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Abstract. This article is intended as both a mathematical overview of
the generalizations of analytic signals to higher dimensional problems as
well as their applications and comparisons on artificial and real-world
image samples.

We first start by reviewing the basic concepts behind analytic sig-
nal theory and derive its mathematical background based on boundary
value problems of one dimensional analytic functions. Based on that,
two generalizations are motivated by means of higher dimensional com-
plex analysis or Clifford analysis. Both approaches are proven to be valid
generalizations of the known analytic signal concept.

In a last part we experimentally motivate the choice of such higher
dimensional analytic or monogenic signal representations in the context
of image analysis. We see how one can take advantage of one or another
representation depending on the application.
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1. Introduction

In the past years and since the pioneer work of Gabor [10], the analytic signal
has attracted manifold interests in signal processing and information theory.
Due to an orthogonal decomposition of oscillating signals into envelope and
instantaneous phase or respectively into energetic and structural components,
this concept has become very suitable for analyzing signals. In this context
such a property is called a split of identity and allows to separate the different
characteristics of a signal into useful components.
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While this approach has given rise to many one dimensional signal pro-
cessing methods, other developments have been directed towards higher di-
mensional generalizations. Of particular interest is the two dimensional case,
i.e.how to deal with images in an analytic way. As it will be demonstrated in
our paper, two main directions have been taken, one based on multidimen-
sional complex analysis and another one based on Clifford analysis.

This article is intended as an overview of the mathematical concepts
behind analytic signals based on the Hilbert transform (Sec. 2). Then, the
mathematical generalizations are detailed in Sec. 3. The end of that section
is dedicated to illustrative examples of the differences between the two gen-
eralizations detailed. Sec. 4 describes the use of spinors for image analysis
tasks. The last section of this article (Sec. 5) illustrates their applications
like demodulation of two dimensional AM-FM signals as provided e.g. in
interferometry and some applications in natural images processing.

2. Analytic signal theory and signal decomposition

Analytic signals have been introduced for signal processing in the context of
communication theory in the late 40s [10]. Since then, it has shown growing
interest as a useful tool for representing real valued signals [23]. We start
here by first reviewing the basics about analytic signal theory and Hilbert
transform and see how the so-called split of identity is an interesting property.
In the last part we review the mathematical basics and see how we can derive
the analytic signal from a boundary value problem in complex analysis.

2.1. Basic analytic signal theory and the Hilbert transform

Definition 2.1 (1 Dimensional Fourier Transform). In the following, we use
as Fourier transform F :

F(f)(u) = f̂(u) =
1√
2π

∫
R
f(t)e−itudt (2.1)

for t ∈ R, u ∈ R and f ∈ L2(R)

Definition 2.2 (Hilbert Transform). The Hilbert transform of a signal f ∈
L2(R) (or more generally f ∈ Lp(R), 1 < p < ∞) is defined either in the
spatial domain as a convolution with the Hilbert kernel 2.2 or as a Fourier
multiplier 2.3:

Hf = h ∗ f (2.2)

F(Hf)(u) = −i sign(u)F(f)(u) (2.3)

where we have made use of two functions:

• The Hilbert kernel h(t) = 1
πt

• The operator sign(u) =

 1 u > 0
0 u = 0
−1 u < 0
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Following its definition, we notice that the Hilbert transform acts as an
asymmetric phase shifting: if we write ±i = e±iπ/2, the phase of the Fourier
spectrum of the Hilbert is obtained by a rotation of ±90◦.

Proposition 2.3 (Properties of the Hilbert Transform). Given a signal f the
followings hold true:

• ∀u 6= 0, |Hf(u)| = |F(f)(u)|
• HHf = −f ⇒ H−1 = −H

Note that a constant function being not in L2 can not be reconstructed that
way.

The analytic signal is computed as a complex combination of both orig-
inal signal and its Hilbert transform:

Definition 2.4 (Analytic Signal).

fA = f + iHf (2.4)

Due to its definition, an analytic signal has a one sided Fourier spectrum.
And moreover, we have that its values are doubled on the positive side. We
can also remark that it is possible to recover the original signal based on its
analytic description by taking the real part.

It holds:

Proposition 2.5.

〈f,Hf〉L2
= 0 Orthogonality (2.5)

‖f‖22 = ‖Hf‖22 Energy (2.6)

The energy equality is valid only if the DC component of the signal is
neglected [9].

Note that it is possible to write the complex analytic signal in polar
coordinate. In this case we have: ∀t ∈ R, fA(t) = A(t)eiφ(t) A is called the
local amplitude and φ is called the local phase. These local features are
defined as follows [10]:

Definition 2.6 (Local features).

A(t) =
√
f(t)2 +Hf(t)2 (2.7)

φ(t) = arctan

(
Hf(t)

f(t)

)
= arctan

(
= (fA(t))

< (fA(t))

)
(2.8)

Proposition 2.7 (Invariance - equivariance, Split of identity [9]). The local
phase together with the local amplitude fulfill the property of invariance-
equivariance:

• The local phase depends only on the local structure
• The local amplitude depends only on the local energy

If moreover these features are a complete description of the signal, they
are said to perform a split of identity.
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However as stated in [9], the split of identity is strictly valid only for
band-limited signals with local zero mean property.

If these conditions are fulfilled the analytic signal representation relies on
an orthogonal decomposition of the structural information (the local phase),
and the energetic information (the local amplitude).

This split of identity is illustrated on Fig. 1. The first plot represents
three signals. They are sine waves generated from a mother sine wave (the
red one). The blue curve corresponds to a modification in terms of amplitude
of the red one, while the green curve has half the frequency of the red one.
Figs. 1(b) and 1(c) are respectively the local amplitudes and phases of these
three signals. Note that a small phase shift has been added to the blue curve
for better readability. We can clearly see that due to the split of identity,
modifying one local characteristic of the signal does not affect the second one
and vice versa.

(a) Signals with varying frequency or amplitude

(b) Local amplitudes (c) Local phases

Figure 1. Illustration of the split of identity.

2.2. From analytic function to analytic signal

While the analytic signal is a very common concept in the field of signal the-
ory, its basic mathematics can be derived from the theory of analytic func-
tions. The close connection can be understood when considering the following
Riemann-Hilbert problem with respect to the complex parameter z = x+ iy:

∂F
∂z = 0 z ∈ C, y ≥ 0, (2.9)

< (F (x)) = f(x) x ∈ R. (2.10)
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One solution of this problem is given by the Cauchy integral

F (z) = FΓf(z) :=
1

2πi

∫
R

1

τ − z
f(τ)dτ. (2.11)

Of course this solution is unique only up to a constant. Normally, this constant
will be fixed by the condition = (F (z0)) = c, i.e.the imaginary part of F given
in an interior point.

When we now consider the trace of FΓ, i.e. the boundary value, we
arrive at the so-called Plemelj-Sokhotzki formula:

trFΓf =
1

2
(I + iH)f =

1

2
f +

1

2
iHf =: PΓf. (2.12)

Up to the factor 1/2 this corresponds to our above definition of an analytic
signal.

In this way an analytic signal represents the boundary values of an
analytic function in the upper half plane (or for periodic functions in the
unit disc). Starting from this concept we are going now to take a look at
higher dimensional generalizations.

3. Higher dimensional generalizations

Different approaches have been studied in the past years to extend the defi-
nition of an analytic signal to higher dimensional spaces. Two of them have
gained the greatest interest based respectively on multidimensional complex
analysis and Clifford analysis.

3.1. Using multiple complex variables

3.1.1. Mathematics. In 1998 Bülow proposed a definition of a hypercomplex
signal based on the so-called partial and total Hilbert transform [5]. To look
from our point of view that analytic signals are functions in a Hardy space
we consider the following Riemann-Hilbert problem in C2:

∂F
∂z1

= 0 (z1, z2) ∈ C2, y1, y2 ≥ 0, (3.1)

∂F
∂z2

= 0 (z1, z2) ∈ C2, y1, y2 ≥ 0, (3.2)

< (F (x1, x2)) = f(x1, x2) x1, x2 ∈ R2. (3.3)

For the solution, (see e.g. [7] or [20]), we just want to point out that the
domain is a poly-domain in the sense of Cn, so that we can give it in form of
the Cauchy integral:

F (z1, z2) =
1

4π2

∫
R2

1

(ξ1 − z1)(ξ2 − z2)
f(ξ1, ξ2)dξ1dξ2. (3.4)

Now again looking at the corresponding Plemelj-Sokhotzki formula we
get

trF (x1, x2) = 1
4f(x1, x2)− 1

4

∫
R2

1
(ξ1−x1)(ξ2−x2)f(ξ1, ξ2)dξ1dξ2

+i 1
4

(∫
R

1
ξ1−x1

f(ξ1, x2)dξ1 +
∫
R

1
ξ2−x2

f(x1, ξ2)dξ2

)
(3.5)
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which up to the factor 1/4 corresponds to the definition of an analytic signal
by Hahn [12]. Here

Hif =

∫
R

1

ξi − xi
f(ξi, ·)dξ1 (3.6)

is called the partial Hilbert transform and

HT f =
1

4

∫
R2

1

(ξ1 − x1)(ξ2 − x2)
f(ξ1, ξ2)dξ1dξ2 (3.7)

the total Hilbert transform. On the level of Fourier symbols we get

F(trF )(u1, u2) = (1 + signu1)(1 + signu2)Ff(u1, u2). (3.8)

Let us now take a look at the definition of Bülow. To this end we consider
F to be a function of two variables z1 and z2 with two different imaginary
units i and j (with i2 = j2 = −1), i.e. z1 = x1 + iy1 and z2 = x2 + jy2.
We remark that both imaginary units can be understood as elements of the
quaternionic basis with multiplication rules ij = −ji = k. In this way the
above Riemann-Hilbert problem can be rewritten as

∂
∂z1

F = 0 (z1, z2) ∈ C2, y1, y2 ≥ 0, (3.9)

F ∂
∂z2

= 0 (z1, z2) ∈ C2, y1, y2 ≥ 0, (3.10)

< (F (x1, x2)) = f(x1, x2) x1, x2 ∈ R2, (3.11)

where the second equation should be understood as ∂z2 being applied from
the from the right due to the non-commutativity of the complex units i and
j.

The solutions is given by

F (z1, z2) =
1

4π2

∫
R2

1

(ξ1 − z1)(ξ2 − z2)
f(ξ1, ξ2)dξ1dξ2 (3.12)

so that we get from the Plemelj-Sokhotzki formulae

trF (x1, x2) =
1

4
(I + iH1)(I + jH2)f(x1, x2) (3.13)

=
1

4
(f + iH1f + jH2f + kHT f)(x1, x2). (3.14)

While this is now a quaternionic-valued function, it still corresponds to a
boundary value of a function holomorphic in two variables. For the repre-
sentation in Fourier domain one has to keep in mind that now one has to
apply one Fourier transform with respect to the complex plane in i and one
Fourier transform with respect to the complex plane generated by j. Taking
into account that ij = −ji one arrives at the so-called quaternionic Fourier
transform [15, 5]:

QFf =

∫
R2

eix1ξ1f(x1, x2)ejx2ξ2dx1dx2 (3.15)

and the following representation in Fourier symbols
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QF(trF )(u1, u2) = (1 + signu1)(1 + signu2)QFf(u1, u2) (3.16)

3.1.2. Image analysis. In image analysis problems, according to [12] we can
introduce the following features
Amplitude. The local amplitude of a multidimensional analytic signal is de-
fined in a similar way as for the one-dimensional case:

AA(x, y) =
√
|f(x, y)|2 + |H1f(x, y)|2 + |H2f(x, y)|2 + |HT f(x, y)|2 (3.17)

This is also denoted as energetic information
Phase. The phase is a feature describing how much a vector or quaternion
number diverge from the real axis. It is defined in a similar manner as for the
classical complex plane.

φA = arctan

(√
H1f2 +H2f2 +HT f2

f

)
(3.18)

This angle φA is what is denoted as phase or structural information.
Orientation. As we are at the moment interested in 2D signals (=images),
we can also describe an orientation information, as the principal direction
carrying the phase information. The imaginary plane, spanned by {i, j}, is
two-dimensional and therefore we can also define an angle θA in this plane:

θA = arctan

(
H2f

H1f

)
(3.19)

This new angle is called the orientation of the signal or geometric in-
formation.

3.2. Using Clifford analysis

Another approach to higher dimensions is the so-called Clifford analysis.

3.2.1. Mathematics. Here we use a so-called Clifford algebra C`0,n [3]. This
is the free algebra constructed over Rn generated modulo the relation

x2 = −|x|2e0 x ∈ Rn (3.20)

where e0 is the identity of C`0,n. For the algebra C`0,n we have the
anti-commutation relationship

eiej + ejei = −2δije0, (3.21)

where δij is the Kronecker symbol. Each element x of Rn may be rep-
resented by

x =

n∑
i=1

xiei. (3.22)

A first-order differential operator which factorizes the Laplacian is given
as the so-called Dirac operator
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Df(x) =

n∑
j=1

∂f

∂xj
. (3.23)

The Riemann-Hilbert problem for the Dirac operator can be stated in
the form

DF (x) = 0 x ∈ R3, x3 > 0 (3.24)

< (F (x1, x2)) = f(x1, x2) x1, x2 ∈ R2 (3.25)

To solve this problem we follow the same idea as above.

FΓf =

∫
R2

x− y
|x− y|2

e3f(x1, x2)dx1dx2 (3.26)

trFΓf =
1

2
(I + SΓ)f =

1

2
f(ỹ1, ỹ2)

+
1

2

∫
R2

e1(x1 − ỹ1) + e2(x2 − ỹ2)

|x− y|2
e3f(x1, x2)dx1dx2. (3.27)

Because the quaternions H are isomorphic to the even subalgebra C`+0,3,
i.e. all elements of the form

c0 + c1e1e2 + c2e1e3 + c3e2e3, c0, c1, c2, c3 ∈ R (3.28)

we can set i = e1e2 and j = e2e3 so that

trFΓf =
1

2
(I + SΓ)f (3.29)

=
1

2
f(ỹ1, ỹ2) +

1

2

∫
R2

i(x1 − ỹ1) + j(x2 − ỹ2)

|x− y|2
f(x1, x2)dx1dx2.

(3.30)

Up to the factor 1/2 this is the monogenic signal fM = f + iR1f +
jR2f := f + (i, j)Rf of Sommer and Felsberg [9]. Here R1, R2 and R
denote respectively the first and second component of the Riesz transform,
and the Riesz transform itself [22]. Defined as Fourier multipliers, it holds:

R̂f(u1, u2) =
i(u1, u2)

‖(u1, u2)‖2
f̂(u1, u2) (3.31)

R̂1f(u1, u2) =
iu1

‖(u1, u2)‖2
f̂(u1, u2) (3.32)

R̂2f(u1, u2) =
iu2

‖(u1, u2)‖2
f̂(u1, u2) (3.33)

where ‖(u1, u2)‖2 =
√
u2

1 + u2
2.

or equivalently defined in the spatial domain by convolution with the
2-dimensional Riesz kernel, for m = 1, 2

Rif = c
xi
‖x‖32

∗ f (3.34)
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with c being a constant.

3.2.2. Image analysis. Following [9] three features can be computed and will
be denoted as energetic, structural and geometrical information too, as al-
ready introduced for the multidimensional analytic signal.
Amplitude. The local amplitude of a monogenic signal is defined in a similar
way as for the analytic signal:

AM (x, y) =
√
|f(x, y)|2 + |Rf(x, y)|2 =

√
fM (x, y)fM (x, y) (3.35)

where the · denotes the conjugation of a quaternion.
Phase.

φM (x, y) = arctan
|Rf(x, y)|
f(x, y)

(3.36)

and we still have that φM denotes the angle between A(x, y) and fM
(in the plane spanned by the two complex vectors). This yields values φM ∈
[−π/2;π/2]

An alternative equivalent definition is using arccos:

φM = arccos
f

|fM |
(3.37)

In this case, we have φM ∈ [0;π]
Orientation. Once again, we can derive an orientation θM ∈ [−π, π] based on
the monogenic signal which represents the direction of the phase information.

θM = arctan
R2f

R1f
(3.38)

We note that this definition actually only provides an orientation mod. π.
To determine the orientation resp. direction mod. 2π it needs a further ori-
entation unwrapping step or sign estimation [17, 4].

3.3. Illustrations

We want here to illustrate the differences between the generalizations pro-
posed. We will visually assess the characteristics of both approaches first
facing a Siemens star1 then facing a checkerboard image. Both examples are
interesting for their regularity (point symmetry for the star and many hori-
zontal and vertical line symmetries for the checkerboard).

An example of such star is depicted on Fig. 2(a). The two other images
of first row from Fig. 2 illustrate the two components of the Riesz transform.
As we can see, and we will come back on that property later, the partial Riesz
transforms show in some point a similar behavior as steered derivatives. The
first component tends to emphasize horizontal edges while the second one
tends to respond more to vertical ones.

The second row shows the results applying the different Hilbert trans-
forms to the Siemens star. The two first images represent the results of the

1The Siemens star is a known test image to characterize the resolution of different op-

tical/graphical devices such as printers or beamers. It is interesting as it shows lots of
regularity, many intrinsic one dimensional and two dimensional parts.
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two partial Hilbert transforms and the last one depicts the results after the
total Hilbert transform. We can notice the high anisotropy of these transforms
at, for instance, the strong vertical resp. horizontal delimitation through the
centers of the images. We can also notice the patchy responses of the total
Hilbert transform.

As the Riesz kernel in polar coordinate [r, α] of the spatial domain reads

R(r, α) ∼ 1

r2
eiα (3.39)

it exhibits an isotropic behavior with respect to its magnitude. In comparison,
the partial and the total Hilbert transforms induce a strict relationship to the
orthogonal coordinate system and therefore also the two-dimensional analytic
signal is coined in such a way.

(a) Siemens star (b) First compo-
nent of the Riesz

transform

(c) Second compo-
nent of the Riesz

transform

(d) First Hilbert
transform

(e) Second Hilbert
transform

(f) Total Hilbert
transform

Figure 2. The Siemens star together with the different
Riesz and Hilbert transforms presented in this section.

Next we consider the local features computed according to the formulas
introduced above. The results are depicted in Fig. 3. The first row corre-
sponds to monogenic features, while the second one corresponds to analytic
features. The phase is displayed in a jet colormap, the orientation in an hsv
colormap. The last column shows the orientations whose intensity is weighted
proportionally to the cosine of the phase. It is shown according to Middle-
bury’s representation2: strength (cosine of the phase) is encoded as an in-
tensity value of the color and the color itself corresponds to the orientation.

2Middlebury benchmark for optical flow is a web resource for comparing results on optical

flow computations. The color error representation is well suited for encoding our orienta-
tion. More info can be found at http://vision.middlebury.edu/flow/
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The main differences between these two sets of features lie in the shape or
boundaries. While monogenic features yield rather smooth boundaries, the
analytic representation creates abrupt changes due to its anisotropy. We can
remark how the phase gives reasonable insights about the structures in the
images.

(a) Monogenic am-

plitude

(b) Monogenic

phase

(c) Monogenic ori-

entation

(d) Phase weighted

monogenic orienta-
tion

(e) Analytic ampli-
tude

(f) Analytic phase (g) Analytic orien-
tation

(h) Phase weighted
analytic orientation

Figure 3. Local features computed with the monogenic sig-
nal representation (first row) and the multidimensional ana-
lytic signal (second row). The images are depicted in pseudo-
color representation; amplitude: gray; phase: jet; orientation:
hsv-Middlebury.

In comparison to the Siemens star, the checkerboard example (see Fig. 4(a))
shows many orthogonal features. In this case, we see that the partial Hilbert
transforms give some good insights of the closeness of an edge and preserves
the checkerboard structure (Fig. 4(d) and 4(e)) while the Riesz transform
gives more local responses. The total Hilbert transform acts as an accurate
corner detection, as it can be seen from its response on Fig. 4(f).

When discussing the analytic and monogenic features (Fig. 5) we re-
mark that this effect is preserved. The Riesz transform being well localize at
the edges does not yield many differences inside one of the square and seems
to jump from an extreme to another through those edges. See in particu-
lar Fig. 5(b) for an illustrative example of the phase. On the other side, the
Hilbert transform containing more neighborhood information yields smoother
transition in the phase from a square to another. This idea has to be consid-
ered carefully based on the applications one wants to solve.
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(a) Checkerboard
image

(b) First compo-
nent of the Riesz

transform

(c) Second compo-
nent of the Riesz

transform

(d) First Hilbert
transform

(e) Second Hilbert
transform

(f) Total Hilbert
transform

Figure 4. The checkerboard together with the different
Riesz and Hilbert transforms presented in this section.

4. The geometric approach

For a better understanding of signals a geometric interpretation of a signal
can help. The following considerations about complex numbers, quaternions,
rotations, the unitary group, the special unitary and special orthogonal group
as well as the spin group are well-known and can be found in numerous
papers. We would like to suggest the book [18], as a comprehensive insight
in the topic. The analytic signal fA(t) = A(t)eiφ(t) are boundary values of
an analytic function, but the analytic signal can also be seen as a complex
number, where eiφ(t) = cosφ(t) + i sinφ(t) has modulus 1 and hence can be
identified with the unit circle S1. But there is even more. The set of unit
complex numbers becomes a group with the complex multiplication which
is the unitary group U(1) = {z ∈ C : zz = 1}. On the other hand a unit
complex number can also be seen as a rotation in R2 if we identify the unit
complex number with the matrix

Rφ =

(
cosφ − sinφ
sinφ cosφ

)
∈ SO(2) (4.1)

the group of all counter-clockwise rotations in R2. Now everything can also be
described inside Clifford algebras. Let us consider the Clifford algebra C`0,2
with generators e1, e2. The complex numbers can be identified with all ele-
ments x+ye12, x, y ∈ R, i.e. the even subalgebra C`+0,2 of the Clifford algebra

C`0,2. The rotation (4.1) can also be described by a Clifford multiplication.
To see that we identify (x, y) ∈ R2 with xe1 + ye2 ∈ C`0,2 and
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(a) Monogenic am-
plitude

(b) Monogenic
phase

(c) Monogenic ori-
entation

(d) Monogenic
weighted orienta-

tion

(e) Analytic ampli-
tude

(f) Analytic phase (g) Analytic orien-
tation

(h) Analytic
weighted orienta-

tion

Figure 5. Local features computed with the monogenic sig-
nal representation (first row) and the multidimensional ana-
lytic signal (second row). The images are depicted in pseudo-
color representation; amplitude: gray; phase: jet; orientation:
hsv-Middlebury.

Rφ(x, y)T = (cos φ2 + e12 sin φ
2 )−1(xe1 + ye2)(cos φ2 + e12 sin φ

2 ), (4.2)

where cos φ2 +e12 sin φ
2 ∈ Spin(2) = {s ∈ C`+0,2 : ss = 1}, the spin group

of even products of Clifford vectors. It is easily seen that s and s−1 from
Spin(2) represent the same rotation, which means that Spin(2) is a two-fold
cover of SO(2). The basis for all these interpretations is still the description
of complex numbers in a trigonometric way, which is possible by using a
logarithm function which is well-known for complex numbers. All of that
can be generalized into higher dimensions and has been used for monogenic
signals. We will start with quaternions because they are the even subalgebra
of the Clifford algebra C`0,3.

4.1. Quaternions and rotations

A quaternion q ∈ H can be written as

q = q0 + q = S(q) + V(q) = |q| q
|q|
, (4.3)

where |q| is the absolute value or norm of q in R4 and q
|q| ∈ H1 is a unit

quaternion.
Because of
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∣∣∣∣ q|q|
∣∣∣∣2 =

3∑
i=0

q2
i

|q|2
= 1, (4.4)

the set of unit quaternions H1 can be identified with S3, the three
dimensional sphere in R4.
On the other hand the Clifford algebra C`0,3 is generated by the elements
e1, e2 and e3 with e2

1 = e2
2 = e2

3 = −1 and eiej + ejei = −2δi,j . Its even
subalgebra C`+0,3, as defined in 3.28, can be identified with quaternions by
e1e2 ∼ i, e1e3 ∼ j and e2e3 ∼ k.
Furthermore,

Spin(3) = {u ∈ C`+0,3 : uū = 1} = H1. (4.5)

That means a unit quaternion can be considered as a spinor. Because
Spin(3) is a double cover of the group SO(3), rotations can be described by
unit quaternions. The monogenic signal is interpreted as a spinor in [24] and
lately in [1].

4.2. Quaternions in trigonometric form

The analytic signal is a holomorphic/analytic function and therefore con-
nected to complex numbers. Complex numbers can be written in algebraic
or trigonometric form:

z = x+ iy = reiφ.

The analytic signal is given by

A(t)eiφ(t)

with amplitude A(t) and (local) phase φ(t). We want to obtain a similar
representation of the monogenic signal by quaternions. A simple computation
leads to

q = |q|
(
q0

|q|
+

q

|q|
|q|
|q|

)
= |q|(cosφ+ u sinφ),

where φ = arccos q0
|q| and u =

q

|q| ∈ S
2. (Alternatively, the argument φ can be

defined by the arctan.)
We can represent the quaternion q by its amplitude |q|, the phase φ and the
orientation u. Moreover,

q = |q| euφ,

where e is the usual exponential function.
By the aid of an appropriate logarithm we can compute uφ from q

|q| =

euφ. Next, we want to explain the orientation u. We already got that

q = |q|(cosφ+ u sinφ),

where u =
q

|q| ∈ S2 and u2 = −1, i.e. u behaves like a complex unit. But

because u ∈ S2 we can u express in spherical coordinates. We have

u =
q1i + q2j + q3k

|q1i + q2j + q3k|
= i

(
q1

|q|
+

(q2(−ij) + q3j)

|q|

)
(4.6)
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and if we set cos θ = q1
|q| we get

u = i(cos θ + u sin θ), u =
q

|q|
and q = jq3 − ijq2. (4.7)

Because of

q = jq3 − ijq2 = j(q3 + iq2) (4.8)

and with cos τ = q3
|q| we get that

u = j(cos τ + i sin τ). (4.9)

Finally, we put everything together and obtain

q = q0 + q1i + q2j + q3k (4.10)

= |q|(cosφ+ u sinφ) = |q|
(
cosφ+ i

(
cos θ + u sin θ

)
sinφ

)
(4.11)

= |q| (cosφ+ i (cos θ + j (cos τ + i sin τ) sin θ) sinφ) (4.12)

= |q| (cosφ+ i sinφ cos θ + j sinφ sin θ sin τ + k sinφ sin θ cos τ) , (4.13)

where φ, θ ∈ [0, π] and τ ∈ [0, 2π]. In case of a reduced quaternion, i.e. q3 =
0, a similar computation leads to

q = q0 + q1i + q2j (4.14)

= |q| (cosφ+ u sinφ) = |q| (cosφ+ i (cos θ − k sin θ) sinφ) (4.15)

= |q| (cosφ+ i sinφ cos θ + j sinφ sin θ) , (4.16)

where φ ∈ [0, π] and θ ∈ [0, 2π].
It is easily seen that θ can be computed by

tan θ =
q2

q1
⇐⇒ θ = arctan

q2

q1
.

If we compare that with the monogenic signal

fM (x, y) = f(x, y) + i(R1f)(x, y) + j(R2f)(x, y)

we see that (compare with 3.38)

θ = arctan
(R2f)(x, y)

(R1f)(x, y)
= θM (x, y). (4.17)

Therefore the vector u = i cos θ+ j sin θ can also be considered as the orien-
tation.

4.3. Exponential function and logarithm for quaternionic arguments

The exponential function for quaternions and para-vectors in a Clifford alge-
bra are defined in [11] and many other papers.

Definition 4.1. For q ∈ H is the exponential function defined as

eq :=

∞∑
k=0

qk

k!
. (4.18)
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Lemma 4.2. With u =
q

|q| the exponential function can be written as

eq = eq0 (cos |q|+ u sin |q|) = eq0eu|q|. (4.19)

Remark 4.3. The formula

eu|q| = cos |q|+ u sin |q| (4.20)

can be considered as a generalized Euler formula.

It is always a challenge to define a logarithm. We will use the following
definition.

Definition 4.4. Let u =
q

|q| , then the logarithm is defined as

ln q :=

{
ln |q|+ u

(
arccos q0

|q|

)
, |q| 6= 0 or |q| = 0 and q0 > 0,

not defined for |q| = 0 and q0 ≤ 0.
(4.21)

Remark 4.5. A logarithm cannot be uniquely defined for −1 because

euπ = cosπ + u sinπ = −1, (4.22)

for all u ∈ S2.

Remark 4.6. More precise, we can define the k-th branch, k ∈ Z, of the
logarithm because cos t is a 2π periodic function.

Theorem 4.7. 1. For |q| 6= 0 or |q| = 0 and q0 > 0,

eln q = q. (4.23)

2. For |q| 6= kπ, k ∈ Z\{0} it holds true

ln eq = q. (4.24)

Lemma 4.8. For q ∈ H1 and q 6= −1 both relations are true:

eln q = ln eq = q. (4.25)

5. Applications to image analysis

5.1. Motivations

In several imaging applications only intensity-based images (encoded mostly
in gray-scale representation) are provided. Apart from monochromatic cam-
era images, we can cite e.g. computerized tomography images which encodes
local absorption inside a body, or optical coherence tomography images which
represents the back-scattering at an interface. These kind of images describe
natural scenes or physical quantities directly. In other types of images in-
formation is encoded indirectly , e.g. in varying amplitude or frequency of
fringe patterns. They are called amplitude modulated 5AM) or frequency
modulated (FM) signals. Textures can be interpreted as a trade-off between
both ideas: they depict natural scenes and can be described as generalized
AM-FM signals.
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To enrich the information content of pure intensity image (i.e. images
encoded with a single value at each pixel), we test the concept of analytic
signals in image processing.

5.2. Application to AM-FM images demodulation

Here we study the applicability of the monogenic signal representation to
AM-FM signal demodulation, as needed for instance in interferometric imag-
ing [17]. A certain given two dimensional signal (= an image, Fig. 6(a))
exhibits both amplitude modulations (Fig. 6(b)) and frequency modulations
(Fig. 6(c)). The aim is to separate each components of the signal by means
of monogenic signal analysis.

(a) Original AM-

FM image

(b) Amplitude

modulations

(c) Frequency mod-

ulations

(d) Reconstructed

orientation

(e) Reconstructed

amplitude

(f) Reconstructed

phase

Figure 6. Example of a two dimensional AM-FM signal.
The first row shows the input ground truth image together
with its amplitude and frequency modulations. The second
row depicts the recovered orientation, amplitude and phases.
Images are displayed using conventional jet colormap.

The three features described in the previous section are computed and
their results are depicted on Fig. 6(d) (local orientation), Fig. 6(e) (local
amplitude) and Fig. 6(f) (local phase).

It appears that on such AM-FM signals, the orientation is able to de-
scribe the direction of the phase modulation, while the local amplitude gives
a good approximation of the amplitude modulation (corresponding to the en-
ergy of the two dimensional signal) and the phase encodes information about
the frequency modulation (understood as the structural information).

The next example shows a fringe pattern as an example of real-world
interferometrice AM-FM image, Fig. 7(a).
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(a) Fringe pattern (b) Monogenic lo-

cal phase

(c) Monogenic local

orientation

(d) Monogenic lo-
cal amplitude

(e) Masked phase (f) Masked orienta-
tion

Figure 7. Example of a fringe pattern and its monogenic
decomposition. Phase (second column) is encoded as a jet
colormap and orientation as hsv. The two last images show
phase and orientation masked with a binary filter set to one
when the local amplitude gets over a certain threshold.

The following images show the monogenic analysis of this image. Be-
neath the fringe pattern (Fig. 7(d)) the local amplitude is depicted. This
image gives us a coarse idea of how much structure is to be found on a given
neighborhood. The second column illustrates the phase calculation either on
the whole image (Fig. 7(b)) or only where the local amplitude is above a given
threshold (Fig. 7(e)). The two last images represent the monogenic orienta-
tion encoded in hsv with or without the previous mask. As we would expect,
illumination changes are appearing in the amplitude while local structures
are contained in both phase and orientation features.

5.3. Application to texture analysis

A task of particular interest in artificial vision, is the characterization or
description of textures. The problem here is to find interesting features to
describe a given texture the best we can in order to classify it for instance [13].
The use of steerable filters could optimize the feature computations and affect
the classification. In other words, if we can compute well describing features,
we can better characterize a texture.

Considering textures from a more general viewpoint as almost AM-
FM signals, we examine here the use of monogenic representation for local
characterization of a textured object depicted in Fig. 8(a).

When looking at the monogenic signal’s local description (amplitude
on Fig. 8(b), phase on Fig. 8(c) and orientation on Fig. 8(d)) we indeed see
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(a) Original texture (b) Monogenic am-
plitude

(c) Monogenic
phase

(d) Monogenic ori-
entation

Figure 8. Example of a textured image superposed by a
reliability mask together with its monogenic analysis; regions
with too little amplitude are masked out to be unreliable.

these repetitive features along the textured object. Moreover, these estimated
values seem to be robust against small imperfection in the periodicity.

5.4. Applications to natural image scenes

In this part of work, we want to give some ideas of the interest of the mono-
genic signal for natural images. Such images have completely different char-
acteristics as the ones introduced above. For instance, images are often em-
bedded in full cluttered background, encoded on more color channels, have
information at many different scales... In practical applications one needs to
apply band-pass filters before analyzing such images [9]. Note that this work
considers only gray-scaled images, but literature can be found in order to
deal with multichannel images [2].

We will in the followings describe two tasks useful for image processing.
The first part deals with edge detection. We see how the Riesz transform
can be used as an edge detector in images. Then we see how the orienta-
tion estimation is useful for instance in computer vision tasks and how the
monogenic signal analysis can help for this, as it has already been done for
structure interpretation [21, 14].

5.4.1. Edge detection. The Riesz transform can be seen as an edge detectors
for several reasons. It appears clearly when one has a closer look at its def-
inition as a Fourier multiplier. Indeed, let us recall the jth Riesz multiplier
(see Eq. 3.31):

R̂jf = i
uj
|u|
f̂ (5.1)

and we have

R̂jf = i
1

|u|
∂̂jf (5.2)

so that the Riesz transform acts as a normalized derivative operator.
Another (eventually better) way to see this derivative effect is to con-

sider the Fourier multipliers in polar coordinates [16], which is given by
Eq.3.39 .

Fig. 9 illustrates this behavior.
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(a) Lena image (b) Lena’s first

Riesz component

(c) Lena’s second

Riesz component

(d) Barbara image (e) Barbara’s first
Riesz component

(f) Barbara’s sec-
ond Riesz compo-

nent

Figure 9. First and second components of the Riesz trans-
form on some natural images. Notice for instance the table
leg appearing in Fig. 9(f) and not in Fig. 9(e), showing the
directions of the components.

The first column shows examples of gray level natural images. The sec-
ond and third columns show respectively the first and second Riesz com-
ponent. It appears that they act as edge detection steered in the x and y
directions. If we compare the two Riesz components, we can see different
kind of edges responding.

5.4.2. Orientation estimation of edges. An important task in image process-
ing and higher level computer vision is to estimate the orientation of edges.
As this is often the first step towards features description and image inter-
pretation (we refer the reader to [6, 19] for some non-exhaustive surveys),
one wants to have an orientation estimator as reliable as possible.

As stated in earlier sections, an orientation can be computed from an
analytic or monogenic signal analysis. For simplicity reasons, let us consider
the case of images, where the input function is defined on D ⊂ R2. Using the
polar coordinate in Fourier domain (ρ, β), it holds

R̂f = i(cosβ, sinβ)T f̂ (5.3)

on the other side, we also have

∇̂f = iρ(cosβ, sinβ)T f̂ (5.4)

so that both gradient and Riesz operators have a similar effect on the
angles in the Fourier domain.
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(a) Monogenic local

amplitude of Lena

(b) Monogenic lo-

cal phase

(c) Monogenic local

orientation

(d) Phase weighted

orientation

(e) Monogenic local
amplitude

(f) Monogenic local
phase

(g) Monogenic local
orientation

(h) Phase weighted
orientation

Figure 10. Local features computed by means of mono-
genic signal analysis.

It has been shown [8] that using monogenic orientation estimation in-
creases the robustness compared to the traditional Sobel operator. Moreover
in their work Felsberg and Sommer introduced an improved version based on
local neighborhood considerations and using the phase as a confidence value.

Fig. 10 illustrates the monogenic analysis of our two test images. The
first column represents the local amplitude of the image; the second one shows
the local phases according to the monogenic definition. The two last columns
illustrate the computation of the monogenic orientation. The color are en-
coded on a linear periodic basis according to the Middlebury color coding.
The last column shows the exact same orientation but with the importance
of the phase as intensity information. The basic idea is to keep relevant ori-
entation only where the structural information (i.e.the phase) is high.

Note that we are are here not to discuss here the local-zero mean prop-
erty in natural image scenes. So e.g. background and illumination effects may
influence the procedure and will be discussed somewhere else.

6. Conclusion

In this article the specificity and analysis of both generalizations of the ana-
lytic signal have been detailed mathematically based respectively on multiple
complex analysis and Clifford analysis. It is shown that they are both valid
extensions of the one dimensional concept of analytic signal. A main differ-
ence between the two approaches is regarding rotation invariance due to the
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point symmetric definition of the sign function in the case of monogenic ap-
proach against the single orthant definition of the multidimensional analytic
signal.

In a second part we have illustrated such analytic or monogenic anal-
ysis of images on some artificial samples and real-world examples of fringe
analysis or texture analysis. In the context of AM-FM signal demodulation
the monogenic signal analysis yields a robust decomposition into energectic,
structural and geometric information. Finally some ideas for the use of gen-
eralized analytic signals in higher-level image processing and computer vision
tasks are given showing high potential for further research.
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