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Abstract. The effect of non-monotonicity of similarity measures is ad-
dressed which can be observed when measuring the similarity between
patterns with increasing displacement. This effect becomes the more ap-
parent the less smooth the pattern is. It is proven that commonly used
similarity measures like f -divergence measures or kernel functions show
this non-monotonicity effect which results from neglecting any ordering
in the underlying construction principles. As an alternative approach
Weyl’s discrepancy measure is examined by which this non-monotonicity
effect can be avoided even for patterns with high-frequency or chaotic
characteristics. The impact of the non-monotonicity effect to applications
is discussed by means of examples from the field of stereo matching, tex-
ture analysis and tracking.
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1 Introduction

This paper is devoted to the question whether similarity measures behave mono-
tonically when applied to patterns with increasing displacement. Misalignment
of patterns is encountered in various fields of applied mathematics, particularly
signal processing, time series analysis or computer vision. Particularly when deal-
ing with patterns with high frequencies the comparison of the shifted pattern
with its reference will show ups and downs with respect to the resulting similar-
ity values induced by commonly used similarity measures. More precisely, let us
think of a pattern M as a function v : X ⊆ R

n → R. A translational shift by a
vector t induces a displaced pattern Mt represented by vt(.) = v(. − t). In this
paper we study the monotonicity behavior of similarity measures S as function
ΔS [v, t](λ) = S(v0, vλt) depending on the displacement factor λ ≥ 0 along the
vector t. If ΔS [v, t](.) is monotonically increasing for a class V of patterns v ∈ V
for any direction t we say that the similarity measure S satisfies the monotonicity
condition (MC) with respect to the class V . Unless mentioning V explicitly we
restrict to the class of patterns with non-negative entries with bounded support.
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As main theoretical contribution of this paper a mathematical analysis in
Section 2 and Section 3 show how this effect follows from construction principles
which neglect any ordering between the elements of the patterns. While Section 2
refers to similarity and distance measures which rely on the aggregation of an
element-wise operating function, Section 3 is devoted to the class of f -divergence
measures which evaluate the frequencies of single values v(x) of the pattern. For
both classes of similarity measure examples are presented that demonstrate the
non-monotonicity effect. In Section 4 an alternative construction principle based
on the evaluation of partial sums is introduced and recalled from previous work,
particularly [Mos09]. Theoretical results show that the non-monotonicity effect
can be avoided. Finally, in Section 5 the impact of the non-monotonicity effect
to applications in the field of stereo matching, tracking and texture analysis is
discussed.

2 Construction Principles of Similarity Measures Induced
by the Aggregation of Element-Wise Operating
Functions

The analysis of formal construction principles of similarity measures based on the
composition of an element-wise operating function and an aggregation operation
leads to elucidating counter examples showing that commonly used similarity
measures in general are not monotonic with respect to the extent of displacement.

Therefore we will have a look at similarity measures from a formal construction
point of view. For example let us consider the elementary inner product < ., . >
of Euclidean geometry which is defined as

< x, y >=
∑

i

xi · yi. (1)

Formular (1) is constructed by means of a composition of the algebraic product
which acts coordinate-wise and the summation as aggregation function. For-
mally, (1) therefore follows the construction principle

Δ[A,C](f, g) := Ax(C(f(x), g(x))), (2)

where C and A denote the coordinate-wise operating function and the aggrega-
tion, respectively. f, g refer to vectors, sequences or functions with x as index or
argument and the expression Ax means the aggregation of all admissible x. The
elements f, g denote the elements from some admissible space Ψ ⊂ {f : X → R}
for which the formal construction yields well defined real values. For example,
in the case of (1) the n-dimensional Euclidean space R

n for n ∈ N or the Hilbert
space of square-integrable sequences l2 would be admissible.

In the following we draw conclusions about the monotonicity behavior of the
induced function (2) by imposing certain algebraic and analytic properties on
the coordinate-wise operating function C and the aggregation A.
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Theorem 1. The construction

Δ[A,S,C](f, g) := S(Ax(C(f(x), g(x)))) (3)

induces a function
Δ[A,S,C] : Ψ × Ψ → R

that does not satisfy the monotonicity condition (MC) under the assumption that
Ψ is an admissible space of functions f : Z ⊆ R → R that contains at least the set
of pairwise differences of indicator functions of finite subsets of Z, C : R×R → R

is a coordinate function that satisfies

(C1) C is commutative,
(C2) C(1, 0) �= C(1, 1),
(C3) C(0, 0) = min{C(1, 0), C(1, 1)},
the aggregation function A : R

n → R is

(A1) commutative and
(A2) strictly monotonically increasing or decreasing in each component,

respectively,

and the scaling function S : R → R is strictly monotonically increasing or de-
creasing in each component, respectively.

Proof. Without loss of generality let us assume that the aggregation function
is strictly monotonically increasing in each component.

We use the notation: c01 := C(0, 1), c11 := C(1, 1), c00 := C(0, 0) and

h(.) := 1{0}(.) + 1{2}(.). (4)

Consider

Δ0 = Δ[A,S,C](h(.), h(. − 0)) = S(A(c00, . . . , c00, c11, c00, c11, c00, c00, . . . , c00)),
Δ1 = Δ[A,S,C](h(.), h(. − 1)) = S(A(c00, . . . , c00, c10, c10, c10, c10, c00, . . . , c00))
Δ2 = Δ[A,S,C](h(.), h(. − 2)) = S(A(c00, . . . , c00, c10, c00, c11, c00, c10, . . . , c00)).

The case of c10 < c11 implies c00 = c01, hence a strictly increasing scaling
function entails Δ0 > Δ1 < Δ2, and the case c10 > c11, c00 = c11 yields
Δ0 < Δ1 > Δ2 which proves (4) to be a counter-example with respect to the
monotonicity condition (MC). An analogous conclusion applies to a strictly de-
creasing scaling function. �	
A direct consequence of Theorem 1 is that a binary operation 
 : R×R → R that
preserves ordering in each argument, or reverses the ordering on both arguments,
respectively, yields a further construction that cannot satisfy the monotonicity
condition (MC) with respect to the class of patterns with non-negative entries
with bounded support.



Non-monotonicity of Similarity Measures 49

Corollary 1. Let

Δ1[A1,S1, C1](f, g) := S1(A1x(C1(f(x), g(x))))
Δ2[A2,S2, C2](f, g) := S2(A2x(C2(f(x), g(x))))

be functions following the construction principle (3) then

Δ(f, g) = Δ1[A1,S1, C1](f, g) 
 Δ2[A2,S2, C2](f, g)

does not satisfy the monotonicity criterion (MC), where 
 : R × R → R is an
operation that is strictly monotonic of the same type in each component.

Examples of similarity and distance measures following the construction princi-
ples of Theorem 1 or Corollary 1 are listed in Table 1.

Table 1. Examples of kernels and distance measures that follow the construction
principles of Theorem 1 or Corollary 1 with summation as aggregation function

fomular name remark

‖f − g‖p Minkowski distance C(a, b) = |a − b|p, S(x) = p
√

x

< f, g >=
∑

i fi · gi inner product C(a, b) = a · b
e−

1
σ

∑
i(fi−gi)

2
Gaussian kernel S(x) = exp(−x/σ)

−√‖f − g‖2 + c2 multiquadratic S(x) = −√
x + c2

1√
‖f−g‖2+c2

inverse multiquadratic S(x) = (
√

x + c2)−1

‖f − g‖2n ln(‖f − g‖) thin plate spline ln, xn as scaling, �(a, b) = a · b
< f, g >d, d ∈ N polynomial kernel (1) recursively applied, �(a, b) = a · b

(< f, g > +c)d, d ∈ N inh. polynomial kernel (1) recursively applied, �(a, b) = a · b
tanh(κ < x, y > +θ) sigmoidal kernel S(x) = tanh(κx + θ)

The following construction principle which does not require strictly mono-
tonicity of the scaling function also leads to similarity measures that do not
satisfy the monotonicity condition (MC).

Theorem 2. The construction

Δ[A,S,C](f, g) := S(Ax(C(f(x), g(x)))) (5)

induces a function
Δ[A,S,C] : Ψ × Ψ → R

that does not satisfy the monotonicity condition under the assumption that Ψ
is an admissible space of functions f : Z ⊆ R → R that contains at least the
set of pairwise differences of scaled indicator functions of finite subsets of Z,
C : R × R → R is a continuous coordinate function that satisfies
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(C’1) C is commutative,
(C’2) C(0, .) is strictly monotonic,
(C’3) ∀α : C(α, α) = 0,

the aggregation function A : R
n → R is continuous and satisfies (A1) and (A2)

of Theorem 1 and the scaling function S : R → R is

(S1) continuous,
(S2) non-trivial in the sense that it is not constant on the range

R = {A(C(α, 0), C(α, 0), 0, . . . , 0) ∈ R
+
0 : α ∈ R}.

Proof. Without loss of generality 0 = Ax(0) = A(0, . . . , 0). Set

h(.) := a · 1{0}(.) + b · 1{2}(.)
and, let us denote Θt(a, b) = Ax(C(f(x), f(x − t))).

Then, by applying (A1) we obtain

Θ0(a, b) = A(0, . . . , 0, C(0, 0), C(0, 0), C(0, 0), C(0, 0), 0, . . . , 0)
Θ1(a, b) = A(0, . . . , 0, C(a, 0), C(a, 0), C(b, 0), C(b, 0), 0, . . . , 0)
Θ2(a, b) = A(0, . . . , 0, C(a, 0), C(a, b), C(b, 0), C(0, 0), 0, . . . , 0).

Let ζ ∈ R, ζ > 0, and note that there is a0 > 0 such that Θ1(a0, 0) = ζ. Observe
that

∀a ∈ [0, a0] ∃ ba ∈ [0, a0] : Θ1(a, ba) = ζ.

Let γζ = {(a, ba) : Θ1(a, ba) = ζ}. Further, note that

∀(a, ba) ∈ γζ , a > 0 : Θ2(a, ba) < Θ1(a, ba) = ζ

and

lim
a→a−

0

Θ2(a, ba)

︸ ︷︷ ︸
Θ2(a0,0)

= lim
a→a−

0

Θ1(a, ba)

︸ ︷︷ ︸
Θ1(a0,0)

.

Then ∀ε > 0 ∃ξ ∈ (ζ − ε, ζ)∃(aξ, bξ) ∈ γζ we have

ξ = Θ2(aξ, bξ) < Θ1(aξ, bξ) = ζ. (6)

Let s0 = S(0). Without loss of generality s0 > 0. As S is not constant on R,
there is a ζ ∈ R such that

s = S(ζ) �= S(0) = s0.

Hence ζ > 0. Without loss of generality s < s0. Let ξ = inf{ζ > 0 : S(ζ) ≤ s}.
The continuity assumption of S implies ξ > 0. By (6) for all n ∈ N there is
ξn ∈ (ξ − 1

n , ξ) for which there is (an, bn) ∈ γξ with

ξn = Θ2(an, bn) < Θ1(an, bn) = ζ.
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Note that ∀n ∈ N : S(ξn) > S(ξ) and limn S(ξn) = S(ξ). Therefore, there is a n0

with S(ξn0 ) ∈ (s, s0). For an illustration of the construction of ξn0 see Figure 2.
By construction, for

h0(.) := an0 · 1{0}(.) + bn0 · 1{2}(.)

we obtain
0 = Θ0(an0 , bn0) < Θ2(an0 , bn0) < Θ1(an0 , bn0)

which shows that the monotonicity condition (MC) cannot by satisfied, as

Ax(C(h0(x), h0(x − 0))) < Ax(C(h0(x), h0(x − 1))) > Ax(C(h0(x), h0(x − 2)))

�	

Fig. 1. Illustration of construction of ξn0

Examples of similarity measures that meet the conditions of Theorem 5 are
translational invariant kernels Φ(x, y) = Φ(‖x − y‖) where φ : [0,∞) → R is a
continuous function that results from a Bessel transform of a finite non-negative
Borel measure μ on [0,∞), i.e. φ(r) =

∫ ∞
0 Ωs(rt)dμ(t) where Ω1(r) = cos r and

Ωs(r) = Γ ( s
2 ) s

2
(s−2)/2J(s−2)/2(r), s ≥ 2 and J(s−2)/2 is the Bessel function of first

kind of order s−2
2 . For example there is the Dirichlet kernel k(x, y) = ΦD(x)(‖x−

y‖) provided by the continuous function ΦD(x) = sin
(
(2n + 1) · x

2

)
/sin

(
x
2

)
or

the Bn-spline kernels k(x, y) = B2p+1(‖x − y‖) that result from multiple con-
volution of indicator functions, Bn = ⊗n

i=11[− 1
2 , 1

2 ], where the positive definite
kernel property is only satisfied by odd orders.

For details on kernels and particularly translational invariant kernels see
e.g. [SS01].

3 f -Divergence Measures

In this Section we concentrate on histogram based measures, see e.g. [TJ91]. The
most prominent one is the mutual information, which for two discrete random
variables X and Y can be defined as

I(X ; Y ) =
∑

x,y

PXY (x, y) log
(

PXY (x, y)
PX(x)PY (y)

)
(7)
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where PXY is the joint probability distribution of X and Y , and PX and PY

are the marginal probability distribution of X and Y respectively. This measure
is commonly used in various fields of applications as for example in registering
images, see e.g. [GGL08], [LZSC08]. Equation (7) is a special case of Kullback-
Leibler divergence, [Kul59],

DKL(P‖Q) =
∑

z

P (z) log
(

P (z)
Q(z)

)
(8)

which measures the deviation between the probability distributions P and Q.
The mutual information is regained from (8) by setting z = (x, y), P (x, y) =
PXY (x, y) and Q(x, y) = PX(x)PY (y). A further generalization is provided by
the class of f -divergence measures Df(P‖Q), see e.g. [DD06,LV06], defined by

Df(P‖Q) =
∑

z

Q(z)f
(

P (z)
Q(z)

)
(9)

where f : [0,∞] → R ∪ {+∞} is convex and continuous. These measures
were introduced and studied independently by [Csi63], [Mor63] and [AS96]. The
Kullback-Leibler divergence (8) results from (9) by means of f(t) = t log(t).

Theorem 3. Let f : [0,∞] → R ∪ {+∞} be a strictly convex and continuous
function. For two discrete sequences A = (ai)n

i=1 ∈ Vn and B = (bi)n
i=1 ∈ Vn,

n ∈ N let

Df(A‖B) =
∑

v,w∈V
PA(v)PB(w)f

(
PA B(v, w)

PA(v)PB(w)

)
(10)

where PA B(v, w) denotes the joint frequency of occurrence of the pair of values
(v, w), and PA(v), PB(w) denote the frequencies of v, w in the corresponding
sequences A and B, respectively. Then there are sequences h : Z → V such that
χ : N → [0,∞] given by

χt = Df(A0, At)

does not behave monotonically with respect to t, where At(.) = 11,...,n(.) ·h(.− t).

Proof. Set V = {0, 1}, and define h(.) :=
∑m

j=1 1{2·j}(.) where m ∈ N. Set
n = K · m with K ≥ 3. Then

PAt(0) = n−m
n , PAt(1) = n−m

n

for t ∈ {0, 1, 2}, further

PA0,A0(0, 0) = n−m
n , PA0,A0(0, 1) = 0, PA0,A0(1, 0) = 0, PA0,A0(1, 1) = m

n ,
PA0,A1(0, 0) = n−2m

n , PA0,A1(0, 1) = m
n , PA0,A1(1, 0) = m

n , PA0,A1(1, 1) = 0,
PA0,A2(0, 0) = n−m

n , PA0,A2(0, 1) = 1
n , PA0,A3(1, 0) = 1

n , PA0,A2(1, 1) = m−2
n .
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By taking n = K · m into account we get

n2

m2
χ0(K, m) = f

(
K

K − 1

)
(K − 1)2 + 2f(0)(K − 1) + f(K),

n2

m2
χ1(K, m) = f

(
(K − 2)K
(K − 1)2

)
(K − 1)2 + 2f

(
K

K − 1

)
(K − 1) + f(0),

n2

m2
χ2(K, m) = f

(
K

K − 1

)
(K − 1)2 + 2f

(
K

K − 1
1
m

)
(K − 1) + f

(
K

m − 2
m

)
.

Observe that because of the continuity of f for all K ≥ 2 we obtain

lim
m→∞(χ0(K, m) − χ2(K, m)) = 0. (11)

As
(K − 1)2 − 2(K − 1)

(K − 1)2
+

2(K − 1) − 1
(K − 1)2

+
1

(K − 1)2
= 1

and

(K − 2)K
(K − 2)2

(K − 1)2 − 2(K − 1)
(K − 1)2

· K

K − 1
+

2(K − 1) − 1
(K − 1)2

· 0 +
1

(K − 1)2
· K

the strict convexity of f implies

f

(
(K − 2)K
(K − 2)2

)

=
(K − 1)2 − 2(K − 1)

(K − 1)2
· f

(
K

K − 1

)
+

2(K − 1) − 1
(K − 1)2

· f(0) +
1

(K − 1)2
· f(K)

and, therefore, for all m > 2 it follows that

χ0(K, m) − χ2(K, m) = εK > 0. (12)

Together, formulae (11) and (12) imply that there are indices K0 and m0 such
that χ0(K0, m0) > χ1(K0, m0) < χ2(K0, m0) which proves the claim. �	
Finally let us remark that an analogous proof shows that the claim of Theorem 3
is also true if the histograms PX and PY are compared directly in the sense of
definition (9).

4 The Monotonicity Property of the Discrepancy
Measure

The concept of discrepancy measure was proposed by Hermann Weyl [Wey16]
in the early 20-th century in order to measure deviations of distributions from
uniformity. For details see, e.g. [BC09,Doe05,KN05]. Applications can be found
in the field of numerical integration, especially for Monte Carlo methods in
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high dimensions, see e.g. [Nie92, Zar00,TVC07] or in computational geometry,
see e.g. [ABC97, Cha00, KN99]. For applications to data storage problems on
parallel disks see [CC04,DHW04] and half toning for images see [SCT02].

In the image processing context of registration and tracking, the discrepancy
measure is applied in order to evaluate the auto-misalignment between a pattern
P with its translated version PT with lag or shift T . The interesting point about
this is that based on Weyl’s discrepancy concept distance measures can be con-
structed that guarantee the desirable registration properties: (R1) the measure
vanishes if and only if the lag vanishes, (R2) the measure increases monotoni-
cally with an increasing lag, and (R3) the measure obeys a Lipschitz condition
that guarantees smooth changes also for patterns with high frequencies. As the
discrepancy measure as defined by (13)

‖f‖D := sup

{∣∣∣∣∣

m2∑

i=m1

fi

∣∣∣∣∣ : m1, m2 ∈ Z

}
(13)

induces a norm on the space of vectors f = (f1, . . . , fn) ∈ R
n in the geometric

sense we further on refer to it as discrepancy norm. As pointed out in [Mos09]
Equation (13) is equivalent to

‖f‖D := max(0, max
1≤k≤n

k∑

i=0

fi) − min(0, min
1≤k≤n

k∑

i=0

fi) (14)

which is advantageous in terms of computational complexity which amounts
to O(n) in comparison with O(n2) of the original definition (13). Note that
the only arithmetical operations in the algorithm are summation, comparisons
and inversion which on the one side are fast to compute and on the other side
cheap in hardware design. In the context of this paper its dependency on the
ordering of the elements is worth mentioning which is illustrated by the exam-
ples ‖(1,−1, 1)‖D = 1 and ‖(−1, 1, 1)‖D = 2. Note that alternating signals like
(−1, 1,−1, . . .) lead to small discrepancy values, while reordering the signal e.g.
in a monotonic way maximizes it.

As outlined in [Mos09] Equation (13) can be extended and generalized to
arbitrary finite Euclidean spaces equipped with some measure μ in the following
way:

‖f‖(d)
C = sup

c∈C
|
∫

c

fdμ| (15)

where C refers to a set of Cartesian products of intervals. For example, let Bd

denote the set of d-dimensional open boxes I1×I2×· · ·×Id with open intervals Ii

from the extended real line [−∞,∞], and B̃d ⊂ Bd the set of Cartesian products
of intervals of the form ] −∞, x[, ]x,∞[. It can be shown that for all d ∈ N and
non-negative f ∈ L(Rd, μ), f ≥ 0, there holds

‖f − f ◦ Tt‖(d)

Bd = ‖f − f ◦ Tt‖(d)

B̃d
(16)
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where Tt = x− t. Formulae 16 can be expressed by means of integral images and
their higher dimensional variants which is crucial in terms of efficient computa-
tion. With this definitions the following result can be proven, for details and the
proof see [Mos09].

Theorem 4. Let d ∈ N, let f ∈ L(Rd, μ), f ≥ 0 and let ΔC [f ](t) = ‖f−f ◦Tt‖C
denote the misalignment function t ∈ R

d. Further, let

δμ[f ](t) = sup
C∈C

max{μ(C\Tt(C)), μ(Tt(C)\C)}.

Then for C = Bd or C = B̃d we have

1. If f is non-trivial, i.e.,
∫ |f |dμ > 0 then ΔC [f ](t) = 0 ⇐⇒ t = 0

2. Lipschitz property: ΔC [f ](t) ≤ δμ[f ](t)‖f‖∞.
3. Monotonicity: 0 ≤ λ1 ≤ λ2 =⇒ ΔC [f ](λ1t) ≤ ΔC [f ](λ2t) for arbitrary

t ∈ R
d.

Figure 2 illustrates the principle difference between the characteristics of the
resulting misalignment functions induced by a measure, in this case normalized
cross-correlation, that shows the non-monotonicity artefact on the one hand and
the discrepancy norm on the other hand.

(a) (b) (c)

Fig. 2. Figure (a) shows a sawtooth function with frequency ω = 1. In the other two
figures misalignment functions for this sawtooth function and its variants with higher
frequencies, ω = 2, 4, 16 with respect to one minus the normalized cross-correlation,
Figure (b), and the discrepancy norm, Figure (c), are shown. With increasing frequen-
cies of the in Figure (b) the In contrast to Figure (b) the discrepancy norm induced
misaligment functions in (c) show a monotonic behaviour with bounded slope due to
the Lipschitz property.

5 Impact of the Non-monotonicity Effect on Applications

Misalignment is a phenomenon which can be observed in numerous situations
in applied mathematics. In this paper we concentrate on examples from image
processing in order to illustrate the relevance and impact of the monotonicity
and Lipschitz property of the discrepancy measure in comparison to commonly
used measures for which these properties cannot be guaranteed.
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5.1 Image Tracking

Image tracking aims at identifying and localizing the movement of a pattern
along a sequence of images. In this context a commonly used similarity measure
is the so-called Bhattacharyya coefficient [Bha43] defined by

DB(PX , PY ) =
∑

x

√
PX(x)PY (x). (17)

See [CRM00] for details in the context of tracking. Note that −DB(PX , PY )
turns out to be a special f -divergence measure by means of f(u) = −√

x.
Figure 3 depicts the cost functions of a person track on the CAVIAR (Context

Aware Vision using Image-based Active Recognition) 1 database based on the dis-
crepancy norm (second row) and the Bhattacharyya coefficient. It interesting to
observe the robustness of the discrepancy norm at the presence of massive noise.

(b) (c) (d)

(a) (e) (f) (g)

(h) (i) (j)

Fig. 3. Tracking of female from Figure 2(a) in a consecutive frame Figure (2b) and
the same frame corrupted with additive gaussian noise with SNR = 3 in Figure 2(c)
and SNR = 1.5 in Figure 2(d). Figures 2(e), (f) and (g) depict the corresponding cost
function based on the discrepancy norm (DN) as similarity, whereas (h), (i) and (j) refer
to the Bhattacharyya coefficient based similarity. The images are taken from frame 697
and frame 705 of the EC Funded CAVIAR project/IST 2001 37540 (”Shopping Center
in Portugal”, ”OneLeaveShop2cor”).

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/



Non-monotonicity of Similarity Measures 57

5.2 Stereo Matching

Cost estimation in stereo matching is crucial for stereo vision, see [SS02]. Fig-
ure 4 illustrates the working principle of a typical stereo matching algorithm:
the content of the white window in Figure 4(a) is compared with the windows
along the white line in Figure 4(b). Figure 4(c) plots the comparison results
with different matching cost functions. The x-value with the lowest dissimilarity
is finally taken as disparity from which depth information can be derived.

Typically the sum of absolute distances (SAD), sum of squared distances (SSD)
or cross correlationaswell as their normalizedandzeromeanvariants (NCC,ZSAD,
etc.) are used as dissimilarity measures in this context. However these cost func-
tions follow the construction principle of Equation (5) and suffer therefore from
non-monotonic behaviour. Especially when adding white noise to the source im-
ages the number of local minima of these matching cost functions increase,whereas
the discrepancy norm keeps mainly its monotonic behaviour, see Figure 4(c).

5.3 Defect Detection in Textured Surfaces

In the context of quality control typically reference image patches are compared
to image patches which result from a sliding window procedure. For a discussion
on similarity and a template matching based approach for detecting defects
in regularly textured images see [BSM11]. Here an example is presented that

(a) (b) (c)

(d) (e) (f)

Fig. 4. Matching cost evaluation of sum of squared differences (SSD), normalized cross
correlation (NCC) and discrepancy norm (DN) evaluated on the Middlebury Stereo
2003 Dataset [SS03], Teddy Example, at position x=192/y=300 with windowsize 10,
depth 60. Figure 4(c) shows the evaluation of the white patch in Figures 4(a) along the
white line in Figure 4(b). Whereas the results of Figures 4(d) and 4(e) with SNR = 6.1
are shown in Figure 4(f). DN is more robust regarding noise than the other costs.
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demonstrates the behaviour of similarity measures showing the non-monotonicity
effect versus the discrepancy norm. Fig. 5(b) depicts an example taken from the
TILDA database 2. As the presented texture shows a repetitive pattern it allows
to apply a pattern matching approach and to compute the dissimilarity given
some translational parameters. A defect-free pattern, depicted in Figure 5(a),
is considered as a reference pattern and is then translated along the textured
image. Each tx and ty displacement induces a dissimilarity value as illustrated
in Figure 5(d) where the ordinate refers to the dissimilarity value. Observe the
distinct local minumum of the discrepancy norm even in the presence of noise
in Figures 5(e) and 5(f).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Template matching example for regularly textured images. A defect-free ref-
erence template is shown in Figure (a) with corresponding patches (white square)
in a noise free and a corrupted image by added white Gaussian noise, Figure (b)
and Figure (c), respectively. Figure (d) plots a surface of dissimilarity values between
the reference and the patches of Figure (b). Figures (e) (noise-free) and (f) (gaus-
sian noise) show the behaviour of different cost functions along the x-axis: discrepancy
norm (solid), L2 norm (dotted), Bhattacharyya measure (square plotted) and mutual
information (dashed-dotted).

6 Conclusion and Future Work

A non-monotonicity effect of commonly used similarity measures has been exam-
ined in the context of misaligned patterns. As it was shown this non-monotonicity

2 Available from Universität Freiburg, Institut für Informatik, Lehrstuhl für Muster-
erkennung und Bildverarbeitung (LMB).
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effect is caused by certain underlying construction principles. As the application
section demonstrates this effect is worth thinking about for example in order
to reduce local minima in resulting cost functions e.g. in the context of stereo
matching. It remains future work to elaborate alternative similarity concepts as
for instance based on Weyl’s discrepancy measure to come up with cost functions
that avoid the artefacts from the non-monotonicity effect.
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[Wey16] Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math.
Ann. 77, 313–352 (1916)

[Zar00] Zaremba, S.K.: The mathematical basis of Monte Carlo and Quasi-Monte
Carlo methods. SIAM Review 10(3), 303–314 (1968)


	On a Non-monotonicity Effect of Similarity Measures
	Introduction
	Construction Principles of Similarity Measures Induced by the Aggregation of Element-Wise Operating Functions
	$f$-Divergence Measures
	The Monotonicity Property of the Discrepancy Measure
	Impact of the Non-monotonicity Effect on Applications
	Image Tracking
	Stereo Matching
	Defect Detection in Textured Surfaces

	Conclusion and Future Work
	References




