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Abstract

It is a well-known fact that MV-algebras, the algebraic counterpart
of ÃLukasiewicz logic, correspond to a certain type of partial algebras:
lattice-ordered effect algebras fulfilling the Riesz decomposition prop-
erty. The latter are based on a partial, but cancellative addition, and
we may construct from them the representing `-groups in a straight-
forward manner.

In this paper, we consider several logics differing from ÃLukasiewicz
logics in that they contain further connectives: the PÃL-, PÃL′-, PÃL′

4
-,

and ÃLΠ-logics. For all their algebraic counterparts, we characterise
the corresponding type of partial algebras. We moreover consider the
representing f-rings. All in all, we get three-fold correspondences: the
total algebras - the partial algebras - the representing rings.

1 Introduction

Although it is actually not easy to say why, it is a clear fact that the
ÃLukasiewicz logic belongs to those calculi which we encounter most fre-
quently among many-valued logics. For a review of recent research, see
e.g. [MaMu]. In the last years, several variants of this logic were defined;
in particular, the language of ÃLukasiewicz logic was enriched by further con-
nectives. For instance, the logics PÃL and PÃL′ from [HoCi] have an additional
connective expressing multiplication; the logic PÃL′

4
has, besides this multi-

plication, a 0-1 projector [Baa, HoCi]; and ÃLΠ is the logic combining both
ÃLukasiewicz and product logic [EsGo, EsGoMo].

In this article, we deal with the algebraic counterparts of exactly these log-
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ics. The logics PÃL, PÃL′, and PÃL′

4
were actually designed in a way that they

correspond to certain algebras; PMV-, PMV+-, and PMV4-algebras, which
were introduced by Montagna in [Mon1, Mon2, Mon3], were taken into ac-
count. These algebras, however, were renamed in [HoCi] in accordance with
the corresponding logics, and the new notations will also be adopted by us.
What we deal with are then the PÃL-, PÃL′-, and PÃL′

4
- algebras. Finally, also

ÃLΠ-algebras are included in the discussion.

We discuss here the interplay between these (total) algebras on the one hand
and the corresponding partial algebras on the other hand. Recall the situ-
ation for MV-algebras. MV-algebras may be understood as being based on
one total addition-like operation ⊕ and a unary complementation-like opera-
tion ∼. Now, we may, without loss of information, restrict the total addition
⊕ to a partial one +, which in contrast to the original one is cancellative,
and by which also the complementation is easily expressible. The resulting
structure – based on a partial addition – is called an effect algebra. Effect
algebras have been introduced in a different context, and are actually much
more general. The conditions characterising those effect algebras which arise
from MV-algebras are the following: they are lattice-ordered and they fulfil a
condition which is the analogue of the Riesz decomposition property known
for po-groups.

The partial structures are in general more difficult to deal with than with the
total ones. But first, we think that it is of interest to have singled out what
could be called the “cancellative part” of a total algebra, and to see that the
total algebra is reconstructible from the partial one. And second, note that
the representing po-groups, or po-rings, are easily constructable from the
partial structures. Namely, every MV-algebra L is the interval of an `-group
[Mun]; and this representing group is just the group freely generated by the
elements of L, subject to the condition a + b = c whenever this equation
holds for a, b, c ∈ L in the corresponding effect algebra.

We proceed as follows. All algebras under consideration are based on a total
addition and a product; the partial algebra counterpart is in all cases an
effect algebra endowed with a product as an additional operation. This case
was studied by Dvurečenskij in [Dvu], where product effect algebras were
introduced. We determine the exact properties of the particular product
effect algebras which we have under consideration, properties which are not
always purely algebraic, but in all cases related to known ones.

PÃL-, PÃL′-, PÃL′

4
-, and ÃLΠ-algebras are furthermore representable by partially

ordered rings, which are constructible just like in the case of MV-algebras.
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Namely, we get f-rings from PÃL-algebras and torsion-free f-rings from PÃL′-
algebras [Mon1]. Moreover, we characterise the rings arising from PÃL′

4
-

algebras by a property called strict comparability, an analogue of the general
comparability from Goodearl [Goo]. The difficulty to characterise the rings
arising from ÃLΠ-algebras was pointed out by Montagna [Mon1]; we propose
here a property requiring divisibility w.r.t. the multiplication for a certain
class of elements.

A schematic summary of the article can be found at the end.

2 MV-algebras

Subject of this paper are the partial algebras and f-rings corresponding to
PÃL-, PÃL′-, PÃL′

4
-, and ÃLΠ-algebras. The logics to which they belong all

contain ÃLukasiewicz logic; this is why all the four types of algebras may be
understood as MV-algebras enriched by certain further operations.

So in a first step, we recall some basic facts about MV-algebras. A general
reference for ÃLukasiewicz logic and MV-algebras is [CiOtMu]. Axioms which
are more standard than those used here can also be found there.

Definition 2.1 An MV-algebra is a structure (L;≤,⊕,∼, 0, 1) with the fol-
lowing properties:

(MV1) (L;≤, 0, 1) is a lattice with the smallest element 0 and the largest
element 1.

(MV2) (L;⊕, 0) is a commutative semigroup with neutral element 0.

(MV3) a ≤ b implies a ⊕ c ≤ b ⊕ c for all a, b, c.

(MV4) ∼ is an involutive, order-reversing unary operation.

(MV5) a ∨ b = (a ª b) ⊕ b for all a, b, where

a ª b
def
= ∼(∼a ⊕ b). (1)

Note that MV-algebras are naturally ordered: we have a ≤ b iff a ⊕ x = b

for some x ∈ L.
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We will use the following the additional operations on MV-algebras:

a ⊗ b
def
= ∼(∼a ⊕∼b),

a ⇒ b
def
= ∼a ⊕ b. (2)

⊗ and ⇒ then make an MV-algebra L a residuated lattice; for a, b, c ∈ L,
we have

a ⊗ b ≤ c iff a ≤ b ⇒ c. (3)

The following is the key definition used in this paper; it tells how to associate
with some MV-algebra’s total addition a partial one. It is meant to be
applicable also to any algebra whose reduct is an MV-algebra.

Definition 2.2 Let (L;≤,⊕,∼, 0, 1) be an MV-algebra. We define the par-
tial operation + on L as follows: For a, b ∈ L, let a + b = a ⊕ b if a is the
smallest element x such that x ⊕ b = a ⊕ b and b is the smallest element y

such that a ⊕ y = a ⊕ b; else, we let a + b undefined. We call + the natural

partial addition on L.

The usual way to express the partial + by the total ⊕ is as follows; see e.g.
[DvPu].

Proposition 2.3 Let (L;≤,⊕,∼, 0, 1) be an MV-algebra and + the natural

partial addition on L. Then a + b is defined if and only if a ≤ ∼b.

Effect algebras arose in a completely different context than MV-algebras;
they were once introduced to model the internal structure of the unit interval
of the po-group of self-adjoint operators of a Hilbert space [FoBe].

Note that, in contrast to the usual definition, we treat here the partial order
of an effect algebra as an own relation. For more information about effect
algebras see [DvPu].

Definition 2.4 An effect algebra is a structure (L;≤, +, 0, 1) with the fol-
lowing properties:

(E1) (L;≤, 0, 1) is a poset with a smallest element 0 and a largest element
1.

(E2) + is a partial binary operation such that for any a, b, c
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(a) (a + b) + c is defined iff a + (b + c) is defined, and in this case
(a + b) + c = a + (b + c);

(b) a + b is defined iff b + a is defined, and in this case a + b = b + a.

(c) a + 0 is always defined and equals a;

(d) a + b = a + c implies b = c.

(E3) a ≤ b if and only if b = a + x for some x.

We say that an effect algebra (L;≤, +, 0, 1)

(i) is lattice-ordered if (L;≤) is a lattice;

(ii) fulfils the Riesz decomposition property, or (RDP) for short, if for all
a, b, c, d such that a + b = c + d there are e1, e2, e3, e4 such that the
scheme

e1 e2 → a

e3 e4 → b

↓ ↓
c d

(4)

holds. Here, by the scheme (4) to hold, we mean that any of the
square’s column or line adds to what the arrow points to.

An effect algebra which is lattice-ordered and fulfils (RDP), is called an
MV-effect algebra.

In view of (E3) and (E2)(d), for any a, b such that a ≤ b there is a unique x

such that a + x = b; we will denote this element by b − a. Furthermore, we
set ∼a = 1 − a.

In the sequel, any equation involving partial operations reads as usual: It
means that all terms are defined and the equation holds.

MV-algebras and MV-effect algebras are related as follows. This connection
is, in a slightly modified form, due to [ChKo].

Theorem 2.5 Let (L;≤,⊕,∼, 0, 1) be an MV-algebra and + the natural

partial addition on L. Then (L;≤, +, 0, 1) is an MV-effect algebra. We then

have for a, b ∈ L

a ⊕ b = a + (b ∧ ∼a), (5)

∼a = the unique x such that a + x = 1. (6)
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Every MV-effect algebra arises in this way from a unique MV-algebra.

We note that the transition from a total addition to a partial one without
loss of information is possible not only for MV-algebras, but also for other
algebras arising in fuzzy logics, in particular for (the duals of) BL-algebras
[Vet].

The typical examples of effect algebras arise from partially ordered groups.

Definition 2.6 A unital `-group is a structure (G;≤, +, 0, u) such that (G;≤
, +, 0) is an `-group and u ∈ G+ is a strong unit for G.

Let (G;≤, +, 0, u) be a unital abelian `-group. We then call G[0, u]
def
= {g ∈

G: 0 ≤ g ≤ u} the unit interval of G. Define + on G[0, u] as the restriction
of the group addition to those pairs of elements whose sum is below u. Then
(G[0, u];≤, +, 0, u) is a called the effect algebra arising from G.

Proposition 2.7 Let (G[0, u];≤, +, 0, u) be the effect algebra arising from

some unital abelian `-group G. Then G[0, u] is an MV-effect algebra.

There is at least one good reason to switch from an MV-algebra to an MV-
effect algebra: The `-group representing the MV-algebra may be described
in a very simple way. Whereas the fact that MV-algebras all arise from
intervals of abelian `-groups is due to Mundici [Mun], the construction of a
po-group from an effect algebra was proposed by Ravindran [Rav]. We will
describe here the procedure shortly because we have to refer to it in later
proofs.

Theorem 2.8 Let (L;≤, +, 0, 1) be an MV-effect algebra. Then L is the

effect algebra arising from the unit interval of some unital abelian `-group

(G(L);≤, +, 0, u).

The unital `-group G(L) is by L uniquely determined. Moreover, every unital

`-group is of the form G(L) for a unique MV-effect algebra L.

Proof (outlined). Let (W(L); +) be the commutative semigroup freely gen-
erated by the elements of L, subject to the conditions a = b + c whenever
this equation holds between elements a, b, c from L. The canonical embed-
ding of L into W(L) is then injective, whence we may consider L as a subset
of W(L). (W(L); +, 0) is a commutative, cancellative semigroup with the
neutral element 0 and with the property that a + b = 0 implies a = b = 0.
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Moreover, by setting a ≤ b in case a + c = b for some c, W(L) becomes a
lattice-ordered semigroup, which has the smallest element 0. We may now
identify the interval W(L)[0, 1], together with the operation + wherever per-
formable and the constants 0 and 1, with the effect algebra (L;≤, +, 0, 1).

By [Fuc, II, Theorem 4], W(L) is the positive cone of some po-group G(L),
which then is also lattice-ordered. 2

In the sequel, we will, as in this proof, identify any MV-effect algebra L rep-
resented by a unital `-group (G(L);≤, +, 0, u) always with the unit interval
of G(L), that is, we will assume L = G(L)[0, u].

We summarize that there is a one-to-one correspondence between MV-alge-
bras, MV-effect algebras and unital abelian `-groups. We note that MV-
algebras and unital abelian `-groups even form equivalent categories [Mun].

3 PÃL- and PÃL
′-algebras

The logics PÃL and PÃL′ were introduced by Horč́ık and Cintula [HoCi]. They
extend ÃLukasiewicz logic, and they contain a further, multiplication-like con-
nective ¯. The algebras belonging to PÃL and PÃL′ are Montagna’s PMV- and
PMV+-algebras, respectively [Mon1, Mon3]. We will, however, use the ter-
minology of [HoCi], so as to have for the algebras and the corresponding
logics the same names.

Definition 3.1 A PÃL-algebra is a structure (L;≤,⊕,¯,∼, 0, 1) with the
following properties:

(PL1) (L;≤,⊕,∼, 0, 1) is an MV-algebra.

(PL2) (L;¯, 1) is a commutative semigroup with neutral element 1.

(PL3) For a, b, c such that b ≤ ∼c, we have

a ¯ (b ⊕ c) = (a ¯ b) ⊕ (a ¯ c).

Moreover, a PÃL′-algebra is a PÃL-algebra such that:

(PL4) For any a, a ¯ a = 0 implies a = 0.
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In [HoCi], distributivity of ¯ over ª is postulated rather than over ⊕; note
from the following lemma that this makes no difference. Recall that ª is
defined by (1).

Lemma 3.2 A structure (L;≤,⊕,¯,∼, 0, 1) is a PÃL-algebra if and only if
(PL1), (PL2), and (PL4) hold as well as:

(PL3’) For any a, b, c, we have

a ¯ (b ª c) = (a ¯ b) ª (a ¯ c). (7)

Proof. Assume that L is a PÃL-algebra. Note first that a ¯ (b ∨ c) = a ¯
[((b ∧ c) ⊕ (b ª c)) ∨ ((b ∧ c) ⊕ (c ª b))] = a ¯ ((b ∧ c) ⊕ (b ª c) ⊕ (c ª b)) =
(a ¯ (b ∧ c)) ⊕ (a ¯ (b ª c)) ⊕ (a ¯ (c ª b)) = [(a ¯ (b ∧ c)) ⊕ (a ¯ (b ª c))] ∨
[(a ¯ (b ∧ c)) ⊕ (a ¯ (c ª b))] = (a ¯ b) ∨ (a ¯ c).

So we may conclude (a¯ (bª c))⊕ (a¯ c) = a¯ (b∨ c) = (a¯ b)∨ (a¯ c) =
((a ¯ b) ª (a ¯ c)) ⊕ (a ¯ c), which implies (PL3’).

Conversely, assume (PL1), (PL2), (PL3’), and (PL4) to hold. Note that ¯
is then isotone. If now b ≤ ∼c, we have (b⊕ c)ª c = b, hence (a¯ (b⊕ c))ª
(a ¯ c) = a ¯ b, and (PL3) follows. 2

When we now restrict the total operation of a PÃL-algebra to a partial one,
just like in the case of MV-algebras, we arrive at effect algebras with one
further operation, ¯. In [Dvu], product effect algebras were introduced,
which fit exactly into the present context. Product effect algebras, however,
are more general structures than those we will define now; see the remark
below.

Definition 3.3 An f-product effect algebra is a structure (L;≤, +,¯, 0, 1)
with the following properties:

(PE1) (L;≤, +, 0, 1) is an MV-effect algebra.

(PE2) (L;¯, 1) is a commutative semigroup with neutral element 1.

(PE3) For a, b, c such that b + c is defined, also (a ¯ b) + (a ¯ c) is defined,
and

a ¯ (b + c) = (a ¯ b) + (a ¯ c).

Moreover, an f-product effect algebra is called torsion-free if, for all a, a¯a =
0 implies a = 0.
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Remark 3.4 A product effect algebra according to [Dvu] is a structure
(L;≤, +,¯, 0, 1) such that (L;≤, +, 0, 1) is an effect algebra and ¯ dis-
tributes over + from both sides. So lattice order, (RDP), and the axiom
(PL2) is what is assumed more here.

In later sections, we need the following facts.

Lemma 3.5 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra.

(i) For any a, b, c ∈ L, a ≤ b implies a ¯ c ≤ b ¯ c.

In particular, for any a, c we have a ¯ c ≤ a.

(ii) For any a, b, c ∈ L, (a ∧ b) ¯ c = (a ¯ c) ∧ (b ¯ c) and (a ∨ b) ¯ c =
(a ¯ c) ∨ (b ¯ c).

(iii) L is torsion-free if and only if, for any a and any k ≥ 1, ak = 0 implies

a = 0. Here, ak def
= a ¯ . . . ¯ a

︸ ︷︷ ︸

k times

.

(iv) If L is torsion-free, then a ¯ b = 0 implies a ∧ b = 0.

Proof. (i) If a ≤ b, we may multiply a + (b − a) = b by c on both sides.

(ii) Let a′ = a − (a ∧ b) and b′ = b − (a ∧ b); then a′ ∧ b′ = 0. Note that
in lattice-ordered effect algebras, + distributes over ∧ if the involved sums
exist; so (a ¯ c) ∧ (b ¯ c) = [((a ∧ b) + a′) ¯ c] ∧ [((a ∧ b) + b′) ¯ c] =
[(a ∧ b) ¯ c] + [(a′ ¯ c) ∧ (b′ ¯ c)] = (a ∧ b) ¯ c, where we made use of (i) in
the last step.

This is the first part, from which the second part follows by a∨ b = a + [b−
(a ∧ b)].

(iii) By the second part of (i), ak = 0 for some a and k ≥ 1, implies ak′

for
some power k′ ≥ k of 2.

(iv) If a ¯ b = 0, then (a ∧ b) ¯ (a ∧ b) = 0 by (i), so a ∧ b = 0 if L is
torsion-free. 2

The basic correspondence between f-product effect algebras on the one hand
and PÃL-algebras on the other hand, is described next.
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Theorem 3.6 Let (L;≤,⊕,¯,∼, 0, 1) be a PÃL-algebra and + the natural

partial addition on L. Then (L;≤, +,¯, 0, 1) is an f-product effect algebra.

⊕, ∼ are reobtained by (5), (6).

Every f-product effect algebra arises in this way from a unique PÃL-algebra.

Under this correspondence, the PÃL′-algebras are exactly the torsion-free f-

product effect algebras.

Proof. This follows from Theorem 2.5 and is otherwise an easy check of the
respective axioms. 2

The typical examples of f-product effect algebras arise from partially ordered
rings. Note from the following definition that here all rings are assumed to
be commutative, associative, and with 1.

Definition 3.7 A ring is a structure (R; +,¯, 0, 1) such that (R; +, 0) is an
abelian group with neutral element 0, (R;¯, 1) is a commutative semigroup
with neutral element 1, and ¯ distributes over +.

A structure (R;≤, +,¯, 0, 1) is called a po-ring if (R; +,¯, 0, 1) is a ring and
≤ is a partial order such that (i) (R;≤, +, 0) is a po-group and (ii) a ≤ b

implies a¯ c ≤ b¯ c for c ≥ 0. R is called unital if in addition (R;≤, +, 0, 1)
is a unital po-group.

Moreover, an f-ring is a po-ring R such that (i) R is lattice-ordered and (ii)
a ∧ b = 0 implies (a ¯ c) ∧ b = 0 for any a, b, c ∈ R, c ≥ 0. A ring is called
torsion-free if it does not have any non-zero nilpotent element.

Let (R;≤, +,¯, 0, 1) be a unital f-ring. We again call R[0, 1]
def
= {g ∈

R : 0 ≤ g ≤ 1} the unit interval of R. Let (R[0, 1];≤, +,¯, 0, 1) be the
effect algebra arising from the unital `-group (R;≤, +, 0, 1), endowed with
the further operation ¯. Then R[0, 1] is a called the product effect algebra

arising from R.

Proposition 3.8 Let (R[0, 1];≤, +,¯, 0, 1) be a product effect algebra aris-

ing from some unital f-ring R. Then R[0, 1] is an f-product effect algebra.

In [Dvu], it is proved that any product effect algebra fulfilling (RDP) arises
from the interval of a po-group, in the sense of Definition 3.7. We give here a
version of this representation theorem adapted to the more special conditions
we have to do with here.
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Theorem 3.9 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra. Then

L is the product effect algebra arising from some unital f-ring (R(L);≤
, +,¯, 0, 1).

R(L) is by L uniquely determined. Moreover, every unital f-ring is of the

form R(L) for a unique f-product effect algebra L.

An f-product effect algebra is torsion-free if and only if so is the corresponding

f-ring.

Proof (first part summarized from [DiDv, Dvu]; for details, see there). As
in the proof of Theorem 2.8, let (W(L);≤, +, 0) be the semigroup freely
generated by L, subject to a + b = c if this holds in L, and let W(L) be en-
dowed with the natural order. Note that W(L) has the Riesz decomposition
property (RDP), understood in the obvious way.

Now, for any a, b ∈ W(L), set a¯b =
∑

i=1,...,m
j=1,...n

ai¯bj , where a = a1+. . .+am

and b = b1 + . . . + bn are written as sums of elements of L; using (RDP),
we see that ¯ is defined in this way unambigously. Then (W(L);¯, 1) is
a commutative semigroup with the neutral element 1; ¯ distributes over
+; and a ≤ b implies a ¯ c ≤ b ¯ c for all a, b, c ∈ W(L). In particular,
(W(L); +,¯, 0, 1) is, in the sense of [Fuc], a conic semiring.

By [Fuc, VI, Theorem 2], W(L) is the positive cone of some po-ring (R(L); +,

¯, 0, 1,≤). R(L) is then lattice-ordered, and, using (RDP), it is not difficult
to see that R(L) is even an f-ring. So the first statement of the theorem is
proved.

Concerning the second part, note that by Theorem 2.8, the unital `-group
underlying R(L) is uniquely determined by the effect algebra (L;≤, +, 0, 1),
and the operation ¯ is by distributivity uniquely determined by its restric-
tion to L. Moreover, from Proposition 3.8 and Theorem 2.8 we conclude
that all unital f-rings may be constructed, in the way shown, from its unit
intervals.

Assume now that L is torsion-free. For some a ∈ W(L), let ak = 0 for some
k ≥ 1. Write a = a1 + . . . + an as a sum of elements of L; by distributivity
and the fact that if in W(L) a sum is 0, all summands are 0, it follows ak

i = 0,
hence by Lemma 3.5(iii) ai = 0 for all i = 1, . . . , n; so a = 0.

Let now a ∈ R(L) such that ak = 0. We then have |a|k = |ak| = 0 by
[Bir, XVII,§5], thus |a| = 0 and a = 0. The proof is complete that nilpotent
elements in R(L) must be 0, that is, R(L) is torsion-free.

It is clear that if R(L) is torsion-free, then so is L. 2
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So there is one-to-one-correspondence (i) between PÃL-algebras, f-product
effect algebras, and unital f-rings, and (ii) between PÃL’-algebras, torsion-
free f-product effect algebras, and unital torsion-free f-rings.

4 PÃL
′
4-algebras

In [Baa], Baaz proposed a fuzzy logic whose language contains a unary con-
nective denoted by the symbol 4; when evaluating a formula’s truth value,
it maps all values from the real unit interval strictly smaller than 1 to 0,
and 1 itself to 1. PÃL′

4
is the logic which extends PÃL′ in that it contains the

additional connective 4, interpreted in the indicated way. For details, we
refer to [HoCi].

We note that it is surely also possible to extend the ÃLukasiewicz- of the PÃL-
logic by the Baaz 4-connective, to deal then with MV4- or PÃL4-algebras,
respectively. See the concluding remarks at the end of this paper.

The algebras corresponding to the logic PÃL′

4
are the following. They coincide

with Montagna’s PMV4-algebras [Mon2].

Definition 4.1 A PÃL′

4
-algebra is a structure (L;≤,⊕,¯,∼, 0, 1,4) such

that (L;≤,⊕,¯,∼, 0, 1) is a PÃL′-algebra and such that the following holds:

(PLb) 4 is a unary operation such that for any a, b

(a) 4a ≤ a,

(b) 44a = 4a,

(c) 41 = 1,

(d) 4a ∨ ∼4a = 1,

(e) 4(a ∨ b) = 4a ∨4b,

(f) 4(a ⊕ b) ≤ 5a ⊕4b,

where 5: L → L, a 7→ ∼4∼a.

We will further use the operations ⇒ and ⊗ defined according to (2). Note
that condition (PLb)(f) may also be written as

4(a ⇒ b) ≤ 4a ⇒ 4b (8)

for any a, b.
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Lemma 4.2 Let (L;≤,⊕,¯,∼, 0, 1,4) be a PÃL′

4
-algebra. Then for any

a, b ∈ L we have

(i) a = 4a if and only if a ∧ ∼a = 0.

(ii) a ⊗4b = a ∧4b.

(iii) 4(a ⇒ b) ∨4(b ⇒ a) = 1 and ∼4(a ⇒ b) ≤ 4(b ⇒ a).

Proof. (i) If a = 4a, then a ∨ ∼a = 1 by (PLb)(d), hence also a ∧ ∼a = 0.
If a ∧ ∼a = 0, then 1 = a ∨ ∼a = 4(a ∨ ∼a) = 4a ∨4∼a by (PLb)(c),(e),
so a = (a ∧4a) ∨ (a ∧4∼a) = 4a by (PLb)(a).

(ii) By (PLb)(d), we have a = a ⊗ (4b ∨ ∼4b) = (a ⊗4b) ∨ (a ⊗∼4b), so
a ∧4b = a ⊗4b.

(iii) (a ⇒ b)∨ (b ⇒ a) = 1 holds in MV-algebras. So (PLb)(c),(e) imply the
first part, from which the second easily follows by (PLb)(d). 2

We now turn back to partial algebras. The partial algebra analogue for PÃL′

4
-

algebras will not be f-product effect algebras endowed with an operation 4.
We shall rather use f-product effect algebras themselves, requiring that there
are sufficiently many sharp elements. The latter, which sometimes are also
called boolean, are to be defined next.

Definition 4.3 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra. We call
e ∈ L sharp if e∧∼e = 0 and e∨∼e = 1; we denote the set of sharp elements
of L by S(L).

Lemma 4.4 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra.

(i) (S(L);≤, 0, 1) is a boolean lattice. The complementation is given by ∼;

and for e, f ∈ S(L) such that e ∧ f = 0, we have e ∨ f = e + f .

(ii) For any a ∈ L and e, f ∈ S(L) such that e ∧ f = 0 and a ≤ e + f , we

have a = a ∧ e + a ∧ f .

(iii) For a ∈ L and e ∈ S(L), we have a ¯ e = a ∧ e.

Proof. (i), (ii) are easily checked; cf. also [GrFoPu].

(iii) We have a¯ e ≤ a∧ e and (a∧ e)− (a¯ e) = (a− a¯ e)∧ (e− a¯ e) =
(a ¯∼e) ∧ (e ¯∼a) ≤ ∼e ∧ e = 0. 2
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Now, the condition which we propose to characterise those f-product effect
algebras which correspond to PÃL′

4
-algebras, is a strengthened version of an

analogue of a condition known for po-groups, namely general comparability
from [Goo]; cf. Definition 4.11(i) below.

Definition 4.5 Let (L;≤, +,¯, 0, 1) be an effect algebra. We say that L

fulfils strict comparability if for any pair a, b ∈ L, there is a sharp element
e such that a ∧ e ≤ b ∧ e and, for any non-zero sharp element f ≤ ∼e,
a∧f > b∧f . In the sequel, we will denote an element e with these properties
by eb

a.

In fact, eb
a will denote the element associated to a pair of elements a and b

as specified in Definition 4.5:

Lemma 4.6 Let (L;≤, +,¯, 0, 1) be an effect algebra fulfilling strict com-

parability. Then for any pair a, b, the element eb
a specified in Definition 4.5

is uniquely determined.

Proof. Given a, b ∈ L and two distinct elements e1, e2 ∈ S(L) satisfying the
inequalities from Definition 4.5, then there is, possibly after interchanging
e1 with e2, some non-zero sharp f ≤ e2,∼e1, which would mean a∧f ≤ b∧f

and a ∧ f > b ∧ f . 2

Lemma 4.7 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra fulfilling strict

comparability.

(i) For any a, b ∈ L, we have eb
a ∨ ea

b = 1.

(ii) For every a ∈ L, there is a smallest sharp element a ≥ a. We have

a = ∼e0
a.

(iii) If a ∧ b = 0 for a pair a, b ∈ L, then a ∧ b = 0 also for the smallest

sharp elements a ≥ a and b ≥ b.

Proof. (i) If eb
a ∨ ea

b < 1, then there is a non-zero sharp f ≤ ∼eb
a,∼ea

b ; a
contradiction.

(ii) Let a = ∼e0
a; then a ∈ S(L), a ∧ ∼a = 0 and a ∧ f > 0 for all non-zero

sharp f ≤ a. So a ≥ a, and if a ≤ f ≤ a for some sharp element f , then
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(a − f) ∧ a = 0 because [(a − f) ∧ a] + (f ∧ a) = a by Lemma 4.4(ii); thus
f = a.

(iii) Let e = eb
a. We then have a ∧ e ≤ b ∧ e and a ∧ ∼e > b ∧ ∼e. From

a ∧ b = 0, it follows a ∧ e = b ∧ ∼e = 0 and further a ≤ ∼e, b ≤ e. So
a ≤ a ≤ ∼e and b ≤ b ≤ e, and a ∧ b = 0. 2

Theorem 4.8 Let (L;≤,⊕,¯,∼, 0, 1,4) be a PÃL′

4
-algebra and + the nat-

ural partial addition on L. Then the f-product effect algebra (L;≤, +,¯, 0, 1)
fulfils strict comparability. ⊕, ∼ are reobtained by (5), (6); and 4 = ∼5 ∼,

where 5a = a, that is, the smallest sharp element above some a ∈ L.

Every torsion-free f-product effect algebra fulfilling strict comparability arises

in this way from a unique PÃL′

4
-algebra.

Proof. Let (L;≤,⊕,¯,∼, 0, 1,4) be a PÃL′

4
-algebra; + being its natural

partial addition, we have by Theorem 3.6 that (L;≤, +,¯, 0, 1) is a torsion-
free f-product effect algebra and that (5), (6) hold.

To see that L has strict comparability, let a, b ∈ L, and set e = 4(a ⇒ b).
From e ≤ a ⇒ b we have a ⊗ e ≤ b by (3), so a ∧ e ≤ b ∧ e by Lemma
4.2(ii). On the other hand, ∼4(a ⇒ b) ≤ 4(b ⇒ a) by Lemma 4.2(iii),
hence ∼4(a ⇒ b) ≤ b ⇒ a and b ∧ ∼4(a ⇒ b) ≤ a; so a ∧ ∼e ≥ b ∧ ∼e.
Suppose a ∧ f = b ∧ f for some sharp element f ≤ ∼e; then a ⊗ (e ∨ f) =
a ∧ (e ∨ f) = (a ∧ e) ∨ (a ∧ f) ≤ (b ∧ e) ∨ (b ∧ f) ≤ b, so f ≤ e ∨ f ≤ a ⇒ b,
whence f = 4f ≤ 4(a ⇒ b) = e, that is, f = 0. So strict comparability is
proved, and eb

a = e = 4(a ⇒ b).

It moreover follows 5a = ∼4∼a = ∼4(a ⇒ 0) = ∼e0
a, which by Lemma

4.7(ii) is the smallest sharp element above a.

For the converse direction, let (L;≤, +,¯, 0, 1) be a torsion-free f-product
effect algebra fulfilling strict comparability. Let (L;≤,⊕,¯,∼, 0, 1) be the
PÃL′-algebra belonging to it according to Theorem 3.6. Furthermore, for any
a, we define 4a = ∼ ∼a. We have to verify (PLb)(a)–(f).

Clearly, a ≥ a, a = a, 0 = 0, so (PL2)(a)–(c) follow; and (PL2)(d) holds
because a is a sharp element.

We next show a∧b = a ∧ b, from which (PL2)(e) will follow. Indeed, a ∧ b ≤
a ∧ b, and if there is a sharp f ≤ a, b such that f ∧ (a ∧ b) = 0, we conclude
f ∧ a ∧ b = 0 and, applying twice Lemma 4.7(iii) gives f = f ∧ a ∧ b = 0.

We finally see that b ª a ≤ b ª a, implying (PL2)(f) by (8). Indeed, we
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have b ª a ≤ b ª a, so by (3) b ⊗ ∼(b ª a) ≤ a, and by Lemma 4.2(ii)
b ∧ ∼(b ª a) ≤ a. Applying · on both sides gives b ∧ ∼(b ª a) ≤ a; this in
turn implies b ª a ≤ b ª a. 2

We will now turn to the f-rings whose unit intervals give rise to PÃL′

4
-algebras.

The following definitions show where the notion of strict comparability comes
from – see [Goo, Chapter 8]. The notions now introduced will certainly also
be used for the `-groups underlying f-rings.

Definition 4.9 Let (G;≤, +, 0, u) be a unital abelian `-group. We call an
element e ∈ G such that 0 ≤ e ≤ u characteristic if e ∧ (u − e) = 0 and
e ∨ (u − e) = u; we denote the set of characteristic elements of L by S(G).

From [Goo], we have:

Lemma 4.10 Let (G;≤, +, 0, u) be a unital abelian `-group.

(i) (S(G);≤, 0, u) is a boolean lattice.

(ii) Let e be a characteristic element of G, and let Ge and Gu−e be the

convex subgroups of G generated by e and u − e, respectively. Then

Ge ∩ Gu−e = {0}, and G = Ge + Gu−e. In particular, any a ∈ G

may be uniquely written as a = pe(a) + pu−e(a), where pe(a) ∈ Ge and

pu−e(a) ∈ Gu−e.

Assuming −nu ≤ a ≤ nu, we have

pe(a) = (a+ ∧ ne) − ((−a)+ ∧ ne). (9)

In the sequel, for an characteristic element e of an `-group, pe will denote
the function according to Lemma 4.10.

Definition 4.11 Let (G;≤, +, 0, u) be a unital abelian `-group.

(i) We say that G fulfils general comparability if for any pair a, b ∈ L,
there is a characteristic element e ∈ L such that pe(a) ≤ pe(b) and
pu−e(a) ≥ pu−e(b).

(ii) We say that G fulfils strict comparability if for any pair a, b ∈ L, there
is a characteristic element e ∈ L such that pe(a) ≤ pe(b) and, for any
non-zero characteristic element f such that e ∧ f = 0, pf (a) > pf (b).
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Clearly, strict comparability implies general comparability. We moreover
note:

Lemma 4.12 Let (G;≤, +, 0, u) be a unital abelian `-group. Then G fulfils

strict comparability if and only for any pair of positive elements a, b ∈ G,

there is an e as specified in Definition 4.11.

Proof. Let a ∈ G. For some n ≥ 1, we have −nu ≤ a ≤ nu. By Lemma
4.10(ii), pe(a + nu) = pe(a) + pe(nu) = pe(a) + ne for any e ∈ S(G), and the
assertion follows. 2

Theorem 4.13 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra. Then

L fulfils strict comparability if and only if so does the representing f-ring

(R(L);≤, +,¯, 0, 1).

Proof. The infimum or supremum of a pair of elements of L is the same
when calculated in L or in R(L). So in particular, characteristic elements
of R(L) are exactly the sharp elements of L.

Now, if R(L) fulfils strict comparability, it easily follows from (9) that L

fulfils strict comparability, too.

Conversely, let L fulfil strict comparability. We first prove that, for any
a ∈ R(L), there is an e ∈ S(L) such that pe(a) ≥ 0 and pf (a) < 0 for all
non-zero f ∈ S(L) such that f ≤ ∼e. We have a = a+ − (−a)+, where
a+, (−a)+ ≥ 0 and a+ ∧ (−a)+ = 0; set e = ∼((−a)+ ∧ u); then e ≥ a+ ∧ u

by Lemma 4.7(iii). Let n be such that −nu ≤ a ≤ nu. So then a+ ≤ nu,
whence 0 ≤ a+ ≤ n(a+ ∧ u) ≤ ne; and similarly 0 ≤ (−a)+ ≤ n(∼e); so
pe(a) = a+ ≥ 0 and p∼e(a) = −(−a)+ ≤ 0. Furthermore, for any sharp
f ≤ ∼e, we have by Lemma 4.10(ii) pf (a) = −((−a)+ ∧ nf) ≤ 0; pf (a) = 0

then means (−a)+ ∧ f = 0, so f = ∼e ∧ f = ((−a)+ ∧ u) ∧ f = 0. We note
that a 6≥ 0 holds exactly in case ∼e > 0.

In view of (the proof of) Lemma 4.12, it further follows that, given any
a ∈ R(L) and i ≥ 1, there is an ei ∈ S(L) such that pei

(a) ≥ iei and
pf (a) < if for any non-zero sharp f ≤ ∼ei. Let now n ≥ 2 be such that 0 ≤
a ≤ (n− 1)u; let g0 = ∼e1, gi = ei ∧∼ei+1 for i = 1, . . . , n− 2, gn−1 = en−1.
Then gi ∧ gj = 0 if i 6= j, g0 + . . . + gn−1 = u, and igi ≤ pgi

(a) < (i + 1)gi

for all i = 1, . . . , n − 1 such that gi > 0.

Let now a, b ∈ R(L) and, in view of Lemma 4.12, assume a, b ≥ 0. Choose
n ≥ 2 such that a, b ≤ (n−1)u, and apply the result of the last paragraph to
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b, so as to get g0, . . . , gn−1 such that b = pg0
(b)+. . .+pgn−1

(b) and igi ≤ pgi
(b)

as well as pf (b) < (i + 1)f for a non-zero sharp f ≤ gi; i = 0, . . . , n− 1. Let
bi = pgi

(b) − igi, so that bi ∈ L; and let ai = pgi
(a) − igi and a′i = a+

i ∧ gi,
so that also a′i ∈ L.

By strict comparability of L, for every i = 0, . . . , n−1 such that gi > 0, there
is an ei ≤ gi such that a′i ∧ ei ≤ bi ∧ ei and a′i ∧ f > bi ∧ f for any non-zero
sharp f ≤ ∼ei ∧ gi. We shall show pei

(ai) ≤ pei
(bi) and pf (ai) > pf (bi);

Lemma 4.12 will then imply that the same inequalities hold also for a and
b replacing ai and bi, respectively; and so strict comparability of R(L) will
become easily derivable.

Now, there cannot be any non-zero sharp f ≤ ei such that pf (a+
i ) ≥ f ,

because in this case a+
i ≥ f , contradicting a+

i ∧ f = a′i ∧ f ≤ bi ∧ f =
pf (bi) < f . It follows pei

(a+
i ) ≤ ei, and so pei

(ai) ≤ pei
(a+

i ) = a+
i ∧ ei =

a′i ∧ ei ≤ bi ∧ ei = pei
(bi).

Furthermore, let f ≤ ∼ei ∧ gi be a non-zero sharp element. We have (ai ∧
f)∨0 > bi∧f ≥ 0; let us assume ai∧f 6> bi∧f . It follows ai∧f 6≥ 0, and so
there is a non-zero sharp f ′ ≤ f such that pf ′(ai ∧ f) < 0. But this means
ai ∧ f ′ < 0 and a′i ∧ f ′ = (ai ∧ f ′)∨ 0 = 0, contradicting a′i ∧ f ′ > bi ∧ f ′ ≥ 0.

2

Taking also into account also Theorem 3.9, we have thus derived that there
is a one-to-one correspondence between PÃL′

4
-algebras, torsion-free f-product

effect algebras with strict comparability, and unital torsion-free f-rings with
strict comparability.

5 ÃLΠ-algebras

The logic ÃLΠ was introduced in [EsGo] as a combination of ÃLukasiewicz and
product logic. We understand this logic as the product logic enriched by
the ÃLukasiewicz negation; this is why we will axiomatize the corresponding
algebras, the ÃLΠ-algebras, in a little bit uncommon way. On the other hand,
our axioms are very close to Cintula’s in [Cin], and the fact that both systems
coincide is seen in Proposition 5.5 below.

Product logic is an extension of Hájek’s Basic fuzzy logic; the corresponding
algebras are special BL-algebras. For these items, we refer to [Haj]. For more
information about ÃLΠ-algebras, we refer to [EsGoMo, Mon1, MoPa, Cin].
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Definition 5.1 A product algebra is a structure (L;≤,¯,→, 0, 1) with the
following properties:

(LP1) (L;≤,¯,→, 0, 1) is a residuated lattice.

(LP2) For any a, b we have:

(a) a ≤ b implies that a = b ¯ k for some k,

(b) (a → b) ∨ (b → a) = 1.

(LP3) Let ¬a
def
= a → 0. For any a, b, c, we have:

(a) a ∧ ¬a = 0,

(b) if ¬¬a = 1, then a ¯ b = a ¯ c implies b = c.

An ÃLΠ-algebra is a structure (L;≤,¯,→,∼, 0, 1) such that (L;≤,¯,→, 0, 1)
is a product algebra and such that the following holds:

(LP4) ∼ is a order-reversing, involutive unary operation, which furthermore
satisfies for all a:

(a) ¬a ≤ ∼a,

(b) ∼¬a = ¬¬a.

(LP5) For all a, b, a ⊗ b = b ⊗ a, where

a ⊗ b
def
= a ¯∼(a → ∼b). (10)

We will identify ÃLΠ-algebras, as defined here, with a subclass of the PÃL′

4
-

algebras. This result will then allow us to characterise the underlying partial
structure; the announced equivalence of our axioms with those in [Cin] will
be an immediate corrolary.

Definition 5.2 We call a PÃL′

4
-algebra (L;≤,⊕,¯,∼, 0, 1,4) divisible if for

any a, b such that a ≤ b, there is some k such that b ¯ k = a.

Lemma 5.3 Let (L;≤,¯,→, 0, 1) be a product algebra. Then we have for

all a, b, c

a ¯ b → a ¯ c = (b → c) ∨ ¬a. (11)

In particular, a → a ¯ b = b ∨ ¬a.
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Proof. Assume first ¬¬a = 1. Then, by (LP3)(b), a ¯ c = a ∧ (a ¯ c) =
a¯ (a → a¯ c), so a → a¯ c = c. It also follows a¯ b → a¯ c = b → (a →
a ¯ c) = b → c.

Now, let a be any element, and set a′ = a∨¬a. Then ¬¬a′ = 1 by (LP3)(a),
and b → c = a′¯b → a′¯c ≥ a′¯b → a¯c = (a¯b → a¯c)∧(¬a¯b → a¯c).
Because ¬a ≤ a ¯ b → a ¯ c and (¬a ¯ b → a ¯ c) ∨ ¬a = (¬a → (b →
a ¯ c)) ∨ ¬a ≥ ¬¬a ∨ ¬a = 1, we conclude (b → c) ∨ ¬a ≥ a ¯ b → a ¯ c.
Clearly, (b → c) ∨ ¬a ≤ a ¯ b → a ¯ c. 2

Theorem 5.4 Let (L;≤,¯,→,∼, 0, 1) be an ÃLΠ-algebra, and let for a, b ∈ L

a ⊕ b = ∼(∼a ⊗∼b), (12)

4a = ¬∼a, (13)

where ⊗ is defined by (10). Then (L;≤,⊕,¯,∼, 0, 1,4) is a divisible PÃL′

4
-

algebra. We reobtain → by

a → b = max {x: a ¯ x ≤ b}. (14)

Moreover, every divisible PÃL′

4
-algebra arises in this way from unique ÃLΠ-

algebra.

Proof (of the first part). Let (L;≤,¯,→,∼, 0, 1) be an ÃLΠ-algebra. Note
that then, in particular, (L;≤,¯,→, 0, 1) is a BL-algebra.

First, we prove that (L;≤,⊕,∼, 0, 1) is an MV-algebra. (MV1) holds by
(LP1). Moreover, ⊕ is commutative by (LP5). 0 is a neutral element w.r.t.
⊕; to see this, put a = 1 in (10). By the commutativity of ⊗, we have
a ⊗ (b ⊗ c) = (b ⊗ c) ⊗ a = b ¯ ∼(b → ∼c) ¯ ∼[b ¯∼(b → ∼c) → ∼a] =
b¯∼(b → ∼c)¯∼[∼(b → ∼c) → (b → ∼a)] = b¯ [∼(b → ∼c)⊗∼(b → ∼a)];
the last term is symmetric in a and c; the associativity of ⊗ and then also
of ⊕ follows. So (MV2) is proved.

It is not difficult to see that ⊗ is isoton, which implies (MV3). (MV4) holds
by (LP4). We next prove a ∧L b = a ∧ b, where a ∧L b = a ⊗ (∼a ⊕ b);
it then follows (MV5). By (11), a ∧L b = a ¯ ∼(a → a ¯∼(a → b)) =
a¯∼(∼(a → b) ∨ ¬a) = a¯ ((a → b)∧∼¬a) = a¯ (a → b) = a∧ b, because
a ¯∼¬a = a ¯ ¬¬a = a ¯ (¬a ∨ ¬¬a) = a by (LP4)(b) and (LP3)(a).

We next see that (L;≤,⊕,¯,∼, 0, 1) is a PÃL′-algebra. (PL1) is proved, (PL2)
holds by (LP1). (PL3) follows by Lemma 3.2 from a¯(bªc) = a¯b ª a¯c.
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To see the latter, note that (11) implies a¯b¯∼(b → c) = a¯b¯∼[(b → c)∨
¬a] = a ¯ b ¯∼(a ¯ b → a ¯ c), because a ¯∼¬a = a. To see (PL4), apply
again Lemma 5.3: a ¯ a = 0 means 1 = a ¯ a → 0 = (a → 0) ∨ ¬a = ¬a, so
a = 0.

We next prove that (L;≤,⊕,¯,∼, 0, 1,4) is a PÃL′

4
-algebra, where 4 =

¬ ∼. By (LP3) and (LP4), 4a ≤ ∼∼a = a, 44a = ¬¬¬∼a = ¬∼a =
4a, 41 = ¬0 = 1, 4a ∨ ∼4a = ¬∼a ∨ ¬¬∼a = ¬(∼a ∧ ¬∼a) = 1, and
4(a ∨ b) = 4a ∨4b; so (PLb)(a)–(e) are proved.

Note further that 4(a → b) = 4(a ⇒ b). Indeed, we have ¬a ≤ a → b, so
¬a = 4¬a ≤ 4(a → b); so, using Lemma 5.3, 4(a ⇒ b) = ¬[a ¯∼(a → b)] =
¬∼(a → b) ∨ ¬a = 4(a → b).

We may now conclude 4(a ⇒ b)⊗4a = 4(∼b ⇒ ∼a)⊗4a = 4(∼b → ∼a)⊗
4a ≤ 4(∼b → ∼a)¯4a ≤ (∼b → ∼a)¯ (∼a → 0) ≤ ¬∼b = 4b; so by (3),
(8) follows, and (PLb)(f) is proved.

Divisibility of L holds by (LP2)(a), and equation (14) holds by (LP1). So
the first part of the theorem is proved. 2

The proof of the second part of Theorem 5.4 follows below.

We next insert the statement that our notion of an ÃLΠ-algebra coincides
with the usual one.

Proposition 5.5 ÃLΠ-algebras are the structures (L;≤,¯,→,∼, 0, 1) such

that:

(i) (L;≤,¯,→, 0, 1) is a product algebra,

(ii) (L;≤,⊕,∼, 0, 1) is an MV-algebra, where ⊕ is defined by (12) and (10),

(iii) (7) holds, where ª is given by (1).

Proof. If L is an ÃLΠ-algebra, (i) holds by (LP1)-(LP3) and Lemma 5.3. (ii)
holds by the first part of Theorem 5.4, which also implies (iii).

For the converse, only (LP4)(a),(b) have to be proved. We refer to [Cin,
Corollary 2]. 2

Remark 5.6 We have the following relationships of our ÃLΠ-algebra axioms
to other ones.

21



• The picture in [Cin] is reflected by Proposition 5.5: an ÃLΠ-algebra
contains both an MV-algebra and a product algebra in a way that ¯
distributes over ª. Comparing these facts with Definition 5.1, we find
that (LP4)(a),(b) is newly added. On the other hand, the cancellation
axiom for product algebras is weakened; the axioms for MV-algebras
are reduced to the one expressing commutativity of the ÃLukasiewicz
conjunction; and the distributivity axiom is dropped.

• Our results imply that ÃLΠ-algebras are Π∼-algebras in which the (de-
rived) ÃLukasiewicz conjunction is commutative. Π∼-algebras are the
algebras (L;≤,¯,→,∼, 0, 1) corresponding to the equally named logic
[EGHN]. They fulfil (LP1)–(LP4), but not necessarily (LP5). On the
other hand, every ÃLΠ-algebra is a Π∼-algebra. So: Postulating (LP5)
for Π∼-algebras leads exactly to the ÃLΠ-algebras.

We now proceed with our original line of reasoning. Next, we characterise
those product effect algebras which correspond to the ÃLΠ-algebras. We
naturally repeat Definition 5.2 for PÃL′

4
-algebras.

Definition 5.7 We call an f-product effect algebra (L;≤, +,¯, 0, 1) divisible

if for any a, b such that a ≤ b, there is some k such that b ¯ k = a.

Theorem 5.8 Let (L;≤,¯,→,∼, 0, 1) be an ÃLΠ-algebra. Let ⊕ be defined

according to (12), and let + be the partial addition belonging to ⊕. Then

(L;≤, +,¯, 0, 1) is an f-product effect algebra which is torsion-free and divis-

ible and fulfils strict comparability. → is reobtained by (14), and ∼a = 1− a

for any a.

Every f-product effect algebra which is torsion-free and divisible and fulfils

strict comparability arises in this way from a unique ÃLΠ-algebra.

Proof. Let (L;≤,¯,→,∼, 0, 1) be an ÃLΠ-algebra. Then, by the first part of
Theorem 5.4, (L;≤,⊕,¯,∼, 0, 1,4) is a divisible PÃL′

4
-algebra, → is given

by (14), and ∼a = 1 − a holds by Theorem 2.5. Furthermore, by Theorem
4.8, (L;≤, +,¯, 0, 1) is a torsion-free f-product effect algebra fulfilling strict
comparability, and L is then also divisible. This completes the proof of the
first part.

Let now (L;≤, +,¯, 0, 1) be a torsion-free, divisible f-product effect algebra
fulfilling strict comparability. ∼: L → L, a 7→ 1 − a is the usual comple-
mentation of effect algebras, thus an involutive, order-reversing operation;
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this is the first statement of (LP4). We have to show that → exists according
to (14); then, taking into account that ¯ is by Lemma 3.5(i) isotone, (LP1)
will be proved. So let a, b ∈ L. Let e = eb

a be the sharp element such that
a ∧ e ≤ b ∧ e and a ∧ f > b ∧ f for any non-zero sharp f ≤ ∼e.

We claim that there is exactly one y ≤ ∼e such that (a ∧ ∼e) ¯ y = b ∧ ∼e,
which by Lemmas 3.5(ii) and 4.4(iii) actually means a ¯ y = b ∧ ∼e. By
divisibility, there is at least one such y. If there are two distinct ones,
they may, by Lemma 3.5(ii), be assumed comparable. Let y′ ≤ y fulfil the
condition as well. Then a¯(y−y′) = 0, so, because L is torsion-free, we have
by Lemma 3.5(iv) a ∧ (y − y′) = 0; we further conclude by Lemma 4.7(iii)
a ∧ y − y′ = 0, where y − y′ ≤ ∼e is sharp; so by assumption, y = y′.

We are now able to show that to set a → b = y ∨ e is consistent with
(14). Indeed, we have on the one hand a ¯ (y ∨ e) = (a ¯ y) ∨ (a ¯ e) ≤
(b ∧ ∼e) ∨ (b ∧ e) = b. On the other hand, let x ∈ L be such that a ¯ x ≤
b. Then a ¯ (x ∧ ∼e) = (a ¯ x) ∧ (a ¯ ∼e) ≤ b ∧ ∼e, and consequently,
a ¯ [(x ∧ ∼e) ∨ y] = [a ¯ (x ∧ ∼e)] ∨ (a ¯ y) = b ∧ ∼e. From the unicity of
y, we conclude x∧∼e ≤ y and x ≤ (x∧∼e)∨ e ≤ y ∨ e. This completes the
proof that the maximum in (14) exists.

If here b = 0, we have a ∧ e = 0 and a ¯ y = 0. It follows a ∧ y = 0 by
Lemma 3.5(iv), hence a∧¬a = a∧ (y ∨ e) = 0 in this case. So also (LP3)(a)
is shown.

It also follows (a → b) ∨ (b → a) = 1, that is (LP2)(b). Indeed, if we repeat
the above construction with a and b interchanged, we get b → a = y′ ∨ e′,
where e ∨ e′ = 1 by Lemma 4.7(i).

(LP2)(a) holds by the divisibility of L. We conclude that L is an BL-algebra.

From a ∧ ¬a = 0, we conclude that a + ¬a exists, so ¬a ≤ ∼a. This
proves (LP4)(a). Furthermore, we have ¬a = ¬a ¯ (¬a ∨ ¬¬a) = ¬a ¯ ¬a,
so ¬a ¯ ∼¬a = ¬a ¯ (1 − ¬a) = ¬a − ¬a ¯ ¬a = 0, which means by
residuation ∼¬a ≤ ¬¬a. This together with (LP4)(a) proves (LP4)(b).
Note in particular that ¬a, a ∈ L, are exactly the sharp elements of L.

To see (LP3)(b), assume ¬¬a = 1 and a ¯ b = a ¯ c. We may assume
b ≤ c. From a ¯ (c − b) = 0, it follows a ∧ (c − b) = 0 by Lemma 3.5(iv)
and a ∧ (c − b) = 0 by Lemma 4.7(iii). Furthermore, a ≤ a implies ¬¬a ≤
¬¬a = a because a is sharp, and it follows b = c.

Finally, let ⊗′ be the multiplication of the MV-algebra belonging to the
MV-effect algebra (L;≤, +, 0, 1) according to Theorem 2.5; then a ⊗′ b =
∼(∼a + (a ∧ ∼b)) = a − (a ∧ ∼b). We have ⊗ = ⊗′ because a ⊗ b = a ¯
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∼(a → ∼b) = a¯ (1− (a → ∼b)) = a−a¯ (a → ∼b) = a− (a∧∼b) = a⊗′ b,
so (LP5) is proved. 2

Proof (of the second part of Theorem 5.4). Let (L;≤,⊕,¯,∼, 0, 1,4) be
a divisible PÃL′

4
-algebra. Then, + being the natural partial addition, (L;≤

, +,¯, 0, 1) is, by Theorem 4.8, a torsion-free, divisible f-product effect al-
gebra fulfilling strict comparability. Moreover, ⊕ is determined by (5), ∼ is
determined by (6), and 4a = ∼ ∼a for any a.

By Theorem 5.8, we may define the function → according to (14) to get
an ÃLΠ-algebra (L;≤,¯,→,∼, 0, 1). Like in the proof of Theorem 5.8, we
see that ⊕ defined by (12) and (10) coincides with ⊕ defined by (5). Fur-
thermore, the smallest sharp element majorizing some a is ¬¬a; it follows
4a = ∼ ∼a = ¬∼a in accordance with (13). 2

We finally consider the f-rings representing ÃLΠ-algebras. The (algebraic)
characterisation of these rings is difficult. In [Mon1], a further operation
is postulated. We proceed here in the following, pragmatic way, which is
inspired by [Mon1].

Definition 5.9 Let (G;≤, +,¯, 0, 1) be an f-ring. Let Div G contain all
g ∈ G+ with the following property: for all h ∈ G+ such that h ≤ g there is
a h0 ∈ G+ such that 2h0 = h0 + h0 = h. We call G weakly divisible if for all
a, b ∈ Div G such that a ≤ b there is a k ∈ G+ such that a = b ¯ k.

Theorem 5.10 Let (L;≤, +,¯, 0, 1) be an f-product effect algebra which is

torsion-free and fulfils strict comparability; and let (R(L);≤, +,¯, 0, 1) be

the representing f-ring. Then L is divisible if and only if R(L) is weakly

divisible.

Proof. Let L be divisible, and let a, b ∈ Div R(L) such that a ≤ b. Because
R(L) is, as an abelian `-group, unperforated, there is a power of 2, say n,
which is large enough such that there are a′, b′ ∈ L fulfilling a = na′ and
b = nb′. Then a′ = b′ ¯ k for some k ∈ L, and we get a = b ¯ k as well. So
R(L) is weakly divisible.

Conversely, let R(L) be weakly divisible. The rest of the proof refers to the
unit interval of R(L), that is, to L, only. Moreover, in view of Theorem 4.8,
we will use the operations with which L is endowed as a PÃL′

4
-algebra.

Note first that any a (that is, any a ∈ L) may be composed into a = as +ad,
where as is a sharp element, as ∧ ad = 0, and for any c ≤ ad, c = 2c0 for
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some c0. Indeed, set as = 4a = ¬∼a, and ad = a ∧ ∼as. Then as is sharp,
and a = as ∨ ad = as + ad, because as ∧ ad = 0.

Let now z = ad ∧ ∼ad = a ∧ ∼a; then 2z exists, and ¬¬(as ∨ 2z ∨ ¬a) ≥
¬¬(as ∨ z ∨ ¬a) = 1. Furthermore, let h = 2z → z; then 2z ¯ h = z. We
have h ∧ ¬¬z = ∼h ∧ ¬¬z; this follows by (LP3)(b) from (as ∨ 2z ∨ ¬a) ¯
(h ∧ ¬¬z) = 2z ¯ (h ∧ ¬¬z) = (2z ¯ h) ∧ (2z ¯ ¬¬z) = z ∧ 2z = z as
well as (as ∨ 2z ∨ ¬a) ¯ (∼h ∧ ¬¬z) = 2z ¯ (∼h ∧ ¬¬z) = (2z ¯ ∼h) ∧
(2z ¯ ¬¬z) = (2z ¯ (1 − h)) ∧ 2z = z ∧ 2z = z. So we have for any c ≤ ad,
c = c¯¬¬z = c¯(h+∼h)¯¬¬z = c¯2(h¯¬¬z) = 2(c¯h¯¬¬z) = 2(c¯h).

Given now a, b ∈ L such that a ≤ b, we decompose a = as+ad and b = bs+bd

as explained above. Then as ≤ bs; both ad¯∼bs and bd belong to Div R(L);
and ad¯∼bs = a¯∼bs ≤ b¯∼bs = bd. It follows ad¯∼bs = bd¯k for some
k ≤ ∼bs, and so a = a¯(bs+∼bs) = a¯bs+ad¯∼bs = (a¯bs)¯bs+k¯bd =
(a ¯ bs + k) ¯ b. The proof that L is weakly divisible is complete. 2

Again, we may conclude the section stating that there is a one-to-one cor-
respondence between ÃLΠ-algebras, divisible, torsion-free f-product algebras
with strict comparability, and weakly divisible, torsion-free unital f-rings
with strict comparability.

6 Summary

We may summarize the contents of this article as follows. In the horizen-
tal direction, we have one-to-one correspondences; in the vertical direction,
generality decreases.
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total algebras partial algebras po-groups or po-rings

MV-algebras lattice-ordered unital abelian
effect algebras `-groups

with Riesz interpolation

PÃL-algebras f-product effect algebras unital f-rings

PÃL′-algebras torsion-free unital torsion-free
f-product effect algebras f-rings

PÃL′

4
-algebras torsion-free f-product unital torsion-free

effect algebras f-rings
with strict comparability with strict comparability

ÃLΠ-algebras f-product effect algebras unital f-rings which are
which are divisible, weakly divisible,

torsion-free, and with torsion-free, and with
strict comparability strict comparability

So it becomes clear that we discussed a chain of five algebras belonging to
logics each of which contains the preceeding one. We conclude by noting
that there are lots of more logics and more algebras appearing in literature
which could be, or have been, studied in an analogous way.

For instance, as mentioned, in [HoCi] still another logic is defined, namely
PÃL4, which is PÃL enriched by the 4-connective. Like PÃL′

4
, PÃL4 lies between

PÃL- and ÃLΠ-logics, but it is not comparable to PÃL′. The corresponding
algebras are the PÃL4-algebras [HoCi].

As a second example, recall that for the weak divisibility of f-rings (Definition
5.9), we referred to the property that certain positive elements are multiples
of smaller ones. Such a condition has also been considered in connection
with an extension of ÃLukasiewicz logic [Ger]. On the algebraic side, this
condition makes sense even for effect algebras [Pul].
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