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Abstract

We develop alternative semantics for Lukasiewicz logic and for can-
cellative hoop logic according to the following idea. We formalize
statements reflecting an inexact knowledge of certain (sharp) proper-
ties; we assume that all what can be known about a property is its
expressive strength.

To this end, we consider a Boolean algebra endowed with an automor-
phism group or, alternatively, with a measure. The Boolean algebra
is meant to model a collection of properties; and the additional struc-
ture is used to identify pairs of properties which, although possibly
distinct, are equally strong. Propositions are defined as subsets of the
algebra containing with any element also those identified with it in
this way. We show that then, the set of all propositions carries the
structure of an MV-algebra or of a cancellative hoop.

1 Introduction

This note is meant as a contribution to the discussion about the interpre-
tation of fuzzy logics. Recall that propositions in fuzzy logics are usually
interpreted by values from the real unit interval. Whereas it is relatively



easy to explain what the extreme values 0 (if used) and 1 stand for and why
we use the reals’ natural order, the meaning of specific elements strictly be-
tween 0 and 1 is as difficult to explain as to justify particular choices of the
connectives. There have been several attempts to clarify the picture; for a
compilation of different approaches we refer to J. Paris’s article [Par].

The fuzzy logics discussed here are among those which are based on contin-
uous t-norm algebras; namely, as the set of truth values, we take the closed
or half-open real unit interval, which is endowed with a continuous t-norm,
the corresponding residuum, the constant 1 and, if included in the set of
truth values, the constant 0. More specifically, we deal with the Lukasiewicz
logic EL [COM, Haj] and the cancellative hoop logic CHL [EGHM], whose
corresponding varieties consist of MV-algebras and cancellative hoops, re-
spectively.

Our approach to the interpretational issue is to search for natural representa-
tions of the algebras contained in these varieties. We wonder if MV-algebras
or cancellative hoops naturally arise in some simple framework. The aim is
to base fuzzy logics on structures whose meaning is more evident than the
meaning of the structures underlying the canonical semantics.

In the present paper, we propose a specific way to model uncertainty of
information. Let a Boolean algebra represent a system of sharp properties
arising in a given context. We consider the case that a property might not
be specifiable uniquely; we rather assume that not more than its expressive
strength can be known. To this end, we either endow the Boolean algebra
with a fixed automorphism group; a proposition is then a subset of the algebra
closed under the action of this group. Or we simply endow the Boolean
algebra with a measure; a proposition is in this case a subset containing with
any element also those of the same measure.

On the collection of all proposition defined in the former or latter way, we
define two binary operations. Namely, two proposition may be connected
by pointwise infimum; in the given context, this operation is probably the
most natural choice for a conjunction. A second operation which we define
reflects the nature of an implication. Depending on the details, we are led to
the structure of an MV-algebra or a cancellative hoop; we actually even get
an isomorphic copy of the standard t-norm algebras. So all in all, we offer
alternative semantics for LL or CHL based on the notion of uncertainty.



2 Preliminaries

We consider in this paper two kinds of fuzzy logics: the Lukasiewicz propo-
sitional logic LL [COM, Haj| and the cancellative hoop propositional logic
CHL [EGHM]. We collect the basic facts about them.

The language of LL is {®,—,0,1}; an LL-formula is built up from atomic
formulas ¢, ¢1, ... and the constants 0 and 1 by means of the binary con-
nectives ® and —. The language of CHL is {®, —,1}; a CHL-formula is
an LL-formula in which the constant 0 does not appear. (Note that usually
the constant 1 is not included in the language; we do so here for reasons of
clarity.)

An evaluation for LL in a model (M;®,—,0,1) is a mapping from the LL-
formulas to M such that v(a ® ) = v(a)ov(F) and v(a — () = v(a)=v(F)
for all a, f € F, and furthermore v(0) = 0 and v(1) = 1. An LL-formula is
called valid in M if it is assigned 1 by all evaluations in M. Similarly, we

define evaluations and validity of CHL-formulas in models (M; ®, —, 1).

The Lukasiewicz algebra is ([0, 1]; ®1, —,0,1), where [0, 1] is the real unit
interval and ®; and — are the Lukasiewicz conjunction and implication,
respectively:

Or: [0 1]

) 2 -
—r: [0, 1]2 —

[0,1], (a,b)— (a+b—1)VO0, !
0.1], (a,b)r— (1—atb) AL (1)

Similarly, the standard cancellative hoop is ((0, 1]; ®p, —p, 1), where ®p and
— p are the product conjunction and implication, respectively:

Op: (0,1 = (0,1], (a,b)— a-b,

bt >
et (O > (0.1], (a8 { ifa>b @)
1 else.

A formula « is called valid in LL or CHL if « is valid in the Lukasiewicz
algebra or the standard cancellative hoop, respectively.

For an axiomatization of these logics as well as for any further details, we
refer to [COM] and [EGHM].

We will be furthermore concerned mostly with the theory of Boolean algebras
and their automorphism groups. For basic facts on this subject, we refer to



[Sik] or [Mon]. For automorphisms of Boolean algebras, see [Fre, Ch. 38].
For group invariant measures on Boolean algebras, see [Fre, Ch. 39].

A Boolean algebra will always assumed to be non-trivial, that is, to contain
at least two elements.

We will denote the complementation in a Boolean algebra by +, and we will
express disjointness, i.e. zero-infimum, of a pair a and b by a L b. As usual,
we will call a Boolean algebra separable if it has a countable dense subset.

Finally, recall that a Boolean algebra B may be isomorphically and densely
embedded into a complete Boolean algebra, in a way that all infima and
suprema existing in B are preserved.

3 Boolean algebras with
an automorphism group

We shall develop a model for reasoning with uncertain information of a spe-
cial type. Let us explain the underlying idea. Assume that we are given a
countable collection of yes-no properties logically related in any specific way.
An appropriate model will be a separable Boolean algebra B. Let us further-
more assume that we may observe the properties from different perspectives,
but that we have to communicate them without reference to a specific view-
point. We may find it then appropriate to endow B with a “symmetry group”
G, whose intended meaning is that we cannot distinguish between properties
modeled by an element a € B and its image under an automorphism from G.
Statements may then be modelled by subsets of B closed under the action of

G.

In this situation, we suppose to be still able to classify the properties ac-
cording to their strength; recall that a property is stronger if modelled by a
smaller element. Consequently, we will not assume to be given an arbitrary
automorphism group, but a group which, most important, does never map
an element a to an element strictly below a.

Definition 3.1 Let (B;A,V,%,0,1) be a separable Boolean algebra, and let
G be a group of automorphisms of B. For a,b € B, let a ~ b if g(a) = b for
some g € GG; and let a < b if there is an a’ ~ a such that a’ <b.



We will say that G acts on B homogeneously if the following conditions hold:

(G1) For any aj,as,by,by € B such that a; L ay and by L by as well as
a1 ~ by and as ~ by, we have a; V as ~ by V bs.

(G2) Let by, by, ... € Bbesuch that A, b; = 0. Then from a < b; for every 4,
it follows a = 0.

(G3) For any a,b € B, there is a g € G such that a and ¢(b) are comparable.

The meaning of condition (G1) is obvious: if two elements are piecewise
related by ~, then the elements are related by ~ themselves. From (G1)
it follows in particular that g(a) < a implies g(a) = a, where a € B and
g € G. Indeed, g(a) < a would mean 1 = a V at ~ g(a) V at < 1, which
is impossible. The second condition, (G2), can be viewed as continuity at
0. Condition (G3), finally, is an analogue of the notion of transitivity. Note
that (G3) is equivalent to saying that a < b or b < a for any a,b € B.

We will see that the conditions (G1)—-(G3) have a convenient consequence:
they ensure the existence of a G-invariant measure. By a measure m on a
Boolean algebra, we mean a mapping m: B — [0, 1] such that m(a V b) =
m(a)+m(b) for disjoint elements a,b € B, and m(1) = 1. m is called strictly
positive if m(a) > 0 for all @ > 0. Furthermore, m is called G-invariant if
m(g(a)) = m(a) for all a € B and g € G.

The following theorem is a special version of Y. Kawada’s fundamental the-
orem on automorphism groups on Boolean algebras; see [Kaw| or [Fre, Ch.
394]. Recall that a group G acting on a Boolean algebra B is called ergodic
if for any non-zero a,b € B, a A g(b) > 0 for some g € G. Furthermore note
that a sequence (a;);, is called a partition of unity if the a; are pairwise
disjoint and \/, a; = 1.

Theorem 3.2 Let B be a complete separable Boolean algebra, and let G be
an ergodic group of automorphisms. Assume that, for any partition of unity
(a7)i<w and pairwise disjoint elements b;, i < w, such that a; ~ b; for every i,
(bi)i<w 1S a partition of unity as well. Then there exists a unique G-invariant,
strictly positive measure m on B.

We will apply this theorem to our setting.



Lemma 3.3 Let B be a separable Boolean algebra, and let G be an automor-
phism group of B acting homogeneously on B. Let (a;)i<, be a partition of
unity, and let b;, 1 < w, be pairwise disjoint elements such that a; ~ b; for
every i. Then (b;)i<, s a partition of unity as well.

Proof. Let ¢; = (a1 V... Va;)* and d; = (b1 V...Vb;)*t, i < w. Then, for every
i, we conclude from (G1) that ¢; ~ d;. Assume that e > b; for all i; then
et < d; for every i. Because A;j¢j = 0, it follows from (G2) that et =0,
whence e = 1. So \/;b; = 1. O

Theorem 3.4 Let B be a separable Boolean algebra, and let G be an auto-
morphism group of B acting homogeneously on B. Then there exists a unique
G-invariant, strictly positive measure m on B.

Proof. Let B be the > completion of B, and consider B as a subalgebra of B.
Since B is dense in B, the latter algebra is still separable. Moreover, every
g € G is uniquely extendable from B to an automorphism g of B; we denote
by G the group of all g for g € G.

For non-zero a,b € B, there are non-zero o’ < a and ¢ < b in B. By (G3),
a’ < g(b') or g(b') < d' for some g € G; then a A g(b) > a' A g(V') > 0, that
is, G is ergodic.

Let (a;);<. be a partition of unity in B, and let g; € G, i < w, be such that
g;(a;), i < w are pairwise disjoint. For every i, let a;; € B, j < A < w,
be pairwise disjoint a_nd such that a; = \/j</\i a;;. Then (aij)icw, j<i; IS &
partition of unity in B and consequently also in B. Furthermore, g,(a;;) =
gi(aij), i < w, j < \; are pairwise disjoint in B as well as in B. It follows
from Lemma 3.3 that \/, ; gi(a;;) = 1 in B, so also in B; thus \/, gi(a;) = 1 in
B.

So by Theorem 3.2, there is a unique G-invariant, strictly positive measure
m on B, and the assertion follows. O

This theorem implies the following important fact.

Lemma 3.5 Let B be a separable Boolean algebra, and let G be an auto-
morphism group of B acting homogeneously on B. Let m : B — [0,1] be
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the G-invariant, strictly positive measure on B. Then a ~ b if and only if
m(a) =m(b); and a < b if and only if m(a) < m(b).

In particular, the equivalence relation ~ is compatible with <, and the relation
induced by = on the set of ~-equivalence classes, is a bounded total order.

Moreover, if a < ¢ and a <b < ¢, then a <V < ¢ for some bt/ ~ b.

Proof. Let a,b € B. If a ~ b, then m(a) = m(b) by the G-invariance.
Conversely, if m(a) = m(b), there is an g € G such that g(a) < bor g(a) > b.
By strict positivity, g(a) = b, that is, a ~ b. So the first claim is clear.

Taking into account that a < b or b < a for any a,b € B, it moreover follows
that @ < b if and only if m(a) < m(b). So the first part of the lemma is
proved.

It further follows that a < b and b < a implies a ~ b. So < induces a partial
order on the quotient of B w.r.t. ~. Clearly, this order is bounded, and by
(G3), it is total.

Let finally a < ¢ and a < b < ¢. Then a < V" for some b ~ b, and
V' ANat =< cAhat. Sod < cAat for some d ~ b’ Aat, and putting b’ = d V a,
we get b~ (b" Aat)Va~b anda <V <c O

We shall now formalize the concept of a proposition in the context of a
Boolean algebra endowed with an automorphism group. According to the
ideas explained at the beginning of the section, a proposition should be a
subset of the Boolean algebra closed under the action of the group. In ad-
dition to that, we will require that this subset contains also all elements
representing weaker properties than those already present; that is, we will
require it to be an order-filter. A last condition will ensure that a proposition
does not contain the zero element, which represents contradiction.

Asserting a proposition ¢ C B should consequently be understood as follows:
For any a € p, not necessarily a itself holds, but g(a) for some g € G.

Definition 3.6 Let B be a separable Boolean algebra, and let G' be an au-
tomorphism group of B acting homogeneously on B. We call a non-empty
set ¢ C B a (B, G)-proposition if for a,b € B

(i) from a € ¢ and b > a it follows b € ¢,



(i) from a € ¢ it follows g(a) € ¢ for any g € G,
(iii) 0 ¢ .
Let F be the set of all (B, G)-propositions. For ¢, 9 € F, let

e ={aNb:a€p, be, anb>0};
o — 1 ={c: foreverya € p, aNc€ Ui},
and set
1={1}.

Then (F;®,—,0,1) is called the proposition algebra associated to (B, G).

(4)

Note that ® and — are indeed operations on F and that 0,1 € F.

When the reference to a pair (B,G) is clear, we will speak simply about
propositions. We remark that 0 does not play, as usual, the role of the
false or contradictory proposition, but rather the role of the strongest non-
contradictory one.

Lemma 3.7 Let B be a separable Boolean algebra, and let G be an auto-
morphism group of B acting homogeneously on B. Let m be the G-invariant,
strictly positive measure on B, let M = ran m, i.e. the range of m, and let
M be its closure in [0,1]. Then the propositions are exactly the subsets of
the form {a € B: m(a) > r} forr € M \ {1} or {a € B: m(a) > r} for
re M\ {0}.

Proof. By Lemma 3.5, we know that for any a,b € B, a ~ b if and only
if m(a) = m(b). It follows that any set of the indicated form is indeed a
proposition.

Conversely, let ¢ be a proposition, and put r = inf {m(a): a € ¢}. Then

either r = m(a) for some a € B; in this case, ¢ = {a: m(a) > r}. Or ris
strictly smaller than all m(a); then, ¢ = {a: m(a) > r}. 0

We will next describe the structure of the set of (B, G)-propositions for some
pair B and G, that is, the algebra (F;®,—,0,1). We will treat the finite
and the infinite case separately.



Let us denote by Li, k = 0,1,..., the k 4+ 1-element MV-algebra. So L; =
{0, %, ..., 1} for k > 1, endowed with the operations ®; and — given by
the same formulas as in (1).

Theorem 3.8 Let B be a finite Boolean algebra, and let G be an automor-
phism group of B acting homogeneously on B. Then (F;®,—,0,1) is iso-
morphic to the MV-algebra Ly_1, where k is the number of atoms of B.

Proof. Since automorphisms of finite Boolean algebras are simply permuta-
tions of the atoms, it follows from (G3) and (G1) that, for a,b € B, a ~ b
if and only if the number of atoms below a and b coincide. It furthermore
follows that m counts the number of atoms; ran m = {0, %, %, ..., 1}. So the
propositions are the subsets ¢; = {a: m(a) > %} fori=0,...,k— 1, that
is, ¢; contains all those elements of B which cover at least ¢ + 1 atoms.

Clearly, po = 0 = {a > 0} and ¢_1 = 1 = {1}. Furthermore, we calculate

©i OL Pj = Plitj—(k-1)vo ad ©; =L ©; = O((k-1)—i+j)r(k—1); We leave out the
details. This proves the assertion. O

In the infinite case, we get a structure embeddable into the Alexandrov
double-arrow space. Let () be a dense subset of the real unit interval such
that ) contains 0 and 1; then define

Q={(r,d) €[0,1] x {0,1}: ifr=0o0rr€[0,1]\ Q, then d = 1;
if r =1, then d = 0};

0,1] and {0, 1} being given the natural order, we endow @ with the lexico-
graphical order.

Theorem 3.9 Let B be an infinite separable Boolean algebra, and let G be
an automorphism group of B acting homogeneously on B. Let ) = ran m,
where m is the G-invariant, be a strictly positive measure on B. Then @ is
closed under the operations @y and —, and 0,1 € Q. For (r,d), (s,e) € Q,



(rops,dve) ifr+s>1,

(0,1) ifr+s<1;

(r—rs,(1=d)ANe) ifr>sandr —pse@)\ {0},
(r,d) — (s,e) = ¢ (r —r s,1) ifr>sandr —ps¢Q\ {0},

(1,0) if r <s.

(5)
Then (F;®,—,0,1) is isomorphic to (Q; ®, —, (0,1), (1,0)).

Proof. Since B is not finite, () is a dense subset of the real unit interval
containing 0 and 1. Furthermore, () is closed under complementation and
under addition in case the sum is < 1; so @ is closed under ®y and —. It
is then not difficult to see that ® and — are well defined on Q.

For (r,d) € Q, let

~J{aeB:m(a) >r} ifd=0,
Plrd) = {a € B: m(a) >r} ifd=1;

by Lemma 3.7, F = {¢(.4): (r,d) € Q} then.

We have @) = 0 and ¢(19) = 1. We need to check that the mapping Q —
F, (r,d) — @@, preserves ® and —, defined by (5) and (3), respectively.
So let (r,d), (s,e) € Q, and let us calculate Oird) © Psey A Qray = P(s,e)
according to (3). We restrict to the case d = 1 and e = 0; the other cases
work similarly.

We have s > 0. If r = 0, then clearly 1) © @s0) = @0,1)- Assume
r>0. If r+s <1, there is, for any ¢t € ran m such that 0 <t <rAs, a
pair a,b € B such that m(a) > r, m(b) > s, and m(a A b) = t. It follows
P © (s0) = B\ {0} = ¢0,).-

Ifr+s>1 m(a@anb) >r+s—1 for any a and b such that m(a) > r
and m(b) > s. Furthermore, for any ¢ such that m(c) > r + s — 1 there are
elements a,b € B such that m(a) > r, m(b) > s, and a A b = c. It follows

O(r1) © P(s,0) = {a€B: m(a) >r+s—1} = P(rts—1,1)-

We now turn to the implication. Note that ¢, 1)U@(s0) = @r1)a(s0)- T < s,
we have (1) — @0 = {¢: for any a, m(a) > r implies m(a A ¢) > r};
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we readily see that this set contains only ¢ = 1, that is, ¢@1) — @50 =
00 then. If s < r, we have @1y — @0 = {c: for any a, m(a) >
r implies m(a A ¢) > s}. If then m(c) > 1 —r + s, we have m(a A ¢) > s for
any a such that m(a) > r, and if m(c) < 1 —r + s, there is an a such that
m(a) > r and m(a Ac) < s. S0 ©u1) = Ps0) = P1-rts0), Provided that
l—r+scranm \ {0} - Q \ {0}7 else Pr1) = P(s,0) = P(1—r+s,1)- o

As a straightforward consequence of Theorems 3.8 and 3.9, we arrive at the
main theorem.

Theorem 3.10 Let o be an LL-formula. Then the following statements are
equivalent:

(i) For any separable Boolean algebra B and automorphism group G acting
homogeneously on B, « is valid in the associated proposition algebra
(F,®,—,0,1).

(ii) « is valid in LL.

Proof. Let a be valid in LL, and let B and G be as specified in (i). If B is
finite, a is valid in F by Theorem 3.8. If B is infinite, then any evaluation
of the L-formulas in Q, where Q is as specified in Theorem 3.9, assigns to
a the element (1,0), because according to Theorem 3.9 the connectives are
interpreted in the Lukasiewicz algebra w.r.t. first component, and (1,0) is
the only element whose first component is 1.

Let « be not valid in LL, and let v be any evaluation of the L-formulas in
the Lukasiewicz algebra such that v(a) < 1. We may use either Theorem 3.8
or 3.9 to determine a pair B and G as specified in (i), and an evaluation in
the associated proposition algebra which does not assign « the top element.

(|

Note that we showed more than asserted; we may restrict the statement (i) in
the way that the Boolean algebra is finite or, alternatively, that it is infinite.
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4 Boolean algebras with a measure

We will in this section present an alternative way to formalize reasoning with
uncertain information. According to our concept, we consider properties
just with respect to their strength. Rather than relating properties of equal
strength by an automorphism group, we may express strength in a more
direct way: by a measure. This is what we will do now; we will work with
the pair of a Boolean algebra and a measure on it.

Whereas this approach might be less appealing than the preceding one, the
advantage is that we may easily cover alternatively LL, the Lukasiewicz logic,
or CHL, the cancellative hoop logic.

Note that CHL is similar to the better-known product logic. However, the
latter is based on a t-norm algebra which is not ordinally irreducible; namely,
it is the ordinal sum of the standard cancellative hoop and the two-element
residuated lattice. For this reason, finding representations of this algebra is
more difficult. In the present case, we would for instance have to restrict
to appropriate subuniverses of the Boolean algebra; we might discuss this
possibility in a subsequent paper.

In this section, we drop the restriction that the range of a measure is within
[0, 1]; a measure on a Boolean algebra B is rather assumed to be a function
m: B — R* U {oco} which is additive for disjoint elements. In case that
m(1) < oo, we say that m is finite; otherwise m is called infinite.

For elements a, b of a Boolean algebra, we say that a touches b, denoted by
axab,if a £ b*.

Definition 4.1 Let B be a separable Boolean algebra, and let m be a strictly
positive measure on B. We shall call m homogeneous if, for all a,b,c € B,
from a < ¢ and m(a) < m(b) < m(c), it follows that m(b) = m(¥') for some
b such that a < ¥ < ec.

A set of the form
p={a€B: m(aL)gr}

for some r € ran m N RT, is called a (B, m)-proposition.

Let F be the set of all (B, m)-propositions. For ¢, € F, define

oY = {aNb:a€yp, be}
p—1 = {ceB:foreverya € p, axic and aAc€ pUi},

12



and set

0 = B
1 = {1}

The proposition algebra associated to (B, m) is (F;®, —,0,1) if m is finite,
and otherwise (F; ®, —, 1).

Note that propositions consist of elements of the Boolean algebra whose
complement is bounded in measure, rather than the elements themselves.
The idea is that when measuring the expressiveness of a property, we should
measure what is excluded — not what remains possible. However, if the
measure is finite, both possibilities amount to the same.

We give the main statements of this section straightforwardly. The argumen-
tation is easier than in the preceding section, and we skip the proofs.

Theorem 4.2 Let o be an LL-formula. Then the following statements are
equivalent:

(i) For any separable Boolean algebra B and finite homogeneous, strictly

positive measure m on B, « is valid in the associated proposition alge-
bra (F;®,—,0,1).

(ii) « is valid in LL.
Similarly, we have:

Theorem 4.3 Let a be a CHL-formula. Then the following statements are
equivalent:

(i) For any separable Boolean algebra B and infinite homogeneous, strictly

positive measure m on B, « is valid in the associated proposition alge-
bra (F;®,—,1).

(ii) « is valid in CHL.

13



5 An illustrative example

We give in this section an easy example. It refers to the formalism explained
in Section 3, based on Boolean algebras with an automorphism group; but it
may be regarded mutatis mutandis as an example of the formalism described
in the preceding Section 4 as well.

Assume that we are given a countable collection of yes-no properties which
are logically unrelated. The appropriate model is apparently the Boolean
algebra B freely generated by A elements, say by {e;: i < A}, where A < w
is the number of properties to be modelled.

Call an automorphism g of B of finite support if g(e;) = e; for all but finitely
many ¢ < A. Let G be the group of all automorphisms of B of finite support.

Let us consider the pair (B,G). There is a natural measure on B, given by
1

m(e; A...Aej ) =(3)* whereiy, ..., i are pairwise distinct indices and *
is individually chosen as * or the identity. It is not difficult to see that a € B
is mapped to a’ by some g € G if and only if m(a) = m(a’). In particular, G
acts homogeneously on B. The propositions are all sets {a: m(a) > r} for
r=n(3)*, where k <w and 1 < n < 2* and all sets {a: m(a) > r} for all
re0,1).

Endow now F, the set of propositions, with the operations ® and — as
defined in Definition 3.6, and with the constants 0 = B \ {0} and 1 = {1}.
By identifying two propositions in the case that the infimum of the measure

of their elements coincides, we get the Lukasiewicz algebra.

At this point, we may notice conceptual similarities to certain other ap-
proaches to the problem how to interpret statements of fuzzy logics. Namely,
we may consider the fuzzy propositions just defined as sets of formulas of
Boolean propositional logic, e, ... being the atomic formulas. Furthermore,
if \ is finite, we may associate to every fuzzy proposition ¢ the proportion
of those two-valued truth assignments under which a given a € ¢ is true,
among all truth assignments. Note that this proportion is the same for all
a € ¢ and that it is characteristic for .

A similar mapping appears in connection with C. Fermiiller’s investigations
about the relationship between the three standard fuzzy logics on the one
hand and an approach to vagueness called supervaluationism on the other
hand [Fer|. Namely, in [Fer], it is proposed to interpret an atomic formula e
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by the proportion of (certain) two-valued truth assignments under which e
is true. Compound formulas, however, are interpreted in a different manner,
namely on the base of game semantics, which is appropriately adapted for
each of the discussed fuzzy logics. Indeed, otherwise a problem would occur
which is characteristic also for voting semantics, cf. e.g. [Par]; evaluations
based on measuring the proportion of some fixed set are not truth-functional.
We may mention, incidentally, that it was actually these latter difficulties
which led to the present work.

6 Conclusion

In our paper, an abstract framework is introduced which provides a connec-
tion between the notion of uncertainty on the one hand and formal fuzzy
calculi on the other hand. In this framework, entities appear which may be
considered as propositions in fuzzy logic and which connect exactly in the way
proposed by one out of two well-known fuzzy logics — namely, Lukasiewicz
logic or cancellative hoop logic.

Namely, we endow a Boolean algebra, modelling a set of sharp properties,
either with an automorphism group or with a measure, in both cases with the
intention to identify any two properties which are possibly not comparable,
but have the same weight when asserted. Propositions are then order-ideals
closed under the relation of being identifiable. Under appropriate assump-
tions, the set of all propositions carries in a natural way the structure of the
respective standard algebra.

This work is meant as a first step towards establishing alternative semantics
for fuzzy logics which is no longer based on the real unit interval. Its contin-
uation is projected into several directions. Certainly, it would be desirable
to cover more kinds of fuzzy logics — like Hajek’s Basic Logic. Furthermore,
the aim is to provide a formalism based on as simple notions as possible.
In particular, conditions like (G2), which are infinitary, should be avoided if
possible.
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