λ)
≥ µ + 1 +

eµ

uµ+1(e− eu−µ)

for all u ∈ ]0, 1[. Since λ > µ it also holds that eλ > eµ, 1

(e−eu−λ )
> 1

(e−eu−µ
)
,

and 1
uλ+1 > 1

uµ+1 such that all summands resp. factors of the left-hand side

expression exceed the corresponding summands resp. factors on the right-

hand side. Therefore, h is geo-convex since λ > µ.

It remains to show that, for all λ ∈ ]0,∞[, T 23
λ dominates T 23

0 = TP. For

this case the convexity of h reduces to

λ2u−2λ−3eu−λ

(uλ + 1) ≥ 0

which is true for all u ∈ ]0, 1[. The log-convexity of h′ can be equivalently
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expressed by the additive generators involved and is equivalent to the condi-

tion

0 ≥ −e2u−λ

u−3(λ+2)λ4

which is clearly true for all u ∈ ]0, 1[ and all λ ∈ ]0,∞[. Therefore, T 23
λ

dominates T 23
µ if and only if λ ≥ µ.

Therefore, we can state the following

Corollary 19. The dominance relation is a linear order on the family (T 23
λ )λ∈[0,∞]

of t-norms and copulas.

6. Conclusion

We have discussed dominance in several families of continuous Archimedean

t-norms resp. Archimedean copulas. New results have been achieved for five

additional families. It is remarkable, that although dominance is not a tran-

sitive relation on the set of all (continuous) t-norms resp. copulas, it consti-

tutes an order relation for (nearly) all of the families mentioned and discussed

here — either because of its very rare or its abundant occurrence between

the family members involved.
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Abstract

Two different characterizations of self-dual aggregation operators are available in the literature: one based on
Cðx; yÞ ¼ x=ðxþ 1� yÞ and one based on the arithmetic mean. Both approaches construct a self-dual aggregation oper-
ator by combining an aggregation operator with its dual. In this paper, we fit these approaches into a more general
framework and characterize N-invariant aggregation operators, with N an involutive negator. Various binary aggrega-
tion operators, fulfilling some kind of symmetry w.r.t. N and with a sufficiently large range, can be used to combine an
aggregation operator and its dual into an N-invariant aggregation operator. Moreover, using aggregation operators to
construct N-invariant aggregation operators seems rather restrictive. It suffices to consider n-ary operators fulfilling
some weaker conditions. Special attention is drawn to the equivalence classes that arise as several of these n-ary oper-
ators can yield the same N-invariant aggregation operator.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Aggregation operator; Self-duality; Reciprocal relation; Invariance under monotone bijections; Involutive negator; Group
decisions and negotiations; Fuzzy sets

1. Introduction

In many decision problems, the question arises how to determine a collective decision, preference or
opinion, based on several individual decisions, preferences or opinions. Different techniques can be applied
to achieve that goal. One possible strategy is simply to carry out an aggregation process based on the
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experts’ decisions, preferences or opinions. This is usually done by some aggregation operator which maps
arbitrarily but countably many input values to a single output value. Inputs and outputs belong to the same
domain and the output should be representative for the input data or at least for some of its aspects.

In preference modeling for example, [0, 1]-valued relations R can be used to render the individual inten-
sity of preference. Consider a finite set of alternatives A = {a1, . . . , am} and n experts. The opinion of expert
k is represented by a relation Rk : A2 ! [0, 1], such that Rk(ai, aj) expresses the degree to which expert k

prefers alternative ai to alternative aj (see e.g. [4,13,14]). In order to rule out incomparability, it is often
required that the degree to which ai is preferred to aj is in some sense complementary to the degree to which
aj is preferred to ai. This naturally leads to the use of reciprocal preference relations Rk, i.e. Rk(ai, aj) + R-

k(aj, ai) = 1. In this setting, two alternatives ai and aj are indifferent if Rk(ai, aj) = Rk(aj, ai) = 1/2. These
individual preferences can be merged by means of an aggregation operator A. The relation R is defined
by R(ai, aj) = A(R1(ai, aj), . . . , Rn(ai, aj)) and represents the collective preference. Besides some aggregation
operator-specific results [4,5], it was soon noticed [13,15] that R is reciprocal provided A is a self-dual aggre-
gation operator, i.e. fulfills 1 � A(x1, . . . , xn) = A(1 � x1, . . . , 1 � xn) for every (x1, . . . , xn) 2 [0, 1]n.

Another application of self-dual aggregation operators is situated in multicriteria decision making. Con-
sider a finite set of criteria C = {c1, . . . , cn}. To each alternative ai 2 A is associated a profile (P1(ai), . . . ,
Pn(ai)) where unary functions Pk : A ! [0, 1] are used to expresses the score of alternative ai on criterion
k. Aggregating the different partial scores by means of an aggregation operator A yields a global score
P(ai) = A(P1(ai), . . . , Pn(ai)) for alternative ai [18]. These global scores can be used to rank the alterna-
tives. Self-dual aggregation operators ensure that complementary profiles result in complementary global
scores.

So far two characterizations of self-dual aggregation operators have been presented [3,15]. A deeper look
into the structure of both results inspired us to extend them to a class of theorems characterizing aggrega-
tion operators that are invariant under an involutive negator N. We organized this paper as follows. First
we recall the known results concerning self-dual aggregation operators. In Section 3 we present our general
framework for characterizing N-invariant aggregation operators by means of aggregation operators. How-
ever, it is restrictive to use only aggregation operators to construct N-invariant aggregation operators. Sec-
tion 4 tackles this problem for the two known characterizations [3,15]. In both cases we determine the
minimal conditions on an n-ary operator (i.e. a [0, 1]n ! [0, 1] mapping) such that it generates an N-invari-
ant aggregation operator. For each characterization, multiple n-ary operators lead to the same N-invariant
aggregation operator. The equivalence classes that arise as such are discussed in Section 5.

2. Aggregation operators

Aggregation comprises any process where arbitrarily but countably many inputs are mapped to a single
output value. It is natural to require that all inputs as well as all outputs are from the same domain. Usually
also some monotonic behaviour is required and some boundary conditions must be satisfied [3].

Definition 1. A mapping A : [0, 1]n! [0, 1], n 2 N n f0; 1g, is called an n-ary aggregation operator if it
satisfies the following properties:

(AO1) A(x1, . . . , xn) 6 A(y1, . . . , yn) whenever xi 6 yi for all i 2 {1, . . . , n},
(AO2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

If the arity n of n-ary aggregation operators is clear from the context, we will briefly call them aggrega-

tion operators. An aggregation operator A can also be defined to act on any closed interval
[a, b] � [�1,1]. Only the boundary conditions have to be modified accordingly: A(a, . . . , a) = a and
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A(b, . . . , b) = b. We then speak of an aggregation operator acting on [a, b]. Such aggregation operators can
easily be transformed, by means of monotone bijections, into aggregation operators acting on some other
interval [c, d].

Proposition 1 [3]. Let A : [a, b]n ! [a, b] be an aggregation operator on [a, b] and let U : [c, d] ! [a, b]

be a monotone bijection. Then the mapping AU : [c, d]n ! [c, d], defined by

AUðx1; . . . ; xnÞ ¼ U�1ðAðUðx1Þ; . . . ;UðxnÞÞÞ
is an aggregation operator on [c, d].

We call AU the U-transform of A. For [a, b] = [c, d] the aggregation operator A is called U-invariant if
AU = A (see also [19–21]). Every U is in fact an order-preserving or order-reversing bijection from [c, d]
to [a, b]. In case [a, b] = [c, d] = [0, 1] we talk about [0, 1]-automorphisms, respectively strict negators. We
use the exponential notation xN to denote the image of x under a negator N. For [0, 1]-automorphisms
/ we stick to the common notation /(x). A strict negator N that fulfills (xN)N = x is called involutive.
The standard negator N , defined by xN ¼ 1� x, is the prototype of an involutive negator. Trillas [23]
has shown that the class of involutive negators N consists of all /-transforms of the standard negator:

xN ¼ /�1ð1� /ðxÞÞ ¼ /�1ð/ðxÞN Þ
for some [0, 1]-automorphism /. In the literature, the N -transform AN of A is known as the dual of A [3].

Definition 2. An aggregation operator A is called self-dual if it is N -invariant.

Several other terms are used for expressing self-duality: neutrality [14], reciprocity [13,15], etc. Examples
of self-dual aggregation operators are [3]:

(1) quasi-arithmetic means Mf ðx1; . . . ; xnÞ ¼ f �1ð
Pn

i¼1f ðxiÞ=nÞ for which the strictly monotone continuous
function f : [0, 1]! [�1,1] is reciprocal (i.e. f(1 � x) = 1 � f(x)),

(2) weighted means Wðx1; . . . ; xnÞ ¼
Pn

i¼1wi � xi, where
Pn

i¼1wi ¼ 1 and wi P 0,
(3) OWA operators W0ðx1; . . . ; xnÞ ¼

Pn
i¼1wi � x0i, with ðx01; . . . ; x0nÞ an increasing permutation of

(x1, . . . , xn),
Pn

i¼1wi ¼ 1, wi P 0 and (w1, . . . , wn) = (wn, . . . , w1).

A self-dual and commutative binary aggregation operator A necessarily satisfies A(x, 1 � x) = 1/2 for
every x 2 [0, 1]. This rules out all uninorms U (i.e. commutative, associative, increasing binary operators
with neutral element e 2 [0, 1] [24]) since U(0, 1) 2 {0, 1} [12]. Consequently, no t-norm (uninorm with
e = 1) and no t-conorm (uninorm with e = 0) is self-dual. Nullnorms V on the other hand are operators
of the type med(a, T, S), with a 2 [0, 1], T a t-norm and S a t-conorm [2,3]. They are commutative, associa-
tive, increasing binary operators with annihilator a 2 [0, 1] (V(x, a) = a for all x 2 [0, 1]). It is easily verified
that a nullnorm is self-dual if and only if a = 1/2 and S is the N -transform of T.

3. A characterization of N-invariant aggregation operators

Self-dual aggregation operations have already been studied and characterized in [3,15]. In each of these
works, a self-dual aggregation operator is constructed by means of an arbitrary aggregation operator and
its dual. We will fit the existing characterizations into a more general framework, providing several new
theorems for characterizing N-invariant aggregation operators, with N an involutive negator. Results con-
cerning self-dual aggregation operators can be easily retrieved by putting N ¼ N .

Silvert has investigated operations that allow to merge two fuzzy sets F1 and F2 by means of some rule of
combination C into a new fuzzy set such that the complement of the combination is the combination of the
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complements, i.e. 1 � C(F1, F2) = C(1 � F1, 1 � F2), expressing the self-duality of C [22]. Such a binary
operator C is called a symmetric sum if it is a continuous, commutative, self-dual aggregation operator
[10,11,22]. Dombi [8] has investigated strictly increasing associative symmetric sums on ]0, 1[. Idempotent
symmetric sums have been discussed by Dubois [9]. Symmetric sums were the source of inspiration for the
following proposition due to Calvo et al.

Proposition 2 [3]. An aggregation operator A is self-dual if and only if there exists an aggregation operator B

such that

Aðx1; . . . ; xnÞ ¼
Bðx1; . . . ; xnÞ

Bðx1; . . . ; xnÞ þ Bð1� x1; . . . ; 1� xnÞ
ð1Þ

with 0
0þ0

:¼ 1
2
.

To verify the sufficient condition it is enough to take B = A. As indicated in [3], the convention 0
0þ0

:¼ 1
2

can be replaced by some other convention, leading to aggregation operators that are not self-dual. For
example, if B(x1, . . . , xn) :¼ TP(x1, . . . , xn) = x1 Æ. . .Æ xn and we assume that 0

0þ0
:¼ 0, then A is the 3P-oper-

ator, a well-known representable uninorm [6,8,12,17]. Besides this characterization, Garcı́a-Lapresta and
Marques Pereira provided an alternative characterization based on the arithmetic mean.

Proposition 3 [15]. An aggregation operator A is self-dual if and only if there exists an aggregation operator

B such that

Aðx1; . . . ; xnÞ ¼
Bðx1; . . . ; xnÞ þ BN ðx1; . . . ; xnÞ

2
. ð2Þ

For each self-dual A we can again choose B = A. Rewriting Eq. (1) as

Aðx1; . . . ; xnÞ ¼
Bðx1; . . . ; xnÞ

Bðx1; . . . ; xnÞ þ 1� BN ðx1; . . . ; xnÞ
; ð3Þ

it strikes that both expressions Eqs. (3) and (2) are of the form

Aðx1; . . . ; xnÞ ¼ CðBðx1; . . . ; xnÞ;BN ðx1; . . . ; xnÞÞ ð4Þ

for some binary operator C and an involutive negator N. The first two plots of Fig. 1 illustrate this binary
operator C for Eqs. (3) and (2). As will be shown later, also the third plot in the figure is a valid choice for C.
We now intend to sift out those binary operators C that allow to characterize the class of N-invariant aggre-
gation operators, i.e. we want to solve the following problem:

Consider an involutive negator N. Find a binary operator C such that an n-ary operator A is an N-invariant

aggregation operator if and only if there exists an aggregation operator B such that Eq. (4) holds for every

(x1, . . . , xn) 2 [0, 1]n.
We then say that C enables a full characterization of all N-invariant aggregation operators. Explicitly, the

N-invariance of an aggregation operator A means that

Aðx1; . . . ; xnÞ ¼ AðxN
1 ; . . . ; xN

n Þ
N ð5Þ

for every (x1, . . . , xn) 2 [0, 1]n. Let aN be the unique fixpoint of N (i.e. (aN)N = aN). From a geometrical
point of view, Eq. (5) enforces some kind of point symmetry w.r.t. (aN, . . . , aN) upon the aggregation oper-
ator A. For the point of symmetry (aN, . . . , aN) it holds that A(aN, . . . , aN) = aN. Once A(x1, . . . , xn) is
known, Eq. (5) fixes AðxN

1 ; . . . ; xN
n Þ. Before continuing the search for suitable C we would like to remark that

our starting point slightly differs from Propositions 2 and 3 as we do not assume A to be an aggregation
operator from the beginning.

K.C. Maes et al. / European Journal of Operational Research 177 (2007) 472–487 475



Let CB be the n-ary operator determined by the right-hand side of Eq. (4):

CB : ½0; 1�n ! ½0; 1� : ðx1; . . . ; xnÞ 7! CðBðx1; . . . ; xnÞ;BN ðx1; . . . ; xnÞÞ;
then C enables a full characterization of all N-invariant aggregation operators if and only if the following
assertions hold:

(1) CB is an aggregation operator for every aggregation operator B.
(2) CB is N-invariant for every aggregation operator B.
(3) For every N-invariant aggregation operator A there exists an aggregation operator B such that

A ¼ CB.

The following three lemmata tackle these assertions.

Lemma 1. CB is an aggregation operator for every aggregation operator B if and only if C is a binary

aggregation operator.

Proof. The necessary condition trivially holds. Suppose that CB is an aggregation operator for every aggre-
gation operator B. By definition it then holds that

Cð0; 0Þ ¼ CðBð0; . . . ; 0Þ;BN ð0; . . . ; 0ÞÞ ¼ CBð0; . . . ; 0Þ ¼ 0.

Analogously Cð1; 1Þ ¼ 1. Moreover, due to the rather limited conditions an aggregation operator must ful-
fill, it is not difficult to see that for every (x, y, u, v) 2 [0, 1]4, with x 6 u and y 6 v, one can construct an

Fig. 1. Possible choices for C. The black solid lines reflect that Cðx; xN Þ ¼ aN . The dashed black lines visualize the curve
Cðf ðxÞ; f ðxN ÞN Þ.
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aggregation operator B for which there exist two n-tuples (x1, . . . , xn) and (y1, . . . , yn) such that xi 6 yi for
every i, x = B(x1, . . . , xn), y = BN(x1, . . . , xn), u = B(y1, . . . , yn) and v = BN(y1, . . . , yn). Since CBðx1; . . . ;
xnÞ 6 CBðy1; . . . ; ynÞ, this means that Cðx; yÞ 6 Cðu; vÞ for every (x, y, u, v) 2 [0, 1]4 with x 6 y and u 6 v,
expressing that C must be increasing in both its arguments. h

Lemma 2. CB is N-invariant for every aggregation operator B if and only if

Cðx; yÞ ¼ CðyN ; xN ÞN ð6Þ
for every (x, y) 2 [0, 1]2.

Proof. The necessary condition trivially holds. Suppose that CB is N-invariant for every aggregation oper-
ator B. For every (x, y) 2 [0, 1]2, there exists an aggregation operator B and an n-tuple (x1, . . . , xn) such that
x = B(x1, . . . , xn) and y = BN(x1, . . . , xn). Expressing the N-invariance of CB then leads to

CðyN ; xN Þ ¼ CðBN ðx1; . . . ; xnÞN ;Bðx1; . . . ; xnÞN Þ ¼ CBðxN
1 ; . . . ; xN

n Þ ¼ CBðx1; . . . ; xnÞN

¼ CðBðx1; . . . ; xnÞ;BN ðx1; . . . ; xnÞÞN ¼ Cðx; yÞN . �

Putting y = xN in Eq. (6), we see that Cðx; xNÞ ¼ aN . The black solid lines in Fig. 1 reflect this property.
Geometrically, Eq. (6) expresses a kind of symmetry of C w.r.t. the negator N. Once Cðx; yÞ is known,
Eq. (6) fixes the value of C in (yN, xN), the point symmetrical to (x, y) w.r.t. the graph of N. If C is not sym-
metrical in its arguments, Eq. (6) substantially differs from Eq. (5) (n = 2). In case C is symmetrical, both
equations are identical and hence Eq. (6) will be trivially fulfilled when considering an N-invariant operator
C.

Lemma 3. For every N-invariant aggregation operator A there exists an aggregation operator B such that

A ¼ CB if and only if there exists an increasing function f : [0, 1] ! [0, 1] satisfying f(0) = 0, f(1) = 1 and

Cðf ðxÞ; f ðxN ÞN Þ ¼ x ð7Þ
for every x 2 [0, 1].

Proof. Suppose that for every N-invariant aggregation operator A it is possible to find an aggregation oper-
ator B such that A ¼ CB. Based on the geometrical interpretation of Eq. (5), it is easy to see that there exists
an idempotent (i.e. A(x, . . . , x) = x for every x 2 [0, 1]) N-invariant aggregation operator A. In case N ¼ N ,
one could for instance consider the arithmetic mean. Further, consider an arbitrary aggregation operator B

such that A ¼ CB. Since for every x 2 [0, 1] it holds that

x ¼ Aðx; . . . ; xÞ ¼ CðBðx; . . . ; xÞ;BðxN ; . . . ; xN ÞN Þ;
it suffices to define f(x) :¼ B(x, . . . , x) for every x 2 [0, 1]. Clearly f is increasing with f(0) = 0, f(1) = 1, and
fulfills Eq. (7).

Conversely, suppose that there exists an increasing function f, fulfilling the conditions of this lemma. For
each A it is then sufficient to define the n-ary operator B as follows

Bðx1; . . . ; xnÞ ¼ f ðAðx1; . . . ; xnÞÞ.

The boundary conditions and the increasingness of both f and A ensure that B is an aggregation operator.
Replacing x by A(x1, . . . , xn) in Eq. (7) and taking into account that A is N-invariant, immediately leads to
A ¼ CB. h

The dashed black lines in Fig. 1 visualize Cðf ðxÞ; f ðxN ÞN Þ ¼ x for some suitable increasing function f. It is
worthwhile noting that, for every self-dual aggregation operator A, B = A fulfills Eqs. (1) and (2). In
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general A ¼ CA holds for every N-invariant aggregation operator A if and only if C is idempotent
(i.e. Cðx; xÞ ¼ x for every x 2 [0, 1]). In that case it is sufficient to choose f = id[0,1]. The proof of
Lemma 3 also ensures that, for every suitable f and every self-dual aggregation operator A, f(A(x1, . . . , xn))
defines an aggregation operator B that generates A. The three binary aggregation operators in Fig. 2
were created as such and generate the arithmetic mean. They correspond to the different settings in
Fig. 1.

Joining the previous lemmata finally leads to the following theorem.

Theorem 1. A binary operator C enables a full characterization of all N-invariant aggregation operators if

and only if the following assertions hold

(1) C is a binary aggregation operator.

(2) Cðx; yÞ ¼ CðyN ; xN ÞN for every (x, y) 2 [0, 1]2.

(3) There exists an increasing function f : [0, 1] ! [0, 1] such that f(0) = 0, f(1) = 1 and

Cðf ðxÞ; f ðxN ÞN Þ ¼ x for every x 2 [0, 1].

It is now easily checked that the third plot in Fig. 1 indeed enables a full characterization of all N-invari-
ant aggregation operators. In Theorem 1, the symmetry of C w.r.t. N, expressed by the second assertion,
contributes to the construction of a suitable f in the third assertion. It suffices to find an increasing
(w.r.t. the three space coordinates) curve on C, not necessarily continuous, that reaches every number
x 2 [0, aN[. Since Cðx; xN Þ ¼ aN whenever x 2 [0, 1], this mathematically amounts to finding two increasing
[0, aN[ ! [0, 1] mappings f(x) and g(x) such that g(x) 6 f(x)N and Cðf ðxÞ; gðxÞÞ ¼ x for every x 2 [0, aN[. If
we define f(x) :¼ g(xN)N for every x 2 ]aN, 1], then the second assertion in the theorem assures that
Cðf ðxÞ; f ðxN ÞNÞ ¼ x holds for every x 2 [0, 1]n{aN}. Note that we can choose arbitrarily

f ðaN Þ 2 lim
x!< aN

f ðxÞ; lim
x!> aN

f ðxÞ
" #

.

Fig. 2. Binary aggregation operators B generating the arithmetic mean CBðx; yÞ ¼ xþy
2

by means of the resp. binary aggregation
operators C from Fig. 1 ðN ¼ NÞ.
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Every appropriate function f is constructed as described above. Moreover, due to the first assertion of The-
orem 1, C must be increasing. Therefore, we can find an increasing (w.r.t. the three space coordinates) curve
on C that reaches every number x 2 [0, aN[ if and only if C reaches every number x 2 [0, aN[. Theorem 1 can
be adjusted accordingly.

Theorem 2. A binary operator C enables a full characterization of all N-invariant aggregation operators if

and only if the following assertions hold:

(1) C is a binary aggregation operator.

(2) Cðx; yÞ ¼ CðyN ; xN ÞN for every (x, y) 2 [0, 1]2.
(3) C reaches every element of [0, aN[.

It is now natural to wonder whether there exists a binary operator C that enables a full characterization
of all N-invariant aggregation operators for every involutive negator N. This question is answered
negatively.

Theorem 3. There does not exist a binary operator C that enables a full characterization of all N-invariant

aggregation operators for every involutive negator N.

Proof. For example, consider the two involutive negators N1 and N2 defined by

xN1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

and xN2 ¼
�x=3þ 1; x 2 ½0; 3=4�;
�3xþ 3; x 2 ½3=4; 1�

�

and with fixpoints aN1
¼

ffiffiffiffiffiffiffiffi
1=2

p
and aN2

¼ 3=4. Obviously, ð3=5ÞN1 ¼ ð3=5ÞN2 ¼ 4=5 and therefore
Cð3=5; ð3=5ÞN1Þ ¼ Cð3=5; ð3=5ÞN2Þ. The second assertion of Theorem 2, however, implies that

Cð3=5; ð3=5ÞN1Þ ¼ aN1
¼

ffiffiffiffiffiffiffiffi
1=2

p
< 3=4 ¼ aN2

¼ Cð3=5; ð3=5ÞN2Þ;
a contradiction. h

Comparing Eq. (1) with Eq. (2), Garcı́a-Lapresta and Marques Pereira [15] argue that their approach
(Eq. (2)), in contrast to Eq. (1), preserves shift-invariance. An aggregation operator A is called shift-invari-

ant if for all t 2 [�1, 1] and all (x1, . . . , xn) 2 [0, 1]n it holds that

Aðx1 þ t; . . . ; xn þ tÞ ¼ Aðx1; . . . ; xnÞ þ t ð8Þ

whenever (x1 + t, . . . , xn + t) 2 [0, 1]n and A(x1, . . . , xn) + t 2 [0, 1]. Interpreting the translations in ques-
tion as increasing bijections

Ut : ½maxð�t; 0Þ;minð1� t; 1Þ� ! ½maxð0; tÞ;minð1; t þ 1Þ� : x 7! xþ t;

with t 2 [�1, 1], we can consider Eq. (8) as the Ut-invariance of A. Hence, an aggregation operator A is
shift-invariant if it is Ut-invariant for every t 2 [�1, 1]. If the aggregation operator CB is shift-invariant
whenever B is shift-invariant we say that C preserves shift-invariance.

Theorem 4. The arithmetic mean is the only binary operator that fulfills (6) for N ¼ N and preserves shift-

invariance.

Proof. Obviously C preserves shift-invariance if and only if C itself is shift-invariant. Aczél [1] showed that
the general solution of Eq. (8) (n = 2) is given by Cðx; yÞ ¼ xþ f ðy � xÞ, for some function f : [0, 1]! [0, 1]
such that x + f(y � x) 2 [0, 1]. Expressing that Eq. (6) must hold for N ¼ N leads to f(y � x) = (y � x)/2.
Consequently, C must be the arithmetic mean. h
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Due to Theorem 2, we now know that the arithmetic mean is the only good choice if we want to preserve
shift-invariance.

Corollary 1. The arithmetic mean is the only binary operator that enables a full characterization of all self-

dual aggregation operators and preserves shift-invariance.

Consequently, shift-invariant self-dual aggregation operators can be created by means of Eq. (2),
with B a shift-invariant aggregation operator. Recently, shift-invariant self-dual aggregation opera-
tors, related to quasi-arithmetic means, were used in a real case study by Garcı́a-Lapresta and Meneses
[16].

Remarks 1

(1) In essence we are determining N-invariant aggregation operators for a given involutive negator N. In
[20], Mesiar and Rückschlossová tackle a strongly related problem. They characterize those aggrega-
tion operators that are invariant under any [0, 1]-automorphism or strict negator. Their work comple-
ments the results of Ovchinnikov and Dukhovny [21], who characterized those continuous
aggregation operators that are invariant under any [0, 1]-automorphism (see also [19]). All these char-
acterizations are based on the Choquet integral w.r.t. {0, 1}-valued fuzzy measures.

(2) An aggregation operator A can also be N-invariant on

I ¼ ½0; 1�n n fðx1; . . . ; xnÞ j minðx1; . . . ; xnÞ ¼ 0 ^maxðx1; . . . ; xnÞ ¼ 1g.

For example, as already mentioned, the 3P-operator belongs to the class of representable uninorms. These
uninorms are strictly increasing and continuous on ]0, 1[2 and N-invariant on I [7,12].

4. n-Ary operators generating self-dual aggregation operators

So far we have been looking for those operators C that enable a full characterization of all N-invariant
aggregation operators. Once C is fixed in accordance with Theorem 2, every aggregation operator B will
provide an N-invariant aggregation operator A and, conversely, with every N-invariant aggregation oper-
ator A there corresponds at least one aggregation operator B such that A ¼ CB. However, B itself often does
not need to be an aggregation operator. The minimal conditions on an n-ary operator B such that Eq. (4)
yields an N-invariant aggregation operator are inextricably bound up with the choice of C and N. There-
fore, general results are not to be expected. Here, we focus on Eqs. (1) and (2), with N ¼ N , and try to
generalize Propositions 2 and 3.

In order to generalize Proposition 2 we have to figure out under which conditions Eq. (1) defines a self-
dual aggregation operator.

Proposition 4. An n-ary operator A is a self-dual aggregation operator if and only if there exists an n-ary

operator B such that

(1) B(0, . . . , 0) = 0 and B(1, . . . , 1) > 0,

(2)
Bðx1; . . . ; xnÞ

Bð1� x1; . . . ; 1� xnÞ
is increasing, with 0

0
:¼ 1,

(3) Aðx1; . . . ; xnÞ ¼
Bðx1; . . . ; xnÞ

Bðx1; . . . ; xnÞ þ Bð1� x1; . . . ; 1� xnÞ
, with

0

0þ 0
:¼ 1

2
.

Proof. In case B is an aggregation operator, the first two conditions are trivially fulfilled. Taking into
account Proposition 2 immediately leads to the necessary conditions. Conversely, let B be an n-ary operator
fulfilling the first two conditions and define an n-ary operator A by means of the third condition. It then
suffices to prove that A is a self-dual aggregation operator. The self-duality of A does not depend on the
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choice of B, but is immediately ensured by the definition of A and the convention 0
0þ0

:¼ 1
2
. It is also easily

verified that A fulfills the boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 if and only if
B(0, . . . , 0) = 0 and B(1, . . . , 1) > 0. This leaves us to prove that A is increasing if and only if

B : ½0; 1�n ! ½0;1� : ðx1; . . . ; xnÞ 7!
Bðx1; . . . ; xnÞ

Bð1� x1; . . . ; 1� xnÞ
;

with 0
0

:¼ 1, is increasing. We have to guarantee that

Bðx1; . . . ; xnÞ
Bðx1; . . . ; xnÞ þ Bð1� x1; . . . ; 1� xnÞ

6
Bðy1; . . . ; ynÞ

Bðy1; . . . ; ynÞ þ Bð1� y1; . . . ; 1� ynÞ
ð9Þ

whenever (x1, . . . , xn) 6 (y1, . . . , yn).

(1) If B(1 � x1, . . . , 1 � xn) > 0 and B(1 � y1, . . . , 1 � yn) > 0, then Eq. (9) is equivalent to

Bðx1; . . . ; xnÞ � Bð1� y1; . . . ; 1� ynÞ 6 Bðy1; . . . ; ynÞ � Bð1� x1; . . . ; 1� xnÞ;
leading to Bðx1; . . . ; xnÞ 6 Bðy1; . . . ; ynÞ.

(2a) If B(1 � x1, . . . , 1 � xn) = 0 and B(x1, . . . , xn) > 0, then Eq. (9) becomes

1 6
Bðy1; . . . ; ynÞ

Bðy1; . . . ; ynÞ þ Bð1� y1; . . . ; 1� ynÞ
.

The latter can only occur if B(y1, . . . , yn) > 0 and B(1 � y1, . . . , 1 � yn) = 0, leading to
Bðx1; . . . ; xnÞ ¼ Bðy1; . . . ; ynÞ ¼ þ1.

(2b) If B(1 � x1, . . . , 1 � xn) = 0 and B(x1, . . . , xn) = 0, then Eq. (9) becomes

1

2
6

Bðy1; . . . ; ynÞ
Bðy1; . . . ; ynÞ þ Bð1� y1; . . . ; 1� ynÞ

;

which is equivalent to B(1 � y1, . . . , 1 � yn) 6 B(y1, . . . , yn). Therefore, Bðx1; . . . ; xnÞ ¼ 1 6
Bðy1; . . . ; ynÞ.

(3a) If B(1 � y1, . . . , 1 � yn) = 0 and B(y1, . . . , yn) > 0 then immediately Bðx1; . . . ; xnÞ 6
Bðy1; . . . ; ynÞ ¼ þ1.

(3b) If B(1 � y1, . . . , 1 � yn) = 0 and B(y1, . . . , yn) = 0, then Eq. (9) becomes

Bðx1; . . . ; xnÞ
Bðx1; . . . ; xnÞ þ Bð1� x1; . . . ; 1� xnÞ

6
1

2
;

which is equivalent to B(x1, . . . , xn) 6 B (1 � x1, . . . , 1 � xn). Therefore, Bðx1; . . . ; xnÞ 6 1 ¼
Bðy1; . . . ; ynÞ.

This completes the proof. h

It is clear that the conditions on B in Proposition 4 are minimal. Note that for every n-ary
operator B generating a self-dual aggregation operator A by means of Eq. (1), the n-ary operator B 0 defined
by

B0ðx1; . . . ; xnÞ ¼
Bðx1; . . . ; xnÞ
Bð1; . . . ; 1Þ

also generates A and fulfills the conditions of the proposition. Without loss of generality, we may require
that B(1, . . . , 1) = 1.
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Next, we carry out an optimal generalization of Proposition 3. The proof is elementary and therefore left
out.

Proposition 5. An n-ary operator A is a self-dual aggregation operator if and only if there exists an n-ary

operator B such that

(1) B(0, . . . , 0) = 0 and B(1, . . . , 1) = 1,

(2) B(x1, . . . , xn) � B(1 � x1, . . . , 1 � xn) is increasing,

(3) Aðx1; . . . ; xnÞ ¼ Bðx1;...;xnÞþBN ðx1;...;xnÞ
2

.

The first plot in Fig. 3 visualizes a non-monotonic binary operator B that fulfills the conditions of Prop-
osition 4 and generates the arithmetic mean by means of Eq. (1). Similarly, the second plot in the figure
fulfills the conditions of Proposition 5 and generates the arithmetic mean by means of Eq. (2). As
announced at the beginning of this section, we only attempted to generalize Propositions 2 and 3. An anal-
ogous reasoning can be done for other specific choices of C and N. As an example, the third plot of Fig. 3
presents a binary operator B for which CB, based on the third aggregation operator C in Fig. 1 and with
N ¼ N , once again is the arithmetic mean. However, B itself is not an aggregation operator.

5. Equivalence classes

We have seen that, given the binary aggregation operator C, each self-dual aggregation operator A can be
built from an n-ary operator B fulfilling some extra conditions. Usually, several suchlike operators B can gen-
erate the same A. The set of all suitable operators B is partitioned into equivalence classes, each containing

Fig. 3. Binary operators B generating the arithmetic mean CBðx; yÞ ¼ ðxþ yÞ=2 by means of the resp. binary aggregation operators C
from Fig. 1 ðN ¼ NÞ.
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those n-ary operators B determining the same A. In this section, we concentrate on the content of these
equivalence classes. We also suggest how to pick out a (maximal) representative in each equivalence class.

Define for every x 2 [0, 1] the set C�1
x as follows:

C�1
x :¼ fðu; vÞ 2 ½0; 1�2 j Cðu; vÞ ¼ xg.

Due to Eq. (7), we know that C�1
x 6¼ ; and therefore

S
x2½0;1�C

�1
x defines a partition of [0, 1]2. On the other

hand, due to Eq. (6), we know that ðu; vÞ 2 C�1
x if and only if ðvN ; uN Þ 2 C�1

xN . Hence, the partition in question
is totally determined by fC�1

x j x 2 ½0; aN �g.

Theorem 5. Consider a binary aggregation operator C fulfilling the conditions of Theorem 2, and a partition

I [ IN of [0, 1]nn{(aN, . . . , aN)} such that

ðx1; . . . ; xnÞ 2 I () ðxN
1 ; . . . ; xN

n Þ 2 IN .

For every N-invariant aggregation operator A and every n-ary operator B, it holds that CB ¼ A if and only

if

ðBðx1; . . . ; xnÞ;BNðx1; . . . ; xnÞÞ 2 C�1
Aðx1;...;xnÞ ð10Þ

for every (x1, . . . , xn) 2 I [ {(aN, . . . , aN)}.

Proof. The sufficient conditions hold by definition. Suppose that Eq. (10) holds, then also

CBðx1; . . . ; xnÞ ¼ CðBðx1; . . . ; xnÞ;BN ðx1; . . . ; xnÞÞ ¼ Aðx1; . . . ; xnÞ ð11Þ

for every (x1, . . . , xn) 2 I [ {(aN, . . . , aN)}. Moreover, Eq. (10) also implies that

BN ðx1; . . . ; xnÞN ;Bðx1; . . . ; xnÞN
� �

2 C�1
Aðx1;...;xnÞN

for every (x1, . . . , xn) 2 I, which can be rewritten as

B xN
1 ; . . . ; xN

n

� �
;BN xN

1 ; . . . ; xN
n

� �� �
2 C�1

AðxN
1
;...;xN

n Þ.

If we then replace (x1, . . . , xn) by ðxN
1 ; . . . ; xN

n Þ, it is clear that Eq. (11) also holds for every (x1, . . . , xn) 2 IN.
We can conclude that CBðx1; . . . ; xnÞ ¼ Aðx1; . . . ; xnÞ for every (x1, . . . , xn) 2 I [ IN [ {(aN, . . . , aN)} =
[0, 1]n. h

By means of Eq. (10) we can construct an appropriate n-ary operator B. Take for every (x1, . . . , xn) 2
[0, 1]n an arbitrary point ðu; vÞ 2 C�1

Aðx1;...;xnÞ and put B(x1, . . . , xn) :¼ u and BðxN
1 ; . . . ; xN

n Þ :¼ vN . The theorem
also enables us, given an n-ary operator D for which CD is a self-dual aggregation operator (e.g. every aggre-
gation operator D will do), to construct the equivalence class containing D. It simply suffices to take
A :¼ CD. Remark that, in contrast to the previous section, we do not need to verify whether B indeed
provides an aggregation operator CB. We start here with a self-dual aggregation operator A or CD. This
is in contrast to Section 4 where we wanted to construct a suchlike self-dual aggregation operator.
However, since any aggregation operator must fulfill the same boundary conditions, we derive from Eq.
(10) that ðBð0; . . . ; 0Þ;Bð1; . . . ; 1ÞN Þ 2 C�1

0 . The boundary conditions in Propositions 4 and 5 can now be
read immediately from Fig. 1. A similar reasoning for the monotonicity conditions fails in its intentions
as for that purpose we need to know in advance which self-dual aggregation operator we are cons-
tructing.

To illustrate Theorem 5, we apply it to Cðx; yÞ ¼ x=ðxþ 1� yÞ and Cðx; yÞ ¼ ðxþ yÞ=2.
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Proposition 6. Consider a partition I [ IN of [0, 1]nn{(1/2, . . . , 1/2)} such that

ðx1; . . . ; xnÞ 2 I () ð1� x1; . . . ; 1� xnÞ 2 IN .

For every self-dual aggregation operator A and every n-ary operator B, Eq. (1) holds if and only if

Bðx1; . . . ; xnÞ
Bð1� x1; . . . ; 1� xnÞ

¼ Aðx1; . . . ; xnÞ
Að1� x1; . . . ; 1� xnÞ

ð12Þ

for every (x1, . . . , xn) 2 I [ {(1/2, . . . , 1/2)}, with 0
0

:¼ 1.

Proof. Relying on Theorem 5, we only need to show that Eq. (12) is equivalent to Eq. (10) for
Cðx; yÞ ¼ x=ðxþ 1� yÞ. Since A is self-dual, it suffices to prove that ðx; yÞ 2 C�1

z can be rewritten as
x/(1 � y) = z/(1 � z), for every (x, y, z) 2 [0, 1]3. To avoid singularities, we use the conventions

0
0þ0

:¼ 1=2 and 0
0

:¼ 1. Note that, by definition, ðx; yÞ 2 C�1
z means that x/(x + 1 � y) = z. We distinguish

the following cases:

(1) If x + 1 � y = 0 + 0, then x = 0, y = 1 and z = 1/2, by convention. Consequently

x
1� y

¼ 0

0
¼ 1 ¼ 1=2

1=2
¼ z

1� z
.

(2) If x + 1 � y > 0, then x = (x + 1 � y)z, which is equivalent to (1 � z)x = z(1 � y). We need to con-
sider four subcases:
(a) If 1 � z > 0 and 1 � y > 0, then necessarily x/(1 � y) = z/(1 � z).
(b) If 1 � z = 0 and 1 � y > 0, then necessarily z = 0, a contradiction.
(c) If 1 � z > 0 and 1 � y = 0, then necessarily x = 0, a contradiction.
(d) If 1 � z = 0 and 1 � y = 0, then necessarily z = 1 and x > 0, leading to x/(1 � y) =

z/(1 � z) = +1.

This completes the proof. h

Based on Eq. (12) we can construct B as follows. Let (x1, . . . , xn) be an arbitrary point in I [ {(1/2, . . . ,
1/2)}. If A(1 � x1, . . . , 1 � xn) = 0, put B(1 � x1, . . . , 1 � xn) :¼ 0 and take B(x1, . . . , xn) arbitrarily in ]0, 1].
If A(1 � x1, . . . , 1 � xn) = 1/2, choose B(1 � x1, . . . , 1 � xn) = B(x1, . . . , xn) arbitrarily in [0, 1]. If
A(1 � x1, . . . , 1 � xn) 62 {0, 1/2}, we can take B(1 � x1, . . . , 1 � xn) arbitrarily in ]0, 1], fixing B(x1, . . . , xn)
as follows:

Bðx1; . . . ; xnÞ :¼ Aðx1; . . . ; xnÞ � Bð1� x1; . . . ; 1� xnÞ
Að1� x1; . . . ; 1� xnÞ

.

Repeating this procedure for every (x1, . . . , xn) 2 I [ {(1/2, . . . , 1/2)}, totally determines B. For a particular
partition I [ IN , we can construct in each equivalence class a unique maximal element that can be used
to represent the equivalence class in question. Just put B(1 � x1, . . . , 1 � xn) :¼ 1 or B(x1, . . . , xn) :¼ 1
whenever possible. A minimal element w.r.t. IN [ fð1=2; . . . ; 1=2Þg is usually out of the question. If we
are allowed to choose B(1 � x1, . . . , 1 � xn) arbitrarily in ]0, 1], minimizing B(1 � x1, . . . , 1 � xn) becomes
impossible.

Proposition 7. Consider a partition I [ IN of [0, 1]nn{(1/2, . . . , 1/2)} such that

ðx1; . . . ; xnÞ 2 I () ð1� x1; . . . ; 1� xnÞ 2 IN .
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For every self-dual aggregation operator A and every n-ary operator B, Eq. (2) holds if and only if

Bðx1; . . . ; xnÞ � Bð1� x1; . . . ; 1� xnÞ ¼ 2Aðx1; . . . ; xnÞ � 1 ð13Þ

for every (x1, . . . , xn) 2 I [ {(1/2, . . . , 1/2)}.

Proof. Follows immediately from Theorem 5 and Eq. (2). h

Similarly to the previous case, we can construct every suitable B by means of Eq. (13). For every
(x1, . . . , xn) 2 I [ {(1/2, . . . , 1/2)} we choose B(1 � x1, . . . , 1 � xn) arbitrarily in

½maxð0; 1� 2Aðx1; . . . ; xnÞÞ;minð2Að1� x1; . . . ; 1� xnÞ; 1Þ�.
B is now totally fixed because

Bðx1; . . . ; xnÞ ¼ 2Aðx1; . . . ; xnÞ � 1þ Bð1� x1; . . . ; 1� xnÞ.
The upper and lower bound for B(1 � x1, . . . , 1 � xn) ensure that B(x1, . . . , xn) 2 [0, 1]. For every partition
I [ IN , each equivalence class has some maximal, resp. some minimal element. Indeed, it suffices to let
B(1 � x1, . . . , 1 � xn) be the upper, resp. the lower, bound of its delimiting interval.

The plots in Fig. 4 give examples of binary operators B that are maximal w.r.t.
{(x, y) 2 [0, 1]2jx + y P 1} and generate the arithmetic mean. It is worthwhile noting that the three oper-
ators pictured in this figure are aggregation operators. However, it is not difficult to see that a more exotic
choice of I does not guarantee the monotonicity of B.

Furthermore, it strikes that the first two conditions in Proposition 4 are just a consequence of Eq. (12). A
similar correlation exists between Proposition 5 and Eq. (13). Given the duality, reflected in the choice of
the partition I [ IN , we can also derive necessary and sufficient conditions determining whether two oper-
ators B and D belong to the same equivalence class. We only need to replace A in Propositions 6 and 7 by
CD.

Fig. 4. Binary aggregation operators B maximal w.r.t. {(x, y) 2 [0, 1]2jx + y P 1} and generating the arithmetic mean
CBðx; yÞ ¼ ðxþ yÞ=2 by means of the resp. binary aggregation operators C from Fig. 1 ðN ¼ NÞ.
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Proposition 8. Consider the binary aggregation operator C, defined by Cðx; yÞ ¼ x=ðxþ 1� yÞ. For every two

n-ary operators B and D, fulfilling the first two conditions in Proposition 4, it holds that CB ¼ CD if and only if

Bðx1; . . . ; xnÞ
Bð1� x1; . . . ; 1� xnÞ

¼ Dðx1; . . . ; xnÞ
Dð1� x1; . . . ; 1� xnÞ

for every (x1, . . . , xn) 2 [0, 1]n, with 0
0

:¼ 1.

Proposition 9. Consider the binary aggregation operator C, defined by Cðx; yÞ ¼ ðxþ yÞ=2. For every two n-

ary operators B and D, fulfilling the first two conditions in Proposition 5, it holds that CB ¼ CD if and only if

Bðx1; . . . ; xnÞ � Bð1� x1; . . . ; 1� xnÞ ¼ Dðx1; . . . ; xnÞ �Dð1� x1; . . . ; 1� xnÞ
for every (x1, . . . , xn) 2 [0, 1]n, with 0

0
:¼ 1.

Throughout the previous discussion, we considered n-ary operators B. However, as pointed out in Sec-
tion 3, it is enough to work with aggregation operators (see Theorem 2). It is natural to wonder which
aggregation operators B generate the same N-invariant aggregation operator A. In other words, we are
looking for those increasing n-ary operators B that fulfill Eq. (10) and satisfy the boundary conditions
B(0, . . . , 0) = 0 and B(1, . . . , 1) = 1. Unfortunately, it is not clear how to characterize those operators. Sup-
pose we know which N-invariant aggregation operator A we intend to construct. Following the procedures
in the proof of Lemma 3, it can be shown that every increasing function f, satisfying f(0) = 0, f(1) = 1 and
Cðf ðxÞ; f ðxN ÞNÞ ¼ x for every x that is reached by A, defines an aggregation operator B that generates A:

Bðx1; . . . ; xnÞ :¼ f ðAðx1; . . . ; xnÞÞ.
However, not every appropriate aggregation operator B can be constructed in this way. For example, let A

be the (binary) arithmetic mean and consider the standard negator N , then

Bðx; yÞ ¼
xþ y

2
; y 6 1� x ^ x 6¼ 1

2
;

1; elsewhere,

8<
:

generates A when using the third aggregation operator C in Fig. 1. In this case it is impossible to define B by
means of an appropriate function f since

CðBð1=2; 1=2Þ; 1� Bð1=2; 1=2ÞÞ ¼ Cð1; 0Þ ¼ 1=2 ¼ Að1=2; 1=2Þ
and

CðBð0; 1Þ; 1� Bð1; 0ÞÞ ¼ Cð1=2; 1=2Þ ¼ 1=2 ¼ Að0; 1Þ.

6. Conclusions

Considering involutive negators N, we have investigated how N-invariant aggregation operators can be
characterized. Inspired by the approach of Calvo et al. [3] and the approach of Garcı́a-Lapresta and Mar-
ques Pereira [15], we have been able to develop a general framework where N-invariant aggregation oper-
ators (n P 2) are constructed by combining aggregation operators B with their dual aggregation operator
BN. For this merge we have used binary aggregation operators C that fulfill Cðx; yÞ ¼ CðyN ; xN ÞN and that
reach every element of [0, 1]. We have identified, for Cðx; yÞ ¼ x=ðxþ 1� yÞ, Cðx; yÞ ¼ ðxþ yÞ=2 and N ¼ N ,
the minimal conditions on a general n-ary operator B such that it generates a self-dual aggregation oper-
ator. Similar results can be derived for any other choice of C and N. Finally, we have studied which n-ary
operators B generate the same N-invariant aggregation operator. As an example we had a deeper look on
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Cðx; yÞ ¼ x=ðxþ 1� yÞ and Cðx; yÞ ¼ ðxþ yÞ=2. Also, we have briefly pointed out what happens if we
restrict to aggregation operators B.
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Aggregation Operators and Commuting
Susanne Saminger-Platz, Radko Mesiar, and Didier Dubois

Abstract—Commuting is an important property in any two-step
information merging procedure where the results should not
depend on the order in which the single steps are performed. We
investigate the property of commuting for aggregation operators
in connection with their relationship to bisymmetry. In case of
bisymmetric aggregation operators we show a sufficient condition
ensuring that two operators commute, while for bisymmetric
aggregation operators with neutral element we even provide a
full characterization of commuting -ary operators by means of
unary distributive functions. The case of associative operations,
especially uninorms, is considered in detail.

Index Terms—Aggregation operators, bisymmetry, commuting
operators, consensus.

I. INTRODUCTION

I N VARIOUS applications where information fusion or mul-
tifactorial evaluation is needed, an aggregation process is

carried out as a two-stepped procedure whereby several local
fusion operations are performed in parallel and then the results
are merged into a global result. It may happen that in practice
the two steps can be exchanged because there is no reason to
perform either of the steps first. For instance, in a multi-person
multi-aspect decision problem, each alternative is evaluated by
a matrix of ratings where the rows represent evaluations by
persons and the columns represent evaluations by criteria. One
may, for each row, merge the ratings according to each column
with some aggregation operation and form as such the global
rating of each person, and then merge the persons’ opinions
using another aggregation operation . On the other hand, one
may decide first to merge the ratings in each column using the
aggregation operation , thus forming the global ratings ac-
cording to each criterion, and then merge these social evalu-
ations across the criteria with aggregation operation . The
problem is that it is not guaranteed that the results of the two
procedures will be the same, while one would expect them to be
so in any sensible approach. When the two procedures yield the
same results operations and are said to commute.

This paper is devoted to a mathematical investigation of com-
muting aggregation operators which are used, e.g., in utility
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theory [15], but also in extension theorems for functional equa-
tions [33]. Very often, the commuting property is instrumental
in the preservation of some property during an aggregation
process, like transitivity when aggregating preference matrices
or fuzzy relations (see, e.g., [13] and [34]), or some form of
additivity when aggregating set functions (see, e.g., [15]). In
fact, early examples of commuting appear in probability theory
for the merging of probability distributions. Suppose two joint
probability distributions are merged by combining degrees
of probability point-wisely. It is natural that the marginals of
the resulting joint probability function are the aggregates of
the marginals of the original joint probabilities. To fulfill this
requirement the aggregation operation must commute with the
addition operation involved in the derivation of the marginals.
It enforces a weighted arithmetic mean as the only possible ag-
gregation operation for probability functions [31]. This result is
closely related to the theory of probabilistic mixtures that plays
a key-role in the axiomatic derivation of expected utility theory
[22]. In [15], the same question is solved for more general set
functions, where the addition is replaced by a t-conorm and the
consequences for generalized utility theory are pointed out.

In this paper, the problem of commuting operators is con-
sidered with more generality. After a section presenting neces-
sary definitions and background, Section III considers the case
of commuting unary operations, called distributive functions,
that play a key role in the representation of commuting oper-
ators. Section IV provides characterization results concerning
bisymmetric operations, i.e., aggregation operations that com-
mute with themselves. Sections V and VI focus on functions dis-
tributive over continuous t-(co)norms and particular uninorms,
respectively.

II. PRELIMINARIES

A. Aggregation Operators

Aggregation by itself is an important task in any discipline
where the fusion of information is of vital interest. It compre-
hends the transformation of several items of input data into a
single output value which is characteristic for the input data it-
self or some of its aspects. In case of aggregation operators it
is assumed that a finite number of inputs from the same (nu-
merical) scale, most often the unit interval, are being aggre-
gated. Moreover, interpreting the inputs as evaluation results
of objects according to some criterion, the monotonicity and
boundary conditions of its formal definition look very natural:

Definition 1: A function is called
an aggregation operator if it fulfills the following proper-
ties [10]:

(AO1) whenever
for all ;

(AO2) for all ;
(AO3) and .

1063-6706/$25.00 © 2007 IEEE
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Each aggregation operator can be represented by
a family of -ary operations, i.e., functions

given by

In that case, and, for , each is nonde-
creasing and satisfies and

. Usually, the aggregation operator and the corresponding
family of -ary operations are identified with each
other. Note that, -ary operations

, which fulfill properties (AO1) and (AO3) are referred to as
-ary aggregation operators.
Depending on the requirements applied to the aggregation

process several properties for aggregation operators have been
introduced. We only mention those few which are relevant for
our further investigations. For more elaborated details on aggre-
gation operators we refer to, e.g., [10].

Definition 2: Consider some aggregation operator
.

i) is called symmetric if for all and for all

for all permutations of .
ii) is called bisymmetric if for all and all

with and

iii) is called associative if for all and all
and all with and

iv) An element is called neutral element of if for
all and for all it holds
that if for some then

v) An element is called an idempotent element of
if for all . We will abbreviate

the set of idempotent elements by

In case that , the aggregation operator is called
idempotent.

Associative aggregation operators are completely charac-
terized by their binary operators since all -ary, ,
aggregation operators can be constructed by the recursive
application of the binary operator .

Depending on the additional properties, several subclasses
of aggregation operators can and have been distinguished, like,
e.g., symmetric and associative operators with some neutral el-
ement : For , they are referred to as triangular norms

(t-norm for short), for , they are called t-conorms, for
we will refer to them as uninorms (see also [6], [17],

and [24]).
Note that associative and symmetric aggregation operators

are also bisymmetric. On the other hand, bisymmetric aggre-
gation operators with some neutral element are associative.
Therefore, as just mentioned, the class of all associative and
symmetric and, therefore, bisymmetric, aggregation operators
with neutral element consists of all t-norms, t-conorms and
uninorms.

Note that not all aggregation processes are carried out on
input data from the unit interval, therefore, aggregation opera-
tors on other intervals as well as methods for transforming input
data are needed to model the required aggregation process. Ag-
gregation operators can be defined as acting on any closed in-
terval . We will then speak of an aggre-
gation operator acting on . While (AO1) and (AO2) basically
remain the same, only (AO3), expressing the preservation of the
boundaries, has to be modified accordingly

(AO3’) and .

Such aggregation operators can also be achieved from standard
aggregation operators by means of isomorphic transformations.
By such transformations many of the before mentioned proper-
ties are being preserved.

For an isomorphic transformation , i.e., a
monotone bijection, the isomorphic transformation of an
aggregation operator is given by

and is an aggregation operator on . If for two aggregation
operators on (possibly) different intervals, there exists a
monotone bijection such that or we refer
to and as isomorphic aggregation operators.

By means of increasing bijections, we can introduce t-norms
and t-conorms on arbitrary interval preserving the

boundary elements as the corresponding neutral elements. We
will denote such t-norms, respectively, t-conorms as t-(co)norms
on the corresponding interval .

B. Commuting and Dominance

Definition 3: Consider two aggregation operators and .
We say that dominates if for all and
for all , with and ,
the following property holds:

(1)

Definition 4: Consider an -ary aggregation operator
and an -ary aggregation operator . Then, we say that

commutes with if for all with
and , the following property holds:

(2)
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Two aggregation operators and commute with each other if
commutes with for all . We will also refer

to and as commuting aggregation operators.
Observe that the property of commuting as expressed by (2) is

a special case of the so called generalized bisymmetry equation
as introduced and discussed in [4] and [5] and plays a key role
in consistent aggregation.

It is an immediate consequence of the definition of com-
muting that two aggregation operators commute if and only if
they dominate each other; further, that any aggregation operator
commuting with itself is bisymmetric and vice versa. Note that
in case of two associative aggregation operators, commuting
between the binary operators is a necessary and sufficient
condition for their commuting in general.

Because of the preservation properties of dominance during
isomorphic transformations (see also [34]) we immediately can
state the following result:

Corollary 5: Let and be two aggregation operators.
Then, the following are equivalent:

i) commutes with ;
ii) commutes with for some isomorphic transforma-

tion ;
iii) commutes with for all isomorphic transforma-

tions .
Example 6: The projections to the first coordinate resp. to the

last coordinate, i.e.,

commute with arbitrary aggregation operator .

III. DISTRIBUTIVE FUNCTIONS

A. Basic Property

There is a close relationship between commuting aggrega-
tion operators and unary functions being distributive over one of
the two aggregation operators involved. On the one hand, such
functions can be constructed from commuting aggregation op-
erators, on the other hand — as we will show in the next section
— they can be used for constructing commuting operators. Note
that such distributive functions are in fact commuting with the
involved aggregation operator.

Proposition 7: For any -ary aggregation operator
and any -ary aggregation operator , it
holds that if commutes with , then the function

defined by

(3)

with and some idempotent element of ,
is distributive over , i.e., it fulfills for all
and all with

Moreover, is nondecreasing.

Proof: Consider some -ary aggregation operator ,
one of its idempotent elements , e.g., 0 or 1, and some -ary
aggregation operator such that commutes with

. Then, it holds for defined by
(3) with arbitrary that

The nondecreasingness of follows immediately from
the monotonicity of .

Analogously, we can define nondecreasing functions
which are distributive over with some

idempotent element of .

B. Distributive Functions and Lattice Polynomials

We will denote by the set of all nondecreasing func-
tions that are distributive over the -ary
aggregation operator , i.e.,

is nondecreasing

Observe that is the identity function and thus con-
tains all nondecreasing functions . For the
readers’ convenience we will abbreviate this set simply by ,
i.e.,

is nondecreasing

Evidently, is the set of all functions
that are distributive over the aggregation operator . Note that

as well as contain at least the following functions:

and are, therefore, not empty for arbitrary aggregation operator
. The following proposition shows that is maximal in case

of lattice polynomials only, i.e., can be expressed by and
its arguments only [8], compare also, e.g., [29] and [30].

Proposition 8: Consider an aggregation operator . Then the
following holds:

is a lattice polynomial

Proof: If all with are lattice polynomials, it
follows immediately from the nondecreasingness of all
and the definition of that .
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Before showing the sufficiency, note that any -variable lat-
tice polynomial can be put in the following
disjunctive normal form [8]:

(4)

where and is a nonde-
creasing set function fulfilling and .
Therefore, in order to show that some -ary aggregation oper-
ator is a lattice polynomial, we have to show that a set
function fulfilling the above conditions ex-
ists and that can be written in the form of (4). For better
readability, we will use in the sequel of this proof instead
of , as well as the additional notations
where if and otherwise, and .
Now assume that .

• First, we show that for all
. In case

, depending on the value of , one of the
following functions

if
otherwise

if
otherwise

if
otherwise,

with and ,
contradicts .
Therefore, in particular is idempotent, i.e.,

and for all .
• Since for all the functions

resp. fulfill
we can conclude the following for all

since , and
.

• Due to the monotonicity of we can further conclude that
for arbitrary

by replacing each either by 0, if , or by , if
, for arbitrary choice of . Therefore, also

We abbreviate by such that
the previous inequality can be written as

Since it is clear that the set
is not empty. Moreover, the following

holds for its complement

so that necessarily .
If we replace each in either by in
case that or by 1 in case that , we can also
conclude, due to the monotonicity of and the properties
shown before, that

showing that

Finally, we define a set function by
, then it is immediate to show that it is non-

decreasing and fulfills , and that
is indeed a lattice polynomial.

Let us now focus on additional properties of in case of
particular properties of the aggregation operator involved.

C. Distributive Functions for Bisymmetric and Associative
Aggregation Operators

Proposition 9: Let be a bisymmetric aggregation oper-
ator and fix some . If we choose some

, not necessarily different, then also
defined by

(5)

belongs to , i.e., is closed under .
Proof: Consider some bisymmetric aggregation operator

and fix some arbitrary , , for some
. Define a function by (5) then the fol-

lowing holds for arbitrary due to the bisym-
metry of and the distributivity of all over :

Corollary 10: If is a bisymmetric aggregation operator
and additionally fulfills for all and all ,

,

then defined by
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also belongs to for arbitrary and arbitrary
, i.e., is closed under any

.
Moreover, in case of an associative aggregation operator

the relationship can be generalized, expressing that it is suffi-
cient (and necessary) to characterize all functions distributive
over the binary aggregation operator only in order to char-
acterize the set of all unary mappings distributive over
with arbitrary arity.

Proposition 11: Let be an associative aggregation oper-
ator, then the following holds:

Proof: Consider an associative aggregation operator .
If some nondecreasing function ful-
fills , it is distributive over all -ary aggregation
operators , , in particular over the binary ag-
gregation operator . On the other hand if
the property follows directly from the associativity of ,
i.e., the fact that for all with it holds that

.
Note that the associativity of an aggregation operator is a suf-

ficient condition for . However, as the following
example will demonstrate, it is not necessary.

Example 12: Consider the arithmetic mean
, .

Then (compare also [2] and [3])

although clearly the arithmetic mean is not associative.
Example 13: Examples of associative and symmetric and

therefore bisymmetric aggregation operators are -medians

with [18]. The set of distributive functions is
characterized in the following way: Some nondecreasing func-
tion is distributive over , i.e.,

if and only if either or
or .

Besides associativity and bisymmetry, the possibility of
building isomorphic aggregation operators leads to further
insight to relationships between sets of distributive functions.

D. Distributive Functions and Isomorphisms

Proposition 14: Consider an aggregation operator and
some bijection . Then for all it holds
that where

is nondecreasing and

distributive over

Proof: Consider the isomorphic aggregation operators
and with some bijection. Further assume

, then the following are equivalent since for all

, there exists a unique
with

showing that .
Example 15: Following Aczél [1], [3], the class of all contin-

uous, strictly monotone, bisymmetric, and idempotent aggrega-
tion operators on the unit interval are just weighted quasi-arith-
metic means

with some monotone nondecreasing bijec-
tion and weights with for all and

. It is immediate that weighted quasi-arithmetic
means are isomorphic transformations of weighted arithmetic
means with corresponding weights. Due to Proposition 14,
the set of distributive functions is, therefore, given by

and

since

and

such that

in case that for all and .
Example 16: For invariant aggregation operators , i.e.,

aggregation operators fulfilling for all bijections
, it immediately holds that all nondecreasing

bijections are included in (see also, e.g., [29], [30] for
characterizations of aggregation operators invariant under
nondecreasing bijections). This is, e.g., the case for the drastic
product and the weakest aggregation operator being
defined by

if
otherwise

if
otherwise

However, their set of distributive functions does not only contain
all nondecreasing bijections, but is even much richer, namely

and
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Similarly, lattice polynomials are invariant aggregation opera-
tors and we know already their sets of distributive functions
equal the set of all nondecreasing functions.

However, for arbitrary aggregation operators at least the
following relationship between a bijective distributive function
and its inverse can be stated.

Lemma 17: Consider an aggregation operator . If
is bijective then also .

IV. OPERATORS COMMUTING WITH BISYMMETRIC

AGGREGATION OPERATORS

After discussing unary operators being distributive over some
aggregation operator and as such commuting, let us now turn to
more general commuting operators.

Proposition 18: Let be a bisymmetric aggregation oper-
ator. Then any -ary operator , on defined by

(6)

with for commutes with .
Proof: Consider some bisymmetric aggregation oper-

ator , choose some and arbitrary
. Then, the following holds for arbitrary

with and

Note that the involved operator need not be an aggregation
operator, e.g., choose for all ,
then

for arbitrary , and therefore the
boundary conditions (AO2) and (AO3) are not fulfilled.

Remark 19: Note that the previous proposition provides a
sufficient, but not a necessary condition for an operation to
commute with . As mentioned above, any aggregation oper-
ator commutes with the projection to the first coordinate
which is a bisymmetric aggregation operator. However, using

, only aggregation operators
depending just on the first coordinate can be obtained although
we have that , since is a lattice polynomial.

A. Commuting Aggregation Operators

Let us briefly focus on the restrictions which additionally
have to be applied to the selected functions such that
the constructed operator also fulfills the requirements of an
aggregation operator. If , the corresponding
must be the identity function in order to guarantee .

For , the functions , must be
chosen accordingly to such that

are both fulfilled at the same time. This is for sure guaranteed if
for all it holds that and , but it need not
be the case as the following example shows.

Example 20: The class of all aggregation operators com-
muting with the minimum

with for all

for at least one

is also the class of all aggregation operators dominating the min-
imum in the sense of Definition 3 (see also [34]).

B. The Role of Neutral Elements

Let us now consider for which bisymmetric aggregation op-
erators , operators defined by (6) are the only commuting
operators, i.e., if (6) does provide a sufficient as well as a neces-
sary condition. For better readability, we will briefly restrict our-
selves to binary operators only. Since the projections commute
with any aggregation operator , they particularly commute
also with such operators for which (6) indeed is necessary
and sufficient. In this case, there necessarily exist

, such that for all

If there exists some such that
and it follows from the

monotonicity of that

Therefore, independently of , we have that

i.e., such an element is unique. A typical candidate fulfilling the
last property is a neutral element . In such a case, it suffices to
choose and for all .

Indeed, we obtain a necessary and sufficient condition if the
involved aggregation operator is bisymmetric and possesses
a neutral element .

Proposition 21: Let be a bisymmetric aggregation operator
with neutral element . An -ary operator , commutes
with if and only if there exist , such
that

(7)
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Proof: Consider some bisymmetric aggregation operator
with neutral element . If is defined by (7) for some

then it commutes with due to Proposition 18. In order
to show the necessity assume that commutes with , i.e.,
especially for all it holds that

with defined by (3), thus fulfilling and
proving that can be expressed as in (7).

Recall once again that any bisymmetric aggregation oper-
ator with neutral element is also associative and symmetric and
therefore is either a t-norm, a t-conorm or a uninorm. However,
note that it is impossible that commuting operators having neu-
tral elements are different operators.

Proposition 22: Consider two aggregation operators and
with neutral elements , respectively, . If commutes

with , then . Moreover, also .
Proof: Assume that and are commuting aggregation

operators with neutral elements , respectively, . Therefore

and

for all and arbitrary .
As a consequence commuting does not work between

t-norms, t-conorms, or uninorms respectively. The only opera-
tors commuting with such bisymmetric operators with neutral
element are, besides the operator itself, aggregation operators
with no neutral element.

Example 23: As mentioned before the projection to the first
coordinate commutes with any aggregation operator and
therefore also, e.g., with the product t-norm . Observe that

is bisymmetric but has no neutral element, while is a
bisymmetric aggregation operator with neutral element 1. Ac-
cording to Proposition 21, corresponding functions

, can be chosen such that

namely and all other for .
However, for any the operator

can never represent the
product .

C. Consequences

Since Proposition 21 provides a full characterization of com-
muting operators in case that one of them is bisymmetric with
some neutral element and further shows that these operators can
be attained through functions distributive over the bisymmetric
aggregation operator with neutral element involved, we will now
focus on the set of such functions.

Note that a full characterization of all bisymmetric aggrega-
tion operators with neutral element, in particular if the neutral
element is from the open interval, is still missing. Since the char-
acterization of the set of unary functions distributing with such
operators is heavily influenced by the structure of the underlying
operator, we will later on focus on special subclasses of bisym-
metric aggregation operators with neutral element only, namely
on

• continuous t-norms;
• continuous t-conorms;
• particular classes of uninorms.

Therefore, consider to be some continuous t-norm , some
continuous t-conorm , or some uninorm . Note that
is equivalent to the fact that fulfills a Cauchy like equation,
i.e., for all

(8)

Observe that besides and also
the constant function is included in .

Lemma 24: If , then
for all fulfills .

V. CHARACTERIZATION OF FOR CONTINUOUS T-(CO)NORMS

For the case of continuous t-conorms (8) has been solved by
Benvenuti et al. in [7] and as such by duality also for continuous
t-norms. Continuous t-(co)norms are particularly important sub-
classes of t-(co)norms. We briefly recall a few basic facts and
properties, but refer the interested reader for more details to the
monographs [6], [24] and the articles [25]–[27].

The class of continuous t-(co)norms exactly consists of all
so called continuous Archimedean t-(co)norms and of ordinal
sums of such continuous Archimedean t-(co)norms. Let us first
turn to continuous Archimedean t-(co)norms resp. . They
are in turn characterized as being generated by some continuous
additive generator resp. , i.e., they can be written as

In case of (continuous) t-norms, the additive generator
is a strictly decreasing (continuous) function which fulfills

and for which . In case
of (continuous) t-conorms, the additive generator
is a strictly increasing (continuous) function which fulfills

and for which Note
that in both cases additive generators are unique up to a
positive multiplicative constant. For continuous Archimedean
t-(co)norms two subclasses can be further distinguished, namely
nilpotent t-(co)norms for which resp. , and
strict t-(co)norms with resp. .

Let us now turn to ordinal sum t-(co)norms, a concept appli-
cable to all kinds of t-(co)norms. The main properties are based
on results in the framework of semigroups, however, the basic
idea of ordinal sums can be described the following way: De-
fine a t-(co)norm , respectively, by t-(co)norms on pairwise
nonoverlapping subsquares along the diagonal of the unit square
and choose for all other cases in case of t-norms and
in case of t-conorms. Formally, consider a family
of pairwise disjoint open subintervals of the unit-interval and a
corresponding family of t-(co)norms resp. ,
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then the ordinal sums ,
respectively, are given
by (9), resp., (10), shown at the bottom of the page, and are in-
deed a t-norm resp. a t-conorm. The ordinal sum t-norm as
well as the ordinal sum t-conorm are continuous if and only if
all resp. are continuous. Based on these facts let us now
briefly recall the main results of [7] which will be further rele-
vant for the investigation of particular classes of uninorms.

A. Continuous T-Conorms

Theorem 25 ([7]): Consider a continuous t-conorm . Then
for some index set and there

exists a family of continuous strictly increasing mappings
with such that (11), shown at

the bottom of the page, holds. Let and denote by its
restriction to the interval .

i) If , then one of the following holds:
(ssi) with and

;
(ssg) for some

and some such that
and .

ii) If , then one of the following holds:
(sni) ;
(sng) for some

so that is
finite and .

Note that in case of (ssi) and (sni), is constant on the whole
corresponding interval , respectively, attaining
its value at an idempotent element of . In case of (ssg) and
(sng), there exists at least one such that

so that necessarily there exists some fulfilling
.

The previous theorem already indicates how all distributive
functions for some continuous t-conorm can be
obtained:

Theorem 26 ([7]): Consider some continuous t-conorm
and use the notations as introduced in Theorem 25. Any
is obtained from a generic function which
is monotone nondecreasing and from its restrictions for every
interval whereas each restriction is chosen either by
expression (ssi), respectively, (ssg) in case that or
by expression (sni), respectively, (sng) in case that .

Example 27: Consider the basic t-conorm
. It is continuous with and

. Its set of distributive functions is given by

where is defined by

if
otherwise

Example 28: Consider the basic t-conorm
. It is continuous with

, and

B. Continuous T-Norms

Since t-norms are dual to t-conorms we can get analogous
results for functions being distributive over some continuous
t-norm .

Corollary 29: Consider a continuous t-norm . Then
for some index set and there

exists a family of continuous strictly decreasing mappings
with such that (12), shown at

the bottom of the page, holds. Let and denote by its
restriction to the interval .

i) If , then one of the following holds:
(tsi) with and

;
(tsg) for some

and some such that
and .

ii) If , then one of the following holds:
(tni) ;
(tng) for some

such that is
finite and .

Analogous to the case of continuous t-conorms all functions
being distributive over some continuous t-norm can be found.

if

otherwise
(9)

if

otherwise
(10)

if
otherwise

(11)

if
otherwise

(12)
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Corollary 30: Consider some continuous t-norm and use
the notations as introduced in Corollary 29. Any is
obtained from a generic function which is
monotone nondecreasing and from its restrictions for every
interval whereas each restriction is chosen either by
expression (tsi), respectively, (tsg) in case that or by
expression (tni), respectively, (tng) in case that .

Example 31: Consider the two basic t-norms
and . For both we have that

and their additive generators are
given by and , respectively.
Further, we get that

with

with

VI. CHARACTERIZATION OF FOR (PARTICULAR

CLASSES OF) UNINORMS

Let us now turn to the last class of bisymmetric aggregation
operators with some neutral element, namely uninorms whose
neutral elements fulfill (see also [11], [17]). Note that
uninorms can be interpreted as combination of some t-norm
and some t-conorm, i.e.,

with some t-norm acting on and some t-conorm acting
on . To express explicitly that some uninorm is related to
some t-norm and some t-conorm , we will use the notation

.
Such created uninorms cover a quite large class of aggrega-

tion operators since on the remainder of their domains they can
be chosen such that the monotonicity and associativity condi-
tion are not violated but otherwise arbitrarily. However, due to
its properties any uninorm fulfills

whenever and for all
, giving rise to the particular classes of

uninorms. Note further, there exists no uninorm which is con-
tinuous on the whole domain [17]. Generated uninorms, which
we will discuss later in more detail, therefore, form another im-
portant subclass of uninorms, since they are continuous on the
whole domain up to the case where .

As the next section will show, functions distributing with
some uninorm heavily depend on the structure of the uni-
norm. Therefore, since a full characterization of all uninorms is
still missing, we restrict the discussion of to two particular
subclasses of uninorms—namely to uninorms which are either
acting as the minimum or as the maximum on their remainders
and to generated uninorms.

A. Distributive Functions on Uninorms

First of all let us investigate necessary and sufficient condi-
tions for some nondecreasing function being
distributive over some uninorm , i.e., for all

If we choose we see that for
all , expressing that acts as a neutral element of

on the range of . Moreover, so that
necessarily .

From this, we see already, that the set of idempotent elements
as well as the range of will play a crucial role in char-
acterizing .

Lemma 32: Consider some . Then, the following
holds:

i) if , then ;
ii) if , then also .

Proof: Consider some . If then there
exists some , such that and

Moreover, if then also

i.e., .
Let us now briefly focus on particular cases where

.
Proposition 33: Consider some uninorm with neutral

element and some with either or
. Then, the following holds:

In case if and only if
i) ;

ii) ;
iii) is distributive over ;
iv) .
In case if and only if
i) ;

ii) ;
iii) is distributive over
iv) .

Proof: Consider some uninorm with neutral el-
ement , some with . Assume that .

Since is an idempotent element of and , it
immediately follows that , i.e., is an
idempotent element of the t-norm involved.

Further, since acts as a neutral element on we
know that for all it holds that

Moreover, due to the nondecreasingness of for
all such that indeed for all .
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Fig. 1. Uninorm U and some f 2 F as discussed in Examples 34 and 40.

The fact that is distributive over follows immedi-
ately from . Finally, choose arbitrary , then
due to property ii)

To prove the sufficiency, assume that and
that conditions i)-iv) are fulfilled. If both then also

, such that distributes over due to condition
iii). In case that both , also such that

due to condition ii) and the fact that is an idempotent el-
ement of . Finally, let us consider w.l.o.g. some .
Due to condition iv) and the nondecreasingness of and we
can conclude that

Moreover, since commutes with resp., and condi-
tion ii), we also know that

such that . Analogously, the remaining case and the
characterization of in case of can be
shown.

Let us illustrate the previous results by some examples.
Example 34: Consider the following uninorm

with neutral element

if
otherwise

Note that with is
an isomorphic transformation of the product and

(see also Fig. 1). Its set of idem-
potent elements is given by since the contin-
uous t-norm has its boundaries as its only trivial idempotent
elements.

• Therefore, there is only one function with
, namely the constant function , since
and has to be nondecreasing.

• On the other hand, there exist several functions
with : We can choose

arbitrarily and fix as such
for all . Because is a lattice poly-
nomial, has just to be nondecreasing on to
distribute over such that condition iii) of Proposition
33 is fulfilled. Finally, condition iv) trivially holds since

in case of and
for all .

Therefore, e.g., all functions with
given by

if
otherwise

distribute over (see also Fig. 1).
Example 35: Consider the following uninorm

with neutral element

if
if
if
otherwise
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Fig. 2. Uninorm U and some f 2 F as discussed in Examples 35 and 41.

Again with on ordinal sum t-norm on
with twice the product as its summands and a basic
t-conorm on (see also Fig. 2). The set of idempotent
elements is given by .

Let us now focus just on those with ,
i.e., .

• : Necessarily due to the nondecreasingness
of and the necessary properties given in Proposition 33.
Therefore, is the only element of for which

and .
• : Necessarily, we fix for all

and as such fulfill conditions i), ii), and iv) of Proposition
33 immediately, i.e.,

if
otherwise.

The function and as such also
distributes over the ordinal sum t-norm if it is one of the
following functions (see also Fig. 2):

if
otherwise

with

if
otherwise

if
otherwise

if
otherwise

with
if
otherwise

So far, we have investigated nondecreasing functions with
particular domains being distributive over some uninorm .
However, in case that the characterization of those

heavily depends on the structure of the uninorm
involved. Therefore, we will now turn to special subclasses of
uninorms.

B. Special Case: Uninorms

We now assume that the uninorm is such that is
some t-norm on some t-conorm on and
on the remainder acts either as the minimum or as the max-
imum. We will denote such uninorms by , respectively,

. In case that the t-norm as well as the t-conorm
involved are continuous, we refer to the uninorm as weakly
continuous t-norm.

We will focus on functions based on a composition of func-
tions distributive over , respectively, , i.e., on functions

defined by

if
if
if

(13)

with some and . We will use the abbreviation
.

Note that not all are of the type as the
following example shows.
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Example 36: Consider some weakly continuous uninorm
. Then, defined by

if
if

fulfills and , but .
However, since uninorms can be interpreted as operators

acting on a bipolar scale with neutral element , it is natural to
investigate distributive functions preserving that neutrality
level, i.e., fulfilling .

By the construction provided by (13), it is
guaranteed that the restrictions of some to resp.

are distributive over the corresponding , respectively, .
Note that this construction also ensures that, due to the nonde-
creasingness of , that for all and
for all . Depending on whether or

has to fulfill additional properties for .
Proposition 37: Consider some weakly continuous uninorm

, further some and and define
by .

i) , if and only if or
.

ii) if and only if or
.

Proof: Consider some weakly continuous uninorm ,
further some and and define

as by (13).
Assume that . Further assume that there exists

some with and some with
, then the following holds:

leading to a contradiction. Vice versa, since
it distributes over for all and for all

due to its construction. Therefore, it suffices to
prove that distributes over for all

.
Assume that additionally fulfills either for all

or for all and choose an
arbitrary and an arbitrary . Therefore, either

or , in any case , such that

In case that and , it immediately holds that

Analogously, the distributivity of over for some
can be shown as well as the characteri-

zation of all .
Based on this result, we can immediately state which func-

tions are distributive over both as well
.

Lemma 38: Consider some weakly continuous uninorm
, further some and and define

by . if and
only if either

• and ;

• .
Moreover, due to Proposition 37 and the nondecreasingness

of we can further draw the following conclusions.
Corollary 39: Consider some weakly continuous uninorm

, further some and and define
by .

i) If and there exists some such
that , then for all .

ii) If and there exists some such
that , then for all .

Example 40: (Continuation of Example 34) Let us once again
consider the uninorm as introduced in Example 34, i.e.,

if
otherwise

It is of the type with
an isomorphic transformation of the product

and the maximum. Now, we are looking for
those which are constructed by . The
sets and of nondecreasing functions distributing with

, respectively, are given by

with or

or

is nondecreasing

In accordance with Proposition 37, we now have to choose either
for all or for all such

that fulfills , so, e.g.,
, (see also Fig. 1)

if
otherwise

Example 41: (Continuation of Example 35) Note that the uni-
norm defined by

if

if

if
otherwise

is a uninorm of the type . Since is an ordinal sum
t-norm on , its set of distributive functions is rather
large. Some of its elements are already listed in Example 35.
Similarly, also contains many, namely all nondecreasing
functions on . In accordance with Proposition 37 we have
to choose functions such that either for
all or that for all , such that

, e.g., ,
(see also Fig. 2)

if
otherwise

if
if
otherwise
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C. Special Case: Generated Uninorms

An important subclass of uninorms are those generated by
some additive generator. They are continuous on the whole do-
main up to the case where .

Definition 42: An operator is an
Archimedean uninorm continuous in all points up to

, if and only if there
exists a monotone bijection such that

with convention . The uninorm is then
called a generated uninorm with additive generator .

Note that the neutral element of such a generated uninorm
is given by . The increasingness of the additive gen-
erator is equivalent to its conjunctive form. Moreover, generated
uninorms are related to strict t-norms and strict t-conorms, since

and are additive genera-
tors of a strict t-norm, respectively, t-conorm, associated with .

In case of some with generated by the additive
generator , we get

Since is a bijection this is equivalent to

with and both elements from such
that for and arbitrary it holds
that . In case that is continuous
the solutions of this equation (see also [3]) are given by

with . As a consequence

leading to the following lemma.
Lemma 43: Consider some uninorm generated by some

additive generator . If and continuous, but not con-
stant, then there exists some such that

for all .
Example 44: Consider some uninorm generated by some

additive generator and choose for all
and for at least one . Then, the operator

defined by

commutes with .

Example 45: Consider the additive generator
. The generated uninorm

is then given by

with neutral element . Note that is also known as
-operator and has already been discussed by several authors

[14], [17], [23], [35], [37]. It is worth remarking that it plays an
important role as combining functions of uncertainty factors in
expert systems like MYCIN and PROSPECTOR (see also [9],
[12], and [21]).

In accordance with the previous example, aggregation opera-
tors defined by

with for all and for at least one
commute with .

VII. FINAL REMARKS

The issue of commuting aggregations has been considered
in the general case and in some important particular cases,
especially the one of uninorms, where new nontrivial results
are obtained. Finding commuting operations can be a difficult
exercise sometimes leading to impossibility results. So, e.g.,
in the class of OWA operators [36], the set of all aggregation
operators commuting with an -ary OWA operator different
from , or the arithmetic mean, respectively, is trivial,
namely, consisting just of the projections [32]. However, for
bisymmetric operations such as the weighted arithmetic mean,
results on commuting exist for some 25 years in connection
with the problem of consensus functions for probabilities [28],
more recently for t-norms and conorms in connection with
generalized utility theory [15] or transitivity preservation in the
aggregation of fuzzy relations [34]. Commuting operators for
uninorms can be relevant in multicriteria decision-making with
bipolar scales where bipolar set-functions are used to evaluate
the importance of criteria [19], [20]. Indeed the neutral element
of the uninorm separates a bipolar evaluation scale in its posi-
tive and negative parts [16]. Our results can be instrumental in
laying bare consensus functions for multiperson multicriteria
decision-making problems on bipolar scales, a topic to be
investigated at a further stage.
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