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Abstract

CADIAG-2 is a successful expert system assisting in the differential diagno-
sis in internal medicine. With its aid, conjectures about present diseases are
derived from possibly vague information about a patient’s symptoms. In this
paper we provide a mathematical formalisation of the inferential mechanism
of CADIAG-2. A Gentzen-style calculus for the resulting logic is introduced
and used to compare the system’s behaviour with t-norm basedfuzzy logics.

1 Introduction

The last decades have witnessed a considerable developmentof rule-based systems
in medicine with the purpose of assisting physicians in medical decision-making.
CADIAG-1 and CADIAG-2 – where “CADIAG” stands for “computer-assisted
diagnosis” – are well performing computer-based medical consultation systems
whose design and construction was initiated in the early 80’s at the Medical Uni-
versity of Vienna by K.-P. Adlassnig; see, e.g., [AdKo, AKSEG, AKSG, LAK].
The aim of these systems is to support diagnostics in the fieldof internal medicine.

CADIAG-1 deals with Boolean relationships, formulated as if-then rules, between
symptoms, signs, laboratory test results and clinical findings on the one hand and
diseases on the other hand. A simple and elegant formalisation of CADIAG-1’s
rules into a decidable fragment of first-order classical logic allowed for consistency
checking of the binary rules and the detection of 17 inconsistencies out of the
50 000 rules [MoAd].

1Both authors contributed equally to this paper.
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Precise and definite information about real world objects, however, is difficult to
obtain and, in the realm of medicine, such information is typically not accessible
to physicians when deciding about a patient’s diagnosis andtreatment. To process
vague information, the successor system CADIAG-2 was basedon fuzzy set the-
ory, or “fuzzy logic” in Zadeh’s terminology [Zad]. A clear understanding of the
system’s behaviour calls, however, for a mathematical formalisation. This formali-
sation is also a prerequisite for consistency checking of its knowledge base and for
a clear distinction between degrees of presence and degreesof certainty, cf. [DHN].

The aim of this paper is to provide such a formalisation. The result is furthermore
used to compare the system’s behaviour with the principles of t-norm based logics.
We recall that a t-norm is commonly used in fuzzy logic to combine truth degrees
in the sense of conjunction. By a t-norm based logic, we mean apropositional logic
which uses the real unit interval as the set of truth values and which interprets the
conjunction by a (specific kind of) t-norm, see, e.g., [Haj].

Our discussion mainly follows proof theoretical arguments. Indeed, we first in-
troduce CADIAG Logic, orCadL for short, which is modelled upon the mode of
operation of CADIAG-2; what CADIAG-2 is able to derive from assumptions can
be proved inCadL from the corresponding set of formulas. We relateCadL to a
calculus for the fuzzy logic closest to the natural semantical framework forCadL.
The latter logic, which we call Gödel-Zadeh logic, orGZL for short, turns out to
be a modification ofRGL∼, i.e. Gödel logic enriched with standard negation and
rational truth constants [EGHN].

The paper is organised as follows. In Section 2 we review the method on which
the inference of CADIAG-2 is based. Our description reformulates, in a formally
oriented way, the information contained in the thesis [Fis]as well as in a recent
implementation of CADIAG-2. Section 3 introduces the logical calculusCadL.
We show that each CADIAG-2 run can be simulated by a proof inCadL, while
only suitable proofs, which we call updating, correspond toCADIAG-2 runs.

Section 4 meets the challenge to provide a semantical foundation for CadL, and
hence for CADIAG-2. In Section 5 we introduceSeqCadL, a Gentzen-style cal-
culus which is sound with respect to the semantics considered. We show that
SeqCadL is equivalent toCadL under suitable conditions. Due to the presence
of a cut-like rule,SeqCadL is not analytic, that is, its derivations cannot be deter-
mined by a simple (and automatable) step-wise decomposition of the statements
to be proved. However,SeqCadL is used in Section 6 to compare the CADIAG-
2 inferential mechanism withGZL, which is the fuzzy logic sound and complete
with respect to the natural semantics forCadL. To this aim we introduce an an-
alytic proof system forGZL which uses sequents-of-relations, a generalisation of
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Gentzen’s sequents introduced in [BaFe]. As a result of our comparison, we get
a rather clear picture about differences and analogies betweenSeqCadL andGZL,
or more generally, between CADIAG-2 and fuzzy logics in the sense of [Haj].
GZL turns out to be strictly stronger thanSeqCadL. Indeed the calculus forGZL

includes the possibility to consider sets of exhaustive alternatives, whose conse-
quences may be recombined. It is exactly this possibility which is not present in
CADIAG-2. This in turn seems not to mirror a weakness, but rather to be a general
characteristic of reasoning in medicine, deserving further systematic investigation.

2 A formal description of CADIAG-2

The aim of CADIAG-2 may be roughly described as follows. On the basis of a set
of symptoms known for some patient, possibly supplemented by certain already
established diagnoses, CADIAG-2 is supposed to derive conjectures about the dis-
ease(s) of the patient. In a way according to our needs, we will outline how this is
done; for further details, see, e.g., [AdKo, Fis].

CADIAG-2 comprises aknowledge baseand aninference engine. The former con-
sists of if-then rules describing known causal, statistical, or simply definitional
interrelations between symptoms and diagnoses. On the basis of this general infor-
mation and the information referring to a particular patient, the inference engine
can draw conclusions. We note that symptoms and diseases arenot analysed with
respect to their meaning, but are rather treated as pure propositions; what matters
is their mutual relationship.

An example of a proposition referring to a symptom might be “suffering from a
strong abdominal pain”. It is obvious that the alternativestrue and false to evaluate
this proposition are not exhaustive. Accordingly, CADIAG-2 considers all state-
ments about symptoms as vague. Namely, to each symptom, there is associated a
degree of presence, expressed by an element of the real unit interval [0, 1]. The
second kind of propositions in CADIAG-2 refers to diagnoses. Namely, CADIAG-
2 processes statements expressing that a patient suffers from a specific disease. We
do not assume to deal with vagueness in this case; it is assumed that a disease is
present or not. However, it is rarely possible to provide a diagnosis with certainty
and consequently, in CADIAG-2, to each proposition referring to a diagnosis, there
is associated a degree of certainty, which is again an element of [0, 1].

The truth values. The meaning of the truth values is understood in CADIAG-2
as follows. Asserting that a symptomσ applies to the degreet ∈ [0, 1] means, as
usual in fuzzy set theory, that the patient’s state is compatible with the property
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expressed byσ to the degreet. In particular, the caset = 1 means thatσ is
clearly confirmed;t = 0 means thatσ definitely does not hold; and otherwise a
smaller or larger choice oft expresses thatσ applies to a smaller or larger extent.
In practice, to determinet, we either use the patient’s or medical doctor’s appraisal
how well a subjective observation fits to the symptom; examples of this type of
symptoms include “strong abdominal pain” or “suspicion of pancreatic tumour by
CT”. Or a symptom refers to a measurement, like for example inthe case of “having
high fever”; then a predefined fuzzy set over the respective scale, like the interval
[36, 42] of possible body temperatures in◦C, is used to determinet. We finally
note that CADIAG-2 also offers the possibility not to assignany truth value to a
symptomσ; this means that we make no assertion aboutσ.

In case of a diagnosisδ, the situation is different. To assign a valuet ∈ (0, 1] to
the diagnosisδ means that we are certain to the degreet that the disease is present.
In particular, in caset = 1 we assert that the disease is definitely present; and in
case0 < t < 1, we are less sure, where a smaller value means a smaller degree
of certainty. In case of, say,t = 0.001, we practically do not assert anything.
Furthermore,0 plays an extra role here. Saying that a diagnosisδ holds to the
degree0 means that the negation ofδ definitely holds, that is, it means that we are
convinced thatδ must be excluded.

We formalise below the concept of strength of a truth value.

Definition 2.1. Fors, t ∈ [0, 1], we say thatt is strongerthans

if either 0 < s ≤ t ≤ 1 or 0 < s < 1 and t = 0;

in this case, we writes 4 t. Furthermore, we call0 and1 sharptruth values.

Note that both sharp truth values are maximal w.r.t.4. The reason is that they
express definite information which cannot be improved. Notethat4 defines not a
linear, but just a partial order on the set[0, 1] of truth values.

The input and output. Assume that we are given a specific knowledge base.
We discuss below the way CADIAG-2 makes use of it. We formalise below the
specification given in [Fis].

Letσ1, . . . , σm denote the symptoms andδ1, . . . , δn the diagnoses appearing in the
knowledge base. A symbol denoting either a symptom or a diagnosis will be called
a basic entity. We shall identify a symptomσi with the proposition “the symptom
σi is present” and, similarly, we will identify a diagnosisδj with the proposition
“the diagnosisδj applies”. Furthermore, we can consider compound entities.The
connectives which are at our disposal in CADIAG-2 are the conjunction ∧, the
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disjunction∨, and negation∼. By an entity, we shall mean a basic entity, or a
compound entity built up by means of∧, ∨, ∼ from basic ones.

There are two sets of additional connectives calledat leastn out ofm andat mostn
out ofm, where1 ≤ n ≤ m. Their use in the medical literature is common when
diseases are specified by a set of criteria; cf., e.g., [GJEHH]. These connectives
are in the expected way expressible by∧ and∨ and are therefore not taken into
account here. As an example,

at least2 of (ϕ1, ϕ2, ϕ3)

stands for(ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3).

Recall that a partial functionf : A → B is a function from a subsetA0 of A to
B. We writef(a) = b to express thatf(a) is defined and equalsb, and we say that
f(a) is undefined ifa /∈ A0. A0 will be called the domain off .

Henceforth we will denote the operationsmin, max andt 7→ 1 − t, when applied
to the set[0, 1] of truth values, bȳ∧ , ∨̄ and∼̄, respectively.

Definition 2.2. A partial evaluation, or simply anevaluation, is a partial function
v from the set of entities to the real unit interval[0, 1] such that, for all entitiesα
andβ, the following holds. (i) Ifv(α) = s andv(β) = t, thenv(α ∧ β) = s ∧̄ t
andv(α ∨ β) = s ∨̄ t; (ii) if v(α) = 0 or v(β) = 0, thenv(α ∧ β) = 0; (iii) if
v(α) = t > 0 andv(β) is undefined, orv(α) is undefined andv(β) = t > 0, then
v(α ∨ β) = t; (iv) if v(α) = t, thenv(∼α) = ∼̄t; (v) if, for a compound entityγ,
v(γ) cannot be determined by means of the rules (i)–(iv),v(γ) remains undefined.

Note that an evaluation is uniquely determined by its restriction to the basic entities.
Namely, an evaluation assigns truth values to certain, but not necessarily all basic
entities; and this assignment is extended to include as manycompound entities as
possible. As usual, truth functionality applies; a compound proposition is assigned
truth values on the basis of the assignment of its components.

Furthermore, Definition 2.2 was chosen in a way to provide as much information
as possible about compound propositions on the basis of the available knowledge.
The result is not surprising as far as the conjunction and thenegation is concerned.
The disjunction, however, is treated in a peculiar way. If, e.g.,α is assigned0.3 and
the status ofβ is unknown, thenα ∨ β is mapped to0.3 rather than left undefined.
Here, the tacit assumption is made thatβ is not checked for good reason. The
special treatment of the disjunction contributes to the effectiveness of CADIAG-2.

The input of a run of CADIAG-2 is an evaluation, which we will refer to as the
initial evaluation. Furthermore, we will call the elements of its domain theinput
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entities. An initial evaluation describes the state of a patient. Typically, an input
entity is a symptom; but it may also refer to a prior established diagnosis.

The output of a run of CADIAG-2 is an evaluation, which we willrefer to as the
final evaluation. Its domain extends the domain of the initial evaluation.

The inferences.Starting from the initial evaluationw0, new evaluationsw1, w2, . . .
are obtained by successively applying the rules of the knowledge base; we explain
below how a rule is applied. Compared to its predecessor, each evaluation in this
sequence encodes an increased amount of information about the patient. The pro-
cess terminates after finitely many, sayl, steps; thenwl is the final evaluation.

As we will see, the used rule, say (R), influences the truth value of only one specific
basic entityβ. So thek-th evaluationwk wherek = 1, . . . , l will differ from wk−1

only in the values assigned toβ and the compound entities containingβ. On the
basis ofwk−1, (R) provides a truth valueb ∈ [0, 1]; we call b the proposed truth
valuefor β. The new evaluationwk is defined as follows:wk coincides withwk−1

for all basic entities different fromβ. If β is not yet in the domain ofwk−1, we put
wk(β) = b. If otherwisewk−1(β) > 0 andb > 0, we putwk(β) = wk−1(β) ∨̄ b. If
wk−1(β) = 0 andb < 1, or if wk−1(β) < 1 andb = 0, thenwk(β) = 0. The case
wk−1(β) = 0 andb = 1 or wk−1(β) = 1 andb = 0 is considered contradictory;
then the process terminates with an error message. Finally,for compound entities,
wk is defined according to Definition 2.2.

The rules. Any rule (R) in the knowledge base contains the following information:
(i) a possibly compound entityα, called the antecedent, (ii) a basic entityβ, called
the succedent and (iii) atype. The following types of rules exist:

(cd), whered ∈ (0, 1]: Then (R) is said to be of typeconfirming to the degreed.
The additional valued is called theconfirmabilityof β byα. We will say (R)
is of type (c) if we do not wish to mention the parameterd.

(me): Then (R) is said to be of typemutually exclusive.

(ao): Then (R) is said to be of typealways occurring.

The types (c), (me), and (ao) express different ways in whichα andβ are causally
or logically related. For the subsequent explanations, letus assume thatα is an ex-
pression in symptoms and possibly additional diagnoses, and thatβ is a diagnosis.

If the rule (R) is of type (cd), then (R) expresses the fact that if the given symptoms
and diagnoses fulfil the expressionα to a non-zero degree, this is a hint to the
diagnosisβ and this hint is the more serious the largerd is. Namely, if during a run
of CADIAG-2 α evaluates tot > 0, then the truth value forβ will be d ∧̄ t, unless
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β has been already assigned a stronger truth value. In particular, if α is assigned1,
that is, ifα is assumed to be fully true, and if there is nothing else knownaboutβ,
thenβ is assignedd. (R) is not usable ifα is assigned0.

So, ifα clearly holds,d is the degree of certainty aboutβ. This implies a way how
the parametersd can be determined. Namely, if a sufficiently large patient database
is available,d can be taken as the proportion of patients suffering from thedisease
β among the patients for which the statementα clearly holds. We note that the
actual values included in CADIAG-2’s knowledge base were however determined
slightly differently. To make use of the data available froma database in a more
comprehensible way, all patients fulfillingα to a non-zero degree were considered;
the cardinalities of crisp sets were replaced by cardinalities of fuzzy sets [AKSG].

The example below and the subsequent examples are taken from[AKSG].

Example of a rule of type (c0.55)

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with the confirmability degree0.55.

According to our specification, this rule works as follows. Assume that the diagnosispancreatic
cancerwas not yet assigned a truth value. If, due to a liver palpation, there is the evident suspi-
cion of liver metastases, we associate to the diagnosis “pancreatic cancer” a degree of certainty of
0.55. So we assume that the patient has pancreatic cancer, where however a value of0.55 expresses
considerable uncertainty about this conclusion.

If the mentioned suspicion is not so clear, but still quantified by a value of at least0.55, the result
will be the same.

If a suspicion is present, but to a degree of less than0.55, say0.2, then the degree of certainty about
the diagnosis “pancreatic cancer” will be degraded to0.2.

If there is evidently no suspicion of metastases, the rule will not be used.

If (R) if of type (me), then (R) expresses the fact that the twostatements exclude
each other. In particular, (R) says that ifα is fully true,β definitely does not apply,
i.e. the truth value forβ is 0.

Example of a rule of type (me)

IF positive rheumatoid factor
THEN NOTseronegative rheumatoid arthritis

If the positive rheumatoid factoris evaluated1, thenseronegative rheumatoid arthritisis assigned0.
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If the positive rheumatoid factoris not evaluated1, the rule is not used.

Finally, let (R) be of type (ao). Then (R) expresses the fact that β impliesα. It
follows that ifα is excluded,β definitely does not apply. So, ifα is evaluated0, β
is assigned0 as well.

Example of a rule of type (ao)

IF NOT (rheumatoid arthritisAND splenomegalyAND leukopenia≤ 4000/µl)
THEN NOTFelty’s syndrome

Assume that the expression in brackets, following “IF NOT”,is evaluated0; this means that ei-
ther rheumatoid arthritis, splenomegalyor leukopenia≤ 4000/µl is fully excluded. ThenFelty’s
syndromeis excluded as well, that is, assigned the value0.

If the expression in brackets is evaluated to a non-zero value, the rule is not used.

All three types of rules are also used to express relationships between other kinds of
entities, namely: between two symptoms; or between two diagnoses. The meaning
and the use of the rules is analogous. In case of a rule of type (c), however, the
confirmability is then always1.

Termination. The rules are applied systematically one by one, but, as we assume
here, in an arbitrary order. The process is completed if, by use of any of the rules,
the evaluation remains unchanged. The termination of the program is guaranteed.
To see this, note the following. The number of truth values which appear some-
where in the course of the run of CADIAG-2 is limited; we deal with the truth val-
ues of finitely many symptoms and finitely many rules, and onlythese truth values
together with their negation can appear. Furthermore, whenafter each application
of a rule the truth value of some entity is renewed the new value is, w.r.t.4, at least
as strong as the prior one; so our assertion follows.

3 CadL – the logical counterpart of CADIAG-2

In this section we introduceCadL (“CADIAG logic”), a new formal system which,
in a specific restricted sense, will turn out to be sound and complete with respect
to inferences in CADIAG-2.

Recall that CADIAG-2 deals with entities – i.e. symptoms anddiagnoses – with
associated truth values. Accordingly,CadL uses what has been called evaluated
formulas [Pav, NPM] or graded formulas, [Haj, Ger]: pairs consisting of a propo-
sition and a rational truth value.
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Definition 3.1. The setFA of atomic propositionsof CadL consists of countably
many symbolsϕ1, ϕ2, . . .. The setFL of lattice propositionsof CadL consists
of the expressions built up from the atomic propositions by means of the binary
connectives∧ and∨ and the unary connective∼. Moreover, let the setFI of
implicationsof CadL consist of the expressionsα→β, whereα, β ∈ FL. Finally,
F = FL ∪ FI is the set ofpropositionsof CadL.

A graded propositionis a pair(ϕ, t) consisting of a propositionϕ ∈ F and a
rational valuet ∈ [0, 1].

The atomic propositions are meant to correspond to basic entities in CADIAG-2.
It is not necessary to make a formal distinction between symptoms and diagnoses;
they are, after all, treated in the same way during the inferences in CADIAG-2.
Similarly, there is no need to formally distinguish betweendegrees of presence and
degrees of certainty. Moreover, the compound entities in CADIAG-2 translate to
lattice propositions ofCadL. Finally an entity together with its image under an
evaluation corresponds to a graded proposition inCadL.

A rule of CadL is a pair consisting of one or two graded propositions calledthe
assumption(s)and one graded proposition called theconclusion, notated one upon
the other and separated by a horizontal line. The rules forCadL are divided into
evaluation and manipulation rules: the former serve to determine the truth value
associated to a compound proposition, truth values of the atoms being given. The
manipulation rules mirror the three kinds of entries in the CADIAG-2 knowledge
base: (c), (ao), and (me).

Definition 3.2. The rules ofCadL are divided into two groups. Theevaluation
rulesare

(∧1)
(α, s) (β, t)

(α ∧ β, s ∧̄ t)
(∧2)

(α, 0)

(α ∧ β, 0)
(∧3)

(β, 0)

(α ∧ β, 0)

(∨1)
(α, s) (β, t)

(α ∨ β, s ∨̄ t)
(∨2)

(α, q)

(α ∨ β, q)
(∨3)

(β, q)

(α ∨ β, q)

(∼)
(α, t)

(∼α, ∼̄t)

for anyα, β ∈ FL ands, t ∈ [0, 1], q ∈ (0, 1].

Themanipulation rulesare

(c)
(α→ϕ, d) (α, t)

(ϕ, d ∧̄ t)
whered, t > 0
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(me)
(α→∼ϕ, 1) (α, 1)

(ϕ, 0)
(ao)

(∼α→∼ϕ, 1) (α, 0)

(ϕ, 0)

for anyα,ϕ ∈ FL such thatϕ is atomic.

A theoryof CadL is a finite setT of graded propositions. Aproof from T is a finite
sequence of graded propositions each of which is either inT or the conclusion of
a rule whose assumptions are among the preceding elements ofthe proof. Thei-th
element of a proof will be called thei-th proof entry. The number of entries in a
proof is theproof length.

For a lattice propositionα and anyt ∈ [0, 1], we call (α, t) provablefrom T if
there is a proof such that(α, t) is its last entry; in this case, we writeT ⊢ (α, t).

Remark 3.3. Note that the rule (c) is very similar to the rule known in fuzzy logic
as the fuzzy modus ponens, see, e.g.,[NPM, Ger].

We next explain how the case is treated when a proposition appears in a proof with
two different truth values.

Definition 3.4. Let T be a theory ofCadL, and letα ∈ FL. If T ⊢ (α, 1), we say
thatT confirmsα; if T ⊢ (α, 0), we say thatT excludesα.

T is called inconsistentif, for someϕ ∈ FL, T both confirms and excludesϕ.
Otherwise, we say thatT is consistent.

By restricting to consistent theories we will exclude in thesequel the case that, for
some lattice propositionα, both (α, 0) and (α, 1) is provable. However, it may
well happen thatT proves both, say,(ϕ, 0.6) and(ϕ, 0.7); this is not considered
a contradiction. In view of the partial order4 of truth values, we rather consider
the latter statement stronger than the former. Similarly,T may prove both(ϕ, 0)
and(ϕ, 0.9); this is not considered contradictory either. In this case,(ϕ, 0) is con-
sidered stronger because it encodes the definite statement thatϕ is to be excluded.
Note, however, that by now, we have not formalised the strength of truth values
within our calculusCadL.

We are going to compare the CADIAG-2 inference mechanism andproofs inCadL.
Our aim is to establish a one-to-one correspondence; as we shall see, this can be
done by adding natural conditions to the way proofs inCadL are made. These
conditions will depend on the concept of strength of truth values.

Assume that we are given a fixed CADIAG-2 knowledge base consisting of entries
of type (c), (me) or (ao), according to our explanations in Section 2. Let us identify
each basic entity appearing in the knowledge base with a unique atomic proposition
of CadL, and each compound entity with the respective lattice proposition ofCadL.
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Let v be the initial evaluation of a run of CADIAG-2, which is a partial mapping
from FA to [0, 1]. With v, we associate the theoryTv of CadL consisting of the
following graded propositions:

(i) (ϕ, v(ϕ)) wheneverϕ ∈ FA is in the domain ofv;

(ii) (α→ ϕ, d), whered ∈ (0, 1], for each rule in the knowledge base of type
(cd) with antecedentα and succedentϕ;

(iii) (α → ∼ϕ, 1) for each rule in the knowledge base of type (me) with an-
tecedentα and succedentϕ.

(iv) (∼α→ ∼ϕ, 1) for each rule in the knowledge base of type (ao) with an-
tecedentα and succedentϕ;

Recall that in (ii)–(iv), the propositionϕ is atomic; so an implication inTv can be
uniquely identified as originating either from a rule of type(c) or from a rule of
one of the types (me), (ao).

Completeness.We show how to translate a run of CADIAG-2, starting from the
initial evaluationv, into a proof ofCadL from the theoryTv.

Proposition 3.5. Let β be any entity in the domain of the final evaluationwl of a
run of CADIAG-2. Then, identifyingβ with the corresponding lattice proposition
in CadL, (β,wl(β)) is provable inCadL fromTv.

Proof. Let a run of CADIAG-2 be given. Letw0, . . . , wl be the associated se-
quence of evaluations, wherew0 = v. Let 1 ≤ k ≤ l and assume that we have
already built a proof inCadL from Tv such that, for each basic entityϕ in the
domain ofwk−1, (ϕ,wk−1(ϕ)) is contained inTv or is an entry in the proof.

In thek-th step of the run of CADIAG-2, a rule (R) of type (c), (me), or(ao) from
the knowledge base is applied; letα be its antecedent andϕ its succedent. Thenα
is in the domain ofwk−1. Let b be the proposed truth value forϕ produced by the
rule, according to the explanations given in Section 2. We will extend the proof in
CadL such that(ϕ, b) is its last entry.

In a first step we extend the proof to derive(α,wk−1(α)); by induction hypothesis
this can be done by means of the evaluation rules. Next, we apply one of the three
manipulation rules (c), (me), or (ao), corresponding to thetype of (R), to derive
(ϕ, b).

It follows that there is a proof inCadL from Tv containing(ψ,wk(ψ)) for each
atomic propositionψ in the domain ofwk.
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By induction, there is a proof containing(ψ,wl(ψ)) for each atomψ occurring in
β. If β is not atomic we apply the evaluation rules to derive(β,wl(β)).

Soundness.The converse direction is more delicate as not all the proofsin CadL

correspond to a run of CADIAG-2. The reason is that when a new value is com-
puted during a run of CADIAG-2, the previously obtained value for the same entity
may become obsolete, in which case the old value is discarded. Namely, to emulate
the actual mode of operation of CADIAG-2 inCadL, the following properties of
CADIAG-2 must be kept:

(C1) If, at the beginning of thek-th step, we have for some entityβ thatwk−1(β) =
t, but the rule applied in this step givest′ as a truth value forβ, then in all
subsequent steps, only one of these values can be used, namely 0 if t′ = 0 or
t = 0, andt ∨̄ t′ if t, t′ > 0.

(C2) When thek-th step has settledwk(ϕ) = t for a certain basic entityϕ, then
the truth value assigned to any entity containingϕ needs to be updated before
being used again.

Let us contrast these conditions withCadL on the basis of an example.

Example 3.6. Consider the following CADIAG-2 rules, say(R1), (R2), and(R3),
expressed as graded propositions ofCadL as follows:

(R1) (σ1 → δ1, 0.25)

(R2) (σ2 → ∼δ1, 1).

(R3) (σ3 ∧ (δ1 ∨ . . . ∨ δ7) → δ8, 0.8)

Here,σ1 meansaldolase (serum) highly increasedandδ1 denotesdermatomyosi-
tis. Furthermore,σ2 meanschorea minor; σ3 meansxerostomia; andδ8 denotes
arthritis with Sj̈ogren’s syndrome. The symbolsδ2, . . . , δ7 denote some further
diseases.

Assume to have the assumptions(σ1, 0.7), (σ2, 1), and(σ3, 0.8). Then a proof in
CadL can result in the following situation. Using(R1), we derive(δ1, 0.25) and
using(R2) we get(δ1, 0). So we have that dermatomyositis is both confirmed with
certainty0.25 and excluded. Now, we may apply(R3) using the former result, so
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that we derive(δ8, 0.25), that is, arthritis with Sj̈ogren’s syndrome with certainty
0.25.

However,(δ1, 0) is a definite statement and(δ1, 0.25) involves uncertainty; so the
former statement dominates over the latter one. However, the statement about
arthritis relies on the statement(δ1, 0.25).

The conditions(C1) and (C2) prevent this unintended situation. Namely,(C1)
implies that the truth value0.25 of δ1 becomes obsolete onceδ1 is assigned0, and
(C2) makes sure that the expressionσ3 ∧ (δ1 ∨ . . . ∨ δ7) is evaluated again if one
of the truth values of the contained entities has changed. Consequently,(R3) can
no longer be used, hence a statement aboutδ8 is impossible.

We strengthen the notion of a proof inCadL so as to get the exact analogue of the
mode of operation of CADIAG-2.

Definition 3.7. Call a proof ofCadL from a theoryT updating if the following
conditions are fulfilled.

(Up1) Let thei-th proof entry be derived by a rule among whose assumptions is
(α, t), whereα ∈ FL andt ∈ (0, 1). If any of the proof entries1, ..., i − 1
or any element ofT is of the form(α, t′), thent′ 4 t.

(Up2) Let thei-th proof entry be derived by a rule among whose assumptions is
(α, t), whereα ∈ FL is non-atomic. Then, for somej < i, thej-th proof
entry is(α, t) and none of the proof entriesj + 1, ..., i − 1 is of the form
(ϕ, s), whereϕ is an atom occurring inα.

For a lattice propositionα and anyt ∈ [0, 1], we call(α, t) strictly provablefrom
T if there is a updating proof such that(α, t) is its last element.

In the evident way, conditions (Up1) and (Up2) reflect the behaviour of CADIAG-
2; they correspond to the conditions (C1) and (C2) above.

Proposition 3.8. Let β be an entity, and let(β, t), whereβ is viewed as a lattice
proposition inCadL, be strictly provable fromTv in CadL. Then there is a run of
CADIAG-2 withl steps such thatwl′(β) = t for somel′ ≤ l, wherewl′ is the
evaluation after thel′-th step.

Proof. We translate below any updating proofP in CadL from the theoryTv into
inferences of CADIAG-2. Letm be the length of such proof; for eachi = 0, . . . ,m
and each basic entityϕ, we put

Tϕ
i = {t ∈ [0, 1] : (ϕ, t) is thej-th proof entry for somej ≤ i, or (ϕ, t) is in Tv};
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and, provided thatTv is consistent, we define an evaluationvi which maps a basic
entityϕ to the strongest element ofTϕ

i if Tϕ
i is non-empty, and which leavesvi(ϕ)

undefined otherwise (cf. Definition 2.1). Note thatv0 coincides with CADIAG-2’s
initial evaluationv. Letn0 = 0, and letn1, . . . , nl′ ∈ {1, . . . ,m} be the entries in
P which are the result of a usage of a manipulation rule.

We translateP to a CADIAG-2 run in a way thatvn0, vn1 , . . . , vnl′
are the associ-

ated evaluations. Namely, assume that, for1 ≤ k ≤ l′, we have already translated
the proof entries1, . . . , nk−1 of P to k − 1 CADIAG-2 steps and that the evalua-
tion wk−1 of CADIAG-2 after stepk − 1 coincides withvnk−1

. Thenk-th proof
step is by assumption based on a manipulation rule; let(α→ϕ, d) and(α, t) be its
assumption and let(ϕ, s) be its conclusion. Then the graded implication is inTv

and thus corresponds to a rule of the CADIAG-2 knowledge base. Furthermore, if
α is not atomic, the valuet is determined by application of evaluation rules applied
to the atoms ofα. Conditions (Up2) and (Up1) make sure that the truth values used
coincide with those given bywk−1. So CADIAG-2 can do an inference reflecting
the proof stepsnk−1 + 1, . . . , nk of P , and it follows thatwk = vnk

.

By summarising translating a run of CADIAG-2 toCadL is straightforward, whereas
the translation of a proof inCadL to a CADIAG-2 run is possible only under the
condition that at each step the values used in the proof are the “right” – the “up-
dated” – ones; in other words it works only for updating proofs.

4 Towards a semantical basis forCadL

We have demonstrated the mutual correspondence of runs of CADIAG-2 and up-
dating proofs of the logicCadL. In this section we pose the question ifCadL can
be endowed with a semantical basis. We will see that this is the case for the ma-
nipulation rules while suitable restrictions on the considered theories are needed to
deal with the evaluation rules. Under these restrictions, the conditions (Up1) and
(Up2) for updating proofs can be weakened.

The semantics forCadL which we are going to consider, is the one which suggests
itself. Namely, we make the natural choice about how to modelthe propositions
corresponding to medical entities: lattice propositions are modelled by truth val-
ues, that is, by real numbers between0 and1. The connectives are interpreted in
accordance with Definition 2.2:∧ by the minimum,∨ by the maximum, and∼ by
the standard negation. Finally, a graded proposition

(α, t), whereα ∈ FL andt ∈ (0, 1],
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is, apparently, most naturally understood as “the truth value ofα is at leastt”. This
interpretation is not only in accordance to what is common infuzzy logics; see, e.g.,
[Pav, NPM, Haj]. It is actually implied by the concepts underlying CADIAG-2;
recall that a truth valuet ∈ (0, 1) is any time improvable to a larger onet′ ∈ (0, 1],
in which case the former value is no longer used. Furthermore, 0 plays a special
role; a graded proposition(α, 0) whereα ∈ FL, reflects thatα is excluded, and it
is understood as “the truth value ofα is 0”.

We will first discuss the case that propositions are endowed with sharp truth values
and afterwards the case that non-sharp truth values occur.

Definition 4.1. A graded proposition(α, t) is calledsharp if t is a sharp truth
value.(α, t) is calledfuzzyotherwise.

4.1 Sharp propositions

We start our discussion by addressing the first, and actuallyalready heavy, obstacle
to our aim of a semantical basis for CADIAG-2: the special role played by the
truth value0. It is a special feature of CADIAG-2 that sharp truth values dominate
over fuzzy ones. The particular role assigned to0 cannot be easily coped with by
semantic means; instead, we propose to evade the problem by proof-theoretical
means.

We will consider proofs inCadL, to be called sharp-first proofs, which first derive
the statements of the form(α, 0) or (α, 1) and only then the rest. A situation like
the one described in Example 3.6 will be excluded. Furthermore, as we will see,
sharp propositions possess proofs of this form if they possess a proof at all.

Definition 4.2. A proof P of CadL from a theoryT is calledsharp-first if P is
the concatenation of two sequencesPs andPf such that (i)Ps contains only sharp
propositions, (ii) for any entry inPf of the form(α, t), whereα ∈ F , we have that
α does not appear inPs andt is not sharp.

In other words, we require proofs inCadL to be divided into two parts: a first
one concerning sharp propositions only, and interpretablein classical propositional
logic; and a subsequent one where only fuzzy propositions are inferred.

Example 4.3. To illustrate the effect of this condition, recall Example3.6. We
considered the situation that both(δ1, 0) and(δ1, 0.25) occurred in a proof, where
δ1 denotes a specific diagnosis. In a sharp-first proof this situation is excluded: the
sharp propostion(δ1, 0) must be derived first; but afterwards an entry(δ1, 0.25) is
impossible as the application of any rule withδ1 as its conclusion is not allowed.
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We furthermore note that if an inconsistency is detected in asharp-first proof,
meaning that an entity is assigned both0 and1, this happens necessarily in the
first part, i.e. inPs w.r.t. the notation of Definition 4.2.

The notion of a sharp-first proof makes sense only if for a sharp proposition prov-
able fromTv also a sharp-first proof exists. This is indeed the case; evenbetter,
in sharp-first proofs of sharp propositions, the conditions(Up1) and (Up2) always
hold.

Lemma 4.4. LetT be a consistent theory ofCadL and(α, b) a sharp proposition.
If (α, b) is provable fromT , then there is a proof of(α, b) from T in which all
graded propositions are sharp. In particular, this proof issharp-first.

Furthermore, any sharp-first proof of a sharp proposition from T is an updating
proof.

Proof. If a sharp proposition is the conclusion of an evaluation rule, either both
assumptions are sharp as well, or one is sharp and the other one can be discarded
from the proof. If a sharp proposition is the conclusion of a manipulation rule,
then evidently the two assumptions are sharp as well. We conclude that if(α, b)
is provable fromT , (α, b) can be proved using sharp propositions only. Naturally,
this proof is sharp-first.

Furthermore, any sharp-first proof ending with a sharp proposition contains only
sharp propositions. In view of the consistency assumption aboutT , such a proof is
always updating.

Corollary 4.5. Let T be a consistent theory ofCadL and (α, b) a sharp proposi-
tion. Then(α, b) is provable fromT if and only if (α, b) is strictly provable from
T .

In contrast to sharp propositions, a fuzzy proposition may be strictly provable, but
might not possess a sharp-first proof.

Example 4.6.LetT = {(ϕ, 0.6), (ϕ, 0), (ϕ→ψ1, 0.7), (∼ϕ→∼ψ2, 1), (ψ1∧
∼ψ2→χ, 0.8)} be a theory ofCadL. Then(χ, 0.6) is provable fromT , but a proof
necessarily contains both(ϕ, 0.6) and(ϕ, 0) and thus cannot be sharp-first.

In view of Examples 3.6 and 4.6, we conclude that requiring proofs ofCadL to be
sharp-first means an improvement in transparency. Accordingly, we propose the
following modification of CADIAG-2:

(1) Restrict the initial evaluation to those basic entitiesto which 0 or 1 is as-
signed and calculate the consequences. If an inconsistencyoccurs, quit.
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(2) Extend the resulting evaluation to cover also those basic entities of the ini-
tial evaluation to which non-sharp truth values are assigned; ignore all rules
from the knowledge base whose succedent is already evaluated by0 or 1 and
calculate the consequences until there is no more change.

Call a run of CADIAG-2 subject to these requirements a sharp-first run. Then
Propositions 3.5 and 3.8 may be modified in the obvious way, toestablish a one-to-
one correspondence between sharp-first runs of CADIAG-2 on the one hand and
sharp-first updating proofs ofCadL on the other hand.

4.2 Fuzzy propositions

The semantic interpretation proposed at the beginning of the section is adequate for
all rules when restricted to sharp values but it is not for therule (∼) for negation
when fuzzy values are involved. Indeed, ift ∈ (0, 1] is a lower bound for the
truth value ofα, then, taking into account the interpretation of∼ by [0, 1] →
[0, 1], t 7→ 1 − t, we conclude that1 − t is an upper bound of the truth value of
∼α rather than a lower bound. This problem does not arise anymore if we make the
assumptions below. These assumptions are desirable from a logical point of view,
but are certainly restrictive from the point of view of the intended application.

Definition 4.7. A proof in CadL from a theoryT is calledregular if the following
condition holds. Let(α, t) be the assumption of a rule (∼), and letϕ be an atom
appearing inα. Then either(ϕ, s) is contained inT for somes ∈ [0, 1] or (ϕ, s) is
contained in the proof for somes ∈ {0, 1}.

Furthermore, a theoryT of CadL is called assumption-preservingif whenever
(α, t) ∈ T for someα ∈ FL and we can prove(α, t′) from T , thent′ = t.

Note that whenever the rule (∼) is used in a regular proof, we know that, w.r.t. our
proposed semantical interpretation, the conclusion givesthe exact truth value of the
concerned negated proposition, not only a bound from above or below. Regularity
is the key condition to endowCadL with a semantical basis.

Moreover, the condition for a theory to be assumption-preserving reflects a natural
requirement, namely, that assumptions made should be takenas granted and not be
“corrected”.

By using the conditions above the notion of updating proof isnot needed anymore.

Lemma 4.8. LetT be an assumption-preserving consistent theory ofCadL andα
be atomic. Assume that there is a regular proof of(α, t), where0 < t < 1, fromT
such that the following condition is fulfilled:
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(Up1’) If the i-th proof entry is derived by a rule among whose assumptions is
(ϕ, t), ϕ ∈ FL, t > 0, then neither of the proof entries1, ..., i− 1 nor of the
elements inT is of the form(ϕ, 0).

Then there is at′ ≥ t such that there is an updating regular proof of(ϕ, t′) from
T .

Proof. Let P be a proof of(α, t), wheret ∈ (0, 1), such that (Up1’) is fulfilled.
We modify the proof as follows.

Assume that we have modified the proof up to thei− 1-th step,i ≥ 1, such that up
to this point, conditions of updating are fulfilled, and certain entries(β, r), where
β ∈ FL andr ∈ (0, 1), in the original proof have been changed to(β, r′), r′ > r.
Consider now the subsequent use of a manipulation rule.

If the conclusion is sharp, we know by the proof of Lemma 4.4 how the conditions
of updating can be achieved.

Otherwise, the manipulation rule is of type (c). Let(γ, s) be its right premise.s is
the result of an evaluation ofγ from the truth values of its atoms. The conditions
of updating are fulfilled if for each atom, the best truth value appearing in the proof
so far, is used. If an atomϕ appearing inγ is in the scope of a negation, then its
truth value is sharp and thus maximal w.r.t.4, or it originates fromT and is thus
unique in the proof.

If, however an atomϕ appearing inγ is not in the scope of a negation, it may
happen that two different truth values are contained in the proof and the weaker
one is used. We then modify the proof to ensure updating. As a result, the truth
values associated toγ as well as the truth value associated to the rule’s conclusion,
are enlarged. The claim follows by induction.

Theorem 4.9. Let T be an assumption-preserving consistent theory ofCadL and
ϕ be atomic. Assume that there is a sharp-first, regular proof of (ϕ, t) from T .
Then there is at′ < t and a sharp-first, regular proof of(ϕ, t′) from T which is
also updating.

Proof. If t is sharp, by Lemma 4.4 there is a proof containing only sharp proposi-
tions. This proof is sharp-first, updating, and also regular.

Let t be fuzzy. A sharp-first proof fulfils (Up1’); so the assertionfollows from
Lemma 4.8.

Let us summarise what we have established. By the results of the last section,
we know that a run of CADIAG-2 can be emulated by a proof inCadL and an
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updating proof inCadL can be translated to a run of CADIAG-2. Theorem 4.9
permits to drop the “updating” condition under certain assumptions: Sharp-first
regular proofs from assumption-preserving, consistent theories are updating and
thus can be translated to a run of CADIAG-2. Recall that a proof to be sharp-first
means that there is a first part whose argumentation is like inclassical logic and a
second part where comes everything properly fuzzy. In a regular proof, moreover,
the rule introducing negation may be used only if the truth value of the assumption
is known exactly.

5 A Gentzen-style proof system forCadL

In this section we formulate an alternative calculus reflecting the reasoning of
CADIAG-2. In contrast toCadL it allows a semantical foundation: all rules are
sound with respect to the semantics mentioned in the preceding chapter. Further-
more, the new calculus is formulated as a Gentzen-style system, cf. [Gen].

The introduced calculus, which we callSeqCadL, does not coincide withCadL;
however, when restricting to regular proofs inCadL the two calculi do prove the
same.

As we will see,SeqCadL allows a clear comparison with fuzzy logics in the sense
of [Haj].

Definition 5.1. Theatomic propositionsof SeqCadL are countably many symbols
ϕ1, ϕ2, . . . (to which we will sometimes refer to asvariables) as well as constants
t̄ for each rationalt ∈ [0, 1]. Thelattice propositionsof SeqCadL consist of the ex-
pressions built up from the atomic propositions by means of the binary connectives
∧ and∨ and the unary connectives∼ and∆ (see [Baa]).

Moreover, ac-sequentis of one of the following forms:

t̄⇒ α, α⇒ t̄, t̄ ∧ α⇒ β, t̄⇒ ∆α

wheret̄ is a rational truth constant andα, β are lattice propositions.

An evaluationof SeqCadL maps the lattice propositions to[0, 1] such that (i)
v(t̄) = t for each rationalt ∈ [0, 1], (ii) v(α ∧ β) = v(α) ∧̄v(β), (iii) v(α ∨ β) =
v(α) ∨̄v(β), (iv) v(∼α) = ∼̄v(α), (v) v(∆α) = ∆̄v(α), where

∆̄t =

{

1 if t = 1,

0 else

for t ∈ [0, 1].
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An evaluationv satisfiesthe c-sequentα⇒ β if v(α) ≤ v(β).

A theory T of SeqCadL is a finite set of c-sequents. We say that a theoryT
semantically impliesa c-sequentα⇒ β if any evaluation satisfying every element
of T satisfiesα⇒ β as well.

We next define a proof system forSeqCadL. A SeqCadL rule is a pair consisting
of a finite set of assumptions, i.e. a finite (possibly empty) set of c-sequents, and a
conclusion. Rules with no assumptions are calledaxioms.

Definition 5.2. The rules ofSeqCadL are, for anyα, β ∈ FL ands, t, d ∈ [0, 1],
the following:

0̄ ⇒ α
(0 ≤)

α⇒ 1̄
(≤ 1)

s̄⇒ α t̄⇒ β

s ∧̄ t ⇒ α ∧ β
(⇒ ∧)

α⇒ s̄ β ⇒ t̄

α ∧ β ⇒ s ∧̄ t
(∧ ⇒)

α⇒ 0̄
α ∧ β ⇒ 0̄

(∧1 ⇒ 0)
β ⇒ 0̄

α ∧ β ⇒ 0̄
(∧2 ⇒ 0)

α⇒ s̄ β ⇒ t̄

α ∨ β ⇒ s ∨̄ t
(∨ ⇒) t̄⇒ α

t̄⇒ α ∨ β
(⇒ ∨1)

t̄⇒ β

t̄⇒ α ∨ β
(⇒ ∨2)

t̄⇒ α
∼α⇒ ∼̄t

(∼1)
α⇒ t̄

∼̄t⇒ ∼α
(∼2)

1̄ ⇒ ∼α
α⇒ 0̄

(∼3)
α⇒ 0̄

1̄ ⇒ ∼α
(∼4)

1̄ ⇒ α
1̄ ⇒ ∆α

(∆)
t̄⇒ α d̄ ∧ α⇒ β

d ∧̄ t⇒ β
(Cut),wheret, d > 0

A proof of a c-sequentα ⇒ β from a theoryT is a labelled tree whose root is
labelled byα ⇒ β, the leaves are labelled by(0 ≤), (≤ 1) or by a c-sequent inT
and the inner nodes are labelled in accordance with instances of the rules.

We immediately see thatSeqCadL is sound, that is, if the assumption of a rule (if
present) is satisfied by some evaluation, then so is the conclusion:

Proposition 5.3. Let T be a theory ofSeqCadL and letα ⇒ β be a c-sequent
provable fromT . ThenT semantically impliesα⇒ β.
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Let Tv be the theory ofCadL associated to the initial evaluationv of CADIAG-2
(cf. Section 3). We denote byT s

v the theory ofSeqCadL obtained by translating
each element ofTv as follows:

(i) To each(ϕ, t), we associatēt⇒ ϕ andϕ⇒ t̄.

(ii) To each implication(α→β, d), whereβ is atomic, we associatēd∧α⇒ β.

(iii) To each implication(α→∼β, 1), whereβ is atomic, we associatē1∧∆α⇒
∼β.

Note that in case (ii), the implication necessarily originates from a rule of type (c)
in the knowledge base of CADIAG-2, whereas in case (iii), theimplication either
originates from a rule of type (ao) or (me).

Theorem 5.4 (CadL vs. SeqCadL). Let T be the theory ofCadL associated to
some initial evaluation of CADIAG-2. If there is a regular proof of (α, t) from T
in CadL, thenSeqCadL provest̄⇒ α if t > 0 andα⇒ 0̄ if t = 0, fromT s.

Proof. Let P be a regular proof inCadL from Tv. Translate each entry inP of the
form (β, s), wheres > 0, to s̄ ⇒ β; each entry inP of the form(β, 0) to β ⇒ 0̄;
and each implication as shown above.

The result is not necessarily a proof inSeqCadL; modifications might be necessary.
For i ≥ 1, assume that the firsti − 1 proof entries do form a proof inSeqCadL.
If the i-th proof entry is, in the originalCadL proof, derived by an evaluation rule
different from (∼), there is a corresponding rule inSeqCadL. If (∼) is used with
sharp truth values, there are the corresponding rules(∼1) and(∼2).

If (∼) is used with non-sharp truth values, then, by regularity, for every atomϕ in
the assumption,(ϕ, s) is contained inTv if s is non-sharp, else in the preceding
part of the proof; hence both̄s⇒ ϕ andϕ⇒ s̄ are available. We conclude that we
may extend the proof to prove the assumption of (∼) with antecedent and succedent
interchanged.

Finally, let one of the manipulation rules be used to derive thei-th proof entry. (c)
corresponds to (Cut) inSeqCadL. The rule (ao) can be simulated inSeqCadL as
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follows; note that1 ∧̄1 is 1̄:

α⇒ 0̄
(∼4)

1̄ ⇒ ∼α
(∆)

1̄ ⇒ ∆∼α 1̄ ∧ ∆∼α⇒ ∼β
(Cut)

1̄ ⇒ ∼β
(∼3)

β ⇒ 0̄

The case of the rule (me) is similar.

Theorem 5.5(SeqCadLvs.CadL). LetT be the theory ofCadL associated to some
initial evaluation of CADIAG-2. If there is a proof inSeqCadL of ū ⇒ δ where
u > 0, or δ ⇒ 0̄, fromT s, thenCadL proves(δ, u) or (δ, 0), respectively, fromT .

Proof. Let a proof ofSeqCadL be given. We first translate the proof steps as fol-
lows: c-sequents of the form̄1 ⇒ ∼α to (α, 0) and t̄ ⇒ α or α ⇒ t̄ to (α, t);
c-sequents of the form̄d∧α⇒ β are translated to their original versions in accor-
dance to (ii)–(iii) above.

We consider successively each proof step and make modifications where necessary.
The rules(0 ≤), (≤ 1), (∼3), (∼4), and(∆) are ignored. If a proof step is based
on a rule for∧ or∨ or on the rule(∼1) or (∼2), we use the corresponding rules of
CadL.

Consider now an application of (Cut). Note that the right premise of (Cut) is nec-
essarily contained inT s because there is no way to derive a c-sequent of this form
from a rule; therefore the right premise is the translation of an implication fromT .
Two cases can arise. The first possibility, corresponding tocase (ii) above,

t̄⇒ α d̄ ∧ α⇒ β

d ∧̄ t ⇒ β

translates to a rule (c). For the second possibility, corresponding to case (iii) above,
note that a c-sequent of the form̄t ⇒ ∆α, is always derived by means of (∆), and
in particular we always havet = 1. Thus

1̄ ⇒ ∆α 1̄ ∧ ∆α⇒ β

1̄ ⇒ ∼β

translates to the rule (me) or (ao).
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6 Fuzzy Logics andSeqCadL

In this section we compareSeqCadL with the t-norm based logic closest to the
natural semantical framework forCadL. Not surprisingly, the logic which we have
in mind is an extension of Gödel logic. More precisely we consider a variant of
the logicRGL∼, which was introduced in [EGHN] as Gödel logic enriched by the
standard negation as well as rational truth constants.

First note that the objects ofSeqCadL, i.e. the c-sequents, have the formα ⇒
β, whereα andβ do not contain the implication symbol. Accordingly, we are
going to consider (a variant of) the fragment ofRGL∼with no nested implications.
For the similarity to the proposal of Zadeh in [Zad], we call the resulting logic
Gödel-Zadeh logic,GZL for short. Note however that we include Baaz’s∆ in the
language.

Definition 6.1. The atomic and lattice propositionsof GZL are defined like for
SeqCadL (see Definition 5.1). Acomparing propositionof GZL is a pair of two
lattice propositionsα andβ, notated byα→β.

An evaluation ofGZL is defined like forSeqCadL. We say that an evaluationv
satisfiesa comparing propositionα→β if v(α) ≤ v(β).

A theory of GZL is a set of comparing propositions. We say that a theoryT se-
mantically impliesa propositionα→β if any evaluation satisfying every element
of T satisfiesα→β as well.

A proof system forGZL is formulated below using sequents-of-relations, a general-
isation of Gentzen sequents introduced in [BaFe] in which the sequent arrow “⇒”
is splitted into the inequality symbols “≤” and “<”. Our calculus extends that for
Gödel logic with∆ in [BCF] with suitable rules for negation and truth constants.

In our context, asequent-of-relationsG is a multiset of ordered triples

α1 ⊳1 β1 | . . . | αn ⊳n βn,

whereαi andβi are formulas ofGZL and⊳i ∈ {<,≤} for i = 1, . . . , n. Note
that the use of inequality symbols “≤” and “<” in the definition is purely syntactic
(although of course also suggestive of the intended meaning).

G is satisfiedby some evaluation ofGZL v if v(αi) ⊳i v(βi) for somei; G is valid
in GZL if satisfied by all evaluation ofGZL.

A literal is a lattice proposition of the formϕ or ∼ϕ for some atomϕ. We call a
sequent-of-relationsbasicif it contains only literals.
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Definition 6.2. Axioms and rules ofSeqGZL are the following, whereG is an
arbitrary side sequent-of-relations and⊳, ⊳1, ⊳2 ∈ {<,≤}:

Axioms

α ≤ α
(A1)

s̄ ⊳ t̄
(A2),wheres ⊳ t

Logical Rules

G | α ⊳ γ | β ⊳ γ

G | α ∧ β ⊳ γ
(∧⊳)

G | γ ⊳ α G | γ ⊳ β

G | γ ⊳ α ∧ β
(⊳∧)

G | α ⊳ γ G | β ⊳ γ

G | α ∨ β ⊳ γ
(∨⊳)

G | γ ⊳ α | γ ⊳ β

G | γ ⊳ α ∨ β
(⊳∨)

G | ∼β ⊳ α

G | ∼α ⊳ β
(∼ ⊳)

G | β ⊳∼α

G | α ⊳∼β
(⊳ ∼)

G | β ⊳ α

G | ∼α ⊳∼β
(∼ ⊳ ∼)

G | α < 1 | 1 ≤ β

G | ∆α ≤ β
(∆ ≤)

G | α ≤ 0 | 1 ≤ β

G | α ≤ ∆β
(≤ ∆)

G | α < 1 G | 0 < β

G | ∆α < β
(∆ <)

G | α < 1 G | 1 ≤ β

G | α < ∆β
(< ∆)

Rules for Constants

G | α ⊳ 0.5

G | α ⊳∼α
(⊳1

2
)

G | 0.5 ⊳ α

G | ∼α ⊳ α
(1

2
⊳)

G | α ⊳ 0̄

G | α ⊳ β
(⊳0)

G | 1̄ ⊳ β

G | α ⊳ β
(1⊳)

G | ∼̄t ⊳ α

G | ∼ t̄ ⊳ α
(∼c⊳)

G | α ⊳ ∼̄t

G | α ⊳∼ t̄
(⊳∼c)
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Structural Rules

G | α ⊳ β | α ⊳ β

G | α ⊳ β
(EC)

G | α ≤ β G | γ ⊳1 δ

G | γ ⊳1 β | α ⊳2 δ
(com)

G

G | α ⊳ β
(EW)

G | α < β G | β ≤ α

G
(cut)

The definition ofproof in SeqGZL is as usual.

Lemma 6.3. In SeqGZL, the rule

G | α ≤ β G | β ≤ γ

G | α ≤ γ
(trans)

is derivable.

Proof.
G | β ≤ γ G | α ≤ β

(com)

α ≤ γ | β < β G | β ≤ β
(cut)

G | α ≤ γ

Remark 6.4. Note that although we deal with comparing propositions, rules for
implication are not needed. Corollary 6.7 below shows how the two arrows can
replace these rules.

Remark 6.5. Note that the methodology introduced in[BaFe]to define a sequent-
of-relations calculus out of the semantic specification of alogic does not work for
SeqGZL whose semantics, due to the presence of a classical (involutive) negation,
is not projective.

As usual we will say that a rule issoundin GZL if whenever all assumptions are
satisfied by some evaluationv of GZL, the conclusion is satisfied byv as well. A
rule is invertible if whenever the conclusion is valid, then so are all assumptions.

Theorem 6.6. A sequent-of-relationsG is valid inGZL if and only ifG is provable
in SeqGZL without use of the rule(Cut).
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Proof. It is easy to see that the rules ofSeqGZL are sound.

For completeness, observe that the axioms are valid and logical rules are invert-
ible. Moreover when not allowing the subsequent use of the negation rules(∼ ⊳)
and(⊳ ∼), inverse (i.e. bottom up) applications of the logical ruleslead to basic
sequents-of-relations in a finite number of steps.

It remains to show thatSeqGZL derives all basic sequents-of-relations which are
valid. LetG be a valid basic sequent-of-relations. We proceed by induction on the
number of variables inG. If there is no variable, we remove any appearance of the
∼-connective by inverse application of(∼c⊳) or (⊳∼c). The result must contain a
sequent of the form̄s ⊳ t̄, wheres ⊳ t, and it is derivable by (A2) and (EW).

Let G contain at least one variable, sayα. We show thatG can be derived from a
valid sequent-of-relationsG′ whose variables are those which already occur inG,
but notα.

By backwards application of the rules for∼ if necessary, in a basic sequents-of-
relations the possible relations involvingα are of one of the following forms: (i)
α ⊳ β for some literalβ not containingα, or (ii) of the formγ ⊳ α for some literal
γ not containingα, or (iii) α occurs on both sides of⊳.

Case (iii) can be discarded. Indeed, ifα ≤ α appears, thenG is derivable by (A1)
and (EW). IfG = G′ |α < α, thenG is valid if and only if so isG′, andG is
derivable fromG′ by (EW). Furthermore∼α ⊳ α andα ⊳ ∼α can be replaced by
0.5 ⊳ α or α ⊳ 0.5, respectively, by means of the1

2
-rules.

Assume next that case (i) occurs inG, but not (ii). Then we replace all occurrences
of α by 1̄; from the result, which is evidently still valid, we deriveG by (1⊳). We
proceed similarly if only case (ii) occurs.

Assume finally that cases (i) and (ii) appear both at least once. We assume that they
appear exactly twice; otherwise the argumentation is similar. Letβ1 ⊳ α, β2 ⊳ α,
α ⊳ γ1, α ⊳ γ2 occur inG, where⊳ is chosen as≤ or < independently in the four
cases. Then we buildG′ by replacing these four relations byβ1⊳γ1, β1⊳γ2, β2⊳γ1,
β2 ⊳ γ2, where⊳ is < only if the involved atoms both have a<-relation withα.
ThenG is derivable fromG′ by (com) and (EC). Furthermore,G′ is valid; indeed,
if there is an evaluation making every relation inG′ fail, we can extend it toα to
make every relation inG fail.

Corollary 6.7. LetT = {α1→β1, . . . , αn→βn} be a finite theory ofGZL and let
α→ β be a comparing proposition ofGZL. T semantically impliesα→ β if and
only if there is a proof inSeqGZL of α ≤ β from{α1 ≤ β1, . . . , αn ≤ βn}

Proof. By Theorem 6.6 there is a proof inSeqGZL of the sequent-of-relationsβ1 <
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α1 | . . . | βn < αn | α ≤ β. The claim follows byn applications of (cut) with
premisesαi ≤ βi, with i = 1, . . . , n.

We next show thatGZL is stronger thanSeqCadL and hence ofCadL.

Lemma 6.8. Let T be a theory ofSeqCadL, T ′ be the corresponding theory of
SeqGZL andα⇒ β be a c-sequent ofSeqCadL. If α⇒ β is provable inSeqCadL

fromT thenα ≤ β is provable inSeqGZL fromT ′.

Proof. We have to show that every rule ofSeqCadL in which the symbol⇒ is
replaced by≤ is derivable inSeqGZL. This is easy in case of all rules but (Cut).
To derive (Cut), we consider the two casest ≤ d andd ≤ t. If t ≤ d, we may
derive inSeqGZL (we omit side sequents-of-relations):

t̄ ≤ d̄ t̄ ≤ α
(≤∧)

t̄ ≤ d̄ ∧ α d̄ ∧ α ≤ β
(trans)

t̄ ≤ β

If d ≤ t, we have

d̄ ≤ t̄ t̄ ≤ α
(trans)

d̄ ≤ α d̄ ≤ d̄
(≤∧)

d̄ ≤ d̄ ∧ α d̄ ∧ α ≤ β
(≤∧)

d̄ ≤ β

In view of Theorem 5.4, we get as a corollary thatSeqGZL is able to reproduce all
inferences of CADIAG-2 modelled by regular proofs inCadL.

Note that the converse of Lemma 6.8 does not hold. Indeed, we have:

Lemma 6.9. LetT = {1̄ ∧ α ⇒ β, 1̄ ∧ ∼α ⇒ β}, whereα andβ are atoms, be
a theory ofSeqCadL. ThenSeqCadL does not prove0.5 ⇒ β fromT .

Proof. If a proof of 0.5 ⇒ β from T exists, then by the soundness ofSeqCadL

it must necessarily contain an element ofT , say 1̄ ∧ α ⇒ β. A sequent of this
form appears only as the premise of the rule (Cut); the first one is t̄ ⇒ α for some
t ∈ [0, 1]. Again by the soundness ofSeqCadL, t̄ ⇒ α is derivable fromT in
SeqCadL only if t = 0. But then the conclusion of (Cut) is̄0 ⇒ β, which is
derivable from the empty theory already. The assertion follows.
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Corollary 6.10. SeqGZL is strictly stronger thanSeqCadL.

Proof. The assertion follows from the previous lemma and the fact that fromα ≤ β
and∼α ≤ β we can derive0.5 ≤ β in SeqGZL. Indeed, we have

α ≤ α 0.5 ≤ 0.5
(com)

0.5 ≤ α | α ≤ 0.5
(⊳∼c)

0.5 ≤ α | α ≤ ∼0.5
(⊳∼)

0.5 ≤ α | 0.5 ≤ ∼α.

Applying twice (com) and then (EC), we furthermore derive0.5 ≤ β | β < α |
β < ∼α. We finally apply twice (cut), and the assertion follows.

ThereforeSeqGZL, and hence by Theorem 6.6GZL, is not adequate to formalise
CADIAG-2. An informal question is whatGZL can do more. The crucial fact
responsible for the additional strength ofSeqGZL is the total order of the set of truth
constants. As a consequence, it is necessary to base a Gentzen-style calculus for
GZL on sequents-of-relations rather than on single relations.In the above example,
it is necessary to express in some way the alternative “α ≤ β or β ≤ α”, done in
SeqGZL by the provable sequent-of-relations

α ≤ β | β ≤ α,

which has no counterpart inSeqCadL.

So comparing the two calculiSeqGZL andSeqCadL, we may certainly observe a
number of technical differences between the two systems on the lowest level. But
when abstracting from details and considering just the crucial point of difference,
we have thatSeqGZL is based on sequents-of-relations andSeqCadL just on single
relations. We may state:SeqGZL andSeqCadL are based on the same semantics;
however, onlySeqGZL allows to consider alternatives concerning the relationship
between pairs of propositions. Referring to the example given above,SeqCadL

does not allow to argue: “Either property 1 holds stronger than property 2, or
property 2 holds stronger than property 1”;SeqCadL does not support this kind of
case-based reasoning.

An explanation of this phenomenon can be rather easily found. SeqCadL deals
with statements which either specify the strength of some property explicitly “The
propertyϕ holds at least to the degree0.9”, or it uses statements which express
causal or logical relationships: “Property 1 implies property 2.” To speak about
a causal implication between two facts, however, is different from speaking about
the strength of some property compared to another one.
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We conclude that the medical expert system CADIAG-2 is basedon principles very
close to the basic principles known from t-norm based logics; as a consequence,
we may emulate the inference mechanism of the system by meansof a familiar
fuzzy-logical calculus. But there remain differences on a basic level that cannot be
easily overcome.
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tivizations, in: P. Hájek (ed.), “Gödel ’96. Logical foundations of mathe-
matics, computer science and physics – Kurt Gödel’s legacy”, Springer-
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