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ABSTRACT:
With a crisp compact convex subsetA of the R

n (n ≥ 1),
we may associate one of its elements in a canonical way: the
Steiner centroids(A) of A. This functions from the space of
compact convex subsets of theR

n to theR
n, may be unam-

biguously characterized by three simple properties.
In this paper, we consider the more comprehensive space

F n of fuzzy sets overRn, and we study functions fromF n to
R

n fulfilling three properties defined analogously to the crisp
case. We show that there is more than one such function, and
we give a precise description of all of them. Apparantly, no
canonical choice among them is possible.

Keywords: Steiner point, convex fuzzy set, fuzzy vector,
defuzzification

1 Introduction

Let R
n be the n-dimensional real Euclidean space, where

n≥ 1, and letK n the space of all compact convex subsets of
R

n. Intuitively, the transition fromR
n toK n may be viewed as

an intermediate step towards the fuzzification ofR
n. In con-

trast to the precise location described by a point of theR
n, a

convex set fromK n provides only a bound for every direction
in space.

According to this point of view, a closed convex set repre-
sents some value together with information about its impre-
ciseness. The question naturally arises if every setA ∈ K n

may be reasonably viewed as a set around some central ele-
ments(A) ∈ A. The mappings 7→ s(A) could then be consid-
ered as a “defuzzification” function.

Let us collect the minimal requirements which such a func-
tion s: K n → R

n should fulfil. Probably most important, the
point s(A) should not depend on where and howA is posi-
tioned in space, that is,s should be invariant under Euclidean
isometries. Moreover,s should respect the structure which
K n inherits fromR

n, both the linear and the topological one.
Indeed,K n is endowed with the pointwise addition generaliz-
ing the addition onRn in a natural way; andK n is endowed
with the topology induced by the Hausdorff metric, which co-
incides with those induced by theLp-metrics. Sos should be
compatible with the addition, andsshould be continuous.

These three properties are fulfilled by the functions which
associates with each compact convex subset its Steiner cen-
troid. It was an open question for many years if there is any
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other such function, and it turned out that this is not the case;
the Steiner centroid is unambigously defined by the mentioned
three conditions [5, 3].

Let us now consider the more general situation that our
space not only contains sharply limited subsets of a real Eu-
clidean space, but also sets with unsharp boundary. The fuzzy
analogue of the spaceK n is the spaceF n, the set of standard
fuzzy sets in the sense of Diamond and Kloeden [2]. We won-
der what kind of “defuzzification” function exists which maps
fromF n to R

n and which fulfils analogous conditions to those
characteristic for the Steiner centroid of sharp subsets.

Steiner centroids on the spaceF n of fuzzy sets are sup-
posed to respect the structure inherent inF n. Namely, the
linear structure ofK n generalizes in a straightforward way
to F n; accordingly, fuzzy vectors are added in the usual way
(see e.g. [2]). For the topology, however, we have to make a
choice; in this paper, we will take theL2-metric onK n (again
cf. e.g. [2]). The conditions for functionsS from F n to R

n

may then be chosen in complete analogy to the crisp case.
Namely,S should be invariant under Euclidean isometries;S
should preserve the addition; andSshould be continuous w.r.t.
theL2-topology.

We succeeded to determine all functions fulfilling these
three properties; this the main result of this paper. As our for-
mulation already suggests, there is more than one; so unique-
ness is lost. Moreover, as the representation of these functions
will show, it is hardly possible to make a canonical choice.

2 Convex sets and the Steiner centroid

Let us fix somen≥ 2. By K n, we denote the set of compact
convex subsets ofRn. The (Minkowski) addition and multi-
plication by positive reals, are defined pointwise onK n. By
Sn−1 we denote the unit sphere inRn. For anyA∈ K n, we let

hA: Sn−1 → R, e 7→ max{(a,e): a∈ A}

be thesupport functionof A (see e.g. [4]). Addition and mul-
tiplication by positive reals inK n coincide with the same op-
erations on the corresponding support functions.

We shall embedK n into the spaceL2(Sn−1) (see e.g. [2]).
Namely, letL2(Sn−1)K be the subset ofL2(Sn−1) containing
the support functions of the elements ofK n. ThenL2(Sn−1)K

is a positive cone inL2(Sn−1); the subspaceL2(Sn−1)K −
L2(Sn−1)K of differences of pairs fromL2(Sn−1)K is dense in
L2(Sn−1). In the sequel, we will identifyK n with L2(Sn−1)K ,
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that is, we will treatK n as a subset ofL2(Sn−1)K . We thus
in particular endowK n with the || · ||2-metric. This metric is
equivalent to the Hausdorff metric ofK n.

The investigations of this paper are based on the following
facts [5, 3].

Definition 2.1 TheSteiner centroidof A∈ K n is defined by

s(A) =
1

V(Bn)

∫

Sn−1
hA(e)edλ(e),

wheree∈ Sn−1 varies over the unit vectors ofRn, λ is the
Lebesgue measure onSn−1, andV(Bn) is the volume of the
unit ball Bn of R

n.

Notice thats(A) ∈ A.

Theorem 2.2 Let s′: K n →R
n have the following properties:

(S1) For any A,B∈ K n, s′(A+B) = s′(A)+s′(B).

(S2) For A∈K n and any Euclidean isometryτ ofRn, we have
s′(τA) = τs′(A).

(S3) s′ is continuous.

Then s′ = s.

This theorem was proved first for the casen = 2 by Shep-
hard [5] and later for the casen≥ 3 by Schneider [3].

3 Fuzzy sets and Steiner centroids

Let us denote byF n the collection of alln-dimensional stan-
dard convex fuzzy sets in the sense of Diamond and Kloeden
[2] (fuzzy vectorsin the terminology of [1]), that is, the set of
all mappingsv: R

n → [0,1] such thatv−1(1) 6= /0, the closure
of the support ofv is bounded,v is upper semicontinuous, and
v is fuzzy convex. In the usual way, we define addition and
multiplication by positive reals onF n.

It is advantageous to view a fuzzy setv as a function from
the levelsα ∈ (0,1] to the corresponding level sets[v]α =
{x ∈ R

n : v(x) ≥ α}. Indeed,F n may be identified with the
bounded, nonincreasing, left-continuous functions from(0,1]
to K n. AsK n is in turn represented by continuous functions
from Sn−1 to R, F n corresponds to a set of continuous real-
valued functions on(0,1]×Sn−1. The addition and multiplica-
tion by positive reals inF n coincides with the same operations
performed pointwise with the corresponding functions.

We shall embedF n into L2((0,1]×Sn−1). Let L2((0,1]×
Sn−1)F be the set of functions which represent fuzzy sets;
thenL2((0,1]×Sn−1)F is a positive cone inL2((0,1]×Sn−1).
Again, we will identify F n andL2((0,1]×Sn−1)F . In par-
ticular, F n is endowed with the|| · ||2-metric (cf. also [2]).
Moreover, we shall treatK n as a subset ofF n.

We are going to investigate the following functions.

Definition 3.1 Let us call a functionS: F n → R
n a Steiner

centroidif Shas the following properties:

(SF1) For anyv,w∈ F n, S(v+w) = S(v)+S(w).

(SF2) For any Euclidean isometryτ of R
n and anyv ∈ F n,

we haveS(τv) = τS(v), whereτv = v◦ τ−1 (v being seen
as a function fromR

n to [0,1]).

(SF3) S is continuous.

Let us first see how we may generate typical examples of
Steiner centroids.

Proposition 3.2 Let µ∈ L2((0,1]) be a non-negative function
such that

∫

(0,1] µ(α)dα = 1. Define for v∈ F n

Sµ(v) =

∫

(0,1]
s([v]α)µ(α)dα,

where s is the classical Steiner centroid of the (crisp) level set
[v]α. Then Sµ is a Steiner centroid.

It follows in particular that by the properties (SF1)–(SF3),
a Steiner centroid cannot be defined unambiguously. To im-
pose further properties onSto obtain uniqueness is amazingly
difficult; it is an open question if this is possible in some rea-
sonable, well motivated way.

4 Characterization of Steiner cen-
troids

We shall prove that any Steiner centroid is of the formSµ for
someµ ∈ L2((0,1]), that is, the example of Proposition 3.2
reflects the most general case.

Theorem 4.1 Let S: F n → R
n be a Steiner centroid. Then

there is a non-negative function µ∈ L2((0,1]) fulfilling
∫

(0,1] µ(α)dα = 1 such that S= Sµ.

Proof. Let us first note that the restriction ofS toK n fulfils
(S1)–(S4) of Proposition 2.2, whenceS(A) = s(A) for all A∈
K n.

Now, S is by assumption associated to a continuous posi-
tive linear mapping from the positive coneL2((0,1]×Sn−1)F

to R
n. It may be unambiguously extended to a linear map-

ping on the subspace of all differences of elements of this
cone, and then extended to the whole spaceL2((0,1]×Sn−1);
we still denote this mapping byS. It follows that we may
write S(v) =

∫

(0,1] Tα([v]α)dα for certain linear mappingsTα:

L2(Sn−1)→ R
n, α ∈ [0,1], such that

∫

(0,1] Tα(A)dα = s(A) for
all A ∈ K n (we again identify the level sets[v]α with their
support functions).

We shall first show that the valuesTα(A), A∈ K n, depend
only on the Steiner centroid ofA for almost allα. Set

T ′
α(A) = Tα(A)−Tα({s(A)})+s(A)

for A ∈ K n, α ∈ [0,1], andS′(v) =
∫

(0,1] T
′

α([v]α)dα for v ∈

F n. ThenT ′
α({c}) = c for c∈ R

n andS′ is a Steiner centroid.
For all λ ∈ [0,1] andA∈ K n, we define a fuzzy setwλ,A ∈

F n by wλ,A(s(A)) = 1, wλ,A(x) = λ for all x∈ A \ {s(A)}, and
wλ,A(x) = 0 for all x∈ R

n\A. Thus[wλ,A]α = A for α ∈ (0,λ]
and[wλ,A]α = {s(A)} for α ∈ (λ,1]. For any fixedλ ∈ [0,1],
the functionK n → R

n, A 7→ S′(wλ,A) fulfils the assumptions



of Theorem 2.2, whenceS′(wλ,A) = s(A). From the definition
of S′, we obtain

s(A) = S′(wλ,A)

=
∫ λ

(0,1]
(Tα(A)−Tα({s(A)})+s(A)) dα

+
∫ 1

λ
s(A)dα

=

∫ λ

0
(Tα(A)−Tα({s(A)})) dα+s(A) ,

hence
∫ λ

0
(Tα(A)−Tα({s(A)})) dα = 0

for all λ∈ (0,1]. ThusTα(A) = Tα({s(A)}) almost everywhere
(w.r.t. α ∈ (0,1]).

For eachv ∈ F n, we define a functionσv : (0,1] → R
n by

σv(α) = s([v]α). We proved that

S(v) =

∫

(0,1]
Tα({s([v]α)})dα

=

∫

(0,1]
Tα({σv(α)})dα,

thusS(v) is fully determined byσv. The mappingσ
.
: v 7→ σv

can be associated to a linear mappingL2((0,1]×Sn−1)F →
(

L2((0,1])
)n

. We may expressS (considered as a linear map-
ping L2((0,1]×Sn−1)F → R

n) as the composition ofσ and
a mappingφ :

(

L2((0,1])
)n

→ R
n which is linear, too. Itsi-

th component,φi , is a linear functional which may be repre-
sented asφi( f ) =

∫

(0,1] f (α)µi(α)dα for some non-negative

function µi ∈ L2((0,1]) such that
∫

(0,1] µi(α)dα = 1. Due to
the invariance with respect to Euclidean isometries (in partic-
ular, to permutations of coordinates), allµi , i = 1, . . . ,n, must
be equal; they coincide to the functionµ from the theorem.2

5 Conclusion

In analogy to the crisp case we have called a function from
the spaceF n of standard fuzzy sets toRn a Steiner centroid if
it is invariant under Euclidean isometries, preserves addition,
and is continuous w.r.t. theL2-metric. Unlike in the crisp
case, there is more than one Steiner centroid, and we gave a
complete description of all Steiner centroids.

Two question remain for further research. The first one is a
serious mathematical one. Here, we considered theL2-metric
onF n. It is not unrealistic, but, as already became clear, te-
dious to describe Steiner centroids w.r.t. the other metricsF n

may be equipped with.
The second question concerns possible applications. If the

Steiner centroid should really be used, a decision must be
made which one to choose. It is at the moment not clear how
a particular choice can be motivated.
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