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Abstract

We propose a representation of totally ordered monoids (or tomonoids, for short)
that are commutative, positive, and finite. We identify these structures with com-
patible and positive total preorders on Nn. To describe the latter, we utilise so-
called direction f-cones, making use of the special form of the associated congru-
ences on Nn.

1 Introduction

Totally ordered monoids, or tomonoids as we say shortly [EKMMW], naturally occur
in the context of fuzzy logic. In contrast to classical logic, which is based on the two
truth values “false” and “true”, fuzzy logic allows propositions to be assigned also
intermediary degrees; see, e.g., [Háj]. The conjunction is moreover interpreted by an
operation that acts on the chain of generalised truth values. The actual interpretation
varies from logic to logic and is often not restricted to a single choice. A common
requirement is associativity as well as the compatibility with the total order. We are
in this case led to totally ordered semigroups [Cli, Gab]. A further assumption may
be that the top element of the chain represents “true” and thus should be an identity,
in which case the relevant structures are negative tomonoids. If, in addition, for the
conjunction the order of propositions does not matter, the tomonoids of interest are
also commutative [EKMMW].

On the basis of such motivation, we investigate in this paper negative, commutative
tomonoids. We use the additive notation and work with the dual order; hence we
actually call the structures in question positive commutative (p.c.) tomonoids. We
furthermore restrict to the finite case. A further requirement common in fuzzy logic is
then automatically fulfilled: residuation [Háj, GJKO]. Adding the residual implication,
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which is uniquely determined, we obtain totally ordered MTL-algebras [EsGo]. Hence
our work could also be understood as a contribution to a better understanding of finite
MTL-chains.

In recent years, residuated chains have been studied under various assumptions from
various points of view. For instance, MTL-chains with the weak cancellation property
are the topic of [MNH] as well as [Hor1]. Idempotent residuated chains are studied
in [ChZh]. We may moreover mention our paper [Vet1], devoted to MTL-algebras
that are based on the real unit interval. The content of certain works comes even very
close to what we are concerned with here, although the chosen approaches are much
different. The paper [Hor2], for instance, deals with finite MTL-chains and their rela-
tionship to Abelian totally ordered groups. Finally, a step-wise construction of finite
p.c. tomonoids is proposed in [PeVe].

The present work is to be seen in the following context. Disregarding the total or-
der, we deal with finite, commutative monoids. A commutative monoid can be de-
scribed by a monoid congruence on Nn, where n is the cardinality of a generating
subset. Congruences of commutative semigroups in general and of free commutative
monoids in particular have been described, e.g., in the well-known paper by Eilenberg
and Schützenberger [EiSc]. The representation of monoids by congruences of Nn is
the starting point of the present study. We will see that, in our special context, the
description of the congruences on Nn can actually be simplified.

Our task is to describe a quotient of Nn together with a total order that is compatible
with the addition. To this end, we make use of an idea introduced in our previous
paper [Vet2]. If L is a tomonoid and ϕ : Nn → L is a surjective homomorphism
of monoids, we may pull back the total order 6 on L to a binary relation 4 on Nn:
we put a 4 b if ϕ(a) 6 ϕ(b). Then 4 is a preorder that encodes both the monoid
congruence and the total order. In fact, we obtain the congruence by identifying any
pair a, b ∈ Nn such that a 4 b and b 4 a. A preorder 4 on Nn represents a finitely
generated, positive, commutative tomonoid if and only if 4 is positive, compatible,
and total. Such preorders, which we call monomial, are consequently the central topic
of the present paper.

In order to describe monomial preorders, the following considerations turn out to be
useful. If 4 happens to be a total order on Nn, the set of differences b − a such that
a4 b is the positive cone of a totally ordered group based on Zn and the positive cone
determines the total order uniquely. In the general case, this set seems to be of limited
use. We may, however, slightly modify its definition and consider the set of all z ∈ Zn

such that a4 b whenever b− a = z. We call the latter set a direction cone. Direction
cones can be characterised in a way inspired by the case of totally ordered Abelian
groups and any finitely generated p.c. tomonoid is a quotient of a tomonoid associated
with a direction cone [Vet2].

Direction cones are infinite and thus not an elegant tool to deal with the finite case.
The present paper aims at overcoming this drawback. To this end, the aforementioned
structure of the congruence classes comes into play. Given a monomial preorder 4 on
Nn, we define a certain finite subset of Nn, called the support of 4, which comprises
all finite classes and has a non-empty intersection also with each infinite class. We
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show that the preorder 4 is uniquely determined by the restriction to its support.

Restricting the considerations to the support, we are led to a finitary analogue of direc-
tion cones, called direction f-cones. A direction f-cone represents a finite monomial
preorder and hence a finite p.c. tomonoid, and any finite p.c. tomonoid is a quotient of
a tomonoid obtained in this way. To characterise direction f-cones is not straightfor-
ward, however. We offer two perspectives on the problem. We adopt, on the one hand,
a “global” viewpoint, considering the direction f-cone as a whole. We proceed, on the
other hand, according to a “local” viewpoint, describing the direction f-cone relative to
the direction f-cone associated with a tomonoid whose number of Archimedean classes
is by one smaller. The former possibility is easier to comprehend. The latter, however,
which describes the relevant structure in a step-wise fashion, offers a deeper analysis
of the monomial preorders in question.

The paper is structured as follows. We recall in Section 2 the basic fact on which
the paper is built, namely, the correspondence of finitely generated p.c. tomonoids and
monomial preorders. We moreover introduce to direction cones as a tool of describing
monomial preorders. In Section 3, we turn to the finite case. We provide a description
of the associated congruences on Nn and propose a finitary analogy of direction cones,
called direction f-cones. In Section 4, we compile the latter’s basic properties and we
derive a first axiomatic construction of finite monomial preorders. The remaining two
sections are devoted to a more detailed analysis of direction f-cones. In Section 5, we
describe a direction f-cone relative to the direction f-cone that arises from “collaps-
ing” the smallest Archimedean class. The converse procedure is specified in Section
6 and leads to a second axiomatic construction of finite monomial preorders. Some
concluding remarks are contained in Section 7.

2 Monomial preorders and direction cones

We investigate in this paper structures of the following type.

Definition 2.1. A structure (L;6,+, 0) is a totally ordered monoid, or tomonoid for
short, if (i) (L; +, 0) is a monoid, (ii) (L;6) is a chain, and (iii) 6 is compatible with
+, that is, a 6 b and c 6 d imply a+ c 6 b+ d.

A tomonoid (L;6,+, 0) is called commutative if so is +. Moreover, L is called posi-
tive if 0 is the bottom element.

The notion of a “tomonoid”, in analogy to the better known “pomonoid”, is taken from
[EKMMW]. We note that, in contrast to [EKMMW], we do not define tomonoids to
be commutative. We will rather make the assumption of commutativity explicit and to
keep the notation short we will abbreviate “positive, commutative” by “p.c.”.

By a subtomonoid of a tomonoid L, we mean a submonoid of L endowed with the total
order inherited from L. A downwards closed subtomonoid is called an ideal.

Congruences of tomonoids are defined in the expected way. Here, a subsetC of a poset
is called convex if a 6 b 6 c and a, c ∈ C imply b ∈ C.
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Definition 2.2. Let (L;6,+, 0) be a tomonoid. A tomonoid congruence is a monoid
congruence ∼ on L such that all ∼-classes are convex. We endow the quotient 〈L〉∼
with the partial order 6, where 〈a〉∼ 6 〈b〉∼ if a ∼ b or a < b, with the induced
operation +, and with the constant 〈0〉∼.

Lemma 2.3. Let ∼ be a tomonoid congruence on the tomonoid (L;6,+, 0). Then
(〈L〉∼;6,+, 〈0〉∼) is again a tomonoid. Moreover, if L is positive, so is 〈L〉∼, and if
L is commutative, so is 〈L〉∼.

Congruences of tomonoids are not easy to classify. However, there are certain special
kinds of congruences that have turned out to be particularly useful. For instance, Rees
quotients of finite positive tomonoids were explored in [PeVe]. In the present context,
we need the following construction [BlTs, NEG].

Proposition 2.4. Let F be an ideal of the positive tomonoid L. We define, for any
a, b ∈ L,

a∼F b if there is an f ∈ F such that b 6 a+ f and a 6 b+ f .

Then ∼F is a tomonoid congruence.

Given the ideal F of a positive tomonoid L, we call the quotient 〈L〉∼F
simply the

quotient of L by F . In the finite case, quotients by ideals correspond to certain subal-
gebras. Recall that an element e of a monoid is called idempotent if e+ e = e.

Lemma 2.5. Let F be an ideal of the positive tomonoidL and assume that F possesses
a greatest element e. Then e is idempotent. Moreover, Le = {a + e : a ∈ L} is a
subalgebra of L and the mapping

〈L〉∼F
→ Le, 〈a〉∼F

7→ a+ e

is an isomorphism of tomonoids.

The tomonoid consisting of the 0 alone is called trivial. We say that the n > 1 non-
zero elements g1, . . . , gn of a non-trivial tomonoid L generate L if they generate L as
a monoid.

Following [Vet2], we will represent tomonoids on the basis of congruences of free
commutative monoids. The free commutative monoid over n > 1 elements will be
identified with Nn. The addition is component-wise and the identity is 0̄ = (0, ..., 0),
the n-tuple consisting solely of 0’s. Nn is obviously generated by the unit vectors
u1, . . . , un. Here, ui = (0, ..., 0, 1, 0, ..., 0), “1” being at the i-th position, 1 6 i 6 n.
We write U(Nn) = {u1, . . . , un}.
For a non-empty U ⊆ U(Nn), we denote by U? the subtomonoid of Nn generated by
U . We can obviously identify U? with Nk, where k is the number of element of U . In
what follows, we will tacitly alternate between the two viewpoints.

We endow Nn with the natural partial order (i.e., Green’s preorder H), denoted by P.
Note that P is simply the component-wise order: for (a1, ..., an), (b1, ..., bn) ∈ Nn,
we have

(a1, ..., an) P (b1, ..., bn) if a1 6 b1, . . . , an 6 bn, (1)
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where “6” is the usual order of natural numbers.

A preorder 4 on Nn is a reflexive and transitive binary relation on Nn. We write a ≺ b
if a 4 b but not b 4 a. We call 4 total if, for any pair a, b ∈ Nn, at least one of a 4 b
or b4 a holds. Moreover, we call 4 compatible if, for any a, b, c ∈ Nn, a4 b implies
a+ c4 b+ c. Finally, we call 4 positive if 0̄ ≺ a for all a 6= 0̄.

With a preorder 4, we may associate its symmetrisation, which we denote by ≈. That
is, we define a≈ b if a4 b and b4a. The equivalence class of some a w.r.t.≈ is called
a 4-class and will be denoted by 〈a〉4. The quotient w.r.t.≈ is denoted by 〈Nn〉4, and
its induced partial order is denoted by 4 again. Furthermore, if 4 is compatible, ≈ is
compatible with the addition; we denote the induced operation again by +. Finally, if
4 is positive, the 4-class of 0̄ consists of zero alone, that is, 〈0̄〉4 = {0̄}.

Proposition 2.6. Let L be a p.c. tomonoid that is generated by g1, . . . , gn ∈ L \ {0},
n > 1. Let ϕ : Nn → L be the surjective homomorphism such that ϕ(ui) = gi,
i = 1, . . . , n. For a, b ∈ Nn, let

a4 b if ϕ(a) 6 ϕ(b).

Then 4 is a compatible, positive total preorder on Nn, and ϕ induces an isomorphism
between (〈Nn〉4;4,+, {0̄}) and (L;6,+, 0).

Conversely, let 4 be a compatible, positive total preorder on Nn, n > 1. Then
(〈Nn〉4;4,+, {0̄}) is a p.c. tomonoid, which is generated by 〈u1〉4, . . . , 〈un〉4.

We will call a compatible, positive total preorder on Nn monomial [Vet2]. This notion
is borrowed from the theory of Gröbner bases; we recall that a monomial order can be
identified with a compatible, positive total order on Nn [CLS].

By Proposition 2.6, there is a mutual correspondence between non-trivial p.c. tomon-
oids that are generated by at most n elements on the one hand and monomial preorders
on Nn on the other hand. The correspondence is not one-to-one because the generators
can be chosen in different ways; even repetitions are not excluded. We note that we
could establish uniqueness by using the minimal set of generators [EKMMW] ordered
according to 6, and by requiring u1 ≺ . . . ≺ un. Here, however, we do not have a
practical reason of doing so.

Let L be a p.c. tomonoid generated by n elements and let 4 be a monomial preorder
on Nn such that L is isomorphic with 〈Nn〉4. Then we say that 4 represents L.

Specifying finitely generated p.c. tomonoids means specifying monomial preorders.
Although our topic are tomonoids, we actually focus on monomial preorders. Prop-
erties applying to p.c. tomonoids will be applied to monomial preorders as well. In
particular, a monomial preorder representing a finite p.c. tomonoid is called finite as
well.

It remains to say what, on the side of preorders, corresponds to the formation of quo-
tients. The following lemma gives the immediate answer. Here, a tomonoid quotient
is called pure if the class of the 0 is a singleton.
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Lemma 2.7. Let the monomial preorder 4 on Nn represent the tomonoid L. Then
any pure tomonoid quotient of L is represented by a monomial preorder extending 4.
Conversely, any monomial preorder on Nn extending 4 represents a pure tomonoid
quotient of L.

The free group generated by n elements will be identified with Zn. For U ⊆ U(Nn),
we denote by U?? the subgroup of Zn generated by U .

We endow also Zn with the component-wise order, which we denote again by P. Ob-
viously, Zn then becomes a lattice-ordered group, the positive cone being Nn. For
z ∈ Zn, we write z+ = z ∨ 0̄ and z− = −z ∨ 0̄. We then have z+, z− Q 0̄ and
z = z+ − z−.

We now introduce our main tool for the specification of monomial preorders. For
proofs and further details, we refer to [Vet2].

Definition 2.8. Let 4 be a monomial preorder on Nn. Then the set

C4 = {z ∈ Zn : z− 4 z+}

is called the direction cone of 4.

We note that, by the compatibility of a monomial preorder 4, we have C4 = {z ∈
Zn : a4 b for any a, b ∈ Nn such that b− a = z}.
We may characterise direction cones as follows. Let us call a k-tuple (x1, . . . , xk),
k > 2, of elements of Zn addable if

(x1 + . . .+ xk)− + x1 + . . .+ xi Q 0̄ (2)

for all i = 0, . . . , k.

Theorem 2.9. A set C ⊆ Zn is the direction cone of a monomial preorder if and only
if C fulfils the following conditions:

(C1) Let z ∈ Nn. Then z ∈ C and, if z 6= 0̄, −z /∈ C.

(C2) Let (x1, . . . , xk), k > 2, be an addable k-tuple of elements of C. Then
x1 + . . .+ xk ∈ C.

(C3) Let z ∈ Zn. Then z ∈ C or −z ∈ C.

By Theorem 2.9, we may speak about direction cones without mentioning a preorder,
referring to subsets of Zn fulfilling (C1)–(C3).

A direction cone gives rise to a monomial preorder as follows.

Definition 2.10. Let C ⊆ Zn be a direction cone. Let 4C be the smallest preorder on
Nn such that the following holds:

(O) a4C b for any a, b ∈ Nn such that b− a ∈ C.
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Then we call 4C the preorder induced by C.

Lemma 2.11. Let C ⊆ Zn be a direction cone. Then 4C is a monomial preorder.
Moreover, the direction cone of 4C is again C.

For the Galois correspondence between monomial preorders and direction cones, we
refer to [Vet2]. Here, we just mention the following fact.

Theorem 2.12. Let 4 be a monomial preorder. Then 4C4
, the monomial preorder

induced by the direction cone of 4, is contained in 4. Moreover, the direction cones
of both monomial preorders coincide.

In other words, any monomial preorder contains a monomial preorder induced by a
direction cone. Let us call a tomonoid represented by a monomial preorder that is in-
duced by a direction cone a cone tomonoid. Then Theorem 2.12 implies for tomonoids
the following.

Theorem 2.13. Each finitely generated p.c. tomonoid is the quotient of a cone tomon-
oid.

3 Finite monomial orders and direction f-cones

Direction cones describe finitely generated p.c. tomonoids. In the finite case, however,
they do not well serve this purpose; property (C3) in Theorem 2.9 implies that they
are infinite. The aim of the present section is to develop a more “economical” descrip-
tion. In [Vet2], we have dealt with the nilpotent case; here, we proceed without this
restriction.

In this section, 4 is a fixed finite monomial preorder on Nn. As a first step, we will
see what we can say about the 4-classes in general. A description of the congruences
of free commutative monoids has been provided in [EiSc]; see, e.g., also [Hir]. In the
presence of a total order, we can be more specific.

We start by considering the finite 4-classes. Recall that Nn is endowed with its natural
order P. We call a downwards closed non-empty subset S of Nn a P-ideal.

Proposition 3.1. Let Z4 be the union of all finite 4-classes. Then Z4 is a finite P-
ideal containing 0̄.

Moreover, let a ∈ Nn. Then a ∈ Z4 if and only if a ≺ b for any b B a. In this case,
c ≺ a for any cC a.

Proof. We first show the second part. Let a, b ∈ Nn be such that a C b and a ≈ b.
Putting d = b− a, it then follows a≈ b = a+ d≈ b+ d = a+ 2 d≈ . . ., that is, 〈a〉4
is infinite. Similarly, let a, c ∈ Nn be such that cC a and a≈ c. Then it follows again
that 〈a〉4 is infinite.

Let now a ∈ Nn be such that 〈a〉4 is infinite. For each i = 1, . . . , n, there is an
ni > 1 such that ni ui≈ (ni + 1)ui, because otherwise ui ≺ 2ui ≺ 3ui ≺ . . . and this
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would mean that there are infinitely many 4-classes. Hence the equivalence classes of
elements of the form Σiki ui such that ki 6 ni for each i and ki = ni for at least one
i cover a cofinite subset of Nn. We conclude that a is equivalent to some c such that
c≈ c+ ui for some i. It follows aC a+ ui ≈ c+ ui ≈ c≈ a. The proof of the second
part is complete.

To show the first statement, assume that 〈a〉4 is infinite and bQ a. Then we have seen
that a≈ a+ ui for some 1 6 i 6 n. It follows that b≈ b+ ui as well, hence also 〈b〉4
is infinite. We have shown that Z4 is a P-ideal. Clearly, Z4 is finite because there
are, by assumption, only finitely many 4-classes. Finally, 〈0̄〉4 = {0̄} because 4 is
positive, hence 0̄ ∈ Z4.

We see that the union of the finite 4-classes Z4 is a finite P-ideal and the idea is
natural to describe 4 separately on Z4 and its complement. To this end, we might
want to define a finitary analogue of a direction cone by considering 4 only on Z4.
To specify the rest of 4 we should moreover make use of the fact that each infinite
4-class is the finite union of semilinear sets [EiSc, Hir].

We will indeed roughly follow these ideas, but in order to take into account properly all
relevant aspects, details will differ. Namely, we will describe finite monomial preorders
by a triple: the first constituent corresponds to the tomonoid’s Archimedean classes;
the second one is a finite P-ideal of Nn that properly includes the finite 4-classes and
determines to a good extent also the infinite 4-classes; and the third one describes the
preorder itself.

We begin by defining the partition of Nn into Archimedean classes. We use common
definitions; see, e.g., [Fuc]; but we apply them directly to the preorder 4 rather than to
the tomonoid represented by it.

For a, b ∈ Nn, we put

a≺≺ b if k a ≺ b for all k > 1,

and two elements a and b of Nn are called Archimedean equivalent if neither a ≺≺ b
nor b≺≺ a. Obviously, this is the case if and only if either a4 b and b4 k a for some
k > 1, or the other way round.

The relation ≺≺ is uniquely determined by its restriction to the generators u1, . . . , un.
Accordingly, we define our first constituent as follows. By an ordered partition of a
set U , we mean a finite sequence of pairwise disjoint and jointly exhaustive non-empty
subsets of U .

Definition 3.2. We define
A4 = (U1, . . . , Um)

to be the ordered partition of U(Nn) such that, for each u, v ∈ U(Nn), u ≺≺ v if and
only if i < j, where u ∈ Ui and v ∈ Uj . We call A4 the generator partition of 4.

Moreover, we call 4 Archimedean if m = 1, and non-Archimedean if m > 2.

Given an ordered partition (U1, . . . , Um), we will write in the sequel U>k, where 1 6
k 6 m, to denote the union Uk ∪ . . . ∪ Um, and similarly for U<k and U6k.

8



The generator partition of 4 obviously determines the relation ≺≺ on Nn uniquely.

Definition 3.3. Let A = (U1, . . . , Um) be an ordered partition of U(Nn). For a, b ∈
Nn, we define

a≺≺A b

if there is an 1 6 k 6 m such that a ∈ U<k
? and uP b for some u ∈ U>k.

Proposition 3.4. Let A = A4 be the generator partition of 4. Then a≺≺ b if and only
if a≺≺A b.

Second, we turn to the question if we can define a finite P-ideal S of Nn with the
following properties: (a) S contains all finite 4-classes, (b) S contains at least one
element of each infinite 4-class, and (c) there is a way to tell for an arbitrary element
outside S that it is in the same 4-class as a certain element of S. We will see that this
is indeed possible.

We need some more notation. Given a ∈ Nn \ {0̄}, we denote by s(a) the smallest

i ∈ {1, . . . ,m} such that u P a for some u ∈ Ui. Moreover, we write u
min

P a if u P a
and u ∈ Us(a).

Definition 3.5. We call

S4 = {a ∈ Nn : a = 0̄, or a− u ≺ a for some u
min

P a}

the support of 4.

Let us call a P-ideal of Nn non-degenerate if it contains all u ∈ U(Nn).

Lemma 3.6. S4 is a finite, non-degenerate P-ideal of Nn.

Proof. Let a /∈ S4. Then a 6= 0̄ and a − u ≈ a for any u
min

P a. Let b Q a and v
min

P b.
Then b− v ≈ b as well, as seen in each of the following cases:

Case 1. Let s(b) < s(a). Then v ≺ u for any u
min

P a and thus b≈ b− u4 b− v 4 b.

Case 2. Let s(b) = s(a) and v
min

P a. Then a− v ≈ a implies b− v ≈ b.
Case 3. Let s(b) = s(a) and aP b− v. Because a≈ a+ ku for any k > 1 and u and
v are Archimedean equivalent, we have a≈ a+ v. Hence b− v ≈ (b− v) + v = b.

We conclude that b /∈ S4 and hence that S4 is a P-ideal.

As 4 is positive, we have 0 ≺ u and consequently u ∈ S4 for all u ∈ U(Nn).

Given an ordered partition A = (U1, . . . , Um) of Nn, let us associate the following
sets with a finite, non-degenerate P-ideal S ⊆ Nn. Here, the value s(a) is understood
with reference to A as specified above. We call

S̊ = {a ∈ S : a = 0̄, or a+ u ∈ S for all u ∈ Uj such that j 6 s(a)},
∂S = S \ S̊
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the core and the boundary of S, respectively. Moreover, let a ∈ ∂S. This means a ∈ S
but a+ u /∈ S for some u ∈ Uj such that j 6 s(a). We call

σS(a) = a+ U6j
?

the segment of a, where j ∈ {1, . . . , s(a)} is largest such that a + u /∈ S for some
u ∈ Uj . Note that S and the segments of all a ∈ ∂S cover the whole Nn.

Proposition 3.7. (i) S̊4 is the union of the finite 4-classes.

(ii) Let B be an infinite 4-class. Then B has a non-empty intersection with S4; all
P-minimal elements of B are contained in B ∩ S4, which in turn is a subset of
∂S4. Moreover,

B =
⋃

a∈B∩∂S4

σS4(a). (3)

Proof. (i) Let a ∈ Nn be such that 〈a〉4 is finite. If a = 0̄, we have a ∈ S̊4 by
definition. Assume a 6= 0̄. Then a ∈ S4 by Proposition 3.1. Moreover, for any
u ∈ Uj such that j 6 s(a), we have a ≺ a+ u again by Proposition 3.1 and it follows
a+ u ∈ S4 as well, that is, a ∈ S̊4.

Let now a ∈ Nn be such that 〈a〉4 is infinite. Then, by Proposition 3.1, there is some
bB a such that a≈ b. It follows that there is an u ∈ U1 such that a≈ a+ u. Let v be,
w.r.t. 4, the largest element of U1. Then a≈ a+ v because u and v are Archimedean
equivalent. If a ∈ S̊4, we would have a+ v ∈ S4 and hence there would be a u′ ∈ U1

such that u′ P a+ v and a4 (a+ v)− u′ ≺ a+ v, a contradiction. Thus a /∈ S̊4.

(ii) Let b be a P-minimal element ofB. Then b 6= 0̄ by Lemma 3.1 and hence b−u ≺ b
for all u

min

P b. In particular, b ∈ B ∩ S4. By part (i), B ∩ S4 ⊆ ∂S4.

It remains to prove (3). To see the “⊆” part, let b ∈ B. If b ∈ ∂S4, we have b ∈
σS4(b). Otherwise, b is not a P-minimal element of B, hence b − u ≈ b for some
u ∈ U(Nn) such that u P b. W.l.o.g., we may assume that u ∈ Us(b) in this case. If
b − u /∈ ∂S4, we may continue arguing in the same manner, to conclude that there is
an aP b such that a ∈ B ∩ ∂S4 and b ∈ σS4(a).

For the “⊇” part, let a ∈ B∩∂S4. Let j 6 s(a) be largest such that, for some u ∈ Uj ,
we have a+ u /∈ S4. Then a≈ a+ u and we conclude that a≈ a+ v for any v ∈ Uj

and hence even for any v ∈ Ui such that i 6 j. This means that b ∈ σS4(a) implies
b≈ a, that is, b ∈ B.

We observe from Proposition 3.7 that S4 has the three properties (a)–(c) indicated
above. In fact, in case of (a) and (b), this is immediate. To verify (c), let b /∈ S4; then
we can, by Proposition 3.7, determine as follows an element a ∈ ∂S4 such that a≈ b.
We generate a sequence b = b0 Q b1 Q . . . such that, for each i > 1, bi = bi−1 − u for

some u
min

P bi−1. We eventually arrive at an element a = bk ∈ S4; then a ∈ ∂S4 and
b ∈ σS4(a), that is, a≈ b.
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We conclude in particular that the generator classes A4, the support S4, and 4 re-
stricted to S4 uniquely determine the whole preorder 4. There is hence a natural way
of defining the third and main constituent.

For a P-ideal S ⊆ Nn, let us write

D(S) = {z ∈ Zn : z−, z+ ∈ S}.

Definition 3.8. We define

F4 = {z ∈ D(S4) : z− 4 z+}.

Furthermore, we call the triple C4 = (A4, S4, F4) the direction f-cone of 4.

Here, the “f” stands for “finite”. We note that our present definition differs from the
one given in [Vet2], where we have dealt with a more special case.

The characterisation of direction f-cones is not as easy as in the case of direction cones.
In the sequel, when speaking about a direction f-cone without reference to a preorder,
we mean the direction f-cone of some finite monomial preorder.

4 A way of constructing finite monomial preorders

The previous section was devoted to the congruences on Nn associated with finite p.c.
tomonoids. Based on the results obtained, we have introduced the notion of a direction
f-cone as a means of describing finite monomial preorders.

We will see next that direction f-cones fulfil properties similarly to those of direction
cones; cf. Theorem 2.9. Even though we cannot characterise direction f-cones in the
same simple way as direction cones, we will see that any triple (A,S, F ) fulfilling
the stated properties gives rise to a finite monomial preorder. Moreover, any finite
monomial preorder contains a preorder obtained in this way.

Proposition 4.1. Let 4 be a finite monomial preorder. Then the direction f-cone
(A,S, F ) of 4 has the following properties:

(Cf1) For each z ∈ D(S), z Q 0 implies z ∈ F and, if z 6= 0, −z /∈ F .

(Cf2) Let (x1, . . . , xk), k > 2, be an addable k-tuple of elements of F whose sum is
in D(S). Then x1 + . . .+ xk ∈ F .

(Cf3) For each z ∈ D(S), either z ∈ F or −z ∈ F .

(Cf4) Let a, b ∈ S be such that a≺≺A b. Then a− b /∈ F .

Proof. In case of (Cf1)–(Cf3), the arguments coincide with those of the proof of The-
orem 2.9; see [Vet2].

To see (Cf4), assume that a, b ∈ S are such that a≺≺A b. Then a≺≺ b by Proposition
3.4 and consequently a ≺ b. But a− b ∈ F would imply b4 a.
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Our aim is to show the conditions (Cf1)–(Cf4) of Proposition 4.1 are strong enough to
make the construction of monomial preorders possible.

Definition 4.2. Let C = (A,S, F ), where A is an ordered partition of U(Nn), S is a
finite, non-degenerate P-ideal of Nn, and F ⊆ D(S). Let 4C be the smallest preorder
on Nn such that the following holds:

(O1) a4C b for any a, b ∈ Nn such that b− a ∈ F .

(O2) a4C b and b4C a for any a ∈ ∂S and b ∈ σS(a).

Then we call 4C the preorder induced by C.

Lemma 4.3. Let C = (A,S, F ), where A is an ordered partition of U(Nn), S is a
finite, non-degenerate P-ideal of Nn, and F ⊆ D(S). Assume that C fulfils properties
(Cf1)–(Cf4). Then 4C is a finite monomial preorder.

Proof. By construction, 4C is a preorder. 4C is finite because the union of S and
σS(a), a ∈ ∂S, covers Nn and by (O2) each segment is included in a 4C-class. 4C is
total because, by (Cf3), any two elements of S are comparable and each infinite class
has a non-empty intersection with S.

Our next aim is to show the translation invariance of 4C . Let a, b, t ∈ Nn. Assume that
a4C b holds according to prescription (O1). Then b− a ∈ F and hence a+ t4C b+ t
by (O1) as well.

Assume moreover that a ∈ ∂S and b ∈ σS(a) and thus a≈C b according to prescription
(O2). Let j 6 s(a) be such that σS(a) = a+U6j

?. Then we have b = a+ c for some
c ∈ U6j

?. Let furthermore t = t1 + t2, where t1 ∈ U>j and t2 ∈ U6j . We distinguish
two cases.

Case 1. Let a′ = a+ t1 ∈ ∂S. Then a+ u /∈ S implies a′ + u /∈ S for any u ∈ U6j .
Moreover, j 6 s(a) and j 6 s(t1), hence j 6 s(a′). It follows a′ + U6j

? ⊆ σS(a′).
We conclude a+ t = a′ + t2 ∈ σS(a′) and b+ t = a′ + c+ t2 ∈ σS(a′).

Case 2. Let a+ t1 /∈ S. Let a′Ca+ t1 such that a+ t1 ∈ σS(a′). Then s(a+ t1) > j
and (a + t1) − a′ 6= 0̄. Hence s((a+ t1)− a′) > j and we have again a′ + U6j ⊆
σS(a′). We conclude as in Case 1 that a+ t, b+ t ∈ σS(a′).

We have shown a+ t≈C b+ t. The proof of the translation invariance is complete.

It remains to show that 4C is positive. Indeed, if a4C 0̄ holds according to (O1), a = 0̄
by (Cf1). Moreover, a4C 0̄ cannot hold according to (O2) because 0̄ /∈ ∂S. It follows
that 4C is positive.

The direction f-cone of the preorder obtained in this way does not necessarily coincide
with the triple from which we started. We can say the following.

Lemma 4.4. Let C = (A,S, F ), where A is an ordered partition of U(Nn), S is a
finite, non-degenerate P-ideal of Nn, and F ⊆ D(S). Assume that C fulfils properties
(Cf1)–(Cf4). Then the direction f-cone of 4C has the following properties:
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(i) A4C = A.

(ii) S4C ⊆ S.

(iii) F ∩ D(S4C ) ⊆ F4C . Moreover, if z ∈ F4C and z− ∈ S̊4C or z+ ∈ S̊4C , then
z ∈ F ∩ D(S4C ).

Proof. (i) We have to show that A is the generator partition of 4C . Let u ∈ Ui and
v ∈ Uj and assume i < j. We claim that u≺≺C v then. Indeed, otherwise, there would
be a, b ∈ Nn such that a ≺≺A b and b 4C a according to prescription (O1) or (O2).
However, (O1) is not applicable because a − b /∈ F by (Cf4). Moreover, if a ∈ ∂S,
then b cannot be in σS(a), and vice versa; hence also (O2) does not apply.

Let now 1 6 i 6 m and u, v ∈ Ui. Then u − v, v − u ∈ D(S) because U(Nn) ⊆ S.
By (Cf3), one of these differences is in F ; w.l.o.g., assume that v − u ∈ F and hence
u 4C v. Let furthermore k, l > 1 be greatest such that ku, lv ∈ S, respectively. Then
ku, lv ∈ ∂S and ku+ lv ∈ σS(ku), σS(lv), that is, ku≈C lv and it follows v 4C ku.
Hence u and v are Archimedean equivalent. The proof is complete that the generator
partition of 4C is A.

(ii) Let a /∈ S and u
min

P a. Let a′ P a − u be such that a′ ∈ ∂S and a − u ∈ σS(a′).
Then also a ∈ σS(a′) and hence a≈C a− u. It follows that a /∈ S4C .

(iii) For any z ∈ F we have z− 4C z+ by (O1). Hence z ∈ F4C , provided that
z ∈ D(S4C ). Hence F ∩ D(S4C ) ⊆ F4C .

Moreover, let z ∈ F4C such that z− or z+ is in S̊4C . Then z ∈ D(S4C ) ⊆ D(S)
and z− 4C z+. Hence there are a0, . . . , ak ∈ Nn such that z− = a0, z+ = ak, and
for each i = 0, . . . , k − 1, ai 4C ai+1 holds according to prescription (O1) or (O2).
Assume now that z /∈ F . Then −z ∈ F by (Cf3) and consequently z+ 4C z−. Hence
a0, . . . , ak all belong to the same finite 4C-class and (O1) applies in each case. By
(Cf2), z ∈ F , a contradiction. The last assertion follows as well.

We have constructed finite monomial preorders from triples (A,S, F ) subject to con-
ditions (Cf1)-(Cf4). Let us next see to which monomial preorders we are led when
we start from a direction f-cone. The situation is then similar to the case of direction
cones; cf. Theorem 2.12.

Theorem 4.5. Let 4 be a finite monomial preorder. Then 4C4 , the monomial preorder
induced by the direction f-cone of 4, is a monomial preorder contained in 4. Moreover,
the direction f-cones of both preorders coincide.

Proof. Let C = C4 = (A,S, F ). By Proposition 4.1 and Lemma 4.3, 4C is a mono-
mial preorder. By the definition of F and by Proposition 3.7, 4C ⊆ 4.

By Lemma 4.3, A4C = A and S4C ⊆ S. From A4C = A and 4C ⊆ 4 it also follows
S ⊆ S4C , that is, S = S4C .
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Let z ∈ D(S). Assume that z ∈ F . Then z− 4C z+ by (O1) and hence z ∈ F4C .
Conversely, let z ∈ F4C . Then z− 4C z+ and hence z− 4 z+, that is, z ∈ F . We
conclude that F = F4C .

Let us call a p.c. tomonoid that is represented by a monomial preorder induced by a
direction f-cone an f-cone tomonoid. Then Theorem 4.5 has the following corollary.

Theorem 4.6. Each finite p.c. tomonoid is the quotient of an f-cone tomonoid.

In contrast to Theorem 2.13, this theorem is not very helpful as regards the construction
of finite p.c. tomonoids, simply because we cannot characterise direction f-cones sim-
ilarly to direction cones. However, we may combine our results to indicate a generally
applicable way of constructing finite monomial preorders.

Theorem 4.7. Let C = (A,S, F ), where A is an ordered partition of U(Nn), S is a
finite, non-degenerate P-ideal of Nn, and F ⊆ D(S). Assume that C fulfils properties
(Cf1)–(Cf4). Then 4C is a finite monomial preorder.

Moreover, any finite monomial preorder is an extension of a monomial preorder arising
in this way.

Proof. By Lemma 4.3, 4C is a finite monomial preorder.

Let 4 be an arbitrary finite monomial preorder. By Proposition 4.1, the direction f-
cone C of 4 fulfils (Cf1)–(Cf4) and by Theorem 4.5, 4 extends the finite monomial
preorder 4C .

5 The co-Archimedean subcone of a direction f-cone

Direction f-cones give rise to finite monomial preorders, which in turn represent finite
p.c. tomonoids. Moreover, any finite p.c. tomonoid is a quotient of a tomonoid arising
in this way.

Characterising direction f-cones, however, turns out to be difficult. An exception is
the Archimedean case. If the monomial preorder is Archimedean, the represented
tomonoid is nilpotent and we can proceed as shown in our previous paper [Vet2].

The present section is based on the idea of describing a direction f-cone not as a whole,
but relative to a smaller one. Namely, if there are at least two Archimedean classes, we
restrict the direction f-cone to the submonoid of Nn generated by all those u ∈ U(Nn)
that do not belong to the smallest Archimedean class. The result is a direction f-cone
again and we may describe the original direction f-cone relatively to it.

In this section, C = (A,S, F ) is a fixed direction cone. We denote by 4 = 4C its
induced finite monomial preorder on Nn. LetA = (U1, . . . , Um). We will furthermore
assume that m > 2, that is, 4 is non-Archimedean. We write Ua = U1 to denote the
first element of the generator partition and Ur = U2 ∪ . . . ∪Um to denote the union of
the remaining ones.

14



Definition 5.1. We call the triple Cr = (Ar, Sr, Fr), where

Ar = (U2, . . . , Um), Sr = S ∩ Ur
?, Fr = F ∩ D(Sr),

the co-Archimedean subcone of (A,S, F ).

We will consider three different monomial preorders on Ur
?. To begin with, let 4r be

the restriction of 4 to Ur
?. The following proposition shows what the transition from

4 to 4r means for the represented tomonoid: we are led to the subtomonoid generated
by those generators that do not belong to the smallest Archimedean class.

Proposition 5.2. 4r is a monomial preorder and the tomonoid (〈Ur
?〉4r ;4r,+, {0̄})

is isomorphic with the subtomonoid of (〈Nn〉4;4,+, {0̄}) generated by 〈u〉4, u ∈ Ur.

Proof. It is clear that 4r is a positive, compatible, total preorder, that is, a monomial
preorder.

Furthermore, (Ur
?; +, 0̄) is the submonoid of (Nn; +, 0̄) generated by Ur and, for any

a, b ∈ Ur
?, a4r b if and only if a4 b. We conclude that we can define ι : 〈Ur

?〉4r →
〈Ur

?〉4, 〈a〉4r 7→ 〈a〉4 and that ι is an injective and surjective homomorphism of
monoids. Moreover, for any a, b ∈ Ur

? we have 〈a〉4r 4r 〈b〉4r if and only if 〈a〉4 4
〈b〉4, that is, ι is actually an isomorphism of tomonoids.

The reason for introducing 4r is to show that (Ar, Sr, Fr) is in fact a direction f-cone.

Lemma 5.3. (Ar, Sr, Fr) is the direction f-cone of 4r.

Proof. For a, b ∈ Ur
?, we have a≺≺r b if and only if a≺≺ b. Hence the Archimedean

classes of 4r in Ur
? are those of 4 in U(Nn) except for Ua. That is, A4r = Ar.

Let a ∈ Ur
? \ {0̄}. Then, for any u ∈ U(Nn), we have that u

min

P a holds in Nn w.r.t.

A if and only if u ∈ Ur and u
min

P a holds in Ur
? w.r.t. Ar. Consequently, a ∈ S4r iff

a− u ≺r a for some u ∈ Ur such that u
min

P a iff a− u ≺ a for some u ∈ U(Nn) such

that u
min

P a iff a ∈ S4 = S. Hence S4r = S ∩ Ur
? = Sr.

Note next that D(Sr) = D(S ∩ Ur
?) = D(S) ∩ Ur

??. Let z ∈ Ur
??. Then z ∈ F4r

iff z ∈ D(Sr) and z− 4r z+ iff z ∈ D(S) and z− 4 z+ iff z ∈ F . Hence F4r =
F ∩ Ur

?? = F ∩ D(S) ∩ Ur
?? = F ∩ D(Sr) = Fr.

Let us next consider the monomial preorder induced by (Ar, Sr, Fr); we denote it by
4r.

Lemma 5.4. 4r is contained in 4r.

Proof. This holds by Lemma 5.3 and Theorem 4.5.

A third monomial preorder on Ur
? is constructed as follows. Let us define

F̄r = {z ∈ D(Sr) : z− + f 4 z+ + g for some f, g ∈ Ua
?}.
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Proposition 5.5. The triple (Ar, Sr, F̄r) fulfils the properties (Cf1)–(Cf4).

Proof. Note first that z ∈ F̄r if and only if z ∈ D(S) ∩ Ur
?? and z− + e 4 z+ + e.

Here, e is a 4-maximal element of Ua
?.

Ad (Cf1): Let z ∈ D(Sr) such that z Q 0̄. Obviously, z ∈ F̄r. Assume z 6= 0̄ and
−z ∈ F̄r. Then z + f 4 g for some f, g ∈ Ua

?, in contradiction to the fact that
g ≺≺ z + f .

Ad (Cf2): Let x1, . . . , xk ∈ F̄r, k > 2, be addable and let z = x1 + . . .+xk ∈ D(Sr).
Then z− + e4 z− + x1 + e4 . . .4 z− + x1 + . . .+ xk + e = z+ + e and it follows
z ∈ F̄r.

Ad (Cf3): We have Fr = F ∩ D(Sr) ⊆ F̄r.

Ad (Cf4): Let a, b ∈ Sr be such that a ≺≺Ar
b. Then a + e ≺≺A b + e and thus

a+ e ≺ b+ e. It follows (a− b)+ + e ≺ (a− b)− + e, hence a− b /∈ F̄r.

Let us denote the monomial preorder induced by (Ar, Sr, F̄r) by 4̄r.

Lemma 5.6. Let a, b ∈ Ur
?. Then a 4̄r b if and only if, for some f, g ∈ Ua

?,
a+ f 4 b+ g.

Proof. “Only if” part: Assume first that a, b ∈ Ur
? are such that b − a ∈ F̄r. Then

(b− a)− + f 4 (b− a)+ + g and hence a+ f 4 b+ g for some f, g ∈ Ur
?.

Assume second that a ∈ ∂Sr and b ∈ σSr
(a). Then a ∈ ∂S and b ∈ σS(a) and

consequently a≈ b.
“If” part: Assume first that, for some a, b ∈ Ur

? and f, g ∈ Ua
?, we have (b+g)−(a+

f) = (b−a) + (g− f) ∈ F . Then (b−a)−+ f 4 (b−a)+ + g. Since b−a ∈ D(Sr),
it follows b− a ∈ F̄r and hence a 4̄r b.

Assume second that a+ f ∈ ∂S and b+ g ∈ σS(a+ f). If f 6= 0, we have b = a. If
f = 0, we either have again b = a or else a ∈ ∂Sr and b ∈ σSr

(a). We conclude that
a ≈̄r b.

An immediate consequence of Lemma 5.6 is:

Lemma 5.7. 4r is contained in 4̄r.

The following proposition shows the meaning of the preorder 4̄r in terms of the rep-
resented tomonoids.

Proposition 5.8. The tomonoid (〈Ur
?〉4̄r

; 4̄r,+, {0̄}) is isomorphic with the quotient
of (〈Nn〉4;4,+, {0̄}) by the ideal generated by 〈u〉4, u ∈ Ua.

Proof. By Lemma 2.5, the quotient in question can be identified with the subtomonoid
{〈a+ e〉4 : a ∈ Ur

?} of 〈Nn〉4, where e is a 4-maximal element of Ua
?.
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By Lemma 5.6, a 4̄r b iff a + e 4 b + e, for any a, b ∈ Ur
?. It follows that we can

define the mapping

〈Ur
?〉4̄r

→ {〈a+ e〉4 : a ∈ Ur
?}, 〈a〉4̄r

7→ 〈a+ e〉4,

which is an isomorphism of tomonoids.

We are ready to compile the characteristic properties of the direction cone (A,S, F )
relative to its co-Archimedean subcone (Ar, Sr, Fr).

Proposition 5.9. The following conditions hold:

(E1) Any z ∈ F is of the form z = y + f , where y ∈ F̄r and f ∈ Ua
??.

(E2) Let D ⊆ Ur
? be a 4̄r-class and let TD = {a + f : a ∈ D and f ∈ Ua

?}. If
c ∈ TD ∩ S̊ and d ∈ TD \ S̊, then c− d /∈ F .

(E3) Let D ⊆ Ur
? be a 4̄r-class different from {0̄} and let a ∈ D ∩ S. Then there is

a u
min

P a such that either a− u ∈ S̊ or a− u /∈ D.

(E4) Let a ∈ ∂S such that s(a) = 1. Then there is a v
min

P a such that a− v ∈ S̊.

(E5) Let y ∈ Ur
? be such that y− 4̄r y+, let f ∈ Ua

??, and assume that (y +
f)−, (y + f)+ ∈ ∂S. Then y + f ∈ F .

Proof. Ad (E1): Let y ∈ Ur
?? and f ∈ Ua

?? and assume that z = y + f ∈ F . Then
y ∈ D(Sr) and y− + f− 4 y+ + f+, hence y ∈ F̄r.

Ad (E2): We first show the following:

(?) Let a, b ∈ D and f, g ∈ Ua
? such that a+ f, b+ g /∈ S̊. Then a+ f ≈ b+ g.

Indeed, since a+ f and b+ g belong to an infinite 4-class, we have a+ f ≈ a+ e and
b + g ≈ b + e, where e is a 4-maximal element of Ua

?. Furthermore, by Lemma 5.6,
a ≈̄r b implies a+ e≈ b+ e, and (?) follows.

Let now c ∈ TD ∩ S̊ and d ∈ TD \ S̊. Since c + e /∈ S̊ and hence c and c + e are in
different 4-classes, that is, c ≺ c + e. Furthermore, by (?), c + e ≈ d. Hence c ≺ d,
and the claim is shown.

Ad (E3): Since a ∈ S \ {0̄}, there is a u
min

P a such that a − u ≺ a. Assume that
a − u /∈ S̊. We have a − u ∈ S, so this means a − u, a ∈ ∂S. We conclude that
(a− u) + f ≈ a− u and a+ f ≈ a for any f ∈ Ua

?. It follows a− u ≺̄r a by Lemma
5.6, that is, a− u /∈ D.

Ad (E4): Let a be as indicated. Because a ∈ S \ {0̄} and s(a) = 1, there is a v ∈ Ua

such that a′ = a−v ≺ a. Assume that a′+u /∈ S for some u ∈ Uj such that j 6 s(a′).
Then we would have a′ ≈ a′ + u and hence, because either v and u are Archimedean
equivalent or v ≺≺ u, a′ ≈ a′ + v = a as well. We conclude that a′ ∈ S̊.

Ad (E5): By Lemma 5.6, we have y− + e 4 y+ + e, where e is again a 4-maximal
element of Ua

?. Because (y + f)− and (y + f)+ belong to infinite 4-classes, (y +
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f)− = y−+f−≈y−+e and (y+f)+ = y++f+≈y++e. Thus (y+f)−4(y+f)+,
that is, y + f ∈ F .

6 Extension of direction f-cones

We have seen that a direction f-cone inducing a non-Archimedean preorder may be
reduced to its co-Archimedean subcone; the number of Archimedean classes decreases
in this way by one. The present section is devoted to the converse question: we wonder
how we can extend a direction f-cone such that the co-Archimedean subcone of the
new direction f-cone is the original one. To this end, we will show that the properties
of direction f-cones listed in Proposition 5.9 are sufficient.

For the sake of consistency with the previous section, we will use the identical notation.
However, our assumptions are different. We still assume that A = (U1, . . . , Um) is an
ordered partition of U(Nn), where m > 2. But this time, we assume that we are given
the direction cone (Ar, Sr, Fr), inducing the monomial preorder 4r on Ur

?. Our aim
is to characterise those direction f-cones (A,S, F ) whose co-Archimedean subcone is
(Ar, Sr, Fr).

Theorem 6.1. Let Fr ⊆ F̄r ⊆ D(Sr) be such that (Ar, Sr, F̄r) fulfils (Cf1)–(Cf4).
Let S be a finite, non-degenerate P-ideal of Nn such that S∩Ur

? = Sr, let F ⊆ D(S)
be such that Fr = F ∩ D(Sr), and assume that (A,S,R) fulfils (Cf1)–(Cf4). Let fur-
thermore (E1)–(E5) hold. Then (A,S, F ) is a direction f-cone whose co-Archimedean
subcone is (Ar, Sr, Fr).

Moreover, all direction f-cones whose first component isA and whose co-Archimedean
subcone is (Ar, Sr, Fr) are obtained in this way.

Proof. By Lemma 4.3, (Ar, Sr, F̄r) induces a monomial preorder 4̄r and (A,S, F )
induces a monomial preorder 4. We prove some auxiliary facts.

(1) Let a, b ∈ Ur
? and f, g ∈ Ua

?. If a+ f 4 b+ g, then a 4̄r b.

Indeed, assume first that (b+ g)− (a+ f) ∈ F . Then b− a ∈ F̄r by (E1) and hence
a 4̄r b.

Assume second that b+g ∈ ∂S and a+f ∈ σS(b+g). Then either a = b, or otherwise
g = 0 and b ∈ ∂Sr and a ∈ σSr (b). Hence a ≈̄r b. (1) follows.

(2) Let D ⊆ Sr be a 4̄r-class, let a ∈ TD ∩ S̊ and b ∈ TD \ S̊. Then a ≺ b.
Indeed, b4 a is, by (1), in contradiction to the following facts: a− b /∈ F by (E2); and
rule (O2) cannot apply to a and b as a ∈ S̊.

(3) Let a, b ∈ Ur
?. Then a 4̄r b if and only if a+ f 4 b+ g for some f, g ∈ Ua

?.

The “if” part holds by (1).

To see the “only if” part, let e ∈ Ua be such that aC e for any a ∈ S ∩ Ua
?. By (O2),

we then have e + u ≈ e for any u ∈ Ua and hence e + f ≈ e for any f ∈ Ua
?. We

conclude that a+ f 4 b+ g for some f, g ∈ Ua
? if and only if a+ e4 b+ e.
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Assume now that y = b − a ∈ F̄r. If −y /∈ F̄r, then −y /∈ Fr and consequently
−y /∈ F . Hence y ∈ F and a 4 b, and it follows a + e 4 b + e. In the opposite case,
we have −y ∈ F̄r, that is, y− ≈̄r y

+. We distinguish two cases.

Case 1. Let y− ∈ S̊. We have y+ + e /∈ S, so in particular y+ + e /∈ S̊ and it follows
y− ≺ y+ +e by (2). Hence y−+e4y+ +e+e≈y+ +e and we conclude a+e4b+e.

Case 2. Let y− ∈ ∂S. Let then g ∈ Ua
? be such that y+ + g ∈ ∂S. We have

(y + g)− = y− ∈ ∂S and (y + g)+ = y+ + g ∈ ∂S. By (E5), y + g ∈ F . Hence
y− 4 y+ + g and y− + e4 y+ + g + e≈ y+ + e. It follows a+ e4 b+ e.

Assume second that b ∈ ∂Sr and a ∈ σSr (b). Then b ∈ ∂S and a ∈ σS(b). Hence
a≈ b and a+ e≈ b+ e. The proof of (3) is complete.

Our next aim is to show that (A,S, F ) is the direction cone of 4. By Lemma 4.4,
A4 = A.

We have to show S4 = S. By Lemma 4.4, S4 ⊆ S. To see the converse inclusion, let
a ∈ S. We distinguish two cases.

Case 1. Let a ∈ S̊. Then, by (2) and (3), 〈a〉4 is a subset of S̊ and in particular finite.
Hence a ∈ S̊4 ⊆ S4.

Case 2. Let a ∈ ∂S. Let then a = b + f , where b ∈ Ur
? and f ∈ Ua

?. Assume first

that f 6= 0. Then, by (E4), a− u ∈ S̊ for some u
min

P a. It follows a− u ≺ a by (2) and

hence a ∈ S4. Assume second that a = b ∈ Sr. By (E3), there is a u
min

P a such that
a− u ∈ S̊ or a− u ≺̄r a. By (2) and (3), it follows a− u ≺ a and hence a ∈ S4.

It remains to show that F = F4. By Lemma 4.4, F ⊆ F4. To see the converse
inclusion, let z ∈ F4. This means z− 4 z+. If z− ∈ S̊ or z+ ∈ S̊, we have z ∈ F by
Lemma 4.4 again. Let z−, z+ ∈ ∂S. Let y ∈ Ur

? and f ∈ Ua
? be such that z = y+f .

Then y− + f− 4 y+ + f+ and, by (1), it follows that y− 4̄r y
+. By (E5), z ∈ F .

By construction, (Ar, Sr, Fr) is the co-Archimedean subcone of (A,S, F ). Finally,
the last statement is clear from Propositions 4.1, 5.5, and 5.9.

7 Conclusion

Direction cones were introduced in [Vet2] as a means to describe finitely generated
positive, commutative (p.c.) tomonoids. They can be characterised by three simple
conditions. As they are infinite even if the represented tomonoid is finite, the question
has remained open if there is a more appropriate approach to the finite case. In the
present paper, we have discussed so-called direction f-cones, which can be considered
as a finitary analogue of direction cones and are tailored solely to the description of
finite p.c. tomonoids.

Direction f-cones are difficult to characterise. Starting from those properties that are
found in analogy to the case of direction cones, we have seen, however, how finite
p.c. tomonoids can be constructed. We have moreover specified the structure of a
direction f-cone relatively to what we call its co-Archimedean subcone, which arises

19



from “collapsing” the smallest Archimedean class. As a side effect, our results reveal
to a good extent the structure of the congruences on Nn that lead to the monoidal reduct
of a finite p.c. tomonoid.

Our work is intended to contribute to a better understanding of the algebras that are
significant in fuzzy logic. In particular, finite MTL-chains are concerned. Accordingly,
it would certainly be interesting to point out the significance of our results for unsolved
questions related to many-valued logic. Furthermore, the relationship of our analysis
to other approaches aiming at a classification of totally ordered monoids, like those
that we mentioned in the introduction, could be worth an investigation. Finally, we
have considered a quite special class of partially ordered monoids. It is open if our
methods can be adapted to a broader class of pomonoids, for instance those that are
not necessarily totally ordered, or those that are not necessarily positive.
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[Hor1] R. Horčı́k, Structure of commutative cancellative integral residuated lattices
on (0, 1], Algebra Univers. 57 (2007), 303 - 332.
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[MNH] F. Montagna, C. Noguera, R. Horčı́k, On weakly cancellative fuzzy logics, J.
Log. Comput. 16 (2006), 423 - 450.

[NEG] C. Noguera, F. Esteva, J. Gispert, On some varieties of MTL-algebras, Logic
Journal of the IGPL 13 (2005), 443 466.

[PeVe] M. Petrı́k, Th. Vetterlein, Rees coextensions of finite, negative tomonoids,
submitted.

[Vet1] Th. Vetterlein, Totally ordered monoids based on triangular norms, Commun.
Algebra 43 (2015), 1 - 37.

[Vet2] Th. Vetterlein, On positive commutative tomonoids, Algebra Univers., to ap-
pear; available at www.flll.jku.at/sites/default/files/u24/
endlicheTomonoide.pdf.

21


