
BL-ALGEBRAS AND EFFECT ALGEBRAS

THOMAS VETTERLEIN

Abstract. Although the notions of a BL-algebra and of an effect
algebra arose in rather different contextes, both types of algebras
have certain structural properties in common. To clarify their mu-
tual relation, we introduce weak effect algebras, which generalize
effect algebras in that the order is no longer necessarily determined
by the partial addition. A subclass of the weak effect algebras is
shown to be identifiable with the BL-algebras.

Moreover, weak D-posets are defined, being based on a partial
difference rather than a partial addition. They are equivalent to
weak effect algebras.

Finally, it is seen to which subclasses of the weak effect algebras
certain subclasses of the BL-algebras, namely the MV-, product,
and Gödel algebras, correspond.

1. Introduction

Basic Logic, or BL for short, has been introduced by Hájek in order to
provide a general framework for formalizing statements of fuzzy nature
[Haj]. It is an adequate calculus when we have to do with statements
about which we may say that they are true principally only to a certain
degree, that is, to which it is in general unreasonable or impossible to
assign a sharp yes or no.

Formulas of propositional BL may be interpreted by means of BL-
algebras [Haj, Got]. With respect to a semantics defined in this way,
BL is complete: formulas proved by BL are exactly those valid in any
BL-algebra.

The situation is different in quantum logics; in this case, we have to
do with statements of a probabilistic character. For instance, the logic
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UPaQL from [DaGi], which could be called the Logic of Effects, is
aimed at formalizing statements arising in connection with a quantum
mechanical experiment. A typical such statement would say that a cer-
tain quantum-mechanical yes-no experiment leads to a positive result.
Again we have to do with statements to which it is principally impos-
sible to assign a sharp truth value – but this time for the reason that a
certain test result is unpredictable.

The interpretation of formulas of UPaQL is accomplished by effect al-
gebras [FoBe]. Also in this case, a completeness theorem has been
proved.

So it is clear that we have to distinguish sharply between statements
of fuzzy character, treated in the framework of BL, and statements of
probabilistic character, as they arise in quantum logics. Nevertheless,
the algebraic structures on which the models of both mentioned logics
may be based, clearly have structural properties in common, and we
feel free to examine the question to what extent both types of algebras
may be brought onto a common line. That is, what we do in this article
is to compare BL-algebras and effect algebras and to see that they are
not as distinct as one could expect.

It is certainly easy to see that effect and BL-algebras have nothing in
common but MV-algebras, which may be considered as rather small
subclasses of both types of algebras. This is not our subject. We shall
rather show that by a slight generalization of effect algebras, we arrive
at a structure which includes not only all effect algebras, but also all
BL-algebras.

We proceed as follows. We review in the following Section 2 some facts
about BL-algebras, summarizing results from a preceding paper [Vet].
In particular, we show how to axiomatize (the dual of) a BL-algebra
on the base of a single addition-like operation. In Section 3, we turn to
effect algebras, and we introduce the notion of a weak effect algebra.
This new structure is a poset endowed with a partial addition which is
compatible with the order. The only difference to effect algebras lies
in the fact that the order is no longer necessarily determined by the
addition.

We then see in Section 4 how BL-algebras may be understood as certain
weak effect algebras. Namely, we may restrict the addition of (the dual
of) a BL-algebra to a partial, but cancellative operation; then we arrive
at a weak effect algebra with certain further properties.
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Moreover, effect algebras are equivalent to D-posets. In analogy to this
fact, we will also define a version of our weak effect algebras based on
a difference rather than an addition. This is done in Sections 5 and 6.

Finally, we establish in Section 7 which subclasses of weak effect al-
gebras correspond to the best known subclasses of BL-algebras: the
MV-algebras, product algebras, and Gödel algebras.

2. BL-algebras

BL-algebras were introduced as those algebras which are appropriate
to model formulas of Hájek’s Basic Logic [Haj, Got]. They may be
understood as being residuated lattices fulfilling some further natural
requirements [Haj, Vet].

Definition 2.1. A BL-algebra is a structure (L;≤,⊙,⇒, 0, 1) such that
the following holds:

(BL1) (L;≤, 0, 1) is a lattice with a smallest element 0 and a largest
element 1.

(BL2) (L;⊙, 1) is a commutative monoid, that is, ⊙ is an associative
and commutative binary operation, and 1 is a neutral element
with respect to ⊙.

(BL3) ⊙ is compatible with ∧ and ∨, that is, we have a ⊙ (b ∧ c) =
(a ⊙ b) ∧ (a ⊙ c) and a ⊙ (b ∨ c) = (a ⊙ b) ∨ (a ⊙ c) for any
a, b, c ∈ L.

(BL4) For any a, b ∈ L, a ⇒ b is the maximal element x such that
a ⊙ x ≤ b.

(BL5) ⇒ is compatible with ∧ and ∨, that is, we have a⇒ (b ∧ c) =
(a⇒b) ∧ (a⇒c) and a⇒(b ∨ c) = (a⇒b) ∨ (a⇒c) as well as
(b∧c)⇒a = (b⇒a)∨(c⇒a) and (b∨c)⇒a = (b⇒a)∧(c⇒a)
for any a, b, c ∈ L.

(BL6) L is naturally ordered with respect to ⊙, that is, for a, b ∈ L

we have a ≤ b if and only if a = b ⊙ x for some x ∈ L.

Rather than considering BL-algebras themselves, we will work with
their duals; they arise from BL-algebras simply by reversing the order
and by changing the order of the arguments of⇒.
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Definition 2.2. A structure (L;≤,⊕,⊖, 0, 1) is called a dual BL-algebra

if (L;≤BL,⊙,⇒, 0BL, 1BL) is a BL-algebra, where

a ≤ b iff b ≤BL a,

a ⊕ b = a ⊙ b, a ⊖ b = b⇒a,

0 = 1BL, 1 = 0BL.

We note that dual BL-algebras are the same as Iorgulescu’s reversed
right-BL algebras [Ior2].

Now, we intend to relate BL-algebras to effect algebras; and effect alge-
bras are based on a single (partial) addition. So what we will do first,
is to axiomatize BL-algebras on the base of a single (total) addition.
The following results are from [Vet, Theorem 3.3].

Definition 2.3. A naturally ordered abelian monoid, or NAM for short,
is a structure (L;≤,⊕, 0) with the following properties:

(NAM1) (L;≤, 0) is a poset with a smallest element 0.

(NAM2) ⊕ is a binary operation such that for any a, b, c ∈ L

(a) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c);

(b) a ⊕ 0 = a;

(c) a ⊕ b = b ⊕ a.

(NAM3) We have a ≤ b for a, b ∈ L if and only if a⊕ x = b for some
x ∈ L.

Moreover, a bounded NAM is a structure (L;≤,⊕, 0, 1) such that

(NAM1’) (L;≤, 0, 1) is a poset with a smallest element 0 and a largest
element 1,

and such that, with respect to (L;≤,⊕, 0), the axioms (NAM2) and
(NAM3) are fulfilled.

BL-algebras may be understood as bounded NAMs; the characteristic
properties are the following.

Definition 2.4. A bounded NAM (L;≤,⊕, 0, 1) is called of type BL if
the following conditions hold:

(NAM4) For any a, b ∈ L such that a ≤ b there is a smallest element
x ∈ L such that a ⊕ x = b.

(NAM5) For any a, b, c ∈ L such that c ≤ a⊕ b there are a1 ≤ a and
b1 ≤ b such that (α) c = a1 ⊕ b1 and (β) a1 = a in case
c ≥ a.
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(NAM6) For any a, b ∈ L, there are a1, b1, c ∈ L such that a = a1⊕c,
b = b1 ⊕ c, and a1 ∧ b1 = 0.

Moreover, if L is of type BL, we define the residuum of L to be the
binary operation ⊖, where

(1) b ⊖ a
def
= min {x: a ⊕ x = a ∨ b} for a, b ∈ L.

We note that bounded NAMs of type BL are distributive lattices, which
in particular makes possible the definition (1). Furthermore, b⊖ a may
be shown to be the smallest element x such that a ⊕ x ≥ b, which
justifies the notion “residuum”.

Concerning terminology, we further note that our bounded NAMs of
type BL are a dual analogue of the left-X-Hájek(R)-(X-BL) algebras
from [Ior2].

Theorem 2.5. Let (L;≤,⊕,⊖, 0, 1) be a dual BL-algebra. Then (L;≤
,⊕, 0, 1) is a bounded NAM of type BL, whose residuum is ⊖.

Conversely, let (L;≤,⊕, 0, 1) be a bounded NAM of type BL. Let ⊖ be

the residuum of L. Then (L;≤,⊕,⊖, 0, 1) is the unique expansion of L

to a dual BL-algebra.

Note that in a bounded NAM of type BL L, the supremum and infimum
of a pair a, b ∈ L calculates according to

a ∨ b = (b ⊖ a) ⊕ a,(2)

a ∧ b = [b ⊖ (b ⊖ a)] ∨ [a ⊖ (a ⊖ b)].(3)

We furthermore note that we have for any a, b, c ∈ L

(c ⊖ a) ⊖ b = c ⊖ (a ⊕ b),(4)

(c ⊖ b) ⊕ (b ⊖ a) = c ⊖ a if a ≤ b ≤ c,(5)

(a ⊖ b) ∧ (b ⊖ a) = 0.(6)

We conclude this section by noting that BL-algebras may also be axiom-
atized on the basis of their implication-like operation only [Ior1, Vet];
namely, we may identify BL-algebras with a subclass of the BCK-
algebras. For the notion of a BCK-algebra and the additional prop-
erties which we use here, see e.g. [MeJu]. For the sake of a consistent
notation within this article, we will write ⊖ for the basic operation of
a BCK-algebra instead of the usual ⋆.

Definition 2.6. A bounded BCK-algebra (L;≤,⊖, 0, 1) is called of

type BL if (i) it is with condition (S), (ii) for any a, b, c ∈ L such that
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c ≤ a, b we have a ≤ b iff a ⊖ c ≤ b ⊖ c, and (iii) for any a, b ∈ L we
have (a ⊖ b) ∧ (b ⊖ a) = 0.

Furthermore, if L is of type BL, we define the S-function of L to be the
operation ⊕, where, for a, b ∈ L, a ⊕ b is the maximal element y such
that y ⊖ a ≤ b.

Theorem 2.7. Let (L;≤,⊕,⊖, 0, 1) be a dual BL-algebra. Then (L;≤
,⊖, 0, 1) is a bounded BCK-algebra of type BL, whose S-function is ⊕.

Conversely, let (L;≤,⊖, 0, 1) be a bounded BCK-algebra of type BL. Let

⊕ be its S-function. Then (L;≤,⊕,⊖, 0, 1) is the unique expansion of

L to a dual BL-algebra.

3. Effect algebras and weak effect algebras

Effect algebras, introduced by Foulis and Bennett [FoBe], are modelled
upon the effects in Hilbert space, that is, upon the set of all positive
operators smaller than identity. Every such operator corresponds in
physics to a yes-no experiment performable at some quantum-physical
system.

We recall the definition of effect algebras. For comparative reasons, we
will handle the partial ordering ≤ as an own relation.

Definition 3.1. An effect algebra is a structure (L;≤, +, 0, 1) with the
following properties:

(E1) (L;≤, 0, 1) is a poset with a smallest element 0 and a largest
element 1.

(E2) + is a partial binary operation such that for any a, b, c ∈ E

(a) (a + b) + c is defined iff a + (b + c) is defined, and in this
case (a + b) + c = a + (b + c);

(b) a + 0 is always defined and equals a;

(c) a + b is defined iff b + a is defined, and in this case
a + b = b + a.

(E3) If, for a, b, c ∈ L, a + c and b + c are defined, then a ≤ b if and
only if a + c ≤ b + c.

(E4) We have a ≤ b for a, b ∈ L if and only if a + x = b for some
x ∈ L.

We note that usually only (E2) and a version of cancellativity, implied
here by (E3), is chosen as axioms for effect algebras, the partial order
being defined according to (E4).
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Furthermore, our axioms are not without redundancies; one half of
the last axiom, (E4), is already contained in the other ones; namely,
(E1)–(E3) prove a ≤ a + x if the latter term exists.

In the sequel, any statement involving partial operations to hold will
mean as usual that all the operations are performable and that the
statement is true.

We will now generalize the notion of an effect algebra by weakening the
axiom (E4), which states that the ordering of an effect algebra is the
natural one. It will be no longer assumed that the partial addition +
determines the order.

Definition 3.2. A weak effect algebra is a structure (L;≤, +, 0, 1) such
that the axioms (E1), (E2), and (E3) hold as well as the following one:

(E4’) If, for a, b ∈ L, a ≤ b, then there is a largest ā ≤ a such that
ā + x = b for some x ∈ L.

We evidently have the following.

Proposition 3.3. Any effect algebra is a weak effect algebra.

A weak effect algebra L is an effect algebra if and only if for any a, b ∈ L

such that a ≤ b, there is an x ∈ L such that a + x = b.

We now introduce those conditions for weak effect algebras which will
prove characteristic in connection with BL-algebras. Note on the one
hand that these axioms contain analogues of (NAM5) and (NAM6);
on the other hand, these conditions, as we will see, characerize MV-
algebras among effect algebras.

Definition 3.4. A weak effect algebra (L;≤, +, 0, 1) is called a weak

MV-effect algebra if the following conditions hold:

(E5) For any a1, a2, b1, b2 ∈ L such that a1, a2 ≤ b1, b2 there is a c ∈ L

such that a1, a2 ≤ c ≤ b1, b2.

(E6) For any a, b, c ∈ L such that c ≤ a + b, there are a1 ≤ a and
b1 ≤ b such that (α) c = a1 + b1 and (β) a1 = a in case c ≥ a.

(E7) For any a, b ∈ L, there are a1, a2, b1, b2 such that a = a1 + a2,
b = b1 + b2 and a1 ≤ b, b1 ≤ a and a2 ∧ b2 = 0.

Note that property (E5) is the Riesz interpolation property, or (RIP),
which is definable for any poset; see also [DvVe]. Moreover, for effect
algebras the Riesz decomposition property, or (RDP0), has been defined
[Rav, DvVe]: it holds if for any three elements a, b, c ∈ L such that



8 THOMAS VETTERLEIN

c ≤ a + b, there are a1 ≤ a and b1 ≤ b such that c = a1 + b1; thus,
when assuming (E4), (RDP0) is equivalent to (E6). Finally, (E7) is the
analogue of (NAM6), which was called mutual compatibility in [Vet].

To justify our terminology, recall that MV-algebras are in a one-to-one
correspondence to MV-effect algebras, which in turn are those effect
algebras that are lattice-ordered and fulfil (RDP0). We have also the
following.

Proposition 3.5. An effect algebra is an MV-effect algebra if and only

if it fulfils the axioms (E6) and (E7). In this case, also (E5) holds.

Proof. Let L be an MV-effect algebra. Then L fulfils (RDP0), hence
by (E3) and (E4) also (E6). L is furthermore lattice-ordered and in
particular fulfils (E5). L also fulfils (E7), because for some a, b ∈ L, we
may set a1 = b1 = a∧ b, and by assigning appropriate values to a2 and
b2, we easily see that a2 ∧ b2 = 0.

Conversely, let L be an effect algebra fulfilling (E6) and (E7). (E6)
clearly implies (RDP0). By [DvVe, Proposition 3.3(iii)], then also
(RIP), that is, (E5) holds. For some a, b ∈ L, let, according to (E7),
a1, a2, b1, b2 ∈ L be such that a = a1+a2, b = b1+b2 and a1 ≤ b, b1 ≤ a

and a2 ∧ b2 = 0. Using (E5), choose c such that a1, b1 ≤ c ≤ a, b. Then
it is not difficult to infer that c = a ∧ b. Because L has an involutive
complement function, it follows that L is lattice-ordered. �

4. BL-algebras as weak effect algebras

We are now ready to compare BL-algebras to effect algebras. What we
will see is the following. Dual BL-algebras whose addition is restricted
in a natural manner to a partial one, are proved to be weak effect alge-
bras. Because dual BL-algebras and BL-algebras may be considered the
same, this means that weak effect algebras are a common generalization
of BL-algebras and effect algebras.

Furthermore, it is clear which condition characterizes effect algebras
among weak effect algebras. It is less trivial to find an appropriate one
for BL-algebras. We offer here one possibility of how to characterize the
subclass of those weak effect algebras which correspond to BL-algebras.

Let us now, as a first step, consider the interrelation of a partial and to-
tal addition defined on some poset. For, dual BL-algebras, or bounded
NAMs of type BL, are algebras based on a total addition, whereas weak
effect algebras are based on a partial addition. How to derive one type
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of addition from the other one in a natural way is the subject of the
following definition.

Definition 4.1. (i) Let (L;≤,⊕, 0, 1) be a bounded NAM of type
BL. Let a, b ∈ L; we say that a is minimal in the sum a⊕ b if a

is the smallest element x such that x ⊕ b = a ⊕ b.

Define a + b
def
= a ⊕ b if a as well as b are minimal in a ⊕ b,

and let else a + b undefined. Then the operation + is called the
partial addition belonging to ⊕.

(ii) Let (L;≤, +, 0, 1) be a weak effect algebra. Let for any a, b ∈ L

the maximum

(7) a ⊕ b
def
= max {a′ + b′: a′ ≤ a, b′ ≤ b and a′ + b′ is defined}

exist. Then the operation ⊕ is called the total addition belonging

to +.

Theorem 4.2. Let (L;≤,⊕, 0, 1) be a bounded NAM of type BL, and

let + be the partial addition belonging to ⊕. Then (L;≤, +, 0, 1) is a

weak MV-effect algebra, and the total addition belonging to + exists and

coincides with ⊕.

Proof. (E1) is identical to (NAM1’).

Note next that for any a, b ∈ L, a+b is defined and equals c iff a = c⊖b

and b = c⊖a. Here, ⊖ is the residuum of L as defined by (1). Note that
the minimality of the summands in a sum a+b implies that cancellation
holds for the partial addition +.

Let now a ⊕ b = c for some a, b, c ∈ L. Then we may replace a and
b by smaller elements which are summable by the partial addition +
and whose sum is still c. This in particular implies (7). Indeed, let
a′ = c ⊖ (c ⊖ a) and b′ = c⊖ a. Then we have by (3) a′ ≤ a and by (1)
b′ ≤ b and a′⊕b′ = c. Clearly, a′ = c⊖b′. Also b′ = c⊖a′ holds; indeed,
we have b′ = c ⊖ a ≤ c ⊖ a′ from a′ ≤ a, and c ⊖ a′ = c ⊖ (c ⊖ b′) ≤ b′

from (3). So a′ + b′ is defined.

Let now a, b, c ∈ L such that (a + b) + c is defined. We will show that
then a + (b + c) is also defined; then (E2)(a) follows by (NAM2)(a).
Let d = a + b and e = (a + b) + c. We see by (4) that e ⊖ (b ⊕ c) =
(e ⊖ c) ⊖ b = d ⊖ b = a. Furthermore, since b = d ⊖ a ≤ e ⊖ a, we
have e ⊖ a = b ⊕ ((e ⊖ a) ⊖ b) = b ⊕ (e ⊖ (a ⊕ b)) = b ⊕ c. So we have
proved that the sum a + (b ⊕ c) is defined. Let f = b ⊕ c. We have
f ⊖ c = (e ⊖ a) ⊖ c = e ⊖ (a ⊕ c) = (e ⊖ c) ⊖ a = d ⊖ a = b. Finally,
f ⊖ b = (c ⊕ b) ⊖ b = [(e ⊖ (a ⊕ b)) ⊕ b] ⊖ b = [((e ⊖ a) ⊖ b) ⊕ b] ⊖ b =
(e⊖a)⊖b = e⊖(a⊕b) = c. It follows that also the sum b+c is defined.
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(E2)(b) is evident, and (E2)(c) is clear by the definition of +.

Let now a, b, c ∈ L such that a + c and b + c are defined. If then a ≤ b,
we have a + c = a ⊕ c ≤ b ⊕ c = b + c. Conversely, from a + c ≤ b + c

it follows a = (a + c) ⊖ c ≤ (b + c) ⊖ c = b. This proves (E3).

To see (E4’), let a, b ∈ L such that a ≤ b. Let ā = b ⊖ (b ⊖ a) and
x = b ⊖ a. Then we have by our above considerations ā ≤ a and
ā + x = b. If now a′ ≤ a and a′ + y = b for some y ∈ L, then
a′ = b ⊖ y = b ⊖ (b ⊖ a′) ≤ b ⊖ (b ⊖ a) = ā. So ā is the largest element
which sums up with some element to b by using the addition +.

(E5) holds, because L is lattice-ordered.

To see (E6), let a, b, c ∈ L such that c ≤ a+b. By (NAM5), we conclude
from c ≤ a + b = a ⊕ b that c = a1 ⊕ b1 for some a1 ≤ a, b1 ≤ b. Then
by the above considerations, c = a′

1
+ b′

1
for some a′

1
≤ a1 ≤ a and

b′1 ≤ b1 ≤ b.

Let us now consider the case a ≤ c ≤ a + b. Let a1 = c ⊖ (c ⊖ a)
and b1 = c ⊖ a; then c = a1 + b1 and b1 ≤ (a + b) ⊖ a = b. We claim
a1 = a. Setting d = a + b, we get, using (5) and (4), a = d⊖ (d⊖ a) =
d⊖ [(d⊖ c) ⊕ (c⊖ a)] = (d ⊖ (d⊖ c)) ⊖ (c ⊖ a) ≤ c⊖ (c⊖ a) = a1 ≤ a.

It remains to prove (E7). Let a, b ∈ L. Set a2 = a⊖b, b2 = b⊖a, a1 =
a⊖a2, b1 = b⊖b2. Then a = a′

1 +a′

2 for some a′

1 ≤ a1 = a⊖ (a⊖b) ≤ b

and a′

2
≤ a2; similarly, we have b = b′

1
+ b′

2
for some b′

1
≤ b1 ≤ a and

b′
2
≤ b2. Moreover, by (6), a2 ∧ b2 = 0, whence a′

2
∧ b′

2
= 0. �

We next see which kind of weak MV-effect algebras may be identified
with bounded NAMs of type BL and thus with BL-algebras. It is simply
those for which the total addition belonging to the partial one exists.

Theorem 4.3. Let (L;≤, +, 0, 1) be a weak MV-effect algebra such

that the total addition ⊕ belonging to + exists. Then (L;≤,⊕, 0, 1)
is a bounded NAM of type BL, and the partial addition belonging to ⊕
coincides with +.

Proof. (NAM1’) is identical to (E1).

We claim that, for any a, b, c ∈ L, (a⊕ b) ⊕ c = max {a′ + b′ + c′: a′ ≤
a, b′ ≤ b, c′ ≤ c}; (NAM2)(a) then follows. By definition (7), we have
(a ⊕ b) ⊕ c = max {d′ + c′ : d′ ≤ a ⊕ b, c′ ≤ c}. Because a′ ≤ a and
b′ ≤ b implies a′ + b′ ≤ a ⊕ b if a′ + b′ exists, any element from the
former set the maximum is taken over, is contained in the latter one.
On the other hand, d′ ≤ a ⊕ b means by (7) and (E6) that d′ = a′ + b′

for some a′ ≤ a and b′ ≤ b, so if then c′ ≤ c and d′ + c′ exists, we have
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d′ + c′ = a′ + b′ + c′, and so any element from the latter set is in the
former one.

(NAM2)(b) is evident from (E2)(b), and (NAM2)(c) follows directly
from the definition of ⊕ and (E2)(c).

For any a, x ∈ L, we have a ⊕ x = max {a′ + x′ : a′ ≤ a, x′ ≤ x} ≥
a + 0 = a. This shows one half of (NAM3).

We next note that for a, b, c, d ∈ L, a + b = c + d and a ≤ c implies
b ≥ d. Indeed, from a ≤ c ≤ a + b we have by (E6) that c = a + b′ for
some b′ ≤ b, whence a + b = a + b′ + d and by (E3) b = b′ + d ≥ d.

Let now a, b ∈ L such that a ≤ b. Let, according to (E4’), ā ≤ a be
the maximal element such that ā + x = b for some x ∈ L. We claim
that then a ⊕ x = b; this proves the second part of (NAM3). We have
a⊕x = max {a′+x′: a′ ≤ a, x′ ≤ x} ≥ ā+x = b. Let a′ ≤ a and x′ ≤ x

such that a′ + x′ = a⊕ x. From a′ ≤ b ≤ a′ + x′ it follows by (E6) that
b = a′+x′′ for some x′′ ≤ x′. Because of b = ā+x and the maximality of
ā, we have a′ ≤ ā and by the result of the preceding paragraph x ≤ x′′,
that is, x = x′ = x′′. So finally, b ≤ a′ + x′ ≤ ā + x = b, and thus
b = a′ + x′ = a ⊕ x.

We claim further that x is the smallest element such that a ⊕ x = b,
which shows (NAM4). Indeed, let a⊕ y = b for any other y ∈ L. Then
ā+x = b = a′ +y′ for some a′ ≤ a and y′ ≤ y, and from the maximality
of ā we conclude a′ ≤ ā and further x ≤ y′ ≤ y.

We next show (NAM5); so let a, b, c ∈ L be such that c ≤ a ⊕ b. It
follows from (4) and (E6) that c = a1 + b1 = a1 ⊕ b1 for some a1 ≤ a

and b1 ≤ b.

Assume now a ≤ c ≤ a ⊕ b. Let a ⊕ b = a′ + b′, where a′ is chosen the
maximal element below a and summing up with some element to a⊕ b.
Then by what was proved before, b′ ≤ b. From a′ ≤ c ≤ a′ + b′, we have
by (E6) c = a′ + b′′ for some b′′ ≤ b′. Let now c = a′′ + b′′′, where a′′ is
chosen the maximal element below a summing up with some element
to c. Then again according to what we saw above, c = a ⊕ b′′′, and by
the maximality of a′′, a′ ≤ a′′, hence b′′′ ≤ b′′ ≤ b.

To see (NAM6), let a, b ∈ L, and let, according to (E7), a1, a2, b1, b2 ∈ L

be such that a = a1 + a2, b = b1 + b2, a1 ≤ b, b1 ≤ a, a2 ∧ b2 = 0.
According to (E5), let furthermore c ∈ L be such that a1, b1 ≤ c ≤ a, b.
Let a = a′

1
+a′

2
, where a′

1
is the largest element below c adding up with

some element to a; then we have a = c ⊕ a′

2, and moreover a1 ≤ a′

1,
hence a′

2 ≤ a2. Similarly, we have b = c ⊕ b′2 for some b′2 ≤ b2. So
a′

2
∧ b′

2
= 0, and the requirements of (NAM6) are fulfilled. �
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5. D-posets and weak D-posets

Effect algebras may be easily formulated on the base of a partial differ-
ence rather than a partial addition; the appropriate notion is that of a
D-poset, introduced by Kôpka and Chovanec [KoCh].

It is also possible to base weak effect algebras on a difference, although
this is not as straightforward as in the case of the more special effect
algebras. We recall first the notion of a D-poset.

Definition 5.1. A D-poset is a structure (L;≤,−, 0, 1) with the fol-
lowing properties:

(D1) (L;≤, 0, 1) is a poset with a smallest element 0 and a largest
element 1.

(D2) − is a partial binary operation such that for any a, b, c ∈ E

(a) If b− a exists, then also b − (b − a) exists and equals a;

(b) a − 0 exists and equals a;

(c) If c− b and b− a exists, then (c− a) − (c− b) exist and
equals b − a.

(D3) If, for a, b, c ∈ L, a − c and b − c are defined, then a ≤ b if and
only if a − c ≤ b − c.

(D4) b − a is defined if and only if a ≤ b.

In analogy to the case of effect algebras, we will weaken the axiom
(D4) concerning the connection of the partial difference and the partial
order.

Definition 5.2. A weak D-poset is a structure (L;≤,−, 0, 1) such that
the axioms (D1), (D2), and (D3) hold as well as the following one:

(D4’) If, for a, b ∈ L, a ≤ b, then there is a largest ā ≤ a such that
b − ā is defined.

Note that when dropping the axiom (D4), one direction of (D4) is still
valid. Namely, if for a pair of elements a, b the difference b−a is defined,
then, in view of (D2)(a),(b), a − a = 0 ≤ b− a, whence by (D3) a ≤ b.

The following is thus evident.

Proposition 5.3. Any D-poset is a weak D-poset.

A weak D-poset L is a D-poset if and only if, for a, b ∈ L, b − a is

defined whenever a ≤ b.
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We see that the notions of a weak effect algebra and of a weak D-poset
are equivalent.

Proposition 5.4. Let (L;≤, +, 0, 1) be a weak effect algebra. Then we

may define b − a = x in case a + x = b for some x, letting b − a else

undefined. Then (L;≤,−, 0, 1) is a weak D-poset.

Moreover, every weak D-poset arises in this way from exactly one weak

effect algebra.

Proof. Let (L;≤, +, 0, 1) be a weak effect algebra. By cancellativity, a
consequence of (E3), we may define the operation − in the way shown.
(D1) holds by (E1). Let a, b, c ∈ L. If b− a exists, then a + (b− a) = b,
which means that also b− (b−a) exists and equals a; so (D2)(a) holds.
From a + 0 = a we infer that a− 0 = a, so (D2)(b) holds. Assume now
that c− b and b− a are defined; this implies [a + (b− a)] + (c− b) = c,
and from associativity, i.e. (E2)(a), we conclude c−a = (c−b)+(b−a)
and (c − a) − (c − b) = b − a; so (D2)(c) is shown.

If, for some a, b, c ∈ L, d = a−c and e = b−c are defined, then by (E3)
d ≤ e iff d+ c ≤ e+ c iff a ≤ b; (D3) follows. If furthermore a ≤ b, then
by (E4’) there is a largest ā ≤ a such that ā + x = b for some x ∈ L,
that is, such that b − ā is defined; so also (D4’) holds, and L is proved
to be a weak D-poset.

Conversely, let (L;≤,−, 0, 1) be a weak D-poset. For any a, b, c ∈ L,
let a + b = c hold iff b = c − a; by (D3), this defines + to be a partial
operation. Now, (D1) holds by (E1). Let a, b, c ∈ L. To see (E2)(c),
assume a+b = c. Then b = c−a, and so by (D2)(a) a = c−(c−a) = c−b,
so b+a = c. Now, if (a+b)+c = d, then d−(a+b) = c and (a+b)−a = b,
whence by (D2)(c) (d−a)−c = b and so d−a = b+c and d = a+(b+c);
so (E2)(a) holds. (E2)(b) is evident from (D2)(b).

Assume now, for some a, b, c ∈ L, that d = a + c and e = b + c are
defined. Then by (D3) a ≤ b iff d − c ≤ e − c iff d ≤ e; so (E3) holds.
Finally (E4’) is easily derived from (D4’); so L is proved to be a weak
effect algebra.

Moreover, L as a weak D-poset now arises from L as a weak effect
algebra just in the way given in the first part of the Proposition. It is
furthermore clear that there is only one weak effect algebra with that
property. �

We introduce furthermore the counterpart of a weak MV-effect algebra
for weak D-posets.
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Definition 5.5. A weak D-poset (L;≤,−, 0, 1) is called a weak MV-

D-poset if the following conditions holds:

(D5) For any a1, a2, b1, b2 ∈ L such that a1, a2 ≤ b1, b2 there is a c ∈ L

such that a1, a2 ≤ c ≤ b1, b2.

(D6) For a, b, c ∈ L, let a ≤ b and let b− c be defined. Then we have
a − c1 ≤ b − c for some c1 ≤ c. In case c ≤ a, we may assume
c1 = c.

(D7) For any a, b ∈ L, there are a1, b1 ≤ a, b such that (a−a1)∧ (b−
b1) = 0.

Proposition 5.6. Let (L;≤, +, 0, 1) be a weak effect algebra, and let

(L;≤,−, 0, 1) be the corresponding weak D-poset according to Proposi-

tion 5.4. Then L is a weak MV-effect algebra if and only if L is a weak

MV-D-poset.

Proof. It is not difficult to see that (E5) is equivalent to (D5), that (E6)
is equivalent to (D6), and that (E7) is equivalent to (D7). We drop the
details. �

6. BL-algebras as weak D-posets

In a similar way as we may identify BL-algebras, understood as bounded
NAMs of type BL, with a subclass of the weak effect algebras, we
may understand BL-algebras as bounded BCK-algebras of type BL and
identify them with a subclass of the weak D-posets.

Definition 6.1. (i) Let (L;≤,⊖, 0, 1) be a bounded BCK-algebra

of type BL. For a, b ∈ L, define b − a
def
= b ⊖ a in case that a

is the smallest x ∈ L such that b ⊖ x = b ⊖ a, and let else b − a

undefined. Then the operation − is called the partial difference

belonging to ⊖.

(ii) Let (L;≤,−, 0, 1) be a weak D-poset. Let for any a, b ∈ L,

b ⊖ a
def
= b − ā, where ā is the largest element below a such

that b − ā is defined. Then the operation ⊖ is called the total

difference belonging to −.

Theorem 6.2. Let (L;≤,⊖, 0, 1) be a bounded BCK-algebra of type BL,

and let − be the partial difference belonging to ⊖. Then (L;≤,−, 0, 1)
is a weak MV-D-poset, and the total difference belonging to − coincides

with ⊖.
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Proof. By Theorem 2.7, there is a unique operation ⊕ on L such that
(L;≤,⊕,⊖, 0, 1) is a dual BL-algebra; and by Theorem 2.5, (L;≤,⊕, 0, 1)
is a bounded NAM of type BL. + being the partial addition belonging
to ⊕, we have from Theorem 4.2 that (L;≤, +, 0, 1) is a weak MV-effect
algebra; and by Propositions 5.4 and 5.6, (L;≤, −′ , 0, 1) is a weak MV-
D-poset, where for any a, b, c ∈ L we have b−′ a = c iff a + c = b.

We have to show that −′ is the partial difference belonging to ⊖, that
is, −′ = −. So let a, b, c ∈ L. Assume first that c = b−′ a is defined.
Then a and c are minimal in the sum a ⊕ c, hence c = b ⊖ a and
a = b ⊖ c = b ⊖ (b ⊖ a). If now b ⊖ x = b ⊖ a for some x ∈ L, then
x ≥ b⊖ (b⊖x) = a, whence a is the smallest x such that b⊖x = b⊖ a;
so indeed, c = b − a. Conversely, assume that c = b − a is defined.
Then a is the smallest x such that b ⊖ x = b ⊖ a, and it follows a ≤
b ⊖ (b ⊖ a), so in view of (3) a = b ⊖ (b ⊖ a). Since a ≤ b, we have
b = (b⊖ (b⊖a))⊕ (b⊖a) = (b⊖ (b⊖a)) + (b⊖a) = a+ c. So b−′ a = c.

It remains to prove that ⊖ is the total difference belonging to −. Let
a, b ∈ L, and let ā be the maximal element below a∧b such that b− ā is
defined; note that then ā is also the maximal element below a with that
property. So ā is the maximal element below a ∧ b such that ā + x = b

exists for some x ∈ L. It follows from Theorem 4.3 and its proof that
(a∧ b)⊕x = b and x = b⊖ (a∧ b) = b⊖ a. So b⊖ a = x = b− ā, which
is what we had to show. �

Theorem 6.3. Let (L;≤,−, 0, 1) be a weak MV-D-poset, and let ⊖ be

the total difference belonging to −. Let for any a, b ∈ L

(8) a ⊕ b
def
= max {c: c − b′ ≤ a for some b′ ≤ b}

exist. Then (L;≤,⊖, 0, 1) is a bounded BCK-algebra of type BL, the

partial difference belonging to ⊖ coincides with −, and ⊕ is the S-

function of L.

Proof. According to Propositions 5.4 and 5.6, (L;≤, +, 0, 1) is a weak
MV-effect algebra, where, for a, b, c ∈ L, a+b = c holds iff b = c−a. The
operation ⊕ as defined by (8) obviously coincides with the total addition
belonging to +. So by Theorem 4.3, (L;≤,⊕, 0, 1) is a bounded NAM
of type BL. ⊖′ being the residuum of L, (L;≤,⊖′, 0, 1) is by Theorems
2.5 and 2.7 a bounded BCK-algebra of type BL with S-function ⊕.

In the same way as in the proof of Theorem 6.2, we see that ⊖′ is the
total difference belonging to −, that is, ⊖′ = ⊖. We also may procede
equally as in the proof of Theorem 6.2 to see that − is the partial
difference belonging to ⊖. �
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7. MV-, PL-, and G-algebras

The importance of the BL-algebras has apparently much to do with the
fact that they generalize MV-algebras, PL-algebras, and G-algebras,
which may be used to model formulas of the  Lukasiewicz logic, product
logic, or Gödel logic, respectively. Having established the correspon-
dence between BL-algebras and a subclass of the weak effect algebras,
we may wonder which kinds of weak effect algebras correspond to the
MV-, PL-, and G-algebras.

Recall that a BL-algebra (L;≤,⊙,⇒, 0, 1) is called an MV-algebra if the
complement operation ⋆ : L → L, a 7→ a ⇒ 0 is involutive; that L

is called a PL-algebra if for any a, b, c ∈ L we have a⋆⋆ ≤ (a ⊙ b ⇒
a ⊙ c) ⇒ (b ⇒ c) and a ∧ a⋆ = 0; and that L is called a G-algebra if
a ⊙ b = a ∧ b for all a, b ∈ L.

For an element a of a weak effect algebra, let us define its complement
a⋆ to be the smallest element x such that ā + x = 1 for some ā ≤ a. It
is clear that under the correspondence established between weak effect
algebras and BL-algebras, this operation coincides with the equally
denoted one for BL-algebras. Note that in a weak effect algebra, a+b =
1 implies b = a⋆.

Proposition 7.1. Let (L;≤BL,⊙,⇒, 0BL, 1BL) be a BL-algebra, and let

(L;≤, +, 0, 1) be the corresponding weak effect algebra according to Def-

inition 2.2 and Theorems 2.5 and 4.2.

(i) L as a BL-algebra is an MV-algebra if and only if for L as a

weak effect algebra the following holds: for any a ∈ L there is

some b ∈ L such that a + b = 1.

(ii) L as a BL-algebra is a PL-algebra if and only if for L as a weak

effect algebra the following holds: (α) for any a, b ∈ L, a + b is

defined if and only if a ≤ b⋆ and b ≤ a⋆; (β) for any a ∈ L,

a ∨ a⋆ = 1.

(iii) L as a BL-algebra is a G-algebra if and only if for L as a weak

effect algebra the following holds: for any a, b ∈ L, a + b is

defined if and only if a ∧ b = 0.

Proof. Let us treat L throughout this proof as a weak effect algebra, if
not indicated otherwise.

(i) L as a BL-algebra is an MV-algebra iff ⋆ is involutive.

Let ⋆ be involutive. Let ā ≤ a be maximal such that ā+ b = 1 for some
b ∈ L. It follows b = a⋆ = ā⋆ and so a = ā and a + b = 1.
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Conversely, let a ∈ L, and assume that there is always some b such that
a + b = 1. It then follows b = a⋆ and a = b⋆, whence a⋆⋆ = b⋆ = a. So
⋆ is involutive.

(ii) Let ⊕ and ⊖ be addition and difference of the dual BL-algebra
corresponding to L.

Let us first show that for any a, b ∈ L such that a ∧ b = 0, we have
a∨ b = a+ b. Indeed, we then have b⊖a = b⊖ (a∧ b) = b and similarly
a⊖b = a. Furthermore, a∨b = a⊕(b⊖a) = [(a∨b)⊖(b⊖a)]+(b⊖a) =
(a ⊖ b) + (b ⊖ a) = a + b.

We further claim that for any a, b, c ∈ L such that a ∧ b = 0 and such
that a+c and b+c exists, also a+b+c exists. Indeed, a∨b = a+b, and
⊕ and ⊖ are compatible with the lattice operations; so c ≥ ((a + b) ⊕
c)⊖(a+b) = ((a∨b)⊕c)⊖(a∨b) = [((a⊕c)⊖a)∨((b⊕c)⊖a)]∧[((a⊕c)⊖
b)∨((b⊕c)⊖b)] ≥ c, because (a⊕c)⊖a = (b⊕c)⊖b = c. Furthermore,
a+b ≥ ((a+b)⊕c)⊖c = ((a∨b)⊕c)⊖c = ((a⊕c)⊖c)∨ ((b⊕c)⊖c) =
a ∨ b = a + b. It follows that (a + b) + c is defined.

Now, from [Vet, Proposition 3.4(ii)], we see that L as a BL-algebra is
a PL-algebra iff the following holds: for any a, b, c ∈ L, a⋆ = 1 and
a ⊕ b = a ⊕ c implies b = c, and for any a ∈ L we have a ∨ a⋆ = 1.

Let these conditions be fulfilled. Since (β) is included in them, it is just
(α) that we have to show. Let a, b ∈ L.

If a + b is defined, then a = (a + b) ⊖ b ≤ 1 ⊖ b = b⋆, and similarly we
get b ≤ a⋆.

Assume now a ≤ b⋆ and b ≤ a⋆. Let us set a = a0∨a1, where a0 = a∧a⋆

and a1 = a ∧ a⋆⋆ = a⋆⋆. Because a⋆ ∧ a⋆⋆ = 1 ⊖ (a ∨ a⋆) = 0, we have
a0 ∧ a1 = 0 and so, by what was proved above, a = a0 + a1. Besides,
a0

⋆ = 1⊖ (a∧ a⋆) = a⋆ ∨ a⋆⋆ = 1. In a similar manner, we may split up
b = b0 + b1. Now, a0 ⊕ b0 = a0 + b0; indeed, e.g. a0 is minimal in the
sum a0 ⊕ b0, because b0

⋆ = 1 and a0 ⊕ b0 = ((a0 ⊕ b0)⊖ b0)⊕ b0 implies
a0 = (a0⊕b0)⊖b0. Moreover, we have a1∧b ≤ a⋆⋆∧a⋆ = 0 and similarly
b1 ∧ a = 0. It follows by (E6) that a1 ∧ (a0 + b0) = b1 ∧ (a0 + b0) = 0, so
a1 +a0 +b0 and b1 +a0 +b0 exist. Since a1∧b1 = 0, it follows from what
we proved above that a1 + b1 + a0 + b0 = a + b exists. This completes
the proof of one half of (ii).

Assume now that for any a, b ∈ L the existence of a+ b is equivalent to
a ≤ b⋆ and b ≤ a⋆, and that for any a ∈ L a ∨ a⋆ = 1. Let a, b, c ∈ L,
and assume a⋆ = 1 and a ⊕ b = a ⊕ c. We have to prove b = c;
then the second half of (ii) follows. We have b⋆ = 1 ⊖ b = a⋆ ⊖ b =
1 ⊖ (a ⊕ b) = 1 ⊖ (a ⊕ c) = c⋆. Let us set a′ = a ∧ b⋆ = a ∧ c⋆; then
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it follows a′ ⊕ b = a′ ⊕ c. We may now conclude from our assumption
that a′ + b = a′ + c; and by cancellation, b = c.

(iii) L as a BL-algebra is a PL-algebra iff for the weak effect algebra
we have a ⊕ b = a ∨ b for all a, b ∈ L.

Let this condition hold, and let a, b ∈ L. If then a + b is defined, then
a = (a+b)⊖b = (a⊕b)⊖b = (a∨b)⊖b = a⊖b and similarly b = b⊖a,
so a ∧ b = 0 by condition (iii) in Definition 2.6. If a ∧ b = 0, then we
know from the proof of (ii) that a + b is defined.

Conversely, let, for any a, b ∈ L, a + b be defined iff a ∧ b = 0. For any
a, b ∈ L, a⊕b = [(a⊕b)⊖ ((a⊕b)⊖a)]+[(a⊕ b)⊖a]; so by assumption
0 = [(a⊕ b)⊖ ((a⊕ b)⊖ a)]∧ [(a⊕ b)⊖ a] = (a⊕ b)⊖ [((a⊕ b)⊖ a)∨ a],
so a ⊕ b ≤ ((a ⊕ b) ⊖ a) ∨ a ≤ a ∨ b ≤ a ⊕ b. �
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