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Abstract

Fuzzy sets are widely used to model vague proper-
ties. According to a common understanding, a fuzzy
set represents the degrees of similarity of precisely
specified objects with the prototypes of the consid-
ered vague property. We propose a logic based on
this idea, using an entailment relation which was in-
troduced in a work of Dubois, Prade, Esteva, Gar-
cia, and Godo. The logic allows reasoning about the
similarity with specific sets of prototypes; however,
set-theoretic operations among the sets of proto-
types associated to different properties are not dealt
with. We arrive at a formalism closely related to
fuzzy logic.

Keywords: Degree of similarity with a prototype,
Logic of Approximate Entailment, interpretation of
fuzzy logic.

1. Introduction

Let us assume that a fuzzy set is employed to model
a vague property. We may for instance think of
the property of humans to be “tall”. Then, the do-
main of the fuzzy set refers to the aspect with re-
spect to which we distinguish objects in order to
tell whether they fulfil this property or not. To
tell that somebody is “tall” means that the body
height is taken into account; body heights may in
turn be represented in centimetres by the positive
reals [0, 250]. Furthermore, elements of the fuzzy
set’s domain which clearly fulfil the property in a
given context are mapped to 1 and can be consid-
ered as prototypes for the property. In case of “tall”,
[180, 250] could be chosen as the set of prototypes.
The remaining elements are mapped to the degree
to which they are compatible with the property un-
der consideration. This degree may be viewed as
the similarity of an element with the set of proto-
types. E.g., in a model of “tall”, 178 is not much
different from 180 and could be assigned the degree
0.8.

This is a well-known interpretation of fuzzy sets;
“similarity” is the key notion. For the similarity-
based interpretation of fuzzy sets as well as other
possible interpretations, we refer, e.g., to [5, 6]. The
idea to understand fuzzy sets as crisp sets together
with a similarity relation is furthermore developed
in [7]. The approach has also been found particu-
lar useful in the field of pattern classification; the

presumably earliest contribution in this direction is
[2]. The idea is in fact widely applicable – namely
whenever vagueness plays a role.

The notion of similarity is dealt with in the frame-
work of approximate reasoning, which goes back
to Ruspini’s basic paper [14]. Ruspini’s ideas have
been elaborated in a number of papers from a log-
ical perspective [7, 8, 9, 10]. Here, we take up an
approach proposed in [7]. The formalism is closely
related to the Logic of Approximate Entailment,
which was proposed in Rodriguez’s Thesis [13].

The idea of the latter logic is to formalise impli-
cational relationships in an approximate way. The
framework is a similarity space (W, s), where W is
a set of worlds and s is a similarity relation on W ;
propositions are interpreted as subsets of W and
graded implications

α
c

⇒ β (1)

are considered, where c is a real number between 0
and 1. α and β being interpreted by A, B ⊆ W ,
respectively, (1) is satisfied if

A ⊆ Uc(B),

where Uc(B) is the c-neighbourhood of B, contain-
ing all worlds similar to B at least to the degree c.
Thus, for α

c
⇒ β to be satisfied, the set A need not

necessarily be contained in B, but in a set which
may be considered as similar to B to the degree c.

In this contribution, we modify the Logic of Ap-
proximate Entailment, aiming at a means to reason
in the presence of vagueness. We exploit the idea
that a vague property can be modelled by the set
of its prototypes together with a relation expressing
the similarity with the prototypes.

2. The setting

Let us explain in an informal way our procedure
and ideas. For further material and explanations,
consult, e.g., [7, 10].

We start as usual with a set of worlds W , repre-
senting the set of possible circumstances which we
are going to consider and reason about. The prop-
erties characterising worlds are assumed to be in
general vague. With each property α, we associate
a pair (A, s) consisting of a set A ⊆ W and a fuzzy
relation s : W × W → [0, 1]. A represents the set
of prototypes of α; s measures the degree of sim-
ilarity of two worlds with respect to the aspect of
distinction associated with α.
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For example, consider the above mentioned case
that α models “tall”. Our set of worlds is then
S = [0, 250], representing the set of heights of hu-
mans, and A = [180, 250]. The role of s is to
tell to which extent a difference in height matters
for the applicability of “tall”; if x, y ∈ W repre-
sent two heights and x is assigned “tall”, then y

should be compatible with the property “tall” at
least to the degree s(x, y). A possibility is to define

s(x, y) = max {1 − |x−y|
10

, 0}; then s is a similarity
relation w.r.t. the Łukasiewicz t-norm.

We can then tell to which degree a precise height
x fits to the notion “tall”; namely, we let this degree
be the similarity of x with A, or more precisely, with
the point in A which is closest to x w.r.t. s. We
arrive in this way at a fuzzy set u, as it could well
be used to model “tall”:

u : S → [0, 1], x 7→











0 if x ≤ 170,
x−170

10
if 170 ≤ x ≤ 180,

1 if x ≥ 180.

In our setting, however, we do not in general re-
quire s to be a similarity relation. A similarity re-
lation maps a pair of worlds to 1 exactly in case
that the two worlds coincide. This is acceptable if
we include a single aspect of distinction, like the
height of a certain person, into consideration. But
the discourse may address more than one aspect.
For instance, the height of a second person may be
taken into account for comparative purposes. The
set of worlds would then be S × S, with the above
definition of S, and two worlds may differ with re-
spect to the height of one but not the other person.
In order to reason about both persons’ heights it is
reasonable to take into account two fuzzy relations,
each of which refers to one of the persons. But then,
the separability condition is to be dropped.

Consequently, we will model each variable α by a
pair (A, s) consisting of a set A of worlds and a pseu-
dosimilarity relation s, where the prefix “pseudo”
expresses the fact that separability is not assumed.
In particular, each variable in our language will be
assigned an own pseudosimilarity relation. The t-
norm ⊙ appearing in the transitivity condition will
however be one and the same for all relations. In
fact, we will assume here that ⊙ is the Łukasiewicz
t-norm; then each pseudosimilarity relation will be
the dual of a bounded pseudometric.

Let us now describe the type of statements which
we are going to deal with. We will, first of all, con-
sider implicational relationships: we will formalise
statements of the form that the Boolean combina-
tion of certain properties implies another such com-
bination. The meaning of these implications is to
be understood in terms of the prototypes of the ad-
dressed properties. As however the modelled prop-
erties are assumed to be vague, tolerance will be
incorporated into the formalism. We do so in a
double way. On the one hand, we assign each im-
plication an explicit degree, expressing that the im-

plication holds only in a rough way. On the other
hand, we require stability of the implication under
small changes. In both cases the pseudosimilarities
which are part of the interpretation of the language
are used.

For instance, let α and β be variables. The im-
plication α

c
⇒ β means informally that α implies β.

This implication is subject to coarse-grainedness; it
holds the more loosely the smaller the value c is.
On the formal side, let α and β be interpreted by
(A, s) and (B, t), respectively. Tolerance in the re-
lationship between α and β will be realised, on the
one hand, in the same way as in the Logic of Ap-
proximate Entailment. If α

c
⇒ β are satisfied by the

indicated interpretation, then

A ⊆ U t
c(B), (2)

where U t
c(B) is the c-neighbourhood of B with re-

spect to the pseudosimilarity t.
On the other hand, the implication is subject to a

continuity condition. In accordance with the vague-
ness of the property denoted by α, a change of A

should not possibly invalidate the implication be-
tween α and β; the implication is required to hold
under a change of B to the same extent. Our actual
definition of satisfaction is consequently stronger
than (2) and is given as follows:

Us
d (A) ⊆ U t

c⊙d(B) for all d. (3)

Condition (3) coincides with what is called d-
proximity entailment in [7]. (2) says that a world
in which α holds is compatible with β to the degree
≥ c. (3) moreover says that a world which is com-
patible with α to the degree ≥ d is compatible with
β to the degree ≥ c ⊙ d. Clearly, (3) includes (2) as
a special case.

In the particular case c = 1 we have A ⊆ B.
However, we have more: in addition Us

d(A) ⊆ U t
d(B)

holds also for non-one degrees d. In contrast, α
0

⇒ β

always holds, that is, implications to the degree 0
do not express anything.

The interpretation (3) is in line with [7, Def. 2].
We note, moreover, that there are connections
to applications other than approximate reasoning.
The paper [5] proposes ways to model comparative
rules of the form “the more α is the case, the more
β is the case.” Our formalism presents a possibility
among those proposed in [5].

What makes our procedure special from the point
of view of approximate reasoning, but leads to well-
known ideas from the point of view of fuzzy logic,
is the treatment of compound formulas. In this re-
spect, we do not follow the lines of [7] and related
papers. In fact, we do not consider Boolean combi-
nations of the crisp sets representing prototypes of
properties.

The variables of our language refer to possibly
vague properties and we assume that it is exactly
these properties with respect to which it is possible
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to evaluate a degree of similarity. Consider the case
of a medical expert system; assume that its knowl-
edge base consists of if-then rules of the form that
the presence of certain symptoms implies the pres-
ence of a certain disease. For example, a rule may
say that the symptoms σ1 and σ2 imply the disease
δ. In our framework, this rule will be expressible by
the implication

σ1 ∧ σ2

1
⇒ δ. (4)

Let now the symptoms be interpreted by (S1, s1)
and (S2, s2), respectively. An actual world w be
given, a natural way to use (4) would be to deter-
mine how similar w is with the intersection of the
sets of prototypes associated to σ1 and σ2, that is,
how similar w is with S1 ∩ S2. The similarity rela-
tion used would in some way be constructed from
s1 and s2.

Here, we understand (4) differently. We do not
work with set-theoretic combinations of the sets of
prototypes, but only with classical logical combina-
tions of statements about similarities. Namely, we
require that if, for some t ∈ [0, 1], the actual world
w is w.r.t. s1 similar with S1 to the degree t and

w.r.t. s2 similar with S2 to the degree t, then w is
similar to the degree t with the set of prototypes as-
sociated with δ. The emphasized “and” corresponds
to the “∧” connective in (4).

In particular, the interpretation (3) applies for
atomic formulas only. Implications involving com-
pound formulas are ordinary Boolean combinations
of statements involving the degrees of similarity
with the crisp sets assigned to atomic formulas.

More technically speaking, we proceed as follows.
Assume that variables α and β are interpreted by
(A, s) and (B, t), respectively. We thereby associate
with α and β a system of neighbourhoods around
the set of prototypes, with respect to a similarity
associated individually to α and β. To interpret,
e.g., α, we use Us

c (A), where c runs over the real unit
interval. For a fixed c, Us

c (A) contains all worlds
which are with respect to the aspect of distinction
associated to α compatible with α to a degree at
least c.

To the compound proposition α ∧ β, we equally
associate a system of nested sets. Simply, for each
c, this set contains those worlds which are compat-
ible with both α and β to the degree at least c. So
we take the set of worlds which are compatible with
α to a degree ≥ c and also with β to a degree ≥ c,
where the degree refers to the respective pseudosim-
ilarity: Us

c (A)∩U t
c(B). Similarly, to the proposition

α ∨ β, we associate, for each c, those worlds which
are compatible either with α or β to a degree ≥ c:
we take Us

c (A)∪U t
c(B). Finally, consider the propo-

sition ∼α. We want to associate to ∼α the worlds
w such that w fits to non-α to the degree at least c.
To this end, we take those worlds which fit to α at
most to the degree 1 − c.

As a result, for example, the formula

α ∧ ∼β
c

⇒ γ ∨ δ

has the following interpretation. If, for any d, our
actual world w is similar to (a prototype of the prop-
erty denoted by) α at least to the degree d and sim-
ilar to β to a degree at most 1 − d, then w is similar
to the degree c ⊙ d either to γ or to δ.

We would like to point out that our logic is not
designed to force artifically a similarity with fuzzy
logic. Consider the above example from medicine
and assume that σ1 and σ2 denote independently
observed symptoms, like “high fever” and “stiffness
of the neck”. Then we may say that a patient has
high fever to a certain degree, and a stiff neck to a
certain degree; and we may interpret both these de-
grees as similarities and draw our conclusions from
the two values. It is however questionable to say
that the patient’s state is similar to a certain de-
gree to the conjunction of “high fever” and “stiffness
of the neck” and to require to draw our conclusion
from a single value; after all, we are concerned with
two different means of observations. Two different
observation cannot in general be combined, that is,
expressed on the basis of a single notion, for the
sake of their further procession.

3. The logic AF

Based on the informal considerations and decisions
of the preceding section, we proceed as follows.

⊙ always denotes the Łukasiewicz t-norm.

Definition 3.1. Let W be a non-empty set. Then
s : W × W → [0, 1] is a pseudosimilarity if for all
x, y, z ∈ W (i) s(x, x) = 1, (ii) s(x, y) = s(y, x), and
(iii) s(x, z) ≥ s(x, y) ⊙ s(y, z). We denote by 1̂ the
constant 1 pseudosimilarity.

For x ∈ W and A ⊆ W , we define the similarity

of x with A by

δs(x, A) = sup {s(x, y) : y ∈ A},

and we define the c-neighbourhood of A w.r.t. s by

Us
c (A) = {x ∈ W : δs(x, A) ≥ c}

for any c ∈ [0, 1].

We define the Logic AF (where “A” refers to ap-
proximate entailment and “F” refers to fuzzy logic)
semantically as follows. The language will be finite;
N ≥ 1 is fixed.

Definition 3.2. The propositions of AF are built up
from variables ϕ1, . . . , ϕN and the constants ⊥, ⊤
by means of the binary connectives ∧, ∨ and the
unary connective ¬. An implication of AF is a triple
consisting of a finite set α1, . . . , αn, n ≥ 1, a single
proposition β, and a real value c ∈ [0, 1], written

α1, . . . , αn
c

⇒ β;
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c is called the tolerance value.
Let W be a non-empty set. An evaluation for AF

on W assigns to each variable a pair (A, s) consist-
ing of a non-empty subset A of W and a pseudosim-
ilarity s on W , and to the constants ⊥, ⊤ the pairs
(∅, 1̂), (W, 1̂), respectively.

Let v be an evaluation on a set W . For any
c ∈ [0, 1], the mapping Uc from the set of propo-
sitions to the power set of W is defined recur-
sively as follows: if α is an atom, Uc(α) = Us

c (A),
where v(α) = (A, s); for any propositions α and β,
Uc(α∧β) = Uc(α)∩Uc(β), Uc(α∨β) = Uc(α)∪Uc(β),
and Uc(¬α) = W \

⋃

d>1−c Ud(α).

An implication α1, . . . , αn
c

⇒ β is satisfied by v if

Ud(α1) ∩ . . . ∩ Ud(αn) ⊆ Uc⊙d(β) for all d ∈ [0, 1].

A theory T of AF is a finite set of implications of
AF, and T is said to semantically entail a further
implication ϕ of AF if ϕ is satisfied by any evaluation
satisfying all elements of T .

We are going to establish the “fuzzy-logical char-
acter” of AF. An unrestricted identification of AF

with a fuzzy logic seems not to be possible. When
saying so, we assume that fuzzy logic, according to
the guidelines contained in the fundamental mono-
graph [11], deals with logics whose semantics can
be based on the real unit interval. However, if we
restrict to tautologies, there is a direct connection
between AF and a particular fuzzy logic, which we
will define next.

We will use the symbols ∧ , ∨ , ∼ to denote the
minimum, maximum, and standard negation on the
real unit interval, respectively.

Definition 3.3. Propositions and implications of
AF

′ are defined like for AF. An AF
′-evaluation is

a mapping w from the set of propositions to the
real unit interval such that w(α ∧β) = w(α) ∧ w(β),
w(α ∨ β) = w(α) ∨ w(β), w(¬α) = ∼w(α), w(⊥) =
0, w(⊤) = 1.

An AF
′-evaluation w satisfies an implication

α1, . . . , αn
c

⇒ β if (w(αn)∧ . . . ∧w(αn))⊙s ≤ w(β).
A theory T is said to AF

′-semantically entail an
implication ϕ of AF if ϕ is satisfied by any AF

′-
evaluation satisfying all members of T .

For an evaluation to satisfy a theory, we mean
that each element of the theory is satisfied. For a
theory to possess a model, we mean that there is at
least one evaluation satisfying T .

Theorem 3.4. Let T be a theory of AF such that

T possesses at least one model. Then T semanti-

cally entails an implication ϕ if and only if T AF
′-

semantically entails ϕ.

Proof. Assume first that T does not semantically
entail ϕ. Let v be an evaluation on W satisfying T
but not ϕ. To each variable α, interpreted by the
pair (A, s), we associate the fuzzy set

f(α) : W → [0, 1], x 7→ δs(x, A).

Moreover, we extend f to all propositions such that
f(α ∧ β) = f(α) ∧ f(β), f(α ∨ β) = f(α) ∨ f(β),
and f(¬α) = ∼f(α). Here, the pointwise mini-
mum, maximum, standard negation of fuzzy sets if
denoted by ∧, ∨, ¬, respectively.

We claim that then Uc(α) = [f(α)]c, c ∈ [0, 1]. In-
deed, this is the case for atoms by construction. For
the general case, we argue by induction. Assume
that Uc(α) = [f(α)]c and Uc(β) = [f(β)]c holds for
arbitrary propositions α, β and all c ∈ [0, 1]. Then

Uc(α ∧ β) = Uc(α) ∩ Uc(β)

= [f(α)]c ∩ [f(β)]c

= {x ∈ W : f(α)(x) ≥ c}

∩ {x ∈ W : f(β)(x) ≥ c}

= {x : (f(α) ∧ f(β))(x) ≥ c}

= {x : f(α ∧ β)(x) ≥ c}

= [f(α ∧ β)]c.

Similarly, we argue for the ∨ connective. Finally,
for any x ∈ W , we have

x ∈ Uc(¬α)

iff ¬(∃d > 1 − c) (x ∈ Ud(α))

iff ¬(∃d > 1 − c) (f(α)(x) ≥ d)

iff (∀d > 1 − c) (f(α)(x) < d)

iff f(α)(x) ≤ 1 − c

iff ∼f(α)(x) ≥ c

iff x ∈ [∼f(α)]c

iff x ∈ [f(¬α)]c.

Hence an implication α
c

⇒ β is satisfied by v iff
Ud(α) ⊆ Ud⊙c(β) for all d ∈ [0, 1] iff [f(α)]d ⊆
[f(β)]d⊙c for all d ∈ [0, 1] iff f(α)(x) ≥ d implies
f(β)(x) ≥ d ⊙ c for all d ∈ [0, 1] and x ∈ W iff
f(α)(x) ⊙ c ≤ f(β)(x) for all x ∈ W . Moreover,
f(·)(x) is an AF

′-evaluation for any x ∈ W . This
fact applied to T and ϕ, we see that there is an
AF

′-evaluation satisfying T but not ϕ.
Assume now that T does semantically entail ϕ.

Let furthermore w̄ be an AF
′-evaluation satisfying

T . We have to show that w̄ satisfies ϕ.
We shall construct an evaluation v satisfying T

as follows. Let W be the set of all AF
′-evaluations

satisfying T ; then W can be considered as a sub-
set of [0, 1]N , where N is the number of variables.
To a variable α, we assign the set A of those AF

′-
evaluations w such that w(α) = 1, and the relation
s defined by s(w1, w2) = 1 − |w1(α) − w2(α)| for
w1, w2 ∈ W . Clearly, s is a pseudosimilarity on W .
We claim that A is non-empty. Indeed, as W is a
closed subset of [0, 1]N , there would otherwise be a
d < 1 such that w(α) ≤ d for all w satisfying T .
This means that T would AF

′-semantically entail

α
1−d
⇒ ⊥, and by the first part of this theorem, T

would semantically entail α
1−d
⇒ ⊥. But 1 − d > 0

implies that there is no evaluation for AF satisfying
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α
1−d
⇒ ⊥. This is a contradiction to the assumption

that T possesses at least one model.
Thus v is an evaluation. Define f as above; then,

as we have seen above, an implication α
c

⇒ β is
satisfied by v iff f(α)(w) ⊙ c ≤ f(β)(w) for all w ∈
W . Moreover, f(α)(w) = w(α) for any variable
α and consequently, by an induction argument, for
all propositions α. It follows that an implication
is satisfied by v iff satisfied by each w ∈ W . In
particular, v satisfies T . By assumption, v then
also satisfies ϕ. In particular, ϕ is satisfied by w̄ ∈
W .

Theorem 3.4 suggests that the logics AF and AF
′

actually coincide. This is however not the case; note
that Theorem 3.4 depends on the assumption that
the considered theory possesses a model of AF. In-
deed, the coincidence is prevented by the fact that
in AF, each variable must be interpreted by a fuzzy
set with a non-empty kernel.

However, the situation is different with regard to
tautologies, as we will see next.

4. A proof system for the AF-tautologies

From Theorem 3.4, we observe that tautologies of
AF and AF

′ coincide.

Theorem 4.1. An implication ϕ is satisfied by any

evaluation of AF if and only if ϕ is satisfied by any

AF
′-evaluation.

Proof. This follows from Theorem 3.4 given the fact
that the empty theory always possesses a model.

On the basis of Theorem 4.1 it is possible to pro-
vide an analytic proof system for AF, with which we
can derive the tautologies.

The procedure is, all in all, routine. Our proof
system makes use of hypersequents; see, e.g., [12].
In fact, we use, in particular for the completenes
proof below, techniques similar to the case of Gödel
logic or to the logic GZL, which both resemble AF

′

in some respects and were studied in [1] and [3],
respectively.

Hypersequents are multisets of sequents; sequents
in turn coincide in our case syntactically with im-
plications of AF.

Definition 4.2. The rules of AF are the follow-
ing, where α, β are propositions, Γ is a finite set of
propositions, c, d ∈ [0, 1], and G is a hypersequent:

Axioms

⊥
c

⇒ α
(A1)

α
c

⇒ α
(A2)

α
c

⇒ ⊤
(A3)

α
0

⇒ β
(A4)

Logical rules

G | Γ, α, β
c

⇒ γ

G | Γ, α ∧ β
c

⇒ γ
(∧ →)

G | Γ
c

⇒ γ

G | Γ, α
c

⇒ γ
(lw)

G | Γ
c

⇒ α G | Γ
c

⇒ β

G | Γ
c

⇒ α ∧ β
(→ ∧)

G | Γ, α
c

⇒ γ G | Γ, β
c

⇒ γ

G | Γ, α ∨ β
c

⇒ γ
(∨ →)

G | Γ
c

⇒ α

G | Γ
c

⇒ α ∨ β
(→ ∨)

G | ¬β
c

⇒ α

G | ¬α
c

⇒ β
(¬ →)

G | β
c

⇒ ¬α

G | α
c

⇒ ¬β
(→ ¬)

G | β
c

⇒ α

G | ¬α
c

⇒ ¬β
(¬ → ¬)

Rules for the tolerance value

G | Γ
c

⇒ α

G | Γ
d

⇒ α
(c), where d ≤ c

G | α
c

2⇒ ⊥

G | α
c

⇒ ¬α
(→ 1

2
)

G | ⊤
c

2⇒ α

G | ¬α
c

⇒ α
(1

2
→)

Structural rules

G | Γ
c

⇒ α | Γ
c

⇒ α

G | Γ
c

⇒ α
(EC)

G

G | Γ
c

⇒ α
(EW)

G | α
c1⇒ β G | γ

c2⇒ δ

G | γ
d1⇒ β | α

d2⇒ δ
(Com)

where d1 + d2 ≤ c1 + c2

G | Γ1

c
⇒ α G | Γ2, α

d
⇒ β

G | Γ1, Γ2

c⊙d
⇒ β

(Trans)

The definition of a proof in AF is as usual.

Note that the peculiar (Com) rule has the conse-
quence that the following rule is derivable in AF:

G | α
c⊙d
⇒ β

G | α
c

⇒ γ | γ
d

⇒ β
(R1)

Furthermore, if we use the (Trans) rule for the case
that the cut formula is a constant, we arrive at the
following rules:

⊤
c

⇒ α

β
c

⇒ α
(R2) α

c
⇒ ⊥

α
c

⇒ β
(R3)

In what follows, an implication of AF will be
called valid if satisfied by any evaluation.

Moreover, a literal is a proposition of the form α

or ∼α, where α is atomic.
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Theorem 4.3. An implication ϕ of AF is valid if

and only if ϕ is provable in AF. We can moreover

assume that (Trans) is replaced by the rules (R2)
and (R3).

Proof. By Theorem 4.1, we may prove the Theorem
with reference to AF

′ rather than AF.
The soundness of the rules with respect to AF

′-
evaluations is not difficult to check.

Assume that we are given an implication ϕ which
is valid in AF

′, i.e., satisfied by all AF
′-evaluations.

There are derivable rules for ∧ and ∨ which are
invertible; we may apply them backwards and get
valid hypersequents in which no binary connective
and no comma appears.

Let us consider one such hypersequent H. If in
some sequent of H the same literal appears on both
sides, H is derivable by (A2) and (EW). If else in
some sequent the same variable appears on both
sides, we can achieve, by backwards application of
the 1

2
-rules, that this variable appears only on one

side of the sequent.
If no variable is present, H is derivable by (A1),

(A3), or (A4). If H contains at least one variable,
we show that we may construct from H another hy-
persequent H′ from which H is derivable and which
contains one variable less. The claim then follows
by induction.

Assume that H contains the variable α. We can
achieve, by backwards application of the ¬-rules,
that this variable appears only non-negated. If α

appears always on the left side or always on the
right side, we replace α by ⊤ or ⊥, respectively; in
view of (R2) and (R3), we are done.

Assume now that α appears at least once on the
left side and at least once on the right side. We
discuss the case that α appears twice on the left
side and twice on the right side; the general case is
analogous. Thus we assume that H is of the form

G | β1

d1⇒ α | β2

d2⇒ α | α
e1⇒ γ1 | α

e2⇒ γ2

for some literals β1, β2, γ1, γ2 and some G in which
α does not appear. Any AF

′-evaluation w satisfies
G or fulfils the condition

w(β1) − ∼d1 ≤ w(α)

or w(β2) − ∼d2 ≤ w(α)

or w(α) ≤ w(γ1) + ∼e1

or w(α) ≤ w(γ2) + ∼e2. (5)

Consequently, any AF
′-evaluation w satisfies G or

fulfils

(w(β1) − ∼d1) ∧ (w(β2) − ∼d2)

≤ (w(γ1) + ∼e1) ∨ (w(γ2) + ∼e2);

indeed, otherwise some AF
′-evaluation w would not

satisfy G and would fulfil (w(γ1) + ∼e1) ∨ (w(γ2) +
∼e2) < (w(β1) − ∼d1) ∧ (w(β2) − ∼d2); hence, ad-
justing the value w(α) if necessary, there would be

an AF
′-evaluation not satisfying G and not fulfilling

(5).
Thus any w satisfies G or fulfils

w(β1) − ∼d1 ≤ w(γ1) + ∼e1

or w(β1) − ∼d1 ≤ w(γ2) + ∼e2

or w(β2) − ∼d2 ≤ w(γ1) + ∼e1

or w(β2) − ∼d2 ≤ w(γ2) + ∼e2,

that is,

w(β1) ⊙ d1 ⊙ e1 ≤ w(γ1)

or w(β1) ⊙ d1 ⊙ e2 ≤ w(γ2)

or w(β2) ⊙ d2 ⊙ e1 ≤ w(γ1)

or w(β2) ⊙ d2 ⊙ e2 ≤ w(γ2).

We conclude that the hypersequent H′

G | β1

d1⊙e1⇒ γ1 | β1

d1⊙e2⇒ γ2 |

β2

d2⊙e1⇒ γ1 | β2

d2⊙e2⇒ γ2

is valid as well. Furthermore, we may derive H from
H′ by (R1) and (EC).

5. Conclusion

We have proposed a particular way to deal formally
with vague information. The proposed method
leads directly to the realm of mathematical fuzzy
logic. Our proposal is however accompanied by a
particular justification.

We have argued as follows. Vague properties are
commonly modelled by fuzzy sets. The fuzzy set
used for this purpose may arise as follows. First
of all, it possesses a non-empty kernel; the kernel
represents the prototypical cases. Moreover, the el-
ements mapping to values strictly between 0 and 1
are located, intuitively speaking, around the kernel;
they represent the borderline cases. The remaining
elements represent the cases of total incompatibility
with the modelled property. Thus it is reasonable
understand a fuzzy set as its kernel together with
a similarity relation such that the similarity of an
element with the kernel equals the value to which it
is mapped by the fuzzy set.

This understanding of fuzzy sets is common; see,
e.g., [4, 7]. Our impression is however that the idea
has not yet been much explored in the framework
of formal logic. As we have shown, the interpreta-
tion of fuzzy sets in the indicated sense leads, first
of all, to a practically usable propositional calculus.
Several choices need certainly to be made. But if
done in the way proposed here, we arrive at the cal-
culus AF which, in a restricted sense, can be called
a fuzzy logic – even if we prescribe a fuzzy logic to
be based on linearly ordered semantics.

The logic AF provides a bridge between fuzzy
logic and the Logic of Approximate Entailment [13].
Indeed, in view of its intended semantics AF is con-
ceptually closely related to this variant of Ruspini’s
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formalism for approximate reasoning. However, in
the way how compound formulas are treated, AF

comes close to fuzzy logic.

For AF, we have proved a weak completeness the-
orem. To prove strong completeness remains as
a task for further work. Note that the proof sys-
tem presented here is not ideal. An interpretation
of the hypersequents such that the rules presented
above are sound might be possible; it would amount,
however, to a distinction of worlds by cases. Con-
sequently, a proof would in general hardly be in-
terpretable in an informal manner. A redefined
proof system for AF should not be based on hy-
persequents. Effort into this direction are certainly
not in line with the common practice in fuzzy logic
– again in case that we understand fuzzy logics as
logics associated necessarily with linearly ordered
structures.

Otherwise, one might also consider to modify or
generalize our setting. When modelling a statement
like (4), there are three values which have to be re-
lated to each other: the degree to which the actual
facts resemble to the prototypes of the three prop-
erties referred to by the three variables. Depending
on the application, it might make sense to consider
other relationships than the one which we have cho-
sen. In this case, the whole universe of ideas appear-
ing in mathematical fuzzy logic could be applied.
For instance, the conjunction could be chosen in a
way differently from the minimum and ⊙ could be
interpreted in a way different from Łukasiewicz t-
norm.
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