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Abstract

An orthoset is a set equipped with a symmetric and irreflexive binary relation. A
linear orthoset is an orthoset such that for any two distinct elements e, f there is
a third element g such that exactly one of f and g is orthogonal to e and the pairs
e, f and e, g have the same orthogonal complement. Linear orthosets naturally
arise from Hermitian spaces. In case of a finite rank, they are in a one-to-one cor-
respondence with the irreducible modular ortholattices of finite heigth. We define?
an orthoset to be prelinear by assuming the above mentioned property for non-
orthogonal pairs e, f only. In this paper, we establish some structural properties
of prelinear and linear orthosets under the assumption of finiteness or finite rank.

Keywords: orthoset, prelinear orthoset, linear orthoset, finite rank, orthomodular lattice,
modular lattice, covering property

1 Introduction

An orthoset is a pair (X,⊥), where X is a set and⊥ is a symmetric, irreflexive binary
relation on X . Elements e and f such that e ⊥ f are called orthogonal and orthosets
are sometimes also referred to as orthogonality spaces. David Foulis and his collab-
orators [1, 11] proposed orthosets as an abstract version of the Hilbert space model
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underlying quantum physics. Our guiding example is (P (H),⊥), where P (H) is
the collection of one-dimensional subspaces of a Hilbert space H and ⊥ is the usual
orthogonality relation.

Recently, we introduced and studied the prelinearity and linearity of orthosets, which
are simple combinatorial conditions [2, 7, 8]. We established that linear orthosets of
finite rank n ≥ 4 are exactly linear orthosets of the form (P (H),⊥), where H is an ?
n-dimensional Hermitian space [9].

Our main goal in this article is to study prelinear and linear orthosets which are finite
or of a finite rank:

(i) Characterize prelinear orthosets of finite rank.
(ii) Study direct product of prelinear orthosets.

(iii) Classify linear orthosets of rank ≤ 3.
(iv) Compute the number of all possible finite prelinear orthosets with a given

number of elements.

The paper is organized as follows: Section 2 contains basic notions and facts about
lattices, ortholattices, and their direct product decompositions. In Section 3, known
properties of orthosets are recalled. A lattice-theoretic representation theorem for
prelinear orthosets of finite rank is presented and used to characterize linear orthosets
of finite rank. In Section 4, we study direct products of prelinear orthosets and we
show that every prelinear orthoset of finite rank can be written as a direct product of
finitely many linear orthosets of finite rank.

In Section 5, we obtain new structural results for prelinear and linear orthosets of
rank n where n ∈ {1, 2, 3}. Moreover, in the final Section 6, we prove that there
is only one type of non-trivial finite linear orthoset. Afterwards, we find a formula
which allows us to compute the number of all possible prelinear orthosets with a
given number of elements.

2 Lattice theoretical background

In this section, we gather some preliminary results on lattices and ortholattices, which
will be needed in the following sections. Some of the results of this section are new,
and they are related to orthosets, so we state them in this section with short proofs.
We assume that the reader is familiar with the basics of lattice theory.

Lattices and ortholattices

We recall some notions and properties about lattices and ortholattices [4, 6].

Let a, b be elements of a lattice. We say that b covers a and write a <· b when a ≤ b
and there is no c such that a < c < b.

We say that a lattice L is trivial if |L| = 1, otherwise we say that it is non-trivial.

Let L be a lattice with 0. An element p of L is called an atom if 0 <· p. Moreover, L
is called atomistic if each element is the join of atoms. We denote the collection of
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all atoms of L by A(L). A lattice with 0 said to fulfil covering property if for any a
and for any atom p, a ∧ p = 0 implies a <· a ∨ p.

The length of a finite chain (totally ordered set) C is the |C| − 1. A lattice L is said
to be of finite height if, for some n ∈ N, all chains contained in L are of length at
most n. In this case, the maximum of lengths of chains is referred to as the height of
L. We note that any lattice of finite height is complete.?
Let a, b be two elements of a bounded lattice L. We say that b is a complement of
a if a ∨ b = 1 and a ∧ b = 0. If L is distributive then any complement is uniquely
determined. L is called complemented if each element possesses a complement. A?
Boolean sublattice of L is a bounded sublattice of L which is complemented and
distributive.

A bounded lattice L is called an ortholattice if L is equipped with a unary operation
⊥ : L→ L called orthocomplementation such that, for all a ∈ L:

(i) a⊥ is a complement of a,
(ii) If a ≤ b then b⊥ ≤ a⊥,

(iii) a⊥⊥ = a.

Also, we write a ⊥ b if a ≤ b⊥. In this case we say that a and b are orthogonal.

A lattice is called modular if a ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b.

An orthomodular lattice is an ortholattice such that a ≤ b implies a ∨ (a⊥ ∧ b) = b
[4]. A Boolean algebra is a distributive ortholattice. Clearly, any Boolean algebra is a?
modular ortholattice and any modular ortholattice is orthomodular. We note that any
modular ortholattice of finite height is atomistic.

We denote the two-element Boolean algebra by 2. A Boolean algebra with n atoms
will be denoted by 2n.

Let L be any lattice with 0 and a ∈ L. The interval L[0, a] = {x ∈ L | x ≤ a} is a
sublattice of L. If L is complete, atomistic or modular, then so is L[0, a], respectively.

The direct product of a collection of lattices is defined by the usual componentwise
operations. The horizontal sum of two non-trivial bounded lattices is basically the
non-trivial bounded lattice obtained by glueing the two lattices at their smallest and
largest elements.

A homomorphism (isomorphism) between two ortholattices is a lattice homomor-
phism (isomorphism) which preserves the orthocomplementation.

Example 1

Let n be any arbitary non-zero cardinal num-
ber. The horizontal sum of n copies of the
four-element Boolean algebra 22 is a modular
ortholattice which is denoted by MOn. For a
finite n, it has 2n + 2 elements and its Hasse
diagram is shown on the right. v
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Central elements of lattices

Let L denote a bounded lattice throughout the remainder of this section. The results
and definitions mentioned in this section are based mainly on [6] so we omit the
repeated references.

Definition 1 An element a ∈ L is called central when there exist two bounded lattices L1 and
L2 and an isomorphism Φ: L→ L1 × L2 such that Φ(a) = (1L1

, 0L2
).

We denote the collection of all central elements of L by Z(L).

Assuming the context of Definition 1, let us put a′ = Φ−1(0L1 , 1L2). Since L[0, a] is
isomorphic to L1 by Φ |L[0,a] : L[0, a] → L1 × {0L2} and L[0, a′] is isomorphic to
L2 by Φ |L[0,a′] : L[0, a′] → {0L1} × L2 we see that a ∈ L is central if and only if
there is an element a′ ∈ L such that

Φ: L→ L[0, a]× L[0, a′], x 7→ (x ∧ a, x ∧ a′) (1)

is a lattice isomorphism.

Proposition 1 Let a be a central element of L. Then the element a′ fulfilling (1) is uniquely
determined. Moreover a′ is the unique complement of a which is also central. Furthermore, if
a, b are central, then the elements a ∨ b and a ∧ b are central as well.

Note that the elements 0 and 1 are always central and we call them trivial central ele- ?
ments. There are some other equivalent formulations of a central element as follows
[6, Theorem 4.13].

Lemma 2 Let L be a bounded lattice and a ∈ L. Then the following are equivalent:

(i) a is a central element.

(ii) There is an element a′ ∈ L such that

x = (x ∧ a) ∨ (x ∧ a′) = (x ∨ a) ∧ (x ∨ a′) (2)

for all x ∈ L.

(iii) a is complemented, and for all x, y ∈ L we have (x ∨ a) ∧ y = (x ∧ y) ∨ (a ∧ y) and
(x ∧ a) ∨ y = (x ∨ y) ∧ (a ∨ y).

We note that, as a consequence, if a is central in a bounded lattice, then, for all x ∈ L, ?
(x ∨ a) ∧ a′ = x ∧ a′ and (x ∨ a′) ∧ a = x ∧ a.

On the other hand, the last item proves that the central elements yield the distributive
law in a restricted case, which is called MacLaren characterization [4, 5]. Hence
Z(L) is a Boolean sublattice of L.
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Lemma 3 Let L be a bounded lattice and a, b ∈ L such that a ≤ b. If a ∈ Z(L) then
a ∈ Z

(
L[0, b]

)
.

Proof If a ∈ Z(L), there is an a′ ∈ L and an isomorphism Φ: L → L[0, a] × L[0, a′]. Let
Φ(b) = (a, c). Then Φ |L[0,b] : L[0, b]→ L[0, a]× L[0, c] is a lattice isomorphism. �

Lemma 4 Let L be a bounded lattice and a ∈ Z(L). If b ∈ Z
(
L[0, a]

)
then b ∈ Z(L).

Proof First, we have a lattice isomorphism Φ: L→ L[0, a]×L[0, a′] such that Φ(a) = (a, 0)
and Φ(b) = (b, 0). Second, since b ∈ Z

(
L[0, a]

)
we have a lattice isomorphism Ψ: L[0, a]→

L[0, b] × L[0, b′] such that Ψ(b) = (b, 0). We conclude that we have a lattice isomorphism
Γ: L → L[0, b] × L[0, b′] × L[0, a′] such that Γ = (Ψ × idL[0,a′]) ◦ Φ. Hence Γ(b) =
(b, (0, 0)), which completes the proof. �

In the sequel, a central element of an ortholattice is meant to be a central element
of its lattice reduct. Note that in ortholattices the unique complement of a central
element is necessarily its orthocomplement.

Lemma 5 LetL be an ortholattice and a ∈ Z(L). Then the sublatticeL[0, a] is an ortholattice
where the orthocomplement is defined by x′ = x⊥ ∧ a, for all x ∈ L[0, a]. Moreover, (1) is an
ortholattice isomorphism Φ: L→ L[0, a]× L[0, a⊥], x 7→ (x ∧ a, x ∧ a⊥).

Proof Take any x ∈ L[0, a]. Then:

x ∨ (a⊥ ∧ a) = x ∨ 0 = x = (x ∨ a⊥) ∧ (x ∨ a) = (x ∨ a⊥) ∧ a.
From [6, Lemma 29.10] we obtain that L[0, a] is an ortholattice. To verify the second part of
the statement we only need to show that Φ preserves the orthocomplementation. By Lemma 2
we have:

Φ(x)⊥ = (x ∧ a, x ∧ a⊥)⊥ = ((x ∧ a)′, (x ∧ a⊥)′) = ((x ∧ a)⊥ ∧ a, (x ∧ a⊥)⊥ ∧ a⊥)

= ((x⊥ ∨ a⊥) ∧ a, (x⊥ ∨ a) ∧ a⊥) = (x⊥ ∧ a, x⊥ ∧ a⊥) = Φ(x⊥)

�

Lemma 6 Let L be any ortholattice and a ∈ L. Then the following are equivalent:

(i) a is a central element.

(ii) x = (x ∧ a) ∨ (x ∧ a⊥) for all x ∈ L.

(iii) L is isomorphic to the direct product of the ortholattices L[0, a]× L[0, a⊥].

(iv) (x ∨ a) ∧ y = (x ∧ y) ∨ (a ∧ y) for all x, y ∈ L.

From Lemma 6, (iv) and Proposition 1 we conclude that, for an ortholattice L, Z(L)
is a Boolean subalgebra of L.

?
Example 2 For any Boolean lattice L, we have Z(L) = L. In particular, Z(2) = 2 and
Z(MO1) = MO1

∼= 2× 2. Moreover, we have Z(MOn) = {0, 1} for all n ≥ 2.
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Irreducibility

In this part, we shall compile basic definitions and facts concerning irreducibility in
lattices and ortholattices.

Definition 2 A bounded lattice L is called irreducible if Z(L) = {0, 1}.

In other words, L is irreducible if it is not isomorphic to a product of two non-
trivial lattices where both have more than one element. Otherwise, we say that L is
reducible.

Theorem 7 Let L be any bounded lattice and x ∈ Z(L). Then L[0, x] is irreducible if and
only if x ∈ A

(
Z(L)

)
.

Proof Let L[0, x] be reducible. There is a non-trivial central element y ∈ Z
(
L[0, x]

)
. From

Lemma 4 we know that y ∈ Z(L). Since 0 < y < x, x is not an atom of Z(L).

Conversely, suppose that x is not an atom of Z(L). Then there exists y ∈ Z(L) such that
0 < y < x. Then by Lemma 3, y ∈ Z

(
L[0, x]

)
. This means that L[0, x] is reducible. �

By Lemma 5, an ortholattice L is irreducible if and only if its lattice reduct is
irreducible. We need to mention also the following important theorem [3].

Theorem 8 The only non-trivial finite irreducible modular ortholattices are the two-element
Boolean algebra 2 and MOn for n ≥ 2.

Since every modular ortholattice of finite height satisfies the assumptions of [6,
Theorem 16.6] and of Lemma 5 we obtain the following theorem.

Theorem 9 Let L be a modular ortholattice of finite height. Then L is isomorphic to the direct
product of finitely many irreducible modular ortholattices L[0, z] of height at most 2, where
z ∈ A(Z(L)) and the orthocomplementation ′ in L[0, z] is defined by x′ = x⊥ ∧ z, for all
x ∈ L[0, z].

3 Orthosets

The central issue in this paper is the study of orthosets of finite rank. In this part, we
recall some notions and properties mainly from [9].

Definition 3 An orthoset (or orthogonality space) is a non-empty set X equipped with a
symmetric, irreflexive binary relation ⊥, called the orthogonality relation.
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A subset of an orthoset (X,⊥) consisting of mutually orthogonal elements is called
a⊥-set. The supremum of the cardinalities of⊥-sets is called the rank of (X,⊥). We
put 6⊥ = (X ×X)\ ⊥.

For any A,B ⊆ X , we write A ⊥ B if a ⊥ b for all a ∈ A and b ∈ B.

Notation 10 Any orthoset (X,⊥) is obviously uniquely determined by the set of its maximal
⊥-sets. We denote this set by M(X,⊥).

Example 3 Let X = {1, 2, 3, 4, 5}. We have an orthoset (X,⊥) such that M(X,⊥) =
{{1, 2, 3}, {2, 3, 4}, {1, 5}}. We can visualize (X,⊥) as follows:

v v v v
v

1

5

2 3 4

Throughout the paper (whenever it is possible) we will picture an orthoset as a hyper-
graph in which vertices are the elements of an orthoset and edges are the straight
lines corresponding to the elements of M(X,⊥).

For orthosets (X,⊥) and (Y,⊥), we call a map f : X → Y a homomorphism if f is
orthogonality preserving. Moreover, f is called an isomorphism if f is bijective and
both f and f−1 are homomorphisms.?

From graph theoretical point of view, orthosets
can be considered the same as undirected
graphs where adjacents are orthogonal ele-
ments, (maximal) cliques are (maximal) ⊥-
sets, and homomorphisms (isomorphisms) of
orthosets are graph homomorphisms (isomor-
phisms). Thus the orthoset given in Example 3
can also be drawn as an undirected graph on the
right.
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If L is a complete atomistic ortholattice we have an orthoset
(
A(L),⊥

)
where the

orthogonality relation is inherited from L.

The orthogonal complement of a subset A ⊆ X of an orthoset (X,⊥) is defined to be

A⊥ = {x ∈ X : x ⊥ a, for all a ∈ A}.

We then have a closure operator on P(X) that maps any A ⊆ X to A⊥⊥. We call
the subsets closed with respect to ⊥⊥ orthoclosed and denote the collection of all
orthoclosed subsets by C(X,⊥). An orthoset is called point-closed if {x}⊥⊥= {x},
for all x ∈ X .
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Lemma 11 ([9]) If (X,⊥) is an orthoset then C(X,⊥) is a complete ortholattice.

As shown in [10, Proposition 2] we have the following.

Lemma 12 Let L be a complete atomistic ortholattice. Then A
(
C(X,⊥)

)
is a point-closed

orthoset. Moreover, ω : L → C(A(L)), a 7→ {p ∈ A(L) | p ≤ a} is an isomorphism of
ortholattices. Conversely, let (X,⊥) be a point-closed orthoset. Then C(X,⊥) is a complete
atomistic ortholattice. The map X → A(C(X,⊥)), e 7→ {e} is an isomorphism of orthosets.

Hence there is a one-to-one correspondence between point-closed orthosets and
complete atomistic ortholattices.

Prelinear and linear orthosets

The following condition was introduced in two equivalent ways in [9, §3] and [7, §5].

Definition 4 An orthoset (X,⊥) is called prelinear if it satisfies the following condition for
any two distinct elements e, f ∈ X:

(L1) if e 6⊥ f , there exists a g ⊥ e such that {e, f}⊥ = {e, g}⊥.

Lemma 13 ([9]) If an orthoset (X,⊥) is prelinear, then it is point-closed. In particular,
C(X,⊥) is atomistic, and the atoms are singletons {e}, for all e ∈ X .

Moreover:

Theorem 14 Let (X,⊥) be a prelinear orthoset of finite rank m. Then C(X,⊥) is a modular
ortholattice of height m. Conversely, if L is any modular ortholattice of finite height m, then
the orthoset

(
A(L),⊥

)
is a prelinear orthoset of rank m.

Proof The first part of the proof is given in [9, Lemma 3.5]. Conversely, let L be a modular
ortholattice of finite height m.

Suppose that we have p, q ∈ A(L) such that p 6= q. We need to find p ⊥ p′ such that
p ∨ p′ = p ∨ q.

Since L is modular we obtain from p ≤ p ∨ q that p ∨
(
p⊥ ∧ (p ∨ q)

)
= p ∨ q. Let us put

p′ = p⊥ ∧ (p∨ q). Then p∨ p′ = p∨ q and 0 < p′ < p∨ q. Since the height of L[0, p∨ q] is
2, we conclude that p′ is an atom of L such that p ⊥ p′.
Let Y be any maximal orthogonal subset of

(
A(L),⊥

)
. Then Y has at most m elements,

because otherwise we could construct a chain of length > m in L. Suppose that Y =
{y1, y2, . . . , yn}. By the covering property, we get a chain

0<· y1 <· y1 ∨ y2 <· (y1 ∨ y2) ∨ y3 <· · · ·<· (. . . (y1 ∨ y2) ∨ . . . ) ∨ yn = 1

and by [6, Remark 8.6], we get n = m. �
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Hence an orthoset (X,⊥) is a prelinear orthoset of finite rank m, if and only if
C(X,⊥) is an atomistic, modular ortholattice of height m. We therefore obtain a
one-to-one correspondence between prelinear orthosets of finite rank and modular
ortholattices of finite height.

Example 4 Let (X,⊥) be an orthoset with maximal ⊥-sets {0, 1, 2} and {0, 3, 4}. Note that
(X,⊥) is prelinear. (X,⊥) and the corresponding ortholattice C(X,⊥) are given as follows:

u u u
u u

���
���

���
���

XXXXXXXXXXXX

0

1

2

3

4

{0, 1, 2, 3, 4}

{1} {2} {0} {3} {4}

{0, 1} {0, 2} {1, 2, 3, 4} {0, 3} {0, 4}

∅

Definition 5 A prelinear orthoset (X,⊥) is called linear if it satisfies the following condition:

(L2) if e ⊥ f , there exists a g 6= e, g 6⊥ e such that {e, f}⊥ = {e, g}⊥.

In other words, for an orthoset (X,⊥) to be linear means the following: for any two
distinct elements e, f ∈ X , there is a third element g such that {e, f}⊥ = {e, g}⊥
and exactly one of f and g is orthogonal to e.

Theorem 15 Let (X,⊥) be a linear orthoset of finite rank m. Then C(X,⊥) is an irreducible
modular ortholattice of height m. Conversely, let L be an irreducible modular ortholattice of
finite height m. Then the orthoset

(
A(L),⊥

)
is a linear orthoset of rank m.

Proof Let (X,⊥) be a linear orthoset of rank m. By Theorem 14, C(X,⊥) is a modular
ortholattice of height m. Moreover, for any distinct elements e, f ∈ X , {e, f}⊥⊥ contains a
third atom. That is, the join of two distinct atoms of C(X,⊥) contains a third atom. Hence, by
[6, Lemma 16.6], C(X,⊥) is irreducible.

Conversely, let L be an irreducible modular ortholattice of height m. Then by Theorem 14 we
obtain that (A(L),⊥) is a prelinear orthoset of finite rank m. Again by [6, Lemma 16.6], the
join of two atoms of L contains a third one. This means that for any orthogonal atoms e and f
of L, e ∨ f contains a third atom. It then follows e ∨ f = e ∨ g. We conclude that (A(L),⊥)
is linear. �

We established a one-to-one correspondence between linear orthosets of finite ranks
and irreducible modular ortholattices of finite height.
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Remark 1 Summarily, for an orthoset (X,⊥) of finite rank, the condition (L2) corresponds to
the irreducibility, while the condition (L1) corresponds to the modularity and atomisticity of
C(X,⊥).

Example 5 Let (X,⊥) be an orthoset with maximal ⊥-sets {1, 2} and {3, 4} which is linear.
(X,⊥) and the corresponding ortholattice C(X,⊥) are given below:

u u
u u

1

3

2

4

{1} {2} {3} {4}

{1, 2, 3, 4}

∅

?

In fact, C(X,⊥) is isomorphic to MO2 which is irreducible, modular, and of height two.

4 The structure theorem for prelinear orthosets

In this section, we give a lattice theoretical approach to prelinear orthosets.

Direct product of prelinear orthosets

For this subsection only, Xi denotes an orthoset (Xi,⊥i), i ∈ {1, 2}. For the sake
of simplicity, throughout the subsection, we assume that the orthogonality spaces in
question are pairwise disjoint.

We have the following immediate statement (see also [8, Proposition 4.7.]).

Proposition 16 Let X1 and X2 be two disjoint orthosets. We put ?
⊥=⊥1 ∪ ⊥2 ∪ X1 ×X2 ∪ X2 ×X1 .

Then ⊥ defines an orthogonality relation on the set X1 ∪X2.

Definition 6 The orthoset (X1 ∪X2,⊥) is called the direct product of orthosets and denoted
by X1 tX2.

Note that the construction given in Definition 6 is associative. The following
statements directly follow from Definition 6.

Lemma 17 The set of all maximal ⊥-sets of X1 tX2 is:

M(X1 tX2) := {D1 ∪D2 | D1 ∈M(X1), D2 ∈M(X2)}
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and |M(X1 tX2)| = |M(X1)| · |M(X2)|. Moreover, if X1 and X2 are of finite ranks m
and n, then X1 tX2 is of rank m+ n.

Proposition 18 Let a, b ∈ X1 ∪X2. Then the following are equivalent:

(i) a 6⊥ b,
(ii) a, b ∈ Xi and a 6⊥i b, where i ∈ {1, 2}.

Moreover, {a}⊥ = Xj ∪ {a}⊥i where a ∈ Xi, i 6= j and i, j ∈ {1, 2}.

Lemma 19 Considering X1 tX2, we have:

(i) Y ⊥ = (Y ∩X1)⊥1 ∪ (Y ∩X2)⊥2 , for all Y ⊆ X1 ∪X2.

(ii) {a, b}⊥ = Xj ∪ {a, b}⊥i , if a, b ∈ Xi, where i, j ∈ {1, 2} and i 6= j .

(iii) {a, b}⊥ = {a}⊥i ∪ {b}⊥j , if a ∈ Xi and b ∈ Xj , where i, j ∈ {1, 2} and i 6= j .

Corollary 20 Considering X1 tX2, A ⊆ X1 and B ⊆ X2, we have:

(i) (A ∪B)⊥ = A⊥1 ∪B⊥2 .

(ii) (A ∪B)⊥⊥ = A⊥1⊥1 ∪B⊥2⊥2 .

(iii) If A ∈ C(X1,⊥1) and B ∈ C(X2,⊥2), then (A ∪B) ∈ C(X1 ∪X2,⊥).

The following theorem establishes a connection between direct products of orthosets
and direct products of lattices of orthoclosed subsets.

Theorem 21 We have

C(X1 ∪X2,⊥) ∼= C(X1,⊥1)× C(X2,⊥2).

Moreover, if C(X,⊥) ∼= C(X1,⊥1)× C(X2,⊥2) then (X,⊥) ∼= X1 tX2.

Proof Let Y ∈ C(X1 ∪X2,⊥). From Corollary 20 we can write

Y = Y ⊥⊥ =
(
(Y ∩X1) ∪ (Y ∪X2)

)⊥⊥
= (Y ∩X1)⊥1⊥1 ∪ (Y ∩X2)⊥2⊥2

from which we get (Y ∩ Xi)⊥⊥ = (Y ∩ Xi) and therefore (Y ∩ Xi) ∈ C(Xi,⊥i) for
i ∈ {1, 2}. Now let us define

f : C(X1 ∪X2,⊥)→ C(X1,⊥1)× C(X2,⊥2)

Y 7→ (Y ∩X1, Y ∩X2)

It is a transparent procedure to check that f is bijective and order preserving.

Suppose now that C(X,⊥) ∼= C(X1,⊥1) × C(X2,⊥2). We can identify X with X1 ∪ X2.
Clearly, any atom of C(X1,⊥1) is orthogonal to any atom of C(X2,⊥2). Let a and b are atoms
of C(X1,⊥1). Then they are orthogonal in C(X1,⊥1), if and only if, they are orthogonal in
(X1,⊥1). The same arguments are valid for atoms a and b of C(X2,⊥2). Hence (X,⊥) ∼=
X1 tX2. �
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Theorem 22 X1 tX2 is prelinear if and only if X1 and X2 are prelinear.

Proof Assume first that X1 and X2 are prelinear. Suppose that e 6⊥ f . From Proposition 18
we obtain that there is i ∈ {1, 2} such that e, f ∈ Xi and e 6⊥i f . Since (Xi,⊥i) is a prelinear
orthoset, there exists g ∈ Xi and e ⊥i g such that {e, f}⊥i = {e, g}⊥i . From Lemma 19 we
conclude for j 6= i

{e, f}⊥ = Xj ∪ {e, f}⊥i = Xj ∪ {e, g}⊥i = {e, g}⊥.

Recall that e ⊥ g follows from e ⊥i g in the sense of Definition 6.

Conversely, let X1 tX2 be prelinear. Assume now that e, f ∈ X1 and e 6⊥1 f . From prelin-
earity of X1 t X2 we find g ∈ X1 ∪ X2 such that X2 ⊆ {e, f}⊥ = {e, g}⊥ and e ⊥ g.
Hence g ∈ X1, e ⊥1 g and {e, f}⊥1 = {e, g}⊥1 . The case e, f ∈ X2 and e 6⊥2 f follows
by similar considerations. �

Definition 7 A prelinear orthoset is called irreducible if it is not isomorphic to a direct product
of two non-trivial prelinear orthosets.

Lemma 23 A prelinear orthoset (X,⊥) of finite rank is irreducible, if and only if, C(X,⊥) is
irreducible.

Proof A prelinear orthoset (X,⊥) of finite rank is reducible, if and only if, there is an isomor- ?
phism (X,⊥) ∼= X1 tX2, and both X1 and X2 are prelinear orthosets of finite rank, if and
only if, C(X1 ∪X2,⊥) ∼= C(X1,⊥1)×C(X2,⊥2), and both C(X1,⊥1) and C(X2,⊥2) are
modular ortholattices of finite height, if and only if, C(X,⊥) is reducible. �

Example 6 LetX1 = {1, 2, 3, 4} andX2 = {5, 6, 7, 8}. Suppose that we have linear orthosets
(X1,⊥2) and (X2,⊥2) which are both isomorphic to the orthoset from Example 5.

Consider the direct product X1 tX2. We have 1 ⊥ 5 and {1, 5}⊥ = {2, 6}. However, there
is no g ∈ X1 ∪X2 such that 1 6⊥ g and {1, g}⊥ = {2, 6}.

Remark 2 From Example 6 we obtain that Theorem 22 is not true for linear orthosets. Indeed,
the direct product of two linear non-trivial orthosets is never linear.

Theorem 24 Let (X,⊥) be a prelinear orthoset. The following are equivalent:

(i) The orthoset (X,⊥) is irreducible.

(ii) The ortholattice C(X,⊥) is irreducible.

(iii) (X,⊥) is linear.

Proof (i)⇔(ii). Transparent by Lemma 23.

(ii)⇔(iii). Obvious from Theorem 15. �



Springer Nature 2021 LATEX template

Finitary prelinear and linear orthosets 13

The core of a point-closed orthoset

Lemma 25 Let (X,⊥) be a point-closed orthoset and B ∈ C(X,⊥) a central element. Then

B ∨D = B ∪D

for all D ∈ C(X,⊥).

Proof We use MacLaren characterization. Let D ∈ C(X,⊥) and y ∈ B ∨ D. Since {y} ∈
C(X,⊥) is an atom, we can write:

{y} = {y} ∧
(
B ∨D

)
=
(
{y} ∧B

)
∨
(
{y} ∧D

)
.

which follows that y ∈ B ∪D ⊆ B ∨D and therefore we have B ∨D = B ∪D. �

The statement of Lemma 25 is not true for arbitrary B ∈ C(X,⊥).

Example 7 Let (X,⊥) be the prelinear orthoset given in Example 4. We have:

{1} ∨ {2} = {1, 2, 3, 4} 6= {1, 2},

since both {1} and {2} are not cores of (X,⊥).

Definition 8 Let (X,⊥) be an orthoset. A subset B ⊆ X is called a core if B⊥ = X \B.

Clearly, every core is orthoclosed, its complement is a core, and the union and inter-
section of two cores is again a core. Moreover, if the singleton {a} is a core of (X,⊥)
then any D ⊆ X with D 6⊆ {a}⊥ contains a.

There is a one-to-one correspondence between the cores of a point-closed orthoset
(X,⊥) and the central elements of C(X,⊥).

Lemma 26 Let (X,⊥) be a point-closed orthoset and B ⊆ X . The following are equivalent:

(i) B is a core of (X,⊥).

(ii) B is a central element of C(X,⊥).

Proof (i)⇒ (ii): Let B be a core of (X,⊥) and Y ∈ C(X,⊥). Then we can write B ∪B⊥ =
X by definition. It follows:

Y = Y ∧X = Y ∧ (B ∪B⊥) = (Y ∧B) ∪ (Y ∧B⊥) ≤ (Y ∧B) ∨ (Y ∧B⊥) ≤ Y

from which we get Y = (Y ∧B) ∨ (Y ∧B⊥) and hence B is a central element.

(ii) ⇒ (i): Let B be a central element of C(X,⊥). From Lemma 25 we conclude B ∨ D =
B ∪D for all D ∈ C(X,⊥). It follows that B⊥ = X \B, i.e., B is a core of (X,⊥). �
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The structure theorem

Theorem 27 Any prelinear orthoset of finite rank is isomorphic to a direct product of finitely
many linear orthosets of finite rank.

Proof Let (X,⊥) be a prelinear orthoset of finite rank. Then we have the corresponding com-
plete modular ortholattice L := C(X,⊥) of finite height. We know from Theorem 9 that L
is the direct sum of finitely many irreducible sublattices {L[0, zα] | α ∈ I} of finite height
where zα ∈ Z(L) for α ∈ I . Hence (X,⊥) is isomorphic to a direct product of finitely many
linear orthosets (A(L[0, zα]),⊥) by Theorem 21. �

5 Orthosets with low rank

In this section we will apply some lattice theoretical properties to orthosets and obtain
some structural results for prelinear and linear spaces of rank n where n ∈ {1, 2, 3}.

Orthosets of rank 1

Let X be a singleton. There is a unique orthoset based on X . In that case the orthog-
onality relation ⊥ is the empty set and we call (X,⊥) trivial. Note that (X,⊥) is
both prelinear and linear.

Orthosets of rank 2

Lemma 28 Let L be a modular ortholattice of height two. Then L is isomorphic to MOn,
where n is a non-zero cardinal number.

Proof Let p ∈ L \ {0, 1}. Then p ∈ A(L). Since L has height two, p⊥ ∈ A(L). Thus we can
write

A(L) =
⋃
i∈I
{xi, x⊥i }, L = A(L) ∪ {0, 1}.

We conclude that L is a horizontal sum of I copies of MO1. Hence L ∼= MOn, where
n = |I|. �

Theorem 29 An orthoset (X,⊥) of rank 2 is prelinear if and only if the pairs of orthogonal
elements form a partition of X into 2-element subsets.

Proof Let (X,⊥) be a prelinear orthoset of rank 2. By Lemma 28 C(X,⊥) is isomorphic to
MOn. Then according to Lemma 12 we get an isomorphism between (X,⊥) and the underly-
ing orthoset

(
A(MOn),⊥

)
with the inherited orthogonality, in which the pairs of orthogonal

elements form a partition into 2-element subsets.

Conversely, let (X,⊥) be an orthoset in which the pairs of orthogonal elements form a partition
of X into 2-element subsets. Suppose that e 6⊥ f . Take e⊥ ∈ X such that e ⊥ e⊥. Since
the pairs of orthogonal elements form a partition, we obtain {e, e⊥}⊥ = ∅ = {e, f}⊥ which
proves that (X,⊥) is prelinear. �
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Theorem 30 An orthoset (X,⊥) of rank 2 is linear if and only if the pairs of orthogonal
elements form a partition of X into 2-element subsets and |X| ≥ 4.?

Proof Let (X,⊥) be a linear orthoset of rank 2. Then C(X,⊥) is an irreducible modular
ortholattice of height two. We also know from Theorem 9 that the only irreducible modular
ortholattice of height two are lattices isomorphic to MOn where n ≥ 2. The remaining part
follows from Theorem 29. �

Orthosets of rank 3

Lemma 31 Let L be a modular ortholattice of height three. If L is reducible, then it is
isomorphic to 2×MOn, where n is a non-zero cardinal number.

Proof Let L be reducible. From Theorem 9 and Lemma 7, L is a direct product of irreducible
sublatticesL[0, zα] where zα ∈ Z(L)\{0, 1} and zα ∈ A(Z(L)). Hence we have exactly two
non-trivial central elements a, a⊥ which are an atom and a coatom, respectively. We conclude
that L is isomorphic to L[0, a]× L[0, a⊥]. Clearly L[0, a] ∼= 2, and from Lemma 28 we have
L[0, a⊥] ∼= MOn. Therefore L is isomorphic to 2×MOn. �

Lemma 32 Let L be a modular ortholattice of height three with three atoms. Then L is
isomorphic to Z(L). Consequently L is isomorphic to the Boolean algebra 23.

Proof From Lemma 31 we have that L ∼= 2×MOn. We conclude that n = 1. Since MO1
∼=

2× 2 we obtain that L ∼= 23. �

Lemma 33 LetL be a modular ortholattice of height three with at least four atoms. Then there
is at most one atom of L in Z(L).?

Proof Let p, q ∈ A(L) ∩ Z(L) be distinct. Then L ∼= L[0, p]× L[0, p⊥] and q ≤ p⊥. Since?
L[0, p⊥] has height 2 and q ∈ Z(L[0, p⊥]) by Lemma 3 we know that L[0, p⊥] is reducible.
There is an atom r ∈ Z(L[0, p⊥]) such that L[0, p⊥] ∼= L[0, q]×L[0, r] ∼= MO1 by Lemma
28. Hence L has exactly 3 atoms, a contradiction. �

Example 8 [2] Let A and B be disjoint sets (with the same cardinality) with a bijection
ϕ : A→ B, and fix an element x̄ 6∈ A∪B. We denote by 3(A,B,ϕ) an orthoset in which the
maximal orthogonal subsets are {x̄, a, ϕ(a)}, a ∈ A. Then 3(A,B,ϕ) is prelinear, has rank
3, and it is not linear.

We call an irreducible modular ortholattice of height 3 a projective plane with
orthogonality.

Theorem 34 An orthoset (X,⊥) is prelinear of rank 3 if and only if one of the following holds:

(i) There is a bijection φ : A → B between disjoint sets such that (X,⊥) is isomorphic to
3(A,B,ϕ).
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(ii) C(X,⊥) is a projective plane with orthogonality.

Proof Let (X,⊥) be prelinear of rank 3. If (X,⊥) is linear then C(X,⊥) is a projective plane
with orthogonality.

Suppose now that (X,⊥) is not irreducible. Let |X| = 3. From [2, Remark 26] we have
M(X,⊥) = {X} and the statement is valid.

Assume now that |X| ≥ 4. Then there are disjoint non-empty orthoclosed subsets U and V
such that U ∪ V = X and U = V ⊥ and V = U⊥. Moreover, U and V are prelinear.

Note that either U or V is a singleton. Namely, if |U | ≥ 2 and |V | ≥ 2 then by prelinearity of
U and V we obtain that there are a, b ∈ U , c, d ∈ V such that a ⊥ b and c ⊥ d, a contradiction
with rank 3.

Hence we can assume that U = {x̄} for a suitable element x̄ ∈ X and V = {x̄}⊥ (otherwise
we interchange U with V ). Evidently, V is an orthogonality space of rank 2. From Theorem
29 we obtain subsets A,B ⊆ V and a bijection ϕ : A → B such that ⊥ ∩ (V × V )=
{(a, ϕ(a)) | a ∈ A} ∪ {(ϕ(a), a) | a ∈ A}. We conclude that {x̄, a, ϕ(a)}, a ∈ A, are all
maximal orthogonal subsets (X,⊥), i.e., (X,⊥) = 3(A,B,ϕ).

Since every projective plane with orthogonality and every orthoset of the form 3(A,B,ϕ) are
prelinear and of rank 3 the converse direction is evident. �

6 Finite orthosets

In this section we will deal with finite orthosets with an arbitrary rank. We primarily
prove that there is only one type of non-trivial finite linear orthosets. Afterwards,
we find a natural formula which allows us to compute the number of all possible
prelinear orthosets with a given number of elements.

Finite linear orthosets

Lemma 35 There is no finite irreducible atomistic modular ortholattice of height ≥ 3.

Proof We know from [4] that the only finite, irreducible, modular ortholattices are the Boolean
algebra 2 of height one and MOn of height two for n ≥ 2. � ?

Theorem 36 There is no finite linear orthoset of rank ≥ 3. In fact if a linear orthoset (X,⊥)
is finite, then one of the following holds:

(i) (X,⊥) is trivial.

(ii) The pairs of orthogonal elements form a partition of X into 2-element subsets.

Finite prelinear orthosets

Consider the two-element Boolean algebra 2 which is a modular ortholattice with 1
atom. We have a one-to-one correspondence with the trivial prelinear orthoset. Now



Springer Nature 2021 LATEX template

Finitary prelinear and linear orthosets 17

consider the finite product lattice 2n which has n atoms. It is again a modular ortho-
lattice. In this case, we have a one-to-one correspondence with a prelinear orthoset
on the set X = {x1, . . . , xn} in which every singleton is a core. In other words, there
is a one maximal orthogonal subset which is X itself.

Consider now the modular ortholattice MOn with 2n+2 elements. We obtain a one-?
to-one correspondence between MOn and a prelinear orthoset on an n-element set
X in which the pairs of orthogonal elements form a partition of X into 2-element
subsets.

Let us consider the product lattice L =
∏k
i=1 MOai where ai is a non-zero cardinal

number, 1 ≤ i ≤ k. We know thatA(L) has
∑k

i=1 2ai elements. Let us figure out the
prelinear orthoset (X,⊥) such that C(X,⊥) ∼= L. Following Theorem 21 we obtain
a one-to-one correspondence between between L and the orthoset (X,⊥) which is a
direct product of prelinear orthosets (Xi,⊥) where Xi has 2ai elements and the pairs
of orthogonal elements form a partition of Xi into 2-element subsets.

Notation 37 Let n ∈ N and x ∈ R. We put: n = {m ∈ N | 1 ≤ m ≤ n} and bxc for a lower
integer part of x.

A partition of a positive integer n is a multiset {n1, . . . , nk} of positive integers such that
n1 + · · · + nk = n. The total number of partitions of n is denoted p(n). We call p(n) a
partition function.

From the above considerations we immediately obtain the following.

Theorem 38 For a given finite modular ortholattice L = 2n ×
∏k
i=1 MOai define a set

X = n ∪
⋃k
i=1A(MOai) and an orthoset (X,⊥) such that any maximal⊥-set is of the form

n ∪ {x1, x′1, x2, x′2, · · · , xk, x′k} (3)

where xi ∈ A(MOai) and x′i is the orthocomplement of xi in MOai . Then (X,⊥) ∼=
(A(L),⊥). Moreover, M(X,⊥) has

∏k
i=1 ai elements, and also |D| = n+ 2k, for all D ∈

M(X,⊥).

Now we compute the number of all possible prelinear orthosets with a given number
of elements.

Theorem 39 Let m ∈ N, m ≥ 2. Then there are p(
⌊
m
2

⌋
) mutually non-isomorphic prelinear

orthosets on m elements.

Proof Let (X,⊥) be a prelinear orthoset such that |X| = m. Then C(X,⊥) = 2n ×∏k
i=1 MOai for some numbers a1, . . . , ak ≥ 2 and n ≥ 0.?

Assume first that m is even, that is, m = 2l for some l ≥ 1. Then m = n+
∑k

1 2ai. Clearly,
n = 2j, j ≥ 0 since m is even. We have a one-to-one correspondence between mutually
non-isomorphic prelinear orthosets on m elements and partitions of l. Namely, the multiset
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{1, . . . , 1︸ ︷︷ ︸
j times

, a1, . . . , ak} is the respective partition of l such that the corresponding prelinear

orthoset is a direct product of 2j singletons and k linear orthosets (Xi,⊥i) of rank 2, where
Xi ⊆ X . Each Xi is partitioned into ai > 1 many 2-element subsets of orthogonal elements,
1 ≤ i ≤ k.

Assume now that m is odd, that is, m = 2l + 1 for some l ≥ 1. Then n = 2j + 1, j ≥ 0
since m is odd and m = n +

∑k
1 2ai. Then we have a one-to-one correspondence between

mutually non-isomorphic prelinear orthosets onm elements and partitions of l. Here the multi-
set {1, . . . , 1︸ ︷︷ ︸

j times

, a1, . . . , ak} is the respective partition of l such that the corresponding prelinear

orthoset is a direct product of 2j + 1 singletons and k linear orthosets (Xi,⊥i) of rank 2.

Therefore the number of mutually non-isomorphic prelinear orthosets on m elements equals
p(
⌊
m
2

⌋
). �

Corollary 40 Let m ∈ N, m ≥ 2. Then there are p(
⌊
m
2

⌋
) mutually non-isomorphic modular

ortholattices with m atoms.
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