
Tomonoid extensions:

the key for the construction of t-norms

Thomas Vetterlein

Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Abstract

Triangular norms, or t-norms for short, play an im-
portant role for the semantics of fuzzy logics. Al-
though an enormous number of examples and a re-
markable number of construction methods for this
kind of operation has been established, a uniform
approach is still outstanding. This paper is devoted
to a specific algebraic-geometrical framework within
which t-norms, up to isomorphism, can be described
systematically. By means of a detailed review of an
example case, we show how the approach can be ap-
plied to the construction of left-continuous t-norms
in a straightforward way.
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1. Introduction

Fuzzy logic is based on the idea to use a continu-
ous set of truth degrees. Propositions are assigned
values that vary continuously between 0, represent-
ing “false”, and 1, representing “true”. Whereas the
interpretation of truth degrees does not impose in-
surmountable problems, the mutual relationship of
truth degrees on the one side and logical connectives
on the other side has been a challenge. Let ϕ and
ψ be propositions of a fuzzy logic. If ϕ is assigned
s ∈ [0, 1] and ψ is assigned t ∈ [0, 1], with which
value u should we endow the conjunction of ϕ and
ψ? According to a further basic principle of fuzzy
logic, u is determined solely by s and t. That is,
there is a binary operation ⊙ : [0, 1] × [0, 1] → [0, 1],
and u = s ⊙ t. Some basic assumptions commonly
made for ⊙ are not sufficient to single out a partic-
ular operation, but lead at least to the decision that
⊙ should be a t-norm: associative, commutative, in
both arguments isotone, and such that 1 is a neutral
element.

For the basics of t-norm based many-valued log-
ics, we refer to P. Hájek’s seminal monograph [3].
The theory of t-norms has independently been de-
veloped into manifold directions. For an overview,
see, e.g., [6]. T-norms can, first of all, be the topic
of an investigation in the same style like two-place
real functions in general; notions from real analysis
are applicable. For the sake of a systematisation
of t-norms, however, it is common to identify so-
called isomorphic t-norms. Two t-norms ⊙1 and ⊙2

are isomorphic if there is an order automorphism

ι : [0, 1] → [0, 1] such that a⊙2b = ι(ι−1(a)⊙1ι
−1(b))

for any a, b ∈ [0, 1]. Accepting this identification, we
are faced with the task to characterise t-norms by
algebraic means.

It is not straightforward to see which type of al-
gebraic structures is appropriate for our purposes.
As a base set, we are given the real unit interval
[0, 1]; this is a complete totally ordered set. En-
dowed with the operation ⊙, [0, 1] is a commutative
monoid, where the neutral element is 1. The order
of [0, 1] and the monoidal structure are furthermore
interrelated by the isotonicity assumption. We con-
clude that [0, 1], endowed with ≤, ⊙, and 1, is a
totally ordered monoid, or tomonoid for short.

In a sense, tomonoids provide the minimal alge-
braic framework needed for t-norms. Here, we will
not go beyond it. Tomonoids arising from t-norms
are commutative, negative, and quantic. For the
more general topic of commutative tomonoids, we
refer to the comprehensive paper [2] and the ref-
erences given there. We note that we could have
chosen equally well complete MTL-algebras as our
basic notion. The additional implication operation,
however, is not of help in our analysis, and we use
it only occasionally. In contrast, it was a deliber-
ate decision not to make quantales our basic notion;
our setting would in this case be less flexible when
compared to tomonoids or MTL-algebras.

The probably most basic way of examining
tomonoids is to study their quotients. Quotients
of residuated lattices have been characterised in
[1]; here, we use the analogous construction for
tomonoids. Namely, each filter of a negative, com-
mutative tomonoid gives rise to a quotient, and the
set of all quotients obtained in this way forms a
chain. If this chain is finite, we may say that the
tomonoid is the result of step-wise construction pro-
cess; in each step, the tomonoid is, as we say, ex-

tended to a more complex one. In fact, the cru-
cial problem in our context is to characterise exten-
sions: to describe in which way we may construct a
tomonoid out of a given one such that the latter is
a quotient of the former.

Although it seems to be unfeasible to determine
all possible extensions of a tomonoid, there are ap-
proaches that help to make the problem accessible.
There is, most important, a simple tool to repre-
sent the task in its full complexity: the Cayley
transform. The idea to work with the set of in-
ner translations of a tomonoid rather than with the
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tomonoid itself was already exploited in previous
papers [11, 12]. Whereas then our argumentation
followed mainly a geometrical style, a recent work
of ours paved the way for a purely algebraic view
on the results in [11, 12]; in [13], we have devel-
oped the theory of tomonoids with special regard
to t-norm monoids. In particular, we observed that
the Cayley transform represents in a clear way the
filters of a tomonoid and the quotients induced by
them. The results of [13] are well suited to bring
some order into the diversity of t-norms and their
construction methods. This task, however, is rather
comprehensive and the topic of ongoing work.

The present paper is meant to demonstrate the
effectiveness of the approach as regards the con-
struction of left-continuous t-norms. To this end,
we restrict to a particular interesting part of the
theory, to a case where extensions of tomonoids are
fully classifiable. The emphasis lies on keeping the
construction process clear and transparent; several
illustrations are included. We will proceed on the
basis of an example that is complex enough to show
the important aspects.

Our contribution is structured as follows. We in-
troduce tomonoids and their representation by Cay-
ley transforms in Section 2. In Section 3, we define
quotients of tomonoids and explain how they are
represented by means of Cayley transforms. As the
key problem to be solved, we exhibit the extension
of tomonoids, and we devote Section 4 to the anal-
ysis of a particular example. Namely, we explain
the archimedean extension of a tomonoid that re-
sults in a t-norm, and we see that an extension is
under the given circumstances fully classifiable. We
conclude in Section 5 with an outlook to possible
further research.

2. Tomonoids

Our topic are the following structures.

Definition 2.1 A structure (L; ≤,⊙, 1) is a totally

ordered monoid, or tomonoid for short, if, for all
a, b, c ∈ L, (i) (a⊙ b)⊙c = a⊙ (b⊙c), (ii) a⊙1 = a,
and (iii) a ≤ b implies a⊙c ≤ b⊙c and c⊙a ≤ c⊙b.

A tomonoid L is called commutative if a⊙b = b⊙a
for all a, b ∈ L. L is called negative if a ≤ 1 for all
a ∈ L. L is called quantic if (i) the total order ≤ is
complete and (ii) for any elements a, bι, ι ∈ I, of L
we have

a⊙
∨

ι bι =
∨

ι(a⊙ bι).

T-norms [6] give rise to particular tomonoids. Let
us endow the real unit interval [0, 1] with the natural
order. Then a binary operation ⊙ : [0, 1] × [0, 1] →
[0, 1] is a t-norm if and only if ([0, 1]; ≤,⊙, 1) is a
commutative, negative tomonoid.

In fuzzy logic, a t-norm ⊙ is usually required to
possess a residual implication, defined by a → b =
max{c ∈ [0, 1] : a ⊙ c ≤ b} for a, b ∈ [0, 1]. The im-
plication exists exactly if ⊙ is left-continuous. This

fact motivates us to introduce for tomonoids an ad-
ditional property, which is included in Definition
2.1; a t-norm ⊙ is left-continuous if and only if the
t-norm monoid based on ⊙ is quantic. The notion
“quantic” refers to the fact that a quantic tomonoid
has the structure of a quantale [9]. We abbrevi-
ate in the sequel the properties “quantic, negative,
and commutative” by “q.n.c.”. Moreover, a q.n.c.
tomonoid of the form ([0, 1]; ≤,⊙, 1), where ⊙ is a
left-continuous t-norm, is called a t-norm monoid.

According to Cayley’s well-known representation
theorem, any group can be identified with a trans-
formation group. The idea is simple: the base set is
the group itself, and with each element of the group
we associate the mapping acting by right multipli-
cation. The idea is applicable without change to the
case of a semigroup. If the semigroup is actually a
monoid, the neutral element is assigned the iden-
tity mapping. Finally, if a monoid is endowed with
a translation-invariant total order, a further gener-
alisation of the theorem is straightforward, as seen
next.

In the sequel, we denote the identity function on
a set A by idA.

Proposition 2.2 Let (L; ≤,⊙, 1) be a q.n.c.

tomonoid. For each a ∈ L, put

λa : L → L, x 7→ x⊙ a,

and let Λ = {λa : a ∈ L}. Then Λ is closed under

the function composition ◦. Moreover, the pointwise

order ≤ on Λ is a complete total order; suprema

are calculated pointwise; and idL is the top element.

Moreover,

ι : L → Λ, a 7→ λa

is an isomorphism of the tomonoids (L; ≤,⊙, 1) and

(Λ; ≤, ◦, idL).

Given a q.n.c. tomonoid (L; ≤,⊙, 1), we will call
the tomonoid (Λ; ≤, ◦, idL) associated with L ac-
cording to Proposition 2.2 the Cayley transform of
L. A Cayley transform can be characterised as fol-
lows [12]; cf. also [10]:

Proposition 2.3 Let (Λ; ≤, ◦, idL) be the Cayley

transform associated to (L; ≤,⊙, 1). Then the fol-

lowing properties are fulfilled:

(F1) ◦ is commutative.

(F2) For any a ∈ L there is a unique λ ∈ Λ such

that λ(1) = a.

(F3) For each λ ∈ Λ and for any elements aι ∈ L,

ι ∈ I, we have λ(
∨

ι aι) =
∨

ι λ(aι).

Conversely, let L be a complete totally ordered set,

let 1 be the top element of L, and let Λ be a set

of functions from L to L such that properties (F1)-
(F3) hold. Then there is a unique binary operation

⊙ on L such that (L; ≤,⊙, 1) is a q.n.c. tomonoid
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and (Λ; ≤, ◦, idL) is its associated Cayley transform.

Namely,

a⊙ b = λ(b) where λ ∈ Λ is such that λ(1) = a.

In particular, the left-continuous t-norms can be
identified with sets of pairwise commuting, increas-
ing, and left-continuous functions from [0, 1] to [0, 1]
such that for any a ∈ [0, 1] exactly one of them maps
1 to a. Figure 1 shows an example.

Figure 1: The Cayley transform of a t-norm, namely
the ordinal sum of a Łukasiewicz t-norm and a prod-
uct t-norm.

3. Quotients of tomonoids

To examine tomonoids and in particular of t-norm
monoids, we follow common algebraic methods. We
begin by defining congruences of tomonoids that are
induced by filters.

Definition 3.1 Let (L; ≤,⊙, 1) be a q.n.c.
tomonoid. Then a filter of L is a subtomonoid
(F ; ≤,⊙, 1) of L such that a ∈ F and b ≥ a imply
b ∈ F .

Given a filter F of L, we define

a ∼F b if a = b,

or a < b and b⊙ c ≤ a for some c ∈ F ,

or b < a and a⊙ c ≤ b for some c ∈ F

for a, b ∈ L, and we call ∼F the congruence induced

by F .

Just like in the case of MTL-algebras [7], and
analogously to the case of residuated lattices [1],
filters induce in fact congruences. In the present
context, there are actually more congruences avail-
able, a fact that we will, however, not exploit here.

Proposition 3.2 Let (L; ≤,⊙, 1) be a q.n.c.

tomonoid, and let F be a filter of L. Then each

∼F -class is an interval, that is, of the form (a, b),
[a, b), or (a, b] for some a, b ∈ L such that a < b,
or [a, b] for some a, b ∈ L such that a ≤ b. We

may define a total order on the quotient 〈L〉∼F
by

putting

〈a〉∼F
≤ 〈b〉∼F

if a ∼F b or a ≤ b.

Moreover, ∼F is a congruence of L as a monoid,

hence we may define

〈a〉∼F
⊙ 〈b〉∼F

= 〈a⊙ b〉∼F
.

Finally, (〈L〉∼F
; ≤,⊙, 〈1〉∼F

) is a q.n.c. tomonoid.

Let F be a filter of a q.n.c. tomonoid L. We will
write 〈L〉F instead of 〈L〉∼F

, and 〈a〉F instead of
〈a〉∼F

, where a ∈ L. Consider the pair 〈L〉F and
L. We will refer to 〈L〉F as the tomonoid quotient

of L by F ; and conversely, we call L a tomonoid

extension of 〈L〉F by the extending tomonoid F .
Proposition 3.2 is straightforward apart from one

point, which deserves a remark. Whereas it is
immediate that the commutativity and negativity
of a tomonoid is preserved by the formation of a
quotient, the same is not so clear for the prop-
erty of being quantic. This fact, for whose proof
we refer to [14], reveals an inelegant aspect of our
method. Congruences of quantic tomonoids are
quantic again; but this does not imply that the nat-
ural homomorphism is a homomorphism of quan-
tales. In fact, homomorphisms of the latter kind
are required to preserve suprema; but in the present
context the preservation of suprema is not guaran-
teed.

We next explain how the quotients of a t-norm
monoid can be detected from its Cayley transform.

Definition 3.3 Let Λ be the Cayley transform of
a t-norm monoid based on the l.-c. t-norm ⊙. Let
F ⊆ [0, 1] be a filter of the t-norm monoid. Then
we call

γF : [0, 1] → [0, 1], x 7→
∧

a∈F

λa(x),

the cut associated with F .

The cut γF can be used to determine the F -
classes as follows.

Proposition 3.4 Let ⊙ be a l.-c. t-norm, and let

F be a filter. Then γF is constant on each F -class.

Indeed, we have

γF (x) = inf 〈x〉F , x ∈ [0, 1].

Conversely, let R be a maximal interval on which

γF is constant. If R is left-open, R is an F -class.

If R possesses a smallest element u, either {u} and

R\{u} are F -classes or R is an F -class, depending

on whether or not there is an x ∈ R\{u} such that

λf (x) > u for any f ∈ F .
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Figure 2: Above: The Cayley transform of the
rotation-annihilation [5] of two Łukasiewicz t-
norms. The filter F = [ 2

3 , 1] is highlighted in grey.
Below left: Grid showing the quotient by F . Below
right: The quotient by F .

Figure 3: Above: The Cayley transform of a t-norm
of Hájek [4]. The filter F = (3

4 , 1] is highlighted in
grey. Below left: Grid showing the quotient by F .
Below right: The quotient by F .

Let us interpret Proposition 3.4 in detail. Let
a t-norm monoid be given and let F be one of its
filters. Then the quotient of the t-norm monoid
induced by F can be determined in the following
way. We distinguish the case that F possesses or
does not possess a smallest element.

First case: The filter F possesses the smallest
element d; cf. Figure 2. Then d is an idempo-
tent, and F = [d, 1]. The cut associated with
F is γF = λd; in particular, γF is contained in
Λ. γF is constant on closed intervals and has a
step-like shape.
The transformations λf such that f ∈ F are
all those that are above λd. Moreover, the con-
gruence classes are exactly the intervals [u, v],
where [u, v] is maximal such that λd is constant
on it.
Second case: The filter F does not possess a
smallest element; cf. Figure 3. Then γF is not
in Λ. Still, γF has a step-like shape; however,
the intervals on which γF is constant might be
left-open as well as right-open.
Although γF is not in Λ, it is comparable with
any element of Λ. The transformations λf such
that f ∈ F are all those that are above γF .
The congruence classes are determined as fol-
lows. Let R ⊆ [0, 1] be maximal such that γF

is constant on R; then R is a singleton or of the
form (a, b), (a, b], [a, b), or [a, b], where a < b.
If a /∈ R, then R is a congruence class. If a ∈ R
and R is not a singleton, the transformations
λf > γF need to be considered qualitatively. If
at some point x ∈ R such that x 6= a there is
no transformation mapping x to a, R\{a} is a
congruence class as well as the singleton {a}.
Otherwise the whole R is a congruence class.

We may draw a grid over the Cayley transform
along the boundaries of the F -classes; cf. Figures 2
and 3. Associating with the transformations those
squares that are traversed by them, we obtain the
Cayley transform of the quotient by F .

4. Extensions of tomonoids:

a demonstration

As we have seen, the determination of the quo-
tient of a t-norm monoid induced by a filter is
straightforward. The challenge of t-norm theory
lies in the converse problem: how can we extend
a given tomonoid to arrive at a new, more com-
plex tomonoid, whose quotient is the one we started
with? Loosely speaking, the Cayley transform of
the given tomonoid needs to be refined; each trans-
formation needs to be replaced by a bundle of new
transformations acting on a base set that arises from
the original base set by expanding each point to an
interval.

In this section, we will, step by step, demonstrate
on the basis of an example how the extension of
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a tomonoid can be performed. We will formulate
in several propositions the hard facts, such that it
will become clear to which extent we describe the
general situation.

We first have to define the tomonoid P to be ex-
tended. We assume that P is four-element, P =
{0, 1, 2, 3}. Rather than providing a multiplication
table for the monoidal operation of P , we depict
its Cayley transform. A Cayley transform is re-
quired to consist of pairwise commuting and in-
creasing functions from P to P such that the top
element 3 is mapped by exactly one transformation
to each of the four elements. Our choice is seen in
Figure 4, and it is immediate that any two of the
four functions commute, hence we indeed define a
tomonoid in this way.

Figure 4: The Cayley transform of P .

We wish to extend P by some tomonoid F , re-
sulting in the tomonoid L. Let us require that L is
a t-norm monoid. This means that the new base set
is L = [0, 1], and the congruence classes are four in-
tervals partitioning [0, 1]. We assume the following
partition:

[0, 1
3 ], (1

3 ,
2
3 ), { 2

3 }, (2
3 , 1].

Figure 5 then shows the grid that results from L by
forming the quotient according to the explanations
of the previous section.

We now have to determine the actual translations
of L, that is, the elements of the Cayley transform
of the t-norm monoid to be constructed. Loosely
speaking, we have to replace the translations of P
by bundles of translations of the new tomonoid.
These translations apparently traverse triangular
and square-shaped parts. This motivates the follow-
ing tactics. We will not determine the translations
as a whole, but “areawise”. Namely, we will deter-
mine those parts of the translations that traverse
a given triangle or a given square. We will “glue”
them together afterwards.

We start with the topmost triangle, as seen in Fig-
ure 5, whose sides correspond to the top element of
the quotient tomonoid, the interval (2

3 , 1]. The fol-
lowing Proposition describes the general facts that

Figure 5: Grid of the tomonoid L belonging to the
quotient by F . The colouring might help to identify
this quotient with the Cayley transform shown in
Figure 4.

apply here, where we use the following notation.
Let P be a quotient of L by a filter F of L; we
then always view the elements of P as subsets of L.
Furthermore, let λf be a transformation of L such
that f ∈ F . Then λf maps F to itself. We write
λF

f : F → F for λf with its domain and range being
restricted to F , and we put ΛF = {λF

f : f ∈ F}.

Proposition 4.1 Let P be the quotient of the q.n.c.

tomonoid (L; ≤,⊙, 1) by the filter F . Then the top

element of P is F . Let u = inf F ; then F is one of

(u, 1] or [u, 1].
For each f ∈ F , λF

f : F → F, x 7→ x ⊙ f is an

increasing function whose right-limit at u is u and

that maps 1 to f .

Moreover, the extending tomonoid (F ; ≤,⊙, 1) is

isomorphic to its associated Cayley transform ΛF =
{λF

f : f ∈ F}, endowed with ≤, ◦, and idF .

By Proposition 4.1, the topmost triangle simply
represents the Cayley transform of the extending
filter F . We have determined that F = (2

3 , 1], thus
we have to choose a tomonoid with this base set.

The last assumption that we make is that our ex-
tension is, in a sense, minimal. Namely, we assume
that the extending tomonoid F is archimedean. A
tomonoid (L; ≤,⊙, 1) is called archimedean if a ≤
b < 1 implies bn ≤ a for some n. Note that in
this context archimedeanicity means that there are
at most two archimedean classes. For the following
theorem, see, e.g., [6].

In what follows, a real interval is meant to be a
subset of R of the form (a, b), [a, b), (a, b] for some
a < b, or [a, b] for some a < b.

Definition 4.2 (i) Let Φ contain the functions
λt : [0, 1] → [0, 1], x 7→ (t+ x− 1) ∨ 0 for each
t ∈ [0, 1]. Then (Φ; ≤, ◦, id[0,1]) is called the
Łukasiewicz monoid.
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(ii) Let Φ contain the functions λt : (0, 1] →
(0, 1], x 7→ t · x for each t ∈ (0, 1]. Then
(Φ; ≤, ◦, id(0,1]) is called the product monoid.

Theorem 4.3 Let (L; ≤,⊙, 1) be a q.n.c.

tomonoid. Let L be archimedean, and assume

that L is a non-trivial real interval. If then L
possesses a bottom element, L is isomorphic to the

Łukasiewicz monoid; if L does not possess a bottom

element, L is isomorphic to the product monoid.

Thus our extending filter F must necessarily be
isomorphic with the product monoid.

We now turn to the remaining triangles, each of
which corresponds to an element of the quotient
tomonoid P . We generalise the notation needed for
Proposition 4.4 as follows. Let λf be a transfor-
mation of L such that f ∈ F , and let R ∈ P now
be any F -class. Then λf maps R to R. We write
λR

f : R → R for λf with its domain and range being
restricted to R, and we put ΛR = {λR

f : f ∈ F}.

Proposition 4.4 Let P be the quotient of the q.n.c.

tomonoid (L; ≤,⊙, 1) by the filter F . Let R ∈ P be

distinct from the top element and a non-singleton.

Let u = inf R and v = supR; then R is one of (u, v),
[u, v), (u, v], [u, v]. For each f ∈ F , λR

f : R →
R, x 7→ x⊙f is an increasing function whose right

limit at u is u.

ΛR = {λR
a : a ∈ F} is totally ordered w.r.t. the

pointwise order, and arbitrary non-empty suprema

exist and are calculated pointwise. The top element

is idR.

Moreover, ΛR is closed under ◦, and

F → ΛR, a 7→ λR
a

is an epimorphism from (F ; ≤,⊙, 1) to (ΛR; ≤,
◦, idR).

Hence each triangle below the topmost one con-
tains an algebra of commuting functions, which rep-
resents the extending filter F .

As we had decided that F is archimedean, it will
again follow that we do not have a choice. For the
following theorem, see [11].

Definition 4.5 (i) Let Φ contain the functions
λt : [0, 1) → [0, 1), x 7→ (t+x−1)∨0

t
for each

t ∈ (0, 1]. Then (Φ; ≤, ◦, id[0,1)) is called the
reversed product monoid.

(ii) Let Φ contain the functions λt : (0, 1) →
(0, 1), x 7→ x

1

t for each t ∈ (0, 1]. Then
(Φ; ≤, ◦, id(0,1)) is called the power monoid.

Theorem 4.6 Let P be the quotient of a q.n.c.

tomonoid L by an archimedean filter F such that

each element of P is order isomorphic to a real in-

terval. Let R ∈ P be a non-singleton. Then ΛR is

isomorphic to the power monoid, product monoid,

Figure 6: The Łukasiewicz, product, reversed prod-
uct, and power monoid.

reversed product monoid, or Łukasiewicz monoid,

depending on whether R is of the form (u, v), [u, v),
(u, v], or [u, v] for some u, v ∈ L such that u < v.

Moreover, let r, s ∈ R and t ∈ F\{1} such that

r ⊙ t = s and s is not the smallest element of R.

Given F , ΛR, and the triple (r, s, t), the assignment

F → ΛR, f 7→ λR
f is uniquely determined.

We conclude that our middle triangle, corre-
sponding to the class (1

3 ,
2
3 ), is filled with a power

monoid and the lowest triangle, corresponding to
the class [0, 1

3 ], is filled with a Łukasiewicz monoid.
All functions we have determined so far are pieces

of the translations by the extending filter (2
3 , 1]. It

remains to determine which piece of function be-
longs to which. By the second part of Theorem 4.6,
we have to identify just one single translation that
is not the identity.

We conclude that the construction of the transla-
tions by the extending filter is easy, and we note that
the procedure is up to this point even in the general
case feasible. Now comes the more critical part.
However, under the assumptions we have made—
intervals as congruence classes and archimedeanic-
ity of the extending filter—the construction remains
as easy as before.

What we can say about the general situation is
contained in the next proposition. Once again, we
need to introduce some notation, this time to be
able to refer to what is inside the squares. Let
R,S, T ∈ P be non-singletons and assume R⊙ T =
S; assume further that T is maximal with the prop-
erty that multiplication with R gives S, that is,
T = R → S. For a ∈ T , λa maps R to S. We
write λR,S

a : R → S for λa with its domain restricted
to R and its range restricted to S, and we put
ΛR,S = {λR,S

t : t ∈ T }.

Proposition 4.7 Let P be the quotient of the q.n.c.

tomonoid (L; ≤,⊙, 1) by the filter F . Let R,S, T ∈
P be non-singletons and assume that S = R ⊙ T
and T = R → S. Let u = inf R and u′ = inf S.

Then, for any t ∈ T , λR,S
t : R → S, x 7→ x ⊙ t is

an increasing function whose right-limit at u is u′.

Moreover, ΛR,S = {λR,S
a : a ∈ T } is totally or-

dered w.r.t. the pointwise order, and the supremum

of any non-empty bounded subset of ΛR exists and

is calculated pointwise.

As mentioned above, our case allows a much
stronger statement.
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Theorem 4.8 Let P be the quotient of a q.n.c.

tomonoid L by an archimedean filter F such that

each element of P is order isomorphic to a real in-

terval. Let R,S, T ∈ P be non-singletons and as-

sume that S = R ⊙ T and T = R → S. Then

either S possesses a smallest element u and ΛR,S

contains only the constant u mapping. Or there is

a unique set Ξ of functions from R to S, depend-

ing only on the functions F → ΛR, f 7→ λR
f and

F → ΛS , f 7→ λS
f , such that ΛR,S is either Ξ or

{f ∈ Ξ: f ≤ h} for some h ∈ Ξ.

Moreover, let r ∈ R, s ∈ S, and t ∈ T be such

that r ⊙ t = s and s is not the smallest element of

S. Given F , ΛR,S, the functions F → ΛR, f 7→
λR

f and F → ΛS , f 7→ λS
f , and the triple (r, s, t),

the assignment T → ΛR,S, t 7→ λR,S
t is uniquely

determined.

According to Theorem 4.8, the “square-shaped
parts” depend only on the “triangular parts” above
and aside. We know that there are only four choices
for the “triangles”; so there are at most 16 choices
for the squares. Actually, there are less because not
every combination works. Figure 7 provides a qual-
itative picture.

Figure 7: The possible translations restricted in do-
main and range to congruence classes. The picture
is purely qualitative.

We finally conclude that our t-norm has the shape
shown in Figure 8.

5. Conclusion

When viewed from an algebraic perspective, the
theory of t-norms circles around the notion of a
tomonoid extension. In fact, a t-norm gives rise
to a tomonoid (i.e., totally ordered monoid); with
each tomonoid, we may associate a chain of quo-
tients; and so we may consider any tomonoid as the

Figure 8: The finished t-norm.

final element of a linear construction, where from
each point to any succeeding point the tomonoid is
extended to a more complex one.

On the basis of an example, we have demon-
strated that this construction process is under cer-
tain assumptions easily describable. We have con-
sidered the case that the extending tomonoid is
archimedean and the congruence classes are order
isomorphic to real intervals.

The general situation is certainly more complex.
The chain of quotients need not be finite, not even
countable, and in fact not even such that each ele-
ment has a successor or predecessor. However, the
continuous parts of this chain allow a description
along the same lines as shown here. We then deal
with extensions by semilattices, that is, tomonoids
whose monoidal operation is simply the minimum.

For future research tackling the general case, it
seems advisable to restrict to the finite case first.
Already then, the problem is present in its full com-
plexity. Many approaches might be possible; our
suggestion is to consider the approach of M. Petrík
and P. Sarkoci explained in [8]. Their idea is appli-
cable to the case of general tomonoids and might al-
low a more transparent formulation of the extension
problem than on the basis of Cayley transforms.
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