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Abstract

An orthogonality space is a set equipped with a symmetric and irreflexive binary
relation. We consider orthogonality spaces with the additional property that
any collection of mutually orthogonal elements gives rise to the structure of a
Boolean algebra. Together with the maps that preserve the Boolean structures,
we are led to the category NOS of normal orthogonality spaces.

Moreover, an orthogonality space of finite rank is called linear if for any two
distinct elements e and f there is a third one g such that exactly one of f and g is
orthogonal to e and the pairs e, f and e, g have the same orthogonal complement.
Linear orthogonality spaces arise from finite-dimensional Hermitian spaces. We
are led to the full subcategory LOS of NOS and we show that the morphisms
are the orthogonality-preserving lineations.

Finally, we consider the full subcategory EOS of LOS whose members arise
from Hermitian spaces over Euclidean subfields of R. We establish that the
morphisms of EOS are induced by generalised semiunitary mappings.

Keywords: Orthogonality spaces; undirected graphs; categories; Boolean sub-
algebras; linear orthogonality spaces; generalised semilinear map; generalised
semiunitary map

MSC: 81P10; 06C15; 46C05

1 Introduction

In quantum mechanics, physical processes are described in a way assigning an es-
sential role to the observer; rather than predicting on the basis of complete initial
conditions the unambiguous development of some physical system, the theory as-
signs probabilities to pairs consisting of a preparation procedure and the outcome of

1



a subsequent measurement. Why the formalism has proved successful is by and large
today still unanswered; we could admit that we rather got used to it. But even at the
most basic level, there are unresolved issues. A key ingredient of the model is a cer-
tain inner-product space – a Hilbert space over the field of complex numbers –, and
the deeper reasons for this choice are a matter of ongoing discussions.

The probably oldest approach aiming to clarify the basic principles on which quantum
theory is based is due to Birkhoff and von Neumann [BiNe]. The keyword “quantum
logic” is often used in this context but might be misleading. What in our eyes rather
matters is the idea of increasing the degree of abstraction: the question is whether
the Hilbert space can be recovered from a considerably simpler structure. Numerous
types of algebras, including partial ones, have been proposed and investigated, the
best-known example being orthomodular lattices, which describe the Hilbert space
by means of the inner structure of its closed subspaces. For an overview of possible
directions, we may refer, e.g., to the handbooks [EGL1, EGL2].

Increasing the degree of abstraction means to restrict the structure to the necessary
minimum. An approach that was proposed in the 1960’s by David Foulis and his col-
laborators goes presumably to the limits of what is possible. They coined the notion
of an orthogonality space, which is simply a set endowed with a symmetric and irre-
flexive binary relation. The prototypical example is the collection of one-dimensional
subspaces of a Hilbert space together with the usual orthogonality relation.

The notion of an orthogonality space is in the centre of the present work and the
main motivation behind our work is to elaborate on its role within the basic quantum-
physical model. We generally deal with the case of a finite rank, meaning that there
are only finitely many pairwise orthogonal elements. We should certainly be aware
of the fact that orthogonality spaces are as general as undirected graphs, which in
turn are rarely put into context with inner-product spaces. As has been shown in
[Vet3], however, the relationship between the two types of structures is close. An
orthogonality space of finite rank is called linear if, for any distinct elements e and f ,
there is a further one g such that exactly one of f and g is orthogonal to e and the
set of elements orthogonal to e and f coincides with the set of elements orthogonal
to e and g. Linearity characterises the orthogonality spaces that arise from finite-
dimensional Hermitian spaces.

In physics, symmetries of the model generally play a fundamental role. It might
thus not come as a surprise that orthogonality spaces associated with complex Hil-
bert spaces are describable by the particular properties of their automorphisms [Vet1,
Vet2]. Here, we further elaborate on this issue, but we adopt a more general perspect-
ive than in the previous works.

The present paper is devoted to the investigation of structure-preserving maps between
orthogonality spaces. We do so first in a general context, taking into account features
inherent to orthogonality spaces, and in a second step, we turn to the narrower class
of linear orthogonality spaces. We start with the question how to reasonably define
morphisms. It certainly seems to make sense to require nothing more than the pre-
servation of the single binary relation on which the structures are based. We call
orthogonality-preserving maps homomorphisms. A simple illustration shows, how-
ever, that this notion is inappropriate when the context that we ultimately have in
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mind is given by inner-product spaces. Indeed, for linear orthogonality spaces, we
expect a morphism to preserve, in some sense, linear dependence. The following
situation illustrates the difficulties, even though we otherwise deal with the finite-
dimensional case only [Šem]. Consider the complex projective space over three di-
mensions P (C3) as well as over 2ℵ0 dimensions P (C2ℵ0 ); then any injective map
from P (C3) to P (C2ℵ0 ) such that the image consists of mutually orthogonal elements
is a homomorphism of orthogonality spaces, but in no way related to the preservation
of linear dependence.

Having in mind the Hilbert space model of quantum physics, we have thus found that
it is natural to restrict from the outset to a narrower class of orthogonality spaces,
ruling out situations that we must consider as inappropriate. In quantum mechanics,
observables correspond to Boolean algebras. In a finite-state system, measurement
outcomes correspond to mutually orthogonal subspaces, which in turn generate a
Boolean subalgebra of the lattice of closed subspaces. We require to have an ana-
logue of this situation in our more abstract setting.

To be more specific, let us first recall that orthogonality spaces lead us straightfor-
wardly to the realm of lattice theory. A subset A of an orthogonality space (X,⊥)
is called orthoclosed if A = B⊥ for some B ⊆ X , where B⊥ is the set of e ∈ X
orthogonal to all elements of B. The set of orthoclosed subsets form a complete
ortholattice C(X,⊥). Now, consider a collection E = {x1, . . . , xk} of mutually or-
thogonal elements ofX . Then the subsets ofE generate a subortholattice of C(X,⊥).
This subortholattice is, in general, not isomorphic to the Boolean algebra of subsets
of E; in case it always is, we call (X,⊥) normal. We moreover name homomorph-
isms in the same way if they preserve, in a natural sense, Boolean subalgebras of
C(X,⊥). We thus arrive at the category NOS of normal orthogonality spaces and
normal homomorphisms.

We take up in this way an often-discussed issue. Indeed, for the aim of recovering a
Hilbert space or, more generally, an orthomodular lattice from suitable substructures,
it has been a guiding motive to consider the lattice as being glued together from its
Boolean subalgebras; see, e.g., [Nav, Section 4]. Moreover, deep results have been
achieved on the question how to reconstruct orthomodular lattices or related quantum
structures from the poset of their Boolean subalgebras [HaNa, HHLN].

Any linear orthogonality space is normal and thus our next step is to consider normal
homomorphisms between linear orthogonality spaces. That is, we investigate the full
subcategory LOS of NOS , consisting of linear orthogonality spaces. It turns out
that the morphisms in LOS do have the most basic property to be expected: they are
maps between projective spaces that preserve the triple relation of being contained in
a line, that is, they are lineations. In fact, we show that the morphisms are exactly the
orthogonality-preserving lineations.

Our final objective is to describe the morphisms in LOS as precisely as possible.
Generalisations of the fundamental theorem of projective geometry show that any
lineation is induced by a generalised semilinear transformation – provides it is non-
degenerate [Mach, Fau]. Here, non-degeneracy means two additional conditions to
hold: (1) the image is not contained in a two-dimensional subspace, and (2) the image
of a line is never two-element. Provided that the rank is at least 3, condition (1) is
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ensured. Condition (2), however, leads us to an issue dealt with in the discussions
around the peculiarities of quantum physics: we show that a violation of (2) implies
the existence of two-valued measures. The exclusion of two-valued measures is in
turn a consequence of Gleason’s Theorem in case that the skew field is C or R. Al-
though the case of specific further skew fields has been discussed [Dvu], not much
seems to be known about the general case. Here, we show that if the skew field of
scalars is an Euclidean subfield of the reals, two-valued measures do not exist and it
follows that morphisms are represented by generalised semilinear maps.

Moreover, what we deal with lineations that, in addition, preserve an orthogonality
relation. It seems natural to ask whether the representing generalised semilinear map
can be chosen to preserve in some sense the inner product. We establish that this is
the case under particular conditions: the skew field is commutative, that is, a field
and there is a basis of vectors of equal length. We conclude that morphisms between
Hermitian spaces over Euclidean subfield of the reals are induced by what we call
generalised semiunitary maps.

The paper is organised as follows. In the following Section 2, we fix the basic nota-
tion used in this paper. Moreover, we introduce and discuss normal orthogonality
spaces, in particular we also include a characterisation of normality as an intrinsic
property, without reference to the associated ortholattice. In Section 3, we investigate
the category NOS of normal orthogonality spaces and normal homomorphisms. In
Section 4, we prepare the ground for the discussion of those orthogonality spaces that
arise from inner-product spaces; in particular, we discuss lineations between project-
ive spaces and discuss their representation in the presence of an inner product. Then,
in Section 5, we recall the notion of linear orthogonality spaces and show that linear-
ity implies normality. Finally, in Section 6, we study the full subcategory LOS of
NOS that consists of linear orthogonality spaces, with a focus on the description of
the morphisms by means of generalised semilinear maps. Some concluding remarks
are found in the final Section 7.

2 Normal orthogonality spaces

We deal in this paper with the following relational structures.

Definition 2.1. An orthogonality space is a non-empty set X equipped with a sym-
metric, irreflexive binary relation⊥, called the orthogonality relation. The supremum
of the cardinalities of sets of mutually orthogonal elements of X is called the rank
of (X,⊥).

We may observe that orthogonality spaces are essentially the same as undirected
graphs, understood such that the edges are two-elements subsets of the set of nodes.
The rank of an orthogonality space is under this identification the supremum of the
sizes of cliques. The present work, however, is not motivated by graph theory, our
guiding example rather originates in quantum physics.

Example 2.2. Let H be a Hilbert space. Then the set P (H) of one-dimensional
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subspaces of H , together with the usual orthogonality relation, is an orthogonality
space, whose rank coincides with the dimension of H .

The (orthogonal) complement of a subset A of an orthogonality space X is

A⊥ = {x ∈ X : x ⊥ a for all a ∈ A}.

The map P(X)→ P(X), A 7→ A⊥⊥ is a closure operator on X . We call the closed
subsets orthoclosed and we denote the collection of orthoclosed subsets by C(X,⊥).
Endowed with the set-theoretical inclusion and the orthocomplementation ⊥, C(X,⊥)
becomes a complete ortholattice. The ortholattice (C(X,⊥);∩,∨,⊥ ,∅, X) will be
our primary tool to investigate (X,⊥).

Example 2.3. Let (P (H),⊥) be the orthogonality space arising from the Hilbert
space H according to Example 2.2. Then we may identify C(P (H),⊥) with the set
C(H) of closed subspaces of H , endowed with the set-theoretical inclusion and the
orthocomplementation.

In this paper, we will focus exclusively on the case of a finite rank. Our guiding
example is, accordingly, the orthogonality space associated with a finite-dimensional
Hilbert space. From now on, all orthogonality spaces are tacitly assumed to be of
finite rank.

We will next introduce a condition on orthogonality spaces that mimics a key fea-
ture of the quantum-physical formalism. In quantum mechanics, a physical system is
modelled by means of a Hilbert space and observables correspond to Boolean subal-
gebras of the lattice of its closed subspaces. We will require that orthogonality spaces
possess substructures of the corresponding type.

Definition 2.4. An orthogonality space (X,⊥) is called normal if, for any mutually
orthogonal elements e1, . . . , ek of X , where k > 1, the subalgebra of the ortholattice
C(X,⊥) generated by {e1}⊥⊥, . . . , {ek}⊥⊥ is Boolean.

We may understand normality also as a coherence condition. By a subset A of an
orthogonality space to be orthogonal, we mean thatA consists of mutually orthogonal
elements.

Lemma 2.5. For an orthogonality space (X,⊥), the following are equivalent:

(1) (X,⊥) is normal.

(2) For any maximal orthogonal set {e1, . . . , en} ⊆ X , there is a finite Boolean
subalgebra of C(X,⊥) whose atoms are {e1}⊥⊥, . . . , {en}⊥⊥.

(3) For any maximal orthogonal set {e1, . . . , en} ⊆ X and any 1 6 k < n, if
f ⊥ e1, . . . , ek and g ⊥ ek+1, . . . , en, then f ⊥ g.

Proof. (1)⇒ (2): Let (X,⊥) be normal and let {e1, . . . , en} be a maximal orthogonal
subset of X . By normality, the subalgebra B of C(X,⊥) generated by {e1}⊥⊥, . . . ,
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{en}⊥⊥ is Boolean. Moreover, {e1}⊥⊥, . . . , {en}⊥⊥ are mutually orthogonal ele-
ments and we have {e1}⊥⊥ ∨ . . . ∨ {en}⊥⊥ = {e1, . . . , en}⊥⊥ = ∅⊥ = X . Thus
B is a finite Boolean subalgebra of C(X,⊥), its atoms being {e1}⊥⊥, . . . , {en}⊥⊥.

(2) ⇒ (3): Let {e1, . . . , en} be a maximal orthogonal subset of X and assume that
{e1}⊥⊥, . . . , {en}⊥⊥ are the atoms of a finite Boolean subalgebra of C(X,⊥). Let
1 6 k < n. Then f ⊥ e1, . . . , ek means f ∈ {e1, . . . , ek}⊥ = {ek+1, . . . , en}⊥⊥, and
similarly, g ⊥ ek+1, . . . , en means g ∈ {e1, . . . , ek}⊥⊥. If both f ⊥ e1, . . . , ek and
g ⊥ ek+1, . . . , en holds, we hence conclude f ⊥ g.

(3) ⇒ (1): Let D = {e1, . . . , ek}, k > 1, be an orthogonal subset of X . Then
we may extend D to a maximal orthogonal subset E = {e1, . . . , en} of X , where
n > k. For any A ⊆ E, we have

∨
{{e}⊥⊥ : e ∈ A} = A⊥⊥; for any A,B ⊆ E,

we have A⊥⊥ ∨ B⊥⊥ = (A ∪ B)⊥⊥; and E⊥⊥ = X . Let ∅ 6= A ( E. Then
(E \ A)⊥⊥ ⊆ A⊥. Moreover, if f ∈ A⊥ and g ∈ (E \ A)⊥, we have by assumption
f ⊥ g; hence f ∈ (E \ A)⊥⊥. We conclude that A⊥⊥ = (E \ A)⊥. We have
shown that {e1}⊥⊥, . . . , {en}⊥⊥ generate a Boolean subalgebra of C(X,⊥); hence so
do {e1}⊥⊥, . . . , {ek}⊥⊥.

The following notation will be useful. Let e1, . . . , ek be mutually orthogonal elements
of a normal orthogonality space (X,⊥). Then the closure of {{e1}⊥⊥, . . . , {ek}⊥⊥}
under joins in C(X,⊥) has the structure of a Boolean algebra, whose top element is
{e1, . . . , ek}⊥⊥. We will denote this Boolean algebra by B(e1, . . . , ek).

The property of normality applies to our canonical example. We write [x1, . . . , xk]
for the linear hull of non-zero vectors x1, . . . , xk of a linear space.

Example 2.6. Let x1, . . . , xk, k > 1, be mutually orthogonal non-zero vectors of a
Hilbert space H . Then the subalgebra of C(H) generated by [x1], . . . , [xk] consists
of the joins of subspaces among [x1], . . . , [xk], [x1, . . . , xk]

⊥. This algebra is Boolean
and we conclude that (P (H),⊥) is normal.

For later considerations, we introduce a further, particularly simple example.

Example 2.7. For n ∈ N \ {0}, we denote by n an n-element set and we consider
the binary relation 6= on n. Then (n, 6=) is an orthogonality space and C(n, 6=) is the
powerset of n. Since C(n, 6=) is Boolean, we have that (n, 6=) is normal.

In general, however, an orthogonality space need not be normal. The subsequent
examples of finite orthogonality spaces will be graphically depicted as follows: the
elements of the space are represented by points, and two elements are orthogonal if
the points are connected by a straight line. For instance, in the Example 2.8 below
we have that a, b, c are mutually orthogonal and moreover d ⊥ a as well as e ⊥ b, c.
We note that this representation might remind of Greechie diagrams. It must be kept
in mind, however, that an element of an orthogonality space does not necessarily
represent an atom of the associated ortholattice. In Example 2.8, for instance, {e}⊥⊥
properly contains {a}⊥⊥.

Example 2.8. Consider the orthogonality space X = {a, b, c, d, e} given by the fol-
lowing scheme:
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{a, b, c} is a maximal orthogonal set. Furthermore, we have {a}⊥⊥ = {a} and
{b}⊥⊥ ∨ {c}⊥⊥ = {b, c}⊥⊥ = {b, c}. Since {b, c}⊥ = {a, e}, X is not normal.

Given a normal orthogonality space (X,⊥), we call an orthoclosed subset A of X
together with the inherited orthogonality relation, which we usually still denote by⊥,
a subspace of (X,⊥).

The following proposition and example show that a subspace of a normal orthogon-
ality space is not in general normal, but a subspace that is the closure of any maximal
orthogonal subset is so.

Proposition 2.9. Let (X,⊥) be a normal orthogonality space and let A ∈ C(X,⊥)
be such that, for any maximal orthogonal subset D of A, we have D⊥⊥ = A. Then
the subspace (A,⊥) is normal.

Proof. We shall use criterion (3) of Lemma 2.5. Let {e1, . . . , en} be a maximal or-
thogonal subset of A, let 1 6 k < n, and assume that there are f, g ∈ A such
that f ⊥ e1, . . . , ek and g ⊥ ek+1, . . . , en. Then we may choose en+1, . . . , em ∈
X such that {e1, . . . , em} is a maximal orthogonal subset of X . By assumption,
A = {e1, . . . , en}⊥⊥, hence g ⊥ en+1, . . . , em. Thus we have f ⊥ e1, . . . , ek and
g ⊥ ek+1, . . . , em and the normality of X implies f ⊥ g. We conclude that (A,⊥) is
normal.

Example 2.10. Let (X,⊥) be the 14-element orthogonality space given as follows:

(Here, the sets {e, f, g, h} and {g, h, i, j} are meant to be orthogonal; but, none of e
or f is orthogonal to i or j.)

By criterion (3) of Lemma 2.5, we may check thatX is normal. However, the subspace
{f, i}⊥ = {a, g, h, n} is not.

We might expect that normality of an orthogonality space is closely related to the
orthomodularity of the associated ortholattice. This is indeed the case but the two
properties do not coincide.

A Dacey space is an orthogonality space (X,⊥) such that C(X,⊥) is an orthomodular
lattice. We have the following characterisation of Dacey spaces [Dac, Wlc].
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Lemma 2.11. An orthogonality space (X,⊥) is a Dacey space if and only if, for any
A ∈ C(X,⊥) and any maximal orthogonal subset D of A, we have that D⊥⊥ = A.

Example 2.12. Let H be a Hilbert space. Then C(H) is an orthomodular lattice and
hence (P (H),⊥) a Dacey space.

Example 2.13. By means of Lemma 2.11, we observe that the orthogonality space
(X,⊥) from Example 2.8 is not a Dacey space. Indeed, A = {b, c, d} ∈ C(X,⊥),
{b, c} is a maximal orthogonal subset of A, and {b, c}⊥⊥ = {b, c} ( A.

The following proposition and example show that the Dacey spaces form a strict
subclass of the normal orthogonality spaces.

Proposition 2.14. A Dacey space is a normal orthogonality space.

Proof. Let (X,⊥) be a Dacey space and {e1, . . . , ek} be an orthogonal subset of X .
Then {ei}⊥⊥, i = 1, . . . , k, are pairwise orthogonal and hence pairwise commuting
elements of the orthomodular lattice C(X,⊥). It follows that they generate a Boolean
subalgebra [BrHa, Prop. 2.8].

Example 2.15. Consider the following orthogonality space (X,⊥):

The maximal orthogonal subsets are the elements along a straight line, e.g., {a, b, c}.
By criterion (3) of Lemma 2.5, we observe that (X,⊥) is normal. We may also check
that each subspace of (X,⊥) is normal.

Moreover, the set {a, e} is orthoclosed. But {a} is a maximal orthogonal subset of
{a, e} and {a}⊥⊥ = {a}. Hence by Lemma 2.11, (X,⊥) is not a Dacey space.

3 The category NOS of normal orthogonality spaces

We discuss in this section structure-preserving maps between orthogonality spaces.
We shall introduce a category consisting of normal orthogonality spaces and invest-
igate its basic properties.

For orthogonality spaces X and Y , we call a map ϕ : X → Y a homomorphism if ϕ
is orthogonality-preserving, that is, if, for any e, f ∈ X , e ⊥ f implies ϕ(e) ⊥ ϕ(f).
In this case, ϕ induces the map

ϕ̄ : C(X,⊥)→ C(Y,⊥), A 7→ {ϕ(a) : a ∈ A}⊥⊥.

Obviously, ϕ̄ is order- and orthogonality-preserving. It seems that in general, how-
ever, we cannot say much more about ϕ̄. We will be interested in homomorphisms
fulfilling the following additional condition.
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Definition 3.1. Let ϕ : X → Y be a homomorphism between the normal orthogonal-
ity spaces X and Y . We will call ϕ normal if, for any orthogonal set e1, . . . , ek ∈ X ,
k > 1, ϕ̄ maps B(e1, . . . , ek) isomorphically to B(ϕ(e1), . . . , ϕ(ek)).

The following lemma might help to elucidate the condition of normality for homo-
morphisms.

Lemma 3.2. Let ϕ : X → Y be a homomorphism between normal orthogonality
spaces. Then the following are equivalent:

(1) ϕ is normal.

(2) For any orthogonal subset {e1, . . . , ek} of X , where k > 0, we have
ϕ̄({e1, . . . , ek}⊥⊥) = {ϕ(e1), . . . , ϕ(ek)}⊥⊥.

(3) For any orthogonal subset {e1, . . . , ek} of X , where k > 0, we have
ϕ({e1, . . . , ek}⊥⊥) ⊆ {ϕ(e1), . . . , ϕ(ek)}⊥⊥.

(4) For any maximal orthogonal subset {e1, . . . , en} of X , we have ϕ(X)⊥⊥ =
{ϕ(e1), . . . , ϕ(en)}⊥⊥.

(5) For any maximal orthogonal subset {e1, . . . , en} of X , we have ϕ(X) ⊆
{ϕ(e1), . . . , ϕ(en)}⊥⊥.

Proof. (1)⇒ (2): Let ϕ be normal and let {e1, . . . , ek} ⊆ X be orthogonal. Then ϕ̄
maps the top element of B(e1, . . . , ek) to the top element of B(ϕ(e1), . . . , ϕ(ek)), that
is, ϕ̄({e1, . . . , ek}⊥⊥) = {ϕ(e1), . . . , ϕ(ek)}⊥⊥.

(2) ⇒ (1): Let (2) hold and let {e1, . . . , ek} ⊆ X be orthogonal. Recall that the
Boolean algebra B(e1, . . . , ek) consists of the elements A⊥⊥ ∈ C(X,⊥), where A ⊆
{e1, . . . ek}. By assumption, ϕ̄(A⊥⊥) = (ϕ(A))⊥⊥. Thus ϕ̄ establishes an isomorph-
ism between B(e1, . . . , ek) and B(ϕ(e1), . . . , ϕ(ek)).

The equivalence of (2) and (3) as well as the equivalence of (4) and (5) are clear.
Moreover, (2) clearly implies (4). We conclude the proof by showing that (5) implies
(3).

Assume that (5) holds. Let {e1, . . . , ek} be an orthogonal subset of X . We extend
it to a maximal orthogonal set E = {e1, . . . , ek, ek+1, . . . , em}. Furthermore, f1 =
ϕ(e1), . . . , fm = ϕ(em) are pairwise orthogonal elements of Y . We extend ϕ(E) to a
maximal orthogonal subset F of Y .

Let A ⊆ E. We shall show that ϕ(A⊥⊥) ⊆ ϕ(A)⊥⊥, then in particular (3) will
follow. As ϕ is orthogonality-preserving, ϕ(A⊥⊥) ⊥ ϕ(E \ A)⊥⊥. Moreover, by
assumption, ϕ(A⊥⊥) ⊆ ϕ(X) ⊆ ϕ(E)⊥⊥ ⊥ (F \ ϕ(E))⊥⊥. It follows ϕ(A⊥⊥) ⊥
ϕ(E \ A)⊥⊥ ∨ (F \ ϕ(E))⊥⊥ = (F \ ϕ(A))⊥⊥ and hence, by the normality of Y ,
ϕ(A⊥⊥) ⊆ (F \ ϕ(A))⊥ = ϕ(A)⊥⊥.

We observe that normal homomorphisms are, in a restricted sense, linearity-preserv-
ing.
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Lemma 3.3. Let X and Y be normal orthogonality spaces and let ϕ : X → Y be
a normal homomorphism. Let e, f ∈ X be such that e ⊥ f . If g ∈ {e, f}⊥⊥, then
ϕ(g) ∈ {ϕ(e), ϕ(f)}⊥⊥.

Proof. The assertion holds by Lemma 3.2, property (3).

An automorphism of an orthogonality space (X,⊥) is a bijection ϕ : X → X such
that, for any e, f ∈ X , e ⊥ f if and only if ϕ(e) ⊥ ϕ(f). Automorphisms are always
normal homomorphisms, in particular the identity is normal.

Lemma 3.4. Let X be a normal orthogonality space and let ϕ : X → X be an
automorphism. Then ϕ is normal.

Proof. ϕ̄ is an automorphism of C(X,⊥).

We see next that normal homomorphisms are closed under composition.

Lemma 3.5. LetX , Y , andZ be normal orthogonality spaces and let ϕ : X → Y and
ψ : Y → Z be normal homomorphisms. Then also ψ ◦ϕ is a normal homomorphism.

Proof. Clearly, ψ ◦ ϕ is orthogonality-preserving. Moreover, the normality follows
by means of property (3) in Lemma 3.2.

We define the category NOS to consist of the normal orthogonality spaces (of finite
rank) and the normal homomorphisms.

We first check whether an inclusion map between normal orthogonality spaces is
normal. The following example shows that this is not in general the case.

Example 3.6. Consider again the orthogonality space (X,⊥) from Example 2.15,
which is normal but not Dacey, and let A = {a, e}. Then A ∈ C(X,⊥) and (A,∅)
is a subspace of (X,⊥), which is normal. Let now iA : A→ X be the inclusion map.
We have that {a} is a maximal orthogonal subset of A and

iA(A)⊥⊥ = {a, e}⊥⊥ = {a, e} 6= {a} = {a}⊥⊥ = {iA(a)}⊥⊥.

Hence, by Lemma 3.2, property (4), iA is not normal.

Theorem 3.7. Let (X,⊥) be a normal orthogonality space. The X is a Dacey space
if and only if, for any A ∈ C(X,⊥), the subspace (A,⊥) is normal and the inclusion
map ι : A→ X is a morphism in NOS .

Proof. Assume first that X is a Dacey space. Let A ∈ C(X,⊥). By Lemma 2.11 and
Proposition 2.9, (A,⊥) is a normal subspace. Moreover, the inclusion map ι : A →
X, x 7→ x is clearly orthogonality-preserving. Let {e1, . . . , en} be a maximal or-
thogonal subset of A. Then A = {e1, . . . , en}⊥⊥ by Lemma 2.11. By Lemma 3.2,
property (4), we conclude that ι is actually a normal homomorphism.

Conversely, assume that, for any A ∈ C(X,⊥), (A,⊥) is normal and the inclusion
map ι : A → X, x 7→ x is a morphism of NOS . Let {e1, . . . , en} be a maximal
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orthogonal subset of some A ∈ C(X,⊥). Then again by Lemma 3.2, property (4), we
have that ι(A)⊥⊥ = {ι(e1), . . . , ι(en)}⊥⊥, that is, A = {e1, . . . , en}⊥⊥. By Lemma
2.11, we conclude that X is a Dacey space.

We note that for a normal orthogonality space to be a Dacey space, it is not enough
to assume that all subspaces are normal. Indeed, Example 2.15 provides a counter-
example.

We shall next characterise the monomorphisms and epimorphisms in NOS . To this
end, we consider a doubling point construction, explained in the following lemma.

To increase clarity, we will occasionally use subscripts for the denotation of ortho-
gonality relations and the associated ortholattice complements.

Lemma 3.8. Let (X,⊥X) be a normal orthogonality space and x ∈ X . Let Z arise
from X by replacing x with two new elements x1 and x2. We define the orthogonality
relation ⊥Z on Z as follows: For e, f ∈ X \ {x1, x2} such that e ⊥X f , we let
e ⊥Z f ; and for e ∈ X such that e ⊥X x, we let x1, x2 ⊥Z e and e ⊥Z x1, x2. Then
(Z,⊥Z) is a normal orthogonality space.

Moreover, we define f1, f2 : X → Z as follows: f1(z) = f2(z) = z if z 6= x;
f1(x) = x1; and f2(x) = x2. Then f1, f2 are morphisms in NOS .

Proof. Note first that, for any e ∈ Z, we have e⊥Z x1 if and only if e⊥Z x2. Further-
more, for e ∈ Z ∩X , we have e⊥X x if and only if e⊥Z x1, x2.
For A ⊆ X , let d(A) ⊆ Z be such that d(A) = (A \ {x}) ∪ {x1, x2} if x ∈ A, and
d(A) = A if x /∈ A. Then, for any A ⊆ X , we have d(A⊥X ) = d(A)⊥Z . Indeed,
if x ∈ A, we have d(A⊥X ) = A⊥X = d(A)⊥Z ; and if x /∈ A, we likewise have
d(A⊥X ) = A⊥Z = d(A)⊥Z .

We conclude that, for any A ⊆ X , we have d(A⊥X⊥X ) = d(A)⊥Z⊥Z . In particular,
we get a map δ : C(X,⊥)→ C(Z,⊥), A 7→ d(A). Clearly, δ is order-preserving; we
have seen that δ preserves the orthocomplement; and by construction, δ is injective.
Moreover, for any B ∈ C(Z,⊥) we have that either none of x1 and x2 or both x1
and x2 are in B. Hence there is an A ⊆ X such that B = d(A). As d(A⊥X⊥X ) =
d(A)⊥Z⊥Z = d(A), we have by the injectivity of d that A ∈ C(X,⊥), that is, δ is
surjective. We conclude that δ is an isomorphism of ortholattices.

In particular, we have δ({x}⊥X⊥X ) = {x1, x2}⊥Z⊥Z = {x1}⊥Z⊥Z = {x2}⊥Z⊥Z . It
follows that (Z,⊥Z) is normal.

We use Lemma 3.2 to show that f1 is normal. Let {e1, . . . , en} be a maximal or-
thogonal subset of X . Then {f1(e1), . . . , f1(en)} is a maximal orthogonal subset of
Z and hence {f1(e1), . . . , f1(en)}⊥Z⊥Z = Z. Furthermore, we have f1(X)⊥Z⊥Z =
∅⊥Z = Z. By property (4) of Lemma 3.2, we conclude that f1 is normal, and by
similar reasoning we see that so is f2.

Proposition 3.9. Let ϕ : X → Y be a morphism in NOS . Then we have:

(i) ϕ is a monomorphism in NOS if and only if ϕ is injective.

(ii) ϕ is an epimorphism in NOS if and only if ϕ is surjective.
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Proof. (i): Assume that ϕ is a monomorphism in NOS . Let x1, x2 ∈ X be such
that ϕ(x1) = ϕ(x2). Let (1, 6=) = ({p},∅) be the one-element orthogonality space,
cf. Example 2.7. Clearly, ({p},∅) is normal. Then the maps x̂1, x̂2 : {p} → X , given
by x̂1(p) = x1 and x̂2(p) = x2 are morphisms in NOS . It follows ϕ ◦ x̂1 = ϕ ◦ x̂2
and hence x̂1 = x̂2. We conclude x1 = x2, that is, ϕ is injective.

The converse direction is evident.

(ii): Assume that ϕ is an epimorphism in NOS that is not surjective. Let y ∈ Y be
such that y /∈ ϕ(X). Let Z = (Y \{y})∪{y1, y2}, where y1, y2 are new elements, and
let⊥Z be defined as in Lemma 3.8, such that (Z,⊥Z) becomes a normal orthogonality
space. Likewise, let f1, f2 : Y → Z be such that f1(z) = f2(z) = z if z 6= y,
f1(y) = y1, and f2(y) = y2. By Lemma 3.8, f1 and f2 are morphisms in NOS . But
from f1 ◦ ϕ = f2 ◦ ϕ we conclude f1 = f2, a contradiction.

The other direction is again evident.

Let ϕ : X → Y be a morphism inNOS . We call ϕ quasi-surjective if Y = ϕ(X)⊥⊥.
Clearly, if ϕ is surjective, ϕ is also quasi-surjective. Moreover, we call ϕ full if, for
any x1, x2 ∈ X such that ϕ(x1) ⊥ ϕ(x2), there are x′1, x

′
2 ∈ X such that x′1 ⊥ x′2 and

ϕ(x1) = ϕ(x′1) and ϕ(x2) = ϕ(x′2). Finally, we call ϕ an embedding if ϕ is injective
and full.

We may factorise a morphism in NOS as follows.

Theorem 3.10. Let ϕ : X → Y be a morphism in NOS . Then there are morphisms
α : X → Z and β : Z → Y such that ϕ = β ◦ α, where α is quasi-surjective and β is
an embedding.

Proof. In this proof, we mark the ortholattice complement on C(Z,⊥) by a subscript
Z, whereas the unmarked ones refer to C(X,⊥) or C(Y,⊥).

We claim that the subspace Z = ϕ(X)⊥⊥ of Y is normal. Let e1, . . . , em be a max-
imal orthogonal subset of X and let f1 = ϕ(e1), . . . , fm = ϕ(em), fm+1, . . . , fn be
a maximal orthogonal subset of Y . As ϕ is normal, we have by Lemma 3.2 that
Z = {f1, . . . , fm}⊥⊥. From the normality of Y , it furthermore follows that Z =
{fm+1, . . . , fn}⊥. Let now G = {g1, . . . , gl} be a maximal orthogonal subset of Z.
We readily see that then g1, . . . , gl, fm+1, . . . , fn is a maximal orthogonal subset of Y .
By the normality of Y , {g1}⊥⊥, . . . , {gl}⊥⊥,
{fm+1}⊥⊥, . . . , {fn}⊥⊥ generate a Boolean subalgebra B of C(Y,⊥), and we have
Z = {fm+1, . . . , fn}⊥ = G⊥⊥.

Furthermore, for any A ⊆ {g1, . . . , gl}, we have A⊥Z = A⊥ ∩ Z = (G \ A)⊥⊥ and
A⊥Z⊥Z = (A⊥∩Z)⊥∩Z = (A⊥⊥∨Z⊥)∩Z = A⊥⊥, becauseA,Z ∈ B. We conclude
that the subalgebra of C(Z,⊥) generated by {g1}⊥Z⊥Z , . . . , {gl}⊥Z⊥Z coincides with
the Boolean algebra B(g1, . . . , gl) ⊆ C(Y,⊥) and is thus Boolean as well. We have
shown that Z is indeed a normal orthogonality space.

Let α : X → Z, x 7→ ϕ(x) and let β : Z → Y be the inclusion map. Clearly, α
and β are orthogonality-preserving and ϕ = β ◦ α. To see that α is normal, let
again e1, . . . , em be a maximal orthogonal subset of X and let f1, . . . , fn as above.
Then α(X)⊥Z⊥Z = ϕ(X)⊥Z⊥Z = (ϕ(X)⊥ ∩ Z)⊥ ∩ Z = (Z⊥ ∩ Z)⊥ ∩ Z = Z
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and {α(e1), . . . , α(em)}⊥Z⊥Z = {f1, . . . , fm}⊥Z⊥Z = ({f1, . . . , fm}⊥ ∩ Z)⊥ ∩ Z =
(Z⊥ ∩ Z)⊥ ∩ Z = Z, hence α is normal by Lemma 3.2.

To see that β is normal, let again g1, . . . , gl be a maximal orthogonal subset of Z
and let f1, . . . , fn be as above. Then β(Z)⊥⊥ = Z⊥⊥ = Z = {g1, . . . , gl}⊥⊥ =
{β(g1), . . . , β(gl)}⊥⊥, hence the normality follows from Lemma 3.2. The fact that β
is an embedding is obvious.

The next two propositions deal with equalisers as well as with a certain kind of sum
in NOS .

Proposition 3.11. The category NOS does not have equalisers.

Proof. Let us consider the normal orthogonality space (X,⊥X) from Example 2.15.
We define ϕ : X → X, a 7→ a, b 7→ h, c 7→ g, d 7→ f, e 7→ e, f 7→ d, g 7→ c, h 7→
b. Then ϕ is an automorphism of X and hence, by Lemma 3.4, a morphism ofNOS .

Let us assume that the pair of arrows X X
ϕ

idX
in NOS possesses an equaliser

ψ : Y → X . Since the diagram Y X X
ψ ϕ

idX
commutes, the image of ψ

must be contained in {a, e}. We consider two cases.

Case 1. Assume that ψ is a constant map, that is, ψ(Y ) = {a} or ψ(Y ) = {e}. We
assume that ψ(Y ) = {a}; the other case is similar. Let again (1, 6=) = ({p},∅) be the
normal orthogonality space consisting of a single element and consider the morphism
ê : {p} → X, p 7→ e. Then ϕ ◦ ê = idX ◦ ê. But there is no map k : {p} → Y such
that ê = ψ ◦ k.

Case 2. Assume that ψ(Y ) = {a, e}. Let y ∈ Y be such that ψ(y) = a. Because
a 6⊥e, we have that {y} is a maximal orthogonal subset of Y . Moreover, ψ(Y )⊥X⊥X =
{a, e}⊥X⊥X = {a, e} 6= {a} = {a}⊥X⊥X = {ψ(y)}⊥X⊥X , in contradiction to the
normality of ψ.

We conclude that the pair ϕ, idX does not possess an equaliser.

Let (Xi,⊥i), i ∈ I , be normal orthogonality spaces whose rank is bounded above
by some n ∈ N. In the category NOS , we call an object (X,⊥X) together with
morphisms ini : Xi → X , i ∈ I , a finite ranked sum if the following holds: For any
morphisms ϕi : Xi → Y , i ∈ I such that ϕi(Xi)

⊥Y ⊥Y = ϕj(Xj)
⊥Y ⊥Y for all i, j ∈ I ,

there is a unique morphism ϕ : X → Y such that ϕi = ϕ ◦ ini for every i ∈ I .

Proposition 3.12. The category NOS has finite ranked sums.

Proof. Let (Xi,⊥i), i ∈ I be normal orthogonality spaces whose rank is bounded
above by n ∈ N. We assume that the sets Xi, i ∈ I , are mutually disjoint. Let
X =

⋃
i∈I Xi and for e, f ∈ X , let e ⊥ f if there is an i ∈ I such that e, f ∈ Xi and

e⊥i f .

Clearly, (X,⊥) is an orthogonality space. We claim that (X,⊥) is normal. Let
{e1, . . . , en} be a maximal orthogonal subset of X . Then there is an i ∈ I such
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that {e1, . . . , en} is a maximal orthogonal subset of Xi. For some 1 6 k < n, let
f, g ∈ X such that f ⊥ e1, . . . , ek and g ⊥ ek+1, . . . , en. Then f, g ∈ Xi, and since
Xi is normal, we have by Lemma 2.5 that f ⊥i g. Thus f ⊥ g and again by Lemma
2.5, we conclude that (X,⊥) is normal.

For each i ∈ I , let ini : Xi → X be the inclusion maps. We claim that ini is a morph-
ism. By construction, ini is orthogonality-preserving. Moreover, let {e1, . . . , en} be a
maximal orthogonal subset ofXi. Then {e1, . . . , en} is also a maximal orthogonal set
of X . Hence {ini(e1), . . . , ini(en)}⊥⊥ = {e1, . . . , en}⊥⊥ = ∅⊥ = X⊥⊥i = ini(Xi)

⊥⊥

and the normality follows from Lemma 3.2.

Let now (Y,⊥Y ) be a further normal orthogonality space and let ϕi : Xi → Y , i ∈ I ,
be morphisms such that ϕi(Xi)

⊥Y ⊥Y = ϕj(Xj)
⊥Y ⊥Y for all i, j ∈ I . We have to

show that there exists a unique morphism ϕ : X → Y such that ϕi = ϕ ◦ ini for
every i ∈ I . The only map ϕ fulfilling the latter requirement is defined as follows:
for x ∈ X , we let ϕ(x) = ϕi(x) for the unique i ∈ I such that x ∈ Xi. Clearly,
ϕ is a homomorphism and we have to verify that ϕ is normal. Let {e1, . . . , en} be a
maximal orthogonal subset of X . Then {e1, . . . , en} is a maximal orthogonal subset
of Xj for some j ∈ I . Applying Lemma 3.2, property (4), to ϕj , we get

{ϕ(e1), . . . , ϕ(en)}⊥Y ⊥Y = {ϕj(e1), . . . , ϕj(en)}⊥Y ⊥Y = ϕj(Xj)
⊥Y ⊥Y

=
∨
i∈I

ϕi(Xi)
⊥Y ⊥Y =

(⋃
i∈I

ϕi(Xi)
⊥Y ⊥Y

)⊥Y ⊥Y
⊇ ϕ(X).

Hence the normality of ϕ follows from Lemma 3.2, property (5).

We finally show that normality is preserved under the formation of direct products.
Let (Xi,⊥i), i ∈ I be orthogonality spaces. On

∏
i∈I Xi, we define the orthogonality

relation componentwise, that is, we let (ei)i∈I ⊥ (fi)i∈I if ei ⊥ fi for all i ∈ I . Then
(
∏

i∈I Xi,⊥) is called the direct product of the Xi. The projections pj :
∏

i∈I Xi →
Xj, (ei)i∈I 7→ ej , where j ∈ I , are evidently orthogonality-preserving.

Theorem 3.13. The direct product of normal orthogonality spaces is normal.

However, the direct product, together with the projection mappings, is not a categor-
ical product in NOS .

Proof. Let (Xi,⊥i), i ∈ I , be normal orthogonality spaces. Note that the rank of
(
∏

i∈I Xi,⊥) is the minimum of the ranks of (Xi,⊥i), i ∈ I .

To show that (
∏

i∈I Xi,⊥) is normal, let {e1, . . . , en} ⊆
∏

i∈I Xi be a maximal or-
thogonal set. Let 1 6 k < n, f ⊥ e1, . . . , ek and g ⊥ ek+1, . . . , en. This means
pi(f) ⊥i pi(e1), . . . , pi(ek) and pi(g) ⊥i pi(ek+1), . . . , pi(en) for all i ∈ I . Hence
pi(f)⊥i pi(g) for all i ∈ I , that is, f ⊥ g and the assertion follows.

To verify the second claim, we consider the normal orthogonality spaces (2,⊥2) =
(2, 6=) and (1,⊥1) = (1,∅), cf. Example 2.7. Then {(1, 1)} is a maximal orthogonal
subset of (2×1,⊥). As we have p2(2×1)⊥2⊥2 = 2⊥2⊥2 = 2 and {p2((1, 1))}⊥2⊥2 =
{1}⊥2⊥2 = {1}, we observe by Lemma 3.2 that p2 is not normal.
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4 Hermitian spaces

In the remainder of this paper, we shall study orthogonality spaces arising from inner-
product spaces. In this section, we compile the necessary background material.

We first consider linear spaces without any additional structure. We will review the
representation of maps between projective spaces that preserve the collinearity of
point triples. The most general results in this area are, to our knowledge, due to Faure
[Fau]. Here, we will follow the work of Machala [Mach]. The reader is referred to
any of these papers for more detailed information.

By an sfield, we mean a skew field (i.e., a division ring). Let V be a linear space over
an sfield K. We write V • = V \ {0} and in accordance with Example 2.2, we define
P (V ) = {[x] : x ∈ V •} to be the projective space associated with V . For x, y, z ∈ V •,
we write `([x], [y], [z]) if [x], [y], [z] are on a line of P (V ), that is, if x, y, z are linearly
dependent.

Let V and V ′ be linear spaces over the sfields K and K ′, respectively. We call a map
ϕ : P (V )→ P (V ′) a lineation if:

(L1) For any x, y, z ∈ V •, `([x], [y], [z]) implies `(ϕ([x]), ϕ([y]), ϕ([z])).

Thus a lineation is a map between projective spaces that preserves the collinearity of
point triples. Obviously, (L1) is equivalent to:

(L1’) For any x, y, z ∈ V • such that ϕ([x]) 6= ϕ([y]) and [z] ⊆ [x] + [y], we have
ϕ([z]) ⊆ ϕ([x]) + ϕ([y]).

Thus a lineation can also be understood as follows: if the point [z] lies on the line
through [x] and [y] and if [x] and [y] are not mapped to the same point, then ϕ([z])
is on the line through ϕ([x]) and ϕ([y]). It is natural to ask whether a lineation is
induced by a suitable map between the underlying linear spaces.

Let K be an sfield. We denote by K× = K \ {0} the multiplicative group of K.
A valuation ring FK of K is a subring of K such that, for any α ∈ K×, either
α ∈ FK or α−1 ∈ FK . In this case, the subgroup U(FK) of K× consisting of the
units of FK is called the group of valuation units. Obviously, FK is a local ring,
IK = FK \ U(FK) = {α ∈ FK : α = 0 or α−1 /∈ FK} being its unique maximal
left (right) ideal. Let K ′ be a further sfield; then a ring homomorphism % : FK → K ′

with kernel IK is called a place from K to K ′. Note that in this case, % induces an
embedding of the sfield FK/IK into K ′.

Example 4.1. Assume that K is an ordered ?-sfield (in the sense of Baer). Then the
set FK = {α ∈ K : αα? 6 n for some n ∈ N} of finite elements is a valuation ring.
The group of valuation units is U(FK) = {α ∈ K : 1

n
6 αα? 6 n for some n ∈

N}, containing the so-called medial elements. Moreover, IK = {α ∈ K : αα? 6
1
n

for all n ∈ N} consists of the infinitesimal elements.

Let now V be a linear space over an sfield K. Let FK be a valuation ring of K and
let FV be a submodule of V over FK such that any one-dimensional subspace of V
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contains a non-zero element of FV . Let V ′ be a further linear space over an sfield K ′.
Let % : FK → K ′ be a place from K to K ′ and let A : FV → V ′ be such that (i) any
one-dimensional subspace of V contains a vector in FV that A does not map to 0, (ii)
A is additive, and (iii) for any x ∈ FV and α ∈ FK , we have A(αx) = %(α)A(x).
Then A is called a generalised semilinear map from V to V ′.

Theorem 4.2. Let A : FV → V ′ be a generalised semilinear map between the linear
spaces V and V ′. Then the prescription

ϕA : P (V )→ P (V ′), [x] 7→ [A(x)], where x ∈ FV and A(x) 6= 0,

defines a lineation.

Sketch of proof; for full details see the proof of [Mach, Satz 5]. Each one-dimension-
al subspace of V contains by assumption an element x ∈ FV such that A(x) 6= 0.
Moreover, let y ∈ [x] ∩ FV such that A(y) 6= 0. Then either y = αx or x = αy for
some α ∈ FK \{0}. In the former case, we have A(y) = %(α)A(x); in the latter case,
we have A(x) = %(α)A(y). Here, % is the place associated with A. It follows that
[A(x)] = [A(y)]. We conclude that we can define ϕA as indicated.

Let now x, y, z ∈ FV such that A(x), A(y), A(z) 6= 0 and `([x], [y], [z]). We have
to show that `(ϕA([x]), ϕA([y]), ϕA([z])). We may assume that ϕA([x]), ϕA([y]), and
ϕA([z]) are mutually distinct. Let α, β ∈ K be such that z = αx + βy. Then
α, β 6= 0. Moreover, either α−1β ∈ FK or β−1α ∈ FK . In the former case, we set
z′ = α−1z = x + α−1β y; then z′ ∈ FV and A(z′) = A(x) + %(α−1β)A(y) 6= 0
because ϕA([x]) = [A(x)] and ϕA([y]) = [A(y)] are distinct. Hence ϕA([z]) =
[A(z′)] = [A(x) + %(α−1β)A(y)] ⊆ [A(x)] + [A(y)] = ϕA([x]) + ϕA([y]) and the
assertion follows. In the latter case, we set z′ = β−1z and proceed similarly.

Let A : FV → V ′ be a generalised semilinear map between the linear spaces V and
V ′. We will then write IV = {x ∈ FV : A(x) = 0}. Note that, for any x ∈ FV \ IV ,
we have [x] ∩ FV = FK · x. Moreover, let α ∈ FK ; then αx ∈ IV if and only if
α ∈ IK , or in other words, αx ∈ FV \ IV if and only if α ∈ U(FK).

For a converse of Theorem 4.2, we need to take into account additional conditions.
A lineation ϕ : P (V ) → P (V ′) is called non-degenerate if the following conditions
hold:

(L2) For any linearly independent vectors x, y ∈ V •, {ϕ([z]) : z 6= 0, z ∈ [x, y]}
contains at least three elements.

(L3) The image of ϕ is not contained in a two-dimensional subspace of V ′.

We arrive at the main theorem of [Mach].

Theorem 4.3. Every non-degenerate lineation between projective spaces is, in the
sense of Theorem 4.2, induced by a generalised semilinear map.
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We shall now consider linear spaces that are equipped with an inner product. We
are interested in maps between projective spaces that also preserve an orthogonality
relation.

A ?-sfield is an sfield equipped with an involutorial antiautomorphism ?. An (aniso-
tropic) Hermitian space is a linear space H over a ?-sfield K that is equipped with
an anisotropic, symmetric sesquilinear form (·, ·) : H ×H → K. For x, y ∈ H , we
write x ⊥ y if (x, y) = 0, and for x, y ∈ H •, [x] ⊥ [y] means x ⊥ y.

Let H and H ′ be Hermitian spaces over the ?-sfield K and K ′, respectively. We call
U : H → H ′ a generalised semiunitary map if U is a lineation w.r.t. some place %
from K to K ′ and there are a λ ∈ K and a λ′ ∈ K ′ such that

(U(x), U(y)) = %((x, y)λ)λ′

for any x, y ∈ FH . The question arises whether orthogonality-preserving lineations
are induced by semiunitary maps. Under particular circumstances, we can give an
affirmative answer.

Theorem 4.4. Let H and H ′ be finite-dimensional Hermitian spaces over the ?-fields
K and K ′, respectively. Assume that H possesses an orthogonal basis consisting of
vectors of equal length. Let ϕ : P (H) → P (H ′) be a non-degenerate orthogonality-
preserving lineation. Then ϕ is induced by a generalised semiunitary map.

Proof. By Theorem 4.3, ϕ is induced by a generalised semilinear map U : FH → H ′

w.r.t. a place % : FK → K ′.

We proceed by showing several auxiliary lemmas.

(a) For any a, b ∈ FH \ IH , a ⊥ b implies U(a) ⊥ U(b).

Proof of (a): Assume a ⊥ b. Then [a] ⊥ [b] and hence [U(a)] = ϕ([a]) ⊥ ϕ([b]) =
[U(b)] as ϕ is orthogonality-preserving. It follows U(a) ⊥ U(b).

(b) There is an orthogonal basis b1, . . . , bn ∈ FH \ IH of H consisting of vectors of
equal length.

Proof of (b): By assumption, H possesses an orthogonal basis b1, . . . , bn consisting
of vectors of equal length. In view of condition (i) of the definition of a generalised
semilinear map, we may assume that b1 ∈ FH \ IH . Let 2 6 i 6 n; we claim that
bi ∈ FH\IH as well. Assume that bi ∈ IH . Then U(b1+bi) = U(b1−bi) = U(b1) 6= 0
but b1 +bi ⊥ b1−bi, in contradiction to (a). Assume that bi /∈ FH . Let λ ∈ K be such
that λbi ∈ FH \ IH . Then λ−1 ∈ FK would imply that bi = λ−1 · λbi ∈ FH contrary
to the assumption; hence λ ∈ IK . It follows λb1, λbi ∈ FH and U(λbi + λb1) =
U(λbi − λb1) = U(λbi) 6= 0 but λbi + λb1 ⊥ λbi − λb1, again a contradiction to (a).

For the rest of the proof, we fix a basis b1, . . . , bn of H as specified in (b).

(c) U(b1), . . . , U(bn) are vectors of equal length.

Proof of (c): Let 2 6 i 6 n. From b1 + bi ⊥ b1 − bi it follows by (a) that U(b1 +
bi) ⊥ U(b1 − bi), that is, (U(b1) + U(bi), U(b1)− U(bi)) = 0. By (a), it follows
(U(b1), U(b1)) = (U(bi), U(bi)). The assertion is shown.

(d) FK and IK are closed under ?. Moreover, for any α ∈ FK , we have %(α?) = %(α)?.
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Proof of (d): Let α ∈ IK \ {0}. Assume that α? /∈ FK . Then (α−1)? = (α?)−1 ∈ IK .
Moreover, αb1 − b2 and (α−1)?b1 + b2 are orthogonal vectors in FH \ IH and hence
−U(b2) = U(αb1 − b2) ⊥ U((α−1)?b1 + b2) = U(b2), a contradiction. We conclude
that α? ∈ FK . Furthermore, αb1− b2 and b1 +α?b2 are orthogonal vectors in FH \ IH
and hence U(b2) = −U(αb1 − b2) ⊥ U(b1 + α?b2) = U(b1) + %(α?)U(b2). We
conclude that %(α?) = 0, that is, α? ∈ IK . We have shown that IK is closed under ?.

Let now α ∈ K \ {0} be such that α? /∈ FK . Then (α?)−1 ∈ IK and hence also
α−1 ∈ IK . This means α /∈ FK . It follows that also FK is closed under ?.

Finally, let α ∈ FK . We have that αb1 − b2 and b1 + α?b2 are orthogonal vectors in
FH \ IH . It follows that %(α)U(b1)− U(b2) ⊥ U(b1) + %(α?)U(b2), that is,

%(α) (U(b1), U(b1))− %(α?)? (U(b2), U(b2)) = 0.

Thus, by (c), the assertion follows.

(e) Let α1, . . . , αn ∈ K. Then there is an α ∈ K \{0} such that α−1α1, . . . , α
−1αn ∈

FK and α−1αi /∈ IK for at least one i.

The proof of (e) can be found in [Rad, Lemma 6].

(f) Let x = α1b1 + . . .+ αnbn ∈ FH . Then α1, . . . , αn ∈ FK .

Proof of (f): Assume to the contrary that one of the coefficients is not in FK . By
(e), there is an α ∈ K such that α−1α1, . . . , α

−1αn ∈ FK and α−1αi /∈ IK for some
i. Then α /∈ FK and hence α−1 ∈ IK . Hence 0 = %(α−1)U(x) = U(α−1x) =
%(α−1α1)U(b1) + . . . + %(α−1αn)U(bn) 6= 0, because %(α−1αi)U(bi) 6= 0 and the
summed vectors are mutually orthogonal. The assertion follows.

Let now x = α1b1 + . . . + αnbn and y = β1b1 + . . . + βnbn be elements of FH . By
(f), α1, . . . , αn, β1, . . . , βn ∈ FK . Using (c) and (d), we get

(U(x), U(y)) = %(α1) (U(b1), U(b1)) %(β1)
? + . . .+ %(αn) (U(bn), U(bn)) %(βn)?

= %(α1β
?
1 + . . .+ αnβ

?
n) (U(b1), U(b1))

= %
(
(α1 (b1, b1) β

?
1 + . . .+ αn (bn, bn) β?n) (b1, b1)

−1) (U(b1), U(b1))

= %((x, y) (b1, b1)
−1) (U(b1), U(b1)) ,

thus the theorem is proved.

5 Linear orthogonality spaces

The orthogonality spaces to which we turn now are more special than those discussed
so far. We will come a good deal closer to our guiding example.

Definition 5.1. An orthogonality space (X,⊥) is called linear if, for any two distinct
elements e, f ∈ X , there is a third element g such that {e, f}⊥ = {e, g}⊥ and exactly
one of f and g is orthogonal to e.

In other words, for (X,⊥) to be linear means that (i) for distinct, non-orthogonal
elements e, f ∈ X there is a g ⊥ e such that {e, f}⊥ = {e, g}⊥ and (ii) for orthogonal
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elements e, f ∈ X , there is a g 6⊥ e such that {e, f}⊥ = {e, g}⊥. Note that in both
cases g is necessarily distinct from e and f .

Example 5.2. Let H be a Hilbert space and let (P (H),⊥) again be the orthogon-
ality space arising from H according to Example 2.2. Then we readily check that
(P (H),⊥) is linear.

We start with the following observation. We call an orthogonality space (X,⊥) irre-
dundant if, for any e, f ∈ X , {e}⊥ = {f}⊥ implies e = f . Moreover, we call (X,⊥)
strongly irredundant if, for any e, f ∈ X , {e}⊥ ⊆ {f}⊥ implies e = f . Obviously,
strong irredundancy implies irredundancy. We may express strong irredundancy also
closure-theoretically; cf., e.g., [Ern]. Indeed, (X,⊥) is strongly irredundant exactly
if the specialisation order associated with the closure operator ⊥⊥ is the equality.

Lemma 5.3. Linear orthogonality spaces are strongly irredundant.

Proof. Let (X,⊥) be a linear orthogonality space.

We first show that X is irredundant. Let e and f be distinct elements of X . If e and f
are orthogonal, then f ⊥ e but e 6⊥ e. If not, there is by the linearity some g ⊥ e such
that {e, f}⊥ = {e, g}⊥. Then g /∈ {e, g}⊥ = {e, f}⊥, hence g ⊥ e but g 6⊥ f . Hence
{e}⊥ 6= {f}⊥ in either case.

Let now e, f ∈ X be such that {e}⊥ ⊆ {f}⊥. We shall show that then actually
{e}⊥ = {f}⊥; by irredundancy, it will follow thatX is strongly irredundant. Assume
to the contrary that {e}⊥ ( {f}⊥. Then e 6= f and e 6⊥ f . Hence, by the linearity
of X , there is a g ⊥ e such that {e, g}⊥ = {e, f}⊥. But this means g ∈ {e, g}⊥⊥ =
{e, f}⊥⊥ = {e}⊥⊥, a contradiction.

The following correspondence between linear orthogonality spaces and linear spaces
was shown in [Vet3].

Theorem 5.4. Let H be a Hermitian space of finite dimension n. Then (P (H),⊥) is
a linear orthogonality space of rank n.

Conversely, let (X,⊥) be a linear orthogonality space of finite rank n > 4. Then
there is a ?-sfield K and an n-dimensional Hermitian space H over K such that
(X,⊥) is isomorphic to (P (H),⊥).

Clearly, the assumption regarding the rank cannot be omitted in Theorem 5.4. For low
ranks, linear orthogonality spaces may be of a much different type than those arising
from inner-product spaces.

Example 5.5. For n > 2, let Dn = {01, 11, . . . , 0n, 1n}, endowed with the ortho-
gonality relation such that 0i and 1i, for each i = 1, . . . , n, are orthogonal and no
further pair. We easily see that (Dn,⊥) is linear. Note that C(Dn,⊥) is isomorphic
to MOn, the horizontal sum of n four-element Boolean algebras, which is a modular
ortholattice with 2n+ 2 elements.
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Each linear orthogonality space is a Dacey space and hence normal. The exact rela-
tionship is as follows.

Here, an orthogonality space (X,⊥) is called irreducible if X cannot be partitioned
into two non-empty subsets A and B such that e ⊥ f for any a ∈ A and b ∈ B.

Theorem 5.6. An orthogonality space (X,⊥) is linear if and only if X is an irredu-
cible, strongly irredundant Dacey space. In particular, X is in this case normal.

Proof. Let (X,⊥) be linear. By [Vet3, Theorem 3.7], C(X,⊥) is orthomodular, that
is, a Dacey space. By Proposition 2.14, X is hence normal. By Lemma 5.3, X is
strongly irredundant. Assume now that X = A ∪ B, where A and B are disjoint
non-empty subsets of X and e ⊥ f for any e ∈ A and f ∈ B. By linearity, for any
e ∈ A and f ∈ B, there is a g 6⊥ e such that {e, f}⊥ = {e, g}⊥. Then g /∈ B and
consequently g ∈ A and thus g ⊥ f . It follows {g}⊥⊥ ⊆ {e, f}⊥⊥ ∩ {f}⊥ = {e}⊥⊥
by orthomodularity and hence f ∈ {f}⊥⊥ ⊆ {e, f}⊥⊥ = {e}⊥⊥ ∨ {g}⊥⊥ = {e}⊥⊥,
in contradiction to f ∈ {e}⊥. We conclude that X is irreducible.

Conversely, let (X,⊥) be an irreducible, strongly irredundant Dacey space. By the
strong irredundancy, {e}⊥⊥ is, for any e ∈ X , an atom of C(X,⊥) and it follows
that (X,⊥) is atomistic. Furthermore, C(X,⊥) is a complete orthomodular lattice
of finite length. It follows that C(X,⊥) is in fact a modular lattice and hence fulfils
the covering property and the exchange property. Moreover, C(X,⊥) is irreducible.
Indeed, if the centre of C(X,⊥) contained an element ∅ ( A ( X , then each atom
would be below A or below A⊥, that is, we would have X = A ∪ A⊥ and X would
not be irreducible.

Let e, f ∈ X be distinct, non-orthogonal elements. Then {e}⊥⊥ and {f}⊥⊥ are dis-
tinct atoms and hence {e, f}⊥⊥ = {e}⊥⊥∨{f}⊥⊥ covers {e}⊥⊥. By orthomodularity,
there is an element g ⊥ e such that {e, f}⊥⊥ = {e}⊥⊥ ∨ {g}⊥⊥ = {e, g}⊥⊥, that is,
{e, f}⊥ = {e, g}⊥.

Let e, f ∈ X be distinct, orthogonal elements. Since C(X,⊥) is irreducible, the
join of {e}⊥⊥ and {f}⊥⊥ contains a third atom, that is, there is a g 6= e, f such that
g ∈ {e, f}⊥⊥. By the exchange property, it follows {e, f}⊥⊥ = {e, g}⊥⊥. Thus
{e, f}⊥⊥ = {e, g}⊥⊥, and g 6⊥ e because otherwise g = f . The proof of the linearity
of X is complete.

Example 5.7. We observe from Theorem 5.6 that not every Dacey space is linear.
The probably simplest counterexample is (2, 6=), the orthogonality space consisting
of two orthogonal elements, cf. Example 2.7. Obviously, 2 is Dacey but not linear.
More generally, the same applies, for any n > 2, to (n, 6=).

In view of Example 5.5, we may add a description of those linear orthogonality spaces
that arise as finite ranked sums.

Proposition 5.8. The finite ranked sum of normal orthogonality spaces (Xi,⊥i),
where i ∈ I and I is at least two elements, is linear if and only if, for all i ∈ I ,
(1) every maximal orthogonal set of Xi has exactly two elements and (2) for dis-
tinct, non-orthogonal elements e, f ∈ Xi there is an element g ⊥i e in Xi such that
{e, f}⊥i = {e, g}⊥i .
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Proof. Let (X,⊥) be the finite ranked sum of (Xi,⊥i). To see the “only if” part,
assume that (X,⊥) is linear. Let i ∈ I . Pick an e ∈ Xi and an f ∈ Xj , where i 6= j.
Then {e, f}⊥ = ∅ and f 6⊥ e. By linearity, there is an element g ∈ X such that
{e, f}⊥ = {e, g}⊥ and e ⊥ g. It follows that g ∈ Xi, e⊥i g and {e, g}⊥i = ∅. Hence
{e, g} is a maximal orthogonal subset of Xi and hence of X . By [Vet3, Lemma 3.5],
C(X,⊥) is an atomistic modular ortholattice of finite length. By [MaMa, Theorem
(8.4)], any maximal orthogonal set of X and hence also of Xi is two-element. (1) is
shown.

Let e, f ∈ Xi be distinct, non-orthogonal elements. Since (X,⊥) is linear there is an
element g ∈ X , g ⊥X e such that {e, f}⊥ = {e, g}⊥ . As g ∈ Xi, we have that g ⊥i e
and {e, f}⊥i = {e, g}⊥i . Also (2) follows.

For the “if” part, assume (1) and (2). Let e, f ∈ X , e 6= f . Assume first that e ∈ Xi

and f ∈ Xj , i 6= j. We have {e, f}⊥ = ∅ and f 6⊥ e. Since there is no maximal
one-element orthogonal subset of Xi, we obtain that there is an element g ∈ Xi such
that {e, g}⊥i = ∅ and e⊥i g. We thus conclude {e, g}⊥ = ∅ = {e, f}⊥ and e ⊥ g.

Assume now that e, f ∈ Xi. Assume first that e ⊥ f , that is, e⊥i f . Then {e, f}⊥i =
{e, f}⊥ = ∅. For any j ∈ I distinct from i, pick a g ∈ Xj . Then {e, g}⊥ = ∅
and g 6⊥ e. Assume second that f 6⊥ e. By assumption, there is an element g ∈ Xi,
g⊥i e such that {e, f}⊥i = {e, g}⊥i = ∅. Hence there is a g⊥ e such that {e, f}⊥ =
{e, g}⊥ = ∅. The proof of linearity is complete.

6 The category LOS of linear orthogonality spaces

We denote by LOS the full subcategory of NOS consisting of linear orthogonality
spaces.

We start by describing the monomorphisms.

Proposition 6.1. Let ϕ : X → Y be a morphism inLOS. Then ϕ is a monomorphism
in LOS if and only if ϕ is injective.

Proof. The proof mimics the proof of Lemma 3.9. We make use of the obvious fact
that the one-element orthogonality space (1, 6=) = ({p},∅) is linear.

We have furthermore the following analogue of Theorem 3.10.

Theorem 6.2. Let ϕ : X → Y be a morphism in LOS. Then there are morphisms
α : X → Z and β : Z → Y in LOS such that ϕ = β ◦ α, where α is quasi-surjective
and β is an embedding.

Proof. We are following the lines of the proof of Theorem 3.10. It remains to check
that the orthogonality space Z = ϕ(X)⊥⊥ is linear. Again, we mark the ortholattice
complement on C(Z,⊥) by a subscript Z and the unmarked ones refer to C(Y,⊥).

Let e, f ∈ Z. Then there is an element g ∈ Y such that {e, f}⊥ = {e, g}⊥ and exactly
one of f and g is orthogonal to e. Then g ∈ {e, g}⊥⊥ = {e, f}⊥⊥ ⊆ Z. Moreover,
{e, f}⊥Z = {e, f}⊥ ∩ Z = {e, g}⊥ ∩ Z = {e, g}⊥Z . Hence Z is linear.
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Proposition 6.3. The category LOS does not have equalisers.

Proof. Let us consider the linear orthogonality space (D2,⊥) from Example 5.5.
We define ϕ : D2 → D2, 01 7→ 02, 11 7→ 12, 02 7→ 01, 12 7→ 11. Then ϕ is an
automorphism of D2 and hence, by Lemma 3.4, a morphism ofNOS and hence also
of LOS.

Assume that ψ : X → D2 is an equaliser of the pair of arrows D2 D2

ϕ

idD2

in

LOS. But the diagram X D2 D2
ψ ϕ

idD2

cannot commute. We conclude

that the pair ϕ, idD2 does not possess an equaliser.

Proposition 6.4. The categoryLOS has neither finite ranked sums nor direct products.

Proof. Let (X,⊥) be the linear orthogonality space arising from a three-dimensional
Hermitian space. Then X is normal. The finite ranked sum of X with itself is, by
Proposition 3.12, normal but, by Proposition 5.8, not linear.

Furthermore, the direct product of (1,∅) and any linear orthogonality space with at
least two elements has rank 1. But the only linear orthogonality space of rank 1 is, up
to isomorphism, (1,∅).

The remainder of the section is devoted to a description of the morphisms in LOS.
We restrict our considerations to orthogonality spaces that arise from Hermitian spaces;
in view of Theorem 5.4, the results hence apply to all linear orthogonality spaces
whose rank is at least 4.

Theorem 6.5. Let H and H ′ be finite-dimensional Hermitian spaces. Then a map
ϕ : P (H) → P (H ′) is a morphism in LOS if and only if ϕ is an orthogonality-
preserving lineation.

Proof. Let ϕ : P (H) → P (H ′) be a morphism in LOS. Clearly, ϕ is orthogonality-
preserving. Let x, y, z ∈ H • be such that ϕ([x]) 6= ϕ([y]) and z ∈ [x, y]. Let y′ ⊥ x
be such that [x, y] = [x, y′]. By Lemma 3.3, ϕ([y]), ϕ([z]) ⊆ ϕ([x]) + ϕ([y′]). By
assumption, ϕ([x]) 6= ϕ([y]), so that ϕ([z]) ⊆ ϕ([x]) +ϕ([y′]) = ϕ([x]) +ϕ([y]). By
criterion (1’), ϕ is a lineation.

Conversely, let ϕ be an orthogonality-preserving lineation. Then ϕ is a homomorph-
ism of orthogonality spaces. Let x1, . . . , xn be an orthogonal basis of H . We have to
verify that ϕ([x]) ∈ {ϕ([x1]), . . . , ϕ([xn])}⊥⊥, that is, ϕ([x]) ⊆ ϕ([x1])+. . .+ϕ([xn])
for any x ∈ H; then it will follow by Lemma 3.2, property (5), that ϕ is normal and
hence a morphism.

Assume that x ∈ [x1, x2]. We have that ϕ([x1]) ⊥ ϕ([x2]) and hence ϕ([x1]) 6=
ϕ([x2]). As ϕ is a lineation, it follows ϕ([x]) ⊆ ϕ([x1]) + ϕ([x2]). The assertion
follows thus by an inductive argument.

A morphism of LOS being a lineation, the question seems natural whether it is non-
degenerate. We consider the conditions (L2) and (L3), which define non-degeneracy,
separately.

22



The latter condition is automatic, provided that we assume dimensions of at least 3.

Lemma 6.6. Let H and H ′ be Hermitian spaces of finite dimension > 3. Then any
morphism in LOS is a lineation fulfilling (L3).

Proof. Let ϕ : P (H) → P (H ′) be a morphism in LOS. By Theorem 6.5, ϕ is a
lineation. Moreover, H is at least 3-dimensional, so that the image of ϕ contains
three mutually orthogonal elements. It follows that ϕ fulfils (L3).

In the next lemma, (3, 6=) is, in accordance with Example 2.7, the orthogonality space
consisting of three mutually orthogonal elements.

Lemma 6.7. Let H and H ′ be Hermitian spaces of finite dimension > 3 over the ?-
sfields K and K ′, respectively. Let ϕ : P (H) → P (H ′) be a morphism in LOS that
does not fulfil (L2). Then there is a 3-dimensional subspace H3 of H and a morphism
in NOS from (P (H3),⊥) to (3, 6=).

Proof. For convenience, we will formulate this proof in the language of orthogonality
spaces rather than linear spaces.

By assumption, there are e, f ∈ P (H) such that e ⊥ f and the image of {e, f}⊥⊥
under ϕ contains exactly two elements. Thus ϕ({e, f}⊥⊥) = {e′, f ′}, where e′ =
ϕ(e) and f ′ = ϕ(f). We choose a g ∈ P (H) be such that g ⊥ e, f . Then e′, f ′, and
g′ = ϕ(g) are mutually orthogonal.

LetH3 be the 3-dimensional subspace ofH spanned by e, f , and g. Then we have that
{e, f, g}⊥⊥ = P (H3), the orthogonality relation being induced by the inner product
on H3. Similarly, let H ′3 be the subspace of H spanned by e′, f ′, and g′, so that
{e′, f ′, g′}⊥⊥ = P (H ′3). As ϕ is normal, we conclude from Lemma 3.2, property (3),
that the image of P (H3) under ϕ is contained in P (H ′3). In other words, ϕ|P (H3) is an
orthogonality-preserving lineation from P (H3) to P (H ′3).

({e, f, g}⊥⊥,⊥) is a linear orthogonality space. Furthermore, {e′, f ′, g′}, together
with the orthogonality relation of P (H ′3), is an orthogonality space isomorphic with
(3, 6=). In particular, ({e′, f ′, g′},⊥) is normal. Our aim is to show that there is
an orthogonality-preserving map ψ : {e, f, g}⊥⊥ → {e′, f ′, g′}. Then it will follow
that ψ is a morphism of NOS and the lemma will be proved. For, such a map is
a homomorphism of orthogonality spaces, and since the image of any set of three
mutually orthogonal elements in {e, f, g}⊥⊥ is {e′, f ′, g′}, the normality holds by
Lemma 3.2, property (4).

To begin with, we observe that, for any x ∈ {e, f}⊥⊥ such that ϕ(x) = e′, we
have ϕ({g, x}⊥⊥) ⊆ {e′, g′}⊥⊥, and for any x ∈ {e, f}⊥⊥ such that ϕ(x) = f ′,
we have ϕ({g, x}⊥⊥) ⊆ {f ′, g′}⊥⊥. Furthermore, for any y ∈ {e, f, g}⊥⊥, there is
an x ∈ {e, f}⊥⊥ such that y ∈ {g, x}⊥⊥, and from Lemma 3.3 it follows ϕ(y) ∈
{g′, ϕ(x)}⊥⊥. We conclude that

ϕ({e, f, g}⊥⊥) ⊆ {e′, g′}⊥⊥ ∪ {f ′, g′}⊥⊥. (1)

We now distinguish three cases.
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Case 1. There is an h ∈ {e, g}⊥⊥ such that h′ = ϕ(h) 6= e′, g′. Note that h′ ∈
{e′, g′}⊥⊥. We claim that

ϕ({f, h}⊥⊥) = {f ′, h′}. (2)

Let x ∈ {f, h}⊥⊥. Since x 6= g, there is a unique t ∈ {e, f}⊥⊥ such that x ∈
{g, t}⊥⊥. Depending on whether ϕ(t) = e′ or ϕ(t) = f ′, we have that ϕ(x) ∈
{e′, g′}⊥⊥ or {f ′, g′}⊥⊥. Furthermore, since ϕ(x) ∈ {f ′, h′}⊥⊥, we conclude that
either ϕ(x) = h′ or ϕ(x) = f ′. Thus (2) is shown.

We next claim that
ϕ({e, f, g}⊥⊥) ⊆ {e′, g′}⊥⊥ ∪ {f ′}. (3)

Let x ∈ {e, f, g}⊥⊥ such that ϕ(x) /∈ {e′, g′}⊥⊥. Note that then ϕ(x) ∈ {f ′, g′}⊥⊥
by (1). Moreover, there is a unique y ∈ {f, h}⊥⊥ ∩ {e, x}⊥⊥. Then x ∈ {e, y}⊥⊥
and, by (2), either ϕ(y) = h′ or ϕ(y) = f ′. If ϕ(y) = h′, then ϕ(x) ∈ {e′, h′}⊥⊥ =
{e′, g′}⊥⊥, in contradiction to our assumption. Hence we have ϕ(y) = f ′ and ϕ(x) ∈
{e′, f ′}⊥⊥ and we conclude ϕ(x) = f ′. Thus (3) is shown.

Finally, let τ : {e′, g′}⊥⊥ → {e′, g′} be any orthogonality-preserving map. We define

ψ : {e, f, g}⊥⊥ → {e′, f ′, g′}, x 7→

{
τ(ϕ(x)) if ϕ(x) ∈ {e′, g′}⊥⊥,
f ′ if ϕ(x) = f ′.

Then ψ is orthogonality-preserving, as desired.

Case 2. There is a h ∈ {e, f}⊥⊥ such that ϕ(h) 6= e′, f ′. Then we argue similarly to
Case 1.

Case 3. ϕ({e, f, g}⊥⊥) = {e′, f ′, g′}. Taking ψ = ϕ, we again have that ψ is
orthogonality-preserving.

We shall next consider a quite restricted class of orthogonality spaces. Recall an
ordered field is called Euclidean if any positive element is a square. We denote by
EOS the full subcategory of LOS, and hence of NOS , consisting of orthogonality
spaces that arise from (finite-dimensional) positive definite Hermitian spaces over a
Euclidean subfield of the reals.

Lemma 6.8. In a positive definite Hermitian space over a Euclidean subfield of the
reals, every one-dimensional subspace possesses a unit vector.

Proof. Let K be a Euclidean subfield of the reals and let H be a positive definite
Hermitian space over K. Then the only automorphism of K is the identity, hence
? = id.

Let x ∈ H •. As H is positive definite, there is an α ∈ K such that α2 = (x, x)−1.
Then (αx, αx) = α2 (x, x) = 1.

In the proof of the next lemma, we follow the lines of Piron’s proof of Gleason’s
Theorem [Pir, p. 75–78].

By a measure on a finite-dimensional Hermitian space H , we mean a map µ from
C(H) to the real unit interval such that (i) µ(A∨B) = µ(A)+µ(B) for any orthogonal
subspaces A and B of H and (ii) µ(H) = 1.
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Theorem 6.9. A three-dimensional positive definite Hermitian space over a Euc-
lidean subfield of the reals does not possess two-valued measures.

Proof. Let R be a Euclidean subfield of the reals and let H be a positive definite
Hermitian space over R. Let us assume that there is a two-valued measure µ on H ,
that is, a map µ : P (H) → {0, 1} such that, among any three orthogonal elements
[x], [y], [z] ∈ P (H), exactly one is mapped to 1. Pick b3 ∈ H • such that µ([b3]) = 1
and let b1, b2, b3 be an orthogonal basis of H . By Lemma 6.8, we can suppose that
b1, b2, b3 are unit vectors. We may hence identify H with R3, endowed with the
standard inner product.

We have that µ([
(

0
0
1

)
]) = 1 and consequently µ([

(
α
β
0

)
]) = 0 for any elements α, β ∈ K

that are not both 0. The map ι : R2 → P (R3), (α, β) 7→ [
(
α
β
1

)
] establishes a one-to-

one correspondence between R2 and the set of those elements of P (R3) that are not
orthogonal to b3. We shall write µ̄ for µ ◦ ι. Let 0̄ be the origin of R2; then µ̄(0̄) = 1.
We proceed by showing several auxiliary statements.

(a) Let L ⊆ R2 be a line and let r ∈ L be the element closest to 0̄. Then µ̄(r) > µ̄(s)
for any s ∈ L.

Proof of (a): We may assume that s 6= r. Let [l] ∈ P (R3) be parallel to L. Then
[l] ⊥ ιr and µ([l]) = 0. Moreover, let t ∈ L be such that ιt ⊥ ιs. Then ιr and [l] span
the same two-dimensional subspace of R3 as ιs and ιt. Hence µ̄(r) = µ̄(r)+µ([l]) =
µ̄(s) + µ̄(t) > µ̄(s).

We will denote by ‖r‖ the (Euclidean) distance between 0̄ and some r ∈ R2.

(b) For any r ∈ R2 and τ ∈ K such that 0 < τ 6 1, we have µ̄(r) 6 µ̄(τ · r).

Proof of (b): Let r⊥ arise from rotating r by π
2
. Consider

s = τ · r +
√
τ(1− τ) · r⊥.

Then ^ r s 0̄ = π
2
, hence µ̄(r) 6 µ̄(s) by (a). Likewise, we have ^ 0̄ τr s = π

2
, hence

µ̄(s) 6 µ̄(τr) again by (a).

In what follows, Dω : R2 → R2 denotes the rotation by ω.

(c) Let r ∈ R2, n > 1, and s = cos π
2n
D π

2n
r. Then s ∈ R2 and µ̄(r) 6 µ̄(s).

Proof of (c): From the fact that, for any x ∈ R, we have cos2 x
2

= 1
2
(1 + cos x),

we conclude that cos π
2n
, sin π

2n
∈ R for all n. It follows that s ∈ R2. Moreover,

^ 0̄ s r = π
2
. Hence the last assertion follows from (a).

(d) Let r ∈ R2 such that ‖r‖ > 1. Then µ̄(r) 6 µ̄(− 1
‖r‖2 r).

Proof of (d): Since limn→∞ cosn π
n

= 1, we may choose an m large enough such that
cos2

m π
2m

> 1
‖r‖2 . Let ω = π

2m
and define a sequence r(i), i = 0, . . . , 2m, as follows:

r(0) = r, r(i+1) = cosω ·Dωr
(i) for 0 6 i < 2m.

By (c), r(i) ∈ R2 for all i, and µ̄(r) = µ̄(r(0)) 6 µ̄(r(1)) 6 . . . 6 µ̄(r(2
m)). Moreover,

r(2
m) = − cos2

m
ω · r and − cos2

m
ω < − 1

‖r‖2 . Hence, by (b), it follows µ̄(r(2
m)) 6

µ̄(− 1
‖r‖2 r).
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(e) Let r ∈ R2 be such that ‖r‖ > 1. Then µ̄(r) = 0.

Proof of (e): Assume that µ̄(r) = 1. By (d), µ̄(r) 6 µ̄(− 1
‖r‖2 r), hence µ̄(− 1

‖r‖2 r) =

1. But ιr and ι(− 1
‖r‖2 r) are perpendicular, a contradiction.

(f) There are r, s, t ∈ R2 such that ιr, ιs, ιt are mutually orthogonal and ‖r‖, ‖s‖, ‖t‖ >
1.

Proof of (f): Consider (2, 0), (−1
2
, 1), and (−1

2
,−5

4
).

Theorem 6.10. Let H and H ′ be positive definite Hermitian spaces of finite dimen-
sion > 3 over Euclidean subfield of the reals. Then any morphism in EOS between
P (H) and P (H ′) is induced by a generalised semiunitary map.

Proof. Let ϕ : P (H) → P (H ′) be a morphism in EOS . By Theorem 6.5, ϕ is an
orthogonality-preserving lineation and by Lemma 6.6, ϕ fulfils (L3).

Assume that ϕ does not fulfil (L2). By Lemma 6.7, there is a 3-dimensional sub-
spaceH3 ofH and an orthogonality-preserving map from (P (H3),⊥) to (3, 6=). This
means that H3 possesses a two-valued measure, in contradiction to Theorem 6.9. We
conclude that ϕ does fulfil (L2) and is hence non-degenerate.

By Lemma 6.8,H possesses an orthogonal basis consisting of vectors of equal length.
The assertion now follows by Theorem 4.4.

7 Conclusion

The objective of this paper has been to establish a categorical framework for ortho-
gonality spaces. The latter structures can be identified with undirected graphs and in
the context of graph theory, categories have already been studied, e.g., in [Faw]. How-
ever, the categories discussed by the graph theorists have turned out to be unsuitable
in the present context. Our primary example originates from quantum physics and
hence our intention has been to introduce a category whose morphisms, when applied
to linear orthogonality spaces, come close to linear mappings. We have therefore
introduced normal orthogonality spaces, which are still more general than linear or-
thogonality spaces. But normality suggests a definition of morphisms such that, when
applied in the context of inner-product spaces, not only the orthogonality relation is
taken into account but also the linear structure.

We believe that the presented work is a first step into an area that offers numerous
issues for further investigations. We have shown that the morphism between spe-
cific Hermitian spaces can be represented by generalised semiunitary maps. It has
remained open whether a similar statement is possible for a broader class. More gen-
erally, whereas generalised semilinear maps have been studied by several authors,
there does not seem to exist any detailed account on maps also preserving an inner
product, that is, on generalised semiunitary maps. Moreover, we have seen that the
existence of two-valued measures plays a role in the discussion. This question as well
as Gleason’s Theorem have been studied, with some exceptions [Dvu], in the context

26



of classical fields, whereas the present context suggests to take into account further
non-classical fields.

To mention finally a further interesting issue, recall that the lattice-theoretic approach
has often been criticised for its inability to deal appropriately with common con-
structions of Hilbert spaces, like direct sums and tensor products. In the framework
of orthogonality spaces, the situation is much different and a categorical framework
might be particularly useful for these matters.

Acknowledgement. The authors acknowledge the support by the Austrian Science
Fund (FWF): project I 4579-N and the Czech Science Foundation (GAČR): project
20-09869L.
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