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Francesc Esteva1, Llúıs Godo1, Ricardo O. Rodriguez2, and

1 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain

{esteva,godo}@iiia.csic.es
2 Dept. of Computer Science, FCEN
University of Buenos Aires, Argentine

ricardo@dc.uba.ar

Abstract. In his seminal paper of 1991, Enrique H. Ruspini proposed
a similarity-based semantics for fuzzy sets and approximate reasoning
which has been extensively used by many other authors in various con-
texts. This brief note, which is our humble contribution to honor Rus-
pini’s great legacy, describes some of the main developments in the field
of logic that essentially rely on his ideas.

1 Introduction

Similarity is a notion relevant in the context of at least three cognitive tasks:
classification, case-based reasoning, and interpolation [1]. For classification tasks,
objects are put together in the same class when they are indistinguishable with
respect to some suitable criteria. Furthermore, case-based reasoning exploits the
similarity between already solved problems on the one hand and a new given
problem to be solved on the other hand, in order to build up a solution to
it. Finally, interpolation mechanisms estimate the value of a partially unknown
function at a given point of a space by exploiting the proximity or closeness of
this point to other points for which the value of the function is known.

It was Ruspini in [14] (cf. also [15]) who started the task of formalising
approximate reasoning underlying these and other cognitive tasks in a logi-
cal setting. He elaborated on the notion of fuzzy similarity, as suggested by
Zadeh’s theory of approximate reasoning [19]). According to the approach origi-
nally proposed by Ruspini to model fuzzy similarity-based reasoning, the set W
of interpretations or possible worlds was, in a first step, equipped with a map
S : W ×W 7→ [0, 1] supposed to fulfil the basic properties of fuzzy or graded
similarity:

Reflexivity: S(u, u) = 1 for all u ∈W
Separability: S(u, v) = 1 iff u = v, for all u, v ∈W
Symmetry: S(u, v) = S(v, u) for all u, v ∈W
⊗-Transivity: S(u, v)⊗ S(v, w) ≤ S(u,w) for all u, v, w ∈W



where ⊗ is a t-norm.
Reflexive and symmetric fuzzy relations are often called closeness relations,

while those further satisfying ⊗-transitivity are usually called ⊗-similarity rela-
tions. Sometimes, the name similarity relation is actually also used to denote ⊗-
similarity relations where⊗ = min. These latter min-similarity relations have the
remarkable property that their level cuts Sα = {(u, v) ∈W ×W | S(u, v) ≥ α},
for any α ∈ [0, 1], are equivalence relations. See Recasens’ monograph [11] for
any question related to fuzzy similarity relations.

The notion of similarity can be regarded as a dual to the notion of a gener-
alised (bounded) metric, in the sense that if S measures resemblance between
possible worlds, δ = 1−S measures how distant they are. Then the ⊗-transitivity
property corresponds to a generalised triangular inequality property for δ. In the
particular case of ⊗ being  Lukasiewicz t-norm, δ is a bounded metric, while δ
becomes an ultrametric when ⊗ = min.

Given the set of possible worlds or interpretations together with a fuzzy
similarity relation, Ruspini built up, in a second step, a basic framework to
define possibilistic structures and concepts by quantifying proximity, closeness,
or resemblance between pairs of (classical) logical statements. Since in classical
logic we may identify propositions with sets of worlds, this problem reduces to
the question how to extend a similarity between worlds to a measure of similarity
between sets of worlds. As is well-known in the case of metric spaces, a metric
between points does not univocally extend to a meaningful metric between sets
of points. Ruspini defined in [14] two measures,

IS(p | q) = inf
w|=q

sup
w′|=p

S(w,w′) and CS(p | q) = sup
w|=q

sup
w′|=p

S(w,w′),

called implication and consistency, which are the lower and upper bounds, re-
spectively, of the resemblance or proximity degree between p and q, from the
perspective of q. Actually, if one defines the fuzzy set approx(p) of worlds close
to those of p by the membership function

µapprox(p)(w) = sup{S(w,w′) | w′ |= p},

then we can write IS(p | q) = infw|=q µapprox(p)(w) and it becomes clear that
IS(p | q) is a measure of inclusion of the (crisp) set of q-worlds into the
(fuzzy) set approx(p) of worlds close to p. Similarly, we can write CS(p | q) =
supw|=q µapprox(p)(w) and thus CS(p | q) is a measure of intersection between
the set of q-worlds with the set of worlds close to p. Observe that, when the
propositional language contains finitely many propositional symbols only and q
is equivalent to a maximal consistent set of propositions, both measures coincide
because there is a unique world w such that w |= q.1

With the implication measures IS , Ruspini’s aim was to capture approximate
inference patterns related to the so-called generalised modus ponens. The value
of IS(p | q) provides the measure to what extent p is close to be true given q for

1 By an abuse of notation, in this case we will also write IS(p | w) or CS(p | w).



granted. In particular, when the similarity relation S is separating and the set
of worlds is finite then, IS(p | q) = 1 iff q |= p. Moreover, if S is ⊗-transitive, for
a t-norm ⊗, then IS is ⊗-transitive as well [14], i. e. the inequality

IS(r | p)⊗ IS(p | q) ≤ IS(r | q)

holds for any propositions p, q, and r. This property allows to formulate a kind
of generalized resolution rule:

from: IS(r | p) ≥ α and IS(p | q) ≥ β
infer: IS(r | q) ≥ α⊗ β.

On the other hand, the value of CS(p | q) provides the measure to what extent
p can be considered compatible with the available knowledge represented by q.
In particular, in the finite case and with S satisfying the separation property,
CS(p | q) = 1 iff q 6|= ¬p.

Implication and consistency measures have quite different properties, apart
from the fact that both IS and CS are reflexive, i.e., IS(p | p) = CS(p | p) = 1,
and non-decreasing in the first variable: i.e., if p |= r, then IS(p | q) ≤ IS(r | q)
and CS(p | q) ≤ CS(r | q). But w.r.t. to the second variable, IS is non-increasing
while CS keeps being non-decreasing. Moroever, unlike IS , CS is a symmetric
measure, i.e. CS(p | q) = CS(q | p), and it is not ⊗-transitive in general. On
the other hand, it is easy to show that, for a fixed proposition r, the measure
CS(· | r) is in fact a possibility measure [2] since the following identities hold
true:

(C1) CS(> | r) = 1
(C2) CS(⊥ | r) = 0
(C3) CS(p ∨ q | r) = max(CS(p | r), CS(q | r)).

The counterpart of the last property for implication measures is the following
one:

(I3) IS(p | q ∨ r) = min(IS(p | q), IS(p | r)),
(I3) is related to the so-called Left-or property of consequence relations. We will
return to this consideration in Section 2.

Note that conditional versions of the IS and CS measures were already con-
sidered by Ruspini in [14], and then further elaborated in [6] and [3] in order
to cast different forms of the generalized modus ponens inference pattern under
the frame of similarity-based reasoning.

All these seminal ideas of Ruspini have been very fruitful in the foundations
of approximate reasoning. In particular, one can find in the literature a number
of approaches addressing the formalisation of similarity-based reasoning from
a logical perspective. Due to space restrictions, in the rest of this short paper
we restrict ourselves to overview two main lines of developments in this area,
namely

– Graded similarity-based entailments, and
– Formalisations as conditional logics and as modal logics.



2 Graded similarity-based entailments

Let W be the set of of classical interpretations (or worlds) of a propositional
language. The rules of classical logic allows us to unambiguously decide whether
a given proposition p is true or false in each of the worlds. We write w |= p to
denote that p is true at w ∈W (or that w satisfies p, or that w is a model of p),
and w 6|= p to denote that p is false at w. In other words, each world partitions
the set of proposition into two classes: those that are true and those that are
false.

Assume now we have a ⊗-similarity relation S on the set W . This allows us to
be more fine-grained when classifying propositions, since even two propositions
are p and q can be both false at a given world w, it may be the case that w is
closer to the set of models of p than to those of q. In more precise terms, even if
w 6|= p and w 6|= q, it can be the case that

µapprox(p)(w) > µapprox(q)(w).

In such a case one can say that, in the world w, p is closer to be true than q, or
that p is more truthlike than q, in the sense of [10].

In the rest of this section, we will overview three different ways of how this
idea of having worlds more or less close to others cab be used in a logical setting
to introduce different kinds of graded similarity-based entailments [1, 7].

2.1 Approximate entailment

Given a ⊗-similarity relation S on the set W of classical interpretations of a
propositional language, one starts by defining for each α ∈ [0, 1] a (graded)
approximate satisfaction relation |=α

S , by stipulating for each w ∈W and propo-
sition p:

w |=α
S p iff there exists a model w′ of p which is α-similar to w,

i. e. such that w′ |= p and S(w,w′) ≥ α,
i. e. µapprox(p)(w) ≥ α.

If w |=α
S p we say that w is an approximate model (at level α) of p. The approx-

imate satisfaction relation can be extended over to an approximate entailment
relation in the usual way: a proposition p entails a proposition q at degree α,
written p |=α

S q, if each model of p is an approximate model of q at level α, that
is,

p |=α
S q iff w |=α

S q for all model w of p, i. e.
iff IS(q | p) ≥ α

Then p |=α
S q stands for “q approximately follows from p” and α is a level of

strength. Under this perspective p, together with the similarity relation S :
W × W → [0, 1] on the set of interpretations, represents an epistemic state
accounting for the factual information about the world. Then, we can know, not
only what are the consequences we can infer from p using classical reasoning,



but also those propositions which are approximate consequences of p, in the
sense that they are close to some other proposition which is indeed a classical
consequence of p.

The following properties characterise these graded entailment relations |=α
S ,

see [1]:

(1) Nestedness: if p |=α q and β ≤ α then p |=β q;
(2) ⊗-Transitivity: if p |=α r and r |=β q then p |=α⊗β q;
(3) Reflexivity: p |=1 p;
(4) Right weakening: if p |=α q and q |= r then p |=α r;
(5) Left strengthening: if p |= r and r |=α q then p |=α q;
(6) Left-Or: p ∨ r |=α q iff p |=α q and r |=α q;
(7) Right-Or: if r has a single model,

r |=α p ∨ q iff r |=α p or r |=α q.

The fourth and fifth properties are consequences of the transitivity property
(since q |= r entails q |=1 r) and express a form of monotonicity. The transitivity
property is weaker than usual and the graceful degradation of the strength of
entailment it expresses, when ⊗ 6= min, is rather natural. It must be noticed
that |=α does not satisfy the Right-And property, i. e. from p |=α q and p |=α r
it does not follow in general that p |=α q ∧ r. Hence the set of approximate
consequences of p in the sense of |=α will not be deductively closed. The Left-Or
shows how disjunctive information is handled, while the Right-Or reflects the
decomposability of the approximate satisfaction relation with respect to the ∨
connective only in the case the premise has a single model.

In the case where some (imprecise) background knowledge about the world is
known and described under the form of some proposition K (i.e. the actual world
is in the set of worlds satisfying K), then an approximate entailment relative to
K can be straightforwardly defined as

p |=α
S,K q iff p ∧K |=α

S q iff IS(q | p ∧K) ≥ α

See [1] for more details and properties of this derived notion of relative entail-
ment.

2.2 Proximity entailment

The above approximate satisfaction relation w |=α
S p can be also extended over

another entailment relation |≡S among propositions as follows: p |≡αSq holds
whenever each approximate model of p at a given level β is also an approximate
model of q but at a possibly lower level α⊗ β. Formally:

p |≡αS q holds iff for each w, w |=β
S p implies w |=α⊗β

S q

Now, p |≡αS q means “approximately-p entails approximately-q” and α is a level
of strength, or in other words, when worlds in the vicinity of p-worlds are also in
the vicinity (but possibly a bit farther) of q-worlds. This notion of entailment,



called proximity entailment in [1], also admits a characterization in terms of
another similarity-based measure

JS(q | q) = inf
w
{IS(p | w)⇒ IS(q | w)},

where ⇒ is the residuum of the (left-continuous) t-norm ⊗ and IS(p | w) =
supw′|=p S(w,w′). Indeed, one can easily check that p |≡αS q holds iff JS(q | p) ≥
α. This notion of approximate entailment relation can be easily made relative
to a context or background knowldge, described by a (finite) set of propositions
K, by defining

p |≡αS,K q iff for each w model of K, w |=β
S p implies w |=α⊗β

S q.

One can analogously characterize this entailment by a generalized measure JS,K ,
namely it holds that

p |≡αK,S q iff JK,S(q | p) = inf
w:w|=K

{IS(p | w)⇒ IS(q | w)} ≥ α.

The entailment |≡αS,K satisfies similar properties to those satisfied by |=α
S,K .

Characterizations of both similarity-based graded entailments in terms of these
properties are given in [1]. It is also shown there that |≡αS and |=α

S actually
coincide, i. e. when there is no background knowledge K, or equivalently when
K is a tautology. However, when K is not a tautology, |=α

S,K is generally stronger

than |≡αS,K .

2.3 Strong entailment

Finally, the notion of graded satisfiability w |=α
S p, can be also used for sup-

porting an strong entailment relation with the following intended meaning: a
proposition p strongly entails a proposition q at degree α, written p |≈αS q, if
each approximate model of p at level α is a model of q that is,

p |≈αS q iff, for all w, w |=α
S p implies w |= q

This stronger form of entailment is a sort of dual of the approximate entail-
ment, as it denotes a notion of entailment that is robust to small (up to level α)
deformations of the antecedent, while still entailing the consequent. In a simi-
lar way the approximate entailment was linked to the implication measure IS ,
this strong graded entailment is related to the consistency measure CS , in the
following way:

p |≈αS q iff CS(¬q|p) < α

by assuming the language is finitely generated and α > 0. Moreover, a charac-
terization of this strong entailment in terms of some nice properties are given in
[7].



3 Logical formalisations

3.1 Conditional-like logics of graded approximate and strong
entailments

In a series of papers [7, 16, 18, 17], the authors have been concerned with logics to
reason about graded entailments. Graded approximate and strong entailments
are taken as primitive objects of a propositional language. Let us briefly describe
here the main features of the Logic of Approximate Entailment (LAE) from [7].

The basic building block of LAE are graded implications of the form

φ >α ψ

where φ, ψ are propositional formulas and α belongs to a suitable scale of simi-
larity values. The set of similarity values is endowed with a monoidal operation
⊗, which in case of the real unit interval is a t-norm. Furthermore, the language
of LAE is built up from graded implications and constants ⊥, > by means of
the classical binary operators ∧ and ∨ and the unary operator ¬.

The semantics is the expected one: models are pairs 〈M, e〉, where
M = (W,S) is a similarity space, e is an evaluation that maps propositional
formulas into subsets of W , interpreting ∧,∨,¬ by set intersection, union and
complementation, respectively. Given a similarity space M , the satisfaction
of a formulas by an evaluation e is inductively defined as follows. For graded
implications, one defines:

〈M, e〉 |= ϕ >α ψ if e(ϕ) ⊆ Uα(e(ψ)),

where, for each A ⊆ W , Uα(A) = {w ∈ W | S(w,w′) ≥ α, for some w′ ∈ A} is
the α-neighbourhood of A. Moreover, if Φ is a Boolean combination of graded
implications, 〈M, e〉 |= Φ is defined in accordance with the rules of classical
propositional logic (CPL).

This gives rise to the following notion of logical consequence: for each subset
of LAE-formulas T ∪ {Φ},

T |=LAE Φ if, for any similarity space M = (W,S) and any evaluation e,
〈M, e〉 satisfies all formulas of T , then it also satisfies φ.

In the finitary case, i.e., when the propositional formulas are built up from
a finite set of propositional variables, the logic LAE defined in [7] is the system
consisting of the following axioms and rule:

(A1) φ >1 ψ, if φ→ ψ is a tautology of CPL

(A2) (φ >α ψ)→ (φ >β ψ), where α ≥ β

(A3) ¬(ψ >1 ⊥)→ (φ >0 ψ)

(A4) (φ >α ⊥)→ (φ >1 ⊥)



(A5) (φ >α χ) ∧ (ψ >α χ) → (φ ∨ ψ >α χ)

(A6) (φ >1 ψ)→ (φ ∧ ¬ψ >1 ⊥)

(A7) (φ >α ψ) ∧ (ψ >β χ)→ (φ >α⊗β χ)

(A8) ¬(δ >1 ⊥)→ ((δ >α ε) → (ε >α δ)), with δ, ε m.e.c.’s

(A9) (ε >α φ ∨ ψ) → (ε >α φ) ∨ (ε >α ψ), with ε a m.e.c.

(A10) LAE-formulas obtained by uniform replacements of variables in CPL-
tautologies by LAE graded conditionals

(MP) Modus Ponens

Here, m.e.c. means maximal elementary conjunction, i.e., a conjunction where
every variable appears, either in positive or negative form. It turns out that, as
proved in [7], this axiomatic system provides a sound and complete axiomatisa-
tion of the semantic |=LAE .

In [16, 17], we have proposed a simplified proof system for a variant of LAE.
Namely, we have focused on the case of ⊗-similarity relations, where ⊗ is the
product t-norm. The concept of an m.e.c., which occurs in axioms (A8) and
(A9) and plays an essential role in the above approach, could be dropped. The
notion of an α-neighbourhood of a set A is in this context to be slightly adapted:
Uα(A) = {w ∈ W | S(w,A) ≥ α}, where S(w,A) = supa∈A S(w, a). Consider
the axioms and rule (A1), (A2), (A4), (A5), (A7), and (MP), as well as

(A11) (φ >1 ψ)→ (φ ∧ χ >1 ψ ∧ χ)

A proposition Φ is valid in the logic of approximate reasoning based on the
product t-norm if and only if Φ is provable by means of the indicated axioms
and rule.

The proof of this completeness theorem is involved and consists of two parts.
In [16], we have shown a similar statement but without the assumption that
the similarity relation is symmetric, and we have represented proofs by weighted
directed forests. In [17], we have established that spaces based on a possibly
non-symmetric similarity relation can, in a certain sense, be embedded into a
space based on a similarity relation in the usual sense. Both results combined
lead to the completeness theorem mentioned.

The logic LAE has been further developed in a different direction in [18]
to account for additional nice features the approximate entailment has when
assuming the language talks about properties on (products of) linearly ordered
domains.

Finally, it is worth mentioning that similar syntactical characterisations
for strong and proximity entailments can be envisaged. Indeed, in [7] a logic
of graded strong entailment, called LSE, is introduced by considering similar
graded conditionals ϕ �α ψ with the following semantics:



〈M, e〉 |= ϕ �α ψ if Uα(e(ϕ)) ⊆ e(ψ),

As for the proximity entailment, in [8] a corresponding logic with graded condi-
tionals ϕ�α ψ is also introduced with a somewhat more involved semantics:

〈M, e〉 |= ϕ�α ψ if ∀β : Uβ(e(ϕ)) ⊆ Uα⊗β(e(ψ)).

3.2 Modal logic connections

In his original work, Ruspini mentions the use of modal concepts to explain
his similarity-based possibilistic structures but he never studied in detail the
underlying modal logics. In fact, this was done in the Rodriguez’s PhD thesis [12]
following his suggestion, and also reported in [5, 4, 8]. In this section we want to
summarise the main results which appear there. According to Ruspini’s intuition,
it makes sense to consider a modal approach to similarity-based reasoning based
on Kripke structures of the form

M = (W,S, e),

where W is a set of possible worlds, S : W ×W → [0, 1] a similarity relation
between worlds, and e a classical two-valued truth assignment of propositional
variables in each world e : W × Var → {0, 1}. Then, for each α ∈ [0, 1] one can
consider the α-cut of S, Sα = {(w,w′) ∈ W ×W | S(w,w′) ≥ α}, as a classical
accessibility relation on W×W , which gives meaning to a pair of dual possibility
and necessity modal operators 3α and 2α:

(M,w) |= 3αϕ if there is w′ ∈W s.t. (w,w′) ∈ Sα and (M,w′) |= ϕ.

This defines in fact, a multi-modal logical framework (with as many modali-
ties as level cuts in the similarity relations). Such a multimodal logic setting is
systematically developed in [5].

Note that, if W is the set of classical interpretations of a propositional lan-
guage L, then the above notion of modal satisfiability for the possibility operators
3α captures precisely the notion of approximate satisfiability considered in Sec-
tion 2, in the sense that, for any non-modal proposition p, (M,w) |= 3αp holds
iff w |=α

S p holds. Moreover, as already intuitively pointed out by Ruspini in [14],
the approximate entailment p |=α

S q can also be captured by the formula

p→ 3αq,

in the sense that p |=α
S q holds iff p→ 3αq is valid in M = (W,S, e). Analogously,

the strong entailment p |≈αS q can be captured by the formula

3αp→ q.

As for the proximity entailments |≡αS , recall that p |≡αS q holds iff for all

w ∈ W and for all β, w |=β
S p implies w |=α⊗β

S q. Therefore, it cannot be



represented in the multi-modal framework unless the similarity relations are
forced to have a fixed, predefined set G of finitely-many different levels, say
{0, 1} ⊆ G ⊂ [0, 1]. In that case, the validity of the formula∧

β∈G

3αp→ 3α⊗βq

in the model (W,S, e) is equivalent to the entailment p |≡αS q. Obviously,
when G is not finite, for instance when G = [0, 1], this representation is not
suitable any longer. However, the underlying modal logic can still be formalised
by introducing further modal operators accounting for the open cuts of the
similarty relation in the models, that is considering the operators 3c

α and 3o
α

for each rational α ∈ G ∩Q with the following semantics :

(M,w) |= 3c
αϕ if IS(ϕ | w) ≥ α,

(M,w) |= 3o
αϕ if IS(ϕ | w) > α.

Obviously, when G is finite, 3c
α and 3o

α are interdefinible. In any case,
different multimodal systems can be axiomatized as it is shown in [5, 8].

4 Conclusions and Dedication

This paper is an homage to Enrique H. Ruspini, an excellent researcher and
better person. It is a brief summary of some developments in the research field of
similarity-based approximate reasoning models and their logical formalisations,
where his inspiring ideas have been very fruitful and decisive. The authors had
the chance to enjoy his friendship and share with him many interesting scientific
discussions.
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