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Abstract Fuzzy logic generalises classical logic; in addition to the latter’s truth
values “false” and “true”, the former allows also intermediary truth degrees. The
conjunction is, accordingly, interpreted by an operation acting on a chain, making
the set of truth degrees into a totally ordered monoid. We present in this chapter two
different ways of investigating this type of algebras. We restrict to the finite case.

1 Introduction

The idea on which fuzzy logic is build is best understood in relationship with the
canonical way in which reasoning is formalised: with classical propositional logic.
The latter is the logic of “false” and “true” and propositions are evaluated in this
two-element set. Among the connectives we find the logical “and”, “or”, and “not”,
interpreted in the well-known way. In addition to the two classical truth values, fuzzy
logic uses intermediary degrees of truth. Usually, “false” and “true” are identified
with the real numbers 0 and 1, respectively; the remaining real numbers serve as
further truth degrees and may express relative tendencies.

The difficulty of this approach is that there is no straightforward way to tell how
the logical connectives should be interpreted. We rather have to make a decision, for
instance, about the interpretation of the conjunction. Different interpretations will in
general lead to different logics. As a consequence of this situation, fuzzy logic has
in fact emerged as a family of many-valued logics, each of which may bring its own
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challenges. According to a common agreement, the binary operation on the real
unit interval taken for this purpose should be a t-norm: associative, commutative,
possessing 1 as an identity, and monotone in each argument. If the set of truth values
is not taken to be an uncountable set but for instance a finite chain, the operation
should still fulfil the same algebraic conditions. It is natural to assume that the chain
of truth degrees is a negative, commutative totally ordered monoid.

The present work is to be seen among the efforts of classifying these algebraic
structures. A considerable amount of work has been done on this topic during recent
years. In line with the given background, residuation has usually been additionally
assumed and MTL-algebras were considered [12, 31]. Our paper [36] is devoted to
MTL-algebras based on the real unit interval. For residuated lattices in general, see
[3, 16]. MTL-chains fulfilling certain additional properties were considered in sev-
eral works as well. For instance, MTL-chains with the weak cancellation property
are the topic of [30] as well as [20]. Idempotent residuated chains are studied in
[4]. The paper [22] deals with finite MTL-chains and their relationship to Abelian
totally ordered groups.

The present chapter is devoted to the finite case. The tomonoids considered are
assumed to be either finite, or at least to be finitely generated. We present two differ-
ent approaches based on our work [37] and [35], respectively. We provide an intro-
duction to the main ideas; further details can be found in the indicated papers. We
note that our handbook chapter [40] offers two further approaches to the structures
under consideration and thus can be seen to be continued by the present overview.

2 Totally ordered monoids

We investigate in this chapter the following structures.

Definition 1. An algebra (L;+,0) is a monoid if (i) + is an associative binary oper-
ation and (ii) 0 is an identity for +. A monoid (L;+,0) is called commutative if +
is commutative.

A partial order 6 on a monoid L is called compatible if, for any a,b,c,d ∈ L,
a 6 b and c 6 d imply a+c 6 b+d. A structure (L;6,+,0) such that (L;+,0) is a
monoid and 6 is a compatible total order on L is called a totally ordered monoid, or
tomonoid for short.

Moreover, a tomonoid (L;6,+,0) is called commutative if so is its monoidal
reduct. L is called positive if 0 is the bottom element. L is called finitely generated
if L, as a monoid, is generated by finitely many elements.

For instance, let [0,1] be the real unit interval and let ⊕ : [0,1]2 → [0,1] be a
t-conorm, that is, associative, commutative, behaving neutrally w.r.t. 0, and mono-
tone in each argument [28]. Then ([0,1];6,⊕,0) is commutative, positive tomo-
noid. Similarly, let L ⊂ [0,1] be a finite subset of [0,1] containing 0 and 1 and let
⊕ : L2→ L be a discrete t-conorm [10]. This is equivalent to say that (L;6,⊕,0) is
a finite, commutative, positive tomonoid.
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We have written tomonoids in the additive way; alternatively, we may deal with
the dual structures. In this case, the order is reversed and the multiplicative nota-
tion is used. In particular, the monoidal operation is then denoted by a product-like
symbol and the monoidal identity by 1. The aforementioned examples would in this
case become tomonoids based on a t-norm or a discrete t-norm, respectively. The
choice of order and notation is not solely a matter of taste. In many-valued logics, a
larger value corresponds to a higher degree of presence and hence the multiplicative
notation is common. In the context of free monoids, in contrast, the additive nota-
tion is predominant. Within the present chapter, both possibilities will be made use
of.

A tomonoid consisting of the monoidal identity alone is called trivial. We will
tacitly assume throughout this paper that all tomonoids are non-trivial. A set of
generators of a (non-trivial) tomonoid L will be understood to be a non-empty, finite
set of elements distinct from 0 that generate L as a monoid.

Congruences of tomonoids are defined as follows; cf. [13]. Recall that a subset C
of a poset is called convex if a,c ∈C and a 6 b 6 c imply b ∈C.

Definition 2. Let (L;6,+,0) be a tomonoid. A tomonoid congruence on L is a con-
gruence ≈ of L as a monoid such that all ≈-classes are convex. On the quotient
〈L〉≈, we then denote the operation induced by + again by + and, for a,b ∈ L, we
let 〈a〉≈ 6 〈b〉≈ if a≈b or a < b.

We immediately check that this definition is as intended.

Lemma 1. Let ≈ be a tomonoid congruence on a tomonoid (L;6,+,0). Then the
quotient (〈L〉≈;6,+,〈0〉≈) is a tomonoid again. Furthermore, if L is commutative,
positive, finitely generated, then so is 〈L〉≈, respectively.

It is difficult to classify the congruences of tomonoids. There are, however, cer-
tain special types that allow an easy description. For instance, an ideal of a commu-
tative, positive tomonoid induces a congruence in a natural way [3]. For a discussion
of this type of congruences, see, e.g., [36]. Moreover, there is an order-theoretic ana-
logue of a Rees quotient; this type of congruences will be central in the second part
of this chapter.

3 Representation of tomonoids by direction cones

The first part of the present chapter is devoted to finitely generated, positive, com-
mutative tomonoids; we will write “fg.p.c. tomonoids” for short. In particular, the
finite, positive, commutative tomonoids, which correspond to the so-called discrete
t-norms [10], are included in the discussion.

We investigate a particular way of representing such tomonoids. We are guided
by the following ideas. First of all, any monoid can be identified with a congruence
on a free monoid. Similarly, we may describe tomonoids by what we call monomial
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preorders. Second, the order of totally ordered Abelian groups is characterised by
their cone. We introduce for tomonoids an analogous object; the so-called direction
cones are certain subsets of Zn that describe tomonoids and each fg.p.c. tomonoid
is a quotient of a tomonoid arising in this way.

The results of this section originate from the paper [37], to which we refer for
further details. A continuation of this work, in which the finite case is especially
emphasised, can be found in [39].

3.1 Congruences and monomial preorders

Free commutative monoids play a central role in what follows. We identify the free
commutative monoid over n > 1 elements with Nn. The addition is defined point-
wise and the identity is 0̄ = (0, . . . ,0), the n-tuple consisting of zeros only. We
also define ui = (0, . . . ,0,1,0, . . . ,0), “1” being at the i-th position. Clearly then,
U(Nn) = {u1, . . . ,un} is a set of generators of Nn.

We endow Nn with the componentwise natural order. That is, for (a1, . . . ,an),
(b1, . . . ,bn) ∈ Nn, we put

(a1, . . . ,an) P (b1, . . . ,bn) if a1 6 b1, . . . , an 6 bn. (1)

Clearly, P is a lattice order on (Nn;+, 0̄) and P is compatible with the addition.

Fg.p.c. tomonoids can be conveniently described on the basis of the free commu-
tative monoid Nn as follows.

We call a reflexive and transitive binary relation 4 on a set A a preorder. We write
a≺ b if a4b but not b4a. Any preorder 4 gives rise to an equivalence relation ≈,
called its symmetrisation, where a≈ b if a4 b and b4 a. We call the equivalence
class of some a w.r.t.≈ a 4-class and we denote it by 〈a〉4. The preorder 4 induces
on the quotient 〈A〉4 a partial order, which we denote by 4 again.

We call a preorder 4 total if a4 b or b4 a for any pair a,b ∈ A. Moreover, we
call 4 positive if 0≺ a for all a 6= 0. Finally, if 4 is defined on a monoid (L;+,0),
we call 4 compatible if a4b implies a+ c4b+ c.

In computational mathematics, the notion “monomial ordering” refers to compat-
ible, positive, total orders on Nn; see, e.g., [9]. Analogously, we call a preorder 4 on
Nn monomial if 4 is compatible, positive, and total. The significance of monomial
preorders becomes clear in the following proposition.

Proposition 1. Let 4 be a monomial preorder on (Nn;+, 0̄). Then its symmetrisa-
tion is a monoid congruence whose classes are convex and such that 〈0̄〉4 = {0̄}.
Moreover, (〈Nn〉4;4,+,{0̄}) is a fg.p.c. tomonoid.

Conversely, let (L;6,+,0) be a fg.p.c. tomonoid; assume that the n > 1 elements
g1, . . . ,gn ∈ L\{0} generate L. Let ι : Nn → L be the surjective monoid homomor-
phism determined by ι(ui) = gi, i = 1, . . . ,n. For a,b ∈ Nn define
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a4b if ι(a)6 ι(b). (2)

Then 4 is a monomial preorder of Nn, and ι induces an isomorphism between
(〈Nn〉4;4,+,{0̄}) and (L;6,+,0).

Proof. Let 4 be a monomial preorder onNn. Then, for a,b,c,d ∈Nn, a≈c and b≈d
imply a+b≈c+d by the compatibility of 4; hence ≈ is a monoid congruence. As
4 is also positive, 4 extends P, and it follows that the 4-classes are convex. Again
by the positivity, the 4-class of 0̄ consists of 0̄ alone.

As 4 is compatible, the partial order 4 induced on 〈Nn〉4 is compatible as well;
that is, (〈Nn〉4;4,+,〈0̄〉4) is a commutative pomonoid. Since, for any a,b ∈ Nn,
a4 b or b4 a, 〈Nn〉4 is actually a tomonoid. Moreover, since 0̄ ≺ a for any a ∈
Nn\{0̄}, 〈Nn〉4 is a positive, commutative tomonoid, which is generated by the
finitely many elements 〈u1〉4, . . . ,〈un〉4.

For the second part, assume that (L;6,+,0) is a fg.p.c. tomonoid and g1, . . . ,
gn ∈ L\{0} generate L as a monoid. Let furthermore ι : Nn → L be as indicated
and let 4 be defined by (2). By construction, 4 is transitive and reflexive, that is,
a preorder. 4 is compatible because so is 6 and ι is a monoid homomorphism.
Moreover, 4 is positive because L is positive and hence ι(a) 6 0 holds only if
a = 0̄. Hence 4 is a monomial preorder. Finally, for a,b ∈ Nn, we have a≈b if and
only if a4 b and b4 a if and only if ι(a) = ι(b); hence ι induces an isomorphism
as claimed.

We conclude that any monomial preorder 4 onNn gives rise to a fg.p.c. tomonoid
L. We call L in this case the tomonoid represented by 4.

Proposition 1 also states that, up to isomorphism, any fg.p.c. tomonoid L arises
in this way from a monomial preorder. In other words, describing fg.p.c. tomonoids
can be done by describing monomial preorders. This is what we will do in the sequel.

3.2 Tomonoids arising from totally ordered Abelian groups

The positive cones of totally ordered Abelian groups give rise to typical examples
of fg.p.c. tomonoids. We will discuss these examples in some detail because they
motivate our way of representing fg.p.c. tomonoids in general.

Definition 3. Let (G;6,+,0) be a totally ordered Abelian group and let G+ = {g ∈
G : g > 0} be its positive cone. Assume that G is generated by g1, . . . ,gn ∈G+\{0},
where n > 1. Let L be the submonoid of G generated by g1, . . . ,gn and let L be
endowed with the total order inherited from G, with the group addition, and with
the constant 0. Then we call (L;6,+,0) a group cone tomonoid.

Clearly, a group cone tomonoid is a fg.p.c. tomonoid. Note that in general we do
not deal with the whole positive cone of a totally ordered Abelian group. In fact, the
latter is in general not finitely generated even if the group is.
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Group cone tomonoids are characterised by the following condition. We say that
a fg.p.c. tomonoid L is cancellative if, for all a,b,c ∈ L, a+c = b+c implies a = b.
Note that in this case, for all a,b,c ∈ L, a 6 b is equivalent to a+ c 6 b+ c.

Proposition 2. A fg.p.c. tomonoid (L;6,+,0) is a group cone tomonoid if and only
if it is cancellative.

Proof. The “only if” part follows from the construction of a group cone tomonoid.
To see the “if” part, let L be cancellative. Let G be the group consisting of the

differences of elements of L; see, e.g., [14, Chapter II.2]. Viewing L as a subset of G,
we introduce a total order on G as follows: for a,b,c,d ∈ L, we define a−b 6 c−d
if a + d 6 b + c in L. Then (G;6,+,0) is a totally ordered Abelian group, and
(L;6,+,0) is a subtomonoid of (G+;6,+,0). The assertion follows.

Group cone tomonoids correspond by Proposition 1 to particular monomial pre-
orders. We call a preorder 4 on Nn cancellative if, for any a,b,c ∈ Nn, a4 b is
equivalent to a+ c4b+ c.

Proposition 3. Let the fg.p.c. tomonoid L be represented by the monomial preorder
4 on Nn. Then L is a group cone tomonoid if and only if 4 is cancellative.

Proof. Let L be a group cone tomonoid. Then (〈Nn〉4;4,+,{0̄}) is cancellative by
Proposition 2. Thus, for a,b,c ∈Nn, we have a4b iff 〈a〉44 〈b〉4 iff 〈a〉4+〈c〉44
〈b〉4+ 〈c〉4 iff 〈a+ c〉44 〈b+ c〉4 iff a+ c4b+ c, that is, 4 is cancellative.

Conversely, let 4 be cancellative. Then (〈Nn〉4;4,+,{0̄}) is a cancellative
fg.p.c. tomonoid and hence, by Proposition 2, a group cone tomonoid.

Recall next that the order of a partially ordered Abelian group (G;6,+,0) is
uniquely determined by its positive cone G+. In fact, for any g,h ∈ G, g 6 h if
and only if h− g ∈ G+. We may also view the positive cone of a partially ordered
group as the set of all differences of elements g and h such that g 6 h; indeed,
G+ = {h−g : g,h ∈ G such that g 6 h}.

We may use the same object to describe group cone tomonoids. We denote by
(Zn;+, 0̄) the free Abelian group generated by n > 1 elements. Furthermore, P will
be the partial order on Zn defined according to (1): for a,b ∈ Zn, we put a P b if
a+ c = b for some c ∈ Nn. Then (Zn;P,+, 0̄) is a lattice-ordered group.

Definition 4. Let 4 be a cancellative monomial preorder on Nn. Then the set

P4 = {b−a ∈ Zn : a,b ∈ Nn such that a4b}

is called the positive cone of 4.

A positive cone determines the preorder from which it is defined as in the case
of groups.

Lemma 2. Let P ⊆ Zn be the positive cone of the cancellative monomial preorder
4 on Nn. Then we have:
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(GO) For any a,b ∈ Nn, a4b if and only if b−a ∈ P.

Proof. By definition, a4b implies b−a ∈ P.
Conversely, let b− a ∈ P. Then there are c,d ∈ Nn such that c4 d and d− c =

b−a. It follows a+d = b+ c4b+d and hence a4b.

By Lemma 2, we have for any cancellative monomial preorder 4

P4 = {z ∈ Zn : a4b for some a,b ∈ Nn such that z = b−a}
= {z ∈ Zn : a4b for all a,b ∈ Nn such that z = b−a}.

(3)

The positive cones of partially ordered Abelian groups possess an intrinsic
characterisation: they are exactly the cancellative commutative monoids such that
a+b = 0 implies a = b = 0 [14]. The positive cones of cancellative monomial pre-
orders can be described in a similar way.

Theorem 1. A set P ⊆ Zn is the positive cone of a cancellative monomial preorder
on Nn if and only if the following conditions are fulfilled:

(GC1) If z ∈ Nn, then z ∈ P. Moreover, if z ∈ Nnr{0̄}, then −z /∈ P.
(GC2) P is closed under addition.
(GC3) For any z ∈ Zn, at least one of z ∈ P or −z ∈ P holds.

In this case, P = P4, where 4 is given by condition (GO) above.

Proof. Let 4 be a cancellative monomial preorder on Nn. Clearly, 0 ∈ P4 then.
Furthermore, any z ∈ Nn\{0̄} is in P4 because 0̄4 z holds by the positivity of 4.
Assume that also −z ∈ P4. Then there is a b ∈ Nn such that b+ z4b and hence by
the cancellativity z40, in contradiction to the positivity of 4. (GC1) is shown.

For a,b,c,d ∈ Nn, a4 b and c4 d implies a+ c4 b+ c4 b+ d. We conclude
that if b−a,d−c ∈ P4, also (b−a)+(d−c) = (b+d)− (a+c) ∈ P4. This shows
(GC2).

For a,b∈Nn, at least one of a4b or b4a holds because 4 is total. (GC3) follows
as well.

Let now P ⊆ Zn fulfil (GC1)–(GC3). For a,b ∈ Nn, let a4 b if b− a ∈ P. We
claim that 4 is a cancellative monomial preorder. As 0∈ P by (GC1), 4 is reflexive.
By (GC2), 4 is transitive. Hence 4 is a preorder. 4 is total by (GC3) and positive by
(GC1). Finally, by construction, a4b is equivalent to a+c4b+c; the compatibility
and cancellativity of 4 follows.

It remains to show that P is actually the positive cone P4 of 4. By Lemma 2, we
have that, for any a,b ∈ Nn, b− a ∈ P4 if and only if a4 b. But by construction,
a4b if and only if b−a ∈ P. Hence P = P4.

Finally, if P⊆ Zn is the positive cone of any cancellative monomial preorder 4,
then 4 is by Lemma 2 uniquely determined by (GO). The last statement follows.
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3.3 Direction cones

Positive cones describe cancellative fg.p.c. tomonoids. In this section we will gener-
alise this notion to cover a wider class of tomonoids. In this case we will not obtain
a strict correlation, but we will be led to a Galois correspondence.

Let 4 be a monomial preorder on Nn. If 4 is cancellative, then for any a,b ∈ Nn

the question of whether or not a4b holds depends only on the difference z = b−a:
we have a4b if and only if c4d for any other pair c,d ∈Nn such that z = d−c. In
fact, the positive cone P4 consists of these differences; a4b if and only if b−a∈P4.

In general, the question of whether or not we have a4b does not depend on the
difference b− a alone. For instance, it may be the case that a+ c4 b+ c holds for
some c ∈ Nn but not a4b. However, let z ∈ Zn. Then the following lemma implies
that still at least one of following possibilities applies: a4 b for all a,b ∈ Nn such
that b−a = z, or b4a for all a,b ∈ Nn such that b−a = z.

Lemma 3. Let z ∈ Zn. Then there is a unique pair a,b ∈Nn such that z = b−a and,
for any c,d ∈ Nn such that z = d− c, we have c = a+ t and d = b+ t for some
t ∈ Nn.

Proof. Put a = −z∨ 0̄ and b = z∨ 0̄. Then z = b− a. Moreover, if c,d ∈ Nn such
that d− c = z, we have c Q 0̄ and c = d− z Q−z, thus c Q a; similarly, d Q b. As
b− a = d − c, the differences c− a and d − b coincide and hence c = a+ t and
d = b+ t for some t ∈ Nn. The uniqueness of a,b follows from the P-minimality.

Let a,b ∈ Nn be associated with z ∈ Zn according to Lemma 3. Inspecting the
proof, we see that b is simply the positive part of z ∈ Zn, and a is its (negated)
negative part. Let us define

z+ = z∨ 0̄,

z− = −z∨ 0̄.

Then we have
z = z+− z−

and any other pair of elements of Nn whose difference is z arises from z+ and z− by
adding a t ∈ Nn.

For a compatible preorder 4 on Nn, the obvious consequence is the following.
Let z ∈ Zn. If z−4 z+, we conclude from Lemma 3 and the compatibility of 4 that
a4b actually holds for any pair a,b ∈ Nn such that b−a = z. Thus, intuitively, we
may view any z ∈ Zn such that z−4 z+ as being “positively directed”; for, in this
case we have a4a+z for any a∈Nn such that a+z∈Nn. Our viewpoint is reflected
in the following definition.

Definition 5. Let 4 be a monomial preorder on Nn. Then the set

C4 = {z ∈ Zn : z−4 z+}
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is called the direction cone of 4.

By Lemma 3 we then have

C4 = {z ∈ Zn : a4b for all a,b ∈ Nn such that z = b−a}. (4)

The natural question is now if there is a characterisation of direction cones similar
to the case of positive cones. Comparing with (3), we see that the direction cone of a
cancellative monomial preorder is its positive cone. In the general case, we conclude
from the positivity of 4 that condition (GC1) for positive cones applies here as well,
and from the totality of 4 also condition (GC3) is immediate: for each z ∈ Zn, at
least one of z or −z is in C4.

However, a direction cone does not in general fulfil condition (GC2), that is, it
is not necessarily closed under addition. The following notion can be used instead.
We call a k-tuple (x1, . . . ,xk), k > 2, of elements of Zn addable if

(x1 + . . .+ xk)
−+ x1 + . . .+ xi Q 0̄ (5)

for all i = 0, . . . ,k. Note that for addability the order matters.

Lemma 4. The direction cone of a monomial preorder on Nn is a set C ⊆ Zn fulfill-
ing the following conditions:

(C1) Let z ∈ Nn. Then z ∈C and, if z 6= 0̄, −z /∈C.
(C2) Let (x1, . . . ,xk), k > 2, be an addable k-tuple of elements of C. Then x1 +

. . .+ xk ∈C.
(C3) Let z ∈ Zn. Then z ∈C or −z ∈C.

Proof. (C1) We have Nn ⊆ C because 4 is positive. Assume that −z ∈ C, where
z ∈ Nn. Then z = (−z)−4 (−z)+ = 0̄ and the positivity of 4 implies z = 0̄.

Recall next that, by (4), a4b for any a,b ∈ Nn such that b−a ∈C.
To see (C2), let (x1, . . . ,xk) be as indicated, and put z = x1 + . . .+ xk. Then

z−,z−+ x1, . . . ,z−+ x1 + . . .+ xk ∈ Nn. By assumption, x1, . . . ,xk ∈ C; thus z−4
z−+ x1 4 . . .4 z−+ x1 + . . .+ xk = z−+ z = z+.

(C3) holds because 4 is total.

Our next aim is to show that conditions (C1)–(C3) characterise direction cones.
A preorder gives rise to a direction cone, which fulfils (C1)–(C3). Conversely,

we can assign a preorder to a set fulfilling (C1)–(C3).

Definition 6. Let C ⊆ Zn fulfil (C1)–(C3). Let 4C be the smallest preorder on Nn

such that

(O) a4C b for any a,b ∈ Nn such that b−a ∈C.

Then we call 4C the monomial preorder induced by C.

In other words, for a subset C of Zn fulfilling (C1)–(C3) and a,b ∈ Nn, we have
a4C b if and only if there are k > 1 elements z1, . . . ,zk ∈C such that a, a+ z1, a+
z1+ z2, . . . ,a+ z1+ . . .+ zk Q 0̄ and a+ z1+ . . .+ zk = b. We note that this is not the
same as to say that b−a is a sum of elements of C.
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Lemma 5. Let C ⊆ Zn fulfil (C1)–(C3). Then 4C, the monomial preorder induced
by C, is in fact a monomial preorder.

Proof. By construction, 4C is a preorder, and by (C3), 4C is total. It is furthermore
clear that 4C is compatible with the addition.

Assume next that, for some a ∈ Nn, a4C 0̄ holds according to the prescription
(O). Then a = 0̄ by (C1). It follows that 0̄ ≺C a for all a ∈ Nn\{0̄}, that is, 4C is
positive. This completes the proof that 4C is a monomial preorder.

Theorem 2. A set C ⊆ Zn is the direction cone of a monomial preorder if and only
if C fulfils (C1)–(C3). In this case, C is the direction cone of 4C.

Proof. A direction cone fulfils (C1)–(C3) by Lemma 4.
Conversely, let C fulfil (C1)–(C3). Let 4C be the induced preorder. By Lemma

5, 4C is a monomial preorder.
It remains to show that C4C , the direction cone of 4C, coincides with C, that

is, for z ∈ Zn, z−4C z+ if and only if z ∈ C. The “if” part holds by construction.
For the “only if” part, assume that z−4C z+ = z−+ z. Then z = x1 + . . .+ xk for
some x1, . . . ,xk ∈C such that z−+x1 + . . .xi Q 0̄ for i = 0, . . . ,k. Then (x1, . . . ,xk) is
addable, hence z ∈C by (C2).

In the sequel, when speaking about direction cones without reference to a mono-
mial preorder, we mean a subset of Zn that fulfils the conditions (C1)–(C3).

A direction cone induces a preorder. As seen next, any preorder contains a pre-
order arising in this way.

Theorem 3. Let 4 be a monomial preorder. Then 4 extends 4C4 , the monomial
preorder induced by the direction cone of 4.

Moreover, the direction cone of 4C4 is C4 again.

Proof. Let a,b ∈ Nn and assume that a4C4 b holds according to the prescription
(O). Then b− a ∈ C4, that is, z−4 z+, where z = b− a. In view of Lemma 3, it
follows a4b. We conclude that 4C4 ⊆4.

The second part holds by Theorem 2.

We apply the shown facts to tomonoids.

Definition 7. Let C⊆Zn be a direction cone. Then we call the tomonoid represented
by 4C a cone tomonoid.

Theorem 4. Each fg.p.c. tomonoid L is the quotient of a cone tomonoid.

Proof. This follows from Theorem 3.
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3.4 A Galois connection

We have seen that there is a mutual correspondence between monomial preorders
and direction cones. This correspondence is not one-to-one, some monomial pre-
orders are proper extensions of those that are induced by direction cones. However,
we can established a Galois correspondence between the two sets.

Let us fix an n > 1. Let P be the set of all monomial preorders on Nn and let C
be the set of all direction cones in Zn. We partially order the two sets by means of
the set-theoretic inclusion. We then readily check that the two mappings

P → C , 4 7→C4,

C →P, C 7→4C

are order-preserving. The mappings are not one-to-one; in fact, the former is surjec-
tive but not injective, and the latter is injective but not surjective. From Theorems
2 and 3 we conclude what results when applying the mappings successively: any
4 ∈P is an extension of 4C4 ; and any C ∈ C is equal to C4C . Hence there is the
following Galois connection between P and C : for any 4 ∈P and C ∈ C ,

4C ⊆4 if and only if C ⊆C4.

3.5 Example

We conclude by presenting an example illustrating the results of this section. Let
L be the 9-element fg.p.c. tomonoid specified as follows. Let L be generated by its
two elements a and b and assume that

0 < a < b < 2a < a+b < 2b < 3a <

2a+b = a+2b = 4a < 2a+2b = 3a+b = 5a = 3b

and that the last indicated element is the top element. In accordance with Proposition
1, let ι : N2 → L be the surjective monoid homomorphism such that ι((1,0)) = a
and ι((0,1)) = b, and endowN2 with the preorder 4 according to (2). Then we have

(0,0)≺ (1,0)≺ (0,1)≺ (2,0)≺ (1,1)≺ (0,2)≺
(3,0)≺ (2,1)≈ (1,2)≈ (4,0)≺ (m,n),

where (m,n) is any of the remaining elements of N2. A graphical representation of
(L;6,+,0) can be found in Figure 1.

According to Definition 5, the direction cone is
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(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

...
...

...
...

...
...

. . .

. . .

. . .

. . .

Fig. 1 The example tomonoid L. The simple arrows indicate the immediate-successor relation
w.r.t. 4; the double arrows indicate 4-equivalence.

C4 = {(p,q) ∈ Z2 : (−p∨0,−q∨0) 4 (p∨0, q∨0)}
= {(p,q) ∈ Z2 : p,q > 0} ∪
{(−2,2),(−1,1),(−1,2),(2,−1),(3,−2),(3,−1),(4,−2),(4,−1)} ∪
{(p,q) ∈ Z2 : p 6 0 and q > 3} ∪
{(p,q) ∈ Z2 : p > 5 and q 6 0}.

This set is depicted in Figure 2.

Finally, we calculate 4C4 , the preorder representing a cone tomonoid whose
quotient is L. The preorder 4C4 can most easily be read off directly from Figure
1. Namely, we collect the order relations that hold between elements of the form
(m,0) and (0,n), where m,n > 1; then we translate and concatenate them. The re-
sult is depicted in Figure 3. From 4C4 , we get L by requiring the elements (2,1),
(1,2), and (4,0) of N2 to be equivalent.

4 One-element Rees coextensions of finite negative tomonoids

In the second part of this chapter, we develop a much different point of view on to-
monoids. To begin with, we switch to the dual order and the multiplicative notation,
as is common in fuzzy logic.

We will again assume the property called “positive” in the previous part. In the
present context, however, positivity means that 1 is the top element; accordingly, we
will refer to this property as “negative”. Furthermore, we will restrict to the finite
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...

...
...

...
...

...
...

...
...

...
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...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

...
...

...

Fig. 2 The direction cone C4 of the monomial preorder 4 representing L. Each element of C4 is
depicted as a circle in the Z2 plane.

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

...
...

...
...

...
...

. . .

. . .

. . .

. . .

Fig. 3 The cone tomonoid represented by 4C4 , whose quotient is L.

case. Finally, our considerations do not rely on the commutativity of the monoidal
product and hence we will not assume this condition here.

We shall write “f.n.” for “finite, negative”. That is, a f.n. tomonoid is a structure
(L;6,�,1) such that (L;�,1) is a finite monoid and 6 is a compatible total order
whose top element is 1.
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Our aim is to describe the construction of f.n. tomonoids in a step-by-step fash-
ion. The main idea is the following. Let (L;6,�,1) be a non-trivial f.n. tomonoid
and let 0 and α be its smallest and second smallest element, respectively. Then the
identification of 0 and α is a tomonoid congruence and the quotient is by one ele-
ment smaller than L. Continuing in the same way, we get a sequence of tomonoids
that ends with the trivial one. It seems then natural to ask how to generate such a
sequence in the reversed order. That is, given an f.n. tomonoid L, how can we de-
termine all those f.n. tomonoids L̄ that are by one element larger and such that the
identification of their smallest two elements leads back to L? This is in fact the ques-
tion that we will answer. We will provide a practical method of determining from L
systematically all tomonoids L̄ of the indicated type.

The results of the present section are due to [35], where further details can be
found.

4.1 Rees congruences

Consider a negative tomonoid (L;6,�,1) and let q be one of its elements. Then
Iq = {a ∈ L : a 6 q} is an ideal of L, seen as a monoid. Indeed, by the negativity
of L, a 6 q implies a� b 6 q and b� a 6 q for any b ∈ L. Consequently, we may
form the Rees quotient of the monoid L by Iq; see, e.g., [23]. Its elements may be
identified with the elements that are not in Iq as well as one further element, usually
denoted by 0. Obviously, this monoid congruence has only convex classes and hence
it is a tomonoid congruence; cf., e.g., [13].

Definition 8. Let (L;6,�,1) be a f.n. tomonoid and let q∈ L. For a,b∈ L, let a≈q b
if a = b or a,b 6 q. Then we call ≈q the Rees congruence by q. We denote the
quotient by L/q and call it the Rees quotient of L by q.

Moreover, we call L a Rees coextension of L/q. We call L a one-element Rees
coextension, or simply a one-element coextension, if L is non-trivial and q is the
atom of L.

For a finite chain L, we will denote by 0 the bottom element and we write

L? = Lr{0}.

If L has at least two elements, we furthermore call the second smallest element of L
the atom of L. We will use in the sequel the symbol α to denote the atom.

Given a non-trivial f.n. tomonoid L, then its Rees quotient L/α by its atom α

arises from L by the identification of the smallest two elements. L is in this case
a one-element coextension of L/α . Our aim is to determine all one-element coex-
tensions of a f.n. tomonoid. We will then obviously be in the position to construct,
starting from the trivial tomonoid, successively all f.n. tomonoids.
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4.2 Tomonoid partitions

A binary operation � on a set A gives rise to a partition of A×A: the blocks of the
partition are the subsets of all those pairs that are mapped by � to the same value.
The blocks are commonly referred to as the level sets of �. This partition, together
with the assignment that associates with each block the respective element of A,
specifies � uniquely.

The representation of binary operations based on level sets was first applied to
the theory of tomonoids in [33]. We note that it comes along with the possibility of
representing tomonoids within two dimensions only.

Definition 9. Let (L;6,�,1) be a tomonoid. We define, for any (a,b),(c,d) ∈ L2,

(a,b)∼ (c,d) if a�b = c�d.

We call ∼ the level equivalence of L.

Based on the level equivalence of a tomonoid L, we will endow the set L2 with a
first-order structure as follows.

Definition 10. Let 6 be a total order on a set L and let 1 ∈ L. We denote the com-
ponentwise order on L2 by P, that is, we put

(a,b)P (c,d) if a 6 c and b 6 d

for a,b,c,d ∈ L. Moreover, let ∼ be an equivalence relation on L2 such that the
following conditions hold:

(P1) For any a,b,c,d,e, f ∈ L, if (1,e)∼ (a,b)P (c,d)∼ (1, f ), then e 6 f .

(P2) For any (a,b)∈ L2, there is exactly one c∈ L such that (a,b)∼(1,c)∼(c,1).

(P3) For any a,b,c,d,e∈ L, (a,b)∼(d,1) and (b,c)∼(1,e) imply (d,c)∼(a,e).

We then call the structure (L2;P,∼,(1,1)) a tomonoid partition.

Proposition 4. Let (L;6,�,1) be a tomonoid and let ∼ be the level equivalence of
L. Then (L2;P,∼,(1,1)) is a tomonoid partition.

Proof. Let a,b,c,d ∈ L. By the compatibility of 6 with �, we have that (a,b)P
(c,d) implies a� b 6 c� d. (P1) follows. Moreover, as 1 is the monoidal identity,
we have that (a,b)∼ (c,1) iff (a,b)∼ (1,c) iff a� b = c. Hence also (P2) holds.
Finally, (P3) is implied by the associativity of �.

By Proposition 4, each tomonoid L gives rise to a tomonoid partition; we will
speak about the tomonoid partition associated with L.

We next see that there is a converse of Proposition 4. We will use the following
simplified notation. When L is a chain and 1 ∈ L, we will identify the elements of
the form (1,c)∈ L2, where c∈ L, with c. It will be clear from the context if c denotes
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an element of L or of L2. For instance, if ∼ is an equivalence relation on L2, then
(a,b)∼ c means (a,b)∼ (1,c). Similarly, the ∼-class of some c ∈ L is meant to be
the ∼-class containing (1,c).

Proposition 5. Let (L2;P,∼,(1,1)) be a tomonoid partition. Let 6 be the underly-
ing total order of L. Moreover, for any a,b ∈ L, let

a�b = the unique c such that (a,b)∼ c. (6)

Then (L;6,�,1) is the unique tomonoid such that (L2;P,∼,(1,1)) is its associated
tomonoid partition.

Proof. By assumption, L is totally ordered and P is the induced componentwise or-
der on L2. Evidently, P determines the total order 6 on L uniquely. It is furthermore
clear from (P2) that � can be defined by (6).

For a ∈ L, we have 1� a = a by construction and a� 1 = 1� a by (P2). Fur-
thermore, (P2) and (P3) imply the associativity of �. Thus (L;�,1) is a monoid.
Let a 6 b. Then (a,c)P (b,c), and we conclude from (P1) that a� c 6 b� c. Sim-
ilarly, we see that c� a 6 c� b. Thus 6 is compatible with � and (L;6,�,1) is
a tomonoid. It is clear that ∼ is the level equivalence of L and we conclude that
(L2;P,∼,(1,1)) is its associated tomonoid partition.

Let (L2;P,∼,(1,1)) be associated to another tomonoid (L′;6′,�′,1′). Then, by
the way in which a tomonoid partition is constructed from a tomonoid, L′ = L,
6′ = 6, and 1′ = 1. Furthermore, if for some a,b,c ∈ L we have a�′ b = c, then
(a,b)∼ (1,c) and hence a�b = c. We conclude �′ =�.

By Propositions 4 and 5, tomonoids and tomonoid partitions are in a one-to-one
correspondence. We will present our results in the sequel mostly with reference to
the latter, that is, with reference to tomonoid partitions.

Let us next devote some remarks to the geometric interpretation of the conditions
(P1)–(P3) in Definition 10. Let L be a tomonoid. Then L is a chain and hence L2 can
be viewed as a square array. For elements (a,b),(c,d) ∈ L2, (a,b)P (c,d) means
that (a,b) is left underneath (c,d). Moreover, for negative tomonoids, 1 is the top
element; in this case, (1,1) is located in the upper right corner of L2. See Fig. Figure
4 for an illustration.

In order to interpret (P1)–(P3), let us view the level equivalence of L as a partition
of L2. Condition (P2) has probably the most straightforward meaning. By (P2), each
block contains exactly one element of the form (1,c), c ∈ L. That is, we may index
the blocks by the elements of the line indexed by 1. Furthermore, (c,1) and (1,c)
are for each c ∈ L in the same block and hence a similar statement holds also for the
column indexed by 1.

By the identification of the blocks with the line indexed by 1, the blocks are
totally ordered. Condition (P1) says that the componentwise order on L2 is in accor-
dance with this total order. Namely, when moving from any element of a block to
the right or upwards, we arrive at a block indexed by a larger element.
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Fig. 4 A tomonoid partition associated with an eight-element negative tomonoid L. Rows and
columns of the array correspond to the elements of L, thus each square in the array corresponds
to a pair (a,b) ∈ L2, where a is the row index and b is the column index. In order to represent ∼,
we have indicated in each square (a,b) the product of a and b in L; two squares are ∼-equivalent
iff they contain the same symbol. For instance, the ∼-class of u comprises even elements and the
∼-class of 1 just one.

Condition (P3), which accounts for the associativity, possesses an appealing ge-
ometric interpretation as well. An illustration is given in Fig. 5. Here, we assume
that 1 is the top element of L. Within the square array representing L2, consider two
rectangles such that one hits the upper edge and the other one hits the right edge.
Assume that the upper left, upper right, and lower right vertices of these rectangles
are in the same blocks, respectively. By (P3), then also the remaining pair, consist-
ing of the lower left vertices, is in the same block. A related property is known from
the field of web geometry and called the “Reidemeister condition” [1, 2].
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Fig. 5 The “Reidemeister” condition (P3). A (connected or broken) bold line between two ele-
ments of the array indicates level equivalence. By (P3), the equivalences of the pairs connected by
a solid line imply the equivalence of the pair connected by a broken line.
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We conclude the subsection with a characterisation of those tomonoid partitions
in which we are actually interested: the finite, negative ones. The slightly optimised
characterisation will be useful in subsequent proofs.

Proposition 6. Let (L;6) be a finite and at least two-element chain with the top
element 1. Let 0 be the bottom element of L. Then (L2;P,∼,(1,1)) is a tomonoid
partition if and only if (P1), (P2), and the following condition hold:

(P3’) For any a,b,c,d,e∈ Lr{0,1}, (a,b)∼d and (b,c)∼e imply (d,c)∼(a,e).

In this case, (L2;P,∼,(1,1)) is finite and negative.

Proof. The “only if” part is clear by definition.
To see the “if” part, let (L2;P,∼,(1,1)) fulfil (P1), (P2), and (P3’). We next show

that the negativity criterion of Lemma 6(i) holds:
(?) (a,b)∼ (1,c) implies c 6 a and c 6 b.
Indeed, in this case (c,1)∼ (1,c)∼ (a,b)P (a,1) by (P2) and the fact that 1 is

the top element. Hence, by (P1), c 6 a. Similarly, we see that c 6 b.
It remains to prove (P3). Let a,b,c,d,e ∈ L be such that (a,b)∼d and (b,c)∼ e.

We have to show (d,c)∼(a,e) if one of the five elements equals 0 or 1. We consider
certain cases only, the remaining ones are seen similarly.

Let a = 1. Then (1,b)∼ (1,d), hence b = d by (P2), and it follows (d,c) =
(b,c)∼ (1,e) = (a,e).

Let d = 1. Then (a,b)∼(1,1), and by (?), we conclude a= b= 1. From (b,c)∼e
it follows e = c. Hence (d,c) = (a,e).

Note next that, for any f ∈ L, ( f ,0)∼0. This follows again from (?).
Let a = 0. Then (a,b) = (0,b)∼0 and hence d = 0. Hence (d,c) = (0,c)∼0∼

(0,e) = (a,e).
Let d = 0. Then (d,c) = (0,c)∼ 0. From (b,c)∼ e, it follows by (?) that e 6

b. Hence (1,0)∼ (0,0)P (a,e)P (a,b)∼ (1,0) and we conclude from (P1) that
(a,e)∼0. In particular, (a,e)∼ (d,c).

4.3 Properties and constructions for tomonoid partitions

We have seen that tomonoids and tomonoid partitions are in a one-to-one corre-
spondence. Consequently, we can apply properties, constructions, etc. defined for
tomonoids to tomonoid partitions as well. We establish in this subsection a few of
such correspondences.

For convenience, we will apply to tomonoid partitions the same notions as to
tomonoids. For instance, a tomonoid partition will be called negative if the corre-
sponding tomonoid is negative.

Lemma 6. Let (L2;P,∼,(1,1)) be a tomonoid partition.

(i) The following statements are pairwise equivalent:
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• L2 is negative.
• (1,1) is the top element of L2.
• The ∼-class of any c ∈ L is contained in {(a,b) ∈ L2 : a,b > c}.

(ii) The following statements are equivalent:

• L2 is commutative.
• (a,b)∼ (b,a) for any a,b ∈ L.

A further property considered in the sequel is Archimedeanicity. In what follows,
we write an for the n-fold product a� . . .�a.

Definition 11. We call a negative tomonoid Archimedean if, for any a6 b< 1, there
is an n > 1 such that bn 6 a.

Note that negative tomonoids with at most two elements are trivially Archime-
dean.

Archimedean f.n. tomonoid partitions are characterised as follows.

Lemma 7. Let (L2;P,∼,(1,1)) be a f.n. tomonoid partition. The following state-
ments are pairwise equivalent:

• L2 is Archimedean.
• (b,a) 6∼ (1,a) for any a ∈ L? and b < 1.
• (a,b) 6∼ (a,1) for any a ∈ L? and b < 1.

Proof. Let (L;6,�,1) be the corresponding f.n. tomonoid and let 0 be the bottom
element of L. W.l.o.g., we can assume 0 6= 1. We show that (i) and (ii) are equivalent.
The equivalence of (i) and (iii) is seen similarly.

Assume that (ii) holds. By the negativity of L, we have b�a < a for all a 6= 0 and
b < 1. Let a < 1. Then, for any n > 1, either an+1 < an or an = 0. As L is finite, the
latter possibility applies for a sufficiently large n. It follows that L is Archimedean.

Assume that (ii) does not hold. Let a 6= 0 and b < 1 such that b�a = a. As L is
negative, we then have a 6 b and it follows bn > bn−1� a = a > 0 for any n > 2.
Hence L cannot be Archimedean.

We next see how Rees quotients are formed in our framework.

Proposition 7. Let (L2;P,∼,(1,1)) be a negative tomonoid partition and let q ∈ L.
Let Lq = {a ∈ L : a > q} ∪̇ {0}, where 0 is a new element, and endow Lq with the
total order extending the total order on {a ∈ L : a > q} such that 0 is the bottom
element. Then, for each c ∈ Lq

?, the ∼-class of c is contained in (Lq
?)2. Let ∼q be

the equivalence relation on Lq
2 whose classes are the ∼-classes of each c ∈ Lq

? as
well as the subset of Lq

2 containing the remaining elements. Then (Lq
2;P,∼q,(1,1))

is the Rees quotient of L2 by q.

Proof. Let (L;6,�,1) be the corresponding negative tomonoid. Let �q be the bi-
nary operation on Lq such that (Lq;6,�q,1) is (under the obvious identifications)
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the Rees quotient of L by q. Let (Lq
2;P,∼′q,(1,1)) be the associated tomonoid par-

tition.
Let a,b,c ∈ L such that c > q and (a,b)∼ c. Then a,b > c by Lemma 6(i) and

consequently a,b > q. We conclude that the ∼-class of each c ∈ Lq
? is contained in

(Lq
?)2.
We have to show ∼′q = ∼q. Let a,b,c ∈ Lq such that c 6= 0. Then (a,b)∼′q c iff

a�q b = c iff a�b = c iff (a,b)∼ c. Hence the ∼′q-class of each c ∈ Lq
? coincides

with the ∼-class of c. There is only one further ∼′q-class, the ∼′q-class of 0, which
consequently consists of all elements of Lq

2 not belonging to the ∼-class of any
c ∈ Lq

?.

We may interpret Proposition 7 once again geometrically. Let L2 be a finite nega-
tive tomonoid partition and let q be an element of the underlying tomonoid L. Then
the Rees quotient by q arises from the partition on L2 by removing all columns and
rows indexed by elements 6 q and by adding instead a single new column from left
and a single new row from below. Moreover, all elements that originally belonged
to a class of some a 6 q are joined into a single class, which is the class of the new
zero. In contrast, the classes of elements strictly larger than q remain unchanged.

Figure 6 shows the chain obtained from a eight-element tomonoid by applying
this procedure repeatedly to the respective atom.
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Fig. 6 Starting from the eight-element tomonoid shown in Figure 4, the successive formation of
Rees quotients by the atom leads eventually to the trivial tomonoid.
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4.4 One-element coextensions

Based on the level-set representation, we will in this subsection provide a systematic
description of all one-element coextensions of a finite, negative tomonoid. We will
restrict to the Archimedean case; for the general case we refer to [35]. That is, we
will determine the coextensions of Archimedean f.n. tomonoids that are Archime-
dean again.

We will proceed, roughly, as follows. We start from a tomonoid partition, seen as
a partitioned square array; cf. Figure 4. We enlarge the sides of this square by one el-
ement, doubling the lowest row and left-most column. We determine the equivalence
relation ∼̄ that makes the enlarged square into a tomonoid partition in two steps. We
first determine an intermediate equivalence relation ∼̇, called the ramification. ∼̇
has a universal property: the level equivalence of any Archimedean one-element co-
extension extends ∼̇. Second, we choose the final equivalence relation ∼̄, merging
certain ∼̇-classes such that the part of the square containing the classes of the new
tomonoid’s bottom element and atom is divided up into exactly two ∼̄-classes.

For a chain (L;6), let us define L̄ = L? ∪̇ {0,α}, where 0,α are new elements,
and let us endow L̄ with the total order extending the total order on L? such that
0 < α < a for all a ∈ L?. We call (L̄;6) the zero doubling extension of L.

Furthermore, let (L;6,�,1) be a f.n. tomonoid. We will assume that any one-
element coextension of L is of the form (L̄;6,�̄,1). In particular, the intersection
of L and L̄ is exactly L? and a �̄b = a�b whenever a,b,a�b ∈ L?.

Definition 12. Let (L2;P,∼,(1,1)) be an Archimedean f.n. tomonoid partition. Let
L̄ = L? ∪̇ {0,α} be the zero doubling extension of L. We define

P = {(a,b) ∈ L̄2 : a,b ∈ L? and there is a c ∈ L? such that (a,b)∼ c},
Q = L̄2rP.

(7)

Let ∼̇ be the smallest equivalence relation on L̄2 such that the following conditions
hold:

(E1) For any (a,b),(c,d) ∈P such that (a,b)∼ (c,d), we have (a,b) ∼̇ (c,d).

(E2) For any (a,b),(b,c)∈P and d,e∈ L? such that (d,c),(a,e)∈Q, (a,b)∼d,
and (b,c)∼ e, we have (d,c) ∼̇ (a,e).

(E3) For any a,b,c,e ∈ L? such that (a,b) ∈Q, (b,c)∼ e, and c < 1, we have
(a,e) ∼̇0.

Moreover, for any a,b,c,d ∈ L? such that (b,c) ∈Q, (a,b)∼ d, and a < 1, we
have (d,c) ∼̇0.

(E4) We have (0,1) ∼̇ (1,0) ∼̇ (α,b) ∼̇ (b,α) for any b < 1, and (α,1) ∼̇ (1,α).
Moreover, for any (a,b),(c,d) ∈Q such that (a,b)P (c,d) ∼̇0, we have (a,b) ∼̇
0.
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Then we call the structure (L̄2;P,∼̇,(1,1)) the ramification of (L2;P,∼,(1,1)).

A few remarks might help to clarify the meaning of Definition 12. Let the to-
monoid partition (L2;P,∼,(1,1)) be given. The subset P of L̄2 consists of all pairs
(a,b)∈ L?2 whose product in L is not the bottom element. That is, P is the union of
the ∼-classes of all c ∈ L? and this union lies in L?2. We note that P is an upwards
closed subset of L̄2 and, consequently, its complement Q is a downward closed
subset of L̄2.

The intermediate equivalence relation ∼̇ is determined by successive application
of conditions (E1)–(E4). We observe that ∼̇-equivalences involving elements of P
are required by condition (E1) only. In fact, all the ∼-classes contained in P are
∼̇-classes as well.

The ∼̇-classes contained in Q are determined by conditions (E2)–(E4). In
fact, each prescription contained in (E2) and (E3) is of the form that certain ∼-
equivalences imply that a certain pair of elements of Q is ∼̇-equivalent. Finally,
(E4) prescribes that the ∼̇-class of 0 is downward closed. We remark that Q con-
tains the ∼̇-class of the bottom element 0, the ∼̇-class of the atom α , and possibly
further ∼̇-classes, which contain neither (1,c) nor (c,1) for any c ∈ L̄.

In the sequel, for two equivalence relations∼1 and∼2 on a set A, we say that∼1
is coarser than ∼2 if ∼2 ⊆ ∼1. In other words, ∼1 coarser than ∼2 if and only if
each ∼1-class is a union of ∼2-classes.

Lemma 8. Let (L2;P,∼,(1,1)) be an Archimedean f.n. tomonoid partition and let
(L̄2;P,∼̄,(1,1)) be an Archimedean one-element coextension of L2. Furthermore,
let (L̄2; P,∼̇,(1,1)) be the ramification of L2. Then ∼̄ is coarser than ∼̇ and the
following holds: the ∼̄-class of each c ∈ L? coincides with the ∼̇-class of c, the ∼̄-
class of 0 is downward closed, and each ∼̄-class contains exactly one element of the
form (1,c) for some c ∈ L̄.

Proof. Let (L;6,�,1) and (L̄;6,�̄,1), where L̄ = L? ∪̇ {0,α}, be the two tomono-
ids in question.

As noted above, condition (E1) requires ∼̇-equivalences only between elements
of P and the remaining conditions require ∼̇-equivalences only between elements
of Q. Furthermore, P is the union of the ∼-classes of all c ∈ L?. By (E1), these
∼-classes are also ∼̇-classes. Moreover, by Proposition 7, each ∼-class of a c ∈ L?

is a ∼̄-class. We conclude that the ∼̄-class of each c ∈ L? coincides with the ∼̇-class
of c and P is the union of these subsets.

We next check that any two elements that are ∼̇-equivalent according to one
of the conditions (E2)–(E4) are also ∼̄-equivalent. Since ∼̇ is, by assumption, the
smallest equivalence relation with the indicated properties, it will then follow that
∼̇ ⊆ ∼̄.

Ad (E2): Let (a,b),(b,c)∈P , d,e∈ L?, (a,b)∼d, and (b,c)∼e. Then a,b,c∈
L?, hence a�̄b= a�b= d and b�̄c= b�c= e. Consequently, d �̄c=(a�̄b)�̄c=
a �̄ (b �̄ c) = a �̄ e, that is (d,c) ∼̄ (a,e).

Ad (E3): Let a,b,c,e ∈ L?, (a,b) ∈Q, (b,c)∼e, and c < 1. Then a �̄b 6 α and
hence a�̄e= a�̄(b�̄c) = (a�̄b)�̄c6α �̄c. As L is assumed to be Archimedean,
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α is the atom of L̄, and c < 1, we conclude α �̄ c = 0. Hence (a,e) ∼̄ 0. Similarly,
we argue for the second part of (E3).

Ad (E4): As L is Archimedean, we have, for any b < 1, 0 �̄1 = 1 �̄0 = α �̄b =
b �̄α = 0 by Lemma 7 and hence (0,1) ∼̄ (1,0) ∼̄ (α,b) ∼̄ (b,α). Furthermore, we
have (α,1) ∼̄ (1,α). Finally, let (a,b),(c,d) ∈ Q and assume (a,b)P (c,d) ∼̄ 0.
Then a �̄b 6 c �̄d = 0 and thus (a,b) ∼̄0 as well.

It is finally clear that the ∼̄-class of 0 is downward closed. The last statement
holds by condition (P2) of a tomonoid partition.

The following theorem is the main result of this section.

Theorem 5. Let (L2;P,∼,(1,1)) be an Archimedean f.n. tomonoid partition and
let (L̄2;P,∼̇,(1,1)) be the ramification of L2. Let ∼̄ be an equivalence relation on
L2 that is coarser than ∼̇ and such that the following holds: the ∼̄-class of each
c ∈ L? coincides with the ∼̇-class of c, the ∼̄-class of 0 is downward closed, and
each ∼̄-class contains exactly one element of the form (1,c) for some c ∈ L̄. Then
(L̄2;P,∼̄,(1,1)) is an Archimedean one-element coextension of L2.

Moreover, all Archimedean one-element coextensions of L2 arise in this way.

Proof. P , defined by (7), is the union of the ∼-classes of all c ∈ L?. As we have
seen in the proof of Lemma 8, these subsets of P are also ∼̇-classes. Recall also
that P is upwards closed and Q = L̄2rP is downward closed.

By (E4), we have (1,0)∼̇(0,1) and (1,α)∼̇(α,1). We claim that (1,0)�̇(1,α).
Indeed, (E1), (E2), and (E3) involve only elements (a,b) such that a,b ∈ L?. Hence,
none of these prescriptions involves the elements (1,α) or (α,1). Moreover, by
(E4), the elements (a,0) and (0,a) for any a as well as (a,α) and (α,a) for any
a 6= 1 belong to the ∼̇-class of (1,0). Again, (1,α) and (α,1) are not concerned.
Finally, the ∼̇-class of (1,0) is a downward closed set. Also this prescription has
no effect on (1,α) or (α,1) because there is no element in Q that is larger than
(1,α) or (α,1). We conclude that {(1,α),(α,1)} is an own ∼̇-class and our claim
is shown.

Let now ∼̄ ⊇ ∼̇ be as indicated. Note that, by what we have seen so far, at least
one such equivalence relation exists. In accordance with Proposition 6, we will ver-
ify (P1), (P2), and (P3’).

We have shown that (1,c) ∼̄ (c,1) for all c ∈ L̄. By construction, ∼̄ fulfils (P2).
Furthermore, the ∼̄-class of 0 is downward closed and Q, which is the union of the
∼̄-classes of 0 and α , is downward closed as well. We conclude that (P1) holds for
∼̄.

It remains to show that ∼̄ fulfils (P3’). Let a,b,c,d,e ∈ Lr {0,1} such that
(a,b) ∼̄d and (b,c) ∼̄ e. We distinguish the following cases.

Case 1. Let d,e ∈ L?. Then (a,b)∼ d and (b,c)∼ e. As ∼ fulfils (P3), we have
(d,c)∼ (a,e). In particular, it follows that (d,c) ∈P iff (a,e) ∈P . If (d,c) and
(a,e) are both in P , we have (d,c) ∼̄ (a,e) because the ∼̇-classes contained in P
are ∼̄-classes as well. If (d,c) and (a,e) are both in Q, we have (d,c) ∼̇ (a,e) by
(E2) and consequently also (d,c) ∼̄ (a,e), because ∼̄ extends ∼̇.
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Case 2. Let d = α and e ∈ L?. Then (d,c) ∼̇ 0 by (E4). Furthermore, we have
a ∈ L? by (E4), b,c ∈ L? because (b,c) ∈P , (a,b) ∈Q, and (b,c)∼ e. It follows
(a,e) ∼̇0 by (E3). Consequently, (d,c) ∼̄0 ∼̄ (a,e).

Case 3. Let d ∈ L? and e = α . We argue similarly to Case 2.
Case 4. Let d = e = α . Then (d,c) ∼̇ (a,e) ∼̇ 0 by (E4) and consequently also

(d,c) ∼̄ (a,e).
By Proposition 6, (L̄2;P,∼̄,(1,1)) is a f.n. tomonoid partition, which is moreover

Archimedean by (E4) and Lemma 7. It is finally clear from Proposition 7 that the
Rees quotient of L̄2 by the atom α is L2.

The final statement follows from Lemma 8.

Let us summarise our construction and add some remarks. In order to deter-
mine the one-element coextensions of a f.n. tomonoid L, we start from its as-
sociated tomonoid partition (L2;P,∼,(1,1)). We first determine its ramification
(L̄2;P,∼̇,(1,1)) according to Definition 12. This is done by means of the conditions
(E1)–(E4); note that these prescriptions are largely independent, it is not necessary
to apply them in a recursive way. To obtain, second, a coextension of the desired
type, the set Z = 〈(1,0)〉∼̄, i.e. the ∼̄-class of the bottom element, is chosen ac-
cording to Theorem 5. This is done as simple as follows: Z is a union of ∼̇-classes
contained in Q including 〈(1,0)〉∼̇ but excluding the ∼̇-class {(1,α),(α,1)}, and
Z is downward closed. Thus, to determine a specific one-element coextension, all
we have to do is to select an arbitrary set of ∼̇-classes different from {(α,1),(1,α)}
and Z will then be the smallest downward closed set containing them.

Note that one possible choice is Z = Qr {(α,1),(1,α)}. This means that the
explained procedure always leads to a result, that is, every Archimedean, finite,
negative tomonoid has at least one Archimedean one-element coextension.

Also in the general case, it is interesting that the explained procedure never re-
quires revisions. At no place decisions are required that lead to an impossible situa-
tion, we may always proceed to end up with a coextension as desired.
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22. R. Horčı́k, On the structure of finite integral commutative residuated chains, J. Log. Comput.

21 (2011), 717 - 728.
23. J. M. Howie, “An introduction to semigroup theory”, Academic Press, London 1976.
24. A. J. Hulin, Extensions of ordered semigroups, Czech. Math. J. 26 (1976), 1 - 12.
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