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Abstract

An orthoset (also called an orthogonality space) is a set X equipped with a
symmetric and irreflexive binary relation ⊥, called the orthogonality relation.
In quantum physics, orthosets play an elementary role. In particular, a Hilbert
space gives rise to an orthoset in a canonical way and can be reconstructed from
it.

We investigate in this paper the question to which extent real Hilbert spaces
can be characterised as orthosets possessing suitable types of symmetries. We
establish that orthosets fulfilling a transitivity as well as a certain homogen-
eity property arise from (anisotropic) Hermitian spaces. Moreover, restricting
considerations to divisible automorphisms, we narrow down the possibilities to
positive definite quadratic spaces over an ordered field. We eventually show
that, under the additional requirement that the action of these automorphisms is
quasiprimitive, the scalar field embeds into R.
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1 Introduction

An orthoset is a pair (X,⊥), where X is a set and ⊥ is a symmetric, irreflexive bin-
ary relation on X . Elements e and f such that e ⊥ f are called orthogonal and
orthosets are, accordingly, also referred to as orthogonality spaces. Introduced by
David Foulis and his collaborators, orthosets can be seen as an abstract version of
the Hilbert space model underlying quantum physics [Dac, Wlc]. Indeed, the guiding
example is (P (H),⊥), where P (H) is the collection of one-dimensional subspaces
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of a Hilbert space H and ⊥ is the usual orthogonality relation. It turns out that the or-
thoset (P (H),⊥) determines the Hilbert space H up to isomorphism uniquely. There
is moreover a close correspondence between the respective automorphism groups.

In the context of the foundations of quantum mechanics, orthosets have been invest-
igated by numerous authors, see, e.g., [Bru, Fin, HePu, Mac, Rod, Rum]. To establish
conditions under which an orthoset originates from a Hilbert space, one may take
advantage of the close relationship with lattice theory. Indeed, with any orthoset
(X,⊥) we may associate the complete ortholattice of orthoclosed subsets, denoted
by C(X), and the task becomes to ensure that C(X) is isomorphic to the lattice of
closed subspaces of a Hilbert space. The lattice-theoretic approach to the foundations
of quantum mechanics has in turn a long tradition, going back to Birkhoff and von
Neumann’s seminal work [BiNe], and led to lattice-theoretical characterisations of
the Hilbert space at least in the infinite-dimensional case, see, e.g., [Wlb, Hol2].

Also the present paper aims at improving our understanding of the basic quantum-
physical model. We take up the goal of describing the Hilbert space on the sole basis
of the orthogonality relation. Lattice theory will again play a key role and we should
in fact not claim that the approach adopted here differs fundamentally from previous
research lines. However, we do wish to note that our point of view is in some respect
uncommon. We do not view orthosets, and hence ortholattices, as the central entity
around which the remaining structure is built. We rather assign to orthosets the role
of underlying sets of transformation groups, the group action being required to re-
spect orthogonality. The elements of the orthosets are not really assigned any specific
meaning. What rather matters in our eyes is the notion of “change” represented by
the action of a group. The orthogonality relation furthermore prescribes which ac-
tions can be combined and might be thought of as expressing the “independence of
changes”. Accordingly, the complex Hilbert space is not thought of as arising from a
lattice of propositions, but as an entity describing “changes” in accordance with given
independence demands.

These considerations have motivated us to explore, not the complex but, the project-
ive real Hilbert space and its groups of simple rotations. The latter are meant to be the
groups of rotations of some two-dimensional subspace. We consider the correspond-
ing subgroups of the automorphism group of an orthoset and some simple conditions
that we impose on these subgroups are shown to imply that the orthoset arises from
an inner-product space.

We remark that, from the intuitive point of view, matters simplify considerably when
dealing with the real rather than the complex case. At least in the finite-dimensional
case, a real Hilbert space can conveniently be conceived as an n-sphere, opposite
points being identified. This certainly helps in finding plausible conditions for its
description. In particular, an n-sphere has the intuitively obvious property of allowing
continuous transitions of some point to another one, leaving the points orthogonal to
the starting and destination points fixed. Although complex Hilbert spaces will not
be discussed here, it should be clear that the approach could be suitably extended;
at least in principle, all what we need to add is the requirement that the considered
symmetries are compatible with a complex structure.

Our ideas are as follows. Let O(X) be the group of symmetries of an orthoset (X,⊥).
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For each pair of distinct elements e and f of X , we consider the subgroup Gef of
O(X) that consists of the automorphisms leaving all elements orthogonal to e and f
fixed. We require, first, the transitivity of (X,⊥): some element of Gef should map
e to f . We require, second, the homogeneity of (X,⊥): any two subgroups Gef and
Ge′f ′ , where e ̸= f and e′ ̸= f ′, are conjugate via an automorphism mapping e to
e′. It turns out that these conditions are already sufficient to ensure that there is a
Hermitian space H such that (X,⊥) is isomorphic to (P (H),⊥).

In a further step, we consider, instead of the whole group Gef , the set Ref of auto-
morphisms divisible in Gef . Requiring Ref , for any distinct e and f , to be an abelian
subgroup of O(X) and making similar assumptions as before, we again have that
(X,⊥) is representable by means of a Hermitian space. Now, however, we can say
much more: we can show that the scalar division ring is a field (i.e., commutative),
endowed with the identity involution, and formally real. In fact, our refined repres-
entation theorem is based on positive-definite quadratic spaces over ordered fields.

Inner-product spaces of this kind might resemble to a good extent the Hilbert spaces
over R. However, it might be illusory to expect that, in the framework considered
here, there are natural conditions ensuring that the scalar field of a quadratic space
actually coincides with R. Our concerns relate in particular to the finite-dimensional
case. However, we shall consider the following condition, fulfilled in any real Hilbert
spaceH of dimension ⩾ 3: if U is a non-trivial simple rotation ofH , then the conjug-
ates of U generate a subgroup of the orthogonal group that acts on P (H) transitively.
In other words, the group generated by the simple rotations acts quasiprimitively on
P (H); see, e.g., [Prae]. Adding this condition, we have that the field of scalars does
not contain non-zero infinitesimals and is thus a subfield of R. In a natural sense, H
then densely embeds into a real Hilbert space. We note that the quasiprimitivity of
a group action is implied by its primitivity, a property that we could have employed
alternatively; cf. [Vet1].

The paper consists basically of two parts. The first part, consisting of Sections 2–
4, is largely preparatory. However, the theorem that we prove in the second half of
Section 3 has to our knowledge not yet been stated in this way. The second part,
consisting of Sections 5 to 7, contains the core results, which we outlined above.

In detail, the paper is organised as follows. Section 2 is devoted to the correspond-
ence between orthosets and ortholattices. We first shortly discuss in which way and
under which conditions complete atomistic lattices may be represented by means of a
suitable structure on the collection of their atoms, and we then review the case of or-
tholattices. In Section 3, we deal with the correspondence between ortholattices and
linear spaces. Again, we first review the case of lattices, then the case of ortholattices.
In the latter case, a well-known theorem characterises the lattice of subspaces of an
(anisotropic, at least 4-dimensional) Hermitian space as a complete, irreducible, AC
ortholattice. We present a modified version of this theorem, because we need a for-
mulation that involves properties of the finite lattice elements only. Finally, it should
be noted that the correspondences discussed in Sections 2 and 3 can not easily be ex-
tended to a categorical framework. The situation is more transparent when restricting
to automorphisms and in Section 4 we recall shortly some relevant facts.

These lengthy preparations are the basis for tackling our actual aim. In Section 5, we
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characterise Hermitian spaces by means of groups acting on orthosets. The relevant
orthosets are called homogeneously transitive. We note that we generally assume the
orthosets to have rank ⩾ 4, but otherwise the rank is not presupposed to be finite
or to be infinite. In Section 6, we refine our results in the sense that we are more
specific about the scalar division ring. We show that so-called divisibly transitive
orthosets are associated with positive-definite quadratic spaces. Finally, in Section 7,
we consider what we call the rotation group of a divisibly transitive orthoset (X,⊥).
Under the hypothesis that this group acts quasiprimitively onX , we show that (X,⊥)
corresponds to a quadratic space over a subfield of the reals.

2 Atomistic lattices and their atom spaces

A central issue in this paper is the interplay between orthosets on the one hand and
inner-product spaces on the other hand. We may say that lattices act as a “mediator”
between these two sorts of structures. Indeed, orthosets lead to ortholattices, and
ortholattices of a certain kind are associated with inner-product spaces.

In this section, we shall compile basic definitions and facts concerning the former cor-
respondence. In view of the needs of subsequent considerations, we adopt, however, a
wider perspective: we start by discussing lattices (without an orthocomplementation)
and their atom spaces, and we turn afterwards to ortholattices and their associated
orthosets. For any further details, we refer the reader to Maeda and Maeda’s mono-
graph [MaMa].

Reconstructing lattices from their atom spaces

A lattice L is called atomistic if any element is the join of atoms. For an atomistic
lattice L, the collection of atoms of L will be denoted by A(L), called the atom space
of L.

Let L be a complete atomistic lattice. The question seems natural whether A(L) can
be equipped with a suitable structure that allows us to reconstruct L. Sending each
a ∈ L to ω(a) = {p ∈ A(L) : p ⩽ a}, we get an order embedding of L in the
powerset of A(L). To answer our question, we should find a way of characterising
the image of ω.

A possibility is to define a closure operation on A(L); see, e.g., [Ern]. ForA ⊆ A(L),
let A∨ = {p ∈ A(L) : p ⩽

∨
A} and call A ⊆ A(L) supclosed if A is closed w.r.t. ∨,

that is, if A∨ = A. Ordered by set-theoretic inclusion, the collection C(A(L)) of
supclosed subsets of A(L) is a complete lattice: for Aι ∈ C(A(L)), ι ∈ I , we have
that

⋂
ιAι is the infimum in C(A(L)) and (

⋃
ιAι)

∨ is the supremum. This lattice
is isomorphic to L. Indeed, we easily confirm that ω establishes an isomorphism
between L and C(A(L)).

In general, this observation will not help us to reduce L to a simpler structure. But we
may check to which extent the finitary version of ∨ can describe L. For A ⊆ A(L),
let A− = {q ∈ A(L) : q ⩽ p1 ∨ . . . ∨ pk for some p1, . . . , pk ∈ A}. A set closed
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w.r.t. − is called a subspace of L and we denote the complete lattice of subspaces by
S(A(L)); cf., e.g., [MaMa, (15.1)].

A complete lattice L is called compactly atomistic if L is atomistic and, for any atoms
r and pι, ι ∈ I , such that r ⩽

∨
ι∈I pι, there is a finite subset I0 ⊆ I such that

r ⩽
∨

ι∈I0 pι. It is immediate that in this case, the two closure operations on A(L)
coincide, that is, ∨ = −. Recall furthermore that an element a of a lattice L is finite
if a is either the bottom element or the join of finitely many atoms. The set of finite
elements of L is denoted by F(L). Clearly, F(L) is a join-subsemilattice of L.

Lemma 2.1. Let L be a complete atomistic lattice.

(i) The complete lattice S(A(L)) is compactly atomistic. Furthermore, C(A(L))
is a subposet of S(A(L)). In both lattices, the infima are given by set-theoretic
intersection. The finite elements of both lattices coincide: the atoms are the
singletons {p}, p ∈ A(L), and the finite elements are those of the form {p ∈
A(L) : p ⩽ a}, a ∈ F(L). The finite suprema of finite elements coincide in
both lattices.

Consequently, the map

ω : L→ S(A(L)), a 7→ {p ∈ A(L) : p ⩽ a} (1)

is an order embedding preserving arbitrary meets. Restricted to the finite ele-
ments, ω establishes an isomorphism between the join-semilattices F(L) and
F(S(A(L))).

(ii) Assume that L is compactly atomistic. Then S(A(L)) = C(A(L)) and ω : L→
S(A(L)) is an isomorphism.

Proof. Cf. [MaMa, (15.5)].

Under the assumption of compact atomisticity, a lattice L can thus be described by
means of its atom space A(L) equipped with the closure operator −. In the general
case, we may describe in this way at least the finite part of L.

We shall now go one step further and replace the closure operator −, the finitary
version of ∨, with its binary version. For any p1, p2 ∈ A(L), let p1 ⋆ p2 = {q ∈
A(L) : q ⩽ p1 ∨ p2}. A set P equipped with a map ⋆ : P × P → P(P ) can be made
into a closure space in the obvious way: for A ⊆ P we let A⋆ be the smallest superset
of A such that p1, p2 ∈ A⋆ implies p1 ⋆ p2 ⊆ A⋆. A set closed w.r.t. ⋆ is called linear
and the complete lattice of linear sets is denoted by L(P ).
A lattice is called modular if, for each pair a and b, we have

(c ∨ a) ∧ b = c ∨ (a ∧ b) for any c ⩽ b. (2)

It turns out that if an atomistic lattice L is modular, then − = ⋆ and hence S(A(L)) =
L(A(L)), that is, the subspaces of A(L) coincide with the linear subsets of A(L)
[MaMa, (15.2)]. To characterise the operation ⋆, we are led to the following classical
notion.
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Definition 2.2. A projective space is a non-empty set P together with a map ⋆ : P ×
P → P(P ) such that, for any e, f, g, h ∈ P , the following conditions hold.

(PS1) e, f ∈ e ⋆ f , and e ⋆ e = {e}.

(PS2) If g, h ∈ e ⋆ f and g ̸= h, then g ⋆ h = e ⋆ f .

(PS3) e ⋆ (f ⋆ g) = (e ⋆ f) ⋆ g.

Here, we understand that ⋆ is pointwise extended to subsets, that is, for e ∈ P and
A ⊆ P , we put e ⋆ A =

⋃
{e ⋆ f : f ∈ A} and similarly for A ⋆ e.

Proposition 2.3. Let L be a compactly atomistic, modular lattice. Then A(L),
equipped with the map ⋆ : A(L)×A(L) → P(A(L)), (p1, p2) 7→ {q : q ⩽ p1 ∨ p2},
is a projective space. Moreover, ω : L → L(A(L)), a 7→ {p ∈ A(L) : p ⩽ a} is an
isomorphism of lattices.

Conversely, let (P, ⋆) be a projective space. Then L(P ) is a compactly atomistic,
modular lattice. The map P → A(L(P )), e 7→ {e} is an isomorphism of projective
spaces.

Proof. See [MaMa, (16.5),(16.3)].

Reconstructing ortholattices from their associated orthosets

Let us contrast these familiar facts with the case that we deal with an atomistic lattice
that comes equipped with an orthogonality relation. An orthocomplementation on a
bounded lattice L is an order-reversing involution ⊥ that maps each element a to a
complement of a. Equipped with ⊥, L is called an ortholattice. Furthermore, L is in
this case called an orthomodular lattice, or an OML for short, if a ⩽ b implies that
there is a c ⩽ a⊥ such that b = a ∨ c.
It turns out that to equip the atom space of a complete atomistic ortholattice with a
structure determining the ortholattice is straightforward. Instead of projective spaces,
we use the following notion, which is of an entirely different nature [Dac, Wlc].

Definition 2.4. An orthoset (or orthogonality space) is a non-empty set X equipped
with a symmetric, irreflexive binary relation ⊥, called the orthogonality relation.

For a subset A of an orthoset X , we let A⊥ = {e ∈ X : e ⊥ f for all f ∈ A} be the
orthocomplement of A. The map sending any A ⊆ X to A⊥⊥ is a closure operation
and we call sets that are closed w.r.t. ⊥⊥ orthoclosed. The complete lattice of ortho-
closed subsets of X is denoted C(X) and ⊥ makes C(X) into an ortholattice. Again,
the infima in C(X) are given by the set-theoretic intersection, and for orthoclosed
subsets Aι, ι ∈ I , we have that

∨
ιAι = (

⋃
ιAι)

⊥⊥.

Let L be a complete atomistic ortholattice. Elements a and b of L are called ortho-
gonal if a ⩽ b⊥; we write a ⊥ b in this case. Obviously, A(L) equipped with the
orthogonality relation ⊥ inherited from L is an orthoset. Moreover, we readily check
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that ∨ = ⊥⊥. That is, the complete lattice of orthoclosed subsets of A(L) coincides
with the complete lattice of supclosed subsets of A(L). Hence it makes sense to
denote both lattices by C(A(L)) and we have that ω : L → C(A(L)), a 7→ {p ∈
A(L) : p ⩽ a} is a lattice isomorphism. We conclude that, without any additional
assumptions on L, the orthogonality relation on A(L) is suitable to describe L.

We have the following correspondence between ortholattices and orthosets. We call
an orthoset (X,⊥) point-closed [Rod] if every singleton is closed, that is, {e}⊥⊥ =
{e} for any e ∈ X . We note that this property is equivalent to strong irredundancy
[PaVe1]: for any e, f ∈ X , {e}⊥ ⊆ {f}⊥ implies e = f . An isomorphism between
orthosets is meant to be a bijection preserving the orthogonality relation in both dir-
ections.

Proposition 2.5. Let L be a complete atomistic ortholattice. Then (A(L),⊥) is a
point-closed orthoset. Moreover, ω : L → C(A(L)), a 7→ {p ∈ A(L) : p ⩽ a} is an
isomorphism of ortholattices.

Conversely, let (X,⊥) be a point-closed orthoset. Then C(X) is a complete atomistic
ortholattice. The map X → A(C(X)), e 7→ {e} is an isomorphism of orthosets.

Proof. We already know that ω : L → C(A(L)) is an isomorphism of lattices. To
see that ω preserves the orthocomplementation, let a ∈ L. We have ω(a)⊥ = {p ∈
A(L) : p ⩽ a}⊥ = {q ∈ A(L) : q ⊥ p for all p ∈ A(L) such that p ⩽ a} = {q ∈
A(L) : q ⊥ a} = ω(a⊥).

The assertions of the second paragraph are clear.

3 Atomistic lattices and linear spaces

We now turn to the second afore-mentioned issue: the correspondence between lat-
tices and linear spaces. Again, we begin by mentioning the case of linear spaces
(without predefined orthogonality relation) and we discuss then in some detail the
case of inner-product spaces. The basic reference is again [MaMa].

In addition to preparatory material, the present section contains a representation the-
orem for Hermitian spaces by means of its associated ortholattice, differing from the
common version in that it is based on properties of the finite part of the lattice only.

Reconstructing linear spaces from their subspace lattices

We use the shortcut sfield to refer to a skew field (i.e., to a division ring). Let H be
a linear space over some sfield. We generally assume linear spaces not to have less
than three dimensions but we do allow the case of infinite dimensions. We denote by
L(H) the set of subspaces of H , partially ordered by set-theoretic inclusion. Then
L(H) is a complete lattice.

Assuming a dimension ⩾ 4, we may characterise H by means of L(H). The key
properties of the lattice happen to occur in Proposition 2.3, which describes those

7



atomistic lattices that are determined by the relation between triples of atoms accord-
ing to which the first one is below the join of the other two. There is little to add:
the reducibility of the lattice as well as lengths ⩽ 3 are to be excluded. For the diffi-
cult half of the subsequent fundamental theorem, see, e.g., [Bae, Ch. VII] or [MaMa,
(33.6)].

We call a lattice L irreducible if L is not isomorphic to the direct product of two
lattices with at least two elements.

Theorem 3.1. Let H be a linear space. Then L(H) is an irreducible, compactly
atomistic, modular lattice.

Conversely, let L be an irreducible, compactly atomistic, modular lattice of length
⩾ 4. Then there is a linear space H such that L is isomorphic to L(H).

Reconstructing Hermitian spaces from their subspace ortholattices

We shall next see how the picture changes for linear spaces that are endowed with an
orthogonality relation.

LetH be a linear space. We denote by [u1, . . . , uk] the linear span of non-zero vectors
u1, . . . , uk ∈ H . For any subspace E of H , we write E• = E \ {0} and we define
P (E) = {[u] : u ∈ E•}, the set of one-dimensional subspaces of E.

Let ⊥ be a binary relation on P (H). We call (P (H),⊥) an orthogeometry if
(P (H),⊥) is an orthoset with the following properties: (OG1) [w] ⊥ [u], [v] implies
[w] ⊥ [x] for any x ∈ [u, v]•, and (OG2) for any distinct [u], [v] there is a w ∈ [u, v]•

such that [w] ⊥ [u].

We may regard ⊥ in this case alternatively as a relation on H itself: for u, v ∈ H , let
u ⊥ v if one of u or v is 0 or otherwise [u] ⊥ [v]. Note moreover that, by (OG1), any
orthoclosed subset of P (H) is of the form P (E) for some subspace E of H . We call
E in this case orthoclosed as well and we denote the ortholattice of all orthoclosed
subspaces of H by C(H).

The notion of an orthogeometry was introduced, with a regularity assumption instead
of irreflexivity, by Faure and Frölicher [FaFr2, Chapter 14.1]. A relation ⊥ mak-
ing P (H) into an orthogeometry in our sense was simply called an “orthogonality”
in [FaFr1].

Lemma 3.2. Let H be a linear space over the sfield K and let (P (H),⊥) be an
orthogeometry.

(i) Let U be a finite-dimensional subspace of H . Then any set of mutually ortho-
gonal non-zero vectors in U can be extended to an orthogonal basis of U .

(ii) For any [u] ∈ P (H) and any two-dimensional subspace U , there is a v ∈ U •

such that [v] ⊥ [u].

(iii) (P (H),⊥) is point-closed.

(iv) For any [u] ∈ P (H), {v ∈ H : v ⊥ u} is a hyperplane of H .
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Proof. Ad (i): Note first that, by (OG1) and the irreflexivity of ⊥, any set of mutually
orthogonal vectors is linearly independent.

Assume that, for some k ⩾ 1, there are pairwise orthogonal non-zero vectors u1, . . . ,
uk ∈ U and that there is an v ∈ U not in [u1, . . . , uk]. By (OG2), there is an
v1 ⊥ u1 in [u1, v]

•; we then have [u1, v] = [u1, v1]. Similarly, there is an v2 ⊥ u2
in [u2, v1]

•; we then have v2 ⊥ u1, u2 and [u1, u2, v] = [u1, u2, v1] = [u1, u2, v2]. Con-
tinuing in a same manner, we conclude that there is an vk such that [u1, . . . , uk, v] =
[u1, . . . , uk, vk] and vk ⊥ u1, . . . , uk. As U is of finite dimension, the assertion fol-
lows.

Ad (ii): If u ∈ U , the claim holds by (OG2). Assume that u /∈ U . Then U + [u] is
3-dimensional. By part (i), U + [u] possesses an orthogonal basis {u, v1, v2}. In view
of (OG1), any v ∈ [v1, v2]

• ∩ U • fulfils the requirements.

Ad (iii): Let u ∈ H •. Clearly, [u] ∈ {[u]}⊥⊥. Assume that v is linearly independent
from u and [v] ∈ {[u]}⊥⊥. By (OG2), there is a non-zero vector w ⊥ u in [u, v]. But
then [w] ∈ {[u]}⊥ and, by (OG1), [w] ∈ {[u]}⊥⊥, in contradiction to irreflexivitiy.

Ad (iv): By (OG1) and irreflexivitiy, {v ∈ H : v ⊥ u} is a proper subspace of H .
Moreover, by part (ii), {[u]}⊥∩P (U) ̸= ∅ for any two-dimensional subspace U .

Orthogeometries give rise to inner products. The key result originates from [BiNe]
and deals with the finite-dimensional case. For the generalisation to infinite dimen-
sions, which we state below, see [FaFr2].

A ⋆-sfield is an sfield K equipped with an involutorial antiautomorphism ⋆ : K → K.
Let H be a (left) linear space over the ⋆-sfield K. By a Hermitian form on H , we
mean a map (·, ·) : H × H → K such that, for any u, v, w ∈ H and α, β ∈ K, we
have

(αu+ βv, w) = α (u,w) + β (v, w) ,

(w, αu+ βv) = (w, u) α⋆ + (w, v) β⋆,

(u, v) = (v, u)⋆ ,

(u, u) = 0 implies u = 0.

Endowed with a Hermitian form, we call H a Hermitian space. Note that, by the last
condition which is not commonly assumed, we require a Hermitian space always to
be anisotropic. If the ⋆-sfieldK is commutative and the involution ⋆ is the identity, we
call H a quadratic space. In this case, we also assume K to be of characteristic ̸= 2.

Let H be a Hermitian space. For [u], [v] ∈ P (H), we define [u] ⊥ [v] if (u, v) = 0.
It is not difficult to check that (P (H),⊥) is an orthogeometry, and we call ⊥ the
orthogonality relation induced by (·, ·).

Theorem 3.3. Let H be a linear space over an sfield K and let H be of dimension
⩾ 3. Let ⊥ be such that (P (H),⊥) is an orthogeometry. Then there is an invol-
utorial antiautomorphism ⋆ on K and a Hermitian form (·, ·) based on ⋆ such that
(·, ·) induces ⊥.

We now turn to the characterisation of Hermitian spaces by the ortholattice of their
closed subspaces.
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A lattice L with 0 is said to fulfil the covering property if, for any a ∈ L and any atom
p ∈ L such that p ≰ a, a is covered by a ∨ p. If this property holds only when a is
finite, we say that L fulfils the finite covering property. An atomistic lattice with the
covering property is called AC.

Moreover, the irreducibility of ortholattices is understood in the expected way: an
ortholattice is irreducible if it is not isomorphic to the direct product of two ortholat-
tices with distinct bottom and top elements. We note that the irreducibility of an
ortholattice is equivalent to the irreducibility of its lattice reduct.

From Theorems 3.1 and 3.3, a lattice-theoretic characterisation of Hermitian spaces
can be proved [MaMa, (34.5)].

Theorem 3.4. Let H be a Hermitian space. Then C(H) is a complete, irreducible AC
ortholattice.

Conversely, let L be a complete, irreducible AC ortholattice of length ⩾ 4. Then there
is a Hermitian space H such that L is isomorphic to C(H).

The remainder of this section is devoted to the presentation of a modified version of
Theorem 3.4. The idea is to characterise the ortholattice by sole reference to the finite
elements.

With any element u of an ortholattice L, we associate the sublattice

↓u = {a ∈ L : a ⩽ u}.

Assume that we can make ↓u into an ortholattice whose orthogonality relation coin-
cides with the one inherited from L. Then the orthocomplementation is

⊥u : ↓u→ ↓u, a 7→ a⊥ ∧ u.

Indeed, let ′ be an orthocomplementation on ↓u such that, for a, b ⩽ u, we have that
a ⩽ b′ if and only if a ⊥ b. Then, for any a ∈ ↓u, a′ ⊥ a implies a′ ⩽ a⊥u , and
a⊥u ⊥ a implies a⊥u ⩽ a′.

We readily check that ↓u, equipped with ⊥u , is an ortholattice if and only if ⊥u is
involutive if and only if (u⊥, u) is a modular pair [MaMa, (29.10)]. Below, however,
we will encounter a stronger condition, which actually ensures that ↓u is even an
OML.

Lemma 3.5. Let L be an ortholattice and u ∈ L. Then the sublattice ↓u, endowed
with ⊥u , is an OML if and only if, for any a ⩽ b ⩽ u there is a c ⊥ a such that
a ∨ c = b.

Proof. The “only if” part is clear by the definition of orthomodularity. To see the
“if” part, assume that the latter indicated condition holds. It suffices to show that ↓u,
equipped with ⊥u , is an ortholattice.

For any a ⩽ u, we have that a ∨ a⊥u = u. Indeed, choosing b ⩽ u such that b ⊥ a
and a ∨ b = u, we get u = a ∨ b ⩽ a ∨ (a⊥ ∧ u) = a ∨ a⊥u ⩽ u.
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Furthermore, for any a, b ⩽ u such that a ⊥ b and a ∨ b = u, we have that b = a⊥u .
Indeed, in this case b ⩽ a⊥ ∧ u = a⊥u and hence a⊥u = b ∨ r for some r ⊥ b. It
follows u = a ∨ a⊥u = a ∨ b ∨ r = u ∨ r and hence r = 0.

We conclude that a⊥u⊥u = a for any a ∈ ↓u and it follows that ↓u is indeed an
ortholattice.

We remark that the following lemma is shown on the basis of arguments analogous
to those used for Lemma 3.2(i).

Lemma 3.6. Let L be an atomistic ortholattice such that, for any distinct atoms p
and q, there is an atom r ⊥ p such that p ∨ q = p ∨ r. Then the following holds.

(i) An element a of L is finite if and only if a is the join of finitely many mutually
orthogonal atoms.

(ii) Let a be a finite element and p an atom of L not below a. Then there is a q ⊥ a
such that a ∨ p = a ∨ q.

(iii) For any finite elements a and b such that a ⩽ b, there is a finite element c ⊥ a
such that b = a ∨ c.

Proof. The following claim implies both parts of the lemma:

(⋆) Let p1, . . . , pk, k ⩾ 0, be mutually orthogonal atoms and let q not below their join.
Then there is an atom r ⊥ p1, . . . , pk such that p1 ∨ . . . ∨ pk ∨ q = p1 ∨ . . . ∨ pk ∨ r.
Proof of (⋆): If k = 0, the assertion is trivial; assume that k ⩾ 1. By assumption, there
is an atom q1 ⊥ p1 such that p1∨ q = p1∨ q1. Similarly, there is an atom q2 ⊥ p2 such
that p2 ∨ q1 = p2 ∨ q2. Then q2 ⊥ p1, p2 and p1 ∨ p2 ∨ q = p1 ∨ p2 ∨ q1 = p1 ∨ p2 ∨ q2.
Arguing repeatedly in a similar way, we see that there is an atom r = qk with the
desired property.

Lemma 3.7. Let L be an atomistic lattice with the finite covering property. Then
F(L) consists of the elements of finite height and is an ideal of L.

Proof. See [MaMa, Section 8].

Lemma 3.8. Any AC ortholattice of finite length is modular.

Proof. This follows from [MaMa, (27.6)].

Lemma 3.9. Let L be an atomistic ortholattice with the finite covering property and
such that, for any distinct atoms p and q, there is an atom r ⊥ p such that p∨q = p∨r.
Then F(L) is a modular sublattice of L.

Proof. By Lemma 3.7, F(L) is an ideal, in particular a sublattice, of L.

Let u be a finite element ofL. Then ↓u is an AC lattice of finite length. Let a ⩽ b ⩽ u.
By Lemma 3.6(iii), there is a c ⊥ a such that a ∨ c = b. By Lemma 3.5, it follows
that ↓u is an OML. By Lemma 3.8, ↓u is even modular.

Let a, b ∈ F(L). Then the pair a, b fulfils the modularity condition (2) in ↓(a ∨ b)
and consequently also in F(L). We conclude that F(L) is modular.
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We are now ready to show a version of Theorem 3.4 that refers to finite elements only.

Theorem 3.10. Let L be a complete atomistic ortholattice with the following proper-
ties:

(H1) L fulfils the finite covering property;

(H2) for any distinct atoms p and q, there is an atom r ⊥ p such that p ∨ q = p ∨ r;

(H3) for any orthogonal atoms p and q there is a third atom below p ∨ q;

(H4) L is of height ⩾ 4.

Then there is a ⋆-sfieldK and a Hermitian spaceH overK such that L is isomorphic
to the ortholattice C(H).

Proof. Recall from Section 2 that S(A(L)) is the complete lattice of subspaces of
the atom space A(L). By Lemma 2.1, S(A(L)) is compactly atomistic. We claim
that S(A(L)) fulfils the covering property. Indeed, let P ⊂ Q ⊆ P ∨ {p} for some
P,Q ∈ S(A(L)) and p ∈ A(L). Choosing q ∈ Q\P , we have that q ⩽ r1∨. . .∨rk∨p
for some r1, . . . , rk ∈ P , and since q ∧ (r1 ∨ . . . ∨ rk) = 0, it follows from (H1) that
p ⩽ r1 ∨ . . . ∨ rk ∨ q and thus Q = P ∨ {p}.

By Lemma 3.9, (H1) and (H2) imply that F(L) is a modular sublattice of L. Fur-
thermore, by Lemma 2.1, ω : F(L) → F(S(A(L))), a 7→ {p ∈ A(L) : p ⩽ a} is
an isomorphism of join-semilattices. As ω also preserves meets, it is actually an iso-
morphism of lattices. We conclude that also F(S(A(L))) is a modular sublattice of
S(A(L)). By [MaMa, (14.1)], it follows that S(A(L)) is modular.

Finally, assume that S(A(L)) is reducible. By [MaMa, (16.6)], there are two distinct
atoms below whose join there is no further atom. That is, there are distinct atoms
p, q ∈ L such that there is no third atom below p ∨ q. If p and q are not orthogonal,
this contradicts (H2), otherwise this contradicts (H3). We conclude that S(A(L)) is
irreducible.

We summarise that S(A(L)) is an irreducible, compactly atomistic, modular lattice.
As L can be order-embedded into S(A(L)), (H4) implies that the length of S(A(L))
is at least 4. By Theorem 3.1, there is a linear space H over an sfield K such that
S(A(L)) is isomorphic to the lattice L(H) of subspaces of H . Moreover, there is
an order embedding φ : L → L(H), which establishes an isomorphism between the
respective sublattices F(L) and F(L(H)).

In particular, φ induces a bijection between the atom space A(L) and the set of one-
dimensional subspaces P (H). Under this correspondence, we can make P (H) into
an orthoset. In fact, (P (H),⊥) is then even an orthogeometry: (OG1) obviously
holds and (OG2) follows from (H2).

We conclude that, by Theorem 3.3, there is an involutorial antiautomorphism ⋆ of
K and a Hermitian form (·, ·) on H based on ⋆ that induces the orthogonality rela-
tion on P (H). As (A(L),⊥) is isomorphic to (P (H),⊥), we have that C(A(L)) is
isomorphic to C(P (H)). But by Proposition 2.5, L is isomorphic to C(A(L)), and
we may naturally identify C(P (H)) with C(H). We have hence shown that L is iso-
morphic to C(H).
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4 Automorphisms of orthosets, ortholattices, and Her-
mitian spaces

The ultimate goal of this paper is to characterise inner-product spaces by means of
symmetries of their associated orthosets. We have discussed so far the correlation
between orthosets, ortholattices, and Hermitian spaces, but we have not considered
the question whether these correspondences can be extended to include the respective
structure-preserving maps. We insert a short section to make up for this omission,
providing some basic definitions and recalling background facts. We will focus ex-
clusively on automorphisms.

There is an obvious correspondence between the automorphism group of a complete
atomistic ortholattice and the automorphism group of its associated orthoset.

An automorphism of an orthoset (X,⊥) is meant to be an isomorphism of X to itself,
that is, a bijection φ : X → X such that, for any e, f ∈ X , e ⊥ f if and only if
φ(e) ⊥ φ(f). The group of automorphisms of (X,⊥) will be denoted by O(X).

Proposition 4.1. Let L be a complete atomistic ortholattice. The automorphisms of
L and the corresponding orthoset (A(L),⊥) are in a natural one-to-one correspond-
ence.

Proof. Any automorphism of L restricts to an orthogonality-preserving bijection of
A(L). Conversely, any orthogonality-preserving bijection of A(L) extends to an
automorphism of L.

For a Hermitian space H , the correspondence between the automorphisms of (P (H),
⊥) and those of H is described by a suitable version of Wigner’s Theorem; see,
e.g., [May].

A linear automorphism U of a Hermitian space H is called unitary if U preserves the
Hermitian form. The group of unitary operators on H is denoted by U(H) and we
write I for its identity. We moreover denote the centre of the scalar ⋆-sfield K by
Z(K) and we let U(K) = {ε ∈ K : εε⋆ = 1} be the set of unit elements of K.

Theorem 4.2. Let H be a Hermitian space over the ⋆-sfield K of dimension ⩾ 3. For
any unitary operator U , the map

P (U) : P (H) → P (H), [x] 7→ [U(x)] (3)

is an automorphism of (P (H),⊥). The map P : U(H) → O(P (H)) is a homo-
morphism, whose kernel is {εI : ε ∈ Z(K) ∩ U(K)}.

Conversely, let φ be an automorphism of (P (H),⊥) and assume that there is an at
least two-dimensional subspace S of H such that φ([x]) = [x] for any x ∈ S•. Then
there is a unique unitary operatorU onH such that φ = P (U) and U |S is the identity.

Let (X,⊥) be an orthoset. We shall be interested in groups of automorphisms of
(X,⊥) that act so-to-say minimally, that is, we shall deal with groups keeping every-
thing orthogonal to some element and its image fixed. For any A ⊆ X , we define

O(X,A) = {φ ∈ O(X) : φ(e) = e for any e ⊥ A}.
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For a Hermitian space H , we may observe that O(P (H), P (S)) can be conveniently
be described by a subgroup of U(H), provided that S ∈ C(H) is such that S⊥ is of
dimension ⩾ 2. Indeed, in this case, we let

U(H,S) = {U ∈ U(H) : U |S⊥ = idS⊥}, (4)

and we have, by Theorem 4.2, that P : U(H,S) → O(P (H), P (S)) is an isomorph-
ism of groups.

Assume now that H is a quadratic space, that is, K is a (commutative) field and ⋆

the identity. In this case, the unitary operators are commonly called orthogonal and
the unitary group, now called the orthogonal group, is denoted by O(H). For some
subspace S of H , also the group defined in (4) is likewise denoted by O(H,S).

Let U ∈ O(H) be such that, for some finite-dimensional subspace S, U |S⊥ is the
identity. Then S is an invariant subspace and U |S is an orthogonal operator on S.
Furthermore, the determinant of U |S , which is 1 or −1, does not depend on S. In-
deed, if S̃ is a further finite-dimensional subspace such that U |S̃⊥ is the identity, then
detU |S̃ = detU |S+S̃ = detU |S . Hence it makes sense to define SO(H) as the sub-
group consisting of all U ∈ O(H) such that, for some finite-dimensional subspace S
of H , U |S⊥ is the identity and U |S has determinant 1. If H is finite-dimensional, this
is the usual special orthogonal group.

We define SO(H,S) = SO(H) ∩ O(H,S). If S is two-dimensional, we call the
elements of SO(H,S) simple rotations. We claim that SO(H) is generated by the
simple rotations. Indeed, O(H) is generated by the orthogonal reflections along a
hyperplane; see, e.g., [Gro, Theorem 6.6]. Hence every element of SO(H) is the
product of an even number of such reflections. But the product of two reflections
along hyperplanes is a simple rotation and thus the claim follows.

5 Homogeneous transitivity

We now turn to the main concern of this paper: we consider orthosets that possess,
in a certain sense, a rich set of symmetries and we investigate their relationship to
inner-product spaces.

For any pair of distinct elements e and f of X we consider the subgroup of O(X)

Gef = O(X, {e, f})
= {φ ∈ O(X) : φ(x) = x for all x ⊥ e, f}.

Intuitively, we shall understand Gef as consisting of those automorphisms that move
the element e to an element in the direction of f , in a way that the elements orthogonal
to the “base point” e and the “destination point” f are kept fixed.

Our guiding example is the following.

Example 5.1. LetH be real Hilbert space of dimension ⩾ 4. Obviously,H is a quad-
ratic space. Let (P (H),⊥) be the orthoset associated with H . Let u, v ∈ H • be lin-
early independent, such that [u] and [v] are distinct elements of P (H). Then, accord-
ing to our remarks after Theorem 4.2, we have an isomorphism P : O(H, [u, v]) →
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G[u][v]. That is, G[u][v] can be identified with the group of orthogonal operators on
H that possess the invariant subspace [u, v] and keep its orthogonal complement ele-
mentwise fixed.

We will require our orthoset (X,⊥) to be transitive in the sense that, for any e ̸=
f , Gef actually contains an automorphism that maps e to f . Furthermore, we will
postulate the homogeneity of (X,⊥), in the sense that the subgroups Gef , e ̸= f , of
O(X) are pairwise conjugate via an automorphism that preserves the “base points”.
We recall that a subgroup G1 of O(X) is said to be conjugate to a further subgroup
G2 via some τ ∈ O(X) if G1 = τ−1G2 τ .

Definition 5.2. We call an orthoset (X,⊥) homogeneously transitive if, for any dis-
tinct e, f ∈ X , the following holds:

(HT1) There is a φ ∈ Gef such that φ(e) = f .

(HT2) For any further distinct elements e′ and f ′, Gef is conjugate to Ge′f ′ via an
automorphism that maps e to e′.

Let us check that our main example belongs to this kind of orthosets.

Example 5.3. Let again H be a real Hilbert space of dimension ⩾ 4. We claim
that (P (H),⊥) is a homogeneously transitive orthoset. Let u, v ∈ H • be linearly
independent. By the isomorphism P : O(H, [u, v]) → G[u][v], it is clear that (HT1)
holds. Let u′, v′ ∈ H • be a further pair of linearly independent vectors. Then there
is an orthogonal operator U that maps [u] to [u′] and [u, v] to [u′, v′]. Conjugating
G[u′][v′] via P (U) thus gives G[u][v]. Hence (P (H),⊥) fulfils also (HT2).

As the next example shows, there are homogeneously transitive orthosets of a com-
pletely different kind.

Example 5.4. For any set X , (X, ̸=) is an orthoset. We readily check that (X, ̸=) is
homogeneously transitive.

Note that, for an orthoset of the form (X, ̸=) as indicated in Example 5.4, C(X) is
the Boolean algebra of all subsets of X . Hence we will call such orthosets Boolean.
Boolean orthosets are certainly not what we are interested in. But we will show
that the only remaining homogeneously transitive orthosets are those arising from
Hermitian spaces in the same manner as indicated in Example 5.3.

Let us now fix a homogeneously transitive orthoset (X,⊥) and let us assume that
(X,⊥) is not Boolean. By a ⊥-set, we mean a subset of X consisting of mutually
orthogonal elements. The rank of X is the smallest cardinal number λ such that any
⊥-set is of cardinality ⩽ λ. We assume X to have a rank of at least 4. Our aim is to
verify that Theorem 3.10 applies to C(X), the ortholattice associated with (X,⊥).

In [Vet2], we have established conditions equivalent to the representability of (X,⊥)
by means of a Hermitian space in the case when (X,⊥) has a finite rank. Our first
lemma shows that (X,⊥) fulfils these conditions.
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Lemma 5.5. (X,⊥) has the following properties.

(L1) For any distinct elements e and f , there is a ē ⊥ e such that {e, f}⊥⊥ =
{e, ē}⊥⊥.

(L2) For any orthogonal elements e and f , there is a third element g ∈ {e, f}⊥⊥.

Proof. Ad (L1): Let g, h ∈ X an arbitrary pair of orthogonal elements. As we as-
sume (X,⊥) to have a rank of at least 4, such a pair exists. By (HT2), there is
an automorphism τ of (X,⊥) such that τ(g) = e and Ggh = τ−1Gef τ . Then
τ Ggh(g) = Gef (τ(g)) = Gef (e). By (HT1), there is a φ ∈ Ggh such that φ(g) = h.
Then e = τ(g) ⊥ τ(h) = τφ(g) = τφτ−1(e). Then ψ = τφτ−1 ∈ Gef and
ē = ψ(e) = τ(h) ⊥ e.

Assume x ⊥ e, f . Then x = ψ(x) ⊥ ψ(e) = ē. Hence {e, f}⊥ ⊆ {e, ē}⊥. Con-
versely, assume x ⊥ e, ē. Then τ−1(x) ⊥ g, h. By (HT1), there is a χ ∈ Gef such
that χ(e) = f . Then τ−1χτ ∈ Ggh. We conclude τ−1(x) = τ−1χτ(τ−1(x)) ⊥
τ−1χτ(g) = τ−1χ(e) = τ−1(f), that is, x ⊥ f . Hence also {e, ē}⊥ ⊆ {e, f}⊥. The
assertion follows.

Ad (L2): Let e′ and f ′ be distinct elements of X such that e′ ̸⊥ f ′. As we assume
⊥ not to coincide with ̸=, such a pair exists. By (HT2), there is an automorphism
τ such that τ(e) = e′ and Gef = τ−1Ge′f ′ τ . By (HT1), there is a φ ∈ Ge′f ′ such
that φ(e′) = f ′. Then τ−1φτ ∈ Gef and g = τ−1(f ′) = τ−1φτ(e) ∈ Gef (e). From
g ⊥ e it would follow f ′ ⊥ e′, and from g = e it would follow e′ = φ(e′) = f ′, both a
contradiction. Hence g is an element ofGef (e) distinct from e and f . We furthermore
have that Gef (e) ⊥ {e, f}⊥. Hence g ∈ {e, f}⊥⊥.

The next lemma, together with Proposition 2.5, implies that we may identify (X,⊥)
with the orthoset associated with C(X).

Lemma 5.6. (X,⊥) is point-closed. Consequently, C(X) is a complete atomistic
ortholattice, the atoms being {e}, e ∈ X .

Proof. To show that {e}⊥⊥ = {e} for any e ∈ X , we may argue as in case of in [Vet2,
Lemma 3.2]; the proof applies also without the assumption of a finite rank.

We now turn to the verification of conditions (H1)–(H4) of Theorem 3.10.

Lemma 5.7. C(X) fulfils (H2), (H3), and (H4).

Proof. By property (L1) in Lemma 5.5, (H2) holds.

From property (L2) in Lemma 5.5, we conclude that below the join of two orthogonal
atoms of C(X) there is a third atom. This means that C(X) fulfils (H3).

As we have assumed (X,⊥) to be of rank ⩾ 4, C(X) contains at least 4 mutually
orthogonal elements and hence a 5-element chain. We conclude that also (H4) holds
in C(X).
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It remains to check (H1), the finite covering property. Some preparatory steps are
necessary.

Lemma 5.8. Let e1, . . . , ek and f1, . . . , fk be pairwise orthogonal elements of X ,
respectively. Then there is an automorphism φ ofX such that φ(e1) = f1, . . . φ(ek) =
fk and φ(x) = x for any x ⊥ e1, . . . , ek, f1, . . . , fk.

Proof. We proceed by induction over k. For k = 1, the assertion holds by (HT1). Let
k ⩾ 2 and assume the assertion holds for any two sets of k − 1 mutually orthogonal
elements. Let e1, . . . , ek and f1, . . . , fk be pairwise orthogonal, respectively. We have
to show that, for some automorphism φ, φ(e1) = f1, . . . , φ(ek) = fk and φ(x) = x
for any x ⊥ e1, . . . , ek, f1, . . . , fk.

By (HT1), there is a φ′ such that φ′(e1) = f1 and φ′(x) = x for any x ⊥ e1, f1. Then
φ′(e2), . . . , φ

′(ek) and f2, . . . , fk are pairwise orthogonal, respectively. By assump-
tion there is an automorphism φ̃ such that φ̃(φ′(e2)) = f2, . . . , φ̃(φ

′(ek)) = fk and
φ̃(x) = x for x ⊥ φ′(e2), . . . , φ

′(ek), f2, . . . , fk. Then φ̃ ◦φ′ fulfils the requirements.
Indeed, we have φ̃(φ′(e1)) = φ̃(f1) = f1, and x ⊥ e1, . . . , ek, f1, . . . , fk implies
x = φ′(x) ⊥ φ′(e2), . . . φ

′(ek) and hence φ̃(φ′(x)) = φ̃(x) = x.

Lemma 5.9. Let e1, . . . , ek, k ⩾ 1, be mutually orthogonal elements of X , let A =
{e1, . . . , ek}⊥⊥, and let Q ⊆ A be a ⊥-set. Then Q contains at most k elements.
Moreover, A = Q⊥⊥ if and only if Q contains exactly k elements.

Proof. Let f1, . . . , fk be mutually orthogonal elements of A. We shall show that
A = {f1, . . . , fk}⊥⊥. Both assertions will then follow.

Let B = {f1, . . . , fk}⊥⊥. By Lemma 5.8, there is an automorphism φ of X such
that φ(e1) = f1, . . . , φ(ek) = fk and φ(x) = x for x ∈ A⊥. By Proposition 2.5, φ
induces an automorphism of C(X). Hence φ(A⊥) = A⊥ implies φ(A) = A, and we
have B ⊆ A = φ(A) = φ({e1}⊥⊥ ∨ . . . ∨ {ek}⊥⊥) = {f1}⊥⊥ ∨ . . . ∨ {fk}⊥⊥ = B,
that is, A = B as asserted.

Lemma 5.10. C(X) has the finite covering property, that is, C(X) fulfils (H1).

Proof. Note first that, as C(X) is an atomistic ortholattice fulfilling (H2), Lemma 3.6
applies.

LetA ∈ C(X) (as a lattice element) be finite, let e /∈ A, and letB ∈ C(X) be such that
A ⊂ B ⊆ A∨{e}. By Lemma 3.6(ii), there is an f ⊥ A such thatA∨{e} = A∨{f}.
Furthermore, let g ∈ B \ A. Again by Lemma 3.6(ii), there is an h ⊥ A such that
A ∨ {g} = A ∨ {h}. By Lemma 3.6(i), there is a finite ⊥-set Q such that A = Q⊥⊥.
Then (Q∪{h})⊥⊥ = A∨{h} = A∨{g} ⊆ B ⊆ A∨{e} = A∨{f} = (Q∪{f})⊥⊥.
By Lemma 5.9 it follows (Q∪ {h})⊥⊥ = (Q∪ {f})⊥⊥ and hence B = A∨ {e}.

We arrive at the main result of this section.

Theorem 5.11. Let (X,⊥) be a homogeneously transitive orthoset of rank ⩾ 4. Then
either (X,⊥) is Boolean or else there is a Hermitian space H , possessing a unit vec-
tor in each one-dimensional subspace, such that (X,⊥) is isomorphic to (P (H),⊥).
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Proof. Assume that (X,⊥) is not Boolean. Then, because of Lemmas 5.6, 5.7, and
5.10, Theorem 3.10 is applicable: (X,⊥) is isomorphic to (P (H),⊥) for some Her-
mitian space H .

By Lemma 5.8 and Theorem 4.2, there is, for any vectors u, v ∈ H •, a unitary operator
mapping [u] to [v]. It follows that if there is a unit vector in H , all one-dimensional
subspaces contain a unit vector. To ensure the existence of a unit vector, we “rescale”
the Hermitian form if necessary; see, e.g., [Hol2].

We note that, although we cannot say much about the scalar ⋆-sfields of Hermitian
spaces that represent homogeneously transitive orthosets according to Theorem 5.11,
it is also clear that not all ⋆-sfields are eligible.

Remark 5.12. Let H be an at least two-dimensional Hermitian space over a ⋆-sfield
K such that each one-dimensional subspace contains a unit vector. Then K has
characteristic 0; see [Jon] or [Vet1, Lemma 25].

We conclude the section with some further elementary observations on homogen-
eously transitive orthosets that might be found interesting. In the proofs we could at
some places make use of Theorem 5.11, but we prefer to provide direct arguments.

Given an orthoset (X,⊥), consider the Gef -orbit of an element e ∈ X:

Gef (e) = {φ(e) : φ ∈ Gef}.

Then we have that Gef (e) and {e, f}⊥ are orthogonal subsets of X . Moreover, Gef

acts transitively on the former one and the latter consists of fixed points of Gef .
In general, f need not be in the orbit of e; to ensure that f ∈ Gef (e) is the ef-
fect of condition (HT1). Under the assumption of homogeneous transitivity, the pair
(Gef (e), {e, f}⊥) is actually a decomposition of X into two constituents, in the sense
that each of these sets is the orthocomplement of the other one.

Lemma 5.13. Let (X,⊥) be a homogeneously transitive orthoset and let e ̸= f .

(i) Gef (e) = {e, f}⊥⊥. In particular, Gef acts transitively on {e, f}⊥⊥.

(ii) {e, f}⊥ is the set of fixed points of Gef .

(iii) Let e′ ̸= f ′. Then Gef = Ge′f ′ if and only if Gef (e) = Ge′f ′(e′) if and only if
{e, f}⊥ = {e′, f ′}⊥.

Proof. Ad (i): Clearly, Gef (e) ⊆ {e, f}⊥⊥. To show the reverse inclusion, let
g ∈ {e, f}⊥⊥ be distinct from e. As C(X) has the finite covering property, we have
{e, f}⊥⊥ = {e, g}⊥⊥. Furthermore, {e, f}⊥ = {e, g}⊥ implies Gef = Geg, and
hence, by (HT1), we have g ∈ Gef (e).

Ad (ii): Clearly, any x ∈ {e, f}⊥ is a fixed point of Gef . Assume that x /∈ {e, f}⊥
is a further fixed point. By part (i), x /∈ {e, f}⊥⊥. By virtue of (H2), there is an
x̄ ⊥ e, f such that {e, f, x}⊥⊥ = {e, f, x̄}⊥⊥. By Lemma 3.9, F(C(X)) is a modular
sublattice of C(X) and we conclude that there is a g such that {x, x̄}⊥⊥∩{e, f}⊥⊥ =
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{g}. As any φ ∈ Gef extends to an automorphism of C(X), it follows φ({g}) =
φ({x, x̄}⊥⊥) ∩ φ({e, f}⊥⊥) = {x, x̄}⊥⊥ ∩ {e, f}⊥⊥ = {g}. But g ∈ {e, f}⊥⊥ and
by part (i), {e, f}⊥⊥ does not contain any fixed point.

Part (iii) follows from parts (i) and (ii).

We note next that we may formulate the conditions for orthosets to arise from Her-
mitian spaces in a slightly modified way. This version avoids the need of excluding
the case of Boolean orthosets.

Proposition 5.14. An orthoset (X,⊥) is homogeneously transitive and non-Boolean
if and only if, for any distinct e, f ∈ X , the following conditions hold:

(HT1’) There are φ, ψ ∈ Gef such that φ(e) = f and ψ(e) ̸= e, f .

(HT2’) There is an ē ⊥ e such that Geē = Gef .

Proof. Let (X,⊥) be homogeneously transitive and not Boolean. Let e ̸= f . By
Lemma 5.5, {e, f}⊥⊥ contains at least three elements, among which is there is an
ē ⊥ e. Hence (HT1’) and (HT2’) follow from Lemma 5.13.

Conversely, assume that the orthoset (X,⊥) fulfils (HT1’) and (HT2’). Clearly,
(HT1) then holds. Furthermore, (X,⊥) is not Boolean. Indeed, otherwise Gef would
contain, for any distinct e, f ∈ X , just two elements, namely, the identity and the
map interchanging e and f , whereas (HT1’) implies the existence of a third map.

We claim that (X,⊥) fulfils condition (L1) in Lemma 5.5. Let e ̸= f . By (HT2’),
there is a g ⊥ e such that Gef = Geg. We shall show that {e, f}⊥ = {e, g}⊥.
Indeed, let x ⊥ e, f . By (HT1’), there is φ ∈ Geg = Gef such that φ(e) = g. Then
x = φ(x) ⊥ φ(e) = g and it follows {e, f}⊥ ⊆ {e, g}⊥. We argue similarly, the
roles of f and g being interchanged, to see that also {e, g}⊥ ⊆ {e, f}⊥.

Let now e ̸= f and e′ ̸= f ′. By (L1), there is an ē ⊥ e and a ē′ ⊥ e′ such that
{e, f}⊥⊥ = {e, ē}⊥⊥ and {e′, f ′}⊥⊥ = {e′, ē′}⊥⊥. By virtue of (HT1), Lemma
5.8 holds for (X,⊥). Hence there is an automorphism τ such that τ(e) = e′ and
τ(ē) = ē′. Then τ({e, f}⊥) = {e′, f ′}⊥. It follows τ−1φτ(x) = x for any φ ∈ Ge′f ′

and x ⊥ e, f , that is, τ−1Ge′f ′τ ⊆ Gef . Similarly, we have τGefτ
−1 ⊆ Ge′f ′ and we

conclude Gef = τ−1Ge′f ′τ . (HT2) is proved.

Finally, we provide a further reformulation, which emphasises to some extent the
role of the orbits. We might observe in this case a resemblance with the axioms of
projective geometry in Definition 2.2. Indeed, condition (HT1”) can be considered
as similar to the requirement (PS1), according to which every line contains the two
points by which it is spanned. Furthermore, condition (HT2”) may be seen as a
weakened form of (PS2), according to which any two points lie on a unique line.
Remarkably, (PS3) or some other variant of the Pasch axiom does not occur.

Proposition 5.15. An orthoset (X,⊥) is homogeneously transitive and non-Boolean
if and only if the following conditions hold:
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(HT1”) For any distinct e, f ∈ X , Gef (e) contains at least three elements, among
which are f as well as some g ⊥ e.

(HT2”) For any e ∈ X and any f, g ̸= e, if g ∈ Gef (e) then f ∈ Geg(e).

Proof. Let (X,⊥) be homogeneously transitive and not Boolean. Again, for e ̸=
f , Lemma 5.5 implies that {e, f}⊥⊥ contains a third elements as well as an ele-
ment orthogonal to e. Hence (HT1”) follows from Lemma 5.13. Furthermore, by
Lemma 5.10, C(X) has the finite covering property. Hence (HT2”) follows from
Lemma 5.13 as well.

Conversely, assume that (HT1”) and (HT2”) hold. We will derive (HT1’) and (HT2’),
so that the Proposition will follow by Theorem 5.14.

(HT1’) is obvious. Let e ̸= f . By (HT1”), there is an ē ∈ Gef (e) such that ē ⊥ e.
Then {e, f}⊥ ⊆ {e, ē}⊥. By (HT2”), also f ∈ Geē(e) holds, which means that
{e, ē}⊥ ⊆ {e, f}⊥. From {e, f}⊥ = {e, ē}⊥ it follows that Gef = Geē. (HT2’)
follows.

6 Divisible transitivity

We any pair e, f of distinct elements of an orthoset we have associated the group Gef

of automorphisms that keep the elements orthogonal to e and f fixed. Intuitively, we
have viewed Gef as describing transitions from e into the direction determined by f .
The present section is based on the idea to add the requirement that these transitions
may proceed in a continuous manner. We will, however, not deal with topologies, we
rather propose a divisibility condition.

For distinct elements e and f of an orthoset (X,⊥), let us consider the following
collection of automorphisms:

Ref = {φ ∈ Gef : for any k ⩾ 1 there is a ψ ∈ Gef such that φ = ψk}
= {φ ∈ O(X) : for any k ⩾ 1 there is a ψ ∈ O(X)

such that ψ(x) = x for all x ⊥ e, f and ψk = φ}.

We shall require Ref to be a subgroup, subjected to similar conditions as Gef in case
of homogeneous transitivity. Our above intuitive ideas furthermore motivate us to
require Ref to be abelian: assuming that φ0 ∈ Ref is an automorphism mapping e
to f and, for any i ⩾ 0, φi+1 is a square root of φi in Ref , we intend to view the
subgroup generated by these maps, which is abelian, as “dense” in Ref .

Definition 6.1. We call an orthoset (X,⊥) divisibly transitive if, for any distinct
e, f ∈ X , the following holds:

(DT0) Ref is an abelian subgroup of O(X).

(DT1) There is a φ ∈ Ref such that φ(e) = f .
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(DT2) For any further distinct elements e′, f ′ ∈ X , Ref is conjugate to Re′f ′ via an
automorphism that maps e to e′.

Example 6.2. For a real Hilbert space H of dimension ⩾ 4, (P (H),⊥) is a divisibly
transitive orthoset. Indeed, let u, v ∈ H • be linearly independent and recall from
Example 5.3 the isomorphism P : O(H, [u, v]) → G[u][v]. As R[u][v] consists of those
elements of G[u][v] that possess, for each k ⩾ 1, a k-th root in G[u][v], the isomorphism
restricts to P : SO(H, [u, v]) → R[u][v]. That is, R[u][v] corresponds to those operat-
ors which, restricted to [u, v], are (proper) rotations of the plane spanned by u and
v. (DT0) and (DT1) are hence clear and (DT2) holds by a similar argument as in
Example 5.3.

We have the following, provisional representation for divisibly transitive orthosets.

Lemma 6.3. Let (X,⊥) be a divisibly transitive orthoset of rank ⩾ 4. Then there
is Hermitian space H over some ⋆-sfield K, possessing a unit vector in each one-
dimensional subspace, such that (X,⊥) is isomorphic to (P (H),⊥).

Proof. Note first that (X,⊥) cannot be Boolean. Indeed, in this case Ref , for any
e ̸= f , would consist of the identity alone, in contradiction to (DT1).

Lemmas 5.5–5.10 and hence Theorem 5.11 hold also for divisibly transitive orthosets.
To show this, we argue on the basis of (DT1) and (DT2) instead of (HT1) and (HT2),
respectively.

We note that Lemma 5.13 possesses also a version for divisibly transitive orthosets.

Lemma 6.4. Let (X,⊥) be a divisibly transitive orthoset and let e ̸= f .

(i) Ref (e) = {e, f}⊥⊥. In particular, Ref acts transitively on {e, f}⊥⊥.

(ii) {e, f}⊥ is the set of fixed points of Ref .

(iii) Let e′ ̸= f ′. Then Ref = Re′f ′ if and only if Ref (e) = Re′f ′(e′) if and only if
{e, f}⊥ = {e′, f ′}⊥.

Proof. Again, we may follow literally the proof of Lemma 5.13, which contains the
analogous statement on homogeneously transitive orthosets.

We furthermore remark that we may formulate the axioms of divisible transitivity in
a slightly different way.

Proposition 6.5. An orthoset (X,⊥) is divisibly transitive if and only if, for any
distinct e, f ∈ X , (DT0), (DT1), and the following holds:

(DT2’) There is an ē ⊥ e such that Reē = Ref .

Proof. If (X,⊥) is divisibly transitive, (X,⊥) fulfils condition (L1) in Lemma 5.5,
and (L1) implies (DT2’).

Conversely, assume (DT0), (DT1), and (DT2’). To show (DT2), we may argue simil-
arly to the second part of the proof of Proposition 5.14.
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Our aim is to refine Lemma 6.3 and to clarify which type of ⋆-sfields are suitable for
the representation of divisibly transitive orthosets. For the remainder of this section,
let us fix an at least 4-dimensional Hermitian space H over a ⋆-sfield K such that
(P (H),⊥) is divisibly transitive and each [u] ∈ P (H) contains a unit vector.

Let S be a subspace of H . We set

R(H,S) = {U ∈ U(H,S) : for each k ⩾ 1,

there is a V ∈ U(H,S) such that V k = U}.

Furthermore, we will say that a subgroup G of U(H) acts transitively on P (S) if, for
any u, v ∈ S•, there is a U ∈ G such [U(u)] = [v].

Lemma 6.6. Let u, v ∈ H be linearly independent.

(i) Then P : R(H, [u, v]) → R[u][v] is a group isomorphism.

(ii) R(H, [u, v]) is an abelian subgroup of U(H, [u, v]) that acts transitively on
P ([u, v]).

Proof. By Theorem 4.2, P : U(H, [u, v]) → G[u][v] is a group isomorphism. Moreover,
R[u][v] consists of the divisible elements of G[u][v] and hence of the maps P (U) such
that U ∈ U(H, [u, v]) and for each k ⩾ 1 there is some V ∈ U(H, [u, v]) such that
V k = U . Hence R[u][v] = {P (U) : U ∈ R(H, [u, v])}. That is, the isomorphism
P : U(H, [u, v]) → G[u][v] restricts to a bijection P : R(H, [u, v]) → R[u][v]. But
by (DT0), R[u][v] is an abelian subgroup of G[u][v]. It follows that R(H, [u, v]) is an
abelian subgroup of U(H, [u, v]) and also P : R(H, [u, v]) → R[u][v] is a group iso-
morphism.

By (DT1), it further follows that there is a U ∈ R(H, [u, v]) such that P (U)([u]) =
[U(u)] = [v]. As [u], [v] are arbitrary distinct elements of P ([u, v]), we conclude that
R(H, [u, v]) acts transitively on P ([u, v]).

Lemma 6.7. H is a quadratic space.

Proof. We have to show that the involution ⋆ on K is the identity. It will then follow
that K is commutative and the lemma will be proved.

Let F be a two-dimensional subspace of H and let {u, v} be an orthonormal basis of
F . We denote the vectors of F by their coordinates w.r.t. this basis, in particular we
write u =

(
1
0

)
and v =

(
0
1

)
. We will likewise identify the operators U ∈ U(H,F )

with their restriction to F and write them as 2 × 2-matrices. Then U =
(
α γ
β δ

)
∈

U(H,F ) if and only if αα⋆ + ββ⋆ = γγ⋆ + δδ⋆ = 1 and αγ⋆ + βδ⋆ = 0.

We proceed by showing a sequence of auxiliary statements. We will frequently use
the fact that, by Lemma 6.6, R(H,F ) is an abelian subgroup of U(H,F ) acting
transitively on P (F ).

(a) For any ξ ∈ K, there is a
(
α γ
β δ

)
∈ R(H,F ) such that ξ = β−1α.
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Proof of (a): Let
(
α γ
β δ

)
∈ R(H,F ) be such that [

(
α
β

)
] = [

(
α γ
β δ

)(
1
0

)
] = [

(
ξ
1

)
].

Then β ̸= 0 and ξ = β−1α, hence (a) follows.

(b) There is an ε ∈ U(K) such that ξ⋆ = ε⋆ξε for any ξ ∈ K.

Proof of (b): Let U1 ∈ R(H,F ) be such that [U1

(
1
0

)
] = [

(
0
1

)
]. Then U1 =

(
0 ε1
ε2 0

)
for some ε1, ε2 ∈ U(K).

Let ξ ∈ K. By (a), there is a U =
(
α γ
β δ

)
∈ R(H,F ) such that ξ = β−1α. From

0 =
((

1
0

)
,
(
0
1

))
=

(
U1U

(
1
0

)
, U1U

(
0
1

))
=

(
U1U

(
1
0

)
, UU1

(
0
1

))
=

((
βε1
αε2

)
,
(
ε1α
ε1β

))
= βε1α

⋆ε⋆1 + αε2β
⋆ε⋆1,

we conclude (β−1α)⋆ = −ε⋆1β−1αε2, that is, ξ⋆ = −ε⋆1ξε2.
From the case ξ = 1 we see that ε2 = −ε1. Setting ε = −ε1 = ε2, we infer (b).

(c) Any operator in R(H,F ) is of the form
(
α −β⋆

β α⋆

)
for some α, β ∈ K such that

αα⋆ + ββ⋆ = 1.

Proof of (c): Let U =
(
α γ
β δ

)
∈ R(H,F ) and let U1 =

(
0 −ε
ε 0

)
be as in the proof

of (b). Then (
εγ
εδ

)
= UU1

(
1
0

)
= U1U

(
1
0

)
=

(
−βε
αε

)
and hence γ = −ε⋆βε = −β⋆ and δ = ε⋆αε = α⋆. This shows (c).

(d) ξ⋆ = ξ for any ξ ∈ K.

Proof of (d): Let U2 ∈ R(H,F ) be such that [U2(
(
1
0

)
)] = [

(
1
1

)
]. Then there is a

γ ∈ K such that U2 =
(
γ −γ⋆

γ γ⋆

)
. Clearly, γ ̸= 0.

Let ξ ∈ K. By (a) and (c), there is a U =
(
α −β⋆

β α⋆

)
∈ R(H,F ) such that ξ = β−1α.

From U2 U = U U2 and (c), we get

αγ − βγ⋆ = γα− γβ⋆ = γα− γ⋆β = αγ − β⋆γ,

αγ + βγ⋆ = γα⋆ + γβ = γα + γ⋆β = α⋆γ + βγ.
(5)

We conclude 2αγ = 2γα and 2βγ⋆ = 2γ⋆β. Hence γ commutes with α and, because
2γ⋆ = γ−1, also with β. Hence γ commutes with ξ and we conclude that γ ∈ Z(K).
From (b), it further follows that γ⋆ = γ. It is now clear from (5) that α = α⋆ and
β = β⋆.

From (b), it follows α = α⋆ = ε⋆αε, so that we have αε = εα. Similarly we see that
βε⋆ = ε⋆β. Hence ξ⋆ = (β−1α)⋆ = ε⋆β−1αε = β−1α = ξ and the proof of (d) is
complete.

From the proof of the previous lemma, it is obvious how to characterise the groups
R[u][v], where u, v ∈ H are linearly independent. We insert the following lemma for
later use.
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Lemma 6.8. LetF be a two-dimensional subspace ofH . Then R(H,F ) = SO(H,F ).

Proof. We have seen in the proof of Lemma 6.7 that R(H,F ) ⊆ SO(H,F ).

To show the reverse inclusion, let U ∈ SO(H,F ). Let us fix again an orthonormal
basis {u, v} of F and let us identify any operator in O(H,F ) with the 2 × 2-matrix
representing its restriction to F . Then U =

(
α −β
β α

)
for some α, β ∈ K such that

α2 + β2 = 1.

By Lemma 6.6, there is a V ∈ R(H,F ) such that P (V )([
(
1
0

)
]) = [

(
α
β

)
]. Since

U(K) = {−1, 1}, we have that V =
(
α −β
β α

)
= U or V =

(
−α β
−β −α

)
= −U . We

have moreover seen in the proof of Lemma 6.7 that, for some ε ∈ U(K), R(H,F )

contains
(
0 −ε
ε 0

)
and hence also its square

(
−ε2 0
0 −ε2

)
= −

(
1 0
0 1

)
. We conclude that

U ∈ R(H,F ).

We shall finally establish that K is a formally real field. For further information on
ordering on fields we refer the reader to [Pre, §1].

Note that, by the next lemma, K is a Pythagorean field.

Lemma 6.9. For any α, β ∈ K there is a γ ∈ K such that γ2 = α2 + β2. If in this
case γ = 0, then α = β = 0.

Proof. Let α, β ∈ K and assume that not both of them are equal to 0. Let u, v be
orthogonal unit vectors ofH . Then αu+βv is a non-zero vector and by the anisotropy
of the Hermitian form we have α2 + β2 = (αu+ βv, αu+ βv) ̸= 0.

Moreover, [αu + βv] contains a unit vector. Hence there is a γ̃ ∈ K \ {0} such that
(γ̃(αu+ βv), γ̃(αu+ βv)) = 1 and hence α2 + β2 =

(
1
γ̃

)2.

Lemma 6.10. K is formally real. K being equipped with any order, the Hermitian
form on H is positive definite.

Proof. By Lemma 6.9, α2
1 + . . .+α2

k = 0, where k ⩾ 1 and α1, . . . , αk ∈ K, implies
that α1 = . . . αk = 0. By [Pre, Theorem (1.8)], it follows that K is formally real.

Moreover, assume K to be equipped with an order and let u ∈ H •. Let v ∈ H be
a unit vector in [u]. Then we have u = αv for some α ∈ K \ {0} and it follows
(u, u) = α2 > 0.

We summarise what we have shown.

Theorem 6.11. Let (X,⊥) be a divisibly transitive orthoset of rank ⩾ 4. Then there
is an ordered field K and a positive-definite quadratic space H over K, possessing
a unit vector in each one-dimensional subspace, such that (X,⊥) is isomorphic to
(P (H),⊥).
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7 Quasiprimitive orthosets

The orthoset arising from a real Hilbert space of dimension ⩾ 4 is divisibly transitive
and we have seen that any divisibly transitive orthoset of rank ⩾ 4 arises from a
positive-definite quadratic space H over an ordered field K. We certainly wonder
under which additional, natural conditions on the orthoset (P (H),⊥), K is actually
the field of real numbers. A promising way to approach this question, however, seems
hard to define and we are actually not convinced that a solution is feasible in the
present framework. We will discuss here the related problem of finding reasonable
conditions under which K is a subfield of R. We consider to this end a property of
orthosets that is once more related to transitivity.

Let (X,⊥) be a divisibly transitive orthoset. We refer to an automorphism contained
in a subgroup Ref , where e and f are distinct elements of X , as a simple rotation.
The identity map is called the trivial rotation. The subgroup of O(X) generated by
all simple rotations will be called the rotation group of (X,⊥), denoted by R(X).

Definition 7.1. We call an orthoset (X,⊥) quasiprimitive if, for any non-trivial simple
rotation ϱ, the normal subgroup of R(X) generated by ϱ acts transitively on X .

That is, we call an orthoset quasiprimitive if the transformation group R(X) has
this property; see, e.g., [Prae]. More explicitly, let ϱτ = τ−1ϱτ be the conjugate of
some automorphism ϱ via a further automorphism τ . The quasiprimitivity of (X,⊥)
means that, given any simple rotation ϱ ̸= id and any two points e, f ∈ X , there are
τ1, . . . , τk ∈ R(X) and ε1, . . . , εk ∈ {−1, 1} such that f = (ϱεk)τk . . . (ϱε1)τ1(e).

Example 7.2. Let H be a real Hilbert space of dimension ⩾ 4. By Example 6.2,
(P (H),⊥) is a divisibly transitive orthoset. Moreover, the simple rotations of
(P (H),⊥) are exactly the automorphisms induced by simple rotations of H , and
R(P (H)) = {P (U) : U ∈ SO(H)}.

We claim that (P (H),⊥) is quasiprimitive. Let ϱ ̸= id be a simple rotation of
(P (H),⊥) and let [u], [v] ∈ P (H) be distinct. Let S be a 3-dimensional subspace
of H such that u, v ∈ S. SO(S), the special orthogonal group of S, is simple; see,
e.g., [Gro]. Hence the conjugates of any U ∈ SO(S), distinct from the identity, gen-
erate the whole group SO(S) and since SO(S) acts transitively on P (S), some finite
product of conjugates of U maps [u] to [v]. We conclude that some finite product of
conjugates of ϱ maps [u] to [v].

Let us now fix a positive-definite quadratic space H over an ordered field K such that
each one-dimensional subspace contains a unit vector and assume that the orthoset
(P (H),⊥) is divisibly transitive.

We may describe the rotation group R(P (H)) as follows.

Proposition 7.3. The map

P : SO(H) → R(P (H))

is a surjective homomorphism.
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Proof. For any linearly independent vectors u, v ∈ H , the map P : R(H, [u, v]) →
R[u][v] is, by Lemma 6.6, an isomorphism. By Lemma 6.8 and our remarks at end of
Section 4, the subgroups R(H,F ), where F is a two-dimensional subspace, generate
SO(H). By definition, the subgroups R[u][v] of O(X), where [u], [v] ∈ P (H) are
distinct, generate R(P (H)). By Theorem 4.2, P : O(H) → O(P (H)) is a homo-
morphism, hence the assertion follows.

The following definitions and facts are due to Holland [Hol1], for further details see
also [Vet1]. We call an element α ∈ K infinitesimal if |α| < 1

n
for all n ∈ N \ {0},

and we call α ∈ K finite if |α| < n for some n ∈ N \ {0}. We denote the set of
infinitesimal and finite elements by IK and FK , respectively. IK and FK are additive
subgroups of K and are closed under multiplication. Furthermore, FK \ IK is a
multiplicative subgroup of K \ {0}, and we have IK · FK = IK and FK + IK = FK .

Likewise, a vector x ∈ H is called infinitesimal if so is (x, x), and x is called finite
if so is (x, x). The sets of infinitesimal and finite vectors are denoted by IH and FH ,
respectively. IH and FH are subgroups of H and we have IK · FH = FK · IH = IH ,
FK · FH = FH , and FH + IH = FH . Furthermore, (x, y) ∈ IK if x, y ∈ FH and at
least one of x and y is infinitesimal.

If the only infinitesimal element of K is 0, K is called Archimedean. In this case,
K is isomorphic to a subfield of R equipped with the inherited natural order; see,
e.g., [Fuc].

For [x], [y] ∈ P (H), we put [x] ≈ [y] if there are non-infinitesimal, finite vectors
x′ ∈ [x] and y′ ∈ [y] such that x′ − y′ ∈ IH .

Lemma 7.4. (i) ≈ is an equivalence relation, which is the equality if and only if
K is Archimedean.

(ii) For any orthogonal vectors x, y ∈ H •, we have [x] ̸≈ [y].

(iii) The relation ≈ is preserved by any orthogonal operator on H . That is, for any
U ∈ O(H) and [x], [y] ∈ P (H), we have [x]≈ [y] if and only if U([x])≈U([y]).

Proof. Ad (i): ≈ is clearly reflexive and symmetric. To see that ≈ is also transitive,
let x, y, y′, z ∈ FH \ IH such that x− y, y′ − z ∈ IH and y′ = αy for some non-zero
α ∈ K. Then α2 = (y′, y′) (y, y)−1 ∈ FK \IK and hence αz ∈ FH \IH . We conclude
that x− αz ∈ IH .

If K is Archimedean, x ∈ IH implies (x, x) = 0 and hence x = 0. Hence ≈ is the
equality. Conversely, if K is not Archimedean, let α ∈ IK \ {0} and let u, v ∈ H
be orthogonal unit vectors. Then [u] ≈ [u + αv] because u, u + αv ∈ FH \ IH and
αv ∈ IH . Hence ≈ is not the equality.

Ad (ii): For any finite, non-infinitesimal vectors x′ ∈ [x] and y′ ∈ [y], we have that
(x′ − y′, x′ − y′) = (x′, x′) + (y′, y′) is not infinitesimal because (x′, x′) and (y′, y′)
are non-infinitesimal and positive. Hence [x] ̸≈ [y].

Ad (iii): Assume that [x]≈ [y]. This means x′−y′ ∈ IH for some x′ ∈ [x] and y′ ∈ [y]
such that x′, y′ ∈ FH \ IH . The image of an infinitesimal vector under an orthogonal
operator is obviously infinitesimal as well. Hence it follows U(x′) − U(y′) ∈ IH .
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Furthermore, U(x′) ∈ [U(x)] = U([x]) and similarly U(y′) ∈ U([y]). It is obvious
again that U(x′), U(y′) ∈ FH \ IH . We conclude U([x])≈ U([y]).

Lemma 7.5. Assume that K is non-Archimedean. Then there is a U ∈ SO(H) such
that P (U) is distinct from the identity and U(x) − x is infinitesimal for any finite
vector x.

Proof. Let u and v be orthogonal unit vectors and let α ∈ IK \ {0}. Furthermore, let
ε ∈ K+ be such that u′ = ε(u+ αv) is a unit vector. Then ε2 = 1

1+α2 ∈ FK \ IK and
hence ε ∈ FK \IK . Moreover, also v′ = ε(−αu+v) is a unit vector. In fact, u′ and v′

are orthogonal unit vectors spanning [u, v]. Moreover, u− u′ = α2 ε2

1+ε
u−αε v ∈ IH

and similarly v − v′ ∈ IH .

Let U ∈ O(H) be such that U(u) = u′, U(v) = v′, and U(w) = w for any w ⊥ u, v.
Then U ∈ SO(H) because detU |[u,v] = ε2(1 + α2) = 1. Let x ∈ H be finite.
Then we have x = (x, u)u + (x, v) v + w, where w ⊥ u, v. It follows U(x) − x =
(x, u) (u′ − u) + (x, v) (v′ − v) ∈ IH .

Lemma 7.6. If (P (H),⊥) is quasiprimitive, then K is Archimedean and hence a
subfield of R.

Proof. Let us assume that (P (H),⊥) is quasiprimitive and K is not Archimedean.
In accordance with Lemma 7.5, choose some U ∈ SO(H) such that P (U) is distinct
from the identity and U(x)−x ∈ IH for any x ∈ FH . Then we have that U([x])≈ [x]
for any x ∈ H •.

Furthermore, for any further orthogonal operator V , V −1UV has the same prop-
erties. Indeed, for any x ∈ FH , we have (V −1UV (x)− x, V −1UV (x)− x) =
(UV (x)− V (x), UV (x)− V (x)) ∈ IK , that is, V −1UV (x) − x ∈ IH . Again it
follows that V −1UV ([x])≈ [x] for any x ∈ H •.

We conclude that the orbit of any [x] ∈ P (H) under the action of conjugates of U
is contained in the ≈-class of [x]. The latter is, by Lemma 7.4(ii), a proper subset of
P (H). In view of Proposition 7.3, it follows that (X,⊥) is not quasiprimitive.

We may summarise the results of this section as follows.

Theorem 7.7. Let (X,⊥) be an orthoset of rank ⩾ 4. Assume that (X,⊥) is divisibly
transitive and quasiprimitive. Then there is a positive-definite quadratic space H
over a subfield of R, possessing a unit vector in each one-dimensional subspace, such
that (X,⊥) is isomorphic to (P (H),⊥).
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