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Abstract— Hermann Weyl’s concept of a discrepancy mea-
sure is discussed in the context of time series analysis. A concept
for autocorrelation based on this discrepancy notion is intro-
duced. It is shown that in particular for high frequent signals
as they, for example, are typically encountered in a financial
context, the introduced autocorrelation concept stands out by a
better discriminative power than its classical counterpart. While
the computational complexity of this novel autocorrelation is of
quadratic order in terms of the number of given time steps
an approximation based on Lp-norms is introduced which can
be computed by convolution, and therefore reduces the order
of complexity to that of its classical counterpart. It is shown
that the proposed approximation can be tuned to be arbitrarily
close to the original discrepancy based version, and that it shows
similar desirable behavior.

I. INTRODUCTION

Autocorrelation is a widely used concept for analyzing
time series. In this paper we address properties of the stan-
dard autocorrelation which are intrinsically tied to the point-
wisely construction of the standard correlation measure. It
will be argued that due to this construction principle espe-
cially for high frequent signals the standard autocorrelation
fails as even small shifts in the data might cause a break
down of the correlation measure. This behaviour becomes
the more apparent the more the signal shows chaotic char-
acteristics with high frequencies. To overcome this problem
we introduce an alteranative concept based on a construction
principle that relies on the evaluation of partial sums rather
than the aggregation of point-wisely computed similarity
measures.

First of all let us start with recalling the standard con-
cepts. Later on as an alternative concept Hermann Weyl’s
discrepancy measure is introduced in this context.

In signal processing, the cross-correlation is similar in
principle to the convolution of two functions and is de-
fined by (f � g)(t) =

∫
f(τ)g(τ + t)dτ . Therefore, cross-

correlation of two signals can be understood as similarity
between these signals which is constructed by a sliding dot
product. It is commonly used to identify a shorter, known
feature in a long duration signal. Applications can be found
in various fields of science and engineering like pattern
recognition, single particle analysis, electron tomographic
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averaging, cryptanalysis, neurophysiology and financial in-
formation systems. The cross-correlation of a signal with
itself is also referred to as autocorrelation, which at least
has a peak at a lag of zero. In statistics similar concepts are
used to measure the correlation between random variables
or sequences of random variables. For example Pearson’s
correlation coefficient is given by

corr(f, g) =

∑
i(fi − f̄)(gi − ḡ)√∑
i fi + f̄

√∑
i gi − ḡ

,

where f̄ denotes the arithmetic mean and is useful for
measuring linear or affine correlation. A value close to
zero indicates there is little linear correlation between the
variables, but does not rule out significant nonlinear corre-
lation. Rank correlation coefficients like those proposed by
Spearman or Kendall are related to a monotonic relationship
between the variables. For example Spearman’s coefficient
tells how well the relationship between two variables can
be described using a monotonic function. If there are no
repeated data values, a Spearman correlation of +1 or −1
indicates that each of the variables can be obtained by
a monotone function of the other, see [4], [6], [15] In
[10] it was pointed out that the classical cross-correlation
concept suffers from some shortcomings due to its pointwise
construction, i.e. summation over pointwise products. The
construction principle which is characterized by aggregating
pointwisely determined similarities or, analogously, distances
applies to a wide class of similarity measures. For instance f-
divergence and f-information measures based on information
theoretical concepts that rely on the evaluation of histograms
[1], [13], [16] are also based on this principle. Examples
of such measures include mutual information, Kullback-
Leibler distance and the Jensen-Rényi divergence measure
[3], [7], [13], [14] as well as Bhattacharyya histogram-based
coefficient [18], [21].

In particular, such measures cannot satisfy the following
properties simultaneously

[C1] a lag at zero entails a global maximum and vice
versa (positive-definiteness)

[C2] the similarity measure behaves continuously with
respect to changes of the lag (continuity)

[C3] an increasing lag implies a decreasing similarity
and vice versa (monotonicity).

At least for non-negative functions f ≥ 0 the conditions
[C1]-[C3] are met by an approach based on Hermann Weyl’s
discrepancy measure which is outlined in the next sections.
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In Section II we introduce the discrepancy norm based on
Hermann Weyl’s concept, and an autocorrelation based on
this norm in Section III. Computational aspects are consid-
ered in Section IV which also proposes an approximation
that can be computed as convolution. Section V shows an
application on financial data.

II. HERMANN WEYL’S DISCREPANCY MEASURE

For a summable sequence of real values f = (fi)i∈Z,∑
i∈Z |fi| <∞, Weyl’s discrepancy concept, see [17], leads

to the definition

‖f‖D := sup

{∣∣∣∣∣
n2∑
i=n1

f(i)

∣∣∣∣∣ : n1, n2 ∈ Z

}
. (1)

Applications of Weyl’s concept of discrepancy can be found
in the field of numerical integration, especially for Monte
Carlo methods in high dimensions [12], in computational
geometry [5] and in pattern recognition [11]. There are also
applications in image processing in the context of pixel
classification [2], see also [8],[9], [10] for extensions to
higher dimensions and applications to texture analysis and
tracking.

What is special about this discrepancy concept is its de-
pendency from the ordering, see also [11] [10], for example

‖(1, 1,−1)‖D = 2

‖(1,−1, 1)‖D = 1.

In this paper we are studying its behavior in the context of
time-shifted signals, therefore for the interval I ⊂ Z let us
define

FI := {f : I ⊆ Z :
∑
i∈I
|f(i)| <∞},

‖f‖ID := ‖f(.)1I(.)‖D (2)

and

αI[f ](t) := ‖f(.)− f(.− t)‖ID. (3)

Definition (2) refers to the restriction of f to a subinterval
domain I, where 1I denotes the indicator function. Defini-
tion (3) measures the discrepancy of a time shifted signal
f(.− t) at lag t with its reference f at lag zero. See Figure 2
which shows the behavior of the discrepancy in terms of the
difference with a time-shifted signal, f(.)− f(.− t) for the
simple but illustrative example depicted in Figure 1. It is
interesting to observe that αI[f ] is monotonically increasing
on t ≥ 0 whereas Pearson’s autocorrelation (f � f)(t) =∑
i f(i)f(i + t), as well as Spearman’s and Kendall’s rank

correlation coefficient, show a non-monotonic behavior, see
Figure 3.

With the above definitions we obtain the following prop-
erties, its proofs can be found in the Appendix, VI-A:

• ‖.‖ID is a norm on FI

Fig. 1. Illustrative example s with two steps

Fig. 2. ‖s(.) − s(. − t)‖D as function of t for example s in Figure 1,
which is monotonically increasing for t ≥ 0

• with f ∈ FI and Ik = {n ∈ Z : n ≤ k}:

‖f‖ID = max{0, sup
k∈I

∑
i∈I∩Ik

f(i)}

− min{0, inf
k∈I

∑
i∈I∩Ik

f(i)} (4)

• αI[f ](0) = 0 for f ∈ FI
• Let f ∈ FZ, f ≥ 0, then αZ

[f ](t) = αZ
[f ](−t)

• Let f ∈ FZ, f ≥ 0, then αZ
[f ] is monotonically

increasing on N ∪ {0}
Equation (4) allows us to compute the discrepancy of

a sequence of length n with O(n) operations instead of
O(n2) number of operations resulting from the original
definition (1).

Fig. 3. Autocorrelation for example s in figure 1, which is not monotonic
on t ≥ 0



III. AUTOCORRELATION BASED ON HERMANN WEYL’S
DISCREPANCY NORM

In this section a correlation coefficient based on the
discrepancy norm is proposed. The construction imitates
the classical Pearson’s formula, which can be expressed by
means of an inner product

corr(f, g) =
〈f, g〉
‖f‖‖g‖

.

For any Hilbert space with inner product 〈., .〉 the par-
allelogram law can be derived ‖f − g‖2 + ‖f + g‖2 =
2(‖f‖2 + ‖g‖2), which together with ‖f + g‖2 = ‖f‖2 +
‖g‖2+2 〈f, g〉 , induces a representation of the inner product
by means of the norm

〈f, g〉 = (‖f + g‖2 − ‖f − g‖2)/4. (5)

Note that the discrepancy norm does not fulfill the parallelo-
gram law, consider, e.g., f = (1, 1,−1) and g = (1,−1, 1),
then ‖f − g‖2D + ‖f + g‖2D = ‖(2, 0, 0)‖2D + ‖(0, 2, 2)‖2D =
20 6= 2(‖f‖2D + ‖g‖2D) = 10. Anyway, formula (5) yields a
reasonable correlation coefficient for not vanishing f, g ∈ FI

corrD(f, g) :=
1

4

‖f + g‖2D − ‖f − g‖2D
‖f‖2D‖g‖2D

∈ [−1, 1]. (6)

The range of corrD(., .) ∈ [−1, 1] directly follows from the
triangle inequality of the norm, so does corrD(f, λf) = 1
for λ ∈ R\{0}.

Observe that for f ≥ 0 we have ‖f‖D = ‖f‖1 =
∑
f (i),

therefore, for g ≥ f ≥ 0, f 6= 0 we obtain

corrD(f, g) =
(
∑
i f(i) + g(i))2 − (f(i)− g(i))2

4
∑
f f(i)

∑
i g(i)

= 1.

If we correlate f with itself for a nonnegative f ≥ 0 note
that

corrD(f(.), f(.− t))

=
1

4

‖f(.) + f(.− t)‖2D − ‖f(.)− f(.− t)‖2D
‖f(.)‖2D + ‖f(.− t)‖2D

=
4‖f(.)‖2D − ‖f(.)− f(.− t)‖2D

4‖f(.)‖2D
which means that, due to the monotonicity of the discrepancy
norm of the difference of time-shifted non-negative functions
as a function of the time-shift, the autocorrelation based on
the discrepancy norm

autocorrD[f ](t) := corrD(f(.), f(.− t)) (7)

is monotonically decreasing for t ≥ 0.

IV. APPROXIMATION AND COMPUTATION BY
CONVOLUTION

In this section the discrepancy norm is approximated
by a formula that can be computed by convolution which
reduces the computational complexity to O(n log(n)) with
n the number of discrete support points. In this section we
restrict to finite support intervals I, n = |I| > 1. For

convenience without loss of generality, we restrict to intervals
I = {1, . . . , n} starting at 1. Further on, for convenience let
us set

Fk(f) :=
k∑
i=0

fi

χp[f ](k) := ep
∑k

i=0 fi = epFk(f)

where by definition we set f0 = 0. The t-mean Mt is defined
by

Mt(f) =

(
1

N + 1

N∑
i=0

|fi|t
) 1

t

which for t = +1 yields the arithmetic and for t = −1 yields
the harmonic mean. Then, let us define

Γp(f) =
1

p
ln

(
M+1(χp[f ])

M−1(χp[f ])

)
(8)

which is well defined due to the fact that the t-mean Mt

is monotonically increasing with t and, that due to the
construction of χp we have 0 < mink∈{0,··· ,N} χp[f ](k) ≤
M−1(χp[f ]) ≤ M1(χp[f ]). Though it can be proved that
Γp does not satisfy all norm properties, we get similar and
approximative results, see Appendix, VI-B.
• Γp is positive definite
• approximative homogeneity:

Γp(λf) = |λ| · Γ|λ|p(f)
• approximative triangular inequality:

Γp(f + g) ≤ Γp(f) + Γp(g) + 2
p ln(n+ 1)

Finally we state the main result of this section:
Theorem 1: Γp approximates the discrepancy norm in the

sense of

Γp(f) ≤ ||f ||D < Γp(f) +
2

p
ln(n+ 1) (9)

and the correlation of two signals f and g can be computed
by convolution

h =
1

p
ln(F ∗G) +

1

p
ln(F−1 ∗G−1) (10)

where F = χp[f ], G = χ−p[g].
Figure 4 illustrates the approximation behavior of Γp for

the 2-step function of Figure 1.

V. APPLICATION

A typical problem for correlation is to find and locate a
known patch of pattern in a longer signal. Such a problem
is illustrated in Figure 5, where a similar test patch should
be identified in the data by checking the correlation at each
position. Figure 6 shows a noisy test patch and its reference
which corresponds to the data between 450 till 550 in Figure
5. The resulting correlation measures are shown in Figure 7,
which show similar behavior at least for sufficiently large
parameter p. Both of them, the discrepancy norm and its
approximation show a significant and well shaped minimum
at the correct position 450. Figure 8 shows time series of
so-called daily asset returns for three different companies.



Fig. 4. Illustration of the approximation behavior of Γp

Fig. 5. Signal with reference patch between 450 and 550

The data refer to the period between February 2005 and end
of July 2008 with real stock price data. Figure 10 depicts
autocorrelation curves according to autocorrD(f) where f is
supposed to be normalized in the sense that the arithmetic
mean is zero and its standard deviation is one. Observe that
the discrepancy induced autocorrelation curves in Figure 10
can be distinguished from each other, and, moreover shifts
in the lag only cause small changes in the autocorrelation in
contrast to Pearson’s correlation where a peak appears at lag
zero while even very small lag deviations from zero lead to
an abrupt change of the autocorrelation. It is interesting to
observe that for the classical autocorrelation the time series
of Figure 8 can not be discriminated as is demonstrated
by Figure 9 in contrast to the autocorrelation based on the
discrepancy norm due to Equation (7), see Figure 9.

VI. CONCLUSIONS

In this paper we have introduced a novel approach to time
series autocorrelation based on the so-called Hermann Weyls
discrepancy norm. In particular its autocorrelation behavior
was studied and tested on real data from finance showing
that in contrast to the standard concepts used in statistics
and signal processing like Pearsons correlation coefficient
this novel concept shows promising discriminative potential.
The reason for this better behavior is that the discrepancy
norm is less sensitive to shifts in the time domain which in
particular is the more important the higher the amount of high
frequencies in the signal as this is for example the case for
time series of daily asset returns. Moreover, an approximation

Fig. 6. Comparison of noisy test signal with its reference signal related to
the interval [450, 550] of Figure 5

Fig. 7. Discrepancy correlation coefficient and its Γp approximation with
p = 128 for the reference patch of Figure 5; the upper curve refers to
the approximation. Both curves show a well formed minimum around the
correct position at 450

to this discrepancy correlation coefficient was proposed that
allows to efficiently compute auto- and cross-correlation with
O(nlog(n)) operations which is of the same order than the
standard correlation. In future, statistical tests based on these
novel concepts should be designed in order to provide a more
sensitive and adequate correlation analysis theory to high
frequency time series data.

APPENDIX

A. Properties of the discrepancy norm

In order to show that ‖.‖ID is a norm on FI observe
that ‖f‖ID = 0 implies supn,m∈I |

∑n
i=m f(i)| = 0, hence

|f(i)| = 0 and, therefore f(i) = 0 for all i ∈ I.
Homogeneity immediately follows from the definition. For
the triangle inequality consider

‖f + g‖ID = supn1,n2
|
n2∑
i=n1

f(i)− g(i)|

≤ supn1,n2{
n2∑
i=n1

f(i)|+
n2∑
i=n1

g(i)|}

≤ supn1,n2{
n2∑
i=n1

f(i)|}+ supn1,n2{
n2∑
i=n1

g(i)|}.



Fig. 8. Daily asset return curves of three different companies related to
W&T OFFSHORE INC, MCDONALDS CORP and BMW in the period
between February 2005 and end of July 2008

Fig. 9. Pearson’s autocorrelation for the time series of the daily asset
returns of Figure 8

Fig. 10. Discrepancy induced autocorrelation for the time series of the
daily asset returns of Figure 8

To prove Equation (4) let us set f̃(i) = 0 for i ∈ Z\I, and
f̃(i) = f(i) for i ∈ I, then we get

‖f‖ID = sup
n1,n2∈Z

|
n2∑
i=n1

f̃(i)|

= sup
n1,n2∈Z

|
n2∑

i=−∞
f̃(i)−

n1−1∑
i=−∞

f̃(i)|

= sup
n2∈Z

n2∑
i=−∞

f̃(i)− inf
n2∈Z

n1∑
i=−∞

f̃(i)

= max{0, sup
k∈I
|
∑

i∈I∩Ik

f(i)|} −

min{0, inf
k∈I
|
∑

i∈I∩Ik

f(i)|}.

The positive-definiteness of ‖f‖ID immediately implies
αI[f ] = 0 for f ∈ FI . Now, let us consider f ∈ FZ and
let us assume f ≥ 0, then both the monotonicity as well as
the symmetry property follows from the observation

‖f(.)− f(.− t)‖ZD = max{0, sup
n∈Z
|

n∑
i=n−t+1

f(i)|} −

min{0, inf
n∈Z
|

n∑
i=n−t+1

f(i)|︸ ︷︷ ︸
0

}

= max{0, sup
n∈Z
|

n∑
i=n−t+1

f(i)|}.

B. Properties of Γp

Positive definiteness of Γp follows from

Γp(f) = 0⇔
M1(χp[f ]) = M−1(χp[f ])⇔

∀k ∈ {0, · · · , N}, χp[f ] = C ⇔

∀k ∈ {0, · · · , N},
k∑
i=0

fi = C ′ ⇔

∀i ∈ {0, · · · , N}, fi = 0.



The approximative homogeneity formular follows from

Γp(λ · f) =
|λ|
|λ|p

ln

(∑n
k=0 e

λpFk

n+ 1
·
∑n
k=0 e

−λpFk

n+ 1

)
To show the approximative triangular inequality let us con-
sider

∆p(f, g) = Γp(f) + Γp(g)− Γp(f + g)

then

∆p(f, g)

=
1

p
ln

(
n∑
k=0

eFk(f) ·
n∑
k=0

e−Fk(f)

)

+
1

p
ln

(
n∑
k=0

eFk(g) ·
n∑
k=0

e−Fk(g)

)

−1

p
ln

(
n∑
k=0

eFk(f+g) ·
n∑
k=0

e−Fk(f+g)

)
− 2

p
ln(n+ 1)

=
1

p
ln

(∑
eFk(f) ·

∑
eFk(g)∑

eFk(f+g)

)
+

1

p
ln

(∑
e−Fk(f) ·

∑
e−Fk(g)∑

e−Fk(f+g)

)
− 2

p
ln(n+ 1)

and, finally, we get ∆p(f, g)+ 2
p ln(N+1) ≥ 0 which yields

Γp(f + g) ≤ Γp(f) + Γp(g) + 2
p ln(n+ 1)

C. Proof of theorem 1

For convenience we simplify notation by setting χi =
χi[f ]. First of all let us proof the inequality by considerung

||f ||D = max
k∈{0,··· ,n}

Fk + max
k∈{0,··· ,n}

−Fk

= ln( max
k∈{0,··· ,n}

eFk) + ln( max
k∈{0,··· ,n}

e−Fk)

which leads to

Γp(f)− ‖f‖D = ln

(
‖χ1‖p
p
√
n+ 1

‖χ−1[f ]‖p
p
√
n+ 1

)
− ln ‖χ1‖∞ − ln ‖χ−1‖∞

= ln

(
‖χ1‖p

p
√
n+ 1‖χ1‖∞

‖χ−1‖p
p
√
n+ 1‖χ−1‖∞

)
.

Recall that for N ∈ N and a non-vanishing x ∈ R\{0} we
have

‖x‖∞ ≤ ‖x‖p ≤
p
√
N‖x‖∞,

hence
1

p
√
N
≤ ‖x‖p

p
√
N‖x‖∞

≤ 1.

By this, we finally obtain

ln

((
1

p
√
n+ 1

)2
)
≤ Γp(f)− ‖f‖N ≤ 0

which is equivalent to

Γp(f) ≤ ‖f‖D ≤ Γp(f) +
2

p
ln(n+ 1).

In the following we consider the convolution property. As-
sume that g is defined on an interval with m and f on an
interval with n points. The convolution can be seen as follows
by introducing the auxiliary function h:

h(i) = Γp(f(i)− g).

By

k∑
j=1

fi+j = Fk+i(f)− Fi(f)

we otbain

h(i) =
1

p
ln

(
m∑
k=1

ep(Fk+i(f)−Fi(f)−Fk(g))

)

+
1

p
ln

(
m∑
k=1

e−p(Fk+i(f)−Fi(f)−Fk(g))

)

=
1

p
ln

(
m∑
k=1

ep(Fk+i(f)−Fk(g))

)

+
1

p
ln

(
m∑
k=1

e−p(Fk+i(f)−Fk(g))

)

=
1

p
ln

(
m∑
k=1

epFk+i(f) · e−pFk(g)

)

+
1

p
ln

(
m∑
k=1

e−pFk+i(f) · epFk(g)

)
.

Setting g = 0 out of the domain proofs that h can be written
as a sum of two convolutions.
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