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Abstract

Fuzzy sets are a popular tool to model vague prop-
erties. It is, however, well-known that this model
usually involves a good degree of arbitrariness. In
this contribution we consider the possibility of stan-
dardising the construction of fuzzy sets at least with
regard to the borderline cases. To this end, we iden-
tify a vague property with the sets of clearly positive
cases and clearly negative cases and under the as-
sumption that the universe of discourse is a metric
space, we determine the fuzzy set by what can be
described as a linear interpolation. Following this
idea, we discuss a number of logic-based approaches
to reasoning under vagueness.
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1. Introduction

The discussion around the question how to choose
a fuzzy set in order to represent a certain vague
property in an appropriate way is probably as old
as the theory of fuzzy sets itself. Let us review the
common procedure. Assume that a set of worlds W
serves as the model of a situation that can vary in
certain respects. We then say that a property ϕ is
vague if it is not for all w ∈W reasonably possible to
assign ϕ one of the truth values “false” or “true”. At
certain w ∈ W , ϕ applies undoubtedly; at certain
w ∈ W undoubtedly does not apply; but there are
cases in which neither possibility can appropriately
be assumed. Such cases are called borderline for ϕ.
Modelling ϕ by a fuzzy set means to define a map
u such that u(w) = 1 or u(w) = 0, respectively, in
the clear cases, and 0 < u(w) < 1 otherwise. The
method is appealing; however, there is apparently
no convincing way of justifying a particular choice
of u. To specify the meaning of particular truth
values is in fact a delicate matter and it is even
more difficult to justify ways of defining operations
on the set of truth values in order to interpret logical
combinations of vague properties.
A discussion of this basic issue can be found, e.g.,

in [6]. Three primary ways of interpreting fuzzy
sets are considered. According to one of these ap-
proaches, the notion of prototypicality for vague
notions is central. In this case, the set of worlds
W is assumed to be endowed in some natural way
with a similarity relation, such that each pair of

two worlds is assigned a degree measuring their dis-
tinctness. Moreover, the question to which extent
a world w ∈ W is compatible with a property ϕ
is not decided independently for each w; instead, a
subset A of W is chosen that is supposed to contain
the clearly positive cases. The set A in turn deter-
mines the fuzzy set modelling ϕ; the truth degree at
a w ∈ W is taken to be the supremum of the simi-
larities between w and the elements of A. Based on
this idea, a number of formal approaches to dealing
with vagueness have been defined. As an example,
we may mention the paper [10].

The similarity-based approach to fuzzy sets is ad-
vantageous in several respects. First of all, it sim-
plifies the choice of fuzzy sets, restricting the task
to the decision about the clearly positive cases. Sec-
ond, the interpretation of truth values is no longer
a matter concerning each property separately; this
matter is shifted to a more general level. It simply
assumes that the set of worlds is actually a similar-
ity space. In practice, the set of worlds might often
be a subset of Rn; in this case, it seems to be in fact
reasonably possible to define a similarity relation,
even though the choice will rarely be unique.

Here, we will elaborate on this idea, going one
step further. Even if the similarity-based interpre-
tation of fuzzy sets is convincing, there are practi-
cal disadvantages. The very reason of the problems
caused by vagueness lies in the fact that we deal
with different levels of granularities at the same time
[13, 14]. Vague properties refer to a coarse level of
granularity; the chosen universe of discourse often
refers to a finer, usually in fact to the finest possible
level of granularity. Within the similarity-based ap-
proach, we can reasonably deal with two levels: one
coarse level together with the level corresponding to
our set of worlds.

It is, however, not easily possible to deal with lev-
els of granularity in between the two extremes. Intu-
itively speaking, the graph of a fuzzy set determined
by the prototypical cases by means of a similarity re-
lation is always “equally steep”. Consider, however,
the following situation. Let us model the time of the
day in a vague manner. Let α mean “around eleven
o’clock” and let β mean “around 11.02”. Then we
might take as the prototypical cases of α the time
interval from, say, 10.50 to 11.10. In case of β the in-
terval will be narrower, say, the interval from 11.01
to 11.03. How should we choose a similarity rela-
tion to obtain suitable fuzzy sets both for α and β?



The task is impossible because β refers to a finer
level of granularity than α. Considering a time dif-
ference of 30 minutes as similar to the degree 1

2 , we
might arrive at a reasonable model for α: a fuzzy
set whose support has, say, a width of around two
hours. However, using the same similarity relation
in case β as well, we get a fuzzy set of nearly the
same width. This is certainly counterintuitive.

In principle, there is an easy way to overcome this
problem. Let us take into account not only the pro-
totypical cases, but also the counterexamples, that
is, the clearly negative cases. For α, this is the time,
say, before 10 and after 12 o’clock; for β, this is the
time, say, before 10.58 and after 11.06. Further-
more, we may make use of the natural metric, the
time difference, and construct the fuzzy sets in both
cases by linear interpolation.
In the recent paper [12], we have applied this idea

in the particular context of medical questionnaires.
Such questionnaires consist of several items that pa-
tients are asked to evaluate; to this end they choose
for each item a numerical degree indicating to which
extent they think the item applies. The result is
calculated from the patient’s answers and is again
a numerical degree. Identifying vague notions with
pairs of prototypes and counterexamples proves in
this context to be exactly the appropriate choice.
However, the formalism is taylored to a quite spe-
cific application and the general case was not dis-
cussed.

It has been left open in [12] if there can be any-
thing like a logic for prototypes and counterexam-
ples. This is the issue of the present contribution.
We surely do not offer definite solutions; the matter
is somewhat tricky. Our intention is, at first place,
to propagate the interpretation of fuzzy sets based
on pairs of sets at all. Furthermore, our ultimate
aim is to associate a logic with this idea, a logic
which, if found satisfactory, could then reasonably
be called a “logic of vagueness”. In what follows, we
consider a number of different possible approaches
and discuss their advantages and disadvantages.

2. Prototypes and counterexamples

We will specify in this section the general frame-
work that we propose to use in order to model vague
properties.

A metric space is a pair (W,d), whereW is a non-
empty set and d is a metric onW , that is, a mapping
d ∈ W ×W → R+ such that, for any u, v, w ∈ W ,
(i) d(v, w) = 0 if and only if v = w, (ii) d(v, w) =
d(w, v), and (iii) d(u,w) 6 d(u, v) + d(v, w).
The setW will be our universe of discourse, com-

monly called the set of worlds. The metric d on
W is intended to measure the distinctness of two
worlds.
We note that, in principle, we could equally well

work with a similarity relation, which in fact is more
general and allows a greater flexibility. Roughly

speaking, however, a metric often measures dis-
tances over the whole space and a similarity rela-
tion only in a restricted region around each point.
This is in particular the case if the similarity rela-
tion is used for the construction of fuzzy sets, in the
sense mentioned above. Hence we consider a metric
as being more in line with our intentions. Apart
from that, a typical case arising in praxis is the Rn

endowed with the Euclidean metric.
We next consider the set of disjoint pairs of non-

empty subsets of a metric space (W,d) as well as
the special fuzzy sets induced by them.

In what follows, we denote the distance of a point
a ∈ W from a non-empty subset B of W by d as
well; that is, we put d(a,B) = infb∈B d(a, b).

Definition 2.1 Let (W,d) be a metric space. Then
we call any pair (A,B) of subsets of W such that
A and B are both non-empty and A ∩ B = ∅ a
contrasting pair in W . We denote the set of all
contrasting pairs by C(W ).
Moreover, for (A,B) ∈ C(W ) we define

s(A,B) : W → [0, 1] : w 7→ d(w,B)
d(w,A) + d(w,B) ,

called the standard fuzzy set associated with (A,B).
We denote the set of all standard fuzzy sets by
F(W ).

Contrasting pairs are our intended models of
vague properties. We note that pairs of disjoint (but
otherwise arbitrary) subsets of a fixed set are called
“orthopairs”, e.g., in [2]. The first component is
meant to represent the cases in which the property
clearly holds, called prototypes; the second compo-
nent is meant to represent the cases in which the
property clearly does not hold, called counterexam-
ples. Any remaining element is meant to represent
a borderline case.

As we have mentioned right at the beginning of
this contribution, models of vague properties typi-
cally involve arbitrariness. This is so for principal
reasons. In fact, modelling a property referring to a
coarse level of granularity within a framework that
is based on a fine level of granularity implies the
necessity to make the notion more specific that it
actually is. This in turn is usually possible in more
than one way. In order to model the vague notion
“as is” we would have to choose a framework in line
with its associated level of granularity. This is, in
principle, well possible [14].

But also the present framework aims at combin-
ing several levels of granularity and is thus subjected
to arbitrariness. The advantage compared to ap-
proaches based, e.g., on fuzzy sets without restric-
tion of their shape is its minimality. We do not in-
clude more than what we consider as a basic require-
ment: determining the prototypes and counterex-
amples. We should certainly keep in mind that this
simplification presumes that the underlying space is
endowed with a metric in a natural way.



The collection of pairs of disjoint subsets of a fixed
set gives rise to a model that has been often consid-
ered in the literature. A detailed discussion of this
approach can be found in [7, 8]. For an overview of
the different possible contexts see, e.g., [2, 3].

Here, the meaning of such pairs is restricted to
the aspect of vagueness. As a consequence, we are
led to a requirement that might distinguish our ap-
proach from others: the two sets that model a prop-
erty must be non-empty. As we will see later, for
the development of a formal framework this point
is more than just a detail. We insist on it; we adopt
in this contribution the following standpoint. Let
ϕ denote a possibly vague property, applicable to
a certain sort of objects. Then ϕ might be trivial,
that is, always true or always false. In this case, ϕ is
not vague and if ϕ is, e.g., always true, there are no
counterexamples but any object is a prototype. The
two trivial properties might be included in a model
for practical reasons or not; let us disregard them
for a moment and let ϕ be a non-trivial property.
By the very nature of what “property” means, there
are objects to which ϕ applies and objects to which
ϕ does not apply. Here, we argue with regard to
the level of granularity to which ϕ originally refers
and this is in general a coarse level. But objects
classified on the coarse level as fulfilling ϕ corre-
spond on the fine level to prototypes; and objects
for which ϕ is false correspond to counterexamples.
In fact, objects considered on the coarse level are
classified according to whether ϕ holds or not; the
coarse level is defined just in this way. It follows in
particular that the set of prototypes and the set of
counterexamples should both be chosen non-empty.
Given (W,d), contrasting pairs and standard

fuzzy sets are obviously in a one-to-one correspon-
dence. Moreover, the definition of a fuzzy set out
of a pair of subsets is done in line with the com-
mon procedure mentioned above: we first deter-
mine the prototypes A, then the counterexamples
B, and we require that u(w) = 1 exactly if w ∈ A,
and u(w) = 0 exactly if w ∈ B. If the universe
is the real line, the borderline cases are moreover
often assigned truth degrees by means of a simple
linear interpolation. Definition 2.1 realises exactly
this idea.
Within the present framework it is our concern

to formalise the mutual relationships between vague
properties and to design a logic capturing these in-
terrelations. Accordingly, we are interested in the
internal structure of the set of standard fuzzy sets
F(W ).

Most elementarily, we should establish a partial
order corresponding to the expressive strength of
properties. Let us see what we get if we do so in
the standard way.

Let the set F(W ) of standard fuzzy sets be en-
dowed with the usual pointwise order. That is, for
s, t ∈ F(W ), we put s 6 t if s(w) 6 t(w) for all
w ∈ W . Under the one-to-one correspondence be-

tween C(W ) and F(W ), we partially order C(W ) as
well.

Lemma 2.2 For (A+, A−), (B+, B−) ∈ C(W ), we
have (A+, A−) 6 (B+, B−) if and only if A+ ⊆ B+

and A− ⊇ B−.

Proof: Let (A+, A−) 6 (B+, B−), that is,
s(A+,A−) 6 s(B+,B−). For w ∈ A+ we have
s(A+,A−)(w) = 1, and s(B+,B−)(w) = 1 implies
w ∈ B+. Thus A+ ⊆ B+, and similarly we see
that B− ⊆ A−.

Conversely, let A+ ⊆ B+ and B− ⊆ A−. Then,
for w ∈ W , d(w,A+) > d(w,B+) and d(w,A−) 6
d(w,B−) and hence

s(A+,A−)(w) = 1
1 + d(w,A+)

d(w,A−)

6
1

1 + d(w,B+)
d(w,B−)

= s(B+,B−)(w),

that is, (A+, A−) 6 (B+, B−). �

We conclude that, if we want to build a logic
based on the relative expressive strength only, we do
not have to care about the underlying metric and
in particular we do not need to take into account
intermediate truth values.

Defining a logic for contrasting pairs turns out to
be more involved than one could expect and we will
indeed not consider anything else here. The diffi-
culty about the present approach is implied by the
following simple observation, which is a consequence
of the fact that pairs in C(W ) consist of non-empty
sets.

Lemma 2.3 Elements (A+, A−) and (B+, B−) of
C(W ) have an infimum if and only if A+ ∩B+ 6= ∅.
In this case,

(A+, A−) ∧ (B+, B−) = (A+ ∩B+, A− ∪B−).

Similarly, (A+, A−) and (B+, B−) have an supre-
mum if and only if A− ∩B− 6= ∅. In this case,

(A+, A−) ∨ (B+, B−) = (A+ ∪B+, A− ∩B−).

Proof: If A+∩B+ 6= ∅, then clearly (A+∩B+, A−∪
B−) is the infimum of (A+, A−) and (B+, B−). If
A+ ∩B+ = ∅, then (A+, A−) and (B+, B−) do not
have any lower bound and in particular no infimum.

Similarly we argue with regard to suprema. �

In other words, C(W ) is not a lattice. An imme-
diate reaction to this deficiency could certainly be
the call for a change of the definition of C(W ); the
requirement that both involved sets are non-empty
could be dropped. Note, however, that we would
be led in conflict with our intended interpretation.
An element of C(W ) is supposed to model a vague
property; and a vague property necessarily has both
prototypical examples and counterexamples.



Having seen that the definition of a conjunction
and disjunction causes problems in our framework,
interpreting the negation need not be seen as diffi-
cult: the negation of a property can be modelled by
the exchange of the set of prototypes with the set
of counterexamples. Accordingly, we define

∼ : C(W )→ C(W ), (A,B) 7→ (B,A).

Lemma 2.4 For any elements (A,B), (C,D) of the
poset (C(W );6), we have:

(C1) (A,B) 6 (C,D) implies ∼ (C,D) 6 ∼ (A,B),

(C2) ∼∼ (A,B) = (A,B),

We proceed taking into account a first possibility
how to realise in our framework also a conjunction
and a disjunction.

3. Adding propositions “false” and “true”

The problem that infima in C(W ) do not exist for
all pairs can easily be solved: we add elements mod-
elling falsity and truth. Namely, the proposition
“false” is naturally modelled by the pair (∅,W ), the
proposition “true” by (W, ∅).
Let us extend C(W ) accordingly; let

C̄(W ) = C(W ) ∪ {(∅,W ), (W, ∅)}.

We extend the partial order on C̄(W ) such that
(∅,W ) is the bottom element and (W, ∅) is the top
element. We also extend ∼ to C̄(W ) in the expected
way.

Lemma 3.1 Let (W,d) be a metric space. Then
C̄(W ) is a lattice. For (A+, A−), (B+, B−) ∈ C(W ),
we have

(A+, A−) ∧ (B+, B−)

=
{

(A+ ∩B+, A− ∪B−) if A+ ∩B+ 6= ∅,
(∅,W ) otherwise;

(A+, A−) ∨ (B+, B−)

=
{

(A+ ∪B+, A− ∩B−) if A− ∩B− 6= ∅,
(W, ∅) otherwise.

Proof: Again, in the case that A+ ∩ B+ 6= ∅ it is
clear that the infimum is as indicated. If A+∩B+ =
∅, the only lower bound of (A+, A−) and (B+, B−)
is (∅,W ), which is consequently the infimum.
The second equality is seen similarly. �

Let us define the Logic of contrasting pairs, or
LCP for short. We start with a countable set of vari-
ables ϕ0, . . . and the constants ⊥,>. By a Boolean
formula we mean a formula built up from the vari-
ables and constants by means of the binary connec-
tives ∧,∨ and the unary connective ¬. Our syn-
tactical objects are implications: pairs of Boolean
formulas α and β, denoted by α → β.

We define the consequence relation on LCP se-
mantically as follows. Let (W,d) be a metric space.
Then an evaluation in (W,d) is a mapping e from
the Boolean formulas to C̄(W ) such that the fol-
lowing conditions are fulfilled: e(⊥) = (∅,W ),
e(>) = (W, ∅), and for Boolean formulas α, β

e(α ∧ β) = e(α) ∧ e(β),
e(α ∨ β) = e(α) ∨ e(β),
e(¬α) = ∼ e(α).

An implication α → β is then said to be satisfied by
e if e(α) 6 e(β). A theory T is a set of implications;
and T is said to semantically entail an implication
ζ → η in LCP if, whenever an evaluation e satisfies
all elements of T , then e satisfies ζ → η as well.

We note that LCP can well be understood as a
fuzzy logic—in the sense that fuzzy sets interpret
the formulas. In fact, C̄(W ) is in a one-to-one cor-
respondence with the set F̄(W ) consisting of the
standard fuzzy sets as well as 0̄ and 1̄, the constant
0 and 1 mapping, respectively. Furthermore, the
correspondence is an isomorphism of lattices. Thus
LCP can alternatively be endowed with a semantics
based on F̄(W ). The logic is certainly not truth-
functional. If some proposition α is interpreted by
the fuzzy set u and β by the fuzzy set v, then α∧β
is interpreted by the (pointwise) largest standard
fuzzy set below u and v if there is any, otherwise by
0̄; similarly for α ∨ β; and ¬α is interpreted by the
standard complement W →W, w 7→ 1− u(w).

We might furthermore wonder if there is a logic
that comes conceptually close to LCP but comprises
an implication as a connective, along the lines of
fuzzy logics or other substructural logics. Such
a logic should be based on C̄(W ) endowed with
the infimum as a conjunction and a further oper-
ation as an implication. Unfortunately, this idea is
not straightforward to realise. There is no natural
choice of an interpretation of the additional connec-
tive; a residual implication in C̄(W ) corresponding
to the infimum does not exist.

In order to determine whether the logic LCP is
in line with our intention of modelling the logical
relationships between vague properties, let us have
a closer look at the employed model, the structure
(C̄(W );∧,∨,∼,0,1).

Proposition 3.2 Let (W,d) be a metric space.
Then C̄(W ) is a lattice with the bottom element
0 = (∅,W ) and the top element 1 = (W, ∅).
Moreover, the mapping

∼ : C̄(W )→ C̄(W ), (A,B) 7→ (B,A) (1)

is a complement function, that is, for any
(A,B), (C,D) ∈ C̄(W ), properties (C1), (C2) hold
as well as the following one:

(C3) (A,B) ∧ ∼ (A,B) = 0 and (A,B) ∨
∼ (A,B) = 1.



By property (C3) of Proposition 3.2, we have that
tertium non datur holds in LCP:

α → β ∨ ¬β

is satisfied by any evaluation. We conclude that
interpreting the conjunction and disjunction on
purely order-theoretical grounds, we do not nec-
essarily obtain a meaning in line with our inten-
tions. In fact, let (A,B) ∈ C̄(W ). Then we have
(A,B) ∨ (B,A) = 1 and indeed, there is no prop-
erty both above (A,B) and above (B,A) other than
the property “true”, even if A ∪ B is strictly con-
tained inW . Consequently, the fact that prototypes
and counterexamples do not necessarily exhaust all
possibilities is not reflected in the logic LCP.

We finally note that an axiomatisation of LCP is
not straightforward and not considered here. No-
tably, LCP is not just classical propositional logic.
In fact, C̄(W ) is not a Boolean algebra. Distributiv-
ity does not in general hold. To see this, consider
the case that A+ ∩B+ = ∅ and A+ ∩C+ 6= ∅; then

(A+, A−) ∧ ((B+, B−) ∨ (C+, C−))
= (A+ ∩ (B+ ∪ C+), A− ∪ (B− ∩ C−))
= (A+ ∪ C+, (A− ∪B−) ∩ (A− ∪ C−))

need not coincide with

((A+, A−) ∧ (B+, B−)) ∨ ((A+, A−) ∧ (C+, C−))
= (A+ ∩ C+, A− ∪ C−).

4. Kleene logic

The setting defined in Section 2 comes close to the
semantic framework of Kleene logic. We next rise
the question whether this logic is suitable in the
present context. We shall give a cautiously positive
answer. Kleene logic has been the topic of much
debate and to explain in a consistent manner what
kind of statements this logic deals with is in fact
not straightforward. Even more difficult is the situ-
ation for the closely related Belnap logic. See, e.g.,
[4, 15, 5]. Here, we consider a variant of Kleene
logic based on implications as the basic syntactical
objects; we then explain how we can “decompose”
these implications to determine their meaning.
Also in this approach, we insist on our assumption

that properties are modelled by pairs of non-empty
subsets; but we require this interpretation for vari-
ables only.
Thus let us consider (a variant of) Kleene logic,

denoted by KL. We define the syntax in the same
way as for LCP; that is, Boolean formulas and im-
plications are defined in the same way as above.
Also the consequence relation in KL is defined

similarly to LCP; however, the reference to a metric
is dropped. An evaluation in a set W is a map-
ping e from the Boolean formulas to P (W )×P (W )
such that e(⊥) = (∅,W ), e(>) = (W, ∅), and

for formulas α, β such that e(α) = (A+, A−) and
e(β) = (B+, B−) we have

e(α ∧ β) = (A+ ∩B+, A− ∪B−),
e(α ∨ β) = (A+ ∪B+, A− ∩B−),
e(¬α) = (A−, A+).

The notion of satisfaction of an implication as well
as the semantic entailment in KL is defined similarly
as in case of LCP.

In this case, an axiomatisation is possible along
common lines. Call a sequent a pair consisting of
a non-empty finite set of Boolean formulas and a
single Boolean formula; we write

γ1, . . . , γk ⇒ δ.

A rule then consists of a finite, possibly empty, set
of sequents called the assumptions and one further
sequent called the conclusion.

Let us call KL the calculus whose rules are the
following, for any sets of Boolean formulas Γ and
Boolean formulas α, β:

⊥ ⇒ α α ⇒ α α ⇒ >

Γ ⇒ α α ⇒ β

Γ ⇒ β

Γ ⇒ α

Γ, β ⇒ α

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
Γ, α, β ⇒ γ

Γ, α ∧ β ⇒ γ

Γ, α ⇒ γ Γ, β ⇒ γ

Γ, α ∨ β ⇒ γ

Γ ⇒ α

Γ ⇒ α ∨ β
Γ ⇒ β

Γ ⇒ α ∨ β
α ⇒ β

¬β ⇒ ¬α
¬α ⇒ β

¬β ⇒ α

α ⇒ ¬β
β ⇒ ¬α

α,¬α ⇒ β ∨ ¬β

A proof of an implication ζ → η from a theory T
is defined as a tree of sequents in the expected way;
in particular, a leaf may be of the form α ⇒ β if
α → β is in T , and the root must be ζ ⇒ η. Fur-
thermore, a theory T is called consistent if T does
not prove ϕ → ¬ϕ or ¬ϕ → ϕ for any variable ϕ.
Then we have the following completeness theorem.

Theorem 4.1 Let T be a consistent theory and let
ζ → η be an implication. Then there is a proof of
ζ → η from T in KL if and only if T semantically
entails ζ → η in KL.

Proof: (sketched) The soundness part is easily
checked. To show completeness, assume that T does
not prove ζ → η. On the set B of Boolean formu-
las, we define the equivalence ≈ requiring α ≈ β if T
proves α → β and β → α. Then the operations ∧,
∨, and ¬ are compatible with ≈, and the quotient
(〈B〉;∧,∨,¬, 〈⊥〉, 〈>〉) is a Kleene lattice. We have
that T proves α → β if and only if 〈α〉 6 〈β〉. As
we may identify 〈B〉 with a Kleene lattice of pairs of
disjoint subsets of a set W [9, 11], some evaluation
satisfies all elements of T but not ζ → η. �



The logic KL might be found appealing; however,
for good reason, there has been a repeated debate
around its proper interpretation. In the present con-
text, it is well possible to provide a consistent in-
terpretation: simply by going back to the semantics
of the entailment relation. Note what this, regret-
tably, means: the pairs of subsets interpreting a
compound formula have a quite technical character
rather than providing a natural interpretation.
But we cannot expect anything else. As we no-

ticed above, it is not reasonably possible to identify
a compound formula with a property, which would
be characterised by its prototypes and counterexam-
ples. Instead, an implication involving compound
formulas can be understood as a compound state-
ment involving the prototypes and counterexamples
of the variables. We may decompose an implication
according to the definition of satisfaction.

For example, let ϕ and ψ variables and consider
the implication

ϕ → ¬ψ. (2)

An implication reads both from left to right and
from right to left; in fact (2) is equivalent to
ψ → ¬ϕ. In fact, (2) expresses, with regard to
some interpretation in a set of worlds W : if a world
is among the prototypical examples of ϕ, then it is
among the counterexamples of ψ; and if a world is
a prototypical example of ψ, it is among the coun-
terexamples of ϕ. Denoting the two sets of the pair
interpreting some variable ϕ by [ϕ]+ and [ϕ]−, we
have [ϕ]+ ⊆ [ψ]− and [ψ]+ ⊆ [ϕ]−.

To see the role of the binary connectives, consider
the implication

¬(ϕ ∧ ¬χ) → ψ ∧ ω.

In a first step, we have to pull all the negations in
front of the variables; and we have to consider the
reversed implication as well. That is:

¬ϕ ∨ χ → ψ ∧ ω,
¬ψ ∨ ¬ω → ϕ ∧ ¬χ.

That is, if a world w is either in [ϕ]− or [χ]+, then
w is both in [ψ]+ and [ω]+; and if w is either in [ω]−
or in [ψ]−, then w is in [ϕ]+ and [χ]−.
Summarising, we may evaluate KL as follows. On

the positive side, KL is based on a simple concept
and its axiomatisation is feasible. The interpreta-
tion of the formulas of KL is moreover possible by
direct reference to its semantic specification. On
the negative side, this interpretation is cumber-
some. The pair of subsets modelling a variable has
a clear meaning; these sets contain the prototypes
and counterexamples, respectively. But compound
formulas seem not really to represent a property;
the meaning of the modelling pair of sets is not so
easily accessible. This also means that, in contrast
to the previous logic LCP, an interpretation of KL on
the basis of fuzzy sets does not seem to be possible.

5. Further approaches

We shall outline yet two more possible ways of defin-
ing a logical framework based on the idea that vague
properties are modelled by their prototypes and
counterexamples.

5.1. Partial logics

As a major problem about the present approach, we
have initially noticed that the set C(W ) of contrast-
ing pairs in some metric space W is not a lattice.
The approach of Section 3 solves the issue by the
addition of a bottom and a top element, which rep-
resent falsity and truth, respectively. An unpleas-
ant consequence of this approach, however, is that
the associated logic verifies the law of excluded mid-
dle; the disjunction of a proposition and its negation
holds always true.

As a remedy, we could accept the fact that our
framework does not always allow the combination
of two properties in the sense of a conjunction
or disjunction. If properties α, β are modelled
by (A,B), (C,D) ∈ C(W ), respectively, the pair
(A ∩ C,B ∪ D) well interprets α ∧ β—but only if
A and C are not disjoint. Similarly, α∨ β is appro-
priately interpreted by (A ∪C,B ∩D)—but only if
B and D are not disjoint.

Taking this restriction seriously, we can define a
partial logic, in which the formation of formulas is
restricted; see, e.g., [1]. To this end, we introduce
an additional connective � with the following mean-
ing. For formulas α and β, α � β holds if the sets
of prototypes of α and β have a non-empty inter-
section. That is, α being interpreted by (A+, A−)
and β by (B+, B−), we require A+ ∩ B+ 6= ∅. The
formation of the formula α∧β would then be bound
to the condition α � β; similarly, the formula α ∨ β
would be allowed only under the condition ¬α�¬β.
The approach is worth to be considered, it re-

quires, however, a considerable change of viewpoint.
In fact, whenever some properties α and β are con-
sidered to be connected by a logical “and”, it needs
to be checked first if α does not contradict β. This
restriction is, in principle, not unreasonable. For,
in this case the sets of prototypes are disjoint and
the formation of a logical conjunction is in fact un-
necessary.

Moreover, following these lines, an interpretation
in terms of fuzzy sets is possible in the same way
as for the logic LCP. α being interpreted by the
standard fuzzy set u, β being interpreted by v, we
interpret α ∧ β by the largest standard fuzzy set
below u and v, provided that u and v are lower
bounded at all; otherwise, the combination would
be undefined.



5.2. Independent treatment of the positive
and negative cases

Section 4 was devoted to (a modification of) Kleene
logic, the logic KL. A drawback of KL is its cum-
bersome interpretation.
We may mention that there is a simple alterna-

tive to KL. We understand KL as referring to the
prototypes and counterexamples of properties. This
idea can certainly be formalised also directly. We
could allow explicit and separate reference to the
prototypes and the counterexamples of some prop-
erty.
This approach can be realised within a logic of

distributive lattices. Specify a logic DL± as follows.
Let a set of symbols ϕ0, . . . be given and for any
such symbol ϕ, call ϕ− and ϕ+ signed variables.
Let a signed lattice formula be built up from the
signed variables by means of the binary connectives
∧ and ∨, and let an implication be an expression of
the form α → β, where α and β are signed lattice
formulas.
On the semantic side, we fix a set of worldsW and

for each variable ϕ, we map ϕ− and ϕ+ to disjoint
non-empty subsets of W . Evaluations are defined
on the basis of the set-theoretical operations and the
satisfaction of an implication is defined by means of
set-theoretical inclusion.
Compared to KL, the difficulties of interpreta-

tion are overcome. DL± is even more flexible than
KL because it can refer to the positive cases sepa-
rately from the negative ones. This, however, might
in turn be found unsatisfactory; the implications
α+ → β+ and β− → α− are unrelated. Moreover,
an interpretation on the basis of fuzzy sets is not
straightforward, simply because a fuzzy set models
both prototypes and counterexamples of a property,
but a signed variable refers only to one of these sets.

6. Conclusion

Specifying a vague property ϕ within a model that
is based on a finer level of granularity than ϕmeans,
in a first step, delimiting those cases in which ϕ is
clearly true from those cases in which ϕ is clearly
wrong. The fuzzy sets that are used in practice
often do not require more; the truth values of the
borderline cases are calculated by means of a linear
interpolation. In such a situation, reasoning about
vague notions can be seen as reasoning about the
clear cases. This point of view has been the basis
of the present note.
Our intention has been to contribute to the of-

ten discussed problem what a “logic of vagueness”
should look like. We have proposed to exploit the
idea of modelling properties by what we call con-
trasting pairs, which are pairs of disjoint non-empty
subsets of a metric space. Although this approach
sounds easy, a realisation of a suitable logic leads to
amazingly serious obstacles. We have discussed in

total four possible logic-based approaches, in each
case exhibiting advantages as well as drawbacks.

Our considerations might in fact imply that an
ideal approach is not realistic. Nonetheless, all four
mentioned approaches call for further elaborations
and practical evaluations.

Relations to fuzzy logic exist for two of the ap-
proaches on the conceptual level. Technically, the
considered logics do not fall into the framework of
mathematical fuzzy logic, since truth-functionality
is a missing feature. We do not view this as a signifi-
cant problem though; the present contribution pre-
sumes that flexibility in this respect does not run
counter to our general objective of exploring new
frameworks for dealing with vagueness.
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