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Abstract

We introduce cut-continuous pomonoids, which generalise residuated posets. The
latter’s defining condition is that the monoidal product is residuated in each argu-
ment; we define cut-continuous pomonoids by requiring that the monoidal product
is in each argument just cut-continuous. In the case of a total order, the condition
of cut-continuity means that multiplication distributes over existing suprema.

Morphisms between cut-continuous pomonoids can be chosen either in analogy
with unital quantales or with residuated lattices. Under the assumption of commu-
tativity and integrality, congruences are in the latter case induced by filters, in the
same way as known for residuated lattices. We are interested in the construction
of coextensions: given cut-continuous pomonoids K and C, we raise the question
how we can determine the cut-continuous pomonoids L such that C'is a filter of L
and the quotient of L induced by C' is isomorphic to K.

In this context, we are in particular concerned with tensor products of modules
over cut-continuous pomonoids. Using results of M. Erné and J. Picado on closure
spaces, we show that such tensor products exist. An application is the construc-
tion of residuated structures related to fuzzy logics, in particular left-continuous
t-norms.

Key words: partially ordered monoid; cut-continuous pomonoid; residuated poset;
coextension of cut-continuous pomonoids; tensor product of modules over cut-
continuous pomonoids; closure space



1 Introduction

A map between posets is residuated if the inverse image of each principal ideal is again
a principal ideal. A generalisation of this property has been studied in a number of
papers: the so-called cut-continuous maps can be defined by the condition that the
inverse images of principal ideals are just cuts, that is, sets consisting of the lower
bounds of all their upper bounds [1, 5]. The idea underlying the present work is to apply
this definition in the context of pomonoids. For a pomonoid to be residuated means
that the multiplication from the left or from the right is a residuated map. We relax this
definition, just requiring that multiplication from the left or right is cut-continuous.

Cut-continuous pomonoids thus comprise residuated posets. Our actual interest con-
cerns the latter structures and the starting point of considerations is the following. Let
L be a commutative, integral residuated lattice and let C be a filter, that is, an upwards
closed subalgebra of L. Then C induces a congruence - of L and in fact all con-
gruences of L are of this form [2]. Let P = L/0¢ be the quotient; then we call L a
coextension of P by C.

Given commutative, integral residuated lattices P and C', we raise the question how to
determine the coextensions of P by C'. It should be understood that this question is fea-
sible only if C is assumed to be of a particularly simple structure. The typical example
is C' = R, the negative real cone endowed with the natural order and usual addition.
In order to determine coextensions of the mentioned type, we may furthermore adopt
what we could call a local viewpoint: we consider the monoidal multiplication of the
enlarged structure restricted to single congruence classes. More specifically, let L be as
above, possessing the filter C'. Then each congruence class is, first of all, a C-module:
it is a lattice on which the elements of the residuated lattice C' act, and the action is
in both arguments residuated. Second, let R, S be two congruence classes such that
R =S — (R-S). Then the mapping R x S — T, (r,s) — r- s, that is, the monoidal
multiplication restricted to R x S, is separately in each argument residuated and action
preserving; we speak of a bimorphism of C'-modules.

These simple observations imply that in order to construct a coextension of P by C,
we have to associate with each element of P a C-module, and we have to determine
bimorphisms in line with the product on P. The first step, the systematic determination
of C-modules, does not seem possible in general. For a specific C, however, the pos-
sibilities can be very limited, an example being the mentioned negative real cone. But
second, once the C-modules are given, the question is how to explore the bimorphisms.
This is where the present paper intends to contribute.

Given two modules R and .S over the residuated lattice C, a tensor product is a bimor-
phism to a further C-module R ®¢ S, with the property that any other bimorphism
factorises through it. Obviously, it would be valuable in the present context to have to
our disposal a tensor product for any pair of modules over residuated lattices. Unfor-
tunately, negative results dominate the scene. For instance, in the category of bounded
posets and residuated maps between them, no tensor product exists [16].

Remarkably, the situation is different in the slightly broader context on which we actu-



ally focus in this paper. A tensor product does exist in the category of bounded posets
and cut-continuous maps [5]. This motivates us not to consider residuated lattices, but
what we call cut-continuous pomonoids. The latter are more general than the former,
but if the underlying poset is a complete lattice, both notions coincide. Moreover, on
the basis of a suitable choice of morphisms, the construction of quotients resembles the
case of residuated lattices.

We proceed as follows. We introduce in Section 2 the algebras under consideration —
cut-continuous pomonoids. In Section 3, we show that the Dedekind-MacNeille com-
pletion of any cut-continuous pomonoid exists and is a unital quantale. From Section
4 on, we focus on the analogy with residuated posets. We define morphisms general-
ising the case of residuated lattices and we show that quotients are induced by filters.
In Section 5, we deal with an issue that is relevant for the sequel: the question when
the restriction of a cut-continuous map is cut-continuous again. Section 6 is devoted to
modules over cut-continuous pomonoids and we explain the usefulness of this notion
in the framework of the coextension problem. In Section 7, we show that modules over
cut-continuous pomonoids admit a tensor product. Here, we take benefit of the notion
of a tensor product of closure spaces [9]. In Section 8, we demonstrate that our results
may provide a framework for the determination of coextensions of cut-continuous po-
monoids. In this context, we restrict to the case of a total order and we accordingly
speak of cut-continuous fomonoids. The results hence apply in particular to residuated
chains. In the final Section 9, some concluding remarks contain a summary of results,
open questions and an outlook to the further research.

2 Cut-continuous pomonoids

For a subset A of a poset P, we denote by AT the set of its upper bounds and by A+#
the set of its lower bounds. Usually, the poset P will be clear from the context and we
will simply write AT and At, respectively. The mapping P(P) — P(P), A — A
is a closure operator on P, that is, an extensive, monotone, and idempotent operation
on the power set of P, which is ordered by set inclusion. Thus P together with ™ is
a closure space; we refer to [7] for an overview of the theory around this notion. The
closure system associated with ™ is its image; we denote it by MC(P) and we call its
elements cuts. That is, a cut is a set A C P such that A = A™. Like any closure
system, MC(P) is closed under arbitrary intersections and hence is with regard to the
set-theoretical order a sup-lattice (that is, a complete lattice).

Note that MC(P) is generated by the principal ideals
{z}v = {yeP:y<z}, 2€P

Indeed, the cuts are the intersections of principal ideals, since A™ = N{{z}+: A C
{z}*}. Clearly, each cut is also the union of the principal ideals generated by its
elements. Thus the set of all principal ideals is both meet-dense and join-dense in
MC(P).

A map p: P — @ between posets is called cut-continuous if ¢ is continuous w.r.t. the



closure operator ™ that is,
p(A™) C (AT

for any A C P. We follow here the terminology of [5], cf. also [6]; in [1], such maps
are called closed. Equivalently, we may say that for any cut B C @, the inverse image
©~1(B) is again a cut. In fact, ¢: P — @ is cut-continuous if and only if the inverse
image of each principal ideal is a cut.

A cut-continuous map ¢: P — () is monotone; in fact, ¢ preserves all existing joins
[1]. If P and @ are chains, ¢ is cut-continuous if and only if ¢ preserves all existing
joins. Furthermore, if P and @) are sup-lattices, ¢ is cut-continuous if and only if ¢
preserves arbitrary joins.

Given posets A, B, and C, we callamap f: A x B — C separately cut-continuous if
f is cut-continuous in each argument.

We denote the category of posets and cut-continuous maps by PC and the full subcate-
gories of bounded posets and of sup-lattices by BPC and SUP, respectively. Thus we
have the inclusions

SUP C BPC C PC.

Let ep: P — MC(P) be the map assigning to each element of P its principal ideal,
that is, ep(z) = {a}t. Since ep'({AM) = {z € P: {a}} € {A}} = A for
any A € MC(P), we have that ep is a morphism of posets, which is moreover order-
reflecting. In fact, the following is shown in [1, Thm. 2, Cor. 2], see also [5, Prop. 2.2]:

Proposition 2.1. The Dedekind-MacNeille completion MC gives rise to a reflector
[from the category PC as well as from BPC to the full subcategory SUP. The reflection
morphisms are ep: P — MC(P).

A partially ordered monoid, or pomonoid for short, is a monoid endowed with a com-
patible partial order. In this paper, we are concerned with pomonoids where the multi-
plication is separately cut-continuous.

Definition 2.2. A structure (L; <, -, 1) is called a cut-continuous pomonoid if:

(C1) (L; <) is a poset;
(C2) (L;-, 1) is a monoid;

(C3) the product - is separately cut-continuous, that is, the sets {z: y - z < z} and
{2: z-y < x} are cuts for any =,y € L.

L is in this case called commutative if so is the monoidal product. Moreover, L is called
integral if the monoidal identity 1 is the top element of the poset.

We note that cut-continuous pomonoids have already been investigated in a broader
context in [10]. Following the terminology of [10], they are the A -semigroups with
identity, where “A”” denotes the Dedekind-MacNeille completion.



Given a pomonoid L, we introduce for x,y € L and S C L the left and right set
residuals in S

xfsy=9{2€8:z-y<z} and y\szx={z€S:y-z<z}

Then z /1, y is the inverse image of the principal ideal {x}* under the right translation
by y, and similarly, y \ , = is the inverse image of {x}+ under the left translation by .
Note that the cut-continuity of L can be expressed by saying that, for any z,y € L,
x /r, yand y \ 1, x are cuts.

Cut-continuous pomonoids can be viewed as a generalisation of residuated posets and
a fortiori also of quantales. Indeed, by a residuated poset, we mean a pomonoid whose
multiplication is in both arguments residuated. The latter condition in turn implies that,
for any z,y € L, z /i, y and y \ 1, « are principal ideals and hence cuts. We conclude
that residuated posets are cut-continuous pomonoids.

Morphisms between residuated posets are commonly chosen such that not only the or-
der and the monoidal structure is preserved, but also the residuals. On the other hand,
morphisms between quantales are commonly defined differently, the preservation of
arbitrary joins is required. Depending on whether we generalise the case of residuated
structures or the case of quantales, cut-continuous pomonoids give rise to two distinct
categories. We will discuss both of them in the subsequent Sections 3 and 4, respec-
tively.

Cut-continuous pomonoids share the following property with residuated posets. The
lemma is immediate from the fact that cut-continuous maps preserve all existing joins.

Lemma 2.3. In a cut-continuous pomonoid, multiplication from the left or from the
right distributes over existing joins.

We are especially interested in the case of a total order. Then the property that the
multiplication distributes over existing joins even characterises cut-continuity.

A totally ordered monoid, or tomonoid for short, is a monoid endowed with a compat-
ible total order. If the underlying order of a cut-continuous pomonoid is total, we will
speak about “cut-continuous tomonoids”.

Since a map between chains is cut-continuous if and only if all existing joins are pre-
served, we have the following proposition.

Proposition 2.4. Let (L; <, -, 1) be a tomonoid. Then L is cut-continuous if and only
if multiplication from the left and from the right distributes over existing joins.

3 Cut-continuous pomonoids and quantales

By a unital quantale, we mean a pomonoid such that its order is complete and multi-
plication distributes from both sides over arbitrary joins. As a reference for quantales,
we may mention, e.g., [15, 17]. Here, quantales will generally be assumed to be unital;
“quantale” will henceforth mean “unital quantale”.



Since quantales are always residuated, they can also be seen as complete residuated
lattices. Quantales are obviously cut-continuous and from Lemma 2.3 we see that they
actually coincide with those cut-continuous pomonoids that are sup-lattices.

In the present section, we will show that cut-continuous pomonoids can be completed
to quantales and the completion gives rise to a reflector from a suitably defined category
of cut-continuous pomonoids to the category of quantales.

For what follows, we recall that, with any monoid (L; -, 1), we may associate the quan-
tale (P(L); C,-,1); see, e.g., [17]. Here, we put

XY ={{zryzeX yet} (1)
for X, Y C L. The residuals are given by

WX = {zeL:Y -{z} CX}, @

XY = {zeL:{z} - Y CX}.

Theorem 3.1. Let (L; <, -, 1) be a partially ordered monoid. The following conditions
are equivalent:
(D) (L; <, -, 1) is a cut-continuous pomonoid.
(2) (MC(L); G, &,1) is a quantale, where
X&Y = (X-V)M
forany X, Y € MC(L), and 1 = {1}*.

Proof. (1) = (2): This follows by [10, Prop. 2.2].
(2) = (1): Assume that (MC(L); C, &, 1) is a quantale. It suffices to show condition
(C3) in Definition 2.2. But for any z,y € L,
{zeliy-z<a} ={zeL:{y}* {} C{z}'} = {y}"\ [z},
{zeLlizy<ay ={zeLl:{z} {y}r C{a}'} = {a}/{y}

are cuts. O

Definition 3.2. A g-morphism ¢: L — K between cut-continuous pomonoids is a
cut-continuous map preserving the monoidal structure. We denote by ¢qCCM the cat-
egory of cut-continuous pomonoids and g-morphisms and by ¢/ Q its full subcategory
of (unital) quantales.

We recall that in ¢/ Q, gq-morphisms are the standard morphisms of unital quantales,
that is, maps preserving the monoidal structure and arbitrary joins.

The following proposition is an immediate corollary of [10, Prop. 2.5].
Proposition 3.3. The Dedekind-MacNeille completion MC gives rise to a reflector

from the category qCCM to its full subcategory UQ. The reflection morphisms are
er: L - MC(L).



4 Cut-continuous pomonoids and residuation

We will from now on view cut-continuous pomonoids as generalised residuated lattices.
This requires some adjustment in regard to our choice of morphisms. Homomorphisms
between residuated lattices are required to preserve the residuals and homomorphisms
between complete residuated lattices do not in general preserve joins.

In the remainder of the paper, we will, unless otherwise stated, assume commutativ-
ity and integrality. By a “cut-continuous pomonoid” we will mean a “commutative,
integral cut-continuous pomonoid”.

For a subset A of a poset P, we will denote by | A the smallest downwards closed set
containing A, thatis, JA = {p € P: p < aforsomea € A}.

Definition 4.1. An r-morphism p: L — K between cut-continuous pomonoids is a
map preserving the order and the monoidal structure and such that, for any x,y € L,
we have:

ey /o z) = ¢(y) [k (). 3)

We easily observe that this definition has the desired property. Indeed, assume that
p: L = K is a mapping between residuated posets L and K and that ¢ preserves
the order and the monoidal structure. Then we have L p(y /i, ) = lo(x — y) and
o(y) /k o(x) = L (p(x) = ¢(y)) for any x,y € L, where — denotes the residuals of
L or K, respectively. Hence ¢ is an r-morphism exactly if ¢ preserves the residuum.

Furthermore, let o: L — K be a surjective r-morphism. Then the partial order on K
is determined by the partial order on L and the r-morphism ¢ as follows: y < z in K if
and only if there are w, v € L such that w < v, y = p(w), and z = p(v). Indeed, the
“if”” part is clear from the monotonicity of (. To verify the “only if” part, assume that
y < zin K. Letw’,v € L be such that y = ¢(w') and z = ¢(v). From p(w') < ¢(v)
it follows in view of (3) that 1 € | (v /L w’). But 1 is the top element of K, hence
there is an element @ € L such that w’ - @ < v and p(a) = 1. Then the elements
w = w' - a and v of L have the desired properties.

Theorem 4.2. Cut-continuous pomonoids and r-morphisms between them form a cat-
egory rCCM.

Proof. Obviously, the identity mappings are r-morphisms. Assume that ¢: L — K
and ¢: K — M are r-morphisms. Clearly, ¥ o ¢ preserves the order and the monoidal
structure. Moreover, for z,y € L, we compute

(Vo)) /m(bop)x) =) /ar P(e(@) = 1Y(p(y) /x p(z))
=1y /L x) =1 op)(y/L z)

and we conclude that ¥ o ¢ is an r-morphism as well. 0

A congruence 6 of a cut-continuous pomonoid L will be understood as being induced
by a surjective r-morphism. We denote the quotient by (L/6; <y, -9, 1s). Note that,



for a,b € L, we have a/0 <y b/0 if and only if there are a’ § a and b’ 6 b such that
a <V,

It turns out that congruences can be described in the same way as in the case of resid-
uated lattices. As usual, a filter of a pomonoid means an upwards closed submonoid.

Theorem 4.3. Let L be a cut-continuous pomonoid and let 6 be a congruence on L.
Then C = 1/0 is a filter. Moreover, for x,y € L we have x 0 y if and only if there is a
c € Csuchthatx - c < yandvy - c < x. In particular, cut-continuous pomonoids are
1-regular.

Proof. Let K = L/f andlet : L — K, x + x:/0 be the associated r-morphism. As
« preserves the order and the product, C' = ¢~ 1(1) is a convex submonoid, that is, a
filter.

Let z,y € L and assume p(z) = p(y). By (3), we have 1 € | p(y /L x) and since 1 is
the top element of K, it follows that 1 € ¢(y /i, x), that is, there is an @ € L such that
x-a < yand p(a) = 1. In other words, there is an a € C such that x - a < y. By a
symmetric argument, there is also an a’ € C such thaty-a’ < x. Puttingc = a-a’ € C,
we havethatz-c < yandy-c < .

Conversely, let ¢ € C' such that z - ¢ < y and y - ¢ < x. Then ¢(c) = 1 and hence

Leopy/La) Slely/L ) =¢y)/k ¢(x). We conclude p(x) < ¢(y). Similarly,
we get o(y) < ¢(x), and the second half of the assertion is shown as well. O

We observe that any congruence on a cut-continuous pomonoid (L; <, -, 1) is induced
by a filter C' of L. We can hence identify a congruence 6 with the filter C' = 19 = 1/6
that induces 6. We will refer in the sequel to the 8-classes also as C'-classes.

The situation concerning congruences of cut-continuous pomonoids is not as transpar-
ent as in the case of residuated lattices. We cannot establish a one-to-one correspon-
dence between the congruences and the filters, as a filter does not necessarily induce a
congruence. The following example is due to [8, Ex. 2].

Example4.4. Let L = {(0,n): n € N}U{(1,2): z € Z~ }, where Z™ are the negative
integers (including 0). We make L into a chain by setting (0,m) < (0,n) if m < n,
(0,n) < (1,2) foranyn € Nand z € Z~, and (1,y) < (1,2) ify < z. We define a
product on L as follows: let (0,n) - (0,m) = (0,0) for any m,n € N, and we let the
product in all other cases be the smaller of the two elements. Then (L; <, -, (1,0)) isa
cut-continuous tomonoid.

Consider now the filter C = {(1,z): z € Z~}. The associated equivalence rela-
tion is a congruence of L as a tomonoid. The quotient is (isomorphic to) the drastic
tomonoid over the chain N U {oo}, where cc is the top element and the monoidal iden-
tity: all products are O except for those involving oo. This tomonoid is evidently not
cut-continuous.

We note that Theorem 4.2 and Theorem 4.3 extend to the category of commutative,
integral pomonoids together with r-morphisms. Erné has shown that in this setting the
desired one-to-one correspondence between the congruences and the filters does hold



[8]. In addition, he has established a criterion that characterises the filters such that the
quotients induced by them are cut-continuous.

5 Restriction of cut-continuous mappings

Given a cut-continuous map ¢: P — () between posets, a restriction ¢|s: S — @,
where S is a subposet of P, is not necessarily cut-continuous again. For example, let
[0,1] be the real unit interval endowed with the natural total order and consider the
identity map on it, ¢: [0,1] — [0,1],  — z. Then the restriction of the map ¢ to
[0, 3)U{1} — [0,1] is not cut-continuous. Similarly, let [0, 1]U[0, 1] be the horizontal
sum of two copies of [0, 1]. Then the restriction of the identity map on [0, 1] U [0,1] to
the subset [0, 2) U [0, 1) is likewise not cut-continuous.

We shall present sufficient criteria for the restriction of cut-continuous maps to be cut-
continuous again. The results of this section are due to M. Erné [8] (cf. [4]). Since
this paper might not be easily available, we will present the statements that we need
together with proofs.

The central notion that we will use is cut-compatibility [8]. Namely, a subposet .S of a
poset P is called cut-compatible if

Alsts — ATPiP NS for all non-empty A C S.

Note that ATPiP NG C Alsis always holds, but not in general the converse inclusion.

Furthermore, we will use the following slight relaxation of the notion of cut-continuity.
Let P and @ be posets. Amap ¢: P — @ is called almost cut-continuous if the inverse
image of each cut is either a cut or empty. A map is almost cut-continuous if and only
if the inverse image of each principal ideal is a cut or empty. An almost cut-continuous
map is monotone and preserves all existing non-empty joins.

Proposition 5.1. [8, Prop. 1] Let S be a subposet of a poset P. Then the following are
equivalent:

(1) S is cut-compatible.

(2) For any cut-continuous map p: P — Q, the restriction ¢|g: S — Q is almost
CUt-cOntinuous.

(3) The restriction idp|g: S — P of the identity map idp: P — P is almost cut-
continuous.

Proof. (1) = (2): Let S be cut-compatible and let ¢: P — @ be cut-continuous. Let
y € Q. By assumption, A = ¢~ (| y) is a cut. Provided that ¢| ;' (ly) # @, we get
by cut-compatibility that | *(ly) = ANS = AP NS D (ANS)T7rn S =
(AN S)Tsts D AN S, thatis, p|g ' (ly)isacutin S.

(2) = (3): Evidently, idp: P — P is a cut-continuous map. Hence, assuming (2), we
have that the restriction id p| g S — P is almost cut-continuous.



(3) = (1): Letidp|g: S — P be almost cut-continuous. Let A C S be non-empty
and b € AP Evidently, A C SN b =idp|s (1b) # @. Hence idp|g' (1b) is a cut
in S, that is, ATs¥s C (SN |b)Ts¥s = SN |b. It follows that ATs¥s C ATrdr 0 G,
that is, S is cut-compatible. O

We have the following two sufficient criteria for a subset of a cut-continuous pomonoid
to be cut-compatible.

Lemma 5.2. [8, Lem. 1] Let L be a meet-semilattice and S be a convex subset of
L. Assume that either L is totally ordered or S has a greatest element. Then S is
cut-compatible.

Proof. Let A C S be non-empty. We have to show that ATs¥s C ATl 0 G Let
a € ATsts_ This means thata € S and a < ¢ forany ¢ € ATs,

Assume first that S has the greatest element g. Then, for any » € A':, we have
r A g € AT and since A is a non-empty subset of the convex set S it follows that
rAg € ATs and thus a < 7, thatis, a € ATedr N0 S,

Assume second that L is totally ordered. Then, for r € ATL | we either have r € S and
hence a < r. Or we have r ¢ S then it follows that » € ST¢ by the convexity of .S,
and consequently a < r also in this case. Thus a € AT+ N S, O

In what follows we are interested in the question under which conditions the restriction
of the multiplication in cut-continuous pomonoids to a pair of subsets remains sepa-
rately cut-continuous. We note that this question was already studied in a more general
context in [4] and [10].

The following theorem is a slight generalisation of [8, Thm. 1]. In this theorem as well
as its corollary, commutativity and integrality need not be assumed.

Theorem 5.3. Let R and S be cut-compatible subsets of a cut-continuous pomonoid L,
andletT C L be such that, forallz € R,y € S, and z € T, we have that x-y € T and
z [r Y, x \s z are non-empty. Then the restricted multiplication -|p, g Rx S — T is
separately cut-continuous.

Proof. Letus fix y € S. The right translation by y, that is, the map o,: L — L, r —
T -y, is cut-continuous and g, |r: R — L is by Proposition 5.1 almost cut-continuous.
By assumption, the range of g, |z can safely be replaced by T" and we then still have
that gy| r: R — T is almost cut-continuous. Furthermore, for any z € T, z /g y is
non-empty for any z € 7T, that is, the inverse image of {z}*7 under g, | is non-empty.
We conclude that g, |z is even cut-continuous.

This shows that the multiplication |, ¢: R x S — T is in the first argument cut-
continuous. We similarly argue for the second argument. O

Corollary 5.4. Let S be a cut-compatible subpomonoid of a cut-continuous pomonoid
L such that, for all x,y,z € S, z /s y and x\s z are non-empty. Then S is a cut-
continuous pomonoid as well.
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6 (C-modules and coextensions

We now introduce modules over cut-continuous pomonoids. Our definition is chosen
in analogy with the case of modules over residuated lattices [19, Sec. 3.2].

We recall that all pomonoids are assumed to be commutative and integral. Also resid-
uated posets will be understood to fulfil these properties.

Definition 6.1. Let C be a cut-continuous pomonoid. Then a C-module is a poset R
together with an action x: C' x R — R such that (i) ax(bxz) = (a-b)*xx and 1xx = x
forany a,b € C'and x,y € R, and (ii) « is separately cut-continuous.

Moreover, a C'-module R is called order-transitive if for any z,y € Rthereisana € C
such that a x x < y.

A morphism between C-modules R and S is a cut-continuous map ¢: R — S such
that p(a * z) = a * ¢(x) for any a € C and x € R. Finally, for C-modules R, S, and
T, a bimorphism is a map ©: R x S — T that is a morphism of C-modules in each
argument.

Note that a map ¢: R x S — T being a bimorphism of C'-modules means that 1) is
separately cut-continuous and preserves the action in each argument.

Given a congruence on some cut-continuous pomonoid, we are going to consider the
action of the corresponding filter on single congruence classes.

Proposition 6.2. Let L be a cut-continuous pomonoid and 6 a congruence on L. Let
C = 19 = 1/0 be the filter inducing 0, let R,S € L/ and T = R -9 S. Assume that
either L is a tomonoid, or L is a meet-semilattice and R and S possess top elements.
Then the following holds.

(i) Endowed with the inherited order and with the left multiplication by the elements
of C, that is, with the action

*:C X R— R, (a,2) —a-x,
R is an order-transitive C-module.
(ii) The multiplication, that is, the mapping
RxS—=T, (x,y) — -y,

is a bimorphism from the C-modules R and S to the C-module T.

Proof. Since R, S, and C are convex, we conclude from Proposition 5.2 that these sets
are cut-compatible.

(i) Clearly, R = C' -y R,  fulfils the associativity condition, and 1 acts neutrally.

Letx € Candy,z € R. Since y 6 z, thereisan a € C such thata - y < z, i.e., the
set z /o y is non-empty. Similarly, sincea-y € Rand z - (a-y) < z, also z \g z is
non-empty. From Theorem 5.3 we conclude that * is cut-continuous in both arguments.
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Furthermore, the C-module R is order-transitive by Theorem 4.3.

(ii)Letz e R, ye Sandz € T. Sincexz -y € T we getthat z - y 6 z. It follows that
thereisac € C'suchthat (c-z) - y=z-(c-y)=c-(z-y) < z, wherec-z € R and
¢-y € S. Therefore the sets z /r y and = \ g z are non-empty. Again by Theorem 5.3,
the multiplication is in each argument cut-continuous.

The remaining assertions are immediate. O

As an example in which Proposition 6.2 always applies, consider a congruence on a
complete cut-continuous pomonoid such that the inducing filter is principal. Then all
congruence classes possess a top elements and hence are C'-modules. Indeed, let ¢
be the least element of the inducing filter C, let R be some congruence class, and let
r € R.Thenz-c < randr-c< xforall z € R, hence by cut-continuity \/ R-c¢ < r
and furthermore r - ¢ < \/ R, that is, \/ R € R. Note that this remark covers the
congruences on any finite residuated lattice, because filters are down-directed.

We have seen that we may form quotients of cut-continuous pomonoids by means of
their filters. Let us now adopt the opposite viewpoint. For a cut-continuous pomonoid
K, we call a further cut-continuous pomonoid L a coextension of K if there is a sur-
jective r-morphism from L to K, that is, if K is (isomorphic to) a quotient of L. More
specifically, if C is the filter of L inducing the quotient, we say that L is a coextension
of K by C'. The idea is to construct from K and C' the coextensions of K by C.

For given cut-continuous tomonoids K and C, we are particularly interested in the
construction of the totally ordered coextensions of K by C'. In particular, the C'-classes
are then chains.

To this end, it is useful to know all C'-modules for a given underlying chain R as well
as the morphisms and bimorphisms between these C-modules. To substantiate this
statement, we shall give an example from the realm of left-continuous t-norms.

A t-norm is a binary operation ® on the real unit interval [0, 1] that is associative, com-
mutative, with neutral element 1, and in both arguments monotone. In other words, t-
norms are the operations making [0, 1] into a (commutative, integral) tomonoid. More-
over, a t-norm © is called left-continuous if lim, », x © b = a ® b for any a € (0, 1]
and b € [0,1]. Hence ®: [0,1]?> — [0,1] is a left-continuous t-norm if and only if
([0,1]; <, ®, 1) is a (commutative, unital) quantale if and only if ([0,1]; <, ®,1) is a
(commutative, integral) residuated poset if and only if ([0, 1]; <, ®, 1) is a (commuta-
tive, integral) cut-continuous tomonoid.

Let us consider the four-element Fukasiewicz chain; let Ly = {—3,—2,—1,0} be
endowed with the natural order and the truncated addition ®:

dde = (d+e)V -3, d,e € Ly,

where + on the right side is the usual addition of integers. Clearly, (Ly; <, ®,0) is
a tomonoid. Let us moreover consider the tomonoid (R™; <, +, 0), the negative reals
(including 0) endowed with the natural order and the usual addition of reals.

We intend to determine totally ordered coextensions of L4, by R™, that is, cut-continu-
ous tomonoids L possessing a filter C' isomorphic to R™ such that C' induces a quotient
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isomorphic to Ly.

Our tactic is to presuppose the order type of the four C'-classes. Let us assume that
the C-class of —3 will be a singleton and the C'-classes of —2 and —1 will be, like the
C'-class of 0, order-isomorphic to R™. Thus the universe of the coextension will be

L = {(-3,00}U{(d,r): d € {-2,-1,0}, r e R™},

ordered lexicographically. Note that L itself is order-isomorphic to the real unit inter-
val. Hence, if L can be made into a cut-continuous tomonoid as desired, it will give
rise to a left-continuous t-norm.

By a real interval, we will mean any non-empty convex subset of R. We will next see
that real intervals can be made into order-transitive R™-modules in essentially only one
way: by means of the usual addition of reals.

Lemma 6.3. Let M be an order-transitive R™-module and assume that M is order-
isomorphic to a real interval consisting of more than one element. Then there is an
order isomorphism v from M to one of R™, R, RT, or [u, 0], where u < 0, such that
the action is given by

axx = () + a)

in the cases that M is not lower bounded, and otherwise by
axx = 1 ((u(x) +a) V),

where 1 is the left endpoint of the real interval 1(M).

Proof. The actionx: R™ x M — M is assumed to be in both arguments cut-continuous.
It follows that x preserves in both arguments the suprema of non-empty upper-bounded
subsets.

Fix now some m € M. For any a,b € R~ such that a < b, a x m = b x m implies
bxm = (a — b) * (b*m). Consequently, if a < b, we have b x m = r % (b*m) for
any r € R~ and, by order-transitivity, b x m is the smallest element. We distinguish
the following cases.

Case 1. M is not bounded from below. Then ¢: R™ — | m, a +— a % m is injective.

Case 2. M possesses the smallest element s. By order-transitivity, s = a x m for some
a € R7, and since * preserves non-empty suprema in the first argument, there is a
largest element ¢ € R~ with this property. Furthermore, ¢: [t,0] — |m, a — a*m
is injective.

We claim that the mapping ¢ is surjective in either case. Indeed, assume that there is an
x € M such that z < m and x is not the bottom element of M and such that axm # =
for any a € R™. Then there is some b € R~ such that b x m < x but a x m > z for
any a > b. Butthenc*xz < bxm foranyc < Oandhence x = O0xz < b*xm,a
contradiction.

We conclude that, by means of ¢, we can identify | m either with R~ or with [¢, 0],
t < 0. Furthermore, under this identification, the action is the usual addition of reals.
Since the choice of m € M is arbitrary, the lemma follows. O
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By Lemma 6.3, the chain R~ can be made into an order-transitive R™-module essen-
tially only by means of the usual addition of reals. This observation determines the
multiplication in L in the cases where an element of the filter C' = {0} x R~ is in-
volved: (d,r) - (0,s) = (d,r + s), where d = —2,—1,0. Since the class of —3 is a
singleton, it is furthermore clear that (d, r) - (e,s) = (—3,0) if d ® e = —3.

It remains to define the multiplication for pairs of elements of {—1} x R~. We need
to determine a suitable operation o: R~ x R~ — R~ such that (—1,7) - (—=1,5) =
(=2, r¢s). But the operation ¢ must be a bimorphism of R™-modules; indeed, we must
have (r+t)os =ro(s+t) = (ros)+tforanyr,s,t € R™. Puttingo = 000 € R,
we conclude

ros = r+s+o, r,s € R™.

It is not difficult to verify that (L; <, ®, (0,0)) defined in this way is, for each choice
of o, indeed a quantale. In particular, it gives rise to a left-continuous t-norm. Corre-
sponding to the case o = 0, we show in Fig. 1 how this t-norm may look like.

In Fig. 1 as well as in the subsequent figures, we show the Cayley representation of
the tomonoid in question, which consists of the (left, right) inner translations [3, 20].
Furthermore, examples of t-norms are, in order to save space, specified only partly; the
definitions can be completed by means of the commutativity condition.

-1
| 2
3 a®b =
a(3b—2) ifa < 3andb> 2,
3ab—2a—b+1 if%<a<%andb>%7
|1 3ab—2a—2b+2 ifa,b> %,
3 0 ifa < Landb < 2,
3ab7a7b+% if%<a7b§%
1 0

2
3

[en)
Wl

Figure 1: The t-norm ®: [0, 1]*> — [0, 1] resulting from a coextension of Ly by R™.

Our example shows how coextensions of cut-continuous tomonoids can be determined
in a “modular” way. In general, let K and C' be cut-continuous tomonoids. In order
to construct the coextensions L of K by C, we first assign to each element of K a
C-module; to the top element 1 we assign C' itself, which takes over the role of the
congruence-inducing filter. In this way, we get a monoidal operation on L between
those pairs of elements one of which is an element of the filter C'. To extend the
multiplication to the remaining C-classes, bimorphisms between the C-modules need
to be determined.

We will not touch the problem of determining all C-modules for a given cut-continuous
pomonoid C'. This would amount to checking if there is a free such object, in analogy to
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the case of modules over quantales [18, 14]. But we may note that in certain cases, for
instance for the negative real cone, there is a quite manageable amount of possibilities.
Furthermore, in the general case, the possibilities can be much restricted by presup-
posing the partial order of the coextended tomonoid. Here, we will rather consider the
bimorphisms between given C'-modules, to which the next section is devoted.

7 Tensor product of C-modules

Given modules R, S, T over some cut-continuous pomonoid C', we are interested in
determining all the bimorphisms 1: R x S — T. A tensor product facilitates this task,
allowing us to focus on morphisms instead.

Definition 7.1. Let C be a cut-continuous pomonoid and let R, S be C-modules. By a
tensor product of R and S, we mean a bimorphism 7 from R x S to a further C'-module
denoted by R ®@¢ S, such that for any bimorphism ¢ from R x S to a C-module and
sup-lattice 7" there is a morphism 15: R®c S — T such that ¢ = zﬁ oT.

We shall show that the tensor product of C'-modules, defined in this specific way, in-
deed exists. Let us first have a look at the order-theoretical aspects. Erné and Picado
introduced in [9] the tensor product of arbitrary closure spaces, fulfilling a universal
property for mappings from products of closure spaces that are continuous in each ar-
gument. Specialised to the present context, where we deal with the closure operator ™+
on posets, the situation is as follows.

In the sequel, all posets are viewed as closure spaces by means of the respective closure
operator ™. For posets A and B, a tensor is a set W C A x B such that

foreach x € A, the set W = {y: (z,y) € W}isacutin B,

foreachy € B, the set Wy = {x: (z,y) € W}isacutin A.

Equivalently we may say that X x Y C W implies X™ x Y™ C W. The set of all
tensors is denoted by A ® B and called the tensor product of A and B. A® B is closed
under arbitrary intersections and hence makes A x B into a closure space as well.

For x,y € W, the least tensor containing (x,y) is
zoy = (e}t x {yP)u (@™ x Byu (4 x ™),

called a pure tensor. Note that any tensor W is a union of pure tensors; indeed, we have
W=Ueyewr®v.
We can now formulate a result due to Erné as follows [5, Thm. 3.1] (cf. [9, Thm. 3.3]).

Theorem 7.2. Let A and B be posets. Then the pure tensor insertion

®:AxB—>A®B, (z,y) —»z®y
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is universal among all separately continuous maps from A x B to sup-lattices: a map
[ from A x B to a sup-lattice C'is separately continuous if and only if there is a unique
join-preserving map f: A® B — C such that f(x,y) = f(x ® y). This map is given
by f(W) =V f(W).

Moreover we have the following results [5, Cor. 4.4, Cor. 4.5] or [9, Cor. 3.1, Thm. 3.2].

Theorem 7.3. Tensor products of posets satisfy the commutative law AQ@ B =~ B® A
and the associative law (AQ B)@ C 2 A® (B® C).

Theorem 7.4. Let A and B be posets. Then A ® B and MC(A) @ MC(B) are iso-
morphic sup-lattices, via the bijection

h: A®B — MC(A)@MC(B), W — {(X,Y) € MC(A)xMC(B): XxY C W}.

Before continuing with our construction of a tensor product of C-modules we will
shortly describe sup-lattice coequalisers in SUP following [13, Chapter I, Prop. 3].

Let M be a sup-lattice and let R be a binary relation on M. Call an element m € M
R-coherent if for every a R b we have that a < m iff b < m. Then the set My of
R-coherent elements is a quotient of M, the quotient map being

zr: M — Mg, c— /\{m € M : mis R-coherent and ¢ < m}.

zr is left adjoint to the inclusion and thus preserves arbitrary joins. It follows that the
category of sup-lattices has coequalisers. Indeed, for any

f
N?M

to be coequalised, take R = {(f(n),g(n)):n € N} C M x M.

We are now in a position to construct the tensor product of C-modules R and S. We
first put mp: R x C — R, (r,c) —» cxrandmg: C x S — S, (¢,s) — c*s.
Since mp and mg are separately cut-continuous, there are by Theorem 7.2 unique
join-preserving maps mpr: R ® C — MC(R) and ms: C ® S — MC(S) such that
mpr(r,c) = mr(r ® ¢) and mg(c,s) = mg(c® s) forany r € R, ¢ € C, and
s € S. Taking into account Theorems 7.3 and 7.4, we then have the following pair of
morphisms in SUP:
mrEids
ReC®S o ——F R®S. 4)
Letnow g: R® S — R ®¢ S be the coequaliser for the diagram (4) in SUP and put
m: RxS = R®c S, (r,s) — g(r®s). On R®¢ S, we define a C-action as follows.
Let a € C; then we let a ® — be the join-preserving map from R ®¢ S to itself such
that
a®m(r,s) = g((axr)®s) =g(r® (axs)) )

forany (r,s) € R x S.

16



Theorem 7.5. Let C be a cut-continuous pomonoid and let R, S be C-modules. Then
R®c S, made into a C-module by (5), together withw: Rx S — R®¢ S is the tensor
product of R and S.

Moreover, R ®¢ S is also an MC(C')-module, which is isomorphic to the quantale
module MC(R) @mc(c) MC(S).

Proof. T is separately cut-continuous because sois R x S - R® S, (r,s) = r®s
and ¢ is join-preserving. Moreover, 7 preserves the C'-module action because, for any
a€C,r € R,and s € S, wehave a ® 7(r,s) = w(axr,s) = 7(r,a*s). Finally, the
universal property of the tensor product follows by the coequaliser universality.

The last assertion is an immediate consequence of Theorem 7.4 and Proposition 2.1:
the diagram (4) and the following diagram

myc(r) Oldme(s)

MC(R) ® MC(C) @ MC(S) MC(R) @ MC(S).

idvic(r) ®Mmc(s)

coincide up to isomorphism. O

In order to be able to apply Theorem 7.5 to the determination of bimorphisms between
C-modules that are not necessarily sup-lattices, we shall make use of the fact that
a C-action on a poset R can be extended to an action on the Dedekind-MacNeille
completion MC(R).

Proposition 7.6. Let C be a cut-continuous pomonoid and let R be a C-module. Iden-
tifying R with its image under eg: R — MC(R), we can extend the action on R to an
action on MC(R), making the latter into a C-module as well.

Proof. By Proposition 2.1, each morphism ax—: R — R possesses a unique extension
to a join-preserving map a x —: MC(R) — MC(R). In particular, * is cut-continuous
in the second argument. To see that x is cut-continuous in the first argument, let z,y €
MC(R). Thenz = \/,.;z, and y = A\, yx for some z,,y, € R (where I, K are
possibly empty) and it follows that

{aeC:axzx <y} = ﬂ{aEC: a*xz, <Y}

LK

is a cutin C. Finally, the fact that R is join-dense in MC(R) also implies that * is still
a module action. O

Assume now that we are given C-modules R, .S, and T and we want to determine the
bimorphisms from R x S to T'. Then for any bimorphism f: R x S — T there is
a morphism f: R ®c S — MC(T) such that ey o f = f o «. Consequently, by
determining the morphisms from R ®¢ S to MC(T'), we get all desired bimorphisms.

In order to find all bimorphisms from R x S to 7" we may thus proceed as follows.
(1) We determine the morphisms f: R ®c S — MC(T'). (2) For each such morphism
f, we check whether f o 7 maps R x S to T, viewed as a subset of MC(T').
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We note that step (2) cannot easily be avoided. As our approach relies on the tensor
product of closure spaces, we defined the tensor product to have the universal property
only with regard to morphisms to modules that are also sup-lattices. An alternative way
seems not to be straightforward.

8 An example of a coextension

We shall discuss a further example from the realm of left-continuous t-norms. We note
that for this example we could certainly determine the necessary bimorphisms without
difficulties directly. However, our intention is to put the construction into the wider
context given by the framework that we have developed above.

Let K be the finite tomonoid depicted in Fig. 2. We wish to coextend K by an
Archimedean cut-continuous tomonoid such that the result L gives rise to a left-continu-
ous t-norm. Then the tomonoid by which we coextend K must either be isomorphic to
the negative cone R~ or the negative unit interval [—1, 0], endowed with the (truncated)
usual addition of reals [20, Prop. 6.3]. Let us discuss the former case: we will use the
tomonoid (R™; <, +, 0).

no

=

0

0 1 2 3 4

Figure 2: The tomonoid K.

Since the congruence classes will by assumption be order-isomorphic to real intervals
as well, the required order-transitive R™-modules are by Lemma 6.3 (up to isomor-
phism) real intervals upon which the elements of R~ act by usual addition. The only
necessary choice concerns the type of interval: a singleton, R™, [u, 0] for some u < 0,
Rt, or R.

We shall use, from bottom to top, R™-modules based on R, {0}, R,R-,and R™.
(The top-most interval must of course be chosen in accordance with the tomonoid by
which we coextend.) Hence

L= {0} xRt U {(1,0)} U {(d,r): de {234}, reR™},

endowed with the lexicographic order. Here, C = {4} x R~ will be the congruence-
inducing filter. The multiplication between elements one of which is from C'is given
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by the action of C on the respective class. Furthermore, the multiplication with the
single element of the class {(1,0)} is trivial, leading always to the bottom element
of the respective class. In order to determine the multiplication between the remain-
ing elements, we shall calculate the necessary tensor products; we need to determine
R~ ®g- R~ and R~ ®p- R*. We shall write R~ = MC(R™) = R~ U{—00}, where
—o0 denotes the bottom element, and similarly R = MC(R*) = R* U {cc}.

The tensor product of posets R~ ® R~ consists of the sets {(z,y) € R~ x R™:

y < 7(x)}, where 7 is an antitone left-continuous map from R~ to R~ (that is, a map
from R~ to the dual of R~ preserving non-empty suprema). As a sup-lattice, R~ @ R~
is generated by r ® s = {(z,y): = < r, y < s}, r,s € R™. The coequaliser in SUP,
g: RT®R™ — R~ ®g- R, is required to fulfil g((r +¢) ® s) = g(r ® (s + ¢)) for
all ¢ € R™. This means that g(r ® s) = g(0 ® (r + s)), hence g(r ® s) = g(r' ® s’)

whenever r + s = 7’ 4 s’. We conclude that we can put R~ ®- R~ = R~ and
g(r ® s) = r+ s. The R™-action on R~ is the usual the addition of reals: forc € R,
wehavec®z =x +cifr € RTandc® —o00 = —o0.

Similarly, the tensor product R~ @ R consists of {(z,y) € R~ x RT: y < 7(x)},
where 7 is an antitone left-continuous map from R~ to R+. This time the coequaliser
ghastofulfil g((r +¢) ® s) = g(r ® (s +¢) V0) forall c € R™, where r € R~ and
s € RT. Thus g(r®s) = g(0® (r+s) V0) and hence g(r ® s) = g(r’ ® s") whenever

(r+s)V0=(r'+s)Vv0. Wecanput R~ ®@z- R* = Rt and g(r ®s) = (r+s) V0.

The R~ -action on Rt is, forc € R™, givenby c® z = (z +¢) VO ifx € R* and
C® 00 = 0.

We next have to determine the morphisms between the R™-modules R- and Rt. We
readily see that a morphism h: R~ — R~ is of the form

W) = {x+a ifr e R,

—00 ifx = —o0,
where o < 0. Moreover, for a morphism h: R— — R+ we have

W) = {(x—i—a)\/O ifz e R™,

0 ifz = —o0,
where o > 0. Finally, a morphism R+ — R is of the form

_J@+o)vo ifzeRT,
h(m)_{oo if x = oo

where o < 0.

We conclude that any integral coextension of K by R~ is given according to the fol-
lowing prescriptions:
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2,7+ s+ 01), whereoy <0,
(r+s+o02)Vv0), whereoz >0,
0,0) foranya <3, b<lora=b=2;

(4,7)© (4,s8) = (4,7 + s),
(4,7)®(3,s8) = (3,7 +s),
(4,7) ©(2,s) = (2,7 +s),
(4,7) ®(1,0) =(1,0),
(4,7) ®(0,8) = (0,(r+s)VO0),
) ©(3,8) = (
)®(2 ) = (0,
m)©(bys) = (

here r, s € R are such that the indicated pairs are, respectively, in L.

It is easily checked that we define in this way for any choice of o, and o, indeed a
residuated tomonoid. After rescaling we get a cut-continuous t-norm; for an example
based on a choice of o1 < 0 and o5 > 0, see Fig. 3.

rl

%,§ a@®b =
» 4
4ab —3a —3b+ 3 ifa,b> 2,
/ 4ab — 3a — 2b+ 2 ifb>2and 3 <a< 3,
s |1 4ab—3a —b+1 ifb>3and 1 <a< i,
— 1 2 afbol iftb> 2anda < 3,
| %(201)—&—?4-%) 1f1<ab3%
—— ) 10— sm=@m=n) VO ifi<b<
: T 1 a“d%éagéa
I I 0 ifb < 2anda < 1,
A; ora,béé
g 1()
4

Figure 3: Example of a t-norm © arising from the coextension of K by R™.

9 Conclusion

Cut-continuous pomonoids generalise residuated posets; for any pair of elements x, y,
the sets {¢: y - ¢ < x} and {c: ¢y < z} are no longer required to be principal ideals
but just cuts. Cut-continuous pomonoids naturally lead to two different categories. In
gCCM, the morphisms are chosen in analogy to the case of quantales. The Dedekind-
MacNeille completion gives rise to a reflector from ¢qCCM to the category of unital
quantales. In contrast, morphisms are chosen in 7CCM in such a way that the case of
residuated lattices is generalised.

Any congruence, defined accordingly, is then induced by a filter, in the same way as in
the case of residuated lattices. Our interest has focused on the question how to construct
coextensions of some cut-continuous pomonoid K by a further one C. To this end, all
possible C'-modules as well as the bimorphisms between them need to be determined.
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The latter need has motivated us to study tensor products of modules over cut-continu-
ous pomonoids. Whereas in the context of residuated lattices there is not much to
say here, the present context is surely more profitable. Elaborating on results of M.
Erné and J. Picado on closure spaces, we have shown a tensor product to exist. We
have demonstrated the role that the tensor product plays in the construction of coex-
tensions by means of an example originating from fuzzy logic: the construction of
left-continuous t-norms.

Several problems remained open and should be addressed in further research. First, our
results apply to the construction of coextensions in the case of a total order, whereas the
general case remains tricky; the problem is that the restriction of the monoidal opera-
tion to a pair of congruence classes is seen to be cut-continuous only under quite spe-
cial assumptions. Furthermore, following Erné and Picado’s approach, the formation
of tensor products always leads to a complete structure and hence the correspondence
between the bimorphisms and the morphisms of the tensor product is not one-to-one.
A progress in this respect would require, however, a different approach.
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