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Abstract

We consider two kinds of logics for approx-
imate reasoning: one is weaker than classi-
cal logic and the other is stronger. In the
first case, we are led by the principle that
from given premises we can jump to conclu-
sions which are only approximately (or pos-
sibly) correct. In the second case, which was
not, considered so far, in contrast, we follow
the principle that conclusions must remain
(necessarily) correct even if the premises are
slightly changed. In this paper we recall the
definitions and characterizations of the first
logic, and we investigate the basic properties
of the second logic, as well as its soundness
and completeness with respect to Ruspini’s
semantics based on fuzzy similarity relations.

1 Introduction

In order to open up a topic for systematic investigation
in a formal way, we are required to fix a framework of
reference; we need to choose a model to which our con-
siderations refer. Roughly speaking, we often proceed
as follows. To discuss a topic means to discuss the
relative or absolute properties of a manifold of differ-
ent situations. To make the subject under considera-
tion precise a particular set of characteristic properties
needs to be selected. We are then led to a collection
of situations which vary with respect to certain prop-
erties and are identified otherwise. The properties are
in turn identified with the set of situations in which
they hold.

To reason in this framework we may use classical
propositional logic. In this logic we find what we need:
yes-no propositions modeled by subsets, and connec-
tives which are interpreted by set-theoretic operations
like meet, join, and complement. Furthermore, impli-
cation corresponds to set-theoretic inclusion.

When using classical propositional logic for practical
purposes the problem however might occur that differ-
ent properties might not always be delimitable from
each other in practice. This is in particular always
the case if the universe of discourse results from an
infinite process of stepwise refinement, in which case
it has a continuous character. In fact, often we work
in metric spaces like the reals. But then it might no
longer be convenient to model implicational relation-
ships as strict set-theoretic inclusion; the relation of
inclusion is sensitive to arbitrary small changes. This
is undesirable if bounds of propositions are given only
roughly.

A possible solution is to make the relationship between
properties and the pool of possible interpretations in
a model more flexible. We may require for instance
that inferences should not break down, but be tolerant,
with regard to small changes. In this paper, we develop
this idea in a specific way, continuing a series of earlier
works.

We will actually propose two different ways to pro-
ceed and in order to illustrate why we do so, consider
the following example, which is actually inappropriate
because it refers to first-order logic but might serve
for the illustrative purpose. Let a set of objects be
distinguished by their sizes. We may consider two dif-
ferent kinds of relations, < meaning “smaller or equal
than” and < meaning “strictly smaller than”, in or-
der to infer information about one object, say @, from
information about another one, say P. However, a
statement like a < b, where a and b are the sizes of P
and @, respectively, might be practically undecidable
if P and @ are similar. The principle of approximate
reasoning introduces tolerance in the following way:
letting a < b still hold if a is slightly larger than b,
but endowing this statement with a truth-like degree
which is 1 if a < b actually holds but decreases contin-
uously to 0 when a becomes larger than b. The case
of < is, in a sense, dual. Here we may require that a
is by a sufficient amount smaller than b so that we are



able to make a clear statement. The principle of strong
reasoning says that a statement must be tolerant, that
is, remain valid, under small changes. It is assigned a
truth degree as well, which is 1 if there is no tolerance,
and the smaller the greater the tolerance is.

Logics of approximate reasoning have been studied
quite intensively. The initial approach is due to Rus-
pini [6]. Approaches in a logical style have been de-
veloped in several papers of three of the authors and
others [2, 3, 5, 4]. The most flexible approach is pro-
vided by multi-modal logics [3]. Here, the universe of
discourse W is a similarity space and a modal operator
&4 is added to the language of classical propositional
logic (CPL) for each « from a fixed set C' of truth
degrees. < is interpreted by the a-neighborhoods
U, in W. Then the implication “from ¢ it follows
1 to the degree o” holds according to the principles
of approximate reasoning if [p] C U,([¢)]) where [¢]
and [¢] are the sets of interpretations satisfying ¢
and 1 respectively. In a similar way, this implication
holds according to the principles of strong reasoning if

Ua(lgl) € [¢].

We see in particular that both our above concerns can
be fulfilled in the multi-modal approach. Here however
we first consider what is called the logic of approximate
entailment, LAE, developed in [5]. This logic consid-
ers graded implications like ¢ >, ¥, which correspond
to inclusions [p] C U,([t)]) when interpreted in the
above logic. Furthermore, in complete analogy we de-
velop the logic of strong entailment, denoted LSE. This
logic deals with graded implications ¢ >, ,which cor-
respond to inclusions Uy, ([¢]) C [¢].

This paper is organized as follows. Section 2 con-
tains necessary background on fuzzy similarity mea-
sures and their associated implication and consistency
measures proposed by Ruspini [6]. In Section 3 we
describe the approximate and strong similarity-based
entailments and show their basic properties. In Section
4 we recall the logic LAE of approximate entailment,
providing its syntax and semantics. Finally, in Section
6, we introduce a new logic for the strong entailment
LSE and we propose an axiomatization. We finish with
some remarks about future work.

2 Preliminaries: fuzzy similarity
relations and Ruspini’s measures

Let us consider a propositional language L built up
from a finite set of propositional variables p1,...p,
and the constants T and L by means of the binary
operators A, V and the unary operator —. Propositions
will be denoted by greek letters ¢, ¥, .... The set
of propositions will be denoted by P and the set of

classical interpretations of P will be denoted by (2,
we will also call them possible worlds. We will use
the expressions w | ¢ and ¢ = 1) to respectively
denote that w satisfies ¢ (or that w is a model )
and that v is a logical consequence of ¢ in classical
propositional logic. We will also denote by [¢] the
subset of interpretations of Q that satisfy ¢, i.e. [¢] =

{weQlwke}

Following Ruspini [6], the starting point of our frame-
work is to assume that a possible world or state of
a system may resemble more to some worlds than to
another ones, and this basic fact may help us to evalu-
ate to what extent a partial description (a proposition)
may be close or similar to some other. This is modelled
by assuming a fuzzy binary relation S : Q x Q — [0, 1]
on the set € of classical interpretations of P capturing
a suitable notion of similarity is given. Usual proper-
ties that are considered in the literature for such fuzzy
binary relations are:

Reflexivity: S(u,u) =1 for all u € Q
Separability: S(u,v) =1iff u =0

Symmetry: S(u,v) = S(v,u), for all u,v € Q
®-Transivity: S(u,v) ® S(v,w) < S(u,w), for
all u,v,w e Q

where ® is a t-norm. The reflexivity property estab-
lishes that the similarity degree of any world with
itself has the highest value. Separability is a bit
stronger since it forbids to have S(u,v) = 1 for u # v.
Symmetry has a clear meaning, and ®-Transitivity
is a relaxed form of transitivity since it establishes
S(u,v) ® S(v,w) as a lower bound for S(u,w). Note
that S(u,v) = S(v,w) = 1 implies S(u,w) = 1. Re-
flexive and symmetric fuzzy relations are often called
closeness or proxrimity relations, while those further
satisfying ®@-transitivity are usually called ®-transitive
similarity relations or ®-indistinguishability operators.
In this paper we will use the term ®-similarity rela-
tions to refer to these class of relations, and some-
times we will also require them to be separable. Note
that Zadeh called simply similarity relations to min-
transitive similarity relations in the previous sense.

Dually, one can think of 1 — S as a kind of metric on
worlds, indeed, when ® is Lukasiewicz t-norm and S is
a separating ®-transitive similarity relation, then 1—5
is a metric, c.f. [7].

When trying to extend the similarity on worlds to
propositions, Ruspini defined in [6] the following two
measures

Is(p | ¥) = inf sup S(w,w)
WEY w=p

Cs(p | 1) = sup sup S(w,w’)
wEY w'lEp



which are the lower and upper bounds respectively of
the resemblance or proximity degree between ¢ and
1. Indeed, Ig is an implication (i.e. inclusion-like)
measure, while C's is a consistency (i.e. intersection-
like) measure and thus it is symmetric.

The value of Is(p | ¥) provides the measure to what
extent ¢ is close to be true given ¢ for granted and
the similarity between worlds represented by S. In
particular, when S is separating and the set of worlds
is finite then, Is(p | ) = 1iff ¢ = ¢. Moreover, if S
is @-transitive then Ig is ®-transitive as well [6], i.e.
the inequality

Is(x | p) @ Is(p | ¥) < Is(x | ¥)

holds for any propositions ¢, 1 and x, capturing a
form of generalised modus ponens.

On the other hand, the value of Cs(¢p | ¢) provides the
measure of what extent ¢ can be considered compat-
ible with the available knowledge 1. In particular, in
the finite case and with S satisfying separation prop-
erty, Cs(¢ | ¥) = 1 iff b = —p. Observe that, when
the propositional language is finitely generated and v
is equivalent to a maximal consistent set of proposi-
tions, both measures coincide because there is a unique
world w such that w = . In addition, it is easy to
show that, given a fixed x, the measure Cg(- | x) is
a possibility measure [2] since the following identities
hold true:

1. Cs(Tx)=1
2. Cs(Lx)=0

3. Cs(p VY| x)=max(Cs(p | x), Cs(¥ | X))

By duality, one can define the following similarity-
based measure Ng as follows:

Ns(¥ | 9) = 1-Cs(~t | ¢) = inf inf 1—S(w,w).

wE=— wf=p

The following are relevant properties of Ng measures
which will be used in the next section and which can
be easily verified:

1. Ns(

| ¢) is a necessmy measure for each p such
that ¢

L,
- Ng(T | 80)
- Ns(L]p)=
- Ns(¢ A x| 90) =min(Ns(¢¥ | ¢), Ns(x | ¢))

2. Ns(¢ | ¢V x) =min(Ns(¥ | ¢), Ns(¢ | x))
3. Ns(¢ | ¢) = Ns(—p | )

4. if ¢ |= ¢ then Ns(o | x) < Ns(¥ | x) and
Ns(x |¥) < Ns(x | »)

5. if Ng(v | ¢) > 0 then ¢ =1

3 Approximate and strong entailment
relations

Given a ®-similarity relation on 2, in this section
we will first recall from [5] a corresponding family of
graded approximate entailment relations =% and then
we will introduce a family of strong entailment rela-
tions |~¢, both indexed by values a € [0,1], and
being respectively weaker and stronger notions than
the classical logical entailment |=.

A (graded) approximate satisfaction relation =g C
Q x P, for each o € [0, 1] by

iff there exists a model w’ of ¢
which is a-similar to w, i.e. S(w,w’) > «

wES e

The approximate satisfaction relation can be extended
in the natural way over to an approximate entailment
relation =§ C P x P: a proposition ¢ entails a propo-
sition v at degree «, written ¢ =% 9, if each model of
@ is an approximate model of i at level «, that is,

o ESY

It is easy to check that ¢ =% ¢ holds iff any of the
following equivalent conditions hold:

iff w =g 9 for all model w of ¢

o Is(v|p) >«
e [¢] C Ua([¢])

where U, ([¢)]) C € is the neighborhood of radius « of
the set of models of 1, that is, Uy ([¢)]) = {w € Q |
there exists w’ s.t. w’' = and S(w',w) > a}.

The characterizing properties of this graded entail-
ment relation are (the reader is referred to [3] for
further details):

(1) Nestedness:

if(p):gz/}andﬁgathentp)zgz/};
(2) ®-Transitivity:

if ¢ =8 x and y =4 ¢ then ¢ =397
(3) Reflexivity: ¢ =§ ¢;
(4) Right weakening:

if ¢ =5 ¢ and ¢ |= x then ¢ =5 x;
(5) Left strengthening:

if ¢ = x and x =3 1 then ¢ =5 ¢
(6) Left OR:

eV x g ¥iff ¢ =5 ¢ and x =5
(7) Right OR:

if x has a single model,

X E§ eV iff x =5 @ or x =5 9.

Now we are interested in another kind of graded en-
tailment, a strong entailment, which is in a sense dual



to the above approximate entailment. We define a
(graded) satisfaction relation ¢ C Q x P, for each
a € 1[0,1] by
whkg e iff W = foreachw st. S(w,w') >«
that is, if any model w’ in the neighborhood (of radius
a) of wis a model of ¢. If w ¢ ¢ we say that w is an
strong model (at level ) of . The natural correspond-
ing entailment relation comes defined in the following
way: a proposition ¢ strongly entails a proposition
at degree «, written ¢ |=% 1, if each approximate
model of ¢ at level « is a model of ¢ that is,

© R ¢ iff, for all w, w =S ¢ implies w = ¢

An equivalent definition, making use of the neighbor-
hoods, would simply be

p k5 v iff Ua(lg]) € [¥]

Moreover, in a similar way the approximate entailment
was linked to the implication measure Ig, this strong
graded entailment is related to the consistency mea-
sure Cg, or equivalently, to the necessity measure Ng.
Indeed, the following proposition relate in a precise
way the strong entailment k¢ and the Ng measure.

Proposition 1 Assume the language is finitely gen-
erated and let o > 0. Then ¢ RS ¢ iff Ns(¢ | ¢) >
1—a.

Proof: —) If ¢ |=% 1, it means that if w' is such
that S(w,w’) > « for some w = ¢, then w' = 9.
Therefore, if w' & ¢ then S(w,w’) < « for all w =
@, ie. max,, S(w,w’) < a for all w' | ), ie.
MAX /gy MAX =, S(w, ') < v, e, C(Y | @) <

—) Ng(¢ | ¢) > 1 —a amounts to C(—¢ | ¢) < a, i.e.
for all w £ 9 and for all w’ = ¢ we have S(w,w’) < a.
So, if w | ¢ is such that S(w,w’) > « for some other
world w’ it must necessarily be w’ = 1, hence ¢ K¢ 9.
|

Main properties of this strong graded entailment
relation induced by a ®-similarity measure S are:

(1) Nestedness:
ifcpl:zgwandﬂZathencplzgw;
2) ¢ R iff either = =g or =1
3) whsviff oy
4) min-Transitivity:
if ¢ kg v and ¥ Rg y then o g
(5) Left OR:
@V xRS ¢l o kg ¢ and x RS ¢
(6) Right AND:
XS e AV iff x RS ¢ and x R V.

(7) Contraposition:
If ¢ kg o then = G —p
(8) Restricted ®-Transitivity:
If p, 1, x have a single model then
if fzg®ﬁ —) then either ¢ & —x or x fcg —1)
Two interesting derived properties from (3) and
(4) are:

Right weakening:

if o g ¢ and ¥ |= x then ¢ R§ x;
Left strengthening:

if ¢ = x and x RS ¢ then ¢ g

Indeed one can show that these properties characterize
these graded strong entailments, but the proof is not
included for space reasons.

4 A logic of approximate entailment

In [5], it has been developed a graded conditional logic
approach, that we will call LAE, to encode in the lan-
guage syntactical objects representing approximate en-
tailments ¢ =% 1. To do so, binary (graded) modal
operators are introduced (under some restrictions, e. g.
nested modal formulas are not allowed, and the lan-
guage is finitely generated) and appropriate semantics
in terms of similarity Kripke structures are given.

Through the rest of the paper, let us fix a countable
set C' C [0,1] of similarity degrees; we require that C
contains 0 and 1 and that for any non-zero a € C
there is a largest § < « in C. Furthermore, let us fix
an operation ® : C' x C' — ' which is commutative,
associative, in both arguments isotone, and has 1 as
its neutral element.

The propositional language of LAE results from ex-
tending the propositional language P introduced in
Section 2 with a family {>,}aec of binary operators.
Conditional formulas are built as follows:

- If ¢ € P then ¢ is also a conditional formula.

- If p,9 € P then, for every a € C, ¢ >, ¥ is an
atomic conditional formula.

- If p and % are conditional formulas then —¢ and
@ — 1 are conditional formulas

Note that in this language, nested conditional formulas
are not allowed.

Semantics are specified by ®-similarity Kripke mod-
els M = (W, S,e), where W ia s set of worlds, S :
W xW — (C'is a @-similarity on W and e: W x P —
{0,1} is such that e(w,-) is a usual Boolean interpre-
tation of propositions of P, with the extra condition
that e(w,-) # e(w’,-) when w # w’. Then we define
the satisfaction relation by stipulating (M,w) | ¢ if



e(w,p) = 1 for ¢ € P, and is extended to atomic
conditional formulas by defining

Mw)Ee>av if [p] CUa([Y]) ,
or equivalently, if Is(v» | ) > «a, where
now U, refers to mneighborhoods in W (ie.

] = {w € W | e(w,9) = 1}). The rest of the
conditions for compound conditional formulas are the
usual ones. Note that the notion of satisfiability for
>, is independent of any particular world, i.e. it is
a global notion. The condition of satisfiability makes
clear that in the object language ¢ >, v represents
lower bounds of Ig(v | ¢).

The axioms and rules of LAE are those of Classical
Propositional logic (CPL) plus the following ones,
where o and 3 represent any values of C: !

(N) o> —e>pviff<a
(CS) e>19%—(p—1)
(EX) @>0v

( X >a X — X >a X, if ¥ and ¥’ are m.e.c.’s
(e >a P) A (Y >pX) = ¢ >ass X
(VY >ax) < (¢>a X)N (¥ >aX)

(X >a V1Y) & (X >a @) V(X >a ),
if x is a m.e.c.

N

(
(LO
(R

— — — — ' ~— ~—

and the following inference rule:

(RK) From ¢ — v infer ¢ >1 ¢

In [5], the author proves, among other results, that
LAE is complete with respect to the class of similarity
models (W, S) where S is a separating ®-similarity,
when C is finite. Moreover, if the axiom (CS) is
dropped, then one gets completeness w.r.t. similarity
models where the similarity relation is not necessarily
separating.

Notice that a very related approach using metrics in-
stead of similarities has been proposed in [8].

5 Logic of strong entailment

Let us define the logic LSE in a similar way, but not
exactly, as we did for the logic LAE. Formulas of LSE
are built from propositions of P by introducing new
graded implications which are a triples consisting of
two propositions ¢, € P and a value a € C', denoted

© o .

In these axioms we use m.e.c. to denote a maximal
elementary conjunction, that is, a conjunction where each
propositional variable appears either in positive or nega-
tive form (remember that we are assuming a finite set of
propositional variables).

A statement of LSE is built up from graded implica-
tions of LSE by means of the binary operators A, vV and
the unary operator —. The additional operator — will
be used as an abbreviation for — - V-.

Semantics for LSE are given by Kripke models M =
(W, S,e), where W is a set of worlds, e : W x P —
{0,1} is such that, for all w € W, e(w, -) is a Boolean
interpretation of propositional formulas of P, and S :
W x W — C'is a separating symmetric fuzzy relation
over possible worlds valued on C'. The satisfaction of a
graded implication ¢ >, ¢ in a model M = (W, S, e),
is defined as

ME@sat i Us(lgl) € [4].
where again U,([¢]) = {w € W | S, w) >
a for some w' € W st e(w',9) = 1}. According
to Proposition 1, when a > 0, M E ¢ =, ¢ iff
Ng( | ¢) > 1 — a. The satisfaction of statements
is defined classically from the satisfaction of graded
implications.

Finally, a theory of LSE is a finite set of statements of
LSE. We say that a theory 7 semantically entails a
statement ®, written 7 Ergp @, if O is satisfied by
any model satisfying every element of 7.

We shall axiomatise the logic LSE in the following way:.

Definition 1 The following graded implications are
axioms of LSE for any ¢, v, x € P and o, 3 € C':

(A1) Lo
(A2) ¢ =1 ¥ where @,1b are such that ¢ — ¥ is a
tautology of CPL

(A3) o =0 T

(Ad) (¢ =0 V) A (P =a X) = (P =a Y AX)
(A5) (¢ =a X)A (¥ =0 X) = (VY =0 X)
(A6) (¢ =a ) = (¢ =a )

(A7) (¢ =8 V) A (¥ =a X) = (¥ =min(3,0) X)
(A8) (¢ = ) — (¢ =a ¢) where a>f3
(A9) (=0 ¢) = (=1 L) V(T =1 v)

In addition, given a tautology of CPL, the statement
resulting from a uniform replacement of the atoms by
graded implications of LSE is an axiom. Moreover, the
following is a rule of LSE for any statements ®,¥:

(MP) from ® and ® — U derive ¥

A proof of a statement ® from a theory T is defined
as usual. If it exists, we write T Figg P.

Theorem 1 (Completeness) Let 7 be a consistent
theory of LSE, and let ® be a statement. Then T Frsg
O if and only if T Erse P.



Proof: The “only if” part is evident. As for the “if”
part, notice first that it is easy to check that 7 Frsg ®
iff TUAX™ proves ® just using the axioms and rules of
classical propositional logic (using graded implications
as propositional variables), written AX* U7 tcpL P,
where AX™ is the set of instances of the LSE axioms.

Assume that 7 t/sg ®. Then, there is a {0,1}-
evaluation which is a model of AX* U7 and v(®) =
0. We are going to define a similarity-Kripke model
M = (W, S, e) such that M is a model of 7 but not of
®. We take W = (), the set of propositional models of
P and we define S: Q x Q — [0,1] as

S(w,w") = max{t € C | v(w = —w') = 0}

where, for each w € Q, w denotes the proposition
whose only model is w. Actually, w always exists since
we are assuming that the propositional language P is
generated by a finite set of variables. For each ¢ € P,

define [p] = {w € Q| w = ¢}.

Claim 1: Let ¢ > 0. Then, v(¢ = ) = 1 iff for all
w,w € W if w = ¢ and w’' = —p then S(w,w') < t.

Proof: Since ¢ and v are logically equivalent to
Vo, wand to A, ~w’ and v satisfies all the ax-
iom instances in AX*, we have that v(¢ = ) = 1 iff
OV W 7t Ny ) = 1 iff o(w = —w') =1
for all w,w" € W such that w |= ¢ and w' | —¢. But
according to the definition of S above, v(w = —w') =
1iff S(w,w') < t. O

Claim 2: v(p = ¥) = 1 iff U([¢]) C [¢], where Uy is
defined w.r.t. S.

Proof: Assume t > 0. Then, by Claim 1, v(p = 9) =
1 iff for all w,w’ € W if w | ¢ and w' = =) then
S(w,w") < t, which is equivalent to the condition that
for all w,w’ € W if w = ¢ and S(w,w’) > t then
w' |, that is, Us([¢]) C [¢].

If t = 0, by axiom (A9), v(p =0 1) = 1 iff either
v(p =1 L) =1 or v(T =1 ¢) = 1, that is, iff either
[¢] = Ui([¢]) = 0 or Q = Uy ([T]) C [&]. So, noticing
that Uy(0) = 0, we have that in both cases Up([¢]) C
[¢]. Conversely, if Uy([p]) C [#] and [¢] # 0, then

Q= Uo([e)) € [¢]- o

Finally, define M = (,S,e) where e is defined as
e(w,p) =1if w = ¢, e(w, ) = 0 otherwise, for each
@ € P, and the satisfaction condition for graded im-
plications in M as expected:

M = = 1 iff U([p]) €[] iff v(p = ) =1

Therefore, from Claim 2, it is clear that M = ¥ for
all U € T but M [~ ®, hence 7 ~rse ©. |

6 Conclusions and future work

In this paper we have been concerned with two no-
tions of graded similarity-based entailment arising in
the framework of practical reasoning when looking for
robust inferences in the presence of small variations
either in the premise or in the conclusion?. The main
contribution of the paper is the study and axiomati-
zation of the so-called logic of strong entailment LSE,
which incorporates at the object level constructs as
© = Y capturing the notion that ¢ is a strong conse-
quence (at degree a) of ¢. We have shown soundness
and completeness results for special kinds of deriva-
tions in such a logic but a lot of work remains to be
done to fully exploit this logical framework.
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