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Abstract

An orthogonality space is a set together with a symmetric and irreflexive
binary relation. Any linear space equipped with a reflexive and anisotropic
inner product provides an example: the set of one-dimensional subspaces
together with the usual orthogonality relation is an orthogonality space. We
present simple conditions to characterise the orthogonality spaces that arise
in this way from finite-dimensional Hermitian spaces.

Moreover, we investigate the consequences of the hypothesis that an ortho-
gonality space allows gradual transitions between any pair of its elements.
More precisely, given elements e and f , we require a homomorphism from
a divisible subgroup of the circle group to the automorphism group of the
orthogonality space to exist such that one of the automorphisms maps e to
f , and any of the automorphisms leaves the elements orthogonal to e and
f fixed. We show that our hypothesis leads us to positive definite quadratic
spaces. By adding a certain simplicity condition, we furthermore find that
the field of scalars is Archimedean and hence a subfield of the reals.

1 Introduction

An orthogonality space is a set endowed with a binary relation that is supposed
to be symmetric and irreflexive. The notion was proposed in the 1960s by David
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Foulis and his collaborators [Dac, Wlc]. Their motivation may be seen as part of
the efforts to characterise the basic model used in quantum physics: the Hilbert
space. The strategy consists in reducing the structure of this model to the neces-
sary minimum. Compared to numerous further approaches that have been pro-
posed with a similar motivation [EGL1, EGL2], we may say that Foulis’s concept
tries to exhaust the limits of abstraction, focusing solely on the relation of ortho-
gonality. The prototypical example of an orthogonality space is the projective Hil-
bert space together with usual orthogonality relation. Just one aspect of physical
modelling is this way taken into account – the distinguishability of observation
results.

We have dealt with the problem of characterising the complex Hilbert spaces
as orthogonality spaces in our recent work [Vet1, Vet2]. The idea was to make
hypotheses on the existence of certain symmetries. In the infinite-dimensional
case, just a few simple assumptions led to success [Vet2], whereas in the finite-
dimensional case, the procedure was considerably more involved [Vet1].

In the present paper, we first of all point out a straightforward way of limiting the
discussion to inner-product spaces. We deal here with the finite-dimensional case,
that is, we assume all orthogonality spaces to have a finite rank. We introduce
the notion of linearity and establish that any linear orthogonality space of a finite
rank > 4 arises from an (anisotropic) Hermitian space over some skew field.

On this basis, we are furthermore interested in finding conditions implying that the
skew field is among the classical ones. However, to determine within our frame-
work the characteristic properties of, say, the field of complex numbers is difficult
and we are easily led to the choice of technical, physically poorly motivated hy-
potheses. Rather than tailoring conditions to the aim of characterising a particular
field of scalars, we focus in this work on an aspect whose physical significance
is not questionable: we elaborate on the principle of smooth transitions between
states. A postulate referring to this aspect might actually be typical for any ap-
proach to interpret the quantum physical formalism; cf., e.g., [Har]. Our condition
looks as follows. Let e and f be distinct elements of an irredundant orthogonality
space. Then we suppose that an injective homomorphism from a subgroup of the
abelian group of unit complex numbers to the group of automorphisms exists, the
action being transitive on the closure of e and f and fixing elements orthogonal to
e and f .

The complex Hilbert space does not give rise to an example of the orthogonal-
ity spaces considered here, but the real Hilbert space does. The natural means of
visualising matters is an n-sphere, which nicely reflects the possibility of getting
continuously from any point to any other one by means of a rotation, in a way
that anything orthogonal to both is left at rest. As the main result of this contri-
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bution, we establish that any linear orthogonality space of finite rank that fulfils
the aforementioned hypothesis regarding the existence of automorphisms arises
from a positive definite quadratic space. We furthermore subject the orthogon-
ality space to a simplicity condition, according to which there are no non-trivial
quotients compatible with the automorphisms in question. We show that the field
of scalars is then embeddable into the reals.

The paper is organised as follows. In Section 2, we recall the basic notions used in
this work and we compile some basic facts on inner-product spaces and the ortho-
gonality spaces arising from them. In Section 3, we introduce linear orthogonality
spaces; we show that the two simple defining conditions imply that an orthogon-
ality space arises from a Hermitian space over some skew field. In Section 4, we
formulate the central hypothesis with which we are concerned in this paper, the
condition that expresses, in the sense outlined above, the gradual transitivity of the
space. We show that, as a consequence, the skew field is commutative, its invol-
ution is the identity, and it admits an order. The subsequent Section 5 is devoted
to the group generated by those automorphisms that occur in our main postulate.
In Section 6, we finally show that the exclusion of certain quotients of the ortho-
gonal space implies that the ordered field actually embeds into R. An outlook on
possible continuations of this work can be found in the concluding Section 7.

2 Orthogonality spaces

We investigate in this paper relational structures of the following kind.

Definition 2.1. An orthogonality space is a non-empty set X equipped with a
symmetric, irreflexive binary relation ⊥, called the orthogonality relation.

We call n ∈ N the rank of (X,⊥) ifX contains n but not n+1 mutually orthogonal
elements. If X contains n mutually orthogonal elements for any n ∈ N, then we
say that X has infinite rank.

This definition was proposed by David Foulis; see, e.g., [Dac, Wlc]. The idea
of an abstract orthogonality relation has been taken up by several further authors
[Mac, Fin, Pul, HePu, Rod, Bru], although definitions sometimes differ from the
one we use here. It should be noted that the notion of an orthogonality space is
very general; in fact, orthogonality spaces are essentially the same as undirected
graphs.

Orthogonality space naturally arise from inner-product spaces. We shall compile
the necessary background material; for further information, we may refer, e.g., to
[Gro, Piz, Sch].
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By a ?-sfield, we mean a skew field (division ring) K together with an involutorial
antiautomorphism ? : K → K. We denote the centre of K by Z(K) and we let
U(K) = {ε ∈ K : εε? = 1} be the set of unit elements of K.

Let H be a (left) linear space over the ?-sfield K. Then a Hermitian form on H is
a map (·, ·) : H ×H → K such that, for any u, v, w ∈ H and α, β ∈ K, we have

(αu+ βv, w) = α (u,w) + β (v, w),

(w, αu+ βv) = (w, u)α? + (w, v) β?,

(u, v) = (v, u)?.

The form is called anisotropic if (u, u) = 0 holds only if u = 0.

By a Hermitian space, we mean a linear space H endowed with an anisotropic
Hermitian form. If the ?-sfield K is commutative and the involution ? is the
identity, then we refer to H as a quadratic space. We moreover recall that a field
K is ordered if K is equipped with a linear order such that (i) α 6 β implies
α + γ 6 β + γ and (ii) α, β > 0 implies αβ > 0. If K can be made into an
ordered field, K is called formally real. If K is an ordered field and we have that
(u, u) > 0 for any u ∈ H \ {0}, then H is called positive definite.

As usual, we write u ⊥ v for (u, v) = 0, where u, v ∈ H . Applied to subsets ofH ,
the relation⊥ is understood to hold elementwise. Moreover, we write [u1, . . . , uk]
for the subspace spanned by non-zero vectors u1, . . . , uk ∈ H . For a subspace E
of H , we write E• = E \ {0} and we define P (E) = {[u] : u ∈ E•}. That is,
P (H) is the (base set of the) projective space associated with H .

We may now indicate our primary example of orthogonality spaces.

Example 2.2. LetH be a Hermitian space. Because the form is reflexive, [u] ⊥ [v]
is equivalent to [v] ⊥ [u] for any u, v ∈ H •, and because the form is anisotropic,
[u] ⊥ [u] does not hold for any u ∈ H •. In other words, the orthogonality relation
on P (H) is symmetric and irreflexive and hence makes P (H) into an orthogon-
ality space.

If H is finite-dimensional, the dimension of H coincides with the rank of
(P (H),⊥). If H is infinite-dimensional, (P (H),⊥) has infinite rank.

We call an orthogonality space X irredundant if, for any e, f ∈ X , {e}⊥ = {f}⊥
implies e = f . For example, for any Hermitian space H , (P (H),⊥) is irredund-
ant. For the reasons explained in the following remark, focusing on orthogonality
spaces with this property is no serious restriction.

Remark 2.3. Let (X,⊥) be an orthogonality space. If X is not irredundant,
there are distinct elements that are, by means of the orthogonality relation, indis-
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tinguishable. Roughly speaking, X then arises from an irredundant space simply
by multiplying some of its elements.

Indeed, for e, f ∈ X , define e ≡ f to hold if {e}⊥ = {f}⊥. Then ≡ is an equi-
valence relation. Moreover, e ≡ e′ and f ≡ f ′ imply that e ⊥ f is equivalent to
e′ ⊥ f ′. Thus the quotient set X/≡ can be made into an orthogonality space,
where we have, for any e, f ∈ X , e/≡ ⊥ f/≡ if and only if e ⊥ f . By construc-
tion, X/≡ is irredundant.

We conclude that, given an orthogonality space that is not irredundant, we can
easily switch to an irredundant one whose structure can be considered as essen-
tially the same.

Both orthogonality spaces and Hermitian spaces can be dealt with by lattice-
theoretic means.

For a subset A of an orthogonality space (X,⊥), we let

A⊥ = {e ∈ X : e ⊥ A},

where it is again understood that the orthogonality relation is applied to subsets
of X elementwise. The map P(X) → P(X), A 7→ A⊥⊥ is a closure operator
[Ern]. If A⊥⊥ = A, we say that A is orthoclosed and we denote the set of all or-
thoclosed subsets of X by C(X,⊥). We partially order C(X,⊥) by set-theoretical
inclusion and equip C(X,⊥) with the operation ⊥. In this way, we are led to an
ortholattice, from which (X,⊥) can in certain cases be recovered.

Following Roddy [Rod], we call an orthogonality space point-closed if, for any
e ∈ X , {e} is orthoclosed.

Proposition 2.4. C(X,⊥) is a complete ortholattice.

Moreover, ({{e}⊥⊥ : e ∈ X}, ⊥) is an orthogonality space and the map X →
{{e}⊥⊥ : e ∈ X}, e 7→ {e}⊥⊥ is orthogonality-preserving. If (X,⊥) is point-
closed, then the map X → ({{e} : e ∈ X},⊥), e 7→ {e} is an isomorphism
between (X,⊥) and the set of atoms of C(X,⊥) endowed with the inherited or-
thogonality relation.

Proof. The collection of closed subsets of a closure space forms a complete lattice
and this fact applies to C(X,⊥). Moreover, A⊥ is clearly a complement of an
A ∈ C(X,⊥) and ⊥ : C(X,⊥)→ C(X,⊥) is order-reversing as well as involutive.
This shows the first part.

For any e, f ∈ X , we have {e}⊥⊥ ⊥ {f}⊥⊥ if and only if e ⊥ f . It follows that
({{e}⊥⊥ : e ∈ X},⊥) is an orthogonality space and the assignment e 7→ {e}⊥⊥
is orthogonality-preserving. Moreover, if {e} = {e}⊥⊥ holds for any e ∈ X ,
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then C(X,⊥) is atomistic, the atoms being the singleton subsets. The second part
follows as well.

The correspondence between an orthogonality space (X,⊥) and its associated or-
tholattice C(X,⊥) extends as follows to automorphisms. Here, an automorphism
of (X,⊥) is a bijection ϕ of X such that, for any x, y ∈ X , x ⊥ y if and only
if ϕ(x) ⊥ ϕ(y). We denote the automorphism group of (X,⊥) by Aut(X,⊥).
Moreover, the group of automorphisms of the ortholattice C(X,⊥) is denoted by
Aut(C(X,⊥)).

Proposition 2.5. Let ϕ be an automorphism of the orthogonality space (X,⊥).
Then

ϕ̄ : C(X,⊥)→ C(X,⊥), A 7→ {ϕ(e) : e ∈ A} (1)

is an automorphism of the ortholattice C(X,⊥).

If (X,⊥) is point-closed, then Aut(X,⊥) → Aut(C(X,⊥)), ϕ 7→ ϕ̄ is an iso-
morphism.

Proof. The first part is clear. If the singleton subsets are orthoclosed, then C(X,⊥)
is atomistic and consequently, every automorphism is induced by a unique orthog-
onality-preserving permutation of the atoms. The second part follows as well.

We now turn to the correspondence between Hermitian spaces and ortholattices;
see, e.g., [MaMa, Section 34].

For a subset E of a Hermitian space H , we define E⊥ = {u ∈ H : u ⊥ E}.
Let H be finite-dimensional. Then E ⊆ H is a subspace of H if and only if
E = E⊥⊥. We partially order the set L(H) of subspaces of H w.r.t. the set-
theoretic inclusion and we endow L(H) with the complementation function ⊥.
Then L(H) is a complete ortholattice.

We recall that a lattice with 0 is called atomistic if each element is the join of
atoms. Moreover, we call an ortholattice irreducible if it is not isomorphic to the
direct product of two non-trivial ortholattices. Here, an ortholattice is considered
trivial if consisting of a single element.

Theorem 2.6. Let H be a Hermitian space of finite dimension m. Then L(H) is
an irreducible, atomistic, modular ortholattice of length m.

Conversely, let L be an irreducible, atomistic, modular ortholattice of finite length
m > 4. Then there is a ?-sfieldK and anm-dimensional Hermitian spaceH over
K such that L is isomorphic to L(H).
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A linear operator U : H → H of a Hermitian space H is called unitary if U is a
linear isomorphism such that (U(x), U(y)) = (x, y) for any x, y ∈ H . We denote
the group of unitary operators by U(H) and its identity by I . Furthermore, we
denote the group of automorphisms of the ortholattice L(H) by Aut(L(H)).

The relationship between the automorphisms of a Hermitian space H and its sub-
space ortholattice L(H) is described by Piron’s version of Wigner’s Theorem [Pir,
Thm. 3.28]; see also [May]. We shall be interested only in those automorphisms
of L(H) that are induced by linear operators.

For a subspace F or H , we denote by [0, F ] the interval of L(H) consisting of all
subspaces contained in F .

Theorem 2.7. Let H be a Hermitian space of finite dimension > 3. For any
unitary operator U on H , the map

λU : L(H)→ L(H), E 7→ {U(x) : x ∈ E}

is an automorphism of L(H). The map U(H) → Aut(L(H)), U 7→ λU is a
homomorphism, whose kernel is {εI : ε ∈ Z(K) ∩ U(K)}.
Conversely, let λ be an automorphism of L(H) and assume that there is an at
least two-dimensional subspace F such that λ|[0,F ] is the identity. Then there is a
unique unitary operator U on H such that λ = λU and U |F is the identity.

Given a Hermitian space H , we deal in this work with automorphisms of
(P (H),⊥) rather than L(H). We will modify Theorem 2.7 accordingly. Note
that the subspaces of H and the orthoclosed subsets of (P (H),⊥) are in a nat-
ural one-to-one correspondence; we may in fact identify the ortholattices L(H)
and C(P (H),⊥). We may thus use Proposition 2.5 to get the following further
version of Wigner’s Theorem, which in the case of a complex Hilbert space is
actually Uhlhorn’s Theorem [Uhl].

Theorem 2.8. Let H be a Hermitian space of finite dimension > 3. For any
unitary operator U , the map

ϕU : P (H)→ P (H), [x] 7→ [U(x)] (2)

is an automorphism of (P (H),⊥). The map U(H)→ Aut(P (H),⊥), U 7→ ϕU
is a homomorphism, whose kernel is {εI : ε ∈ Z(K) ∩ U(K)}.
Conversely, let ϕ be an automorphism of (P (H),⊥) and assume that there is an
at least two-dimensional subspace F of H such that ϕ([x]) = [x] for any x ∈ F •.
Then there is a unique unitary operator U on H such that ϕ = ϕU and U |F is the
identity.
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Proof. We may extend any automorphism ϕ of (P (H),⊥) to all of L(H), defin-
ing ϕ̄ : L(H) → L(H), E 7→

∨
{ϕ([x]) : x ∈ E}. By Proposition 2.5 and in

view of the identification of C(P (H),⊥) with L(H), this assignment defines a
one-to-one correspondence between the automorphisms of (P (H),⊥) and L(H).
Hence the assertions follow from Theorem 2.7.

For a unitary operator U of a Hermitian space H , ϕU will denote in the sequel the
automorphism of (P (H),⊥) induced by U according to (2).

3 The representation by Hermitian spaces

Our first aim is to identify finite-dimensional Hermitian spaces with special or-
thogonality spaces. In contrast to the procedure in [Vet1], we do not deal already
at this stage with symmetries. We rather derive the structure of a Hermitian space
on the basis of two first-order conditions.

Throughout the remainder of this paper, (X,⊥) will always be an irredundant
orthogonality space of finite rank. We will call (X,⊥) linear if the following two
conditions are fulfilled:

(L1) Let e ∈ X . Then for any f 6= e there is a g ⊥ e such that {e, g}⊥ = {e, f}⊥.

(L2) Let e ∈ X . Then for any g ⊥ e there is a f 6= e, g such that {e, g}⊥ =
{e, f}⊥.

Condition (L1) says that the collection of elements orthogonal to distinct elements
e and f can be specified in such a way that f is replaced with an element ortho-
gonal to e. (L1) can be seen as a version of orthomodularity; indeed, this property
is among its consequences. But more is true; also atomisticity follows and thus
(L1) can be regarded as the key property for the representability of X as a linear
space.

Condition (L2) can be regarded as a statement complementary to (L1). Indeed,
(L2) says that the collection of elements orthogonal to orthogonal elements e and
g can be specified in such a way that g is replaced with a third element. We will
actually need only the following immediate consequence of (L2): {e, g}⊥⊥, where
e ⊥ g, is never a two-element set. As we will see below, a closely related property
of (X,⊥) is its irreducibility.

Example 3.1. Let H be a finite-dimensional Hermitian space. Then (P (H),⊥) is
linear. To see that P (H) fulfils (L1), let x, y ∈ H •. Putting z = y−(y, x)(x, x)−1x,
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we have z ⊥ x and [x, y] = [x, z]. In particular then, {x, y}⊥ = {x, z}⊥. Also
condition (L2) is immediate. Indeed, if x, y ∈ H • such that x ⊥ y, we have that
[x, y] = [x, x+ y]. In particular then, {x, y}⊥ = {x, x+ y}⊥.

Lemma 3.2. Let (X,⊥) fulfil (L1). Then (X,⊥) is point-closed. In particular,
C(X,⊥) is atomistic, the atoms being the singletons {e}, e ∈ X .

Moreover, the assignment X → C(X,⊥), e 7→ {e} defines an isomorphism
between (X,⊥) and the set of atoms of C(X,⊥) endowed with the inherited or-
thogonality relation.

Proof. Let e ∈ X and f ∈ {e}⊥⊥. Then {f}⊥⊥ ⊆ {e}⊥⊥ and hence {e}⊥ ⊆
{f}⊥. Assume e 6= f . Then there is, by (L1), a g ⊥ e such that {e, g}⊥ = {e, f}⊥.
It follows that g ∈ {e}⊥ = {e, f}⊥ = {e, g}⊥, a contradiction. Hence f = e, and
we conclude that {e}⊥⊥ = {e}.
The first part follows, the second part holds by Proposition 2.4.

We call a subsetD ofX orthogonal ifD consists of pairwise orthogonal elements.

Lemma 3.3. Let (X,⊥) fulfil (L1). Let D ⊆ X be orthogonal and let e /∈ D⊥⊥.
Then there is an f ⊥ D such that (D ∪ {e})⊥⊥ = (D ∪ {f})⊥⊥.

Proof. The assertion is trivial if D is empty; let us assume that D is non-empty.
As we have assumed X to have finite rank, D is finite. Let D = {d1, . . . , dk},
where k > 1.

By (L1), there is an e1 ⊥ d1 such that {d1, e}⊥⊥ = {d1, e1}⊥⊥. Similarly, we see
that there is, for i = 2, . . . , k, an ei ⊥ di such that {di, ei−1}⊥⊥ = {di, ei}⊥⊥. We
conclude

(D ∪ {e})⊥⊥ = {e} ∨ {d1} ∨ . . . ∨ {dk}
= {d1} ∨ {e1} ∨ {d2} ∨ . . . ∨ {dk}
= {d1} ∨ {d2} ∨ {e2} ∨ . . . ∨ {dk}
= . . .

= {d1} ∨ {d2} ∨ . . . ∨ {dk} ∨ {ek} = (D ∪ {ek})⊥⊥.

We observe that f = ek fulfils the requirement.

The following useful criterion for C(X,⊥) to be orthomodular is due to J. R. Dacey
[Dac]; see also [Wlc, Theorem 35].

Lemma 3.4. C(X,⊥) is orthomodular if and only if, for any A ∈ C(X,⊥) and
any maximal orthogonal subset D of A, we have A = D⊥⊥.
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It follows that, by virtue of condition (L1), we may describe C(X,⊥) as follows.

Lemma 3.5. Let (X,⊥) fulfil (L1) and let m be the rank of X . Then C(X,⊥) is
an atomistic, modular ortholattice of length m.

Proof. By Proposition 2.4 and Lemma 3.2, C(X,⊥) is an atomistic ortholattice.
From Lemmas 3.3 and 3.4, it follows that C(X,⊥) is orthomodular.

As we have assumed X to be of finite rank m, the top element X of C(X,⊥) is
the join of m mutually orthogonal atoms. It follows that C(X,⊥) has length m.

We claim that C(X,⊥) fulfils the covering property. Let A ∈ C(X,⊥) and let
e ∈ X be such that e /∈ A. By Lemma 3.4, there is an orthogonal set D such that
A = D⊥⊥. By Lemma 3.3, there is an f ⊥ D such thatA∨{e} = (D∪{e})⊥⊥ =
(D ∪ {f})⊥⊥ = A ∨ {f}. Note that {f} is an atom orthogonal to A. Hence it
follows by the orthomodularity of C(X,⊥) that A ∨ {e} covers A.

Finally, an atomistic ortholattice of finite length fulfilling the covering property is
modular [MaMa, Lemma 30.3].

We now turn to the consequences of condition (L2). In the presence of (L1), there
are a couple of alternative formulations.

We call (X,⊥) reducible if X is the disjoint union of non-empty sets A and B
such that e ⊥ f for any e ∈ A and f ∈ B, and otherwise irreducible.

Lemma 3.6. Let (X,⊥) fulfil (L1). Then the following are equivalent:

(1) X fulfils (L2).

(2) For any orthogonal elements e, f ∈ X , {e, f}⊥⊥ contains a third element.

(3) X is irreducible.

(4) C(X) is irreducible.

Proof. (1)⇒ (2): This is obvious.

(2) ⇒ (1): Assume that (2) holds. Let e and g be orthogonal elements of X .
By assumption, {e, g}⊥⊥ contains a third element f . Then {f} ⊆ {e} ∨ {g}
and {e} ∩ {f} = ∅. By Lemma 3.5, C(X) fulfils the exchange property, hence
{e, f}⊥⊥ = {e} ∨ {f} = {e} ∨ {g} = {e, g}⊥⊥ and we conclude {e, f}⊥ =
{e, g}⊥. We have shown (L2).

(2) ⇒ (3): Assume that X is reducible. Then X = A ∪ B, where A and B are
disjoint non-empty sets such that e ⊥ f for any e ∈ A and f ∈ B. Pick e ∈ A and

10



f ∈ B and let g ∈ {e, f}⊥⊥. We have that either g ∈ A or g ∈ B. In the former
case, g ⊥ f and hence g ∈ {e, f}⊥⊥ ∩ {f}⊥ = ({e} ∨ {f}) ∩ {f}⊥ = {e}, that
is, g = e. Similarly, in the latter case, we have g = f . We conclude that {e, f}⊥⊥
contains two elements only.

(3)⇒ (4): Assume that C(X) is not irreducible. Then C(X) is the direct product
of non-trivial ortholattices L1 and L2. The atoms of L1 × L2 are of the form
(p, 0) or (0, q), for an atom p of L1 or an atom q of L2, respectively. Furthermore,
(a, 0) ⊥ (0, b) for any a ∈ L1 and b ∈ L2. We conclude that the set of atoms of
C(X,⊥) can be partitioned into two non-empty subsets such that any element of
one set is orthogonal to any of the other one. In view of Lemma 3.2, we conclude
that (X,⊥) is reducible.

(4) ⇒ (2): Assume that C(X) is irreducible. By [MaMa, Theorem 13.6], below
the join of any two atoms of C(X,⊥) there is a third atom. In particular, for
orthogonal elements e, f ∈ X , {e, f}⊥⊥ = {e} ∨ {f} contains a third element.

We summarise:

Theorem 3.7. Let (X,⊥) be linear and of finite rank m. Then C(X,⊥) is an
irreducible, atomistic, modular ortholattice of length m.

We arrive at the main result of this section.

Theorem 3.8. Let (X,⊥) be a linear orthogonality space of finite rank m > 4.
Then there is a ?-sfield K and an m-dimensional Hermitian space H over K such
that C(X,⊥) is isomorphic to L(H). In particular, (X,⊥) is then isomorphic to
(P (H),⊥).

Proof. By Theorems 3.7 and 2.6, there is an m-dimensional Hermitian space H
such that C(X,⊥) is isomorphic to L(H). Moreover, by Lemma 3.2, (X,⊥)
can be identified with the set of atoms of C(X,⊥) endowed with the inherited
orthogonality relation; and the same applies to (P (H),⊥) and L(H).

4 The representation by quadratic spaces

Provided that the rank is finite and at least 4, we have seen that a linear orthogon-
ality space arises from a Hermitian space over some ?-sfield. Our objective is to
investigate the consequences of an additional condition. It will turn out that we
can specify the ?-sfield considerably more precisely, namely, as a (commutative)
formally real field.
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We shall now make precise our idea to which we refer as the gradual transitivity
of the orthogonality space. Given distinct elements e and f , we will require a
divisible group of automorphisms to exist such that the group orbit of e is exactly
{e, f}⊥⊥ and {e, f}⊥ is kept pointwise fixed.

It seems natural to assume that the group is, at least locally, linearly parametris-
able. By the following lemma, the automorphism that maps e to some f ⊥ e
actually interchanges e and f . Accordingly, we will postulate that the group is
cyclically ordered.

Lemma 4.1. Let (X,⊥) be linear and of rank > 4. Let e, f ∈ X such that
e ⊥ f . Let ϕ be an automorphism of X such that ϕ(e) = f and ϕ(d) = d for any
d ⊥ e, f . Then ϕ(f) = e.

Proof. In accordance with Theorem 3.8, let H be the Hermitian space such that
we can identify (X,⊥) with (P (H),⊥). Let u, v ∈ H • be such that e = [u] and
f = [v]. By Theorem 2.8, there is a unitary operator U inducing ϕ and being the
identity on {u, v}⊥. Then U(u) ∈ [v] and U(w) = w for any w ⊥ [u, v]. Hence
U(v) ∈ [u], that is, ϕ(f) = e.

In what follows, we write R/2πZ for the additive group of reals modulo {2kπ : k ∈
Z}, which can be identified with the circle group, that is, with the multiplicative
group of complex numbers of modulus 1. Moreover, letG be a group of bijections
of some set W , and let S ⊆ W . Then we say that G acts on S transitively if S is
invariant under G and the action of G restricted to S is transitive. Moreover, we
say that G acts on S trivially if, for all g ∈ G, g is the identity on S.

We define the following condition on (X,⊥). Here, we call an orthoclosed subset
of the form {e, f}⊥⊥, where e and f are distinct elements of X , a line.

(R1) For any line L ⊆ X , there is a divisible subgroup C of R/2πZ and an
injective homomorphism κ : C→ Aut(X,⊥), t 7→ κt such that,

(α) the group {κt : t ∈ C} acts on L transitively;

(β) the group {κt : t ∈ C} acts on L⊥ trivially.

Our discussion will focus to a large extent on the symmetries of (X,⊥) that are
described in condition (R1). We will use the following terminology. For a line
L, let κ : C → Aut(X,⊥) be as specified in condition (R1). Then we call an
automorphism κt, t ∈ C, a basic circulation in L and we call the subgroup
{κt : t ∈ C} of Aut(X,⊥) a basic circulation group of L. Note that, by the
injectivity requirement in condition (R1), this group is isomorphic to C.

12



Moreover, we denote by Circ(X,⊥) the subgroup of Aut(X,⊥) that is generated
by all basic circulations. The automorphisms belonging to Circ(X,⊥) are called
circulations and Circ(X,⊥) itself is the circulation group.

Example 4.2. Let the Rn, for a finite n > 1, be endowed with the usual Euclidean
inner product. Then (P (Rn),⊥) is a linear orthogonality space fulfilling (R1).
Indeed, let u, v be an orthonormal basis of a 2-dimensional subspace of Rn. Let
C = R/2πZ and let κt, t ∈ C, be the rotation in the (oriented) u-v-plane by the
angle eit and the identity on [u, v]⊥. Then conditions (α) and (β) are obviously
fulfilled.

For the general case, the intended effect of condition (R1) is described in the
following lemma. For ϕ ∈ Aut(X,⊥) and n > 1, we let ϕn = ϕ ◦ . . . ◦ ϕ (n
factors).

Lemma 4.3. Let (X,⊥) be of rank > 4, linear, and fulfilling (R1). Let e and f
be distinct elements of X . Then for each n > 1 there is an automorphism ϕ of
(X,⊥) such that ϕn(e) = f and ϕ(d) = d for any d ⊥ e, f . In case when e and
f are orthogonal, we have in addition that ϕn(f) = e.

Proof. By (R1), applied to {e, f}⊥⊥, there is a divisible subgroupC of Aut(X,⊥)
that acts transitively on {e, f}⊥⊥ and is the identity on {e, f}⊥. In particular, there
is a ψ ∈ C such that ψ(e) = f and, by the divisibility of C, there is for any n > 1
a ϕ ∈ C such that ϕn = ψ. The first part is clear; the additional assertion follows
from Lemma 4.1.

Our aim is to investigate the consequences of condition (R1) for a linear ortho-
gonality space. We first mention that (L2), as part of the conditions of linearity,
becomes redundant.

Lemma 4.4. Let (X,⊥) fulfil (L1) and (R1). Then X fulfils (L2), that is, X is
linear.

Proof. Let e, f ∈ X be orthogonal. We will show that {e, f}⊥⊥ contains a third
element. The assertion will then follow from Lemma 3.6.

Assume to the contrary that {e, f}⊥⊥ is a two-element set. Let {κt : t ∈ C} be a
basic circulation group of {e, f}. As the group acts transitively on {e, f}, there is
a t ∈ C \ {0} such that κt(e) = f . But {e, f} is invariant also under κ t

2
and we

have κ2t
2

= κt, an impossible situation.

The transitivity of a linear orthogonality space, which by Lemma 4.3 is a con-
sequence of condition (R1), allows us to subject the representing Hermitian space
to an additional useful condition.
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Lemma 4.5. Let (X,⊥) be linear, of rank > 4, and fulfilling (R1). Then there is
a Hermitian space H such that (X,⊥) is isomorphic to (P (H),⊥) and such that
each one-dimensional subspace contains a unit vector.

Proof. By Theorem 3.8, there is a Hermitian space H such that (X,⊥) is iso-
morphic to (P (H),⊥).

Let u ∈ H . We can define a new Hermitian form on H inducing the same or-
thogonality relation and such that u becomes a unit vector; see, e.g., [Hol3]. By
Lemma 4.3 and Theorem 2.8, there is for any v ∈ H a unitary operator such that
U(u) ∈ [v]. The assertion follows.

For the rest of this section, let H be a Hermitian space over the ?-sfield K such
that H is of finite dimension > 4, each one-dimensional subspace contains a unit
vector, and (P (H),⊥) fulfils (R1). Our aim is to be as specific as possible about
the ?-sfield K.

Lemma 4.6. Let T be a 2-dimensional subspace of H and let {κt : t ∈ C} be a
basic circulation group of P (T ). Then, for each t ∈ C, there is a uniquely de-
termined unitary operator Ut inducing κt and being the identity on T⊥. Moreover,
C→ U(H), t 7→ Ut is an injective homomorphism.

Proof. By Theorem 2.8, κt is, for each t ∈ R, induced by a unique unitary oper-
ator Ut such that Ut|T⊥ is the identity. In particular, κ0 is the identity on P (H),
hence U0 must be the identity on H . Furthermore, for any s, t ∈ C, UsUt induces
κs+t = κs κt and is the identity on T⊥. The same applies to Us+t and it follows
that Us+t = UsUt. Finally, the injectivity assertion follows from the fact that,
according to (R1), the assignment t 7→ κt is already injective.

Lemma 4.7. K is commutative and the involution ? is the identity. In particular,
H is a quadratic space.

Proof. Let T be a two-dimensional subspace of H . Let {κt : t ∈ C} be a basic
circulation group of P (T ) and, in accordance with Lemma 4.6, let the unitary
operator Ut, for each t ∈ C, induce κt.

We will identify the operators Ut, t ∈ C, with their restriction to T and represent
them, w.r.t. a fixed orthonormal basis b1, b2 of T , by 2 × 2-matrices. Let t ∈ C.

Then Ut =

(
α γ
β δ

)
, where αα? + ββ? = γγ? + δδ? = 1 and αγ? + βδ? = 0.

As κ(C) acts transitively on P (T ), there is a p ∈ C such that Up([b1]) = [b2]

and consequently also Up([b2]) = [b1]. Hence Up =

(
0 ε1
ε2 0

)
for some ε1, ε2 ∈

U(K).
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Because (
ε2γ ε1α
ε2δ ε1β

)
=

(
α γ
β δ

)
·
(

0 ε1
ε2 0

)
= Ut Up = Ut+p

= Up Ut =

(
0 ε1
ε2 0

)
·
(
α γ
β δ

)
=

(
βε1 δε1
αε2 γε2

)
,

we have

Ut =

(
α ε1βε

?
2

β ε1αε
?
1

)
=

(
α ε?2βε1
β ε?2αε2

)
. (3)

We next claim that, for any ξ ∈ K, there is a t ∈ C such that ξ = β−1α, where(
α
β

)
is the first column vector of Ut. Indeed, by the transitivity of κ(C), there

is a t ∈ C such that Ut =

(
α γ
β δ

)
maps [e1] to [ξe1 + e2]. Then β 6= 0 and

[

(
β−1α

1

)
] = [

(
α
β

)
] = [U(e1)] = [

(
ξ
1

)
], thus the assertion follows.

The orthogonality of the column vectors of the first matrix in (3) implies αε2β?ε?1+
βε1α

?ε?1 = 0 and hence (β−1α)? = −ε?1β−1αε2, provided that β 6= 0. By the pre-
vious remark, we conclude ξ? = −ε?1ξε2 for any ξ ∈ K. From the case ξ = 1 we
see that ε2 = −ε1. Let ε = ε2. Then ε ∈ U(K) is such that

ξ? = ε?ξε for any ξ ∈ K, (4)

and we conclude that for each t ∈ C there are α, β ∈ K such that

Ut =

(
α −β?
β α?

)
. (5)

Let now s ∈ C be such that Us maps [e1] to [e1 + e2]. Then there is a γ ∈ K

such that Us =

(
γ −γ?
γ γ?

)
. Note that 2γγ? = 1; in particular, K does not have

characteristic 2. Moreover, given any Ut according to (5), we have(
α̃ −β̃?
β̃ α̃?

)
=

(
γ −γ?
γ γ?

)
·
(
α −β?
β α?

)
= Us Ut

= Ut Us =

(
α −β?
β α?

)
·
(
γ −γ?
γ γ?

)
.
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This means

αγ − βγ? = γα− γβ? = α̃,

αγ + βγ? = γβ + γα? = β̃,

γα + γ?β = α?γ + βγ = β̃,

γα− γ?β = αγ − β?γ = α̃.

Consequently, 2αγ = 2γα = α̃ + β̃ and 2βγ? = 2γ?β = β̃ − α̃. Hence γ
commutes with α and, because 2γ? = γ−1, also with β. We conclude that γ ∈
Z(K). By (4), it follows that γ? = γ. Furthermore, we have (α+β+α?−β?)γ =
α̃+β̃ = 2αγ and (β−α+α?+β?)γ = β̃−α̃ = 2βγ. It follows that α?−β? = α−β
and α? + β? = α + β, that is, α = α? and β = β?.

Since α = α? = ε?αε, we have αε = εα, and similarly we see that βε =
εβ. Hence (β−1α)? = ε?β−1αε = β−1α, provided that β 6= 0. We conclude
ξ? = ξ for any ξ ∈ K. That is, the involution is the identity, and the ?-sfield is
commutative.

We continue by showing thatK can be endowed with an ordering to the effect that
the quadratic space H becomes positive definite. We refer to [Pre, §1] for further
information on the topic of fields and orderings.

Lemma 4.8. K is a formally real field. W.r.t. any order on K, the hermitian form
on H is positive definite.

Proof. Let

SK = {α2
1 + . . .+ α2

k : α1, . . . , αk ∈ K, k > 0}

and note that, if K admits an order, then all elements of SK will be positive. We
shall show that SK ∩ −SK = {0}; it then follows that SK can be extended to a
positive cone determining an order that makes K into an ordered field; see, e.g.,
[Pre, Theorem (1.8)].

Assume to the contrary that SK ∩ −SK contains a non-zero element. Then there
are α1, . . . , αk ∈ K \ {0}, k > 1, such that α2

1 + . . .+ α2
k = 0.

It follows that that there are non-zero vectors v1, . . . , vk such that (vi, vi) = α2
1 +

. . . + α2
i , i = 1, . . . , k. Indeed, let u be any unit vector. Then v1 = α1u is

non-zero and of length α2
1. Moreover, let 1 6 i < k and assume that vi is non-

zero and of length α2
1 + . . . + α2

i . Let u′ be a unit vector orthogonal to vi. Then
vi+1 = vi + αi+1u

′ is again non-zero and has length α2
1 + . . .+ α2

i+1.
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We conclude that, in particular, there is non-zero vector vk that has length α2
1 +

. . .+ α2
k = 0. But this contradicts the anisotropy of the form.

To show also the second assertion, let us fix an order of K and let v ∈ H •. Then
there is a unit vector u ∈ H and an α ∈ K such that v = αu. It follows (v, v) =
(αu, αu) = α2 > 0.

We summarise what we have shown.

Theorem 4.9. Let (X,⊥) be a linear orthogonality space of finite rank > 4 that
fulfils (R1). Then there is an ordered field K and a positive-definite quadratic
space H over K, possessing unit vectors in each one-dimensional subspace, such
that (X,⊥) is isomorphic to (P (H),⊥).

We conclude the section with a comment on the formulation of our condition (R1).

Remark 4.10. For the proof of Theorem 4.9, we have not made use of the the
divisibility condition in (R1), which hence could be dropped. So far, only Lemma
4.4, which we did not use in the sequel, has depended on the divisibility.

We think, however, that it is natural to include this property as it well reflects the
idea of gradual transitions between pairs of elements of an orthogonality space.
Furthermore, omitting divisibility would be especially interesting if C could pos-
sibly be finite. But this is not the case. Indeed, the field of scalars K of the
representing linear space has characteristic 0 and hence each two-dimensional
subspace contains infinitely many one-dimensional subspaces. Hence C is neces-
sarily infinite and thus anyhow “dense” in R/2πZ.

5 The circulation group

We have established that linear orthogonality spaces of rank at least 4 arise from
positive definite quadratic spaces in case condition (R1) is fulfilled. We insert a
short discussion of the symmetries that are required to exist as part of (R1).

In this section, H will be a positive definite quadratic space over an ordered field
K such thatH is of finite dimension > 4, each one-dimensional subspace contains
a unit vector, and (P (H),⊥) fulfils (R1). For further information on quadratic
spaces, we may refer, e.g., to [Sch].

In accordance with the common practice, we call the unitary operators of H from
now on orthogonal and we denote the group of orthogonal operators by O(H).
Furthermore, with any endomorphism A of H we may associate its determinant
detA. For an orthogonal operator U , we have detU ∈ {1,−1} and we call U a
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rotation if detU = 1. The group of rotations is denoted by SO(H). For a two-
dimensional subspace T of H , we call U ∈ SO(H) a basic rotation in T if U |T⊥

is the identity, and we denote the group of basic rotations in T by SO(T,H).

As should be expected, the basic circulations correspond to the basic rotations.

Proposition 5.1. Let T be a two-dimensional subspace of H and let C be a ba-
sic circulation group of P (T ). Then C = {ϕU : U ∈ SO(T,H)} and the map
SO(T,H)→ C, U 7→ ϕU is an isomorphism.

In particular, there is a unique basic circulation group of P (T ). Moreover, any
two basic circulation groups are isomorphic.

Proof. In accordance with Lemma 4.6, let {Ut : t ∈ C} be the subgroup of O(H)
such that C = {ϕUt : t ∈ C}. We have to show that {Ut : t ∈ C} coincides with
SO(T,H).

As for any t ∈ C we have Ut = (U t
2
)2, it is clear that Ut ∈ SO(T,H). Conversely,

let U ∈ SO(T,H). We again fix an orthonormal basis of T and identify the
operators in question with the matrix representation of their restriction to T . Then

we have U =

(
α −β
β α

)
for some α, β ∈ K such that α2 + β2 = 1. As C acts

transitively on P (T ), there is a t ∈ C such that Ut(
(

1
0

)
) ∈ [

(
α
β

)
]. This means

that Ut equals one of (
α −β
β α

)
or
(
−α β
−β −α

)
.

Furthermore, we have U0 =

(
1 0
0 1

)
and from Uπ

2 = U0 it follows that Uπ = U0

or Uπ = −U0. Since by the injectivity requirement in (R1) the first possibility

cannot apply, we have Uπ = −U0 =

(
−1 0
0 −1

)
. Hence either U = Ut or

U = UtUπ = Ut+π. The assertion follows and we conclude that C = {ϕU : U ∈
SO(T,H)}.
By Lemma 4.6, we thus have the isomorphism C → SO(T,H), t 7→ Ut. More-
over, C → C, t 7→ κt is an isomorphism, and κt = ϕUt for any t ∈ C. We
conclude that SO(T,H)→ C, U 7→ ϕU is an isomorphism.

The first part as well as the uniqueness assertion is shown. Finally, any two groups
SO(T,H) and SO(T ′, H), where T and T ′ are 2-dimensional subspaces of H , are
isomorphic, hence the final assertion follows as well.

Given a line L in (P (H),⊥), we can speak, in view of Proposition 5.1, of the
basic circulation group of L. We should note however that, in contrast to the
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statements on uniqueness and isomorphy in Proposition 5.1, the homomorphism
from a subgroup C of R/2πZ to a basic circulation group is not uniquely determ-
ined. Indeed, the group C may possess an abundance of automorphisms, as is the
case, e.g., for C = R/2πZ.

In Proposition 5.1, we have characterised the basic circulation groups as sub-
groups of SO(H). We may do so also with respect to the orthogonality space
itself.

Lemma 5.2. Let L ⊆ P (H) be a line. Then the basic circulation group of L
consists of all automorphisms ϕ of (P (H),⊥) such that ϕ|L⊥ is the identity and
ϕ|L is either the identity or does not have any fixed point.

Proof. Let C be the basic circulation group of L, and let T be the 2-dimensional
subspace of H such that L = P (T ).

Let ϕ ∈ C. By Proposition 5.1, ϕ is induced by some U ∈ SO(T,H). Then U |T⊥

is the identity and, w.r.t. an orthonormal basis of T , we have U |T =

(
α −β
β α

)
,

where α, β ∈ K are such that α2 + β2 = 1. If β = 0, then α = 1 or α = −1
and hence U |T induces the identity on P (T ). If β 6= 0, U |T does not possess any
eigenvector and hence U |T induces on P (T ) a map without fixed points.

Conversely, let ϕ be an automorphism of P (H) such that ϕ|L⊥ is the identity and
ϕ|L is either the identity or does not have any fixed point. By Theorem 2.8, ϕ
is induced by an orthogonal operator U such that U |T⊥ is the identity. W.r.t. an

orthonormal basis of T , U |T is of the form
(
α −β
β α

)
or
(
α β
β −α

)
, where α2 +

β2 = 1. In the latter case, U |T has the distinct eigenvalues 1 and −1, hence ϕ|L
has exactly two fixed points. We conclude that U |T is of the form of the first
matrix and hence U ∈ SO(T,H). By Proposition 5.1, ϕ = ϕU belongs to C.

It seems finally natural to ask how Circ(P (H),⊥) is related to SO(H). By Pro-
position 5.1, we know that Circ(P (H),⊥) ⊆ {ϕU : U ∈ SO(H)}: any circulation
is induced by a rotation. Under an additional assumption, we can make a more
precise statement. We call a field Pythagorean if any sum of two squares is itself
a square.

In what follows, PSO(H) = SO(H)/({I,−I} ∩ SO(H)) is the projective special
orthogonal group of H .

Proposition 5.3. Assume thatK is Pythagorean. Then we have Circ(P (H),⊥) =
{ϕU : U ∈ SO(H)}. Furthermore, the map SO(H) → Circ(P (H),⊥), U 7→
ϕU is a surjective homomorphism. Its kernel is {I,−I}∩SO(H), hence it induces
an isomorphism between PSO(H) and Circ(P (H),⊥).
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Proof. By Theorem 2.8, SO(H) → Aut(P (H),⊥), U 7→ ϕU is a homomorph-
ism, whose kernel is {I,−I} ∩ SO(H). By Proposition 5.1, the images of the
subgroups SO(T,H) of SO(H), where T are the 2-dimensional subspaces, under
this homomorphism are exactly the basic circulation groups.

We shall show that SO(H) is generated by the basic rotations. Since
Circ(P (H),⊥) is by definition generated by the basic circulations, the assertions
will then follow.

Note first that, for any elements γ, δ ∈ K that are not both 0, there are α, β, % ∈ K
such that α2 + β2 = 1, % 6= 0, and(

α −β
β α

) (
γ
δ

)
=

(
%
0

)
.

Indeed, let %2 = γ2 + δ2, α = γ
%
, and β = − δ

%
.

It follows that any matrix in Kn×n can be transformed by left multiplication with
Givens rotations into row echelon form. When doing so with a matrix representing
a rotation, the resulting matrix must be diagonal, an even number of the diagonal
entries being −1 and remaining ones being 1. We conclude that each rotation is
the product of basic rotations in 2-dimensional subspaces spanned by the elements
of any given basis.

6 Embedding into Rn

Our final aim is to present a condition with the effect that our orthogonality space
arises from a quadratic space over an Archimedean field. In order to exclude the
existence of non-zero infinitesimal elements, we shall require that our orthogon-
ality space is, in a certain sense, simple.

An equivalence relation θ on an orthogonality space (X,⊥) is called a congru-
ence if any two orthogonal elements belong to distinct θ-classes. Obviously, X
possesses at least one congruence, the identity relation, which we call trivial. For
a congruence θ on X , we can make X/θ into an orthogonality space, called the
quotient orthogonality space: for e, f ∈ X , we let e/θ ⊥ f/θ if there are e′ θ e
and f ′ θ f such that e′ ⊥ f ′.

Given an automorphism ϕ of (X,⊥), we call a congruence θ ϕ-invariant if, for
any e, f ∈ X , we have that e θ f is equivalent to ϕ(e) θ ϕ(f). If θ is ϕ-invariant
for every member ϕ of a subgroup G of Aut(X,⊥), we say that θ is G-invariant.

We consider the following condition on (X,⊥):
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(R2) (X,⊥) does not possess a non-trivial Circ(X,⊥)-invariant congruence.

Example 6.1. Let again Rn, n > 1, be endowed with the usual inner product.
By Proposition 5.3, Circ(P (Rn),⊥) consists exactly of those automorphisms of
(P (Rn),⊥) that are induced by some U ∈ SO(n). Moreover, SO(n) acts prim-
itively on P (Rn), that is, no non-trivial partition of P (Rn) is invariant under
SO(n). This means that no non-trivial partition of P (Rn) is invariant under
Circ(P (Rn)). In particular, the only Circ(P (Rn))-invariant congruence is the
identity relation. We conclude that (P (Rn),⊥) fulfils (R2).

Let H be a positive definite quadratic space over the ordered field K as in Sec-
tion 5, that is, we assume that H is of finite dimension > 4, each one-dimensional
subspace of H contains a unit vector, and (P (H),⊥) fulfils (R1).

Following Holland [Hol2], we define

IK = {α ∈ K : |α| < 1
n

for all n ∈ N \ {0}},
MK = {α ∈ K : 1

n
< |α| < n for some n ∈ N \ {0}}

to be the sets of infinitesimal and medial elements of K, respectively. Then IK
is an additive subgroup of K closed under multiplication; MK is a multiplicative
subgroup of K •; and we have IK ·MK = IK and MK + IK = MK .

We call K Archimedean if the only infinitesimal element is 0. We have that K is
Archimedean exactly if all non-zero elements are medial. The following result is
due to Holland [Hol1].

Theorem 6.2. An Archimedean ordered field is order-isomorphic to an ordered
subfield of R.

We shall show that condition (R2) implies K to be Archimedean. Following again
[Hol2], we define

IH = {x ∈ H : (x, x) ∈ IK},
MH = {x ∈ H : (x, x) ∈MK}

to be the set of infinitesimal and medial vectors, respectively. Then IH is a sub-
group of H and we have IK · MH = MK · IH = IH , IK · IH ⊆ IH , and
MK ·MH = MH . Furthermore, the Schwarz inequality implies that (x, y) ∈ IK
if x, y ∈ IH ∪MH and at least one of x and y is infinitesimal.

Furthermore, for [x], [y] ∈ P (H), we put [x] ≈ [y] if there are medial vectors
x′ ∈ [x] and y′ ∈ [y] such that x′ − y′ ∈ IH .
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Lemma 6.3. Assume that (P (H),⊥) fulfils (R2). Then K is an ordered subfield
of the ordered field R.

Proof. We first show that ≈ is an equivalence relation on P (H). Clearly, ≈ is
reflexive and symmetric. Let x, y, z ∈ H be such that [x] ≈ [y] and [y] ≈ [z].
Then there are x′ ∈ [x] ∩ MH , y′, y′′ ∈ [y] ∩ MH , and z′ ∈ [z] ∩ MH such
that x′ − y′, y′′ − z′′ ∈ IH . Let α ∈ K be such that y′ = αy′′. Then α2 =
(y′′, y′′)−1(y′, y′) ∈MK and consequently α ∈MK . Hence αz′′ is a medial vector
as well, and x′ − αz′′ = (x′ − y′) + (y′ − αz′′) = (x′ − y′) + α(y′′ − z′′) ∈ IH .

We claim that ≈ is a congruence. Let x, y ∈ H • be such that [x] ≈ [y]. Then
there are x′ ∈ [x] ∩MH and y′ ∈ [y] ∩MH such that y′ − x′ ∈ IH . It follows
(x′, y′) = (x′, x′+ (y′−x′)) = (x′, x′) +(x′, y′−x′). Since (x′, y′−x′) ∈ IK , we
have (x′, y′) ∈MK . We have shown that [x] 6⊥ [y], because otherwise (x′, y′) = 0.

Let ϕ ∈ Circ(P (H),⊥). Then ϕ is induced by an orthogonal operator U . For any
x, y ∈ H •, we have that [x]≈ [y] implies [U(x)]≈ [U(y)]. Indeed, if x′ ∈ [x]∩MH

and y′ ∈ [y] ∩MH are such that x′ − y′ ∈ IH , then also U(x′) ∈ [U(x)] ∩MH

and U(y′) ∈ [U(y)] ∩MH are such that U(x′) − U(y′) = U(x′ − y′) ∈ IH . We
conclude that ≈ is ϕ-invariant.

We have thus shown that ≈ is a Circ(P (H),⊥)-invariant congruence on P (H).
By condition (R2), ≈ is trivial.

Assume finally that K contains the non-zero infinitesimal element δ. For ortho-
gonal unit vectors u and v, we then have [u]≈ [u+ δv], because u and u+ δv are
medial vectors whose difference is infinitesimal. It follows that ≈ is non-trivial, a
contradiction. We conclude that K must be Archimedean.

Again, we summarise our results.

Theorem 6.4. Let (X,⊥) a linear orthogonality space of finite rank > 4 that ful-
fils (R1) and (R2). Then there is an ordered subfield K of R and a positive-definite
quadratic space H over K, possessing unit vectors in each one-dimensional sub-
space, such that (X,⊥) is isomorphic to (P (H),⊥).

7 Conclusion

Being based on a binary relation about which not more than symmetry and irre-
flexivity is assumed, an orthogonality space is based on the sole idea of distin-
guishability of some abstract entities. We have seen that rather simple conditions
lead us to the realm of inner-product spaces. We have made a further hypothesis

22



according to which an orthogonality space possesses enough symmetries to allow,
intuitively, a gradual transition from one entity to any other one, in a way that
unconcerned elements are kept fixed. We were led to a linear structure not too
far from a real Hilbert space – a positive-definite quadratic space over an ordered
field. An additional condition had the effect that the ordered field is a subfield
of R.

Improvements of this work are certainly possible in a number of respects. First to
mention, it would be interesting to clarify to which extent the idea of postulating
gradual transitions between any two elements alone allows a reasonable structure
theory for orthogonality spaces. An attempt in this direction is contained in our
note [Vet3], where, however, the concrete formulation of the central condition has
led to technical subtleties.

Furthermore, our guiding example has in this work not been the standard model of
quantum mechanics but rather a (finite-dimensional) real Hilbert space. A com-
plex linear space can be understood as a real linear space endowed with a complex
structure. We should hence ask whether an analogous extension could be defined
for the orthogonality spaces that we have considered here, such that we are led to
an inner-product space over a subfield of the field that in quantum physics actually
matters.
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