Chapter I: Algebraic semantics:
the structure of chains

THOMAS VETTERLEIN

1 Introduction

Chapter IV of Volume 1 of this Handbook is devoted to the algebraic semantics
of substructural logics. Its central topic are FL-algebras, also called pointed residuated
lattices, which represent an algebraic counterpart of FL, the Full Lambek logic.

In the present chapter, we resume this topic, adopting however a somewhat narrower
point of view. We are interested in the generalised semantics of fuzzy logics and we fo-
cus to this end on semilinear, integral residuated lattices. Semilinearity means that the
subdirect irreducible algebras are totally ordered. In fact we will restrict the discussion
to residuated chains, in accordance with the fact that the most basic property character-
ising standard semantics in fuzzy logic is linearity. Integrality means that the monoidal
identity is the top element. We generally require also this condition to hold, in accor-
dance with the fact that in fuzzy logic it is usually assumed that a fully true proposition
behaves in conjunctions neutrally.

We are thus interested in a classification of integral residuated chains. We seek
ways to reduce these algebras to simpler ones, or ways to construct these algebras from
structures that are better understood. Our point of view is in this sense “constructive”
and we will not much develop universal-algebraic aspects. However, our analysis is
based on established algebraic procedures; constructions methods that are incompatible
with our algebraic framework will not be taken into account.

The problem that we address is, in the general case, far from a solution. No single
approach is known at present that is expected to have the potential to cover eventually
all structures in which we are interested. Here, we select two approaches, which are
totally different in nature, and demonstrate their capabilities and limits. We shall see that
each approach leads to an insight into, certainly not all but, quite a range of residuated
structures.

The first approach takes up the apparently central role played by lattice-ordered
groups within the variety of residuated lattices. Indeed, residuated lattices can be built
from lattice-ordered groups in many ways, the best-known examples being MV-algebras
or the more comprehensive BL-algebras.

A natural candidate for representations by means of groups are cancellative resid-
uated lattices. For this topic we refer to [22]. Here, we will exploit the property of
divisibility, a condition fulfilled, e.g., by BL-algebras. We will, however, not assume
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commutativity. As the main result, we will prove a representation theorem for divisible,
integral residuated chains, also known as totally ordered pseudohoops [8]. This result
generalises the well-known structure theorem for BL-algebras [1]. What makes our ex-
position special is the employed method, which differs, e.g., from the one employed
in [8]. The idea is to represent residuated structures by means of partial algebras, as has
been proposed in the context of quantum structures [9].

Our second approach deals with the commutative case, but this time we will not
assume a property that is as particular as divisibility. Our focus will thus be on integral,
commutative residuated chains. The example that we have in mind is the standard se-
mantics of the fuzzy logic MTL. Recall that MTL is the logic of left-continuous t-norms
together with their residua; a standard MTL-algebra is the real unit interval endowed
with these two operations. In accordance with this example, we will focus on almost
complete chains, where almost completeness is, roughly speaking, the same as com-
pleteness except for the possible absence of a bottom element.

The residuated chains considered in this second part possess a totally ordered set of
quotients induced by filters. Our main concern is the question how to construct coex-
tensions, that is, structures whose quotient is a given one. Under the condition that the
congruence classes are isomorphic to real intervals, we can describe all those coexten-
sions that are, in a natural sense, indivisible. In particular, all standard MTL-algebras
that possess a quotient induced by an Archimedean filter are fully specifiable in terms of
this quotient and the order type of the congruence classes.

We note that for the specification as well as for the visual representation of integral,
commutative residuated chains, their quotients, and their coextensions we have a simple,
yet efficient tool to our disposal: the regular representation of monoids [7], adapted to
our context in the straightforward way. On this basis, we can, for instance, specify a
coextension in a “modular” way. We will in fact do so when formulating our main result
on real Archimedean coextensions.

We will proceed as follows. The following Section 2 puts up our favourite algebraic
framework, providing the basic definitions around totally ordered monoids. The subse-
quent Section 3 is devoted to the partial-algebra method for the representation of residu-
ated chains, and Section 4 discusses quotients and coextension of residuated chains. We
conclude with some more background information as well as hints for further reading in
Section 5.

2 Residuated totally ordered monoids

We begin by recalling the algebraic notions relevant for this chapter; cf. Chapter IV
of Volume 1. A residuated lattice is an algebra (L, A, V,®, /,\, 1) such that (i) (L, A, V)
is a lattice, (ii) (L, ®, 1) is a monoid, and (iii) /, \ are the left and right residuals of ®,
respectively. The latter condition means that, for a, b, c € L we have

a®b<c ifandonlyif b<a\c ifandonlyif a <c/b.

In other words, for any a € L, the right translation - ® a and the mapping -/a form a
Galois connection; similarly for the left translation a ® - and the mapping a\-.
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Moreover, we call a residuated lattice commutative if so is the monoidal operation
©®, and we call it integral if the monoidal identity 1 is the top element of the lattice.
Finally, a chain is meant to be a totally ordered set, and we refer to a residuated lattice
whose underlying order is a chain as a residuated chain.

In fuzzy logic, the implications are usually considered as the most basic connectives.
Accordingly, we could consider the residuals / and \ as the primary operations of a
residuated lattice. We will, however, not do so. The residuals on the one hand and the
monoidal operation on the other hand are, given the lattice order, mutually uniquely
determined. To explore the structure of residuated lattices it is thus not necessary to
deal with all three operations. The monoidal operation may be viewed as a product,
the residuals may be viewed as divisions; we will describe the structure of residuated
lattices on the basis of the former, the product-like operation alone.

Moreover, we focus in this chapter exclusively on residuated chains. Consequently,
there is no need to use both the infimum and the supremum. It is, for the sake of forming
quotients, moreover no serious obstacle to replace the lattice operations by the total order
relation.

DEFINITION 2.0.1. A structure L = (L, <, ®, 1) is a totally ordered monoid, or tomo-
noid for short, if 1) (L, ®, 1) is a monoid, (ii) (L, <) is a chain, and (iii) < is compatible
with ©, that is, a < bimpliesa ©c <b®candc®a <c®b.

A tomonoid L is called residuated if, for any a,b € L, there is a largest element c
such that a ® ¢ < b and there is a largest element d such that d ® a < b. Moreover, L is
called commutative is so is ©, and L is called negative if 1 is the top element.

It is clear that residuated tomonoids are in a one-to-one correspondence with resid-
uated chains. Under this correspondence, the properties of commutativity coincide, and
so do the properties of integrality and negativity, respectively.

In semigroup theory, there are two competing ways of denoting the associative op-
eration. Instead of the multiplicative notation (L, ®, 1) we may equally well use the
additive one (L, ®,0). In logics, the former notation is clearly preferred because ©
typically models the conjunction, 1 stands for the full truth, and the set of propositions
is traditionally ordered such that stronger statements are modelled by smaller elements.
However, the additive notation is often more practical, and authors indeed regularly
switch to the additive notation when it comes to free commutative monoids. In case of
the two approaches that we are going to present, we will stick to the notation that is in
each case more practical and supports easiest understanding: the first approach will be
presented additively, the second one multiplicatively.

We will certainly not use extra expressions like “dual tomonoids” or similarly; we
will simply talk about tomonoids (L, <,®, 1) or (L, <, ®,0), respectively. Only one
aspect needs to taken into account. Negativity will be applied only to multiplicatively
written tomonoids. Analogously, we call an additively written tomonoid (L, <, ®, 0)
positive if 0 is the bottom element.

In what follows, a subtomonoid of a tomonoid L is a submonoid of L together with
the inherited total order. Moreover, a homomorphism between tomonoids is defined as
usual. Finally, a homomorphism x between tomonoids K and L is called sup-preserving
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if, whenever the supremum of elements a,, ¢ € I # (), exists in K, then x(\/, a,) is the
supremum of x(a,), ¢ € I,in L.

3 The partial-algebra method for the representation of totally
ordered monoids

3.1 Theidea

The typical aim of a representation theorem is to describe the structure of an algebra
by means of algebras of a simpler type. In the case of residuated lattices the probably
most often considered candidate for the basic constituents are lattice-ordered groups, or
£-groups for short. By means of /-groups it will most likely never be possible to fully
understand the structure of residuated lattices. However, for certain subclasses the idea
has turned out to be fruitful, as will be exemplified by the results of the first part of the
present chapter.

To understand the key idea of what we have in mind, let us see on the basis of
a simple example how /-groups can be used to represent residuated tomonoids. Let
x: 0,12 = [0,1], {a,b) — (a+ b — 1)V 0 be the Lukasiewicz t-norm and consider
the tomonoid ([0, 1], <, *, 1). This is an MV-algebra, and by Mundici’s representation
theorem we certainly know how it is related to the totally ordered group of reals. Here,
however, we want to explain on the basis of the simple case a procedure that is applicable
to a class of residuated structures that is more comprehensible than MV-algebras.

Switching to the additive picture, we are led to the algebra ([0, 1], <, @, 0), where
@ is the truncated sum, that is,

a®b = (a+b)A1l, a,bel0,1]. (1)

From &, we will now define a partial operation, which we denote by +. The partial
operation + will, where defined, coincide with the total one &; in this sense, + will be
a restriction of @. Our definition goes as follows:

adb if @ is the smallest x suchthatx ®b=a D b,
at+b = and b is the smallest y such thata & y = a & b; 2)
undefined otherwise.

Consider now the partial algebra ([0, 1], <, +,0). If the usual sum of two reals a,b €
[0, 1] is strictly greater than 1, their sum a+b, according to (2), is undefined. If, however,
the usual sum of ¢ and b is at most 1, then a + b stands for what it commonly denotes:
the sum of @ and b as reals. In short, the partial operation + is the restriction of the usual
addition of reals to those pairs whose sum is in [0, 1].

Remarkably, we do not lose information when switching to the partial operation +.
In fact, we can easily recover the original operation: a @b is the maximal element among
all defined sums a’ + b’ such that ' < a and &’ < b.

Our aim is to embed ([0, 1], <, 4, 0) into (R, <,+,0). How can we construct the
totally ordered group of reals from our partial algebra? We first determine the monoid
freely generated by [0, 1] subject to the condition a + b = c if this holds in the partial
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algebra. The result is the monoid (R*, +,0), the positive reals endowed with the usual
addition. Second, we make R the positive cone of a totally ordered Abelian group. The
result is (R, <, 4+, 0), and our embedding is complete.

The question remains how the algebra ([0, 1], <, @, 0) with which we started is rep-
resented by (R, <,+,0). The situation is as follows. The base set [0, 1] is an interval
of R, consisting of all positive elements below the positive element 1. Furthermore, the
total order is inherited from R. Finally, the monoidal operation is given according to (1).

The aim of this section is to show that we can proceed analogously to this example
under rather general assumptions.

3.2 D.p.r. tomonoids and R-chains

Let us delimit the class of tomonoids to which our method is at present known to
apply. Our main assumption is that the order of the tomonoid is the natural one: we
require divisibility.

DEFINITION 3.2.1. A residuated tomonoid (L, <, ®,0) is called divisible if, for any
a,b € L such that a < b, there are c¢,d € L such thata ®c=d ® a = b.

Hence the structures that we are going to discuss are divisible, positive, residuated
tomonoids; we will abbreviate these three properties with “d.p.r.”. Note that d.p.r. tomo-
noids are in a one-to-one correspondence with divisible, integral residuated chains.

We will denote the residuals corresponding to the monoidal operation ¢ of a d.p.r.
tomonoid by © and @, respectively, and in accordance with our additive notation we
will write them in analogy to differences:

a<b®c f aQb<c¢ iff a®@c<hb.
Then a positive, residuated tomonoid L is divisible if, for any a,b € L such that a < b,
a®(boa) = (b@a)®a = b.
With a d.p.r. tomonoid, we associate a partial algebra as follows.

DEFINITION 3.2.2. Let (L, <,®,0) be a d.p.r. tomonoid. For a,b € L, let a+b = a®b
ifa=(a®b)@bandb= (a ®b) S a; otherwise, let a + b be undefined. Then we call
(L, <,+,0) the partial algebra associated with (L, <, ®, 0).

Note that this definition is in accordance with the specification (2) in our informal
introduction. Namely, let a and b be elements of a d.p.r. tomonoid. Then (a @ b) @ b is,
by definition, the smallest element x such that x ® b = a & b. Similarly, (a & b) © a is
the smallest element y such that a ® y = a @ b.

From the partial algebra that we have associated with a d.p.r. tomonoid in Definition
3.2.2, we can recover the original structure in the following way.

LEMMA 3.2.3. Let (L, <,,0) be a d.p.r. tomonoid, and let (L, <, +, 0) its associated
partial algebra. Then

a®b = max {a’ +V': a’ <aandb' <bsuchthata' +1V is defined} 3)

forany a,b € L.
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Proof. Assumethata’ < a, b’ < b,and a’+V' is defined. Thena’+b' = o’ BY < aPb.

Letnowc=a®b; ' =cob,andb =cSd'. Thend bV =a' & (cQd') =c.
Moreover,c@b =c@ (cQd')=c@(cQ(c@b)) =c@b=a'. Hence a’ + V' exists
and equals a @ b. O

What kind of partial algebras do we get here? The following definition compiles
their properties.

As regards the existence of partially defined sums, we will follow, whenever reason-
able, the usual convention: a + b = ¢ means that a + b exists and equals c.

DEFINITION 3.2.4. An R-chain is a structure (L, <, +,0) such that
(E1) (L, <,0) is a chain with the bottom element 0,

and such that + is a partial binary operation fulfilling, for any a, b, c € L, the following
conditions:

(E2) (a+b)+cisdefined if and only if a+ (b+c) is defined, and in this case (a+b)+c =
a+ (b+c).

E3)a+0=0+a=a.

(E4) If a + c and b + c are defined, then a < b ifand only ifa + ¢ < b+ c.
If c + a and c + b are defined, then a < bifand only ifc+a < c+b.

(ES) If a + b is defined, there are x,y € L suchthata+b=x+a=>b-+y.

(E6) Let a < b. Then there is a largest element a < a such that b = a + x for some
xz € L.

Similarly, there is a largest element a < a such that b = y + a for some y € L.

(E7) Ifa<c<a+b, thereisan x € L such that c = a + x.
Similarly, if a < ¢ < b+ a, there isay € L such that c = y + a.

The remaining part of this section is devoted to the proof that the partial algebra
associated with a d.p.r. tomonoid is in fact an R-chain.
We begin with those properties that are comparably easy to prove.

LEMMA 3.2.5. Let (L, <,®,0) be a d.p.r. tomonoid. Then the associated partial alge-
bra (L, <,+,0) fulfils (E1), (E3), (E4), (E6), and (E7).

Proof. (E1) holds < coincides by definition with total order of L as a positive tomonoid.
For the remaining properties, we show only the first half; the second half will follow
in each case dually.
It is easily checked that, for any @ € L, a + 0 and exist and equals a. (E3) follows.
Let now a,b,c € L such that a + ¢ and b + ¢ are defined. If a < b, then a + ¢ =
a®c < bdc=0b+c. Conversely, ifa+c <b+c thena = (a®c)@c= (a+c)@c <
(b+c)@c=(b@c)@c=>b. Wehave proved (E4).
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Next, leta,b € Lsuchthata <b.Leta=0@ (bSa). Thena < aanda+ z = b,
where x =bQa. Ifa’ <aanda' +2' =b,wehave ' =b0a’ > b a =z and
hence a’ = b @ 2’ < b @ x = a. This shows (E6).

Finally, let a, b, ¢ € Lsuchthata < ¢ < a+b. We shall show that a = c@ (cOa); it
will then follow that a +x = ¢, where = ¢ a. Putting d = a + b, we derive from the
divisibility of L thata = d@b=d @ (dQa) > c@(cQa) > (d0(d0¢)) @ (cSa) =
(dodo(a®(c0a))@(c0a) = (do ((doa)S(c0a)) @ (cSa)
do((coa)®((doa)0(c0a)))=do (dS a) = a. (ET) follows.

We continue with property (E2), the associativity.

LEMMA 3.2.6. Let {L,<,®,0) be a d.p.r. tomonoid. Then the associated partial alge-
bra (L,<,+,0) fulfils (E2).

Proof. Leta,b,c € L be such that (a + b) + cis defined. Lete = a+band d = e + c.
Let f =dQa. Thenc=dQe<dQa= f <d=e+c and by (E7), thereisad’ <e
suchthat f = b 4+ c. Thent = foc=(d0a)@c=(d@c) S a =D, and we have
shown that f = b+ c.

Next,leta’ =d@ f. Thendoad' =do (do f) =do(d@(dSa)) =dSa=f,
and it follows d = a’ + f. Furthermore, a = (d@c)@b = (d@c) @ (fQc) =
do ((f@c)®c)=do f=ad. The proof is complete that (a + b) + ¢ = a + (b + ¢).
The other half of (E2) is proved analogously. O

We finally turn to the property (ES). Let us define, for a d.p.r. tomonoid:

a <y b ifthereis an x € L such that b + x exists and equals a, @
a <, b ifthereisany € L such that y + b exists and equals a,

where the operation + refers to the associated partial algebra. We shall show that <;
and <, are coinciding partial orders; obviously, (E5) will then follow.

LEMMA 3.2.7. Let (L,<,®,0) be a d.p.r. tomonoid. Then < and <, are partial
orders, both being extended by <.

Proof. 1t is clear that a <; b or a <, bimplies a < b. It further follows that <; and
<, are reflexive and antisymmetric. Finally, the transitivity of <; and <, follows from
(E2). O

LEMMA 3.2.8. Let (L, <,®,0) be a d.p.r. tomonoid.

(1) Let 0 < a < b<c Thena <y band b = c if and only if a < c. Similarly,
a=<rbandb <, cifand only if a %, c.

(ii) Leta,b € L. Then a <; b if and only if a <, b.

Proof. (i) We prove the claim for <,.; the assertion follows for <; similarly.
By Lemma 3.2.7,a <, band b <, cimply a <, c.
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Let a <, ¢. From (E7), we conclude a <, b. This impliesa = b @ (b S a) >
(co(cob)@(boa) =c@(cOa) = a, thatis, (c@(cOb)) @ (bOa) = b (bOa) > 0.
By divisibility, we conclude ¢ @ (¢ © b) = b, and it follows b <. c.

(ii) If @ = 0 or a = b, the claim is clear. Assume 0 < a < b and a <, b.

Let z be such that b = a + x. If x < a, we conclude from z < a < band z <; b by
part (i) that a <; b.

Assume a < z. From a < < b and a <, b, we have by part (i) that x <. b. Let s
be such that b = z + s. If s < a, we conclude from s <; band s < a < bthata <; b.

Assume a < s. Thena < s < x+ s = b = a + x. Thus there is an » < x such that
s =a+r,and we have b = x 4+ s = x + a + r. In particular, r <; b. If then r < a, we
conclude a <; b.

Assume a < r. Thena < r < z < x + a, and it follows that r = u + a for some u.
Weconcludeb=x+a+r=x+a+u+a,thatisa <; b.

Analogously, we show that a <; b implies a <. b. O

In what follows, we will denote the coinciding partial orders <; and =<, of the R-
chain associated with a d.p.r. tomonoid simply by <.
We have shown:

THEOREM 3.2.9. Let (L, <,®,0) be a d.p.r. tomonoid. Then the associated algebra
(L, <,+,0) is an R-chain.

3.3 Ordinal sum decomposition of R-chain

Having seen that the partial algebras associated with d.p.r. tomonoids are R-chains,
we will prove in this section that these partial algebras are ordinal sums of R-chains that
are naturally ordered. The latter notion is defined in the expected way.

DEFINITION 3.3.1. Let (L, <,+,0) be an R-chain. We say that L is naturally ordered
if, forany a,b € L, a < bifand only if there is an x € L such that b = a + x if and only
if thereisay € L such thatb =y + a.

In other words, to be naturally ordered means for R-chains arising from d.p.r. tomo-
noids that the total order < coincides with <.
The notion of an ordinal sum of R-chain is defined as usual.

DEFINITION 3.3.2. Let (I, <) be a chain, and for everyi € I, let (L;, <,+,0;) be an
R-chain. Put L = Uie[(Li\{Oi}) U {0}, where 0 is a new element and U denotes the
disjoint union. For a,b € L, put a < b if either a = 0, or a € L; and b € L; such that
1 < j,ora,b e L; for some i and a < b holds in L;. Similarly, define a + b if either
a = 0, in which case a +b = b, or b = 0, in which case a + b = a, or a,b € L; for
some 1t and a + b is defined in L;, in which case a + b is mapped to the same value as in
L;. Then (L,<,+,0) is called the ordinal sum of the R-chains L; w.r.t. (I, <).

We easily check:

LEMMA 3.3.3. An ordinal sum of R-chains is again an R-chain.
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THEOREM 3.3.4. Let (L,<,®,0) be a d.p.r. tomonoid, and let (L,<,+,0) be the
associated R-chain. Then L is the ordinal sum of naturally ordered R-chains.

Proof. By Lemma 3.2.8(i), L\{0} = |J,.,;C; for pairwise disjoint convex subsets C;,
i € I, of L such that, for a, b € L\{0}, the following holds: a < b if and only if there is
ani € I suchthata,b € C; and a < b.

Leti € I. If a,b € C; such that a + b exists, we have a + b € C; by construction.
Consider C;U{0} endowed with the restriction of < and + to C;U{0} as well as with the
constant 0. Then it is easily checked that (C; U {0}, <, -+, 0) fulfils (E1)~(E7). Hence
C; U {0} is an R-algebra, which by construction is naturally ordered. Furthermore, L is
the ordinal sum of the R-algebras C; U {0}. O

3.4 Naturally ordered R-chains

We next turn to the characterisation of naturally ordered R-chains. We will show
that any such R-chain can be embedded into the positive cone of totally ordered Abelian

group.

LEMMA 3.4.1. Let (L,<,+,0) be a naturally ordered R-chain. For any a,b,c € L,
the following holds:

(1) Ifa+ bexists, a1 < a, and by < b, then also a1 + by exists.
(i) Ifa < b+ ¢ there are by < band cy < c such that a = by + ¢ exists.

Proof. (i) Let a + b exists, and let a; < a and b; < b. Then a1 < a and b; < b, hence
there are z,y suchthata = x +a; andb=b; +y. Thusa+b =x + a1 + b1 + vy, and
the claim follows from (E2).

(i) If a < b, we put by = a and ¢c; = 0. If b < a, there is by (E7) a ¢; such that
a=0b+ cy. By (E4), ¢1 < ¢; thus we put by = b and we are done. ]

We note that the statement of Lemma 3.4.1(ii) is usually refer to as a Riesz decom-
position property.

By a scheme of the form (5) in the following lemma to hold, we mean that the sum
of any row and any column exists and equals the element to which the respective arrow
points to; the order of addition is from left to right or from top to bottom, respectively.

LEMMA 3.4.2. Let (L, <,+,0) be a naturally ordered R-chain. Letay, . ..,am,b1,...,
b, € L be such thatay + ...+ a,, = by + ...+ b,, where n,m > 1. Then there are
di1y. ., dmn € L such that

dipy ... din, — a1

dml . dmn —  Qm (5)
1 1

by ... by,

and
dix Ndjp = 0foreveryl <i<j<mandl <l <k<n. (6)
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Proof. If m = 1 or n = 1, the assertion is trivial. Let m = n = 2; then our assumption
is a; +as = by + by. Assume that a; < b;. Let d be such that a; + d = by ; then we put
di1 = a1, d12 = 0, do1 = d, and d22 = be, and we are done. Similarly, we proceed in
case by < a;y.

Assume next that m > 3 and n > 2, and that the assertion holds for any pair
m’ < m and n’ < n. Then, obviously, the assertion holds for the pair m and n as
well. ]

From a naturally ordered R-chain (L, <, 4, 0) we will now construct the free monoid
with the elements of L as its generators and with the conditions a + b = ¢, where
a,b,c € L such that a + b = ¢ holds in L. We will have to show that the free monoid
does not “collapse”: the natural embedding of the R-chain is injective.

DEFINITION 3.4.3. Let (L,<,+,0) be a naturally ordered R-chain. We call a se-
quence {ay,...,an) of 1 < n < w elements of L a word of L. We denote the set of
words of L by W (L), and we define + : W (L)? — W (L) by concatenation.

Moreover, let ~ be the smallest equivalence relation on W (L) such that

(@1, ., 8py Qpg1y -y Qn) ~ (@1, Ay + Qg1 Gp)

holds for any two words in W (L) of the indicated form, where 1 < p < n. We denote
the equivalence class of some {a1,...,a,) € W(L) by {a,...,ay)) and the set of all
equivalence classes by C(L).

As seen in the next lemma, C'(L) is a semigroup under elementwise concatenation,
into which L, as a semigroup, naturally embeds.

LEMMA 3.4.4. Let (L, <,+,0) be a naturally ordered R-chain.

(i) The equivalence relation ~ on W (L) is compatible with +. + being the induced
operation, (C(L), 4+, {0))) is a monoid.

(i) Let a1,...,an,b € L, where n. > 1. Then {(a1,...,a,) ~ (b) if and only if
ar+...+a, =0

(iii) Let
t: L —C(L), a— {a)
be the natural embedding of L into C'(L). Then v is injective.
Furthermore, for a,b € L, a+b is defined and equals c if and only if 1(a) +(b) =

(c).

Proof. (i) is evident.

(ii) For any word (a1, ..., a,) the sum of whose elements exists and equals b, the
same is true for any word equivalent to {(ay, ..., ay).

(iii) The injectivity of ¢ follows from part (ii).

Let moreover a, b € L. If a+ b = ¢, then obviously ¢(a) + ¢(b) = ¢(c). Conversely,
t(a) + ¢(b) = ¢(c) means {a,b) ~ {c), thatis, a + b = ¢ by part (ii). O
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Next, we show that the monoid (C(L), +, ((0))) fulfils the characteristic properties
of the positive cone of a partially ordered group. As a preparation, we insert the follow-
ing generalisation of Lemma 3.4.2.

LEMMA 3.4.5. Let (L, <,+,0) be a naturally ordered R-chain. Letay, . .., am,b1,. ..,
bp € L such that (a1,...,am) ~ (b1,...,b,), where n,m > 1. Then there are
di1y...,dmn € L such that (5) and (6) hold.

Proof. If m = nand a; = by,...,a;, = b, the assertion is trivial. Let a1,...,b,
be arbitrary, and let di1, . .., dm,, be such that (5) and (6) hold. We shall show how to
modify the scheme (5) to preserve both its correctness and the infimum-zero relations
(6) when (by, ..., by,) isreplaced (i) by (b1, ...,bp + bpt1,...,b,) forsomel <p < n
or (i) by (by,...,b,,b2, ..., by), where 1 < p < nand by + bya = bp.

Ad (i). We replace, for each 7 = 1,...,m, the neighbouring entries d;, and d; ;41
by their sum, which by Lemma 3.4.1(i) exists. Then the sum of the ¢-th row is obviously
still a;. To see that the sum of the new column exists and is b, + b,.1, we make repeated
use of the fact that two elements one of which is 0 can be interchanged:

bp + bp+1 == dlp + ...+ dmp + d17p+1 —+ ... + dm,p+1
=dip+dipi1+dop+...+dmp+dopi1+...+dmpi1

=dip +dipp1+dop+dopi1+ ..+ dmp + dimpia-

Clearly, the infimum-zero relations still hold.
Ad (ii). We apply Lemma 3.4.2 to the equation bzl, + bg =dip+ ...+ dpp, and re-

place the column dy,, . . ., d;,,, With the new double column. Obviously, in the modified
scheme, the rows and columns add up correctly and the required infimum-zero relations
hold. =

LEMMA 3.4.6. Let (L, <,+,0) be a naturally ordered R-chain. Then (C(L),+, {(0)))
is a monoid such that for a,b,c € C(L):

(i) From a+ b = ((0)) it follows a = b = ((0)).
(i) Froma+b=a+corb+a=c+ aitfollows b =rc.
(iii) There arex,y € C(L) suchthata+b=r+a="b+y.

Proof. C(L) is a monoid by Lemma 3.4.4(i).

(i) This follows from Lemma 3.4.4(ii).

(i) We may restrict to the case that a = ((a)) forsomea € L. Letb = (b, ..., b)),
¢ = {c1,...,¢n), myn > 1, and assume (a,b1,...,bpy) ~ (a,c1,...,cn). We will
show that b = ¢; the second part can be proved analogously.
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By Lemma 3.4.5, there are elements in L such that

d d ... d, — a
el €11 ... €eln — b
em €ml -+ Cmmn — bm
A 1

a C1 Cn,

where any pair of elements one of which is placed further up and further right than
the other one, has infimum 0. But the latter condition means d = aand d; = ... =
d, = e; = ... = e, = 0. Again using the infimum-zero conditions, we conclude
by, bm) = {c1,y -y cn))-

(iii) We only prove the first half of the claim. We may furthermore restrict to the
case that a = ((a)) and b = (b)) for some a,b € L. If a < b, then b = x + a for some
x € L, hence ((a,b)) = (a,z)) + {a). If a > b, wehave a = b+ = y + b for
some z,y € L. If then y < z, we have © = z + y for some z € L and thus (a, b)) =
(b, 2,b)) = (b, z,y,b) = (b, z)) + {a)). If then x < y, we have y = z + = for some
z < bby (E7) and thus {a, b)) = (b, 2,b)) = (', 2, z,b)) = (U',y, b)) = (V') + (a)),
where b =0 + 2. O

We next establish that the natural order of C'(L) is actually a total order.
LEMMA 3.4.7. Let (L,<,+,0) be a naturally ordered R-chain. Let

b<a if b+r=aforsomeyrec C(L)
fora,b € C(L). Then < is a total order.

Proof. Leta = {(a1,...,am)) and b = {(b1,...,b,), m,n > 1. Assume that a; <
b1. Then there is an x € L such that by = a; + x, and by Lemma 3.4.6, a and b
are comparable iff so are (as, ..., a,,) and {x, b, ..., b,)), where the empty word is
identified with ((0)). Similarly, assume b; < aj. Then there is an z € L such that
a1 = by + x, and a and b are comparable iff so are ((x,as, ..., an)) and {(be,...,b,).
From the fact that {(0)) is comparable with any word, we conclude the assertion by
induction. O

We arrive at our main theorem. By an isomorphic embedding of a naturally ordered
R-chain (L, <,+,0) into an totally ordered group (G, <, +,0), we mean an injective
mapping ¢: L — G such that for a,b,c € L

a < bif and only if ¢(a) < ¢(b),

a + b is defined and equals c if and only if ¢(a) + ¢(b) = ¢(c),

t(0) = 0.
THEOREM 3.4.8. Let (L, <, +,0) be a naturally ordered R-chain. Then there is an iso-
morphic embedding 1 of the R-chain (L, <, 4+, 0) into a totally ordered group (G, <, +,0).

The range of v is a convex subset of G, whose smallest element is ((0)) and which gener-
ates G.
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Proof. By Lemma 3.4.6 and [18, Chapter II, Thm. 4], there is a totally ordered group
(G(L), <, 4+, (0))) such that C(L) is its positive cone. Furthermore, by Lemma 3.4.4(ii),
t: L = C(L), aw {(a)) is an isomorphic embedding of L into (C(L), <,+, {(0))).
Consequently, the same mapping, whose range is extended to G(L), is an isomorphic
embedding of L into (G(L), <, +, {0)).

The range of ¢ in G(L) is then {{(a)): @ € L} C C(L). The smallest element of
C(L) is ((0)), which consequently is the smallest element of the range of «. Moreover,
let g € G(L) and a € L such that ((0)) < g < {(a)). Theng € C(L) and g+ h = {(a))
for some h € C(L), and it follows that g = {(b)) for some b € L. Thus the range of ¢ is
a convex subset of G(L), which moreover generates C(L) and consequently G(L). O

3.5 The representation of d.p.r. tomonoids

So far, we have associated with a d.p.r. tomonoid an R-chain; we have represented
this partial algebra as an ordinal sum of naturally ordered R-chains; and we have shown
that each naturally ordered R-chain embeds into a totally ordered Abelian group. Sum-
marising these results, we may now formulate a representation theorem for d.p.r. tomo-
noids.

For convenience, let us introduce simple notions for our basic constituents.

DEFINITION 3.5.1. Let (G, <,+,0) be a totally ordered group. Then we call the
tomonoid (GT, <,+,0) a group cone.
Moreover, let u € G such that u > 0. Let [0,u] = {g € G: 0 < g < u}, and define

a®b = (a+b)Au, a,be]|0,u].
Then we call the tomonoid ([0, u], <, ®,0) a group interval.
Note that group cones and group intervals are actually d.p.r. tomonoids.

LEMMA 3.5.2. Let (L, <,®,0) be a d.p.r. tomonoid such that its associated partial al-
gebra is a naturally ordered R-chain. Then L is either a group cone or a group interval.

Proof. Let 1: L — G the embedding of L into a totally ordered group according to
Theorem 3.4.8. We distinguish two cases:

Case 1. The addition of L is total. As G™ is generated by +(L), it follows +(L) =
G, thatis, (L, <,®,0) is a group cone in this case.

Case 2. There are a,b € L such that a + b is not defined. Let then u = a & b; we
claim that u is the top element of L and hence «(L) = {g € GT: g < 1(u)}.

Assume to the contrary that there isav € L such thatu < v. Leta’ < aand b < b
such that @’ + b = u. Then either ' < a or b’ < b; we assume b’ < b and we can
proceed similarly in the case a’ < a. As L, as an R-chain, is naturally ordered, there
isa d > 0 such that v = u + d. This means that the sum o’ + b + d is defined; then
V' =0 +d)Ab>0b and o’ ® V' = a® b= u. However, the sum a’ + b” is defined
and strictly greater than a’ + ' = a ® b = u. Our claim is proved.

If now a, b € L such that a+b exists, we have t(a®b) = t(a+b) = t(a)+(b) € L,
thatis, ¢(a)+¢(b) < ¢(u). If a+b does not exist, t(a) +¢(b) ¢ +(L), thatis t(a)+c(b) >
t(u). In this case, a ® b = u, hence t(a ® b) = ¢(u). We conclude

la®b) = (la) + (b)) Awu;
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hence L is a group interval in this case. O
We next define ordinal sums of d.p.r. tomonoids.

DEFINITION 3.5.3. Let (I, <) be a chain, and for each i € I, let (L;,<;,®;,0;) be a
d.p.r. tomonoid. Put L = |J,;(L;\{0;})U{0}, where 0 is a new element and U denotes
the disjoint union. For a,b € L, let a < b if either a = 0, or a € L; and b € L; such
that i < j, or a,b € L; for some i and a < b holds in L;. Moreover, for a,b € L, define
a®0=00a=a; aPb=a@;bifa,be L; forsomeic I;anda®b=bPa=a
ifa € Ly and b € Lj such that i < j. Then (L, <,®,0) is called the ordinal sum of the
d.p.r. tomonoids L; w.rt. (I, <).

We obviously have:
LEMMA 3.5.4. The ordinal sum of d.p.r. tomonoids is again a d.p.r. tomonoid.
We can finally state our main result.

THEOREM 3.5.5. Each d.p.r. tomonoid is the ordinal sum of d.p.r. tomonoids L;, i € 1,
such that each L; is either a group cone or a group interval.

Proof. Let (L,<,®,1) be a d.p.r. tomonoid. By Theorem 3.2.9, its associated partial
algebra (L, <, 4+, 0) is an R-chain, and @ is determined by + according to (3). By The-
orem 3.3.4, the R-chain L is the ordinal sum of naturally ordered R-chains (L;, <, +, 0),
where ¢ € I and [ is a chain.

From (3) we conclude that L; is closed under &. Consequently, (L;, <, ®,0) is a
tomonoid, in fact a d.p.r. tomonoid. It is furthermore easily seen that (L;, <, +,0) is its
associated R-chain. As the latter is naturally ordered, (L;, <, ®,0) is by Lemma 3.5.2 a
group cone or a group interval. The assertion follows. O

In the dual picture, Theorem 3.5.5 provides a representation of divisible, integral
residuated chains, or totally ordered pseudohoops [8]. Adding the assumption that there
is a bottom element, we arrive at a representation of totally ordered pseudo-BL algebras.
Finally, adding commutativity, we get the well-known representation of totally ordered
BL algebras [1]; cf. Chapter V of Volume 1.

4 Coextensions of totally ordered monoids

4.1 The idea

The second approach that we are going to present in this chapter follows similar
aims than the first one; our concern is a better understanding of the structure of resid-
uated chains. However, what now follows could hardly be more different in style from
what we have discussed so far.

Our starting point is a simple observation. Recall that the quotients of an integral
residuated chain are in a one-to-one correspondence with its filters, and the set of filters
is itself totally ordered w.r.t. set-theoretical inclusion. With any integral residuated chain
we may hence associate the chain of their quotients. The bottom element of this chain
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is the trivial algebra, consisting of a single element; and the top element is the algebra
under consideration. The intermediate elements may be seen as leading us stepwise
from the trivial algebra to more and more fine-grained structures up to the algebra under
consideration.

This intuitive picture is certainly easily overridden by the real situation: although
the set of quotients cannot be ordered in a completely arbitrary manner, this chain can
be very complicated. An example is the Cantor set endowed with its natural order; in
such cases we can hardly speak about a stepwise construction process.

Nevertheless it seems to make sense to explore neighbouring elements in the chain,
provided that there are any. If two quotients directly follow one another the filter in-
ducing the congruence is Archimedean and accordingly we speak about Archimedean
coextensions then. The construction of Archimedean coextensions is again intractable
in general, but there is a condition that reduces possibilities drastically, namely, the con-
dition that the congruence classes are order-isomorphic to real intervals.

The fact that we deal with the real line might reveal our original motivation un-
derlying the present study: our ultimate aim has been a classification of left-continuous
t-norms. Given the tomonoid based on a t-norm, the detection of filters and their induced
quotients may already imply the entanglement of a possibly complicated structure. By
this step alone, seemingly exotic cases can often be easily categorised. Moreover, the
regular representation of monoids is a convenient geometric tool that accompanies our
analysis with a clear intuition.

With regards to t-norms, our main results implies the following. Consider the tomo-
noid arising from a left-continuous t-norm and assume that it possesses an Archimedean
filter. Then the t-norm can be described in terms of the quotient induced by this filter
and the only essential information needed is the order type of the congruence classes.

We proceed as follows. The subsequent Section 4.2 introduces the class of totally
ordered monoids that we consider this time. The property of divisibility will no longer
play a role; but we will deal with the commutative case only and we will assume an
order-theoretic completeness condition. In the subsequent Section 4.3, we turn to the
chain of quotients of the tomonoids induced by filters.

As a preparation for what follows, and the same time as a visualisation tool, we
discuss in Section 4.4 the regular representation of tomonoids, which we call Cayley
tomonoids. Section 4.5 contains our main result: a method of constructing from a given
tomonoid an Archimedean coextension.

4.2 Q.n.c. tomonoids and their quotients

In this second part of the present chapter, totally ordered monoids, or tomonoids
for short, serve again as our algebraic framework. This time, however, we will use the
multiplicative notation.

Our tomonoids will be assumed to be negative, and we deal with the commutative
case only. Moreover, we assume that the tomonoids are almost complete. Here, a poset
is called almost complete if arbitrary non-empty suprema exist. Finally, we will assume
that the multiplication distributes over arbitrary joins. We combine the latter two condi-
tions to one notion named “quantic” because quantales are in fact defined similarly [34].
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DEFINITION 4.2.1. A tomonoid L = (L, <,®, 1) is called quantic if (i) L is almost
complete and (ii) for any elements a,b,, . € I, of L we have

a®V,b, = V,(a®b,) and (\/,b)®a =V, (b, ©a).

The tomonoids that we consider here are quantic, negative, and commutative. We
abbreviate these three properties with “q.n.c.”. Note that g.n.c. tomonoids are residu-
ated. In fact, g.n.c. tomonoids are in a one-to-one correspondence with almost com-
plete, integral, commutative residuated chains, or almost complete totally ordered basic
semihoops.

The motivating examples arise from left-continuous triangular norms.

EXAMPLE 4.2.2. Let [0,1] be the real unit interval. Let : [0,1]> — [0,1] be a left-
continuous t-norm; let < be the natural order on [0, 1]. Then ([0,1],<,x,1) is a g.n.c.
tomonoid.

We will use in the sequel occasionally the residual of a q.n.c. tomonoid; we denote
it by —.

A g.n.c. tomonoid does not necessarily possess a bottom element. If not, we can
add an additional element with this role in the usual way.

DEFINITION 4.2.3. Let L be a g.n.c. tomonoid. Let L° = L if L has a bottom element.
Otherwise, let L° = (LO7 <,®, 1) arise from L by adding a new element 0; in this case,
we extend the total order to L° such that 0 is the bottom element, and we extend the
monoidal operation to L° such that 0 is absorbing.

Obviously, for any qg.n.c. tomonoid L, L s again a g.n.c. tomonoid, whose total
order is complete and which hence can be seen as a quantale.

In the context of almost complete chains, it makes sense to speak about intervals
analogously to the case of reals. An interval of a g.n.c. tomonoid L will be a non-empty
convex subset of L. An interval J of L possesses in L” an infimum v and a supremum
v, and we will refer to J by (u, v), (u,v], [u,v), or [u, v], depending on whether or not
u and v belong to J.

We now turn to quotients of tomonoids. We note that the following definition could
be simplified if we included the infimum or supremum to the signature instead of the
total order relation.

DEFINITION 4.2.4. Let L = (L, <,®,1) be a g.n.c. tomonoid. An equivalence rela-
tion ~ on L is called a tomonoid congruence if (i) ~ is a congruence of L as a monoid
and (ii) the ~-classes are convex. We endow then the quotient [L].. with the total order
given by

[a]~ < [b]~ ifa’ <V for somea' ~aandb’ ~b

for a,b € L, with the induced operation ®, and with the constant [1].. The resulting
structure ((L]~,<,®,[1]~) is called a tomonoid quotient of L.

Obviously, the congruence classes of a tomonoid quotient are intervals and we have
[a]~ < [b]~ if and only if o’ < b forall ' ~ @ and &’ ~ .

To describe the totality of quotients of g.n.c. tomonoids is in general difficult. Here,
we are interested in only one way of forming quotients: by means of filters.
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DEFINITION 4.2.5. Let L be a g.n.c. tomonoid. Then a filter of L is a subtomonoid
F=(F,<,0,1)of L suchthat f € F and g > f imply g € F.

By the trivial tomonoid, we mean the one-element tomonoid, consisting of 1 alone.
Each q.n.c. tomonoid L possesses the following filters: {1}, the trivial filter, and L, the
improper filter. Thus each non-trivial q.n.c. tomonoid has at least two filters.

As we easily check, a filter of a g.n.c. tomonoid is again a q.n.c. tomonoid. A filter
may or may not possess a bottom element; this is actually the reason for which we
defined quanticity by requiring an almost complete rather than a complete order.

DEFINITION 4.2.6. Let F' be a filter of a g.n.c. tomonoid L. Let d be the infimum of F
in L°; then we call d the boundary of F. If d belongs to F, we write F = d=; if d does
not belong to F, we write F' = d~.

Thus each filter of a g.n.c. tomonoid L is of the form d< = (d, 1] for some d €
LO\{1}, or d< = [d, 1] for some d € L. Each filter F is uniquely determined by its
boundary d together with the information whether or not d belongs to F'. We note that,
for some d € L, it is possible that both d< and d= are filters.

LEMMA 4.2.7. Let L be a g.n.c. tomonoid, and let d € L.
(i) d= is a filter if and only if d is idempotent.
(i) d< isafilter ifand only ifd # 1, d = \,5 0, and d < a ® b for all a,b > d.

Proof. (i) [d, 1] is a filter if and only if [d, 1] is closed under multiplication if and only if
d ® d = d, that is, if d is idempotent.

(ii) Let d< be a filter. Then d < 1 because each filter contains 1; d = inf d< =
inf (d, 1] = A,~4 @ and (d, 1] is closed under multiplication, that is, a © b > d for each
a,b>d.

Conversely, let d # 1 such thatd = A\, . ;a and d < a © b for any a,b > d. Then
{a € L: a > d} is a filter whose infimum is d, that is, which equals d<. O

In the broader context of residuated lattices, the relevant substructures are convex
normal subalgebras; each of the latter induces a quotient and every quotient of a resid-
uated lattice arises in this way [24]. Here we consider a special case of this situation:
filters of g.n.c. tomonoids lead to tomonoid quotients. We should, however, be aware of
the fact that not all quotients of totally ordered monoids are induced by filters.

DEFINITION 4.2.8. Let F be a filter of a q.n.c. tomonoid L. For a,b € L, let
ar~pb ifthereisan f € F suchthatb® f <aanda ® f <b.

Then we call ~f the congruence induced by F'.

Equivalence relations of this type do not only preserve the tomonoid structure, but
also all the three properties that we generally assume here.

LEMMA 4.2.9. Let L be a g.n.c. tomonoid, and let F be a filter of L. Then the con-
gruence induced by F' is a tomonoid congruence, and the tomonoid quotient is again
quantic, negative, and commutative.
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Proof. ltis easily checked that ~ is compatible with ® and that the equivalence classes
are convex. Clearly, negativity and commutativity are preserved.

Our next aim is to prove that the tomonoid quotient [L]..,, is almost complete. For
simplification, equivalence classes w.r.t. ~ will be denoted by [-]. We will prove the
following statement, which obviously implies almost completeness:

(¥) Leta, € L, ¢ € I, be such that among [a,], ¢ € I, there is no largest element;
then

Vila] = [V, al. o

To see (x), let a, € L, ¢ € I, and assume that the [a,] do not possess a largest element.
Leta =/, a,. Then [a] > [a,] for all .. Moreover, let b € L be such that [b] > [a,] for
all ¢. Then b is not equivalent to any a,, hence [b] > [a,]; consequently b > a, for all ¢,
so that b > a and [b] > [a]. Thus (7) follows.

It remains to show that ® distributes over suprema in [L]. ... Letb, € L, ¢ € I, and
a € L. Assume first that the elements [a ® b,], ¢ € I, do not possess a maximal element.

Then also the [b,] do not possess a maximal element, and (%) implies

ldoVb] = V,(dob]). ®

Assume second that the [a ©b,] possess the maximal element [a ©b,;], but that the [b,] do
not possess a maximal element. Let ¢ € I such that [b,] > [b,]. Then a®b, ~ a®b,, and
wehave a©b, < a®nf[b] =aOA\;cp(b.Of) < Ajep(@a®b, © f) = infla®b,] =
infla ®b,] < a®b,. We conclude that a © b, = a ® b,; for any ¢ € I such that b, > b.
Thus a®\/, b, = a@by. By (1. [a] 0V, b] = [a®V, b] = [a0,] = V,([a @ 1))
and (8) is proved.

Assume third that the [b,], ¢ € I, possess the maximal element [b,]. Then [a © by]
is maximal among the [a ® b,]. Then obviously, (8) holds as well. O

As we will deal in the sequel exclusively with congruences induced by filter, we
simplify our notation as follows.

DEFINITION 4.2.10. Let L be a g.n.c. tomonoid, and let F be a filter of L. Let ~p
be the congruence induced by F'. We will refer to the ~p-classes as F-classes and we
denote them by [-|p. Similarly, let P be the quotient of L by ~ . Then we refer to P as
the quotient of L by F' and we denote it by [L] p.

We furthermore call in this case L an coextension of P by F, and we refer to F' as
the extending tomonoid.

4.3 The chain of quotients of a q.n.c. tomonoid

Each filter of a q.n.c. tomonoid induces a quotient. Let us now consider the collec-
tion of such quotients as a whole.

The most basic observation is that, for any two filters, one is included in the other
one: the set of all filters is totally ordered by set-theoretical inclusion.

DEFINITION 4.3.1. Let L be a g.n.c. tomonoid. We denote the set of all filters of L by
F, and we endow T with the set-theoretical inclusion C as a total order.
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Again, if we included in our signature the lattice operations instead of the total order,
the proof of the next lemma could be kept shorter, as it would follow from the Second
Isomorphism Theorem of Universal Algebra [5].

LEMMA 4.3.2. Let L be a g.n.c. tomonoid, and let F' and G be filters of L such that
F C G. Then [G]F is a filter of [L]F, and [L]q is isomorphic to the quotient of L]
by [G]F.

Proof. We claim that, for a,b € L, a ~¢g b if and only if [a]r ~[g], [b]F. Indeed,
assume a < b; then a ~¢ b if and only if there a ¢ € G such that b ® g < a. Since F’
is a filter contained in G, the latter holds if and only if there are a g € G and an f € F
suchthat b ® g ©® f < aif and only if [b © g]r < [a]p for some g € G if and only if
[b]Fr ® [g]F < [a]F for some [g]r € [G]F if and only if [a]r ~[¢), [b]F.

It follows that we can define

¢: [Lle = [[LIFlic)ps lalc = [lalFlie)r

and that ¢ is a bijection. Moreover, ¢ preserves ® and is an order-isomorphism. The
lemma follows. O

Lemma 4.3.2 is the basis of our loose statement that a g.n.c. tomonoid is the result
of a linear construction process. In general, this process does not proceed in a stepwise
fashion. But we can speak about a single step if there is a pair of successive filters; the
following definition addresses this case.

For an element a of a tomonoid and n > 1, we write a” fora ® ... ® a (n factors).

DEFINITION 4.3.3. A g.n.c. tomonoid L is called Archimedean if, for each a,b € L
such that a < b < 1, we have b < a for some n > 1.

A coextension of a g.n.c. tomonoid by an Archimedean tomonoid is called Archime-
dean.

For two filters F', G € T, we will write F' C G to express that GG is the immediate
successor of F'in [, that is, G is the next smallest filter to F'.

THEOREM 4.3.4. Let L be a g.n.c. tomonoid. Then we have:

(i) The largest and smallest elements of F are L and {1}, respectively. Moreover,
[L]z is the trivial tomonoid, and [L)yy is isomorphic to L.

(ii) For each F € F\{L} such that F is not an immediate predecessor, ~p =
Na-r~a:
(iii) For each F' € F\{{1}} such that F is not an immediate successor, ~p =

UGCF ~G-

(iv) For each F,G € F such that F C G, [L]p is an Archimedean coextension of
(Ll
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Proof. (i) The largest filter is L, and the quotient [L];, is one-element, that is, trivial.
The smallest filter is {1}, and the quotient [L]{;} has singleton classes only, that is,
coincides with L.

(ii) Let F' € F such that F' is neither L nor the predecessor of another filter. As F is
closed under arbitrary intersections, we then have F' = ﬂG; r G. Leta,b € Lsuch that
a < b. We have to show that a ~p b if and only if, for each G D F, a ~g b. Clearly,
a ~p bimplies a ~g b for each G D F'. Conversely, assume a ~¢ b foreach G D F'.
Then for each G O F thereis a g¢ € G suchthat b ® gg < a. It follows b © f < a,
where f = \/o5p 9c € F.,hence a ~r b.

(iii) Let F' € TF such that F' is neither {1} nor the successor of another filter. As F
is closed under arbitrary unions, F' = UGC r G then. For a < b, we have a ~F b if and
onlyif b® f < aforsome f € Fif and only if b ® f < a for some f € G such that
G C Fifand only if @ ~g b for some G C F.

(iv) Let F', G € F such that F C G. By Lemma 4.3.2, [L] is then isomorphic to
the quotient of [L]p by the filter [G] .

Assume that [G]F is not Archimedean. Then there is a filter H of [G]F such that
{[1]r} € H C [G]p. Butthen |JH is a filter of L such that ' C |JH C G, a
contradiction. O

4.4 The Cayley tomonoid

A monoid can be identified with a monoid under composition of mappings, namely,
with the set of mappings acting on the monoid by left (or right) multiplication. This is
the regular representation [7], which is due to A. Cayley for the case of groups. If the
monoid is commutative, any two of the mappings commute. Moreover, the presence of
a compatible total order on the monoid means that the mappings are order-preserving.

Representations of partially ordered monoids by order-preserving mappings have
been studied in a more general context under the name S-posets [15]. An adaptation
of our terminology might be a future issue; for the results presented in this chapter,
however, such a step would most likely not improve clarity.

The reason to consider the regular representation of tomonoids is twofold. Most
important, it gives us a means to specify tomonoid coextensions in a “modular” way.
We will see below that the coextension of a tomonoid splits up into constituents each of
which we may specify separately. Second, there is an informal aspect that, in the context
of structures that are as theoretical as residuated chains, should not be neglected. The
regular representation provides a geometric view on tomonoids that is not to be mixed
up with the traditionally used three-dimensional graphs of t-norms. It is rather well in
line with the algebraic orientation of this study, visualising quotients in a clear way and,
in addition, getting along with two dimensions.

DEFINITION 4.4.1. Let (R, <) be a chain, and let ® be a set of order-preserving
mappings from R to R. We denote by < the pointwise order on ®, by o the functional
composition, and by idg, the identity mapping on R. Assume that (i) < is a total order
on ®, (ii) ® is closed under o, and (iii) idp € ®. Then we call ® = (P, <,0,idr) a
composition tomonoid on R.
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In order to characterise the composition tomonoids associated with g.n.c. tomono-
ids, we introduce the following properties of a composition tomonoid @ on a chain R:
(C1) ois commutative.

(C2) idp is the top element.
(C3) Every A\ € @ is sup-preserving.
(C4) Pointwise calculated suprema of non-empty subsets of ® exist and are in .

(C5) R has a top element 1, and for each a € R there is a unique A € @ such that
A1) = a.

PROPOSITION 4.4.2. Let ® be a composition tomonoid over a chain R. Then ® is a
tomonoid. Furthermore, we have:

(1) @ is commutative if and only if ® fulfils (C1).
(i) @ is negative if and only if ® fulfils (C2).
(i) If @ fulfils (C3) and (C4), ® is quantic.

Proof. The fact that ® is a tomonoid is easily checked, and so are parts (i) and (ii).

Assume (C3) and (C4). Then any non-empty subset of ® possesses by (C4) w.r.t. the
pointwise order a supremum; that is, ® is almost complete. Furthermore, let \,, 1 € @,
¢ € I. Then we have by (C4) forany r € R

(V xem)(r) = /M) =\ Aur) = Vo)) = (\/(how)(r).

L L

Moreover, we have by (C3) and (C4) forany r € R
o\ X)) = p(\VA@) =\ unu(@) = \V(mor)(r) = (\/(nor))(r).

We conclude that @ is quantic. O

By Proposition 4.4.2, each composition tomonoid is a tomonoid. We next recall
that, conversely, each tomonoid can be viewed as a composition tomonoid.

PROPOSITION 4.4.3. Let (L, <,®,1) be a g.n.c. tomonoid. For each a € L, put
M:L—=L, 2—=a0®u, &)

andlet A = {)\q: a € L}. Then (A, <,o0,1idL) is a composition tomonoid on L fulfilling
(C1H)—(C5). Moreover,
m:L—A a— )\, (10)

is an isomorphism of the tomonoids (L, <,®, 1) and (A, <, 0,idL).
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DEFINITION 4.4.4. Let L = (L, <,®, 1) be a tomonoid. For each a € L, the mapping
Aq defined by (9) is called the (left) translation by a. Furthermore, the composition to-
monoid (A, <,o,idy,) assigned to L according to Proposition 4.4.3 is called the Cayley
tomonoid associated with L.

Let us state what Proposition 4.4.3 means for t-norms: a left-continuous t-norm
corresponds to a monoid under composition of pairwise commuting, order-preserving,
and left-continuous mappings from [0, 1] to [0, 1] such that for any a € [0, 1] exactly one
of them maps 1 to a.

EXAMPLE 4.4.5. The Cayley tomonoids associated with the three standard t-norms are
shown in Figure 1. A selection of translations are indicated in a schematic way.

SIS

wiles

Figure 1. The Cayley tomonoids associated with the tomonoids based on the
Lukasiewicz, product, and Godel t-norm.

Quotients and Cayley tomonoids

Our next aim is to see how quotients of a gq.n.c. tomonoid are reflected by its asso-
ciated Cayley tomonoid.

We will use the following notation and conventions. Let L be a q.n.c. tomonoid and
let P be the quotient of L by the filter F'. Then any R € P will be considered as a
subset of L, namely as a class of the congruence on L that yields P.

For any f € F, Ay maps R to itself. We write /\?: R — R for Ay with its domain
and range being restricted to R, and we put A" = {\{': f € F}. Note that A*" is the
Cayley tomonoid associated with F'.

Moreover, let R € Pand T € P\{F},andlet S = R®T. Then forany ¢t € T,
A¢ maps R to S. We write )\f’s : R — S for \; with its domain restricted to R and its
range restricted to S, and we put A®S = (X5 ¢ € T}

Finally, we denote a function that maps all values of a set A to the single value b by
cb,

The following lemma describes the sets AZ, where R is an F-class; cf. Figure 2.

LEMMA 4.4.6. Let L = (L, <,®, 1) be a g.n.c. tomonoid that possesses the non-trivial
filter F'. Let P be the quotient of L induced by F'.



Chapter I: Algebraic semantics: the structure of chains 25

AT

AS AR’Si }S

S R

T F
Figure 2. The Cayley tomonoid associated with a g.n.c. tomonoid L, which possesses
a filter F'. The translations by the elements ¢',¢, f/, f, 1 are depicted schematically. It
is furthermore indicated how the Cayley tomonoid associated with the quotient of L by

F arises. The translation by an element 7" is shown in light grey, the translation by F/,
which is the identity mapping, is shown in dark grey.

(i) The top element of P is F. Let u = inf F € L°; then w < 1, and F is one of
(u, 1] or [u, 1]. Moreover, (AF', <, o, idr) is the Cayley tomonoid of F. We have:

(@) Let f € F. If F = [u,1], )\ff(u) =u if F = (u,1], /\geF)\ff(g) = u.
Moreover, A} (1) = f.
(b) If F = [u,1], AT has the bottom element c**.

Finally,
g 7w F — AT, fr—>)\ff

is an isomorphism between (F,<,®,1) and (A, <, o, idF).

(ii) Let R € P\{F}. Let u = inf Rand v = sup R. If u = v, then R = {u} and
)\?(u) =uforany f € F.
Assume now u < v. Then R is one of (u,v), [u,v), (u,v], or [u,v]. Moreover,
(AE, < o,idR) is a composition tomonoid on R fulfilling (C1)~(C4) as well as
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the following properties:

(c) Let f € F. Ifu € R, )\?(u) =u ifug¢ R, A.cp )\?(r) = u. Moreover, if
vE R, V,cr A?(r) =A(v) =w.
(d) If R = [u,v], AT has the bottom element c'**. If R = [u,v), then c®" ¢ AR,

Finally,
0: F — AR, fr—>)\1f?’ (11)

is a surjective sup-preserving homomorphismfrom (F, <, ®,1) to (AT, < o, idg).

Proof. (i) Here, Proposition 4.4.3 is applied to the g.n.c. tomonoid F'.

(@LetfeF.Ifuc F,cleaﬂy)\]}f(u) =u.Ifu¢ F,wehaveu < A\ p /\?(g) <
Nger 9 = us thatis, A\ /\?(g) =wu. Clearly, A\f(1) = fO1=f.

) Ifu € F, \I' = cF"% is the bottom element of AT,

(i1) The case that R is a singleton is trivial. Assume u < v.

The fact that A% is a composition tomonoid fulfilling (C1)—(C4) and that o, defined
by (11), is a sup-preserving and surjective homomorphism follows from Proposition
443,

(c) Let f € F. We see like in the proof of (a) that )\?(u) = wuifu € R, and
Nrcr )\]’5(7") = u otherwise. Moreover, if v ¢ R, then As(v) ¢ R and consequently
r < Af(v) <wvforanyr € R, thatis, A\s(v) = v.

(d) Assume v € R. If R has a largest element v as well, v ® z = u for some
z € F, and hence c®* = \' € AE If R does not contain its supremum v, then by (c),
V,er )\?(r) = v forany f € F,and it follows c®* ¢ A%, O

We next turn to the set A%, where R and S are two F-classes; cf. again Figure 2.

In what follows, we call a pair A, B of elements of the q.n.c. tomonoid P ®-maximal
ifA=B—>A0BandB=A— A0 B.

LEMMA 44.7. Let L = (L, <,®, 1) be a g.n.c. tomonoid that possesses the non-trivial
filter F'. Let P be the quotient of L induced by F'.
Let R,T € PsuchthatT < F,andlet S =ROT.

(1) Let R, T be ®-maximal. Then S < R. Letu = inf R, v =supR, v’ = inf S,
andv' = sup S. Ifu = v, then R = {u}, v’ € S, and \I"** (v) = o/ forall t € T.
Ifu =, then S = {u'} and \I*° = v forallt € T.

Assume now u < v and v < v'. If then u € R, we have v’ € S. Moreover,
ARS = {/\f"sz t € T} is a set of mappings from R to S with the following
properties:

(a) Rand S are conditionally complete, and foranyt € T, /\f S s sup-preserving.

®) Lett € T. lfu € R, A% (u) = s ifud R, Neg Mo (r) = /.

AR,S

(c) Under the pointwise order, is totally ordered.
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(d) Let K C A®% such that \/ ;e A(r) € S for all r € R. Then the pointwise
calculated supremum of K is in AT5.

() If W € Sandv € R, AR5 has the bottom element %' Ifu' € S and
v & R, then either A®5 = {cBv'} or v ¢ ABS Ifv ¢ Randv' € S,
thenu' € S and A% = {cF'},

(f) Foranyt € Tand f € F, )\? o )\f’s and )\f”s o )\}% are in A% and coincide.

Finally,
7T — AR ¢ )\f’s (12)

is a sup-preserving mapping from T to A such that, for any f € F andt € T,

T(/\?(t)) = /\? or(t)=7(t) o )\JI?. (13)

(i1) Let R, T not be ®-maximal. Then S contains a smallest element v/, and )\f"s =
b forallt € T.

Proof. (i) We clearly have S < R. If S = R, the maximal element Y such that ROY =
R ® T would be F, in contradiction to the assumptions that 7' < F and R, T is a ®-
maximal pair. Thus S < R.

We consider first the case that R is a singleton, that is, R = {u}. Thenu ® f = u
forall f € F. Lett € T;then A\ (u) © f =u©t® f = u®t = A" (u) for any
f € Fihence v/ € Sand A% (u) = u'.

The case that .S is a singleton is trivial.

Assume now u < v and v’ < v'. Letu € R. Then \"®(u) = «/ € S for any
t € T. Indeed, we again have © ® f = u and consequently )\f’s(u) Of= /\f’s(u) for
any f € F.

(a), (c), (d), and the fact that 7, defined by (12), is sup-preserving follow from
Proposition 4.4.3.

(b) Lett € T. If u € R, we have seen above that A\/"* (u) = u/. If u ¢ R, choose
some 7 € Ri then A\, cp M (1) = Aep NV7(F O f) = Aper(N5(F) @ f) =
inf S =u'.

(e) Let v’ € S and v € R. Then, for an arbitrary £ € T, Af(v) and u’ are both in
the congruence class S, whose smallest element is u'. Thus, for some f € F', we have
A;(v) ® f = o/, and consequently A" = ¢’ wheret =1 ® f € T.

Next, let v/ € S and v ¢ R. For any ¢,¢' € T such that ¢ ~g ', we have
A (v) ~p Ay (v). Consequently, either \;(v) € S forall t € T, or \(v) ¢ S for
all ¢ € T. Furthermore, from v ¢ R it follows v ® f = v and thus M\¢(v) ® f =
vOtOf =vOt = M\uv)forallt € T and f € F. We conclude that, in the
former case, \;(v) = u’ for any t € T, that is, A™S = {c®*'}. In the latter case,
v < MN(0) = Vg M (r) <, thatis, A(v) = o' forall t € T, and B ¢ ARS,

Finally, let v ¢ Randv' € S. Lett € T. Then \;(v) =V, cp M5(r) € S and
MU)Of=v0te f=v0t= X \{)forany f € F; thus M\;(v) =« € S, that is,

R,S 4 . ’
A" = cB and we conclude again A% = {cftv'},
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HLett €T, fe F,andr € R. We have ()\Jsco)\f’s)(r) = rOtOf = \u5(r) =

tof
NSy =ro fot = o M),

Furthermore, T()\?(t))(’f‘) = /\féfc(r) =rQ®tO f, and also (13) follows. The proof
of part (i) is complete.

(ii) Consider first the case that there is an R’ > R suchthat R* ©T = S. Letr € R,
teT,andr’ € R'. Thenr <1’ ® f forany f € F, and consequently r Ot <1’ ® f Ot
forany f € F. Ast’ ®t € S, we conclude that r @ ¢ is the smallest element of .S, that
is, \B5(r) =r @t =/, where v/ = inf S € S.

Similarly, we argue in the case that there is a 77 > T such that R ® T = S. Let
r € R, teT,andt € T'. Thent < t' ® f for any f € F, and consequently
rot <ret o fforany f € F. We conclude again that ' = inf S € S and

R,S /
A7 (r)=rot=1d. O

Again, let L be a q.n.c. tomonoid, F' a filter of L, and P the quotient of L by F'.
From an intuitive point of view, we may say with reference to Figure 2 that the Cayley
tomonoid associated with L is composed from triangular and rectangular sections, one
for each R € P and for each pair of elements R, S € P, respectively. Lemma 4.4.6(i)
deals with top congruence class, the filter ', whose associated Cayley tomonoid A¥
is located in the uppermost triangle. Lemma 4.4.6(ii) describes the set A% for some
R € P\{F'}, located in one of the remaining triangles. Finally, let S = R©® T < R,
where R, S,T € P. Then Lemma 4.4.7 deals with A™, located in the rectangular
section associated with R and S. If R, T is not ®-maximal, A% is trivial by part (ii).

We will provide in the sequel some examples of q.n.c. tomonoids based on left-
continuous t-norms. Definitions of t-norms are often involved; to keep them as short as
possible, we will in general not provide full specifications, but assume commutativity to
be used to cover all cases.

EXAMPLE 4.4.8. Let us consider the following t-norm:

4ab —3a — 3b+ 3 ifa,b>%,

4ab —3a —2b+ 2 if%<a§%andb>%,

4ab—3a—b+1 if%<a§%andb>%,

axpb = < 4ab—3a ifa<}andb> 2, (14
20b—a—b+3 ifl<ab<3,

1 1 1 el 1 1 3
ab—za—zb+g if;<a<jand; <b<y,
0 ifa<landl<b<2 orab< 3.

*g is a modification of a t-norm defined by Hdjek in [21]. The tomonoid ([0, 1], <, xp, 1)
possesses the filter F = (2,1] and the F-classes are {0}, (0,%], (3,3], (3, 3], and
(%, 1]. The quotient by F is isomorphic to Ls, the five-element Eukasiewicz chain. An
illustration, showing the sets A& and A5 for all the congruence classes R and S, can

be found in Figure 3.
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Figure 3. Left: The tomonoid ([0, 1], <, *y, 1). To increase clarity, we have separated
the congruence classes by margins. Right: The five-element quotient Ly by the filter
(5.1

4.5 Real Archimedean coextensions

As we have seen in Subsection 4.3, we may associate with a g.n.c. tomonoid the
chain of quotients induced by its filters. We shall now have a closer look at the case of
two successive elements of this chain. By part (iv) of Theorem 4.3.4, the corresponding
coextension is in this case Archimedean.

In what follows, a real interval is meant to be a one-element set or one of (a, b),
(a,b], [a,b), or [a,b] for a,b € R such that a < b.

DEFINITION 4.5.1. Let P be the quotient of the g.n.c. tomonoid L by an Archimedean
filter such that each congruence class is order-isomorphic to a real interval. Then we
call P areal Archimedean quotient of L, and we call L a real Archimedean coextension
of P.

Given a q.n.c. tomonoid P, our aim is to describe the real Archimedean coexten-
sions L of P. To this end, we will specify, following the lines of Lemmas 4.4.6 and
4.4.7, sectionwise the Cayley tomonoid A of L. That is, for each pair R and S of con-
gruence classes, we specify the translations restricted in domain to R and in range to
S. The illustration below may serve as a guide through this section, indicating which
section of the Cayley tomonoid is described in which proposition or theorem.

We will use a few auxiliary notions. A non-minimal element of a chain A is any a €
A such that a is not the smallest element of A. Furthermore, let y be an order-preserving
mapping from A to another chain B. Then we call {z € A: x(z) is non-minimal in B}
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e The Cayley tomonoid A" of the extending filter F':
Proposition 4.5.3.

e Foreach R € Psuchthat R < F,

o the composition tomonoid Af: Theorem
4.5.6;

o the homomorphism F — AR f — )\?:
Proposition 4.5.7.

e For each pair R, S € P suchthat S = R ® T for
some T' € P\{F},

T o the set of mappings AT»S: Proposition 4.5.8;

o the mapping T — ARS ¢ — /\f’sz
Proposition 4.5.9.

Figure 4. The way we specify a real Archimedean coextension of a g.n.c. tomonoid.

the support of x. Obviously, the support of x is the whole set A if B does not possess
a smallest element; and the support of y is empty if and only if B possesses a smallest
element v and y = cA%.

A composition tomonoid ¢ on a chain R will be called c-isomorphic to another
composition tomonoid ¥ on a chain S if there is an order isomorphism ¢: R — S such
that W = {toAo.!: X\ € ®}. Note that c-isomorphic composition tomonoids are also
isomorphic (as tomonoids); the converse, however, does not in general hold.

We will first be concerned with the sets A®, where R is an element of the quotient
of the tomonoid L that we are going to construct, identifiable with an element of the
given tomonoid P.

DEFINITION 4.5.2. (i) Let ® consist of the functions \¢: [0,1] — [0,1], = —
(x+t—1)VO0foreacht € [0,1]. Then (@, <, 0,id|q 1)) is called the Lukasiewicz
composition tomonoid.

(ii) Let ® consist of the functions \: (0,1] — (0,1], x — t -z foreacht € (0,1].
Then (®, <, 0,id(g, 1}> is called the product composition tomonoid.

(iii) Let ® consist of the functions A\¢: [0,1) — [0,1), x — w foreacht €

(0,1]. Then (@, <, 0,idjg,1)) is called the reversed product composition tomonoid.

(iv) Let ® consist of the functions A: (0,1) — (0,1), x + xt for each t € (0,1].
Then (®, <, 0,1id(q 1) is called the power composition tomonoid.
A composition tomonoid on a chain R that is c-isomorphic to one of these four will
be called a standard composition tomonoid.

The four standard composition tomonoids are schematically shown in Figure 5.
Note that the key property in which they differ is their base set: the real unit interval
with, without the left, right margin.

We start by specifying the uppermost composition tomonoid.
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AN

Figure 5. The standard composition tomonoids.

PROPOSITION 4.5.3. Let P be a real Archimedean quotient of the g.n.c. tomonoid L
by the filter F. Then (A, < o, idF) is c-isomorphic to the Lukasiewicz composition
tomonoid or to the product composition tomonoid.

Proof. By assumption, F' is order-isomorphic to a real interval, which is right-closed
and either left-closed or left-open.

Assume first that F' possesses a smallest element. Then (F, <, ®,1) is a gq.n.c. to-
monoid such that F' is order-isomorphic to the real unit interval; that is, F' is isomorphic
to a tomonoid based on a t-norm. Let ® be this t-norm. By assumption, F' is Archime-
dean. By [27, Proposition 2.16], ® is continuous, and due to the Archimedean property,
® is in fact isomorphic to the Lukasiewicz t-norm. Consequently, A" is c-isomorphic
to the Lukasiewicz composition tomonoid.

Assume second that F' does not have a smallest element. Then (F°, <. ®,1) is a
g.n.c. tomonoid such that F© is order-isomorphic to the real unit interval; that is, F°
is again isomorphic to a tomonoid based on a t-norm. Let ® be this t-norm. Then
(0, 1] together with the restriction of ® to (0,1] is an Archimedean tomonoid. Thus
we conclude as before from [27, Proposition 2.16] that ® is continuous, but this time
isomorphic to the product t-norm. Consequently, A" is in this case c-isomorphic to the
product composition tomonoid. O

Our next aim is to characterise the composition tomonoids associated with some of
the remaining congruence classes. Several preparations are needed.

For chains A and B that are order-isomorphic to real intervals, continuity of a map-
ping from A to B will be understood in the obvious way.

LEMMA 4.5.4. Let P be a real Archimedean quotient of the g.n.c. tomonoid L. Let
R € P, and assume that R is not a singleton. Then (AT, < o, idR) is a composition
tomonoid on R fulfilling (C1)—(C4). Moreover, the following holds:

(C6) Any A € AR is continuous.
(C7) Forany X\ € A®\{idr} and any non-minimal element r of R, \(r) < r.

Proof. As P is assumed to be a real Archimedean quotient, R is order-isomorphic to a
real interval. Furthermore, by Proposition 4.5.3, the extending filter F' is isomorphic to
([0, 1], %, <, 1), where * is the Lukasiewicz t-norm, or to ((0, 1], -, <, 1), where - is the
product t-norm.
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By Lemma 4.4.6, AT fulfils (C1)—~(C4). Thus we only have to prove (C6) and (C7).
We will first show (C7) as well as a strengthened form of (C7) and then (C6).

(C7) Let f € F\{1} and let r € R. Assume that \j(r) = r © f = r. Then
r® f* =rforany n > 1, and since F' is Archimedean, it follows that r ® g = r for all
g € F; thus r is the smallest element of the congruence class R. We conclude that if r
is not the smallest element of R, then Af(r) < .

We next prove:

(%) Forany A € A®\{idr} and any r € R that is neither the smallest nor the largest
elementof R, A . A(z) <r.

Let f € F\{1} and let r € R be neither the smallest nor the largest element of R.
Let then g € F be such that f < ¢? < g < 1. Assume that )\g(z) =1z © g > rforall
x € R such that x > r; then x ® ¢g" > r for any n > 1, and since F' is Archimedean,
it further follows x ® h > r for all h € F, in contradiction to the fact that x and r
are in the same congruence class R. Hence there is an x € R such that x > r and
/\f‘(a:) =1 ©® g < r. Asris non-minimal and )\, is not the identity, we conclude by
(C7) that )\?(a:) =20 f<r0g®g<r®g<r. The proof of (x) is complete.

(C6) Let f € F and assume that /\]]5z is discontinuous at » € R. Note that then
f < 1 and r is neither the smallest nor the largest element of R. Let p = )\?(r) and
7= Ngsr )\?(a:); then p < ¢ < r by (%). By (C4) and (C7), we may choose a A € A
such thatp < A(¢) < gand ¢ < A(r) < r. By (%), there is an = > r such that A(z) < r.
Then )\]1?()\(;10)) < )\?(r) = pand )\()\?(x)) > A(q) > p, a contradiction. O

The proof of the following technical lemma proceeds according to [30].

LEMMA 4.5.5. Foreach k € N, let g be an order-automorphism of the open real unit
interval (0, 1). Assume that, for each k, (i) gr(z) < x forz € (0,1); (ii) g3, = gr; and
(iii) the functions gy, converge uniformly to id(q, 1). Then there is an order-automorphism

14k
@ of (0,1) such that gi,(p(x)) = <p(ar2(2) ) for each k € N and x € (0,1).

Proof. We have to determine an order-automorphism ¢: (0,1) — (0,1) such that

(p~Ltogrop)(z) = 1:2(%)}9 for each z € (0,1) and & > 0. We shall reformulate
this problem twice. First, let y = Inz € (—00,0) and ¢: (—00,0) — (0,1), y —
p(e¥). Then ¢(x) = (y), and our problem is to determine an order isomorphism
Y (—00,0) — (0,1) such that (=1 o gy 0 9)(y) = 2(3)"y for each y € (—00,0)
and £ > 0. We next set z = In(—y) € Rand x: R — (0,1), z — t¢(—e*). Then
¥ (y) = x(z), and our problem is finally to find an order antiisomorphism x : R — (0, 1)
such that

(Xflogkox)(z):anlg—f, ze€R, k>0. (15)

We set x(0) = %, and forany k > 0 and n € Z, let x(2 In2) = g'(5). We readily
check that this defines y unambiguously on the set R = {3z In2: k > 0, n € Z}. For
z € R, (15) is then fulfilled. Moreover, because g (z) < x for each k and z € (0,1),
(15) implies that  is strictly decreasing.

We next show that y can be continuously extended to the whole real line. Letr € R,

and let (ny,)y, be the sequence of natural numbers such that r € [k In2, 25 In 2) for
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every k. We have to prove that the length of the interval [x(”gjl In2), x(5# In2)]
converges to 0 for kK — oco. But this is the case because X(”’;ifl In2) = gr(x(5£ In2))
and (g ), converges uniformly to the identity. Note that the function x: R — [0, 1] is
decreasing and fulfils (15) because y and the g are continuous.

It remains to show is that y is surjective. Recall that go(x) < z forall z € (0,1), let

= A, 95:(3), and assume u > 0. Then, by the continuity of go, we have go(u ) u,
a contradlctlon so w = 0. Similarly, we conclude \/,, g, (7) = 1. So the image of x
covers the whole interval (0, 1). O

We are now ready to characterise the composition tomonoids A?, where R is any
congruence class.

THEOREM 4.5.6. Let P be a real Archimedean quotient of the g.n.c. tomonoid L.
Let R € P, and assume that R is not a singleton. Then (A?, < o, idR) is a standard
composition tomonoid.

In fact, if then R has a smallest and a largest element, A® is c-isomorphic to the
Lukasiewicz composition tomonoid. If R has a largest but no smallest element, AT is
c-isomorphic to the product composition tomonoid. If R has a smallest but no largest
element, AT is c-isomorphic to the reversed product composition tomonoid. If R has no
smallest and no largest element, AT is c-isomorphic to the power composition tomonoid.

Proof. We can assume that R is a real interval with the boundaries 0 and 1.

By Lemma 4.5.4, (AT, < o, idg) is a composition tomonoid fulfilling (C1)—~(C4)
and (C6)—(C7). Before beginning the actual proof, we will state some auxiliary facts.

(a) By (C6), each A € A is continuous and, by Lemma 4.4.6(ii)(c), if 0 ¢ R the
right limit of X\ at 0 is 0, and if 1 ¢ R the left limit of A at 1 is 1. Moreover, idg is
the uniform limit of (any increasing sequence in) A%\{idg}. In fact, by (C4), idy is
the pointwise supremum of these mappings, and if 0 or 1 are not in R, the continuous
extension of any A € A maps 0 to 0 and 1 to 1; thus the claim follows from the
compactness of [0, 1].

(b) (C7) and (a) imply that each \ € AR, restricted to its support, is strictly increas-
ing.

(©) If A(r) = N (r) > 0 for some A\, \' € A® and r € R, then A = ). Indeed, if
then 0 < A(s) < X (s) for some s € R, the pair x o A’ and ) is not comparable for a
sufficiently large x € AT\{idg}. Thus A and \’ coincide on the meet of their supports,
and by continuity and monotonicity, we conclude A = X',

(d) Infima of subsets AT that possess some lower bound exist and are calculated
pointwise. Indeed, let A, € AT, . € I, be lower bounded. Let r € R be such that
s = A, A.(r) > 0. Then, for any € > 0, there is a k € A" such that s — ¢ < r(a) < s;
as k is continuous, there is a ¢ such that s — e < (ko A,)(r) < s. We conclude that the
supremum of the lower bounds of \,, ¢ € I, is their pointwise infimum.

(e)Forany r € R, {\(r): A € AR} = {a € R: a < r}. Indeed, this set is closed
under suprema by (C4) and under infima by (d). Moreover, we conclude from (a) and
(c) that the set is dense. In view of (c), we see in particular that 1 € R implies that AR
fulfils (C5).

We distinguish four cases.
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Case (i). Let R = [0,1]. By (e), AT fulfils (C1)-(C5) and is thus the Cayley
tomonoid associated with a g.n.c. tomonoid. As in the proof of Proposition 4.5.3, we
conclude that A is c-isomorphic to the Lukasiewicz composition tomonoid.

Case (ii). Let R = (0, 1]. We proceed as for Case (i) to see that A¥ is c-isomorphic
to the product composition tomonoid.

Case (iii). Let R = [0,1). For A € Af, let 2y, = max {r € R: \(r) = 0}; note
that this definition is possible because A(0) = 0 and lim, ~; A(r) = 1. We claim:

(f) For each z € R, there is exactly one A € AT such that z = zy. Indeed, by (C7)
and (a), A # )\ implies z, # zy,. Furthermore, A% is closed under suprema and infima,
hence {z): A € AT} is a closed subset of R, which by (a) is dense and does not possess
a largest element and thus equals R.

For each A € A%, we have that A\(r) = 0 forr € [0, 2], strictly increasing on [z, 1),
and lim, » A(1) = 1. Thus we can define

A: (0,1 = (0,1], =~ i
1— 2y ifx=1.

- {1—)\‘1(1—33) ifz <1,
It is somewhat tedious, but not difficult to check that A = {:\ A € AR} is a composi-
tion tomonoid fulfilling (C1)-(C4). By (f), AR fulfils also (C5). We conclude as in Case
(i) that A® is c-isomorphic to the product composition tomonoid. Hence A% itself is
c-isomorphic to the reversed product composition tomonoid.

Case (iv). Let R = (0,1). Then A consists of order-automorphisms of (0, 1).

Let A\ € Af and put k = A{p € A%: 2 > A}. We claim that then k% = \.
Indeed, by (d), x(r) = A{u(r): u*> > A} for any r € R. By continuity, we calculate
k2(r) = Nup(/ (7)) : 12, 0% > Ay = A{p2(r): p2 > A} > A(r). If this inequality
was strict, there would be a v € A®\{idr} such that v?(k%(r)) > A(r); but then
(k o v)2(r) > X(r) although k o v < &, a contradiction. Thus x%(r) = A(r), that is,
K2 =\

Let now \g € A%\{idgr}, and let \;, be the unique mapping such that )\%k = Ao.

Then Ag < A1 < ... < id. Moreover, (A ) converges uniformly to id. Indeed, let
A=V, A then \g < AF for every k and it follows A\ = id. Thus () ) converges to id
pointwise and consequently uniformly.

By Lemma 4.5.5, A is c-isomorphic to a composition tomonoid A containing the

mappings Az : (0,1) = (0,1), 7+ r2<%)k for each k € N. It follows that the functions
r +— 19, where ¢ = 2%% for m,n € N, are dense in AR, We conclude that A® consist of
the mappings x — 2%, where ¢ € {s € R: s > 1}; that s, AR is the power composition
tomonoid. O

Theorem 4.5.6 describes each composition tomonoid A% separately. Each element
of A% is the restriction of a translation A > where f is an element of the extending filter
F, to R. It remains to determine which mapping in A belongs to which element of
F. According to our next proposition, the homomorphism o: F — A%, f )\]1? is
already uniquely determined by one non-trivial assignment.
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PROPOSITION 4.5.7. Let ® be a standard composition tomonoid on a chain R; let
(F,<,®,1) be either the product or the Lukasiewicz tomonoid; let f € F\{1} be non-
minimal, and let X € ®\{idr} have a non-empty support. Then there is at most one
surjective sup-preserving homomorphism o: F — ® such that o( f ) = A

Proof. Letn > 1. As F is the product or the Lukasiewicz tomonoid, and f is a non-
minimal element of it, there is a unique f,, € F' such that f]! = f Similarly, ® is
a standard composition tomonoid, and ) is a non-minimal element of it; it is readily
checked that in each of the four possible cases there is a unique A, € @ such that
A=\,

It follows that any homomorphism mapping f to X must map f, to A\,. As o is
supposed to be a sup-preserving homomorphism, the claim follows. O

We now turn to the sets A5, We will see that A" and A® largely determine which
mappings can be contained in A%, Figure 6 gives an impression of the situation.

AR
)\R R
)
—
AR,S
7:
-
S, A5 ()
A // A ; S
/ ASOF()
A7 =)

Figure 6. Each mapping contained in A™% is unibguely determined by its value at a
single point. The figure shows how the value of )\f’ at r determines its value at )\? (r).

PROPOSITION 4.5.8. Let ® be a standard composition tomonoid on the chain R and
let W be a standard composition tomonoid on the chain S. Furthermore, let (F, <,©®, 1)
be either the product or the Lukasiewicz tomonoid, and assume that there are surjective
homomorphisms F' — ®, f+ ®rand F' — ¥, f ;. Let

2 ={&:R—S: forall f € F, oy =1hpof}. (16)

Moreover; let Z' be a set of mappings from R to S such that (1) for any ¢ € =’ and
f € F, vpofand§o s coincide and are in =/, (2) if the pointwise calculated
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=/

supremum of a subset of 2’ exists, it is in &', and (3) if S has a smallest element v/,
cfw € Z/. Then either = = Z or thereisa ( € Zsuchthat = = {¢ € Z: £ < ().

Proof. If u’ ¢ S and Z is empty, or v’ € S and Z contains only ¢/, the assertion is
trivial. Let us assume that neither of these possibilities apply.

We first show two auxiliary lemmas about =.

(a) For any r € R and any non-minimal s € S, there is at most one £ € = such that
E(r) =s.

Indeed, let {,v € E be such that £(r) = v(r) = s. For any v’ < r, there is an
f € F such that ps(r) = r/, because ¢ is a standard composition tomonoid. Thus
§07) = €(pr(r) = ¥r(E(r) = Yr(w(r) = v(es(r)) = V(). For any 1’ > r,
there an f € F such that p¢(r') = r, thus ¥¢(£(1)) = &(@s(r')) = &(r) = v(r) =
v(pr(r")) = ¥r(v(r’)), and since ¥ is a standard composition tomonoid and s is non-
minimal, it follows (") = v(r') again. We conclude £ = v and (a) is proved.

(b) Let £, v € = have a non-empty support. Then there is an f € F such that either
E=vopsorv=Eo s Inparticular, { and v are comparable.

Indeed, let 7 € R be in the support of both & and v. Assume &(r) < v(r), and let
f € F besuch that (v o ¢g)(r) = ¥s(v(r)) = &(r). Note that v o ¢y € Z. Then it
follows by (a) that { = v o @y. Similarly, v(r) < £(r) implies that there is an f € F'
such that v = £ o . The proof of (b) is complete.

Let =’ be a set of functions from R to S such that properties (1)-(3) hold. By (1),
= C = Assume that £ € =/, v € Z, and v < &; we claim that then v € Z'. Indeed,
either S has the smallest element v’ and v = cR’“/; thus v € =/ by (3). Or v has a
non-empty support; by (b), then v = £ o ¢ for some f € F; thus v € = by (1).

Assume now that =’ is a proper subset of =. Because = is totally ordered, any
element of Z\Z’ is an upper bound of =’; hence the pointwise supremum ¢ of =’ exists
and is, by (2), in Z’. Hence also ¢ € Z, and we conclude ' = {£ € =Z: £ < (}. O

Again, Proposition 4.5.8 describes the sets A5 separately and it remains to de-
termine which mapping in A® belongs to which translation. Similarly as in case of
Proposition 4.5.7, the mapping 7: T — A%t — A" is uniquely determined by a
single assignment.

PROPOSITION 4.5.9. Let R, ®, S, ¥, F, as well as the mappings f — ¢ and f —
V¢ be as in Proposition 4.5.8, and let = be defined by (16). Let X be a further standard
composition tomonoid on the chain T, and let ' — X, [ — X be a surjective sup-
preserving homomorphism. Let t € T be non-minimal, and let§~ € = have a non-empty
support. Then there is at most one mapping T7: T — = such that T(xf(t)) = ¢y o 7(¢)

foranyt € T and T(t) = &.

Proof. Assume that the mappings 71, 72: T' — = are as indicated.

Lett > £ and put & = 71(t), & = 72(t). As X is a standard composition
tomonoid, there is an f € F such that x(t) = . We have 1y 0 & = ¢y o mi(t) =
m1(xf(t)) = 71(f) = € and similarly 17 o & = £. Let r be in the support of &; then
Y5(&1(r)) = ¥y(&2(r)) is non-minimal, and we conclude & (1) = &2(r). We proceed
as in the proof of Proposition 4.5.8 to conclude that £; = o, that is, 71 () = 72(t).
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Let now ¢ < ¢. Then there is an f € F such that x;(f) = t and we have 7 (t) =

m1(xs(t)) = ¥y o1 (t) = s o 72() = T2 (x s (f)) = 72(t) also in this case.
Hence 71 = 75 and the assertion follows. O

This concludes our specification of real Archimedean coextensions. We now demon-
strate on the basis of some examples how Proposition 4.5.3, Theorem 4.5.6 and Propo-
sitions 4.5.7, 4.5.8, 4.5.9 can be used to determine the real Archimedean coextensions
of a given tomonoid.

EXAMPLE 4.5.10. As a first example of how our theory works, let us review Example
4.4.8. Again, let Ly be the five-element Lukasiewicz chain. We are going to determine
the real Archimedean coextensions of Ly such that the bottom element is left unaltered
and the remaining four elements are expanded to left-open right-closed real intervals.

By Proposition 4.5.3, A, where F is the extending tomonoid, is the product or
Lukasiewicz composition tomonoid. As F' does not possess a smallest element, the for-
mer possibility applies.

Furthermore, by Theorem 4.5.6, A3 AGE] AGD gre o isomorphic to the
product composition tomonoid as well.

To determine the translations Ay, % < t < 1, it is by Proposition 4.5.7 sufficient
to specify one of them. To this end, we choose one element distinct from the identity
from each composition tomonoid A(O’%], A(%’%], A(%%], and A(%’l], and we require that
these mappings arise from the same translation.

It remains to determine the sets ™5, where R and S are among {0}, (0, 1], (%, 3],
(3,2], (3,1]. The case that the singleton {0} is involved is trivial and covered by
Lemma 4.4.7(ii). Let both R and S be distinct from {0}, then Proposition 4.5.8 applies.
It is straightforward to calculate Z according to (16) from A® and A, which are both
product composition tomonoids. The actual set A5 results from = by determining a
largest element (. Note that only in this respect, our construction allows an essential
choice.

Still given R and S, it remains to determine the mapping T — A5
where T' = R — S. By Proposition 4.5.9 it is sufficient to make a single assignment.
But one assignment is already clear, namely, /\f‘ S = ¢, where t is the maximal element
of T.

The t-norm %y is a possible result of this construction; cf. Figure 3 and (14).

— Af’s,

EXAMPLE 4.5.11. Next, we construct the real Archimedean coextensions of the four-
element drastic tomonoid, that is, the tomonoid speciﬁed in Figure 7 (left). We assign to
the four elements the real intervals [0, ], (3, %), {2}, and (3,1], respectively.

The universe of the extending tomonoid is the left-open interval ( 1] and A (3:1]
consequently again the product composition tomonoid.

Moreover, the composition tomonoids A3 and AG3) are, according to Theorem
4.5.6, c-isomorphic to the Lukaszewzcz and the power composmon tomonoid, respec-
tively. By Lemma 4.4.7(ii), A3Y consists of the mappmg assigning g to itself.

We next define an arbitrary translation X\, where s <t <1, by selecting from each
of the three non-trivial composition tomonoids one mappmg different from the identity.
Then the translations Ay are uniquely determined also for all remaining t € (%, 1].
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(3.1]
e {3}
3 (5.3)
2 / %
1 / /[07%]
/o i N
0o 1 2 3 [0, 3] 3 & G

Figure 7. A coextension of a four-element tomonoid.

We proceed by constructing the set AG1(5:3) on the basis of (16). The whole set

(16) is needed in this case because, by condition (C5), for each t € (%, %) there must be

a translation mapping 1 to t. The situation is similar in the case of AG1,00.3],

Finally, Lemma 4.4.7(i)(e) implies that AG-3)00:3] contains the constant 0 mapping
only. Again by Lemma 4.4.7(i), AL consists of the single mapping assigning % to
0. Also AGUAEY s trivial, consisting of the constant % mapping.

The Cayley tomonoid is thus completely determined. The result is a left-continuous
t-norm, for instance the following one:

3ab— 2a — 2b+ 2 ifa,b> 2,

h H(3a—1)72 +1) if $ <a<Zandb> 2,
(a+ Llogy(3b—2)) VO ifa<landb> 2,
0 ifa,b < 2.

5 Historical remarks and further reading

5.1 Partial algebras

The idea of using partial algebras for the representation of residuated lattices orig-
inates from a research field that is led by quite different concerns from those of many-
valued logics. Quantum structures were originally meant to be partially ordered alge-
bras occurring in the context of quantum mechanics; an example is the orthomodular
lattice of closed subspaces of a complex Hilbert space [31]. Orthomodular lattices have
later turned out to be an interesting research object in their own right, and the same
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applies for their generalisations [9]. Viewing closed subspaces as a model of “sharp”
measurements—Iike the position of some object within a certain interval—, effects,
which are the positive operators below the identity, are considered as a model of “un-
sharp” measurements—like the position of some object within a fuzzy set over the re-
als [6]. The set of effects possesses the internal structure of an effect algebra and the
latter structure has turned out to be a rewarding research object [17].

In particular, K. Ravindran studied the relationship between effect algebras and par-
tially ordered groups. He has shown that an effect algebra fulfilling a certain Riesz
decomposition property is representable as an interval of a partially ordered group [32].
We note that the underlying technique was the first time employed by R. Baer in a more
general context [2]. Among the effect algebras to which the technique is applicable, we
do not find the standard effect algebra known from physics. But we do find here the
so-called MV-effect algebras, a class of partial algebras that are in a one-to-one corre-
spondence with MV-algebras [16].

We have explored this connection between algebras originating from fuzzy logic and
techniques developed for quantum structures in a series of papers [10-13, 35, 36, 38, 39].
The structures under consideration were chosen more and more general. For instance,
commutativity and boundedness turned out to be dispensable conditions.

The present exposition treats the most general case with which we have coped so
far. However, we consider here the case of a total order only; this restriction makes a
remarkable optimisation possible. The reader interested in a more general framework is
referred to [39].

To summarise, the literature on effect algebras and their various generalisations is
rich. Residuated structures viewed as partial algebras, however, have most likely been
mainly examined in the afore-mentioned papers. The interested reader can find a more
detailed and a more general account than the one given here in particular in [39]. We
note that the latter paper is the only one in which the notation of residuated structures is
adapted to what is common in logics; a partial multiplication instead of a partial addition
is used.

5.2 Coextensions of tomonoids

The second part of this chapter addresses various topics and we are not able to
provide a comprehensive overview over the related activities. We restrict to several
short remarks.

Monoids endowed with a compatible partial order or, more generally, semigroups
with a compatible preorder, have been considered in a number of different contexts.
As an example, we may mention the paper [3] on compatible preorders and associated
decompositions of semigroups. Several particular topics have furthermore been studied;
see, e.g., [20], [25], or [26].

The more special totally ordered semigroups appear in the literature less frequently.
An early survey is [19]; a comprehensive paper from more recent times is [14]. A
property of tomonoids that has recently drawn attention is formal integrality; see, e.g.,
[23].

A central part of our discussion was devoted to representations of tomonoids by
monoids of mappings under composition. We have mostly considered the simplest such



40 Thomas Vetterlein

representation, the regular representation of tomonoids. Such representations of partially
ordered semigroups have been considered in a general context in a series of papers;
they are known under the name S-posets. The initial paper was [15]; among the newer
contributions, we may mention, e.g., [4]. Another viewpoint on the same topic can be
found, e.g., in [33].

Quotients of partially ordered monoids in general have apparently not really been
considered as a rewarding topic; they are indeed not easy to characterise. In contrast,
congruences of residuated tomonoids that preserve the residuals as well are well under-
stood, being identifiable with normal convex subalgebras. See [24] for the general case
and [28] also for more special cases like MTL-algebras.

The last topic to be mentioned is a field to which we have not only given a good
amount of space in this chapter but which is also very present in the literature: triangu-
lar norms. Many results on t-norms are compiled in [27], which is endowed also with
a comprehensive bibliography. As a general way of classifying t-norms does not ex-
ist, several methods of their construction have been compiled over the years, not all of
which are in line with the algebraic structure as exposed in this chapter. For a review of
construction methods from a more algebraic perspective, see, e.g., [29]. For an account
of MTL-algebras, we refer to [28].

Finally, how tomonoids can be analysed by means of their quotients has been de-
scribed in our papers [37] and [40]; the former adopts a more geometrical, the latter a
more algebraic point of view. In these papers a considerable amount of information can
be found in addition to what we have presented here.
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