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1 Introduction

Partially ordered monoids are structures occurring in several fields of mathe-
matics and computer sciences, in particular in logic. Indeed, in non-classical
logic, the canonical set of truth values is often endowed with a binary opera-
tion making this set into a partially ordered monoid. The monoidal operation
then corresponds to the conjunction. Moreover, in fuzzy logic the partially or-
dered semantics can be represented by linear ones and often the top element
is the monoidal identify. The resulting structures are negative totally ordered
monoids.

In this contribution, we focus on finite structures as they may be used, e.g.,
in finite-valued fuzzy logics. We note that, under the additional assumption of
commutativity, the structures that we consider can be identified with linearly
ordered finite MTL-algebras; MTL-algebras are in turn the algebraic counterpart
of the fuzzy logic MTL [3].

Further, this contribution can be seen as a practical appendix to our previ-
ous paper [9] which has yielded a method to describe all the one-element Rees
coextensions of a given finite, negative, totally ordered monoid (shortly a f.n. to-
monoid) S, that is, all the f.n. tomonoids greater by one element such that S
is their common Rees quotient. This way, starting from the trivial monoid, one
can generate all the possible f.n. tomonoids up to a given finite size. While the
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cited paper has been focused on describing the coextensions and giving a proof
that all the existing f.n. tomonoids are necessarily obtained this way, this paper
intends to give a practical description of the algorithm that produces the tomo-
noids. This paper can be also viewed as a continuation of our previous result [7]
where we have, however, dealt with the Archimedean case only.

2 Basic notions

We begin with an introduction of the basic notions of the paper. A monoid is
an algebra (S;�, 1) of the type 〈2, 0〉 such that (a � b) � c = a � (b � c) and
a � 1 = 1 � a = a for every a, b, c ∈ S. A total (linear) order 6 on a monoid S
is called compatible if a 6 b implies both a � c 6 b � c and c � a 6 c � b for
every a, b, c ∈ S. In such a case, we call (S;6,�, 1) a totally ordered monoid or a
tomonoid, for short. We also say that � is monotone with respect to 6. Further,
S is called commutative if a � b = b � a for every a, b ∈ S. Finally, S is called
negative (also integral) if 1 is the top element.

This paper is focused mainly on finite, negative, totally ordered monoids
which we abbreviate by “f.n. tomonoids”. In general, we do not assume the
monoids to be commutative [4], although, we deal with the commutativity, as
well. The smallest monoid that consists of the monoidal identity 1 alone, is called
the trivial tomonoid.

3 Level set representation of tomonoids

We do not work with f.n. tomonoids directly but we rather work with their level
set representations. In the sequel, by S2 we denote the cartesian product of the
set S with itself, i.e., S2 = S × S.

Let (S;6,�, 1) be a tomonoid. For two pairs (a, b), (c, d) ∈ S2 we define

(a, b) ∼ (c, d) iff a� b = c� d

and we call ∼ the level equivalence associated with S.

Let (S;6) be a totally ordered set. By P we denote the componentwise order
on S2, i.e., for every a, b, c, d ∈ S, we put

(a, b) P (c, d) iff a 6 b and c 6 d.

Let 1 ∈ S and let ∼ be an equivalence on S2 such that the following holds:

(P1) For every a, b, c, d, e ∈ S, (a, b)∼ (1, d) and (b, c)∼ (1, e) imply (d, c)∼ (a, e).
(See an illustration in Figure 1-left.)

(P2) For every a, b ∈ S there is exactly one c ∈ S such that (a, b)∼ (1, c)∼ (c, 1).

(P3) For every a, b, c, d, a′, b′, c′, d′ ∈ S, (a, b) ∼ (a′, b′) P (c, d) ∼ (c′, d′) P (a, b)
implies (a, b)∼ (c, d).
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Fig. 1. Left: Illustration of Property (P1). Consider two rectangles such that the
first one hits the upper edge and the second one hits the right edge. Assume that the
upper left, upper right, and lower right vertices are in the same level equivalence classes,
respectively. Then also the remaining lower left vertices are elements of the same level
equivalence class. This property is directly related to the associativity of the tomonoid
and corresponds with the Reidemeister condition known from web geometry [1, 2].
Right: Illustration of (E2). For every two pairs (a, b), (b, c) ∈ P we relate (a, e) ∼̇
(d, c).

Then we call (S2; P,∼, (1,1)) a tomonoid partition. The following two proposi-
tions show that tomonoids and tomonoid partitions are in a one-to-one corre-
spondence.

Proposition 1. [9] Let (S;6,�, 1) be a tomonoid and let ∼ be its level equiv-
alence. Then (S2; P,∼, (1,1)) is a tomonoid partition.

Proposition 2. [9] Let (S2; P,∼, (1,1)) be a tomonoid partition. For every a, b ∈
S, let a � b be given as the unique c such that (a, b) ∼ (1, c) ∼ (c, 1). Then
(S;6,�, 1) is the unique tomonoid such that (S2; P,∼, (1,1)) is its associated
tomonoid partition.

In the sequel, we will write (a, b)∼ c instead of (a, b)∼ (1, c)∼ (c, 1).

4 Rees quotients and coextensions

In this section we introduce the notion of a one-element coextension of a f.n. to-
monoid.

Let (S;6,�, 1) be a f.n. tomonoid. Its least element we call the zero (and we
denote it by 0), its second smallest element we call the atom (and we denote it
by α), and its second greatest element we call the coatom (and we denote it by
κ). Recall that 1 is the greatest element of S.

A tomonoid congruence on S is an equivalence relation ≈ on S such that



4 Milan Petŕık and Thomas Vetterlein

0

0

t

t

u

u

v

v

w

w

x

x

y

y

z

z

1

10 t u v w x y z 1

0 0 0 v w x y z z

0 0 0 v w w y y y

0 0 0 0 0 0 v x x

0 0 0 0 0 0 v w w

0 0 0 0 0 0 v v v

0 0 0 0 0 0 0 0 u

0 0 0 0 0 0 0 0 t

0 0 0 0 0 0 0 0 0

0

0

u

u

v

v

w

w

x

x

y

y

z

z

1

10 u v w x y z 1

0 0 v w x y z z

0 0 v w w y y y

0 0 0 0 0 v x x

0 0 0 0 0 v w w

0 0 0 0 0 v v v

0 0 0 0 0 0 0 u

0 0 0 0 0 0 0 0

0

0

v

v

w

w

x

x

y

y

z

z

1

10 v w x y z 1

0 v w x y z z

0 v w w y y y

0 0 0 0 v x x

0 0 0 0 v w w

0 0 0 0 v v v

0 0 0 0 0 0 0

0

0

w

w

x

x

y

y

z

z

1

10 w x y z 1

0 w x y z z

0 w w y y y

0 0 0 0 x x

0 0 0 0 w w

0 0 0 0 0 0

0

0

x

x

y

y

z

z

1

10 x y z 1

0 x y z z

0 0 y y y

0 0 0 x x

0 0 0 0 0

0

0

y

y

z

z

1

10 y z 1

0 y z z

0 y y y

0 0 0 0

0

0

z

z

1

10 z 1

0 z z

0 0 0

0

0

1

10 1

0 0

1

11

Fig. 2. Examples of f.n. tomonoids depicted by their Cayley tables. Seeing
the cells of a table as ordered pairs from S2, the level equivalence classes correspond
with the maximal sets of the cells with the same symbol. The depicted f.n. tomonoids
are actually created as one-element Rees quotients starting with the first f.n. tomonoid
of size 9. As we may observe, the one-element Rees quotient arises by “cutting off” the
column and the row indexed by the zero and by merging the zero and the atom classes
into one. Finally, we reach the trivial monoid.

1. ≈ is a congruence [5] of S as a monoid and

2. each equivalence class is convex.

The operation induced by � on the quotient 〈S〉≈ we denote again by �. For
a, b ∈ S, we define 〈a〉≈ 6 〈b〉≈ if a ≈ b or a < b. We may observe that
(〈S〉≈;6,�, 〈1〉≈) is a tomonoid again and we call 〈S〉≈ the tomonoid quotient
with respect to ≈. This procedure preserves the properties of finiteness, nega-
tivity, and commutativity.

We proceed with the notion of the Rees congruence which is commonly used
for semigroups [6]. Let q ∈ S. For a, b ∈ S we define a ≈q b if a = b or a, b 6 q.
Then ≈q is a tomonoid congruence and we call it the Rees congruence with
respect to q. We denote the corresponding quotient by S/q and we call it the
Rees quotient of S with respect to q. Furthermore, we call S a Rees coextension
of S/q. If moreover q = α, we call S/q the one-element Rees quotient of S
and we call S the one-element Rees coextension (or, shortly, the one-element
coextension) of S/q. See an illustration in Figure 2.
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5 Theorem

The algorithm we are going to present is based on a theorem [9] which we briefly
describe here. Let (S;6,�, 1) be a f.n. tomonoid. We denote S? = S r {0}. A
zero doubling extension of S is a totally ordered set S̄ = S? ∪̇ {0, α} such that
0 < α < a for every a ∈ S?. We call a ∈ S an idempotent if a�a = a. Obviously,
0 and 1 are idempotents of every f.n. tomonoid.

Let ∼1 and ∼2 be two equivalence relations on S2. We say that ∼2 is a
coarsening of ∼1 if ∼1 ⊆ ∼2, that is, if each equivalence class of ∼2 is a union
of some equivalence classes of ∼1.

Let (S; P,∼, (1,1)) be a f.n. tomonoid partition. Let S̄ be the zero doubling
extension of S. Define

P = {(a, b) ∈ S̄2 | a, b ∈ S?

and there is c ∈ S?such that (a, b)∼ c}, (1)

Q = S̄2 r P. (2)

Let (εl, εr) be a pair of non-zero idempotents of S and let ∼̇ be the smallest
equivalence relation on S̄2 such that the following conditions hold:

(E1) We have (a, b) ∼̇ (c, d) for every (a, b), (c, d) ∈ P such that (a, b)∼ (c, d).
(E2) We have (d, c) ∼̇ (a, e) for every (a, b), (b, c) ∈ P and (d, c), (a, e) ∈ Q such

that (a, b)∼ d and (b, c)∼ e. (See an illustration in Figure 1-right.)
(E3’a) We have (a, e) ∼̇ 0 for every a, b, c, e ∈ S? such that (a, b) ∈ Q, (b, c)∼ e, and

c < εr.
Furthermore, we have (d, c) ∼̇ 0 for any a, b, c, d ∈ S? such that (b, c) ∈ Q,
(a, b)∼ d, and a < εl. (See an illustration in Figure 3-left.)

(E3’b) We have (a, e) ∼̇ (a, b) for every a, b, c, e ∈ S? such that (a, b) ∈ Q, (b, c)∼ e,
and c ≥ εr.
Furthermore, we have (d, c) ∼̇ (b, c) for every a, b, c, d ∈ S? such that (b, c) ∈
Q, (a, b)∼ d, and a ≥ εl. (See illustrations in Figures 4-left and 4-right.)

(E3’c) We have (a, b) ∼̇0 for every a, b, c > 0 such that (a, b), (b, c) ∈ Q, a < εl, and
c ≥ εr.
Furthermore, we have (b, c)∼̇0 for every a, b, c > 0 such that (a, b), (b, c) ∈ Q,
a ≥ εl, and c < εr. (See an illustration in Figure 3-right.)

(E4’a) We have (1, 0) ∼̇ (0, 1) ∼̇ (a, α) ∼̇ (α, b) for every a < εl and b < εr.
Furthermore, we have (a, b) ∼̇ 0 for every (a, b), (c, d) ∈ Q such that (a, b) P
(c, d) ∼̇ 0.

(E4’b) We have (1, α) ∼̇ (α, 1) ∼̇ (εl, α) ∼̇ (α, εr).
Furthermore, we have (a, b) ∼̇ α for every (a, b), (c, d) ∈ Q such that (a, b) Q
(c, d) ∼̇ α.

We call the structure (S̄2; P, ∼̇, (1,1)) the (εl, εr)-ramification of (S2; P,∼, (1,1)).

Theorem 1. [9] Let (S; P,∼, (1,1)) be a f.n. tomonoid partition and let (εl, εr)
be a pair of its non-zero idempotents. Let (S̄2; P, ∼̇, (1,1)) be the (εl, εr)-ramification
of (S2; P,∼, (1,1)).
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Fig. 3. Left: Illustration of (E3’a). Let (a, b) ∈ Q, let c < εr, and let (b, c) ∼ e. If
(a, b) ∼̇ 0 then also (a, e) ∼̇ 0 according to the monotonicity. If (a, b) ∼̇α then (a, e) ∼̇ 0
according to (P1). Right: Illustration of (E3’c). Let (a, b), (b, c) ∈ Q, let c ≥ εr,
and let a < εl. Then (a, b) ∼̇ 0. Indeed, if we had (a, b) ∼̇α then, according to (P1), we
would also have (a, α) ∼̇ α which is a contradiction.

If (1, 0) ∼̇ (1, α) then there is no one-element coextension of S2 with respect
to (εl, εr). Otherwise, let ∼̄ be a coarsening of ∼̇ such that the following holds:
the ∼̄-class of each c ∈ S? coincides with the ∼̇-class of c, the ∼̄-class of 0
is downward closed, and each ∼̄-class contains exactly one element of the form
(1, c) for some c ∈ S̄. Then (S̄2; P, ∼̄, (1,1)) is a one-element coextension of S2

with respect to (εl, εr).
Moreover, all one-element coextensions of S2 with respect to (εl, εr), if there

are any, arise in this way.

6 Representation of f.n. tomonoids

The crucial part, when implementing the algorithm, was to choose a suitable
representation of the f.n. tomonoids (and the corresponding tomonoid parti-
tions). F.n. tomonoids can be naturally represented by two-dimensional arrays
representing their Cayley tables (see, e.g., Figure 2). However, this approach
has shown as unsuitable for the implementation. Performing the algorithm, we
mainly need to work with the level equivalence classes; we need, for example, to
add pairs to this classes or we need to merge two classes into one.

Therefore we have decided to represent a f.n. tomonoid (S;6,�, 1) as a
collection of level equivalence classes of pairs from S2. Such a collection forms a
partition of S2, i.e., every pair belongs to an (exactly one) equivalence class. Each
level equivalence class is either assigned to a unique value of the f.n. tomonoid
(which means that it must contain two pairs of the form (a, 1) and (1, a) where
a ∈ S) or it is “unassigned”. An “unassigned” class can be a singleton.
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Fig. 4. Illustration of (E3’b). Left: Let (a, b) ∈ Q, let c > εr, and let (b, c) ∼ e. If
(a, b) ∼̇α then, according to (P1), (a, e) ∼̇α, as well. Right: Let (a, b) ∈ Q, let c > εr,
and let (b, c)∼ e. If (a, b) ∼̇ 0 then, according to (P1), (a, e) ∼̇ 0, as well.

7 Methods

Two methods, that recursively call each other, have been implemented:

– a method that adds a pair (a, b) to a z-level equivalence class, we denote it
by (a, b) ∼̇ z,

– a method that relates a pair (a, b) with a pair (c, d), we denote it by (a, b) ∼̇
(c, d).

When implementing these two methods, it is first crucial that the transitivity of
∼̇ is preserved. That is, when we add a pair (a, b) to a certain level equivalence
class, we consequently need to add to the same class also all the pairs that are
already related to (a, b).

Second, it is important that the monotonicity of the constructed tomonoid
is not violated. This task is easier by the fact that (except for Part (E1), see
below) we work only with pairs that are assigned to 0, α, or unassigned. Thus,
when performing (a, b) ∼̇ z, z is either 0 or α. If z = 0 then we need to be sure
that also all the pairs lower that (a, b) are assigned to 0. If z = α we proceed
analogously for the pairs greater that (a, b). The details are described in the next
two subsections.

Method implementing (a, b) ∼̇ z

Recall that z is either 0 or α. We delete the whole level equivalence class con-
taining (a, b) and we add all the deleted pairs to the z-level equivalence class. If
z = 0 then for every pair (x, y) in the deleted class:
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– for every pair (u, v) ∈ Q such that (u, v) P (x, y):
• perform (u, v) ∼̇ 0.

If z = α then for every pair (x, y) in the deleted class:

– for every pair (u, v) ∈ Q such that (u, v) Q (x, y):
• perform (u, v) ∼̇ α.

If (a, b) is already contained in a y-level equivalence class and y 6= z an error is
emitted signalizing that the constructed coextension is not possible.

Method implementing (a, b) ∼̇ (c, d)

If both the pairs (a, b) and (c, d) belong to unassigned level equivalence classes,
we simply delete one of the classes and add all its pairs to the second one.

If one of the pairs, say (a, b), belongs to a z-level equivalence class (z is either
0 or α), we perform (c, d) ∼̇ z.

If (a, b) belongs to a z-level equivalence class and (c, d) belongs to a y-level
equivalence class then either y = z which means that both (a, b) and (c, d) belong
to the same level equivalence class and thus we do not perform anything, or y 6= z
which means that it is not possible to construct such a coextension. In the latter
case an error is emitted stopping the process.

8 Algorithm

Input:

– (S2; P,∼, (1,1)) . . . tomonoid partition of a f.n. tomonoid (S;6,�, 1)
– (εl, εr) . . . pair of its non-zero idempotents

Output:

– (S̄2; P, ∼̄, (1,1)) . . . a one-element coextension of (S2; P,∼, (1,1)) with re-
spect to (εl, εr)

Algorithm:

Initialization:

1. Let S̄ be the zero doubling extension of S.
2. Let 0, α, and κ be the zero, the atom, and the coatom of S̄, respectively. Let
P and Q be given by (1) and (2), respectively.

3. Let ∼̇ be an equivalence relation on S̄2. (The following steps are going to
define this relation.)

Part (E1):

4. For every (a, b), (c, d) ∈ P:



Algorithm to generate finite negative tomonoids 9

– define (a, b) ∼̇ (c, d)
if (a, b)∼ (c, d)∼ e for some e ∈ S̄ r {0, α}.

Part (E2):

5. For every (a, b), (b, c) ∈ P:
– let d ∈ S̄ be such that (a, b)∼ d,
– let e ∈ S̄ be such that (b, c)∼ e,
– perform (a, e) ∼̇ (d, c).

Part (E4’):

6. Perform (1, 0) ∼̇ (0, 1) ∼̇ 0.
7. Perform (a, α) ∼̇ (α, b) ∼̇ 0 for a < εl and b < εr.
8. Perform (εl, α) ∼̇ (α, εr) ∼̇ α.

Part (E3’a):

9. For every a ∈ S̄ such that α < a < εl:
– let b ∈ S̄ be the highest element such that (a, b) ∈ Q,
– let c ∈ S̄ be the highest element such that c < εr,
– let e ∈ S̄ be such that (b, c)∼ e,
– if e > α then perform (a, e) ∼̇ 0.

10. For every c ∈ S̄ such that α < c < εr:
– let b ∈ S̄ be the highest element such that (b, c) ∈ Q,
– let a ∈ S̄ be the highest element such that a < εl,
– let d ∈ S̄ be such that (a, b)∼ d,
– if d > α then perform (d, c) ∼̇ 0.

Part (E3’c):

11. For every a ∈ S̄ such that εl 6 a < 1:
– let b ∈ S̄ be the highest element such that (a, b) ∈ Q,
– let c ∈ S̄ be the highest element such that (b, c) ∈ Q and c < εr,
– perform (b, c) ∼̇ 0.

12. For every c ∈ S̄ such that εr 6 c < 1:
– let b ∈ S̄ be the highest element such that (b, c) ∈ Q,
– let a ∈ S̄ be the highest element such that (a, b) ∈ Q and a < εl,
– perform (a, b) ∼̇ 0.

Part (E3’b):

13. For every b ∈ S̄ such that α < b < 1:
– let e ∈ S̄ be such that (b, εr)∼ e,
– if e < b then:
• for every a ∈ S̄ s.t. α < a < εl and (a, b) ∈ Q:
∗ perform (a, e) ∼̇ (a, b).

14. For every b ∈ S̄ such that α < b < 1:
– let d ∈ S̄ be such that (εl, b)∼ d,
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– if d < b then:
• for every c ∈ S̄ s.t. α < c < εr and (b, c) ∈ Q:
∗ perform (d, c) ∼̇ (b, c).

Coarsening:

15. Let ∼̄ := ∼̇.
16. For every pair (a, b) ∈ S̄2, that belongs to an unassigned level equivalence

class, perform arbitrarily either (a, b) ∼̄ 0 or (a, b) ∼̄ α.

Remark 1. Let ϕ ∈ S be the lowest non-zero idempotent of S. In Step 5 we may
omit those pairs (a, b), (b, c) ∈ P where (a, b), (b, c) Q (ϕ,ϕ) since, in such a case,
(a, e), (d, c) ∈ P.

Remark 2. In order to obtain all the one-element coextensions of S we simply
repeat the procedure for every possible pair of its non-zero idempotents including
(1, 1). Furthermore, we create an additional coextension in the following way:

– Perform Steps 1 and 2.
– Perform (1, 0) ∼̄ (0, 1) ∼̄ 0.
– Perform (α, α) ∼̄ α.

9 Example

Let us perform the algorithm taking the first f.n. tomonoid of size 9 in Figure 2.
As we can see, it has three non-zero idempotents: y, z, and 1. We are going to
construct all the one-element coextensions with respect to (z, y).

– Initialization, Part (E1), and Part (E4’):
• We obtain the values depicted in Figure 5-a.

– Part (E3’a) (see Figure 5-b):
• Step 9:
∗ For (b, c) = (t, z) we perform (y, t) ∼̇ 0.
∗ For (b, c) = (u, z) we perform (y, u) ∼̇ 0.
∗ For (b, c) = (v, x) we perform (v, v) ∼̇ 0.
∗ For (b, c) = (w, x) we perform (v, w) ∼̇ 0.
∗ For (b, c) = (x, x) we perform (v, x) ∼̇ 0.
∗ For (b, c) ∈ {(y, u), (u, z)} we do not perform anything.

• Step 10:
∗ for (a, b) = (z, t) we perform (x, t) ∼̇ 0.
∗ for (a, b) = (z, u) we perform (x, u) ∼̇ 0.
∗ for (a, b) ∈ {(x, v), (x,w), (x, x), (u, y), (x, z)} we do not perform any-

thing.
– Part (E3’c) (see Figure 5-c):
• Step 11:
∗ For a = y we obtain b = u and c = y. Thus we perform (u, y) ∼̇ 0.
∗ For a = z we obtain b = u and c = y. Thus we perform (u, y) ∼̇ 0.
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Fig. 5. Illustration of the algorithm.

• Step 12:
∗ For c = z we obtain b = u and a = x. Thus we perform (x, u) ∼̇ 0.

– Part (E3’b) (see Figure 5-d):
• Step 13:
∗ For b = t we obtain e = α and we perform (a, α) ∼̇ (a, t) for every a

from α to x.
∗ For b = u we obtain e = α and we perform (a, α) ∼̇ (a, u) for every
a from α to x.

• Step 14:
∗ For b = t we obtain d = α and we perform (α, c) ∼̇ (t, c) for every c

from α to y.
∗ For b = u we obtain d = α and we perform (α, c) ∼̇ (u, c) for every c

from α to y.
∗ For b = x we obtain d = w and we perform (w, c) ∼̇ (x, c) for every
c from α to x.

∗ For b = z we obtain d = y and we perform (y, c) ∼̇ (z, c) for every c
from α to u.

– Part (E2) (see Figure 5-e):
• For a = x, b = y, and c = x perform (x,w) ∼̇ (v, x).
• For a = w, b = y, and c = x perform (w,w) ∼̇ (v, x).
• For a = v, b = y, and c = x perform (v, w) ∼̇ (v, x).
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• For a = x, b = y, and c = w perform (x,w) ∼̇ (v, w).
• For a = w, b = y, and c = w perform (w,w) ∼̇ (v, w).
• For a = x, b = y, and c = v perform (x, v) ∼̇ (v, v).
• For a = w, b = y, and c = v perform (w, v) ∼̇ (v, v).

– Finally, we obtain the situation depicted in Figure 5-f. As we can see, there
are three distinct one-element coextensions of the tomonoid.

10 Conclusion

All the steps of the algorithm run in a polynomial time (with respect to the size
of S) except for Step 16 where we, actually, obtain all the possible one-element
coextensions with respect to the given pair of idempotents (εl, εr). This step runs
in exponential time since also the number of the coextensions is exponential, in
the worst case.

If we wish to obtain all the commutative one-element coextensions of a com-
mutative f.n. tomonoid S, we simply perform (a, b) ∼̇ (b, a) for every (a, b) ∈ Q
right after Initialization.

The algorithm has been implemented and tested in the programming lan-
guage Python [8].
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