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ABSTRACT: other such function, and it turned out that this is not theepas

With a crisp compact convex subs&tof the R" (n > 1), the Steiner centroid is unambigously defined by the mentione
we may associate one of its elements in a canonical way: theee conditions [5, 3].
Steiner centroig(A) of A. This functions from the space of Let us now consider the more general situation that our
compact convex subsets of ti to theR", may be unam- space not only contains sharply limited subsets of a real Eu-
biguously characterized by three simple properties. clidean space, but also sets with unsharp boundary. Thg fuzz

In this paper, we consider the more comprehensive spacalogue of the spack” is the spaceF", the set of standard
F" of fuzzy sets oveR", and we study functions frof" to  fuzzy sets in the sense of Diamond and Kloeden [2]. We won-
R" fulfilling three properties defined analogously to the crigper what kind of “defuzzification” function exists which meap
case. We show that there is more than one such function, &ath " toR" and which fulfils analogous conditions to those
we give a precise description of all of them. Apparantly, ncharacteristic for the Steiner centroid of sharp subsets.

canonical choice among them is possible. Steiner centroids on the spage’ of fuzzy sets are sup-
Keywords: Steiner point, convex fuzzy set, fuzzy vectoposed to respect the structure inherentfil. Namely, the
defuzzification linear structure ofX" generalizes in a straightforward way

to F"; accordingly, fuzzy vectors are added in the usual way
. (see e.g. [2]). For the topology, however, we have to make a
1 Introduction choice; in this paper, we will take theé-metric onK" (again

. . . cf. e.g. [2]). The conditions for functiorSfrom #" to R"
Let R" be then-dimensional real Euclidean space, wher g. [2]) F

> 1 and let%™ th £ all ; bset rﬁay then be chosen in complete analogy to the crisp case.
f . and letX "’ the space of a (r]:ompzr;}c CconVeX SUBSELS Rlamely, S should be invariant under Euclidean isometrigs;
R". Intuitively, the transition fronR" to " may be viewed as

. . - should preserve the addition; aBdhould be continuous w.r.t.
an intermediate step towards the fuzzificatioriR3f In con-

. ; . ) theL2-topology.
trast to the precise location described by a point ofRfiea po‘ogy

(f N ' v & bound f direct We succeeded to determine all functions fulfilling these
?noggz)éese romK.” provides only a bound for every direc 'Nhree properties; this the main result of this paper. As our f

mulation already suggests, there is more than one; so unique

According to this point of view, a closed convex SelrePriass is lost. Moreover, as the representation of theseifusct
sents some value together with information about its imp ’

ciseness. The question naturally arises if everyset X" i show, it is hardly possible to make a canonical choice.

may be reasonably viewed as a set around some central ele-
ered as a “defuzzification” function.
Let us collect the minimal requirements which such a funEét us fix somen > 2. By %"

tions %" — R" should fulfil. Probably most important, the,nyex subsets k", The (Minkowski) addition and multi-

point S(A) should not depend on where and héws posi- ication by positive reals, are defined pointwise &f. By

tioned in space, that is,should be invariant under Euclidearyp-1 e genote the unit sphereRf". For anyA € X", we let
isometries. Moreovers should respect the structure which ’

K" inherits fromR", both the linear and the topological one. ha "1 R, e—max{(ae): acA}
Indeed, X" is endowed with the pointwise addition generaliz-
ing the addition orR" in a natural way; and" is endowed pe thesupport functiorof A (see e.g. [4]). Addition and mul-

with the topology induced by the Hausdorff metric, which c@iplication by positive reals ifk" coincide with the same op-
incides with those induced by theé’-metrics. Sas should be erations on the corresponding support functions.

compatible with the addition, arglshould be continuous. We shall embed(™ into the spac&2(S'1) (see e.g. [2]).
These three properties are fulfilled by the functiomhich  Namely, letL2(S™1)X be the subset df2(S*1) containing

associates with each compact convex subset its Steiner ¢g8-support functions of the elements&f. ThenL2(S"1)X

troid. It was an open question for many years if there is aRya positive cone in.2(S™1); the subspac&?(S*1)X —

2 -1 ; ; 2 -1 : P
“The support of grant 201/02/1540 of the Grant Agency of thecBRe- L (S 1) of differences of pairs fror_h (s _ )% is dense in
public is gratefully acknowledged. L2(S1). In the sequel, we will identifyk" with L?(S*1)%,

, we denote the set of compact




that is, we will treatX" as a subset df?(S"1)X. We thus (SF2) For any Euclidean isometry of R" and anyv € ",

in particular endowX" with the || - ||-metric. This metric is we haveS(tv) = 1§(v), wheretv = vo 1! (v being seen
equivalent to the Hausdorff metric &". as a function fronR" to [0, 1]).

The investigations of this paper are based on the followiné:j . )
facts [5, 3]. (SF3) Sis continuous.

Definition 2.1 The Steiner centroidf A c K™ is defined by ~_ L€t us first see how we may generate typical examples of
Steiner centroids.

1
S(A) = VIED) /SH ha(e)edr(e), Proposition 3.2 Let pe L2((0,1]) be a non-negative function
such thatf,o ) H(a) da = 1. Define for ve 7"
wheree € S™1 varies over the unit vectors &", A is the
Lebesgue measure @1, andV(B") is the volume of the Su(v) = / s(M%) (o) dar,
unit ball B" of R". J(0,1]

Notice thats(A) € A. where s is the classical Steiner centroid of the (crisp)lleeé
[V]%. Then g is a Steiner centroid.

Theorem 2.2 Lets: K" — R" have the following properties: ) ) i
It follows in particular that by the properties (SF1)—(SF3)

(S1) Forany AB e X", §(A+B) =5(A)+5(B). a Steiner centroid cannot be defined unambiguously. To im-
pose further properties dto obtain uniqueness is amazingly
(S2) For Ac K" and any Euclidean isometryof R", we have difficult; it is an open question if this is possible in soma-e
S(1A) =19 (A). sonable, well motivated way.

(S3) ¢ is continuous. _ _ _
4 Characterization of Steiner cen-

Then §=s. .
troids

This theorem was proved first for the case- 2 by Shep-

hard [5] and later for the case> 3 by Schneider [3]. We shall prove that any Steiner centroid is of the fcgmfor
somep € L?((0,1)), that is, the example of Proposition 3.2

reflects the most general case.

3 Fuzzy sets and Steiner centroids _ ,
Theorem4.1Let S ¥" — R" be a Steiner centroid. Then

Let us denote byF" the collection of alin-dimensional stan- there is a non-negative function @ L%((0,1]) fulfilling
dard convex fuzzy sets in the sense of Diamond and Kloedegy H(01) da = 1 such that S= §,.

[2] (fuzzy vectorin the terminology of [1]), that is, the set of ] o ]
all mappings:. R" — [0,1] such that~1(1) # 0, the closure _Proof Let usfirst note that the restriction 8o X" fulfils

of the support of is boundedy is upper semicontinuous, andS1)—(S4) of Proposition 2.2, when8A) = s(A) for all A

v is fuzzy convex. In the usual way, we define addition arf- _ _ ) ) _
multiplication by positive reals of". Now, Sis by assumption associated to a continuous posi-

It is advantageous to view a fuzzy seas a function from tive linear mapping from the positive cond((0,1] x _3171)7
the levelsa € (0,1] to the corresponding level sefg® = t© R". It may be unamblguou§ly extended to a linear map-
{xeR":v(x) > a}. Indeed,#" may be identified with the PinNg on the subspace of all differences of elements of this
bounded, nonincreasing, left-continuous functions fiopd] cone, and then extended to the whole SHe¢€0, 1] x S™1);
to X". As K" is in turn represented by continuous function¥e Still denote this mapping bg. It follows that we may
from 1 to R, #" corresponds to a set of continuous reafifite S(v) = Jiog Ta([V*) da for certain linear mapping%,:
valued functions o0, 1] x S™. The addition and multiplica- L*(S*) — R", a € [0, 1], such thatf o ;) Ta(A) da = S(A) for
tion by positive reals iF " coincides with the same operationall A € X" (we again identify the level sefs]® with their
performed pointwise with the corresponding functions. support functions).

We shall embedF" into L2((0,1] x S™1). LetL?((0,1] x  We shall first show that the valud@g(A), A € K", depend
S1)7 be the set of functions which represent fuzzy setsnly on the Steiner centroid @ for almost alla. Set
thenL?((0,1] x S""1) is a positive cone ih?((0,1] x S™1).

Again, we will identify 7" and L?((0,1] x S™1)7. In par- Ta(A) = Ta(A) — Ta({S(A)}) + S(A)

ticular, #" is endowed with the| - ||>-metric (cf. also [2]).

Moreover, we shall treak™ as a subset of ". for Ae K, a € [0,1], andS(v) = [igy Ta([V]*)da for v €
We are going to investigate the following functions. F". ThenTy({c}) = cfor c € R" andS is a Steiner centroid.

For allA € [0,1] andA € K", we define a fuzzy set) A €
Definition 3.1 Let us call a functior® #" — R" a Steiner 7" bywj a(S(A)) =1,w, a(X) =Aforallxe A\ {s(A)}, and
centroidif Shas the following properties: Wy a(X) =0 for allx € R"\ A. Thus|wy a]* = Afora € (0,A]
and[wy a]* = {s(A)} for a € (A, 1]. For any fixed\ € [0,1],

(SF1) Foranyv,we 7", S(v+w) = S(v) + S(w). the functionk" — R", A S(w, ) fulfils the assumptions



of Theorem 2.2, whenc8(w a) = S(A). From the definition [2] P. Diamond, P. Kloeden, “Metric Spaces of Fuzzy
Sets: Theory and Applications”, World Scientific,

of S, we obtain

Singapore 1994,
SA) = S(wa) 9%
A [3] R. Schneider, On Steiner points of convex bodiss,
= /( . (Ta(A) = Ta({S(A)}) + S(A)) da J. Math.9 (1971), 241 - 249.

[ ()~ Ta(ts(A))) da s,
hence N
| (T - Ta({s(A)}) da =0

forallA € (0,1]. ThusTy(A) = Ta({S(A)}) almost everywhere
(w.rt.a e (0,1]).

For eachv € F", we define a functiow,: (0,1] — R" by
oy(a) =s([v]*). We proved that

sw) = [, TS ) da
= [ Taldov(a))de.

thusS(v) is fully determined byoy,. The mapping : vi— oy
can be associated to a linear mappirfg(0,1] x "1 —
(L2((o, 1]))". We may expresS (considered as a linear map-
ping L2((0,1] x S 1)¥ — RM as the composition of and

a mappingp: (L2((0,1]))" — R" which is linear, too. Its-

th componentg, is a linear functional which may be repre-
sented asp(f) = [ f(a)pi(a)da for some non-negative
function € L?((0,1]) such thatf g ki(a)da = 1. Due to
the invariance with respect to Euclidean isometries (itigar
ular, to permutations of coordinates), gll i = 1,...,n, must
be equal; they coincide to the functipfrom the theorem. O

5 Conclusion

In analogy to the crisp case we have called a function from
the spacefr" of standard fuzzy sets f&" a Steiner centroid if

it is invariant under Euclidean isometries, preservestandi

and is continuous w.r.t. the2-metric. Unlike in the crisp
case, there is more than one Steiner centroid, and we gave a
complete description of all Steiner centroids.

Two question remain for further research. The first one is a
serious mathematical one. Here, we considered thmetric
on F". Itis not unrealistic, but, as already became clear, te-
dious to describe Steiner centroids w.r.t. the other meffit
may be equipped with.

The second question concerns possible applications. If the
Steiner centroid should really be used, a decision must be
made which one to choose. It is at the moment not clear how
a particular choice can be motivated.
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