
Noname manuscript No.
(will be inserted by the editor)

On-line Elimination of Local Redundancies in Evolving
Fuzzy Systems

Edwin Lughofer · Jean-Luc Bouchot ·
Ammar Shaker

Received: 04.02.2011, Revised: 20.04.2011

Abstract In this paper, we examine approaches for reducing the complexity of
evolving fuzzy systems (EFS) by eliminating local redundancies during training,
evolving the models on on-line data streams. Thus, the complexity reduction steps
should support fast incremental single-pass processing steps. In evolving fuzzy
systems, such reduction steps are important due to several reasons: 1.) originally
distinct rules representing distinct local regions in the input/output data space
may move together over time and get significantly over-lapping as data samples are
filling up the gaps in-between these, 2.) two or several fuzzy sets in the fuzzy parti-
tions may become redundant because of projecting high-dimensional clusters onto
the single axes, 3.) they can be also seen as a first step towards a better readabil-
ity and interpretability of fuzzy systems, as unnecessary information is discarded
and the models are made more transparent. One technique is performing a new
rule merging approach directly in the product cluster space using a novel concept
for calculating the similarity degree between an updated rule and the remaining
ones. Inconsistent rules elicited by comparing the similarity of two redundant rule
antecedent parts with the similarity of their consequents are specifically handled
in the merging procedure. The second one is operating directly in the fuzzy par-
tition space, where redundant fuzzy sets are merged based on their joint α-cut
levels. Redundancy is measured by a novel kernel-based similarity measure. The
complexity reduction approaches are evaluated based on high-dimensional noisy
real-world measurements and an artificially generated data stream containing 1.2
million samples. Based on this empirical comparison, it will be shown that the
novel techniques are 1.) fast enough in order to cope with on-line demands and
2.) produce fuzzy systems with less structural components while at the same time
achieving accuracies similar to EFS not integrating any reduction steps.

Keywords

Edwin Lughofer (corresponding author) and Jean-Luc Bouchot are with the Department of
Knowledge-based Mathematical Systems, Johannes Kepler University of Linz, Austria, email:
edwin.lughofer@jku.at
Ammar Shaker is with the Department of Mathematics and Computer Science, Philipps-
Universität Marburg, Germany

2 Edwin Lughofer et al.

evolving fuzzy systems, redundancy elimination, similarity, complexity reduc-
tion, on-line rule and fuzzy set merging

1 Introduction

1.1 Motivation

Nowadays, in industrial systems, there is an increasing demand of automatic model
updates as new upcoming operating conditions, system behaviors [19], new types
of classes [38] or even drift occurrences [31] may arise during on-line processes.
These situations should be included into the models in order to guarantee robust
and process-save operations [26]. As re-training phases based on all samples seen
so far usually do not terminate in real-time, incremental learning is the engine for
most on-line modeling scenarios, usually conducted in a single-pass manner. Dur-
ing incremental learning phase, the models should update their parameters, evolve
their structure, extend their definition space in order to account for new operat-
ing conditions, systems states/behaviors, range extensions of various measurement
variables etc. The concept of evolving data-driven techniques in connection with
the aspect of modeling uncertainties and imprecise situations in a possibilistic
manner (measurements, samples are often affected by noise) lead to the develop-
ment of evolving fuzzy systems approaches during the last decade [30]. Examples are
the pioneering DENFIS (Dynamic Evolving Neural Fuzzy-Inference System) approach
[20] based on neuro-fuzzy system architecture and a recursive clustering method
and eTS (evolving Takagi-Sugeno fuzzy systems) recursively updating the structure
of the model based on the potentials of new incoming data and introducing sev-
eral enhanced concepts such rules ages, utility function and zone of influence,
summarized in the extended eTS+ approach [2]. Further approaches include ePL

(evolving Participatory Learning) [24] extending the eTS approach by using Yager’s
participatory learning concept [52] or SAFIS (Sequential Adaptive Fuzzy Inference

Systems) [42]. The latter uses the concept of ’influence’ of a fuzzy rule to add and
remove rules during learning, whereas the influence of a fuzzy rule is defined as its
contribution to the system output in the statistical sense.

During the incremental learning process, the situation may happen that re-
dundancies either on rule level or on fuzzy set level arise. For instance, consider
rules which may move together when originally distinct data clouds, captured in
different clusters (rules), are filled up with new incoming data; in this case, the
rules may even get significantly overlapping: an example will be shown in Section
3.1. Whenever an on-line projection of evolved/updated clusters from the high-
dimensional space onto the single axes is carried out (as is the case for most of the
EFS approaches mentioned above) or movements of fuzzy sets take place according
to changes in the local sample distributions, the fuzzy sets may get significantly
over-lapping in single fuzzy partitions: an example for such an occurrence will
be given in Section 3.2. In this sense, we see it as a big challenge to detect and
remove such upcoming redundancies automatically and in an incremental on-line
manner. This also can be seen as a step for reducing unnecessary complexity and
furthermore as a step towards more transparency of the evolved fuzzy models. It
is an essential issue, as fuzzy systems are claimed to provide better interpretability
than other data-driven model architectures, which therefore often serves a central

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 3

reason why this architecture is chosen in modeling applications. A pre-requisite of
a good interpretability is a nice transparency which comprehends non-redundant
information and consistency in the rule base.

1.2 Related Work and Our Approach

In the field of batch off-line trained fuzzy systems, there exist several methods
which perform complexity reduction steps by removing redundancies. Most of
these are based on similarity measures applied onto pairs of fuzzy sets and/or
rules. For instance, in [45], extended in [44], and also in [6] the Jaccard index is
exploited for measuring the similarity degree. Similar fuzzy sets are merged in a
post-processing manner after the complete learning phase using a convex combina-
tion of parameters in fuzzy sets with finite support. This assures that the support
of the merged fuzzy sets is the same as the joined one of the old fuzzy sets. In [14]
two fuzzy sets are merged which have small widths and close modal values. In [11],
Gaussian membership functions are approximated by trapezoidal ones and a fast
similarity measure is proposed based on this function type. In [34], rule pruning
is conducted by deleting partial premises from the rules (according to features
which are not really important) within a hill climbing procedure. Orthogonal least
squares learning in batch mode as performed in [12] [51] also contributes to a prun-
ing of rules as rules with an important contribution w.r.t. explaining the variance
of the output are selected. In [9] [18], redundancies are prevented in an a priori
manner by using constrained-based optimization algorithms which do not allow
an overlap of fuzzy sets at membership degrees larger than 0.5. Specific semantic
constraints for membership function optimization are used in [37]. Some of these
approaches and beyond are summarized in [10]. All these optimization and post-
processing procedures require significant computation time and therefore are not
applicable in an incremental learning context. Furthermore, incremental learning
solutions to the constrained-based optimization problems were not investigated so
far. In a machine learning context, rule pruning was studied under the umbrella of
inducing decision trees from data [40] [8]: there, as decision trees are providing a
hierarchical structure, rule pruning is conducted on the basis of premise parts, i.e.
step-wise reducing the sizes of the premises of the rules by eliminating conditions
(including a subset of features) which are not really important. A widely used
criterion whether branches (premise parts) in trees can be pruned is an internal
cross-validation step [48], which is per se a time consuming off-line method.

In evolving fuzzy systems, the main focus so far was placed on precise mod-
eling tasks: the aim is to evolve fuzzy systems in a data streaming context as
accurately as possible. Only little attention was paid to complexity reduction, es-
pecially in the context to remove local redundancies which may come up during
the incremental learning process. The approach in [41] uses a geometric similarity
measure for detecting redundant fuzzy sets and a weighted average for merging
the parameters of redundant fuzzy sets and of rule consequents. Removing ob-
solete rules, i.e. rules with extraordinary low support by past samples (but not
necessarily redundant ones), was presented in [3]; this is extended in [2] for auto-
matically eliminating unnecessary rules by using the concepts of rule age, which is
getting higher than usual in case when rules are outdated, and rule utility, which
is getting lower when rules are not used. In [43] [42], rule pruning is implicitly

4 Edwin Lughofer et al.

integrated in the incremental learning algorithm: rules are pruned whenever the
statistical influence of a fuzzy rule measured in terms of its relative membership
activation level (relative to the activation levels of all rules so far) is getting lower
than a pre-defined threshold. In [24], redundant rules are detected by calculating
the sum of the absolute deviations between the normalized coordinates of two rule
(cluster) centers. Another approach for removing redundant fuzzy sets and fuzzy
sets with close model values is demonstrated in [32], where Gaussian fuzzy sets are
merged by reducing the approximate merging of two Gaussian kernels to the exact
merging of two of their α-cuts. In this paper, we build upon this approach and on
the approach in [41] and extend these significantly by the following aspects:

1. Redundancy of rules is measured in the multi-dimensional feature space accord-
ing to a similarity criterion defined for the single dimensions and aggregated
over these. This is achieved by exploiting virtual projections onto fuzzy set
level and using the membership degrees of intersection points between two
membership functions in 1-dimensional spaces. This does not suffer from curse
of dimensionality and is directly comparable and summable among all dimen-
sions. The aggregation is conducted by using the minimum t-norm, thus a high
overall redundancy degree is only achieved when in all dimensions the similar-
ity (overlap) is significant. This yields a stronger condition than when using
a (distance-based) similarity directly in a high-dimensional feature space, as
the latter may allow significant distances in one, two, three single dimensions,
which would contribute to the overall distance in a high-dimensional space only
very slightly. Furthermore, our measure is in accordance to the viewpoint of a
fuzzy system: antecedent of two rules are already inspected as different when
two parts differ significantly, i.e. the two fuzzy sets contained in the two parts
do have very little overlap.

2. The merging process of two redundant multi-dimensional rules, represented
as ellipsoidal clusters in the feature space, is performed by new criteria for
the cluster merging procedure, which are appropriate for EFS. These take
the significance of clusters into account and using an expanded form of the
(recursive) variance update formula for achieving the range of influence of the
new (merged) cluster (rule).

3. Introducing a novel kernel-based similarity measure for Gaussian fuzzy sets,
out-performing the Jaccard index significantly in terms of computation power.
This will be verified in the empirical tests.

4. A new concept for a consistent treatment of the consequent functions of two
rules whose antecedents are similar, i.e. redundant: merging by a weighted
average of the linear parameters is only allowed in case of non-contradictory
rules, otherwise the less significant rule is deleted. We defined the concept of
contradictory rules as special case when the consequent parts are more dissim-
ilar than the antecedent parts; hereby, a new similarity measure of consequents
in case of TS fuzzy systems is introduced.

The paper is organized as follows: the next section deals with basic concepts
in evolving fuzzy systems (EFS) including a small description of the FLEXFIS ap-
proach, as this will be used as incremental/evolving learning engine for the purpose
to evaluate all redundancy detection and elimination approaches demonstrated in
this paper. Section 3 contains two parts: the first part is dedicated to detecting
and eliminating upcoming redundancies in the high-dimensional feature space, the

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 5

second part dedicated to do the same on fuzzy partition level. Section 4 contains
an evaluation of the novel approaches based on two high-dimensional noisy real
world data sets (dynamic data set for predicting NOx emission and static data
for predicting house prices) and on an artificial data streams containing 1 million
samples.

2 Evolving Fuzzy Systems for Regression Problems

2.1 Basic Aspects

Nowadays, the most commonly used model architecture in evolving fuzzy systems
approaches such as eTS, ePL, DENFIS or SOFNN, is the Takagi-Sugeno fuzzy
systems architecture [49] in connection with Gaussian membership functions and
product t-norm operator:

f̂(x) = ŷ =
C∑
i=1

liΨi(x) (1)

with the normalized membership functions

Ψi(x) =
e
− 1

2

p∑
j=1

(xj−cij)
2

σ2
ij

C∑
k=1

e
− 1

2

p∑
j=1

(xj−ckj)2

σ2
kj

(2)

and consequent functions

li = wi0 + wi1x1 + wi2x2 + ...+ wipxp (3)

The symbol xj denotes the j-th input variable (static or dynamically time-delayed),
cij the center and σij the width of the Gaussian fuzzy set in the j-th premise part
of the i-th rule. As conjunction operator, the product t-norm is applied [21]. The
Takagi-Sugeno fuzzy model is able to provide accurate estimates, according to the
universal approximation capabilities [50] and is therefore often used for precise
modeling tasks. Their consequent parts are containing hyper-planes which are not
fully transparent in a linguistic sense. On the other hand, their antecedent parts
can be inspected as linguistic rules, as linguistic terms can be assigned to the
membership functions. Thus, they provide a reasonable tradeoff between accuracy
and interpretability [10] and hence are often used as common model architecture
for data-driven modeling tasks [5].

In this paper, we want to reduce the unnecessary complexity of the evolving
fuzzy models by eliminating redundancies, which can be seen as a step towards an
enhanced readability. Most of these techniques are applicable to all of the evolving
fuzzy systems approaches mentioned in the state of the art section above. Never-
theless, in the next section we provide a small introduction on one concrete EFS
approach, the so-called FLEXFIS approach (FLEXible Fuzzy Inference Systems), as
being used as evaluation engine for the novel redundancy elimination techniques
in the evaluation section.

6 Edwin Lughofer et al.

Also, we want to point out that in most of the EFS approaches, equivalent
Mamdani systems, offering some more linguistic interpretability, can be extracted
from the evolved cluster/rule models by projecting the high-dimensional clus-
ters/rules also onto the output/target variable, instead of applying the recursive
(weighted) least squares estimator for consequent parameter adaptation. In the re-
sults section, we will show the accuracy loss when doing so (compared to evolved
TS fuzzy systems), also in connection with the complexity reduction techniques
discussed in this paper.

2.2 The (Conventional) FLEXFIS Approach as Learning Engine

The FLEXFIS approach applies three stages in each incremental learning step for
training TS fuzzy systems from data streams:

– In the first stage, a new sample is sent through an incremental and evolving
clustering algorithm called the eVQ approach (evolving Vector Quantization)
[27]: a new sample is checked whether it fits to the already obtained cluster
partition and if this is so, the nearest cluster is moved towards the current
sample (plasticity) by a fraction which is monotonically decreasing with the
number of samples forming this cluster, i.e. for which the cluster was the nearest
one in the past. If it does not fit into the cluster partition, a new rule is evolved
(stability). A vigilance parameter measuring the compatibility with the current
cluster structure is responsible for controlling the stability-plasticity dilemma
(evolving new rules versus updating existing ones) [1].

– In the second stage, a new sample is sent through a recursive fuzzily weighted
least squares estimator (RFWLS) used in a local learning context for each rule
separately, where the weights to the single rules are obtained by the mem-
bership degrees to the corresponding rules. The concrete formulas are given
by:

ŵi(k + 1) = ŵi(k) + γ(k)(y(k + 1)− rT (k + 1)ŵi(k)) (4)

γ(k) =
Pi(k)r(k + 1)

1
Ψi(x(k+1)) + rT (k + 1)Pi(k)r(k + 1)

(5)

Pi(k + 1) = (I − γ(k)rT (k + 1))Pi(k) (6)

with Ψi(x(k + 1)) the normalized membership function value for the (k + 1)th
data sample, Pi(k) the weighted inverse Hessian matrix and r(k+1) = [1 x1(k+
1) x2(k+ 1) . . . xp(k+ 1)]T the regressor values of the (k+ 1)th data point,
which is the same for all i rules. Therefore, the linear parameters in the previous
kth step, ŵi(k) are updated to a new vector stored into ŵi(k + 1). This is
done based on the correction vector γ controlling the amount of correction
in dependency of the activation level of the ith rule, which is applied to the
one-step ahead prediction error (represented by the braces in the second term
in (4)). Note that this is a recursive approach meaning that the parameters
converge to the real batch solutions in each incremental learning step. This is
because the optimization function is a hyper-parabola and (4) to (6) perform
one Newton step as long as there is no structural change during the incremental
update. In fact, in case a new rule is evolved in the previous step, no structural
change takes place, but a new recursive weighted least squares estimator is

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 7

opened up, which has the effect that it is not ’disturbing’ the convergence of
the others.

– When an old cluster is updated, a correction vector and a correction matrix is
added to the parameters and inverse Hessian matrix in order to balance out
the non-optimal situation of the RFWLS estimator [28], as a structural change
took place.

The conventional basic FLEXFIS algorithm can be briefly summarized by the
pseudo code demonstrated in Algorithm 1, see [28] for a more detailed formulation.

Algorithm 1 FLEXFIS+ (FLEXible Fuzzy Inference Systems from Data

Streams)

1a Perform an initial training in batch mode on pre-collected training samples or
first on-line samples and obtain the optimal value for the vigilance parameter
ρ (e.g. in a grid search scenario coupled with 10-fold cross-validation [48]);
estimate the (initial) ranges of all variables.

1b Alternatively, in case when no off-line recordings are available, incremental
learning from scratch can be carried out, by estimating the ranges of all vari-
ables from some first on-line data stream samples.

2 For each new incoming data sample x do the following steps
3 Normalize x to [0, 1] and the cluster centers according to the current feature

ranges.
4 If ‖x− cwin‖ ≥ ρ with cwin the center coordinates of the nearest cluster, then

evolve a new rule by increasing the number of rules C = C + 1 and setting its
center to the current data sample cC = x and its range of influence in each
direction by σC = 0.

5 Else Update the center of the nearest cluster cwin by moving it towards the
current sample and update its range of influence by recursive variance formula
[39], see also (10).

6 Transfer the clusters back to original feature space, according to the ranges
of the features. This is for the purpose to obtain better interpretability of
the fuzzy systems, as original ranges of system variables are usually better
understood by operators and experts.

7 Project modified/evolved cluster to the axes in order to update/evolve the
fuzzy set partition in each dimension: the centers of the fuzzy sets are associated
with the corresponding center coordinates of the clusters, the widths of the
fuzzy sets are set to max(σ., ε) with ε a small positive constant, in order to
avoid numerical instabilities. Each cluster is associated with one rule where
the single projected fuzzy sets are conjuncted by a product t-norm forming its
antecedent part.

8 Add correction vectors to the linear consequent parameters and correction
matrices to the inverse Hessian matrices estimated in the previous step.

9 Perform recursive fuzzily weighted least squares using (4) to (6) for all C rules:
updating the consequent of all rules instead of only the nearby lying one(s)
increases significance of the parameters faster.

10 Update the ranges of all features.

Steps 1a) and 1b) can be seen as two possible alternatives at the initial phase
of training: 1a.) requires some initial off-line recordings and is often preferred by
experts or operators working at the system; this is because an initial model can be

8 Edwin Lughofer et al.

evaluated and verified upon its correctness (in form of accuracy tests, structural
examinations, comprehension of the relations/dependencies inside the model etc.),
also to get an impression whether the whole problem can be modeled at all (at least
with a sufficient performance). A 10-fold cross-validation (CV) is used, which splits
the data into ten equal folds and performs a model training for each combination
of nine folds and use the remaining one to elicit the prediction error. The later
is averaged over all folds and yields a good estimation of the expected prediction
error on new samples, see also the funded analysis provided in [16]. This is repeated
for different settings of the vigilance and that one achieving minimal CV error is
used as optimal parameter setting for further updates. From the minimal CV error,
someone may get a glance whether a model with reasonable accuracy is possible
at all. On the other hand, Step 1b) provides more automatization power as the
evolving fuzzy system can be used in a kind of plug-and-play manner, as being
built up from scratch. This, however, prevents a tuning of training parameters. In
the evaluation section, we will use this alternative with a default setting of the
vigilance parameter and underline the usefulness of the presented rule and fuzzy
set merging approach in this learning context.

Some enhancements for FLEXFIS algorithm in particular and for EFS ap-
proaches in general were proposed in [29], especially for ensuring more robustness
and higher process safety.

3 On-Line Complexity Reduction in EFS based on Redundancy Criteria

This section deals with two approaches for reducing the complexity of evolving
Takagi-Sugeno fuzzy systems as defined in (1) during incremental on-line adap-
tation based on local redundancy criteria. Hereby, we assume that rules can be
directly associated with ellipsoidal clusters in the feature space. The first variant
is directly applied in the cluster space and merges clusters which become strongly
overlapping as samples are filling up the original gaps in-between these, enforc-
ing strong movements of the two clusters and an effect which we call cluster/rule
coalescence. The second variant acts on the fuzzy partition space and performs a
fuzzy set merging process for each dimension separately. In this way, two or more
rules may become redundant as well whenever all antecedent parts are getting the
same due to the fuzzy set merging process. Both variants 1.) are able to cope with
sample-wise single-pass modes, i.e. one new data sample from a data stream is sent
into the update process of the models and immediately discarded, afterwards; and
2.) do not rely on the concrete incremental learning engine, but can be applied to
any evolving fuzzy systems approach.

3.1 Rule Merging in the Feature Space

3.1.1 Problematic Nature

The rule coalescence nature gets evident when thinking of two local regions repre-
sented by two rules in a two-dimensional feature space, which seem to be originally
distinct, but are moving together with more samples loaded. In the extreme case,
they may get significantly overlapping over time when more and more samples

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 9

(a)

(b)

Fig. 1 (a): two distinct clusters (rules) in the two-dimensional feature space, correctly ex-
tracted as indicated by ellipsoids; (b): significantly overlapping clusters (rules) as they are
moving together based on new incoming samples filling up the gap in-between these

are passed through the incremental learning engine. An example of such an occur-
rence is visualized in Figure 1: obviously, two distinct clusters are present in the
first bunch of the data set (circles in (a) indicate data samples, ellipsoids indicate
clusters), while at a later stage the gap between these two clusters are filled up
with new incoming samples, marked with rectangles — as shown in (b). Such an
effect simply happens because of the nature of data streams and the incremental
learning engine for updating/evolving the fuzzy systems applied in these: the en-
gine receives only small snapshots of the data, in some cases only single samples,
at one point of time and usually is not able to look into the future how the data
stream may behave or develop. Hence, no a priori prevention of such effects as
shown in Figure 1 is possible.

10 Edwin Lughofer et al.

3.1.2 Calculating Similarity of Rules

In this sense, we propose to apply a post-processing step after each incremental
learning step, where we check whether the latest rule updates lead to significantly
overlapping clusters. Hereby, we assume that the rule update steps in the cluster
space are performed in a sample-wise fashion, which is supported by all conven-
tional evolving fuzzy systems approaches. After the update of a cluster with a
new sample, e.g. by moving its center towards this sample, by extending its range
of influence or by resetting its center, we propose to calculate the similarity of
this cluster to all the remaining ones — note that the most similar one is not
necessarily the nearest one. Hereby, instead of calculating a time-intensive overlap
degree of two clusters with ellipsoidal shape in the high-dimensional feature space
using complex mathematical formulas, for instance see [25] [23], we simulate this
by inspecting the overlap degree of the two rules dimension-wise and calculating
an amalgamated value as similarity degree. The dimension-wise calculation is also
justified by the fact that the antecedents of fuzzy rules are always represented
by a conjunction of single dimension-wise membership functions. Therefore, our
approach is in accordance of the view point of a fuzzy rule base: two rules are
only similar (same) if all their antecedent parts are similar (same). In particular,
we calculate the intersection points of the two Gaussians used as fuzzy sets in (2),
which are belonging to the same dimension j in the antecedent parts of a rule

pair, i.e. for the modified rule i and any other rule k these are e
− 1

2

(xj−cij)
2

σ2
ij and

e
− 1

2

(xj−ckj)
2

σ2
kj . In general, there are two intersection points whose x-coordinates are

obtained by (proof is left to the reader):

interx(1) = −
ckjσ

2
ij − cijσ

2
kj

σ2kj − σ
2
ij

+

√√√√(
ckjσ

2
ij − cijσ

2
kj

σ2kj − σ
2
ij

)2 −
c2ijσ

2
kj − c

2
kjσ

2
ij

σ2kj − σ
2
ij

interx(2) = −
ckjσ

2
ij − cijσ

2
kj

σ2kj − σ
2
ij

−

√√√√(
ckjσ

2
ij − cijσ

2
kj

σ2kj − σ
2
ij

)2 −
c2ijσ

2
kj − c

2
kjσ

2
ij

σ2kj − σ
2
ij

(7)

The maximal membership degree of the two Gaussian membership functions in
the intersection coordinates is then used as overlap degree of the corresponding
rules’ antecedent parts in the jth dimension:

overlapik(j) = max(interx(1), interx(2)) (8)

Note that in the case when there is one Gaussian fuzzy set fully embedded by
another one, there is only one intersection point whose membership degree is 1 →
overlap degree is also 1. Figure 2 presents different occasions of overlaps between
two Gaussian membership functions, the intersection points indicated as such by
big dark dots; also note the intersection points at far right or left in the figures
with very low membership values, which are ignored by using maximum operation
in (8).

The amalgamation over all rule antecedent parts leads to the final overlap
degree between the modified rule i and any other rule k:

overlapik = Aggpj=1overlapik(j) (9)

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 11

(a) (b)

(c) (d)

Fig. 2 (a): two overlapping fuzzy sets, where one is significantly smaller than the other and
therefore almost completely covered → high overlapping degree; (b): two overlapping fuzzy
sets with similar width and significantly moved centers → medium overlapping degree; (c)
two overlapping fuzzy sets with similar width and near centers → very high overlap degree;
(d) one fuzzy set completely embedded in another one but having smaller width → only one
intersection point with maximal membership value of 1

where Agg denotes an aggregation operator. A feasible choice is a t-norm [21], as
a strong non-overlap along one single dimension is sufficient that the clusters do
not overlap at all. For instance, consider a three dimensional clustering example as
shown in Figure 3: (a) shows the projection of the two three-dimensional clusters
onto the y-axis, where a strong overlap of these two clusters can be recognized.
However, from the three-dimensional point of view as shown in (b), we can realize
that the clusters do not overlap at all: the third dimension is responsible for tearing
the clusters significantly apart from each other. In this case, using the minimum
as strongest t-norm, the minimal overlap degree among all dimensions is very low
(using weaker t-norms such as product would even decrease the overlap). On the
other hand, if the minimal overlap degree among all dimensions is still high, we
can reliably assume that there is a strong overall overlap of clusters.

When fuzzy sets are completely embedded, as shown in Figure 2 (d), or nearly
embedded, as shown in Figure 2 (a), along all dimensions delivering a value for
(9) of 1 or near 1, there are two different possibilities for this extreme cases:

12 Edwin Lughofer et al.

(a) (b)

Fig. 3 (a): two over-lapping clusters in the projected two-dimensional feature space (b): clus-
ters significantly torn apart in the three dimensional feature space, as no overlap along the
third dimension (Feature X3) is present

(a) (b)

Fig. 4 (a): one cluster is fully embedded in another cluster → overlap degree is equal to 1
as the intersection of the fuzzy sets is at membership degree 1 in both dimensions (b): cluster
cross, reverse embedded along both dimensions → overlap degree is equal to 1

– One cluster is fully embedded in the other.
– The clusters are forming a cross in the feature space.

The first occasion is shown in Figure 4 (a), the second in Figure 4 (b). Apart from
the fact that such cluster/rule occurrences usually do not happen when using a
reasonable evolving fuzzy systems approach (at least none of the above referenced
approaches would evolve such rules), in both cases the rules should be merged,
therefore an overlap value of 1 or near 1 is appropriate. Also, long drawn-out cluster
crosses should be resolved, as these are causing unpleasant crossed local hyper-
planes and strange shape/behavior in the approximation/regression function (and
we are assuming that we are not dealing with switching regression models [17]).

3.1.3 Merging Process

If the overlap calculated by (9) is greater than a threshold simthr (we used a default
value of 0.8 in all our tests), a merging of the two clusters i and k is performed.

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 13

A reasonable merging of two clusters centers can be carried out by taking their
weighted average, whereas the weights are represented by the significance of the
clusters, i.e. the number of samples ki and kk supporting the two clusters — note
that these values can be simply updated by counting. A reasonable merging of the
ranges of influence of the two clusters is achieved by updating the range of influence
in each direction of the more significant cluster with the range of influence of the
less significant cluster by exploiting the recursive variance formula [39], which is
defined for a new incoming sample x(N + 1) by:

σ2(new) =
1

N + 1
(Nσ2(old)+(N+1)∆X(N+1)2 +(X(N +1)−x(N+1))2) (10)

with X(N + 1) the updated mean value of all the variables over the last N + 1
samples, ∆X(N + 1) the deviation between the mean values before and after its
update and σ2(old) the old variances of all variables. In our case, the less significant
cluster represents a whole collection of points rather than a single sample with
which the update is carried out. This means that in the last term in (10) the
sample in the N + 1th time instant x(N + 1) is substituted by the center of the
less significant cluster, as representing the mean of the ’new’ data, i.e. the data
which formed this cluster; the mean value X̄(N + 1) is represented by the cluster
center of the more significant cluster. The new number of samples is determined
by adding the number of samples falling into both clusters, i.e. by ki + kk, which
substitutes N + 1 in (10). In order to guarantee a good coverage of the joint data
cloud by the merged cluster, a fraction of the variance of samples belonging to the
less significant cluster is added, which is determined by the percentage of samples
belonging to the less significant cluster with respect to the samples belonging to
both clusters. Hence, the cluster merge of two clusters i and k is done in the
following way, for each j = 1, ..., p separately and achieving a new cluster/rule
indicated by index new:

cnew,j =
ci,jki + ck,jkk

ki + kk
(11)

σnew,j =

√
kcl1σ

2
cl1,j

kcl1 + kcl2
+ (ccl1,j − cnew,j)2 +

(cnew,j − ccl2,j)2

kcl1 + kcl2

+
kcl2

kcl1 + kcl2
σcl2,j

knew = ki + kk

where cl1 = arg max(ki, kk) denoting the (index of the) more significant cluster,
and consequently cl2 = arg min(ki, kk) denoting the (index of the) less significant
cluster.

Figure 5 demonstrates two examples where two clusters are merged because of
a high and medium overlap degree:

– in (a) the originally extracted clusters based on the first 100 samples are shown
in dotted lines; they are quite distinct at this stage, however due to new data,
indicated by samples marked as pluses and filling up the gap inbetween the
two clusters, the clusters are moving together, finally achieving a significant
overlap: similarity is then 0.88. Merging of the two clusters leads to the big
cluster, its range of influence, i.e. the 2-σ range, shown as thick solid line and
its center shown as big dark dot.

14 Edwin Lughofer et al.

(a) (b)

Fig. 5 (a): strongly overlapping clusters (overlap degree of 0.88) shown as thin solid lines are
merged to one bigger cluster (thick solid line), the original cluster before the update phase
are shown in dotted lines, which are extracted from the original samples shown as grey dots;
(b): overlapping clusters (bottom and upper left) with medium similarity degree of 0.71, the
merged cluster is nearly the same as the original bottom cluster as the upper left cluster has
very low support, as less than 10% samples support this cluster while the bottom cluster is
supported by about 75% of the data

– in (b) three clusters evolved during the incremental process, shown as thin solid
lines; the two left most clusters have an overlap degree of 0.71. Merging these
two clusters to one, lead to the cluster in thick solid line — in this case, the
bottom cluster changed only slightly to the new merged cluster as originally
supported by 147 samples, whereas the upper left cluster was only supported
by 15 samples, which effects the update of the center and σ in (11) marginally.

3.1.4 Consequent Merging and Assuring Consistency of the Rule Base

Merging of two clusters by (11) automatically implies a merging of the correspond-
ing rules’ antecedent parts. In order to continue with one merged rule instead of
two, it is also necessary to merge the consequent parts of the two strongly over-
lapping rules. This is achieved by taking the weighted sum of these, where the
weights are presented by the significance of the two rules i and k expressed by the
support of these:

wnew =
wiki + wkkk
ki + kk

(12)

where wi and wk represent the linear parameter vectors in the consequents of
the ith and kth rule, while ki and kk are the supports of the ith and the kth rule
(local area), elicited by the number of data samples belonging to the corresponding
clusters. In fact, this means that the merged consequent hyper-plane does not end
up exactly in the middle of the other original two hyper-planes, but points more
into the direction of the more significant rule. This is somehow intuitive, as the
more significant rule is supported by more samples and therefore should have a
higher impact in the merging process.

On the other hand, two dissimilar consequent functions of strongly over-lapping
rules may point to an inconsistency in the rule base which weakens the transparency

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 15

and interpretability of the evolved fuzzy system. In fact, from Boolean logic point of
view, it is precarious to merge two rules whose antecedent parts are similar, while
having dissimilar consequents. In fact, such rules usually represent inconsistent
parts of the rule base as they are somewhat contradicting each other. This concept
can be easily extended to fuzzy rule bases by replacing the concept of equivalence
between Boolean propositions by the degree of similarity between fuzzy sets. In
this sense, two fuzzy rules given by

IF A THEN C

IF B THEN D

can be seen as contradictory, if the similarity between premises A and B is (signif-
icantly) greater than the similarity between the consequents C and D. This crisp
condition can be extended to a fuzzy one, delivering a degree of contradiction. In
a case like this, a simple linear combination of the consequent parts as conducted
in (12) may not appear appropriate.

Thus, inspired by Yagers idea of participatory learning [52], we propose the
following modification of the combination rule (12):

wnew = wi + α · ρ(wi,wk) · (wk −wi), (13)

where α = kk/(ki + kk) and ρ(wi,wk) is a measure of consistency of the two
rule consequents. This measure can be defined in different ways, e.g., smoothly by
ρ(wi,wk) = Scons(yi, yk) or, more drastically, by

ρ(wi,wk) =

{
1 if Scons(yi, yk) ≥ overlapik
0 if Scons(yi, yk) < overlapik

.

with Scons the similarity degree of the two consequents belonging to rules i and
k. For ρ = 0, indicating an inconsistency in the rule base, we obtain wnew = wi,
i.e., the consequent of the more relevant rule. For ρ = 1, on the other hand, (13)
reduces to the original combination rule (12).

The remaining question is now how to calculate the similarity between two con-
sequent functions. In Takagi-Sugeno fuzzy systems, rule consequent functions are
represented by hyper-planes in the high-dimensional space. When using local learn-
ing approach (as conducted in most of the EFS approaches), these hyper-planes
are snuggling along the real trend of the approximation curve in the corresponding
local region, i.e. the hyper-planes exactly represent the tendency of the data cloud
in the local regions where they are defined, achieving a good interpretation capa-
bility of TS fuzzy systems [53] [32]. Thus, a reasonable measure for similarity is the
angle between two hyper-planes, as it measures the difference of the direction of
the consequent functions follow in the high-dimensional space. The angle between
two hyper-planes corresponding to the ith and the kth rule can be measured by
calculating the angle between their normal vectors a = (wi1 wi2 ... wip − 1)T and
b = (wk1 wk2 ... wkp − 1)T :

φ = arccos

(∣∣∣∣∣ aTb|a||b|

∣∣∣∣∣
)

(14)

with φ ∈ [0, π]. The maximal dissimilarity is obtained when the angle between the
two normal vectors is π

2 , as the orientation of the vectors does not play a role when

16 Edwin Lughofer et al.

using the hyper-planes for prediction purposes. The extreme case, i.e. an angle of
π or 0 would indicate parallel hyper-planes, whose shift is restricted due to the
large overlap of the antecedent parts of both rules. The similarity measure of two
hyper-planes yi and yk can then be defined as:

Scons(yi, yk) =

{
1− 2

π ∗ φ φ ∈ [0, π2]
2
π ∗ (φ− π

2) φ ∈ [π2 , π]
(15)

In Mamdani fuzzy systems the consequents are containing fuzzy sets, whose
similarity can be measured in the same manner as will be described in Section
3.2.2 below. Thus, Scons can be substituted by S(A,B) from (17) or when using
Gaussians by Sker(A,B) from (18), where A and B are the consequent fuzzy sets
of rule i and k. Merging of consequent fuzzy sets can be conducted by using (21).

3.1.5 Integration Concept (into EFS Approach)

In case when no cluster is updated but a new one evolved, there is obviously no
necessity to perform a rule merging process. Hence, the integration of the whole
rule merging process into EFS is straightforward by adding the steps shown in
Algorithm 2 after the end of each incremental learning cycle, e.g. after Step 10 in
Algorithm 1.

Algorithm 2 Redundancy Elimination in Feature Space

(11) If a new cluster was evolved, do nothing.
(12) Else perform the following steps:
(13) Check if similarity of moved/updated cluster i with any other cluster k =

1, ..., C\i calculated by (9) is higher than a pre-defined threshold simthr (default
value is 0.8)

(14) If yes
(a) Perform rule merging of cluster i with cluster k = arg maxCk1=1 overlapik1

after (11).
(b) Perform merging of corresponding rule consequent functions by using equa-

tion (13).
(c) Overwrite parameters (ci,σi) of rule i with the parameters of the merged

cluster (cnew,σnew).
(d) Delete rule k belonging to cluster k.
(e) Decrease number of clusters/rules: C = C − 1.

For other evolving fuzzy systems approaches these steps can be inserted at a sim-
ilar place, whenever a movement of rules/cluster took place in the preliminary
incremental learning step. This is because the rule merging strategy is indepen-
dent from the rule/cluster learning engine as long as multidimensional Gaussian
functions are used.

3.2 Fuzzy Set and Rule Merging in the Partition Space

3.2.1 Problematic Nature

In the previous section, we proposed a novel rule merging procedure which was
acting directly on the complete rule antecedent part. In this section, we want to

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 17

Fig. 6 Strongly overlapping fuzzy sets in the X dimension because of projection onto the axes

go a step further and demonstrate an approach for merging two or more single
fuzzy sets in the fuzzy partitions of the input variables/features. In usual cases, the
appearance of redundant fuzzy sets is more frequent than of redundant rules. This
fact gets evident, when considering two or more clusters lying one over each other
with respect to a single dimension. Due to the projection concept in order to form
fuzzy sets along the single axes, these sets may get strongly overlapping as the high-
dimensional view is simply discarded. For underlining such an occurrence, a two-
dimensional example is shown in Figure 6. Note that such overlapping sets can also
become apparent when training fuzzy systems from data in batch mode, see [10]
[36]. On-line merging of fuzzy sets is necessary in order to assure distinguishability
of the membership functions within the fuzzy partitions in the single dimensions.
Distinguishability of the fuzzy sets is one key step towards a better interpretability
of the fuzzy models [54]. In fact, a fuzzy set should represent a linguistic term with
a clear semantic meaning. To obviate the subjective establishment of this fuzzy
sets/linguistic terms association, the fuzzy sets of each input variable should be
distinct from each other.

3.2.2 Calculating Similarity of Fuzzy Sets

In this sense, many methods for detecting redundant fuzzy sets and merging of
these in a post-processing manner (after the complete fuzzy systems training
phase) were proposed during the 90ties, see [44] [45] or [46], most of these us-
ing the Jaccard index as fuzzy set-theoretic similarity measure:

S(A,B) =

∫
(µA ∩ µB)(x) dx∫
(µA ∪ µB)(x) dx

, (16)

18 Edwin Lughofer et al.

Fig. 7 Embedded fuzzy sets (for input feature X) due to projection concept and as one cluster
lie over the other with respect to dimension Y; the merged set indicated by dotted line, yielding
an inexact representation of the local data clouds w.r.t. dimension X

with A and B two fuzzy sets. In discrete form, the Jaccard index is defined by:

S(A,B) =

n∑
q=1

min(µA(xq), µB(xq))

n∑
q=1

max(µA(xq), µB(xq))
(17)

with n the number of discretization points. The Jaccard index was also applied in
[32] for calculating the similarity measure of fuzzy sets in evolving fuzzy systems.
This is in principle possible as it requires no samples from the past and hence
is applicable within a single-pass on-line learning scenario. However, the Jaccard
index has severe deficits regarding computational burden, as depending strongly
on the discretization steps in (17), such that it is hardly applicable in on-line
settings with real-time requirements. We will verify this in the evaluation section
when reporting computation times. The overlap measure as proposed in (8) for
rule merging purposes is not applicable for single fuzzy set merging purposes,
because the membership degrees of inflection points can be also high in case of very
dissimilar sets. For instance, consider the case where a fuzzy set is fully embedded
in another one as shown in Figure 2 (d): then the similarity based on the inflection
points would be 1, whereas a merging of the two sets is not recommended as the
two sets are representing different distributions/widths of data clouds in different
local regions — Figure 7 illustrates such an occurrence: a merging of the two fuzzy
sets, indicated by the dotted fuzzy set, would yield an imprecise representation of
the span of the data cloud in the first dimension and cause a model with weak
accuracy. Note that in the high-dimensional case, the situation is different as there
an embeddance means that a complete rule is embedded in another, i.e. the fuzzy
sets along all dimensions are embedded in others: in this case, merging should be
triggered, see also the consideration in Section 3.1.2 and Figure 4.

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 19

We propose an alternative similarity measure which is applicable for Gaussian
membership functions and directly acts on their parameters c and σ. This similarity
measure is defined by:

Sker(A,B) = e−|cA−cB |−|σA−σB | (18)

with cA and σA the center and width of fuzzy set A, and cB and σB the center
and width of fuzzy set B; in order to be scale-invariant, the centers and widths
of the Gaussians should be normalized before hand according to the ranges of
the variables. We call it kernel-based similarity measure which is leaned on the
discrepancy norm [35]. Obviously, the following holds:

Sker(A,B) = 1⇐⇒ |cA − cB |+ |σA − σB | = 0⇐⇒ cA = cB ∧ σA = σB (19)

Sker(A,B) < ε⇐⇒ |cA − cB | > δ ∨ |σA − σB | > δ (20)

The first condition means that only in case of a perfect match, the similarity
measure between two fuzzy sets has the maximal degree of 1. The second condition
assures that an embedded set as shown in Figure 7 is not merged with a set covering
it and having a significantly larger width, which would result in a too inexact
representation of the data. This is also the reason why we chose the same weight
for differences in centers and spreads: a difference in the specificity between two
sets (representing data clouds with different distributions/spreads) should have
the same effect as a shift of the centers.

3.2.3 Fuzzy Set Merging Process and Integration Concept

If Sker(A,B) exceeds a certain threshold (we used a value of 0.8 in all tests),
the two sets can be treated as similar (redundant), as cA is close to cB and σA
close to σB , and a merging of the two fuzzy sets should be applied in order to
reduce the complexity. For high thresholds, a low number of merging steps will
be carried out, whereas the loss in model precisions will be negligible. Finally, the
value of the thresholds steers the tradeoff between precision and distinguishability
and therefore readability. In our approach, two Gaussian fuzzy sets are merged
into a new Gaussian kernel with the following parameters:

µnew = (max(U) + min(U))/2

σnew = (max(U)−min(U))/2 (21)

where U = {µA ± σA, µB ± σB}. The idea underlying this definition is to reduce
the approximate merging of two Gaussian kernels to the exact merging of two of
their α-cuts, for a specific value of α. Here, we choose α = e(−1/2) ≈ 0.6, which
is the membership degree of the inflection points µ± σ of a Gaussian kernel with
parameters µ and σ. A concrete merging example is presented in Figure 8.

After each incremental learning step, only those fuzzy sets are checked to be
similar to any other ones which are belonging to a rule updated in the last incre-
mental cycle. When a new rule is evolved, then no similarity checks are performed.
Opposed to the rule merging method as demonstrated in the preliminary section,
integrating the merging process of two fuzzy sets in an EFS approach is not neces-
sarily straightforward, especially not for those approaches which are applying an
incremental evolving clustering concept such as DENFIS, ePL, eTS, FLEXFIS and

20 Edwin Lughofer et al.

Fig. 8 Merging of two Gaussian fuzzy sets (dashed and dotted dashed lines) to a new fuzzy
set according to (21)

many others. This is because a merged fuzzy set has to be ’back-integrated’ to the
high-dimensional cluster space and represented appropriately. In fact, this means
that the spread of two clusters, with respect to that dimension for which the merge
was carried out has to be updated. However, this may cause a blurred represen-
tation of the whole cluster partition not representing the real characteristics of
the data clouds any longer, finally leading to wrong cluster updates: one cluster
may move not sufficiently due to back alignment, whereas the other may move too
much away from the real distribution in the ongoing incremental learning context.
Figure 9 demonstrates the negative effect of this occasion: cluster misplacement
in (a) (upper cluster) and insufficient cluster movement in (b) according to 6 new
samples (upper cluster) as well as ’cluster dragging’ due to alignment with updated
cluster (misplaced lower cluster).

Therefore, we propose a two layer model building scheme, where one evolved
fuzzy model contains the original unreduced fuzzy partitions, i.e. represents the
full precise partitions as extracted from the data streams (ev. pruned due to the
techniques described in the previous section), and the other contains the merged
fuzzy sets due to the redundancy criteria and merging process as described above
and always conducted on the precise model. The latter is for visualization and
eventual manipulation purposes and dedicated to the expert/user of a system. It
actually always represents a smaller fuzzy model with less complex partitions, but
with an accuracy close to the full precise model. This will be empirically verified
in the evaluation section.

3.3 Comments on Computational Cost

In case of incremental evolving learning scenarios, the computational cost when
updating a fuzzy model with new incoming samples is an important aspect. This
is because usually such type of learning is performed during on-line processes,
often demanding proper termination of the training / prediction cycles in real-

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 21

(a)

(b)

Fig. 9 (a): Cluster misplacement of upper cluster due to alignment along dimension X, as
the merged set is back-integrated; (b): updating upper cluster with new data makes situation
worse: also the lower cluster is misplaced according to dragging effect and alignment and the
update of the upper cluster is not sufficient as starting from misplaced position

time. For the computational cost of various EFS approaches, please refer to the
corresponding publications. Here, we inspect the additional cost which is caused
when applying the fuzzy set and rule merging concepts as demonstrated in the
previous sections. In case of the rule merging approach directly in the cluster
space as discussed in Section 3.1, the following costs arise:

– Step 13 requires ((12 + 1) ∗ (C − 1) + 1)p floating point operations (squared,
square-root, multiplication, addition, subtraction) for calculating the overlap
degree between updated cluster and all other clusters (C−1 intersection points
in all p dimensions).

22 Edwin Lughofer et al.

– Step 14 (a) for merging of two clusters, i.e. the updated one with that one with
most significant overlap, requires 18p floating point operations.

– Step 14 (b) for merging two rule consequents requires 3p + 1 floating point
operations.

– Steps 14 (c) and (d) are assignments of parameters and rule deletion and
therefore negligible.

In sum, this means that an additional computational complexity of O(Cp), with
C the number of clusters and p the dimensionality of the feature space, is caused,
i.e. an additional complexity which is a product between the number of rules and
dimensionality of the feature space. In case of a reasonable parameter steering the
evolution of rules and similarity threshold, we can expect that the number of rules
in the feature space is bounded.

For the fuzzy set merging process as discussed in Section 3.2, the following
costs arise:

– Calculating the similarity of each fuzzy set corresponding to an updated rule
with all other fuzzy sets requires 7(C − 1)p floating point operations.

– The merging process of two fuzzy sets itself requires 8 floating point operations.
– The merging of rule consequent parameters in case when rules are getting

redundant due to the fuzzy set merging process requires again 4p floating point
operations.

In sum, this means that the fuzzy set merging process requires a computational
complexity of O(Cp). In case of using Jaccard index, the costs for calculating the
similarity would rise to 2 ∗ 10 ∗ n ∗ (C − 1)p with n the number of grid points in
the sum, counting minimum and maximum as two operations and 5 operations for
calculating each, µA and µB on one specific grid point, leading to a complexity
of O(Cpn); often, n > p, as to our best knowledge a minimum of n = 20 to 30 is
required in order to achieve an accurate calculation of the discrete Jaccard index,
thus significantly increasing the complexity compared to kernel-based measure. In
Section 4.2, we will see that the additional cost caused by the kernel-based measure
will be negligible in multi-dimensional problems, whereas the cost caused by the
Jaccard index is significantly slowing down the learning process.

4 Evaluation

For the purpose of verification and evaluation of the proposed novel complexity re-
duction methods, we exploit the FLEXFIS learning engine as defined in Algorithm
1.

4.1 Experimental Setup

The performance of the new rule and fuzzy set redundancy detection and elimi-
nation concepts will be demonstrated in connection with the FLEXFIS approach;
the integration of the rule merging process in the feature space is achieved by the
additional Steps for Algorithm 1 mentioned in Section 3.1.5.

The performance of the novel concepts will be measured in terms of model com-
plexity versus accuracy and compared with numbers from evolved precise models

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 23

without any redundancy deletion steps integrated (standard FLEXFIS approach).
We will also demonstrate the evolution of the number of rules in both cases, give
examples how improved and not improved fuzzy partitions look like and empiri-
cally measure the additional computational cost caused by the redundancy detec-
tion and elimination processes. The vigilance parameter used as essential sensitive
parameter in FLEXFIS as controlling the tradeoff between rule evolution (stabil-
ity) versus rule update (plasticity) and therefore taking the main responsibility

for the stability-plasticity dilemma, is set to the standard value of 0.3
√
p+1√
2

with

p the dimensionality of the input feature space (as also proposed in [28]) for all
incremental learning phases — note that we do not allow manual or CV-based
tuning in an off-line phase as building the models from scratch, using Option 1b)
in Algorithm 1. The threshold for rule similarity in the feature space as well as for
fuzzy set similarity based on kernel measure is set to 0.8 for all data sets and to
0.35 in case of using Jaccard index. For merging the consequents in case of similar
rules, we used the same procedure as described in Section 3.1.4, exploiting formula
(13) with consistency check.

The following data sets were applied, where each one of these were split into a
training and a test set, where the training sets were sent as pseudo-streams into
the incremental learning update of the fuzzy systems and the test sets used for
evaluation purposes on the accuracy of the achieved models:

– Data from an engine test bench: the purpose was to estimate the NOx content
in the gas emission produced by the engine during development and test phase.
It is important to keep this content below a certain threshold, otherwise the
car cannot be licensed for driving. The expenses for directly measuring the
NOx content with hardware sensors is often too expensive and has some severe
shortcomings, as sensors may get over-heated showing drift effects etc., see
also [33] for a more detailed explanation. Hence, it is an important issue to
accurately estimate the NOx content from other measurement channels for
which sensor installations have lower costs and are more process-save. This
can be achieved with data-driven prediction models called Soft Sensors [22], in
an on-line adaptation setting with evolving models called eSensors [4].

– Data containing the prices of residential premises: this data set includes the
five most important input features required for accurately estimating the prices
of residential premises; an important goal is to predict the house prices based
on past conditions for prospective years. In this sense, the training data set
contains values in the period from 1998 to 2004, whereas the test data contains
values from the period 2005 to 2006.

– An artificially generated data stream containing in sum 1.2 million samples
by applying the synthetic stream generator from the MOA (Massive On-line
Analysis) framework [7], also used in [47] for evaluation purposes. The task is
to generate a binary classification problem, taking a random hyperplane in d-
dimensional Euclidean space as a decision boundary. In which the classification
problem is to predict position of points in relation to a hyperplane, for instance
the point x = (x0, . . . , xd) in d dimensional space lays on this hyperplane if it
satisfies the equation

d∑
i=1

wixi = w0.

24 Edwin Lughofer et al.

Table 1 Applied data sets and their characteristics

Training # Test # Input Var. Source
NOX 664 159 17 Engine Test Bench
Premises 2902 1371 5 Historic Data Base of Sales
Hyperplane 1 mio. 200K 4 Synthetic Data incl. Drift

A hyperplane separates the space into two classes of points, points for which∑d
i=1 wixi > w0 are labeled as positives, while points satisfying

∑d
i=1 wixi < w0

are considered as negatives. This hyper-plane data set can be also applied in
a regression context when assigning positive labels to 1 and negative to 0.
Predicting the labels of new samples is conducted by producing outputs of the
evolved fuzzy regression model: if these are greater than 0.5, they belong to
the positive class, otherwise to the negative class. Furthermore, a concept drift
was simulated by the ConceptDriftStream procedure in MOA and integrated
into the hyper-plane data. The idea underlying this procedure is to mix two
pure distributions in a probabilistic way, smoothly varying the corresponding
probability degrees. In the beginning, examples are taken from the first pure
stream with probability 1, and this probability is decreased in favor of the
second stream in the course of time.

In case of the real-world problem data sets, the error on a separate test set, as
containing the recordings at the end of the on-line process, denotes the worst case
scenario regarding expected predictive performance of the evolved models. In case
of the synthetic hyper-plane data, we conducted an analysis on a periodic hold-out
test scenario: each odd block of data is used for incremental model updates, each
even block for eliciting the accuracy of the fuzzy model evolved so far from the
stream. The block size was set to 5000 samples for training and 1000 samples for
test cycles. A characteristics of the data for all sets is summarized in Table 1.

4.2 Results

4.2.1 Results on NOx Data

For the high-dimensional NOx data set, in order to gain more interpretability, the
most important variables were pre-selected by engine experts which they saw as
sufficient to build reliable models, namely
Te = Engine output torque
P2offset = Pressure in cylinder #2
N = Rotation speed
Alpha = Accelerator pedal
Tgas = Exhaust temperature
reducing the input dimensionality from 17 to 5 and the AND connections in the
fuzzy systems from 16 to 4. Time delays of these inputs up to 10 time steps (10
seconds) in the past were considered. A time delay extraction method based on a
modified variant of forward selection [15] was applied in order to select the most
influential time delay for each of the pre-selected input channels. This resulted
in the following input channels for the evolving fuzzy systems training: Te(k-5),

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 25

Table 2 Performance of EFS without and with pruning of redundant rules and fuzzy sets on
NOx data

Method MAE TS / MAM # of Rules # of Fuzzy Sets Comp. Time in sec.
EFS conv. 13.15 / 20.95 14 70 1.68
EFS + ERR 13.08 / 22.45 6 30 1.89
EFS + ERF 13.01 / 22.46 14 17 1.92 / 26.21
EFS + ERR + ERF 13.16 / 23.36 6 13 1.88 / 3.48

P2offset(k-5), N(k-4), Alpha(k-6), Tgas(k-9) in order to predict the NOx content
at the current (the kth) time instance.

The results of the evolving fuzzy systems (EFS) training procedure are shown
in Table 2, where the various lines compare 1.) conventional EFS, 2.) EFS with
elimination of redundant rules (ERR) included, 3.) EFS with elimination of re-
dundant fuzzy sets (ERF) included, 4.) combining rule and fuzzy set merging. As
accuracy measure the mean absolute error (MAE) was applied, which is nearly re-
dundant to RMSE and correlation coefficient, showing the same relative tendency
in the quality of the approximation. From this table, we can realize that even
though the complexity of the evolved fuzzy models are significantly reduced by
eliminating redundant rules (compare Column #3 among Rows #2 and #3), the
errors of the models stayed almost on the same level (compare Column #2 among
Rows #2 and #3), in fact are even slightly lower than when not applying any
rule merging process. In this sense, as a nice side effect, over-fitting of the models
may be also decreased. The same is the case when performing fuzzy set merging
process (compare Column #2 among Rows #2 and #4). Combining rule and fuzzy
set redundancy deletion leads to the lowest complexity, i.e. 6 rules with 13 fuzzy
sets, i.e. 2-3 in average for each of the 5 inputs, not loosing significant ground in
terms of MAE over the precise evolved fuzzy model. The values after the slashes in
Table 2, second column, show the normalized mean absolute errors obtained when
using the equivalent Mamdani fuzzy system for prediction. The equivalent Mam-
dani is simply obtain by projecting the evolved clusters from the product space
also to the output/target variable, instead of estimating hyper-planes as piece-wise
linear consequent models. A Mamdani fuzzy system offers a better linguistic in-
terpretability, as also the consequents are consisting of membership functions and
their associated linguistic terms, however suffers of accuracy by an error increase
of about 50%.

Figure 10 shows the effect of rule merging during the incremental learning
phase. During the first half of the training set, no merging is requested: obviously,
here the rules which are evolved are really needed for representing and approxi-
mating different regions in the feature space. At the beginning of the second half,
there is a severe drop in the number of rules as some of the former evolved rules
are becoming significantly overlapping due to coalescence of their centers. After
this phase, new rules get again evolved as necessary in so far unexplored regions
and others merged etc. Finally, the learning is more vital and flexible than when
not using any rule redundancy deletion approach (compare dotted versus solid
line): necessary rules are evolved and unnecessary ones are pruned. Also note that
the concept of avoiding a merge of two contradictory rules could even improve the
error of the final obtained fuzzy models slightly, in sum about 3%-5%.

26 Edwin Lughofer et al.

Fig. 10 (Evolution progress on the number of rules for NOx data set when using conventional
EFS (without redundancy deletion) as shown in dotted line versus evolution progress on the
number of rules when using EFS with coupled rule merging in case of strongly overlapping
rules (solid line)

The fuzzy partitions for all input variables are shown in Figure 11 (captured
from MATLAB’s fuzzy logic toolbox), whereas the left side shows all the partitions
obtained when not integrating any fuzzy set redundancy elimination technique and
the right side the improved partitions. Clearly, the improvement is significant, as
the partitions on the left hand side are hardly readable, while the partitions on
the right hand side contain clearly separable fuzzy sets, some having a nearly ideal
overlap at the membership degree of 0.5. This clear separability serves as basis for
assigning linguistic labels to the sets, providing a set of 6 linguistically readable
rules premises, with 5 antecedent parts for the 5 inputs.

The computation burden for doing additional redundancy checking and elimi-
nation steps is listed in the last column of Table 2. While conventional EFS takes
1.68 seconds for learning the fuzzy models from the 664 training samples, there-
fore, the update time for one single sample is below one millisecond, additional rule
and fuzzy set merging steps increase this value by only about 0.2 seconds, and can
therefore be seen as negligible. The tiny increase is basically because in each in-
cremental learning step only the modified rule is checked for becoming redundant.
The entries after the slashes in the last column of Table 2 are the required com-
putation times when applying the Jaccard index as similarity measured instead of
kernel-based similarity after (18). A severe drop in computation speed and hence
on-line performance of EFS can be observed in this case, whereas similar fuzzy

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11 Left side: final fuzzy partitions obtained for (from top to bottom) Te, P2offset, N,
Alpha and Tgas when using full precise EFS; right side: the final partitions obtained for the
same variables when detecting fuzzy set redundancies and eliminating these in connection with
EFS

28 Edwin Lughofer et al.

Table 3 Performance of EFS without and with pruning of redundant rules and fuzzy sets on
residential premise data

Method MAE norm # of Rules # of Fuzzy Sets Comp. Time in sec.
EFS conv. 0.1728 18 90 9.75
EFS + ERR 0.1635 4 20 7.91
EFS + ERF 0.1677 16 16 9.27 / 62.71
EFS + ERR + ERF 0.1579 4 12 8.10 / 8.53

sets as shown in Figure 11 (left side) are obtained. This means that especially in
case of a high number of rules (last but one row), the usage of Jaccard index may
fail in fast on-line modeling processes. The errors obtained when using Jaccard
index with the default threshold of 0.35 are very similar to the obtained when us-
ing kernel-based similarity measure: 13.22 versus 13.01 in case of EFS+ERF and
13.14 versus 13.16 in case of EFS+ERR+ERF.

4.2.2 Results on Residential Premise Data

Opposed to the NOx data set, the data set of residential premises denotes a static
data set, i.e. no inclusion of time delays of the input variables for a-head-type
predictions of future value prices of the residential premises is required. This is
also because the characteristics of one premise contained in one single data sample
already represents the full price of the premise. The demand for an incremental
modeling task is requested because the data base containing past premise prices
is regularly updated with new ones which should be automatically included in
the model without using time-intensive re-training phases. In this sense, it is a
challenge to build up models in incremental evolving manner and to study their
performance on a separate test data set. For doing so, the test data set contained
the prices of two consecutive years 2005-2006 following the years included in the
training set, i.e. 1998-2004. The results when evolving the fuzzy models with and
without merging criteria are reported in Table 3. Here, the impact of eliminating
local redundancies in feature spaces and fuzzy partitions on the predictive perfor-
mance of the final achieved model is even higher: the normalized mean absolute
error (MAE) can be even decreased from 0.1728 to 0.1635 and finally to 0.1579,
i.e. by about 10% while synchronously also decreasing the complexity of the mod-
els: from 18 to 4 rules, from 90 to 12 fuzzy sets in sum, i.e. from 18 to 2.5 fuzzy
sets on average in each input dimension. This means that the rule and fuzzy set
redundancy approach is not only able to achieve more transparent models, but
also to decrease the over-fitting effect caused by these, and this with negligible
additional computational cost — compare computation times in the last column
of Table 3. In fact, the computation time can be even decreased as after merging
of some redundant rules, a lower number of rules needs to be updated in the fuzzy
models. Hence, in this case, the additional cost caused by the rule and fuzzy set
merging process, is compensated by a reduced cost in the model updates. Again
Jaccard index requires significantly higher time in the merging process (compare
4th row, last column the values before and after the slash), whereas the errors
obtained when using Jaccard index are very similar to the obtained when using

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 29

Fig. 12 The effect of different settings of the vigilance parameter on the number of extracted
rules in case when rule merging is switched off (line with crosses) and on (line with circles)

kernel-based similarity measure: 0.1751 versus 0.1677 in case of EFS+ERF and
0.1592 versus 0.1579 in case of EFS+ERR+ERF.

An interesting point could be investigated, namely that an increased vigilance

parameter of 0.5
√
p+1√
2

(standard value: 0.3
√
p+1√
2

) used in conventional EFS with-

out pruning could also achieve 4 rules, but results in an increased normalized MAE
of 0.1774. This finally means that not even a manually tuned vigilance (which is
usually not possible in a real incremental learning setting where data is received
sample per sample) can result in better performance than a more flexible auto-
matic rule merging-and-evolution process. It also means that a systematic decrease
of over-fitting is not simply a matter of increasing the distance threshold for re-
ducing the number of rule evolutions, but in fact more a matter of eliminating
unnecessary complexity arising during the update process as mentioned at the be-
ginning of Section 3.1. Another interesting behavior was observed when decreasing

the vigilance parameter to a value of 0.2
√
p+1√
2

: in this case, the number of rules

exploded from 18 to 52 in case of conventional EFS, whereas in case of included
rule merging process the number rule only increase from 4 to 5, which is a re-
markable stability regarding the vigilance parameter. This is further underlined

that also an increase of the vigilance to 0.4
√
p+1√
2

resulted in 4 rules. Table 4 and

Figure 12 summarize the effect of different settings of the vigilance parameter on

the number of evolved rules, the default setting 0.3
√
p+1√
2

highlighted in bold font.

The final achieved fuzzy sets when using conventional EFS and using EFS with
redundancy elimination are compared in Figure 13 (left side versus right side):
shown are the partitions for all the input variables, namely ’Area’, ’BuildAge’,
’Storeys’, ’Rooms’ and ’Floor’, whereas the order of the features matters, i.e. ’Area’
was selected as the most important, ’BuildAge’ as the second most important
features and so on... A clear improvement regarding separability of the fuzzy sets

30 Edwin Lughofer et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 13 Left side: final fuzzy partitions obtained for (from top to bottom) Te, P2offset, and
N when using full precise EFS; right side: the final partitions obtained for the same variables
when detecting fuzzy set redundancies and eliminating of these in connection with EFS

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 31

Table 4 Effect of different vigilance parameter on the number of evolved rules Second column:
no rule merging process is performed, third column: rule merging is integrated, note the less
sensitivity in this case with respect to the # of rules (achieving fuzzy models with almost same
complexity for all settings)

Vigilance # of Rules conv. EFS / MAE # of Rules EFS with ERR / MAE

0.2
√
p+1√
2

52 / 0.2041 5 / 0.1714

0.3
√
p+1√
2

18 / 0.1728 4 / 0.1635

0.4
√
p+1√
2

9 / 0.1737 4 / 0.1660

0.5
√
p+1√
2

4 / 0.1774 3 / 0.1721

could be achieved, also opening the possibility to assign a linguistic term to each
fuzzy set. Also interesting to see is that for the input feature ’BuildAge’, (correctly)
no fuzzy sets in the upper range area were evolved as ignoring the outliers in the
data by the rule-base procrastination approach integrated in FLEXFIS, see [28] —
this ensures a more stable fuzzy model.

4.2.3 Results on Hyper-Plane Data

For the synthetic data set including 1.2 million samples and a drift after approxi-
mately 450K samples, we conducted a periodic hold out test in order to observe the
accuracies achieved by the evolved models with and without rule merging/pruning
over time. Each odd block of data is used for further updating and evolving the
models, each even block of data for eliciting the accuracies in terms of classifica-
tion labels (assigned from the regression output). The block size was set to 5000
samples for training and 1000 samples for test cycles. This scenario is usually con-
ducted when intending to inspect the impact of a drift in a stream onto the model
accuracy: as the periodic test sets are completely independent and the accuracy
is not accumulated (as done in an interleaved-test-and-then-train scenario), drifts
can be recognized easily by a (sudden) downtrend of the accuracy trend line. In
such a case, a forgetting mechanism can be triggered including a gradual outdating
of older samples over time as proposed in [31]. We applied a forgetting factor of
0.999, i.e. a slow forgetting as also the drift was moderate. For comparison pur-
poses, we also applied Hoeffding trees [13] as widely-used incremental classifiers
from the MOA framework.

Figure 14 shows the accuracy trend lines achieved by 1.) no merging and no
forgetting, 2.) no merging and forgetting, 3.) merging and no forgetting and 4.)
merging and forgetting. Clearly, the impact of forgetting is very clear as the down-
trend starting at around 450000 samples can be faster compensated than when
not using any forgetting mechanism, no matter whether rule merging is switched
on or off. Also, it is interesting to see that rule merging does not really weaken the
accuracy over time significantly and EFS can out-perform Hoeffding trees signifi-
cantly, especially before the drift phase and also when using forgetting during the
drift. The average classification accuracy over all periodic held out test samples
was 90.24% without rule merging and no forgetting, 92.6% without rule merging
and forgetting, 89.03% with rule merging and no forgetting and 92.08% with rule
merging and forgetting.

32 Edwin Lughofer et al.

Fig. 14 Accuracy trend lines of evolving fuzzy systems applied onto hyper-plane data: without
rule merging and no forgetting (grey dashed line), with rule merging and no forgetting (grey
solid line), without rule merging and forgetting (dark dashed line) and with rule merging and
forgetting (dark solid line); the dotted line represents the accuracy trend of Hoeffding trees,
available in the MOA framework and which has no forgetting integrated.

Furthermore, we were also interested in the number of evolved structural com-
ponents during the incremental learning phase: number of rules in case of EFS
and number of nodes (tree size) in case of Hoeffding trees — Figure 15 compares
the results. EFS without pruning permanently increases the number of rules un-
til a kind of saturation is achieved, ending up with 70 rules. EFS with pruning
shows a more dynamic lively behavior, the average number of rules over the whole
lifetime was 7, Hoeffding trees permanently increase linearly the number of rules
up to 747. Du to the heavy data stream of 1 million training samples used, the
significantly decreased size of EFS when using merging option (7 versus 65-70)
pays off in computation time: EFS with merging takes only 15.9 minutes, while
EFS without merging takes 97.4 minutes on a conventional PC with Windows 7
and MATLAB 2010 installed.

5 Conclusion and Outlook

In this paper, we demonstrated new methodologies and concepts for detecting and
eliminating redundancies in evolving fuzzy systems which may come up during
the incremental learning process. In fact, the common and natural denominator
for all EFS approaches is that they always see the samples as current snapshots of
the data and it is impossible for them to look into the future which characteristics
in the data will evolve and which original gaps in the feature space will be filled
up forcing significant overlap of originally disjoint data clouds. The redundancies
may arise on rule level in the high-dimensional features space or on fuzzy set

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 33

Fig. 15 Development of the number of rules over time for EFS without merging (dashed line),
with merging (solid line) and Hoeffding trees (dotted line) — note the linear increase of the
latter and the logarithmic saturation of EFS without merging at around 70 rules; EFS with
merging achieves 7 rules in average

level in the fuzzy partitions of the single features. Detecting redundancies are
carried out with the help of similarity and overlap measures based on kernel-
based similarity and intersection points. Eliminating redundancies can be achieved
by specific merging procedures not requiring any past data and also taking into
account consistencies within the rule base. The new techniques were applied to
real-world application examples, i.e. prediction of NOx emission and prices of
residential premises, and also to a huge synthetic data stream including 1.2 million
samples and a concept drift. They underline the applicability of the new methods,
as reducing the complexities of the fuzzy models significantly by not worsening
their predictive accuracy. In case of the synthetic data stream, the computation
time suffered even significantly when not applying any merging option as a full
precise model with a high number of rules had to be updated throughout the
learning phase. The concepts are applicable for all EFS approaches as long as
Gaussian fuzzy sets are used. In this sense, the concepts can be finally seen as an
important aspect in various existing EFS approaches not only for dynamic model
complexity reduction steps, but also as an attempt for an automatic compensation
of inappropriate setting of learning parameters at the start of an incremental
learning process. Future work will include the generalization of all the similarity
and merging concepts to arbitrary fuzzy sets and the application of all the concepts
demonstrated in this paper to evolving fuzzy classifiers. For the former issue, first
ideas are investigated by using an enhanced, general cluster inclusion measure.

34 Edwin Lughofer et al.

Acknowledgements

This work was funded by the Austrian and German fund for promoting scien-
tific research (FWF and DFG, contract number I328-N23, acronym IREFS). It
reflects only the authors’ views. The authors also acknowledge Eyke Hüllermeier
for providing valuable comments and suggestions on the manuscript.

References

1. Abraham, W., Robins, A.: Memory retention the synaptic stability versus plasticity
dilemma. Trends in Neurosciences 28(2), 73–78 (2005)

2. Angelov, P.: Evolving takagi-sugeno fuzzy systems from streaming data, eTS+. In: P. An-
gelov, D. Filev, N. Kasabov (eds.) Evolving Intelligent Systems: Methodology and Appli-
cations, pp. 21–50. John Wiley & Sons, New York (2010)

3. Angelov, P., Filev, D.: Simpl eTS: A simplified method for learning evolving Takagi-Sugeno
fuzzy models. In: Proceedings of FUZZ-IEEE 2005, pp. 1068–1073. Reno, Nevada, U.S.A.
(2005)

4. Angelov, P., Kordon, A.: Evolving inferential sensors in the chemical process industry. In:
P. Angelov, D. Filev, N. Kasabov (eds.) Evolving Intelligent Systems: Methodology and
Applications, pp. 313–336. John Wiley & Sons, New York (2010)

5. Babuska, R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, Norwell, Mas-
sachusetts (1998)

6. Baturone, I., Moreno-Velo, F., Gersnoviez, A.: A cad approach to simplify fuzzy system
descriptions. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems,
pp. 2392–2399. Vancouver (2006)

7. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. Journal
of Machine Learning Research 11, 1601–1604 (2010)

8. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees.
Chapman and Hall, Boca Raton (1993)

9. Burger, M., Haslinger, J., Bodenhofer, U., Engl, H.W.: Regularized data-driven construc-
tion of fuzzy controllers. Journal of Inverse Ill-Posed Problems 10(4), 319–344 (2002)

10. Casillas, J., Cordon, O., Herrera, F., Magdalena, L.: Interpretability Issues in Fuzzy Mod-
eling. Springer Verlag, Berlin Heidelberg (2003)

11. Chen, M., Linkens, D.: Rule-base self-generation and simplification for data-driven fuzzy
models. Fuzzy Sets and Systems 142(2), 243–265 (2004)

12. Destercke, S., Guillaume, S., Charnomordic, B.: Building an interpretable fuzzy rule base
from data using orthogonal least squares—application to a depollution problem. Fuzzy
Sets and Systems 158(18), 2078–2094 (2007)

13. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
71–80. Boston, MA (2000)

14. Espinosa, J., Vandewalle, J.: Constructing fuzzy models with linguistic intergrity from
numerical data - AFRELI algorithm. IEEE Transactions on Fuzzy Systems 8(5), 591–600
(2000)

15. Groißböck, W., Lughofer, E., Klement, E.: A comparison of variable selection methods
with the main focus on orthogonalization. In: M. Lopéz-Dı́az, M. Gil, P. Grzegorzewski,
O. Hryniewicz, J. Lawry (eds.) Soft Methodology and Random Information Systems, Ad-
vances in Soft Computing, pp. 479–486. Springer, Berlin, Heidelberg, New York (2004)

16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Min-
ing, Inference and Prediction - Second Edition. Springer, New York Berlin Heidelberg
(2009)

17. Hathaway, R., Bezdek, J.: Switching regression models and fuzzy clustering. IEEE Trans-
actions on Fuzzy Systems 1(3), 195–204 (1993)

18. Jimenez, F., Gomez-Skarmeta, A.F., Sanchez, G., Roubos, H., Babuska, R.: Accurate,
transparent and compact fuzzy models by multi-objective evolutionary algorithms. In:
J. Casillas, O. Cordón, F. Herrera, L. Magdalena (eds.) Interpretability Issues in Fuzzy
Modeling, Studies in Fuzziness and Soft Computing, vol. 128, pp. 431–451. Springer, Berlin
(2003)

On-line Elimination of Local Redundancies in Evolving Fuzzy Systems 35

19. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach -
Second Edition. Springer Verlag, London (2007)

20. Kasabov, N.K., Song, Q.: DENFIS: Dynamic evolving neural-fuzzy inference system and
its application for time-series prediction. IEEE Transactions on Fuzzy Systems 10(2),
144–154 (2002)

21. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dor-
drecht Norwell New York London (2000)

22. Kordon, A., Smits, G., Kalos, A., Jordaan, E.: Robust soft sensor development using
genetic programming. In: R. Leardi (ed.) Nature-Inspired Methods in Chemometrics, pp.
69–108 (2003)

23. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox. Tech. Rep. UCB/EECS-
2006-46, EECS Department, University of California, Berkeley (2006). URL
http://code.google.com/p/ellipsoids

24. Lima, E., Hell, M., Ballini, R., Gomide, F.: Evolving fuzzy modeling using participa-
tory learning. In: P. Angelov, D. Filev, N. Kasabov (eds.) Evolving Intelligent Systems:
Methodology and Applications, pp. 67–86. John Wiley & Sons, New York (2010)

25. L.Ros, A.Sabater, F.Thomas: An ellipsoidal calculus based on propagation and fusion.
IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 32(4), 430–
442 (2002)

26. Lughofer, E.: Process safety enhancements for data-driven evolving fuzzy models. In:
Proceedings of 2nd Symposium on Evolving Fuzzy Systems, pp. 42–48. Lake District, UK
(2006)

27. Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recog-
nition 41(3), 995–1011 (2008)

28. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy
models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)

29. Lughofer, E.: Towards robust evolving fuzzy systems. In: P. Angelov, D. Filev, N. Kasabov
(eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 87–126. John Wi-
ley & Sons, New York (2010)

30. Lughofer, E.: Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Appli-
cations. Springer, Berlin Heidelberg (2011). ISBN: 978-3-642-18086-6

31. Lughofer, E., Angelov, P.: Handling drifts and shifts in on-line data streams with evolving
fuzzy systems. Applied Soft Computing 11(2), 2057–2068 (2011)

32. Lughofer, E., Hüllermeier, E., Klement, E.: Improving the interpretability of data-driven
evolving fuzzy systems. In: Proceedings of EUSFLAT 2005, pp. 28–33. Barcelona, Spain
(2005)

33. Lughofer, E., Macian, V., Guardiola, C., Klement, E.: Data-driven design of takagi-sugeno
fuzzy systems for predicting NOx emissions. In: E. Hüllermeier, R. Kruse, F. Hoffmann
(eds.) Proc. of the 13th International Conference on Information Processing and Manage-
ment of Uncertainty, IPMU 2010, Part II (Applications), CCIS, vol. 81, pp. 1–10. Springer,
Dortmund, Germany (2010)

34. Mikut, R., Mäkel, J., Gröll, L.: Interpretability issues in data-based learning of fuzzy
systems. Fuzzy Sets and Systems 150(2), 179–197 (2005)

35. Moser, B.: A similarity measure for images and volumetric data based on Hermann Weyl’s
discrepancy. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010).
DOI: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.50

36. Nelles, O.: Nonlinear System Identification. Springer Verlag Berlin, Germany (2001)
37. Oliveira, J.V.D.: Semantic constraints for membership function optimization. IEEE Trans-

actions on Systems, Man and Cybernetics, part A: Systems and Humans 29(1), 128–138
(1999)

38. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classifi-
cation of data streams. IEEE Transactions on Systems, Men and Cybernetics - part B:
Cybernetics 35(5), 905–914 (2005)

39. Qin, S., Li, W., Yue, H.: Recursive PCA for adaptive process monitoring. Journal of
Process Control 10, 471–486 (2000)

40. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Francisco, CA (1993)

41. Ramos, J., Dourado, A.: Pruning for interpretability of large spanned eTS. In: Proceedings
of the 2006 International Symposium on Evolving Fuzzy Systems, pp. 55–60. Ambleside,
UK (2006)

36 Edwin Lughofer et al.

42. Rong, H.J., Sundararajan, N., Huang, G.B., Saratchandran, P.: Sequential adaptive fuzzy
inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets
and Systems 157(9), 1260–1275 (2006)

43. Rong, H.J., Sundararajan, N., Huang, G.B., Zhao, G.S.: Extended sequential adaptive
fuzzy inference system for classification problems. Evolving Systems in press, DOI:
10.1007/s12,530–010–9023–9 (2011)

44. Setnes, M.: Simplification and reduction of fuzzy rules. In: J. Casillas, O. Cordón, F. Her-
rera, L. Magdalena (eds.) Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness
and Soft Computing, vol. 128, pp. 278–302. Springer, Berlin (2003)

45. Setnes, M., Babuska, R., Kaymak, U., Lemke, H.: Similarity measures in fuzzy rule base
simplification. IEEE Transactions on Systems, Men and Cybernetics - part B: Cybernetics
28(3), 376–386 (1998)

46. Setnes, M., Babuska, R., Verbruggen, H.: Complexity reduction in fuzzy modeling. Math-
ematics and Computers in Simulation 46(5-6), 509–518 (1998)

47. Shaker, A., Senge, R., Hüllermeier, E.: Evolving fuzzy pattern trees for binary classification
on data streams. Information Sciences to appear (2011)

48. Stone, M.: Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society 36, 111–147 (1974)

49. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling
and control. IEEE Transactions on Systems, Man and Cybernetics 15(1), 116–132 (1985)

50. Wang, L.: Fuzzy systems are universal approximators. In: Proc. 1st IEEE Conf. Fuzzy
Systems, pp. 1163–1169. San Diego, CA (1992)

51. Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation and orthogonal least-
squares learning. IEEE Transactions on Neural Networks 3(5), 807–814 (1992)

52. Yager, R.R.: A model of participatory learning. IEEE Trans. on Systems, Man and Cy-
bernetics 20, 1229–1234 (1990)

53. Yen, J., Wang, L., Gillespie, C.: Improving the interpretability of TSK fuzzy models by
combining global learning and local learning. IEEE Trans. on Fuzzy Systems 6(4), 530–537
(1998)

54. Zhou, S., Gan, J.: Low-level interpretability and high-level interpretability: a unified view
of data-driven interpretable fuzzy systems modelling. Fuzzy Seta and Systems 159(23),
3091–3131 (2008)

