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Abstract

A discrete t-norm is a binary operation on a finite subset of the real unit interval ful-
filling the same algebraic conditions as t-norms. We show that any left-continuous
t-norm can, in a natural sense, be approximated by a discrete t-norm with an arbi-
trary precision.

1 Introduction

A triangular norm, or t-norm for short, is a binary operation on the real unit interval that
is associative, commutative, neutral w.r.t. 1, and monotone in each argument [15]. In
fuzzy logics [11], such an operation is canonically chosen to interpret the conjunction.
For instance, the standard semantics of the logic MTL [7] is based on pairs of a t-
norm and the corresponding residuum, the t-norm being used for the conjunction, the
residuum for the implication. Not every t-norm has a residuum though; the necessary
and sufficient condition is its left-continuity. We are interested here only in t-norms
with this property; we write “l.-c.” for “left-continuous”.

L.-c. t-norms have been the subject of intensive research during the last decades. For
an overview, see, e.g., [17]; a monograph devoted to the topic is [15]. In search of
general structural features of t-norms, a number of construction methods have been
proposed. For an overview of this particularly wide line of research, we refer to [20]
and the references given there. In more recent times, t-norms have been studied more
and more intensively from an algebraic viewpoint. In fact, t-norms give rise to MTL-
algebras, which in turn are residuated lattices. For a general account of t-norms from an
algebraic perspective, see again [20]; for residuated lattice in general, see [2]. Finally,
the structure of left-continuous t-norms can be understood to a great extent by the
decomposition along their filters [22, 23].
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It is still to be admitted that the known theory of t-norm leaves space for further im-
provements. Only under the assumption of continuity a satisfactory general theory
could be established; see, e.g., [15]. The present paper is meant as a contribution to the
theory of t-norms from a quite particular point of view. In order to define its context,
let us first observe that, when looking back, we might want to distinguish two styles
of research. On the one hand, we have the many contributions where t-norms are con-
sidered as two-place real functions and aspects are examined that originate from real
analysis or geometry. On the other hand, the algebraists aim at classifying t-norms up
to isomorphism; recall that two t-norms are isomorphic if one results from the other
one by an order automorphism of the real unit interval.

The present paper could be regarded borderline, but should most appropriately be
counted to the first category. In fact, we are interested in the approximation of l.-c.
t-norms. Approximation is in our context not exactly the same, but something inspired
by the approximation of real functions by real functions of a specific simple type. Our
proof methods, however, rely on algebraic results on t-norms. This is why a good part
of this paper deals actually with totally ordered monoids and their congruences, and
our results might not be insignificant also from an algebraic perspective.

The approximation of t-norms has been studied in several papers under the assumption
of continuity; [15, Chapter 8] is devoted to this topic. To mention one of the most
remarkable results, for any continuous t-norm there is a t-norm isomorphic to the prod-
uct t-norm such that the two operations differ for each pair of arguments by less than
a given parameter ε > 0. Moreover, the approximation of t-norms that are k-Lipschitz
has been studied in [18].

To obtain similar results for t-norms that are only left-continuous is certainly difficult.
Our concern is anyway somewhat different. Given the fact that l.-c. t-norms can have,
as it seems, an arbitrarily complicated structure, we ask if it is nevertheless possible to
identify them with a sequence of operations on a finite universe. This question has led
to the idea of approximating l.-c. t-norms by discrete t-norms. These operations differ
from ordinary t-norm in having only a finite subset of the real unit interval as their
domain. We note that often, but not in the present paper, equidistancy of the elements
of the domain is assumed. Otherwise, discrete t-norms are required to fulfil the same
algebraic conditions as t-norms. Algebraically, discrete t-norms are finite, negative,
commutative totally ordered monoids.

Discrete t-norms have been considered in several different contexts. The early paper
[19], e.g., considers them in connection with linguistic modelling for expert systems.
A general account is provided in the paper [5]. Furthermore, the number of discrete
t-norms has been determined; in [4], up to a size of 14 the concrete numbers are indi-
cated. We finally note that aggretation operations of more general type than t-norms
have been considered on discrete scales as well; an example is the paper [16].

In this paper, we show the following. Let � be a l.-c. t-norm. For a discrete t-norm
·9 to approximate � to the degree ε > 0, we require that the ε-neighbourhoods of the
points in the domain of ·9 cover [0, 1] and that the difference between a� b and a ·9 b is
smaller than ε for all a, b in the domain of ·9. We shall show that for any ε, a discrete
t-norm with this property exists. We then conclude that there is a sequence ·9n, n ∈ N,
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of discrete t-norms that determine � uniquely.

A variant of this method comes slightly closer to the results that have been obtained in
the continuous case. Namely, we may alternatively use as approximating functions l.-c.
t-norms of a specific type. In fact, any discrete t-norm can be extended in a canonical
way to an ordinary t-norm [14]. Calling these t-norms finitary, we can show that there is
a sequence of finitary t-norms approximating, in a certain sense, any given l.-c. t-norm.

The paper is structured as follows. Section 2 provides basic definitions and makes our
aims explicit. To understand the proofs, some algebraic background is necessary; to
this end, we provide some basic information on totally ordered monoids in Section
3 and their quotients by filters in Section 4. Before proving the main theorem, we
explain in Section 5 our idea of approximation on the basis of easy examples. The
main approximation theorem is the topic of Section 6. We present a variant of our
approximation method, based on ordinary rather than finite t-norms, in Section 7. A
few concluding remarks are contained in the last Section 8.

2 The approximation of left-continuous t-norms

We are concerned in this paper with the following type of binary operation on the real
unit interval.

Definition 2.1. An operation� : [0, 1]2 → [0, 1] is called a triangular norm, or t-norm
for short, if the following conditions hold for all a, b, c ∈ [0, 1]:

(T1) (a� b)� c = a� (b� c) (associativity),

(T2) a� b = b� a (commutativity),

(T3) a� 1 = a (neutrality of 1),

(T4) a ≤ b implies a� c ≤ b� c (monotonicity).

A t-norm � is called left-continuous, abbreviated l.-c., if, for each a ∈ [0, 1], the
function (0, 1]→ [0, 1], x 7→ x� a is left-continuous.

Here, the left continuity of a function λ : (0, 1] → [0, 1] means limx↗a λ(x) = λ(a)
for each a ∈ (0, 1]. Note that, since a t-norm � is monotone in both its arguments, �
is left-continuous if and only if a�

∨
ι bι =

∨
ι(a� bι) for any a, bι ∈ [0, 1], ι ∈ I .

Our aim is to approximate l.-c. t-norms by means of certain finite structures. In the
area of t-norms, it has been common to consider binary operations fulfilling the same
properties as t-norms but being defined only on a finite set of equidistant elements of
the real unit interval. We will use such functions here as well; however, equidistance
will not be required.

Definition 2.2. LetL be a finite subset of the real unit interval [0, 1] containing 0 and 1;
let≤ be the natural order on L; and let� be such that, for all a, b, c ∈ L, the properties
(T1)–(T4) hold. Then we call � a discrete t-norm.
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The domain of discrete t-norms is strictly included in the domain of a t-norm. Hence it
is not a priori clear what we mean by an approximation of the latter by the former. We
make the following definition.

Definition 2.3. Let� be a l.-c. t-norm; let ·9 be a discrete t-norm on L ⊆ [0, 1]; and let
ε > 0. We say that ·9 approximates � with the precision ε if the following conditions
hold:

(i) For any a ∈ [0, 1] there is a b ∈ L such that |b− a| ≤ ε.

(ii) For any a, b ∈ L, |a� b − a ·9 b| ≤ ε.

Note what the approximation of a t-norm according to Definition 2.3 means and what
it does not mean. The domain L of the approximating discrete t-norm is required
to be dense within the real unit interval to a prescribed degree, and on this domain
the approximating operation is supposed to deviate not more than a given threshold
from the original values. Thus the original t-norm can be reconstructed on a certain
subset with a definite precision; but the values in between are subject to bounds whose
difference can exceed the threshold.

We have to show that our definition is appropriate in the following sense: we should
be able to reconstruct a l.-c. t-norm provided we are given approximations with an
arbitrary precision.

Proposition 2.4. Assume that, for each n ≥ 1, the discrete t-norm ·9n approximates
the l.-c. t-norm � with the precision εn > 0, and limn→∞ εn = 0. Then � is the only
l.-c. t-norm with this property.

Proof. Let a, b ∈ [0, 1]. For each n, let Ln be the domain of ·9n and let a(n), b(n) ∈ Ln
be largest such that a(n) ≤ a and b(n) ≤ b, respectively. We conclude, using the
left-continuity of �, that then limn→∞ a(n) ·9n b(n) = a� b.

Proposition 2.4 depends on the left continuity of a t-norm. The following example
shows that this assumption is essential.

Example 2.5. Let us consider the t-norm proposed in [15, Ex. 3.75]. Let C ⊆ [0, 12 ]
and let

a�C b =

{
0 if a+ b < 1, or a+ b = 1 and a ∧ b ∈ C
a ∧ b otherwise.

Then �C is a t-norm, which coincides with the nilpotent minimum t-norm [8] if C =
[0, 1] and is otherwise not left-continuous.

For each n ≥ 1, let Ln = {0, 1
n , . . . , 1} and let ·9n be the restriction of �C to Ln.

Then ·9n is a discrete t-norm that approximates �C with the precision 1
2n . But the

sequence ·9n, n ≥ 1, only depends on C ∩Q. Consequently, ·9n approximates for each
n any other t-norm �C′ such that C ∩Q = C ′ ∩Q with the precision 1

2n as well.
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3 Totally ordered monoids

In what follows, we need an algebraic framework to deal with t-norms.

Definition 3.1. An algebra (L;�, 1) is a monoid if (i) � is an associative binary oper-
ation and (ii) 1 is neutral w.r.t. �. A total order ≤ on a monoid L is called compatible
if, for any a, b, c ∈ L, a ≤ b implies a � c ≤ b � c and c � a ≤ c � b. A structure
(L;≤,�, 1) such that (L;�, 1) is a monoid and ≤ is a compatible total order on L is a
totally ordered monoid, or tomonoid for short.

A tomonoid L is called commutative if the monoidal operation � is commutative. L is
called negative if the neutral element 1 is the top element. L is called quantic if (i) L
is almost complete and (ii) for any elements a, bι, ι ∈ I , of L we have

a�
∨
ι bι =

∨
ι(a� bι) and (

∨
ι bι)� a =

∨
ι(bι � a).

We note that negative tomonoids are often also called integral. Furthermore, by a
totally ordered set to be almost complete, we mean that all non-empty suprema ex-
ist. This means, informally, that the totally ordered set is complete up to the possible
absence of a least element. There is a simple practical reason to require almost com-
pleteness rather than completeness: filters – which we define below – would otherwise
lead outside the class of tomonoids that we consider here. Note finally that any quantic
tomonoid L is residuated; for any a, b ∈ L, there is a largest c ∈ L such that a� c ≤ b
as well as a largest d ∈ L such that d� a ≤ b.
Let [0, 1] be the real unit interval, endowed with its natural order. Then obviously, a
binary operation� on [0, 1] is a t-norm if and only if ([0, 1];≤,�, 1) is a commutative,
negative tomonoid. We refer to this structure as the tomonoid based on �. Moreover,
a t-norm � is left-continuous if and only it the tomonoid based on � is quantic. Con-
sequently, our objective are quantic, negative, commutative tomonoids; we abbreviate
these three properties with “q.n.c.”.

Similarly, let L be a finite subset of [0, 1] containing 0 and 1, endowed with its natural
order. Then a binary operation ·9 on L is a discrete t-norm if and only if (L;≤, ·9, 1)
is a commutative, negative tomonoid. Again, we refer to this structure as the tomonoid
based on ·9. Note that, trivially, this tomonoid is also quantic, that is, a q.n.c. tomonoid
as well.

The Cayley tomonoid

Each monoid can be identified with a monoid of mappings under composition. To
this end, each element a of a monoid (M ;�, 1) is identified with the mapping M →
M, x 7→ x� a, and the composition of mappings takes over the role of the monoidal
operation. In [3], this is called the regular representation of monoids. It generalises
the representation of groups by transformations groups, which goes back to A. Cayley.

A representation of q.n.c. tomonoid along these lines is, from a formal point of view,
not essential for the results of this paper, yet a quite practical tool. Not only is the
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visual representation simplified compared to the commonly used three-dimensional
graphs. What is important here is that we can represent the quotient structure of q.n.c.
tomonoid in a transparent way, facilitating the understanding of our main result. We
recall here only the basic facts; for more details, we may refer to our previous papers
[22, 23].

Definition 3.2. Let (R;≤) be a totally ordered set, and let Φ be a set of order-preserving
mappings from R to R. We denote by ≤ the pointwise order on Φ, by ◦ the composi-
tion of mappings, and by idR the identity mapping on R. Assume that (i) ≤ is a total
order on Φ, (ii) Φ is closed under ◦, and (iii) idR ∈ Φ. Then we call (Φ;≤, ◦, idR) a
composition tomonoid on R.

It is easily checked that a composition tomonoid is in fact a tomonoid. Conversely,
each tomonoid can be viewed as a composition tomonoid.

Proposition 3.3. Let (L;≤,�, 1) be a tomonoid. For each a ∈ L, put

λa : L → L, x 7→ x� a, (1)

and let Λ = {λa : a ∈ L}. Then (Λ;≤, ◦, idL) is a composition tomonoid on L, and

π : L → Λ, a 7→ λa (2)

is an isomorphism of (L;≤,�, 1) with (Λ;≤, ◦, idL).

Moreover, L is commutative if and only if ◦ is commutative; L is negative if and only if
idL is the top element of Λ; and L is quantic if and only if (i) L is almost complete and
every λ ∈ Φ preserves arbitrary suprema and (ii) Λ is almost complete and suprema
are calculated pointwise.

Given a q.n.c. tomonoid (L;≤,�, 1), we call the composition tomonoid (Λ;≤, ◦, idL)
associated with L according to Proposition 3.3 the Cayley tomonoid of L.

Example 3.4. By Proposition 3.3, each left-continuous t-norm can be identified with
a monoid under composition of pairwise commuting, increasing, and left-continuous
mappings from [0, 1] to [0, 1], which are moreover pairwise comparable and located
below the identity. Recall that

a�1 b = (a+ b− 1) ∨ 0,

a�2 b = a · b,
a�3 b = a ∧ b

defines the Łukasiewicz, product, and Gödel t-norm, respectively. The Cayley tomono-
ids of the t-norm monoids based on these t-norms are shown in Figure 1 in a schematic
way.

A few additional properties and facts about tomonoids will be needed in the sequel.

We call a tomonoid L finitely generated if L is finitely generated as a monoid. The
following lemma can be found in [6, Corollary 1.2]. It is, in addition, a special case of
[13, Theorem 7.5].
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Figure 1: The Łukasiewicz, product, and Gödel t-norm.

Lemma 3.5. Let (L;≤,�, 1) be a negative, commutative tomonoid that is finitely gen-
erated. Then each subset of L possesses a largest element. In particular, L is quantic.

We will call a q.n.c. tomonoid (L;≤,�, 1) Archimedean if, for any a ≤ b < 1, there
is an n ≥ 1 such that b�n ≤ a. Here, b�n = b � . . . � b (n factors). We should
note that the Archimedean property has in the particular context of t-norms often been
defined slightly differently; e.g., in [15], the definition is similar but restricted to the
non-zero elements. Thus, e.g., the product t-norm is Archimedean in the sense of [15],
whereas the tomonoid based on the product t-norm is not Archimedean according to
the definition employed here.

Furthermore, a q.n.c. tomonoid that possesses a least element will be called bounded.

Lemma 3.6. Let (L;≤,�, 1) be a q.n.c. tomonoid which is finitely generated, Archi-
medean, and bounded. Then L is finite.

Proof. LetG be a finite set of generators of L and let 0 be the least element of L. Then,
for each g ∈ G, there is a k ≥ 1 such that g�k = 0. Hence L is finite.

4 Quotients of tomonoids

The essential means that we need for the approximation of t-norms is the formation of
tomonoid quotients. Namely, with each q.n.c. tomonoid, we may associate the chain
of quotients arising from filters.

We note that the explanations of this section are bound to our particular context; for
congruences of residuated lattices we refer to [2] or [10, Chapter 4]. For further details
on congruences of tomonoids based on t-norms, we refer to [23].

In what follows, a subtomonoid of a tomonoid L is a submonoid of L endowed with
the total order inherited from L. Note that a subtomonoid of a negative, commutative
tomonoid is again negative and commutative.
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Definition 4.1. Let (L;≤,�, 1) be a q.n.c. tomonoid. Then a filter ofL is a subtomonoid
(F ;≤,�, 1) of L such that f ∈ F and g ≥ f imply g ∈ F .

Note that each q.n.c. tomonoid possesses at least one filter. The filter F = {1} will be
called trivial, any other filter non-trivial. Moreover, the filter F = L is called improper,
any other filter proper. Note furthermore that each filter of a q.n.c. tomonoid is again a
q.n.c. tomonoid.

It is obvious from Definition 4.1 that, for any two filters of a q.n.c. tomonoid, one is
included in the other one. That is, the set of filters is a chain under set-theoretical
inclusion. This chain is bounded; the trivial filter is the smallest filter, the improper
filter is the largest filter.

Quotients of tomonoids are defined as follows.

Definition 4.2. Let (L;≤,�, 1) be a q.n.c. tomonoid. An equivalence relation ∼ on L
is called a tomonoid congruence if (i) ∼ is a congruence of L as a monoid and (ii) the
∼-classes are convex. We endow then the quotient 〈L〉∼ with the total order given by

〈a〉∼ ≤ 〈b〉∼ if a′ ≤ b′ for some a′ ∼ a and b′ ∼ b

for a, b ∈ L, with the induced operation �, and with the constant 〈1〉∼. The resulting
structure (〈L〉∼;≤,�, 〈1〉∼) is called a tomonoid quotient of L.

Because we work with a total order, each ∼-class is of the form (u, v), (u, v], [u, v), or
[u, v] for some u, v ∈ L such that u < v, or {u} for some u ∈ L. Note moreover that
for two ∼-classes of a tomonoid quotient we have 〈a〉∼ < 〈b〉∼ if and only if a′ < b′

for all a′ ∼ a and b′ ∼ b.
Each filter gives rise to a quotient. We will consider in the sequel actually only quo-
tients arising in this way. We remark that q.n.c. tomonoids possess in general further
quotients. For instance, a Rees quotient arises from a negative tomonoid L by iden-
tifying all elements below some given q ∈ L; see, e.g., [6]. We may, however, also
mention that the quotients induced by filters, which we consider here, are exactly those
that preserve also the residual [2].

Definition 4.3. Let F be a filter of a q.n.c. tomonoid L. For a, b ∈ L, let

a ∼F b if a = b,
or a < b and there is a f ∈ F such that b� f ≤ a,
or b < a and there is a f ∈ F such that a� f ≤ b.

Then we call ∼F the congruence induced by F .

Given a q.n.c. tomonoid L and a filter F , it is easily verified that the congruence in-
duced by F is a monoid congruence, and the quotient is in fact a tomonoid. We will
denote this quotient by L/F . Moreover, for a ∈ L, we will write a/F instead of 〈a〉∼F

and call this set an F -class. For A ⊆ L, we will write A/F = {a/F : a ∈ A}.
It is clear that the formation of a quotient preserves negativity and commutativity. It
might be considered as a less trivial fact that the same applies to quanticity; for a proof,
see [23].
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Lemma 4.4. Let (L;≤,�, 1) be a q.n.c. tomonoid, and let (F ;≤,�, 1) be a filter of
L. Then L/F is again a q.n.c. tomonoid.

Example 4.5. In the sequel, to keep definitions of t-norms as short as possible, we will
in general not provide full specifications, but assume commutativity to be used to cover
all cases. In this sense, let

a�4 b =



4ab− 3a− 3b+ 3 if a, b > 3
4 ,

4ab− 3a− 2b+ 2 if 1
2 < a ≤ 3

4 and b > 3
4 ,

4ab− 3a− b+ 1 if 1
4 < a ≤ 1

2 and b > 3
4 ,

4ab− 3a if a ≤ 1
4 and b > 3

4 ,

2ab− a− b+ 3
4 if 1

2 < a, b ≤ 3
4 ,

ab− 1
2a−

1
4b+ 1

8 if 1
4 < a ≤ 1

2 and 1
2 < b ≤ 3

4 ,

0 if a ≤ 1
4 and 1

2 < b ≤ 3
4 , or a, b ≤ 1

2 .

Then �4 is a l.-c. t-norm, which, in a modified form, was defined by Hájek in [12].
The t-norm monoid ([0, 1];≤,�4, 1) possesses the filter F = ( 3

4 , 1], and the F -classes
are {0}, (0, 14 ], ( 1

4 ,
1
2 ], ( 1

2 ,
3
4 ], and ( 3

4 , 1]. The quotient by F is isomorphic to L5, the
five-element Łukasiewicz chain.

On the basis of this example, Figure 2 shows how the Cayley tomonoid of a quotient
arises from the Cayley tomonoid of the original tomonoid.

Figure 2: The tomonoid based on the t-norm �4 possesses the proper, non-trivial filter F =
( 3
4
, 1]. On the left, we see its Cayley tomonoid. On the right, we see the Cayley tomonoid of the

five-element quotient L5.

We conclude this section with a couple of lemmas related to filters and quotients.

Lemma 4.6. Let (L;≤,�, 1) be a q.n.c. tomonoid. Let F1 and F2 be filters of L such
that F2 ⊂ F1. Moreover, let R ⊆ L be an F1-class. If R/F2 possesses a least element,
then R itself possesses a least element.
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Proof. Let LR be the least element of R/F2, and let r ∈ LR. By assumption, there is
a g ∈ F1 such that g < f for all f ∈ F2. Then r � g is a lower bound of LR and an
element of R; consequently, r � g is the least element of R.

We next compile some consequences of the property of being finitely generated.

Lemma 4.7. Let (L;≤,�, 1) be a finitely generated q.n.c. tomonoid. Then L has only
finitely many filters.

Proof. Let G be a finite subset of L generating L. Then any a ∈ L is a product of
elements of {g ∈ G : g ≥ a}. Consequently, each filter F of L is generated by F ∩G,
and it follows that there are only finitely many filters.

Lemma 4.8. Let (L;≤,�, 1) be a finitely generated q.n.c. tomonoid. Let F1 and F2

be filters of L such that F2 ⊆ F1. If both L/F1 and F1/F2 are finite, then also L/F2

is finite.

Proof. Let L/F1 and F1/F2 be finite, and let R ∈ L/F2. We claim that, for some
k ≥ 1, we have R�(k+1) = R�k in the tomonoid quotient L/F2; the lemma will then
follow from the fact that L/F2 is finitely generated. There are two cases:

Case 1. Assume R ⊆ F1. Since F1/F2 is by assumption finite, we have R�(k+1) =
R�k for some k ≥ 1.

Case 2. Assume R ⊆ S for some S ∈ L/F1 different from F1. Then there is a k ≥ 1
such that S�(k+1) = S�k in the tomonoid quotient L/F1, because L/F1 is finite.
Consequently,R�k andR�(k+1) are in the same F1-class, namely S�k. ButR < T for
any T ∈ F1/F2, henceR�(k+1) = R�k�R ≤ U for anyU ∈ S�k/F2. Consequently,
R�(k+1) is the least element of S�k/F2, and it follows R�(k+2) = R�(k+1).

Our last lemma concerns the Archimedean property.

Lemma 4.9. Let (L;≤,�, 1) be a q.n.c. tomonoid, and assume that L possesses a
largest proper filter F . Then L/F is Archimedean.

Proof. Let R,S ∈ L/F such that R < S < F . Let r ∈ R and s ∈ S. Then s /∈ F ,
and since the only filter properly containing F is L, there is a k ≥ 1 such that s�k ≤ r.
It follows S�k ≤ R and the assertion is shown.

5 Some example cases

Before turning to the general theorem about the approximation of l.-c. t-norms, we
consider a number of simple examples in order to provide a first impression of what
we have in mind. Let us fix some 0 < ε < 1.

First, consider the Łukasiewicz t-norm �1. This case is particularly easy because the
tomonoid ([0, 1];≤,�1, 1) is locally finite: any finite subset of [0, 1] generates a finite
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subtomonoid. More specifically, given ε, choose n large enough such that 1
n ≤ ε.

Let L = {0, 1
n ,

2
n , . . . , 1}, and let ·9 be the restriction of � to L. Then ·9 obviously

approximates � with the precision ε
2 . An illustration is provided in Figure 3 (left).

Figure 3: The Cayley tomonoids of a t-norm and of its approximating discrete t-norm. Left:
Approximation of the Łukasiewicz t-norm. Right: Approximation of the product t-norm.

The tomonoid based on the Gödel t-norm �3 is locally finite as well. Consequently,
we can proceed exactly in the same way.

Let us next consider the product t-norm�2. Note that the tomonoid based on�2 is not
locally finite. Let ζ = 1 − ε, and let k ≥ 1 be large enough such that e = ζ�2k ≤ ε.
Let L = {0, ζ�2k, ζ�2(k−1), . . . , ζ, 1}, and let ·9 be defined as follows:

a ·9 b =


a · b for a, b > 0 such that a · b ≥ e,
e for a, b > 0 such that a · b < e,
0 if a = 0 or b = 0.

Consider (L;≤, ·9, 1), the tomonoid based on ·9. Interpreting the notion of an ordinal
sum according to [1], L is the ordinal sum of the k+ 1-element Łukasiewicz chain and
the two-element tomonoid. Obviously, the operation ·9 deviates from the product of
reals by less than e ≤ ε, and it follows that ·9 approximates � with the precision ε. Cf.
Figure 3 (right).

As the basic feature of this approximation, we may observe the following. The tomo-
noid based on the product t-norm possesses the filter (0, 1], and the induced congruence
has the two classes {0} and (0, 1]. The latter class is a left-open real interval and con-
tains the infinitely many powers ζ, ζ2, ζ3, . . . for any 0 < ζ < 1. For the construction
of the discrete t-norm ·9 above, we have, so-to-say, “trimmed” the interval (0, 1] and
replaced it by [e, 1], and all non-zero products smaller than e are mapped to e.

Let us finally consider a somewhat more involved example, which is taken from [22];
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cf. Figure 4:

a�5 b =


2ab− a− b+ 1 if a, b > 1

2 ,
1
2 (2a)

1
2b−1 if a ≤ 1

2 and b > 1
2 ,

0 if a, b ≤ 1
2 .

Figure 4: Left: The t-norm �5. Right: An approximation of �5.

Let ζ = 1− ε and η = 1
2 − ε; let k ≥ 1 be large enough such that e = ζ�5k ≤ 1

2 + ε

and f = η �5 ζ
�5k ≤ ε. Then put L = {0, η �5 ζ

�5k, η �5 ζ
�5(k−1), . . . , η, 12 , ζ

�5k,

ζ�5(k−1), . . . , ζ, 1} and define

a ·9 b =


(2ab− a− b+ 1) ∨ e if a, b > 1

2 ,
1
2 (2a)

1
2b−1 ∨ f if 0 < a ≤ 1

2 and b > 1
2 ,

0 if a, b ≤ 1
2 .

On L, ·9 then differs from � not more than ε. The actual precision that we gain in this
way depends on the maximal difference between neighbouring elements of L.

Note that the tomonoid based on�5 has a congruence with the classes {0}, (0, 12 ), { 12},
and ( 1

2 , 1]. Once again applying our loose formulation, we “trimmed” the intervals
(0, 12 ) and ( 1

2 , 1]; we replaced the former by [f, η] and the latter by [e, 1].

This last example shows quite clearly the idea of the approximation theorem that fol-
lows. In the general case, we have to account for the nested structure of quotients. The
process of “trimming” equivalence classes to closed intervals is repeated successively
for each congruence.

6 Approximation by discrete t-norms

This section contains the main result of this paper.
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For convenience, we will use the notion of approximation in a more general way. Let
(L;≤,�, 1) and (L′;≤,�′, 1) be q.n.c. tomonoids such that L′ ⊆ L ⊆ [0, 1] and the
total order is the natural one. Then we say that L′ approximates L with the precision
ε > 0 if (i) for any a ∈ L there are b ∈ L′ such that |b− a| ≤ ε and (ii) for a, b ∈ L′,
we have |a�′ b − a� b| ≤ ε.
For q.n.c. tomonoids L, L′, L′′, the following fact is then immediate. Assume that L′′
approximates L′ with some precision ε1 > 0, and L′ approximates in turn L with the
precision ε2 > 0. Then L′′ approximates L with the precision ε1 + ε2.

Theorem 6.1. Every l.-c. t-norm can be approximated by a discrete t-norm with an
arbitrary precision.

Proof. Let � be a l.-c. t-norm, and let 0 < ε < 1. Then ([0, 1];≤,�, 1) is a q.n.c.
tomonoid. Let G be a finite subset of [0, 1] containing 0 and 1 and such that neighbour-
ing elements of G do not differ by more than ε. Let (L1;≤,�1, 1) be the subtomonoid
of [0, 1] generated by G. Obviously then, L1 approximates ([0, 1];≤,�, 1) with the
precision ε

2 . Note that L1 is negative and commutative; by Lemma 3.5, L1 is in fact a
q.n.c. tomonoid.

As L1 is finitely generated, L1 possesses by Lemma 4.7 finitely many filters. Let
L1 = F0 ⊃ F1 ⊃ . . . ⊃ Fk = {1} be the filters of L1. If k = 1, L1 is Archimedean;
since L1 contains by assumption 0, L1 is by Lemma 3.6 in this case finite, and we are
done.

Assume k ≥ 2. We shall construct a sequence L1, . . . ,Lk of q.n.c. tomonoids with a
successively restricted domain, such that Li approximates Li−1, i = 2, . . . , k, with the
precision ε

2k . Moreover, the last tomonoid, Lk, will be finite. It will then follow that
Lk approximates L with the precision ε and the theorem will be proved.

F1 is the largest proper filter, hence L1/F1 is Archimedean by Lemma 4.9. Moreover,
L1/F1 is finitely generated and has the least element 0/F1, thus it is finite by Lemma
3.6.

We summarise that L1 is a finitely generated, bounded q.n.c. tomonoid possessing the
filters F1 ⊃ . . . ⊃ Fk = {1} such that L1/F1 is finite. For the construction of L2, we
consider the next largest filter to F1, which is F2. Note that F1/F2 is by Lemma 4.9
Archimedean. We distinguish two cases.

Case 1. Let F1/F2 have a least element. Then F1/F2 is finite by Lemma 3.6, and
by Lemma 4.8, L1/F2 is finite as well. We let (L2;≤,�2, 1) coincide with (L1;
≤,�1, 1). Trivially then, L2/F2 is finite and L2 approximates L1 with the precision 0.

Case 2. Let us assume that F1/F2 does not have a least element.

Each F1-class R is the disjoint union of F2-classes. As L1/F2 is finitely generated,
R/F2 contains by Lemma 3.5 a greatest element, which we denote by UR.

We next choose an element LF1 ∈ (F1/F2)\{F2} such that, for each R ∈ L1/F1, the
following holds: (1) if R/F2 possesses a least element, UR �1 LF1

is this element;
(2) if R/F2 does not possess a least element, then for any a ∈ R such that a/F2 <
UR �1 LF1

, there is a b ∈ UR �1 LF1
such that b− a ≤ ε

2k . Because L1/F1 is finite,
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such a choice is possible.

For each R ∈ (L1/F1)\{F1}, let LR = UR �1 LF1
. For each R ∈ L1/F1, we claim

that LR possesses in L1 an infimum, and we put lR = inf LR. Indeed, if LR is not
the least element of R/F2, LR is lower bounded, hence the infimum exists because L1

is quantic. And if LR is the least F2-class contained in R, then LR possesses a least
element by Lemma 4.6. We furthermore observe in both cases that lR ∈ R.

Let L2 be the union of the sets {a ∈ R : a ≥ lR}, R ∈ L1/F1. Note that F2 and
consequently all filters F3, . . . , Fk are contained in L2, and also 0, 1 ∈ L2.

We have to endow L2 with a tomonoid structure. We let the total order and the constant
1 be as in L1. We define the product of a, b ∈ L2 as follows:

a�2 b = (a�1 b) ∨ lR, where R ∈ L1/F1 is such that a�1 b ∈ R. (3)

By construction, a �2 b and a �1 b differ not more than by ε
2k . Moreover, we easily

check that �2 is commutative, neutral w.r.t. 1, and in both arguments monotone.

We insert a remark before continuing. Let R,S ∈ L1/F1 and T = R �1 S. We claim
that then, for any a ∈ R,

a�1 lS ≤ lT (4)

and consequently, for any a ≥ lR, a �2 lS = lT . In fact, in L1/F2, we have
a/F2 �1 US ≤ UT , hence a/F2 �1 LS = a/F2 �1 US �1 LF1

≤ UT �1 LF1
= LT .

Let s ∈ LS ; then (a �1 s)/F2 ≤ LT and lS ≤ s �1 f for all f ∈ F2, and it follows
a�1 lS ≤ inff∈F2 (a�1 s�1 f) = inf (a�1 s)/F2 ≤ inf LT = lT , and (4) is shown.

We now prove the associativity of�2. Let a, b, c ∈ L2. LetR,S ∈ L1/F1 be such that
a�1 b ∈ R and a�1 b�1 c ∈ S. Then (a�2 b)�2 c = (((a�1 b)∨ lR)�1 c)∨ lS =
(a�1 b�1 c) ∨ (lR �1 c) ∨ lS = (a�1 b�1 c) ∨ lS , where we have made use of the
monotonicity of �1 and (4). It follows that �2 is associative.

We have proved that (L2;≤,�2, 1) is a negative, commutative tomonoid. Moreover, it
follows from (4) that, in L1, each element of L2 is a product of elements of G ∩ L2.
Hence G ∩ L2 generates L2, that is, L2 is finitely generated. By Lemma 3.5, L2 is
quantic. Thus L2 is a q.n.c. tomonoid approximating L1 with the precision ε

2k .

L2 possesses the filter F ′1 = L2 ∩ F1 = {a ∈ F1 : a ≥ lF1}, and for each F1-class R
of L1, R ∩L2 = {a ∈ R : a ≥ lR} is an F ′1-class of L2. In particular, L2/F

′
1 is finite.

Moreover, F ′1/F2 is Archimedean and has a least element, hence it is finite as well. We
conclude by Lemma 4.8 that L2/F2 is finite.

We summarise that, in Case 1 as well as in Case 2, L2 is a finitely generated, bounded
q.n.c. tomonoid possessing the filters F2 ⊃ . . . ⊃ Fk = {1} such that L2/F2 is finite.
If k ≥ 3, we may repeat the construction k − 2 further times, to end up with the q.n.c.
tomonoid Lk possessing the filter Fk such that Lk/Fk is finite. But Fk = {1}, that is,
Lk is itself finite.

Remark 6.2. We add that Theorem 6.1 states the existence of a discrete t-norm ap-
proximating a given l.-c. t-norm only. However, the proof actually indicates a method
how to determine it. Note that, according to this method, the approximation is from
above, as is obvious from (3).
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To find a good example illustrating Theorem 6.1 is not straightforward; t-norms with
a suitable set of quotients are not common in the literature. An exception, however,
exists. In several papers t-norms have been discussed that are special for the property
of being left-continuous but having a set of discontinuity points that is dense in [0, 1]2.
The following example is due to R. Mesiar [17] and further discussed in [21].

Example 6.3. Let Z− = {a ∈ Z : a ≤ 0}, the set of negative integers, be endowed
with the natural order, the usual addition, and the constant 0. Then (Z−;≤,+, 0)
is a q.n.c. tomonoid. Let furthermore (Z−)ω be the Cartesian product of countably
infinitely many copies of Z−, that is, the set of sequences (a0, a1, . . .) in Z−. Let
us endow (Z−)ω with the lexicographic order, the componentwise addition, and the
constant 0̄ = (0, . . .). Then ((Z−)ω;≤,+, 0̄) is a q.n.c. tomonoid as well.

This tomonoid is not bounded, but we can add a least element in the usual way. Let
W = (Z−)ω ∪{z}, where z is a new element; extend the total order to W by making z
the least element; and let +̃ be the extension of the componentwise addition such that
z is absorbing for +̃, that is, z +̃w = w +̃ z = z for all w ∈W . Then (W ;≤, +̃, 0̄) is
a bounded q.n.c. tomonoid.

Note that W is order-isomorphic with the real unit interval. Let us fix an order isomor-
phism ϕ : W → [0, 1] and let us define �6 : [0, 1]2 → [0, 1], (a, b) 7→ ϕ(ϕ−1(a) +̃
ϕ−1(b)). Then �6 is a l.-c. t-norm.

Let us see how �6 can be approximated by a discrete t-norm. Let n ≥ 0 and m < 0,
and consider the subset

W ′ = {(a0, . . . , an, 0, . . .) : a0, . . . , an ≥ m;

if ai = m for some 0 ≤ i ≤ n− 1, then ai+1 = . . . = an = 0}
∪ {z}

of W . Endow W ′ with the lexicographic order ≤, the truncated addition +, and the
constant 0̄. By the truncated addition, we mean the operation absorbing for z and
otherwise defined as follows:

(a0, . . . , an, 0, . . .) + (b0, . . . , bn, 0, . . .)

=

{
(a0 + b0, . . . , an + bn, 0, . . .) if a0 + b0, . . . , an + bn > m

(a0 + b0, . . . , ai−1 + bi−1, m, 0, . . .) if a0 + b0, . . . , ai−1 + bi−1 > m

and ai + bi ≤ m, where 0 ≤ i ≤ n.

Then (W ′;≤,+, 0̄) is a finite q.n.c. tomonoid, and under the isomorphism ϕ we get a
discrete t-norm ·9. The latter apparently approximates �6 with an arbitrary precision,
provided that we choose n large enough and m small enough.

7 Approximation by finitary t-norms

In our last section, we raise the question if l.-c. t-norms can be approximated by other
t-norms, that is, by t-norms of a specific simple type. Given the result of the previous
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section, it seems natural to ask if t-norms that arise from discrete t-norms can play
the role of approximating functions. This is indeed possible, although the mode of
approximation is somewhat non-standard.

Let us recall that any finite q.n.c. tomonoid can be isomorphically embedded into a
tomonoid based on a t-norm. A canonical way of doing so can be found in [14]; cf.
also [22].

Lemma 7.1. Let (L;≤,�, 1) be a finite negative, commutative tomonoid. Let 0 be its
least element, and let

L̄ = {(a, r) : a ∈ L\{0} and r ∈ R such that − 1 < r ≤ 0} ∪ {(0, 0)},

endowed with the lexicographical order. For (a, r), (b, s) ∈ L̄ define

(a, r)� (b, s) = (a, r) ∧ (b, s) ∧ (a� b, 0).

Then (L̄;≤,�, (0, 0), (1, 0)) is a q.n.c. tomonoid. Moreover, the mapping ϑ : L →
L̄, a 7→ (a, 0) is an isomorphic embedding of tomonoids.

We draw the obvious conclusion.

Proposition 7.2. Let ·9 : L2 → L be a discrete t-norm. Then ·9 can be extended to a
l.-c. t-norm � as follows:

a� b = a ∧ b ∧ (ā ·9 b̄), (5)

where ā, b̄ are the smallest elements of L such that a ≤ ā and b ≤ b̄, respectively.

Proof. The universe of the tomonoid constructed in Lemma 7.1 is order-isomorphic to
the real unit interval.

Definition 7.3. A t-norm arising from a discrete t-norm according to Proposition 7.2
will be called finitary.

It is now natural to ask if finitary t-norms can approximate a l.-c. t-norm. An answer
is not straightforward because, according to our procedure, the discrete t-norms ap-
proximate the t-norms from above rather from below. However, the following theorem
proposes an alternative kind of approximation.

Theorem 7.4. Let� be a l.-c. t-norm. Then there are finitary t-norms�n, n ∈ N, such
that, for a, b ∈ (0, 1], we have

a� b = lim
a′↗a, b′↗b

lim
n→∞

a′ �n b′.

Proof. Let ·9n, n ∈ N be discrete t-norms approximating � with the precision εn,
respectively, such that limn→∞ εn = 0. Let �n, n ∈ N, be the finitary t-norms arising
from ·9n.
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We assume that ·9n are constructed according to the proof of Theorem 6.1. By Remark
6.2, for each n ∈ N and a, b in the domain of ·9n, we then have a � b ≤ a ·9n b.
It follows that a � b ≤ a �n b for any a, b ∈ [0, 1]. In fact, in the notation of (5),
either ā ·9n b̄ < a ∧ b and then a �n b = ā ·9n b̄ ≥ ā � b̄ ≥ a � b; or otherwise
a�n b = a ∧ b ≥ a� b.
Fix now a pair a, b ∈ (0, 1]. Let furthermore a′ < a and b′ < b. From a′�b′ ≤ a′�n b′
for each n we conclude a′ � b′ ≤ limn→∞ a′ �n b′.
For each n, let now a(n), b(n) be the largest elements in the domain of ·9n such that
a(n) ≤ a and b(n) ≤ b. For sufficiently large n, we have a′ ≤ a(n) ≤ a and b′ ≤
b(n) ≤ b and hence a′ �n b′ ≤ a(n) ·9n b(n). But by (the proof of) Proposition 2.4,
limn→∞ a(n) ·9n b(n) = a� b, and we conclude limn→∞ a′ �n b′ ≤ a� b.
We have seen that a′� b′ ≤ limn→∞ a′�n b′ ≤ a� b. By the left-continuity of �, the
claim follows.

8 Conclusion

We have dealt with the question if left-continuous triangular norms can be approxi-
mated by finitary means and we have given an affirmative answer. Namely, we may
associate with an arbitrary l.-c. t-norm � a discrete t-norm – which is a finite totally
ordered monoid – that, in a natural sense, approximates � to an arbitrary given de-
gree of accuracy. Alternatively, we may also define a sequence of t-norms �n all of
which are definable by finitary means and which, in a specific sense, converge to �.
Given the fact that examples of l.-c. t-norms became over the years more and more
involved, culminating in cases of dense sets of discontinuity points, these results might
be considered of interest.

We may furthermore ask if we have contributed in this way to a deeper understanding
of l.-c. t-norms. One certainly never knows; however, scepticism might be in place for
a simple reason. Even if left-continuous t-norms are reducible to the finitary discrete
t-norms, it must not be forgotten that we struggle with the theory of finite negative,
commutative tomonoids as well.

Seen from an algebraic perspective, our work might nevertheless be found to contain
some interesting aspects. The tomonoids that we determined successively in the proof
of Theorem 6.1 arose on the basis of a construction that could be considered as a “gen-
eralised Rees quotient”. Such a construction leads in general to technical difficulties,
which we have avoided here by a certain finiteness condition. Still it would be inter-
esting to explore if we can define tomonoid quotients on the basis of the ideas that we
have used in this paper for the approximation of t-norms.

Acknowledgement. I would like to express my gratitude to the anonymous reviewers,
whose valuable comments improved the paper considerably.
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[11] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dor-
drecht, 1998.
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